A Model Based on Software Quality Factors
which Predicts Maintainability

Steven Wake and Sallie Henry

TR 88-8

A Model Based on Software Quality Factors
which Predicts Maintainability

by

Steve Wake
and
Sallie Henry

Computer Science Department
Virginia Tech
Blacksburg, VA 24061
(703) 961-2498

A Model Based on Software Quality Factors which Predicts
Maintainability

Abstract

Computer scientists are continually attempting to improve software system development.
Systems are developed in a top-down fashion for better modularity and understandability.
Performance enhancements are implemented for more speed. One area in which a great deal of
effort is being devoted is software maintenance, Brooks estimates that fifty percent of the
development cost of a software system 1s for maintenance activities [BROFS2]. Since a large
portion of the effort of a system is devoted to maintenance, it is reasonable to assume that driving
down maintenance costs would drive down the overall cost of the system. Measuring the
complexity of a software system could aid in this attempt. By lowering the complexity of the
system or of subsystems within the system, it may be possible to reduce the amount of
maintenance necessary, Software quality metrics were developed to measure the complexity of
software systems. This study relates the complexity of the system as measured by software
metrics to the amount of maintenance necessary to that system. We have developed a model which

uses several software quality metrics as parameters to predict maintenance activity.

I. Introduction

Software maintenance activity is a major part of the software life cycle. Estimates of time
and money spent on this stage of the software life cycle range from forty to sixty-seven percent of
the total for the entire life cycle [RAMCS4, YAUSS0]. Lientz suggests that "maintenance and
enhancement tend to be viewed by management as at least somewhat more important than new
application software development” [LIEB78]. Curtis states that "more time is spent maintaining
existing software than developing new code" [CURB79]. Since “the cost of correcting program
errors can (and typically does) increase enormously with time to discovery," it is important to find
these errors as early as possible [BASV84].

One tool which helps in solving some of the problems of software maintenance is software
quality metrics. The metrics quantitatively measure aspects of the system which can be used as
indications of the quality of the software system. Meirics can be used at various stages of the life
cycle. Ramamoorthy suggests that metrics can be used for maintenance purposes during the
requirements, implementation, testing, and maintenance stages [RAMC84). In this study, we view
the software quality metrics as a tool used in the maintenance phase of the software life cycle.

Yau and Collofello have developed a software metric to measure the ripple effect of
modifications in a software system [YAUSS80, YAUS78). The ripple effect is "the phenomena by
which changes to one program area have tendencies to be felt in other program areas." If the ripple
effect is large, a modification to one module of a system may have an impact on many other
modules in the system. This leads to high maintenance costs and low system reliability.

Basili has attempted to determine the correspondence between the software science
measures of Halstead and other related metrics to the number of development errors and to the
weighted sum of effort required to isolate and fix these errors on a number of FORTRAN projects
[BASV83, HALM77]. Most of the correlations are weak, but this is attributed to the discrete

nature of error reporting and to the fact that most of the modules examined reported zero errors.

Henry and Kafura used the information flow metric to analyze the UNIX operating system
[HENSS81a]. They chose UNIX for several reasons, including its large size and the fact that it is
not an experimental system but a system designed for users. They found that a high complexity
shows stress points in the system or inadequate refinement of a procedure. A high correlation was
found between changes in the system and the complexity of the procedures.

Kafura and Reddy studied the use of software complexity metrics on several versions of
the same software system [KAFDS7]. The system they studied was a data base management
system developed by students at Virginia Tech over a number of years. It is a medium size
software system (16,000 lines) written in FORTRAN. They decided to use a subjective evaluation
technique in order to determine whether software metrics could provide information to a maintainer
of a system in order to avoid poorly performed maintenance. Subjective evaluation means that they
“attempt to relate the quantitative measures defined by the software metrics to the informed
Jjudgement of experts who are intimately familiar with the system being studied.” An important
part of their investigation was examining the changes in the system from one version to the next.
They found that the change in the complexities of the software metrics agreed with the changes that
one would expect from the changes in the software system. Another interesting fact was that there
was a growth in structural complexity as a result of maintenance activity. Two possible uses for
software metrics in the maintenance process were suggested. "First, the metrics can be used to
identify improper integration of enhancements, ... Second, procedures which are perceived to be
complex can lead to improper structuring of the system because maintainers will avoid dealing with
this complex procedure when making enhancements, even when the maintainer knows that a major
restfucturing of the complex component is called for in order to gracefully include the required
enhancements,"

