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(ABSTRACT)

The vibrational energy propagating in straight fluid-filled elastic pipes is
carried by the structure as well as by the internal fluid. Part of the energy in the
system may also transfer from one medium to the other as propagation occurs. For
various types of harmonic disturbance, this study demonstrates that, whether the
propagating energy is predominantly conveyed in the shell or in the fluid, large
attenuations of the total power flow may be achieved by using an active control
approach. As the shell and fluid motions are fully coupled, the implementation of
intrusive sources/sensors in the acoustic field can be also avoided. The approach is
based on using radial control forces applied to the outer shell wall and error sensors

observing the structural motion.

A broad analytical study gives insight into the control mechanisms. The
cylindrical shell is assumed to be infinite, in vacuo or filled with water. The first
disturbance source investigated is a propagating free wave of circumferential order
n=0 or n=1. The control forces are appropriate harmonic line forces radially applied
to the structure. The radial displacement of the shell wall at discrete locations
downstream of the control forces is minimized using linear quadratic optimal control

theory. The attenuation of the total power flow in the system after control is used to



study the impact of the fluid on the performance of the control approach. Results
for the shell in vacuo are presented for comparison. Considering the breathing
mode (n=0), the fluid decreases the control performance when the disturbance is a
structural-type incident wave. Significant reductions of the transmitted power flow
can be achieved when the disturbance is a fluid-type of wave. Regarding the beam
mode (n=1), the fluid increases the control performance below the first acoustic

cut-off frequency and decreases it above this frequency.

The analytical study is then extended to the active control of the pipe vi-
brations induced by more realistic disturbances such as a point force or an internal
monopole source. The point force disturbance addresses the problem of mechanical
excitation whereas the internal monopole source directs the attention towards the
acoustic excitation of the piping system. The modal radial displacements of the
shell, corresponding to the first three circumferential modes (n=0,1,2), are individ-
ually minimized at one axial location, using linear quadratic optimal control theory.
The control inputs are two radial point forces and one ring force. At low frequen-
cies, the active control approach results in large attenuations of the total power flow
beyond the error sensors whether the propagating energy is predominantly carried

in the shell or in the fluid before control.

The results of experiments conducted on a plexiglass shell in air or filled with
water are then presented and analyzed. The first set of experiments deals with the
active control of an axisymmetric radial line force disturbance. The actuators and
sensors were implemented using polyvinylidene fluoride (PVDF) cables wrapped
around the shell. The chosen control algorithm was the filtered-x version of the

adaptive LMS algorithm. Good control of the axisymmetric wave propagation is



demonstrated except at frequencies associated with waves cutting on. The active
control of of the pipe vibrations due to a radial point force disturbance (shaker)
was also investigated. The modal radial displacements of the shell (n=0,1,2) were
observed by sensors made of PVDF cable and shaped PVDF film. The design and
the implementation of these sensors is reviewed. For excitation frequencies below
150 Hz, large attenuations of the total power flow (> 10 dB) were obtained. The
experimental study corroborates the high potential for active control of total energy

flow in fluid-filled piping systems. The limitations of the approach are discussed.
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Chapter 1

Introduction

Piping systems appear as load-carrying elements in various industrial and
military applications. The vibrations induced by these loads can cause major prob-
lems such as mechanical fatigue or undesirable radiated noise fields. Fatigue may
result in damage to vital parts of installations. For this reason, engineers have
been particularly concerned with these vibrations in power plants and petrochemi-
cal refineries. The noise radiated from pipes is believed to contribute significantly
to the noise signature of military ships and submarines. Therefore, the detection
and the identification of these naval vessels would be more difficult if the transmis-
sion of noise along pipes was minimized. Piping systems are also responsible for
the propagation of domestic noise in apartment buildings. Despite stricter regu-
lations concerning the noise transmission through the walls, pipes in kitchens and

bathrooms transmit unwanted noise from one apartment to the other.

Piping systems can be excited by a large number of sources related to the
structural path or to the internal fluid path. The presence of a discontinuity in the

flow for example, such as a valve or a bend, generally creates a local turbulence, i.e.



a noise source in the fluid. Large amounts of vibrational energy may be delivered
to the system by pumps and compressors. Other vibrational sources may first reach
some equipment attached to the piping system which ultimately transmit vibrational
energy to the pipe itself. Reciprocally, as vibrational energy propagates along the
piping system, it can excite other equipment attached to the structure, often at
distances far from the source. Part of the propagating energy may also result in

noise radiation from the pipe surface.

Because of the mixed nature of the energy transmission path, control of
the total energy flow conveyed through fluid-filled piping systems can be a difficult
task to achieve by passive methods. The present study investigates an active control
approach to reduce the vibrations and hopefully the total power flow through infinite
fluid-filled elastic cylindrical shells. In spite of the extensive application of active
vibration control in recent years, it is the first time that analytical and experimental
studies on active control of coupled wave propagation in fluid-filled cylindrical elastic

shells are presented.

1.1 Vibrations of fluid-filled cylindrical elastic
shells

A thorough understanding of the dynamic behaviour of fluid-filled cylindrical
shells is critical to an investigation on active control applied to such systems. In
order to understand the effect of an internal fluid loading on the response of a
pipe shell, a brief literature review on the simplified problem of a cylindrical shell

vibrating in vacuo has first been carried out.



Most of the theoretical studies of in vacuo shell systems were based upon
approximate shell equations which are only valid in limited ranges of wall thickness
and frequency. A detailed discussion of these numerous shell theories has been given
by Kraus [1] and Leissa [2]. Using the Fligge shell equations for example, Fuller [3]
fully described the free vibrations of infinite thin cylindrical shells in vacuo, including
the motion associated with complex wavenumbers. In the same paper, he presented
an analytical study of the effects of axisymmetric discontinuities in the shell wall on
the propagation of flexural waves. Heckl [4] was the first to derive a solution to the
vibration problem of infinitely long shells driven by a point force. By using a simple
shell model, Heckl obtained formulae for the resonant frequencies and the modal
density of the simply supported shell as well as the point impedance of the infinite
shell. Using more accurate shell equations (Donnell-Mushtari), Junger and Feit [5]
studied the forced vibrations of a simply supported shell in vacuo. They presented
solutions for the natural frequencies and the mobility of the finite shell driven by a
point force.

The characteristic equation of a cylindrical elastic shell in vacuo derived using
the exact three-dimensional equations of linear elasticity is valid for all ranges of wall
thickness and frequency. However, this derivation involves several complexities and
the analysis thereof has not been completed. The equation has been investigated
to some extent by Hermann and Mirsky [6, 7, 8], Gazis [9], Greenspon [10], Bird,
Hart and McClure [11] and Armenakas, Gazis and Hermann [12]. More recently,
Borgiotti and Rosen [13, 14] presented a state vector approach to the exact three-
dimensional analysis of the forced vibrations of infinite and finite thin cylindrical
shells in vacuo. The state vector technique, although relatively complex, provides a

systematic approach to the formulation and the solution of various cylindrical shell



problems such as the determination of dispersion curves and the forced vibrational

response to a point force or to a localized couple.

While the in vacuo solution may be applicable with reasonable accuracy to
instances where the characteristic impedance of the internal medium is very small
compared to that of the shell, as for shells in air for example, it can not be used
when the shell is filled with liquid. On the other hand, the solution of the fully
coupled system has been extensively studied by various authors. Kumar [15, 16],
Del Grosso and McGill [17] and Del Grosso [18] first investigated the character-
istic equation of a fluid-filled cylindrical elastic shell. These studies were based
on the exact three-dimensional equations of linear elasticity. However, they were
restricted to the finding of real wavenumber solutions of the characteristic equa-
tion. Then, Kumar [19] presented the complete dispersion of axisymmetric waves,
i.e. including complex wavenumber solutions. Using approximate shell equations
(Donnell-Mushtari), Fuller and Fahy [20] extended the investigation to higher or-
der circumferential modes. They gave extensive physical interpretations of all the
eigenvalues of the infinite system. They also determined whether the vibrational
energy associated with each propagating free wave was located in the pipe wall or
in the contained fluid. The theoretical dispersion curves for fluid-filled cylindrical
shells were experimentally validated by Esparcieux [21] on an oil-filled pipe and by
Plona et al. [22] on a water-filled pipe. Recently, Leyrat [23], using the same shell
equations as Fuller et al. [20], went one step further and investigated the effect of an
internal flow on the vibrations of thin cylindrical elastic shells. He derived the char-
acteristic equation of the system and, like Fuller et al., analyzed the pipe behaviour
in terms of propagation of free waves. Leyrat also presented a solution for the mo-

bility of infinite and finite cylindrical shell systems subjected to a radial point force,
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including the effect of a uniform internal flow. He experimentally verified some of his
analytical results such as the transfer response of an infinite cylindrical shell filled
with a static fluid. Following this work, Brévart and Fuller [24] evaluated the effect
of a uniform internal flow on the distribution of vibrational energy in the coupled
system. Their results were consistent with Leyrat’s and revealed that the effect
of fluid convection principally appears near cut-on and coincidence frequencies, for

high values of Mach number (M > 0.01).