Actual data must be used in order to perform a valid research effort using software quality
metrics to predict system maintenance, Obtaining real data is a difficult task for academicians. If
student data is used, the experiment may be conducted in too controlled an environment and not

reflect "real world" conditions. Thus the best data comes from industry. Since most data from

2

industry comes from proprietary software, it is difficult to obtain. Pass 1 of the software metric
analyzer described in Section 11 disguises the source code into an intermediate lan guage so that the
source code can be measured without revealing the data structures or actual algorithms [HENS88].
A research relationship between the software engineering group at Virginia Tech and a major
software vendor has been ongoing for the last several years. The vendor understands the need of
academicians to have access to real data. Cooperative research benefits both parties by improving
the quality of their software by providing real data for software engineerin g researchers.

Section II describes the various software metrics and the software metric analyzer used in
this study. In Section I1I, the software system which was measured and evaluated for maintenance
activity is described, The models developed in this study which use software quality metrics to
predict maintenance activity are presented in Section IV, Finally, Section V contains our

conclusions and potential directions for future work.

II. Software Metrics

Software maintenance occurs because software does not do what it was designed to do.
Higher quality software is less likely to need maintenance. However, quality is a subjective term.
If there is to be an improvement in the quality of software, there must be a way to objectively, or
quantitatively, measure quality. This is the realm of software quality metrics. Software quality
metrics provide a way to quantitatively measure the quality of software. These metric values can
then be used as indicators to determine which portions are likely to require maintenance.

There are three classifications of metrics that are used to measure the quality of source code:
code metrics which measure physical characterisﬁcs of the software, such as length or number of
tokens; structure metrics which measure the connectivity of the software, such as the flow of
information through the program and flow of control; and /iybrid metrics which are a combination
of code and structure metrics. The metrics are briefly discussed in this section. Interested readers

are asked to refer to the references for more details.

Code Metrics

Historically, these were the first metrics and are among the simpler metrics to determine.
These metrics include Length (measured in lines of code), McCabe's Cyclomatic Complexity and
Halstead's Software Science Indicators.

A line of code, or length, is any line of program text that is not a comment or a blank line
regardless of the number of statements or fragments of statements on the line. This specificaily
includes all lines containing program headers, declarations, and executable and non-executable
statements [CONSS§6].

McCabe's Cyclomatic Complexity, denoted V(G), was designed to measure the number of
distinct paths throu gh a particular program by representing the program with a graph and counting
the number of nodes and edges [MCCT76). The cyclomatic complexity for a graph with e edges

and n nodes is:
VG =e-n+2

The third set of code metrics are Halstead's Software Science Indicators. Halstead
considered a computer program as a collection of tokens which can be classified as either operands
Or operators. From these measures he developed a number of metrics giving an indication of the

complexity of the program [HALM77]. The basic measures are;

nl = the number of unique operators
n2 = the numberof unique operands
N1 = the total occurrences of operators
N2 = the total occurrences of operands

The size of a program, N, expressed in tokens, is:

N=N1+N2

Vocabulary is defined as:

n=nl+n2

These two measures lead to a third measure which Halstead calls volume;

V =N xlogs (n)

Programming effort is a measurement of the effort it takes a programmer to translate ideas about a
program solution into the implementation of that solution in a language known to the programmer.
The formula for the effort indicator is:

. nz

nl = N2

Structure Metrics

In order to measure the complexity of a procedure with respect to its environment, Henry
and Kafura developed the Information Flow Metric [HENS81a). This metric attempts to measure
the complexity of the code due to the flow of information from one procedure to another. Flows
of information into a routine are called Jan-ins and flows of information out of a routine are called

Jan-outs. A more formal definition for each is:

fan-in the number of local flows into a procedure plus the
number of global data structures from which a procedure

retrieves information

fan-out the number of local flows from z procedure plus the
number of global data structures which the procedure
updates
Local flows represent the flow of information to or from a routine through the use of parameters
and return values from function calls. Combining these with the aécesses to global data structures
gives all possible flows into or out of a procedure. The complexity of a procedure p is defined as:

Cp = (fan-in x fan-out)2

Hybrid Metrics

Hybrid metrics combine aspects of code and structure metrics. Two hybrid metrics are
used in this research. Woodfield's Syntactic Interconnection Model is a hybrid metric which
attempts 1o relate programming effort to time [WOOS80]. Woodfield defines a connection
relationship between modules A and B. A connection relationship is a partial ordering between
modules A and B such that one must understand the function of B before one can understand the
function of A.

There are three types of module connections: control, data and implicit. A control
connection implies an invocation of one module by another. A data connection occurs when a
module uses a variable modified by another module. An implicit connection occurs when there are
some assumptions used in one module that are also used in another module. One example is that
two modules may both make the assumption that input is an expression of eighty characters or
less. If this changes then both modules have to be modified to reflect that change.

The connection A -> B implies that some aspect of module B must be reviewed and
understood before module A is completely understood. The number of times a module must be
reviewed is Woodfield's definition of the module's fan-in.

He presents the following general equation for the model:

fan-in-1
Co=Crp X Z rRCH!
k=2
where
Ch = the complexity of module B's code
Cip = the internal complexity of module B's code
fan-in = the sum of the control and data connections for B's code

RC = areview constant

The internal complexity for the module can be any code metric. In Woodfield's mode]
definition, Halstead's Program Effort Metric was used. The model uses a review constant of 2/3

which is a number previously suggested by Halstead.

Henry and Kafura's Information Flow Metric can also be used as a hybrid metric. Asa

hybrid metric, the formula for the complexity is:
Cp = Cip X (fan-in x fan-our)2

where

]

Cp complexity of procedure P

Cip = the internal complexity of procedure p

Fan-in and fan-out are as previously defined, Cip may be any code metric's measure of procedure

p's complexity.

Software Metric Analyzer

The software metric analyzer, shown in Figure 1, is a tool developed under the direction of
Dr. Sallie Henry at Virginia Tech. Given the source code as input it calculates each of the metrics
discussed previously.

Using the UNIX tools Lex and YACC along with a BNF grammar for the given language,
the language dependent portion of the analyzer (pass 1), calculates the code metrics and translates
the source code into an encrypted relation langnage. These code metrics are generated by pass 1
because they are counts generated using the original source code before it has been disguised in
any way. The relation manager (pass 2), takes the relation language code from pass 1 and
translates it into a series of relations which along with the code metrics from pass 1 are the input to
pass 3 of the analyzer. Pass 3 uses the relations to calculate structure metrics [KAFDS82]. Both the
code metrics and the structure metrics can be combined to create the hybrid metrics. Pass 3 also
displays the metrics in various groupings such as by metric or by procedure. Details of the

encoding algorithm and the implementation of the tool can be found in [HENSS8S].

Intrinsic
BNF File

Source —F@ANSLATOQ Pass 1
Code

Code Relation

ics Language
Metrics Code

M ‘

RELATION
MANAGER Pass 2
(

LEX) (YACC)

|

j Relitions
METRIC
QGENERATOR j Pass 3

v\

Code Structure Hybrid
Metrics Metrics Metrics

Figure 1. Software Metric Analyzer

II. The Experiment

module is composed of one or more procedures having a like function such as all the string
handling routines or all the parsing routines.

The modules were processed by pass 1 of the metric analyzer separately, at the vendor's

code for the procedures in the module. Recall from the previous section that the code metrics
include lines of code, values for Halstead's Software Science indicators and McCabe's Cyclomatic
Complexity. Relation language was then processed to generate the structure and hybrid metrics:
Woodfield, Information Flow, Information Flow with Length, and Information Flow with Effort.
In order to verify the interpretation of the metric numbers generated, there must be control
data against which the interpretation can be tested. Where software metrics are a guide to
maintenance of a software product, it is useful to see what changes are necessary to the product
after a major release. Since the last major version of this product was version 2.0, the version
which was measured, any modifications to the source code after this time are for maintenance
reasons. This could be for bug fixes or performance improvements but is not new development of
any kind. This data was obtained from a code library which was used in the development and

maintenance of the product.

The Code Library

A code library was used to monitor accesses to the different modules of the product. All
source code in a code Library could be accessed by the code librarian program. When a bug is
found by a customer, a software report is sent to the maintainers of the product who determine
what changes, if any,' are necessary. Any changes made to the source code are done through the
use of the code librarian. As used in their development and maintenance strategy, a module of
source code is checked out of the code library when changes are to occur. After the change is
made, tested, and found to be correct, the changed module is checked back into the code library,

Each time new changes are to be made to the code, the module involved must be checked out of the

library and the corrected version checked in. This enables an automated history to be kept of
accesses to a module of code.