The forced response of infinite fluid-filled cylindrical elastic shells was briefly
studied by Merkulov et al. [25, 26]. For both point force excitation [25] and internal
monopole excitation [26] of the coupled system, their analysis of the system re-
sponse was limited to an evaluation of the relative amplitudes of propagating waves
with varying branch and circumferential mode number. James [27, 28] evaluated
the acoustic radiated power, the vibrational response of the shell wall and the pres-
sure amplitudes of the exterior and interior fluids of an infinite water-filled shell
immersed in air, for a monopole source and a mechanical point force excitation.
James used numerical integration and the stationary phase method to evaluate the
response functions and, while his investigation has revealed many important behav-
ioral characteristics of the coupled system, information on the wave propagation
mechanisms did not appear through his work. Fuller used a different approach to
consider the problem of point force and internal monopole excitation of fluid-filled
cylindrical shells [29, 30]. He computed the response functions by using the residue
theorem so that the system behavior could be explained in terms of free wave prop-
agation characteristics. Along with the derivation of the input mobility [29], Fuller
studied the wave transmission through a radial ring constraint and the distribu-

tion of vibrational energy between the fluid and the shell wall for driving line and



point forces. He evaluated the distribution of vibrational energy in the coupled
system for an internal monopole excitation as well [30]. As the Donnell-Mushtari
shell equations exclude the effects of rotary inertia and transverse shear stresses, all
of Fuller’s analyses were restricted to less than mid-high frequency ranges. A re-
cent study by Brévart, Journeau and Fuller [31] included the response of an infinite
fluid-filled cylindrical shell to a point force excitation at very high frequencies. The
investigation was based on the state vector formalism developed by Borgiotti and
Rosen [13] using the exact three-dimensional equations of linear elasticity. Along
with the analysis of the point force response of the system, Brévart et al. presented
the dispersion solution of waves with very high circumferential mode orders in a

very large frequency range.

All of the above studies focussed on the harmonic vibrations of a cylindrical
elastic shell in vacuo or filled with liquid. In other words, they provided information
on the system response in the time-average sense. Recently, Brévart and Fuller [32]
have investigated the wave propagation paths in a fluid-filled elastic cylindrical shell
excited by a radial impulsive line force applied to the shell wall. The impulse re-
sponse of the shell wall was obtained by performing a discrete Fourier transform
of the system frequency response. This investigation was followed by another time
domain study concerning the energy exchange between the coupled media of impul-
sively excited fluid-filled shells [33]. This last study revealed that the net amount
of energy delivered to the fluid medium at the impact location was much smaller
for a beam type excitation (n=1) than for an axisymmetric excitation (n=0). Fur-
thermore, for both types of excitation, it appeared that nearly half of the energy
delivered to the fluid medium at the impact eventually returned to the shell wall.

The impulse response of an infinite fluid-filled steel pipe was experimentally inves-



tigated by Méser, Heckl and Ginters [34]. They noticed that the impulsive source
generated signals of long duration even in the absence of reflections at the pipe ends.
This behaviour was due to the frequency components associated with waves cutting

on.

1.2 Objective and approach

The ultimate objective of this work is to control, by active means, the energy
transfer, or total power flow, in infinite fluid-filled cylindrical shells. Any type of
vibrational wave propagating in the system carries a certain amount of energy in
either or both of the fluid and shell media. Ideally, it is thus desired to keep all the

vibrational waves in the system from propagating beyond a certain position on the

pipe.

A similar goal has been achieved by Gibbs [35] for finite thin beams. The two
different motions of the beam, i.e. flexure and extension, were individually observed
by paired piezoelectric sensors. Using the wavenumber information obtained from
a beam model, Gibbs designed digital filters yielding real time estimates of positive
and negative traveling flexural and extensional waves. The outputs of the filters,
used as error signals, were then minimized using a feedforward adaptive controller.
It must be noted that the technique relies on the accuracy of the beam model
and, consequently, defects in the beam cross section are likely to affect the control
performance. This problem could be solved by implementing wavenumber filtering

capabilities of the adaptive system.