The smallest unit of change is the line. A line can be either added to or deleted from a
module. A modification to a line is therefore treated as a deleted line followed by an added line in
the same place. For purposes of verification, any changes or modifications described are based on
the changing of a line of the code, Groups of lines that are all changed at the same time can also be
determined.

It is possible to make a complete listing of the source code with the lines of code added or
deleted flagged to show when they were added and deleted. A routine was written to find these
flagged lines in the source code and count the number of additions and deletions and where they
occurred. By coupling this with a routine to determine which procedure the changes occurred in, a
count of the number of changes, the number of lines changed, and how they were changed is
obtained. These numbers can serve as control data for the interpretation of the metric numbers as
they apply to the maintenance phase of the software life cycle.

By tabulating the results of these data collection routines, a list is created of all the routines
along with the corresponding number of lines added after the latest release, number of lines
deleted, and number of times these chan ges were made to each routine in the program. This gives

an indication of the maintenance activity which occurred to the program,

IV. Maintenance Predictions

This section shows the interrelationships among the various metrics discussed previously
and the number of lines of code changed in the procedures. A discussion of the multiple
regression model and our statistical analysis is presented, Finally, we select one of the models and

demonstrate that it is a good predictor for the data that has been analyzed.

10

Intermetric Results

First, recall from the previous section the various metrics used in this study: Length,
Halstead's N, V, E, McCabe's Cyclomatic Complexity — V(G), Woodfield's complexity,
Information Flow, Information Flow with Length, and Information Flow with Effort. Statistical
correlations among the metrics are revealed in Table 1. Notice that there is a high degree of
correlation between the code metrics. This occurs because the code metrics are attempting to
measure the same aspect of the code. However, there are low correlations between the code
metrics, the hybrid metrics and the structure metric. - This shows that the code, hybrid, and
Structyre metrics are measuring a different aspect of the code. These correlation results were

expected and they agree with other studies in the software metrics area [HENS81b, CANJ 851.

Length | N \4 E V(G) [Woodfield | Info-L |Info-E | Info
Length 1.000
N 0.842 11.000
v 0.973 10.862 |1.000
E 0.740 [0.370 [0.758 | 1.000

McCabe [0.840 |0.762 [0.770 {0.420 | 1.000
Woodfield 0.436 |0.485 [0.434 | 0215 | 0.310 1.000
Info-L 0.065 10.110 (0.067 }0.011 | 0.022 0.088 1.000
Info-E 0.138 10.170 [0.158] 0.103 | 0.091 0.113 0.838 |1.000
Info -0.077 [-0.062]-0.068]-0.049 |[-0.093 | -0.051 0.830 10.502 |1.000

Table 1. Intermetric Correlations

The goal of this study is to develop a model which uses metric values as parameters in
order to precﬁct the number of lines of code which will be changed during the maintenance phase of
the software life cycle. Lines of code changed is the dependent variable in the statistical model and
the metric values are the independent variables,

Our first attempt in developing a model to predict maintainability involved usin g a single
independent variable (in this case a single metric) to statistically determine the prediction model.

Although the results of this research are interesting, we found that a single metric could not

11

adequately determine a good predictor. A greater degree of accuracy may be obtained by using
more than one of the metrics available.

In some cases a linear relationship is not present between a single independent variable and
the dependent variable. In these cases it is better to express the model as a multiple regression
model. This indicates that more than one independent variable has some bearing on the value of
the dependent variable. Looking at correlations may not be enough to determine which variables
are needed in the model since there may be some interactions among two or more independent
variables which better explain the observed effects. In our case, it may be that a combination of
structure, code and hybrid metrics better explain the variation in the number of lines of code
changed (NI.C).

There are various statistics available to help calculate the best multiple regression model.
These include the PRESS statistic, MSE (mean squared error), and Mallow's Cp. The best fitting
model should have a Cp approximately equal to the number of independent variables and low
values for both PRESS and MSE [MYERS87].

At this point, we divide our data into two groups: three quarters of the data is used to
develop a prediction model; the final quarter of the data is used to show that the model does predict
maintainability by using the regression equation. This is an attempt to validate the model
developed.

In order to pick the best multiple regression model possible, the statistics are developed for
all possible models. This gives an indication of the best models although it does not necessarily
give the "best” model since each of these statistics may choose a different model as best. The top
models as chosen by each of the three statistics are shown in the following tables. As expected,
these statistics do not agree as to the best model but choose a set of models that do consistently
well throughout each statistic. These models and their associated statistic values are presented in

Table 5.

12

NLC =0.42997221 + 0.000050156 E - 0.000000199210 INFO-E

NLC = 0.45087158 + 0.000049895 E - 0.000173851 INFO-L

NLC = 0.60631548 + 0.000050843 E - 0.000029819 WOOD - 0.000000177341 INFO-E
NLC = 0.33675906 + 0.000049889 E

NLC = 0.62562353 + 0.000050633 E - 0.000030739 WOOD - 0.000147075 INFO-L

Table 2. Top 5 Models Selected by PRESS Statistic

NLC = 1.27935618 + 0.05500043 L - 0.001333387 V + 0.000054797 E -
0.11960695 V(G) - 0.000000142938 INFO-E

NLC = 0.42997221 + 0.000050156 E - 0.000000199210 INFO-E

NLC = 1.2782025 + 0.05693335 L - 0.001428534 V + 0.000054898 E -
0.11900135 V(G)

NLC =1.30521150 + 0.06024787 L - 0.001438433 V + 0.000054545 E -
0.12321067 V(G) - 0.000163532 INFO-L

NLC = 1.53080447 - 0.000355426 V + 0.000056495 E - 0.08419100 V(G) -
0.0000001493221 INFO-E

Table 3. Top 5 Models Selected by MSE

NLC = 1.47735619 + 0.000054638 E - 0.10017668 V(G) - 0.0000067303 WOOD

NLC = 1.53289519 + 0.000054777 E - 0.09957385 V(G) - 0.0000047908 WOOD -
0.000000158757 INFO-E

NLC = 1.57295997 + 0.000054615 E - 0.10037670 V(G) - 0.0000051632 WOOD -
0.000157250 INFO-L

NLC = 1.45518829 + 0.00005456 E - 0.10199539 V(G)

NLC = 1.57353731 - 0.002446765 N + 0.000054672 E - 0.08863879 V(G)

Table 4. Top 5 Models Selected by C,

13

NLC = 0.42997221 + 0.000050156 X4 - 0.000000199210 Xg

NLC = 0.45087158 + 0.000049895 X4 - 0.000173851 X7

NLC = 0.60631548 + 0.000050843 X4 - 0.000029819 X6 - 0.000000177341 Xg
NLC = 0.33675906 + 0.000049889 X4

NLC = 1.51830192 + 0.000054724 X4 - 0.10084685 X5 - 0.000000161798 X3
NLC = 1.45518829 + 0.00005456 X - 0.10199539 Xs

Table 5. Best Overall Candidate Models

After choosing a set of best models, they can each be run against our unused data, By
summing the squared error between the predicted value and the actual value an indication might be-
given if one of these models is better or worse than the others. Once again, it is observed that all

of these models are predicting equally well,

Prediction Example

As an example, consider the model with the three independent variables E, V(G) and Info-
E. This model was in the top 5 as selected by both Cp and MSE. It also did well in the PRESS
statistic. This model might be selected as the best overall model due to it having the lowest sum of
equared error and be used to predict the amount of maintenance to occur on a given procedure, To
do this, the values for each of the metrics used in the model are calculated using the software
analyzer discussed earlier. These values are then put in to the regression equation and a value for
NLC is calculated. The following examples are actual measurements from two of the procedures
analyzed. Consider values of 145,335 for E, 59 for V(G) and 1,308,016 for INFO-E. The
prediction equation yields a value of 3.31 for NLC, the expected number of lines to change in this
procedure. The actual number of lines changed in this procedure was 3. Using values of 12,246
for E, 21 for V(G) and 195,929 for INFO-E, the prediction equation yields a value of 0.0389 for
NLC. This procedure required no modifications. A programmer would want to concentrate on the

higher—valued procedure if there is time to do preventative maintenance.

14

The value calculated is not meant to be the value for the exact number of lines of code we
expect to have to change but rather gives an indication of what that value will be. If this is done
for all procedures in the software system, a ranking of procedures in order of likelihood of
maintenance can be determined. If this is done before the system is released, future maintenance
may be prevented by changing or preferably re-designing the higher ranking procedures.

Research of this type is necessary to reduce the cost of maintenance. A suggested use for
this type of model is for an organization to first collect a significant amount of error or maintenance
- data. The second step is to fit the error data statistically to the models. This phase of model
development creates models specific to the language, application, and environment area of the
organization. These prediction equations should be applied and evaluated constantly during the
coding, testing, and maintenance phases of the software life cycle. When a module or set of

modules is predicted to require a large amount of maintenance, a redesign should be considered.

V. Conclusions

No one metric can determine the overall quality of a system. For this reason, we believe
that the use of the multiple regression mode! described in this paper is the best method to develop a
predictor of system maintenance. The use of multiple metrics as parameters to our model presents
the best overview of the system.

Although some of the metrics did not contribute to the model, that may be due to the
development environment, the programming language or the system application. We are not
saying that these metrics are not meaningful. In other environments, we would expect that the
metric coefficients to the model could change drastically.

We were only able to evaluate one system in one language developed in one environment, it
is obvious that substantially more research must be performed in this area to further validate our
model. Bringing down the cost of software maintenance is necessary, and we feel that this model

using several software quality factors is the direction for predicting software quality.

15

Bibliography

[BASV84] Basili, V.R., Perricone, B.T., “Software Errors and Complexity: An Empirical

Investigation,” Communications of the ACM, January 1984,

[BASV83] Basili, V.R,, Selby, R.W., Phillips, T., “Metric Analysis and Data Validation Across

Fortran Projects,” IEEE Transactions on Software Engineering, November 1983.

[BROF82) Brooks, Jr., E.P., The Mythical Man-Month, Reading, MA, Addison-Wesley
Publishing Co., 1982.

[CANJ85] Canning, J.T., The Application of Software Metrics to Large-Scale Systems, Ph.D.

Dissertation, Virginia Tech, Computer Science Department, April 1985,

[CONS86] Conte, S.D., Dunsmore, H. E., Shen, V. Y., Software Engineering Metrics and
Models, Menlo Park, CA, The Benjamin/Cummings Publishing Company, Inc., 1986,

[CURB79] Curtis, B., Sheppard, S.B., Milliman, P., Borst, M.A., Love, T., “Measuring the
Psychological Complexity of Software Maintenance Tasks with the Halstead and McCabe

Metrics,” IEEE Transactions on Software Engineering, March 1979,

[HALM?77] Halstead, M., Elements of Software Science, New York, NY, Elsevier North
Holland, Inc., 1977.

[HENS81a] Henry, S.M., Kafura, D.G., “Software Structure Metrics Based on Information

Flow,” IEEE Transdctions on Sofware Engineering, September 1981,

[HENS81b] Henry, S.M., Kafura, D.G., Harris, K., “On the Relationship Among Three

Software Metrics,” Performance Evaluation Review, Vol, 10, No. 1, Spring 1981.

[HENS88] Henry, S.M., “A Technique for Hiding Proprietary Details While Providing Sufficient

Information for Researchers,” Journal of Systems and Software, January 1988.

16

[KAFD82] Kafura, D., Henry, S., “Software Quality Metrics Based on Interconnectivity,”
Journal of Systems and Software, Vol. 2, 1982,

[KAFDR7] Kafura, D., Reddy, G.R., “The Use of Software Complexity Metrics in Software

Maintenance,” IEEE Transactions on Software Engineering, March 1987,

[LIEB78] Lientz, B.P., Swanson, E.B., Tompkins, G.E., “Characteristics of Application

Software Maintenance,” Communications of the ACM, June 1978.

[MCCT76] McCabe, T., “A Complexity Measure,” IEEE Transactions on Software Engineering,
December 1976,

[MYERS7] Myers, R.H., Classical and Modern Regression with Applications, Boston, MA,
Duxbury Press, 1987.

[RAMCS84) Ramamoorthy, C.V., Prakash, A., Tsai, W, Usuda, Y., “Software Engineering:
Problems and Perspectives,” IEEE Computer, October 1984,

[WOOS80] Woodfield, S., Enhanced Effort Estimation by Extending Basic Programming Models
to Include Modularity Factors, Ph.D. Disertation, Purdue University, Computer Science

Department, 1980.

[YAUS78] Yau, S.S., Collofello, I.5., MacGregor, T., “Ripple Effect Analysis of Software
Maintenance,” Proceedings of the IEEE Computer Science and Applications Conference,

1978.

[YAUS80] Yau, S.S., Collofello, J S., “Some Stability Measures for Software Maintenance,”

IEEE Transactions on Software Engineering, November 1980,

17