In order to control the total power flow in fluid-filled pipes, real-time estima-



tion of the amplitude of the propagating waves is the optimal solution. However,
the characteristic equation of a fluid-filled cylindrical shell is fairly more complex
than that of a beam. The solutions of the equation may first be decomposed into
mutually independent circumferential modes (n=0,1,2,...). For each circumferential
mode, multiple propagating wave types with dispersion laws of varying complexity
may exist. The number of propagating wave types increases with frequency. At very
low frequencies, i.e. well below the ring frequency of the pipe, four different types
of wave can simultaneously propagate energy in the system. Three of them are as-
sociated with the axisymmetric shell motion (n=0) and the fourth one corresponds
to the beam type motion of the shell (n=1). Waves of higher circumferential order
(n=2,3,...) are evanescent in the very low frequency range, i.e. their contribution to
the system response is negligible away from the cross section where they are excited.
At higher frequencies however, the propagation of these lobar waves, along with the

propagation of higher order wave types, must be accounted for.

The wave decomposition problem in fluid-filled pipes of finite length was first
investigated by Pavié [36] with application to acoustic and structural intensity mea-
surement methods. Pavi¢ restricted his analysis to frequencies below the cut-on
frequency of the circumferential mode n=2, i.e. well below the ring frequency of
the pipe. In order to extract the wave amplitudes, he briefly described a configu-
ration of accelerometers and strain gauges. The measurements suggested by Pavié
included radial motion, tangential velocity and displacement, axial displacement,
axial strain and two axial strain derivatives. Very recently, de Jong [37] presented
other wave decomposition techniques for fluid-filled pipes which were based on the
use of accelerometers and flush-mounted pressure transducers. From the work of

Pavi¢ and de Jong, it appears that accurate measurements of the wave contribu-



tions in fluid-filled pipes are difficult to achieve and require very large arrays of
sensors with matched sensitivities. In addition, the wave decomposition relies on
the accuracy of the model providing the wavenumber information. Defects in the
pipe cross section or bubbles at the interface between the shell and the fluid may
adversely affect the decomposition. An experimental determination of the wavenum-
bers is the solution to this problem. The array processing requirements to achieve
wavenumber filtering in fluid-filled pipes have been recently investigated by Corrado
and Clifton [38]. They have shown that particularly long arrays, i.e. a large number
of sensors with matched sensitivities, are necessary to maintain a high resolution of

the beamforming process.

Due to the implementation complexity, real time estimation and minimiza-
tion of the total power flow, as performed by Gibbs for beams, is not attempted in the
present study. The control approach investigated is more straightforward. Given
a disturbance and a practical configuration of error sensors and control forces, it
is desired to determine whether large attenuations of the total power flow can be
achieved by using active control. Even though the objective may be to minimize
the structural power flow, the fluid power flow or the sum of both, the most con-
venient location to apply the control forces is directly to the shell wall. The error
information to be minimized would be best given by sensors observing the structural
motion. Sources or sensors in the acoustic field could obstruct the flow of the inter-
nal fluid. Control of the fluid power flow may be achieved by using radial control

forces which provide good coupling between the shell wall and the fluid field.



1.3 Scope of the work

The primary purpose of this research is to demonstrate that large reductions
of the total power flow through infinite straight fluid-filled pipes can be actively
achieved by means of radial control forces applied to the shell wall for various types

of disturbance.

A broad analytical study giving insight into the control mechanisms has been
conducted. The first disturbances considered are individual harmonic propagating
free waves of circumferential order n=0 and n=1. These two circumferential modes
illustrate the system typical behaviour and are thus studied separately in detail.
The control forces are radial line forces with the same circumferential distribution
as the disturbance. The radial displacement of the shell wall at discrete locations
downstream of the control forces is minimized using linear quadratic optimal control
theory. The difference of total power flow through the system before and after control
is then used to evaluate the impact of the fluid on the performance of the control
approach. The total power flow through the system is evaluated by integrating the
structural intensity in the shell wall and the acoustic intensity in the fluid field over
a pipe cross section. Results for fluid-filled shells are presented in comparison to the

performance of the control approach performed on the same shell in vacuo.

After demonstrating the controllability of certain waves in certain frequency
ranges, the analytical work is extended to more complex disturbances such as point
forces and internal monopole sources. The control forces are point forces as well as
ring forces. It is assumed that one can minimize the radial wall motion associated

with various circumferential modes using modal sensors, i.e. distributed sensors
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with spatial filtering capabilities. For various excitation frequencies of the distur-
bances, the modal decomposition of the total power flow, before and after control,

is evaluated and analyzed.

In order to validate the analytical investigations, the results of various exper-
iments performed on a plexiglass cylindrical shell are presented. Typical properties
of the shell systems, i.e. the air-filled shell and the water-filled shell, are determined
and compared to analytical predictions.

The active control of an axisymmetric disturbance is investigated. The ax-
isymmetric excitation is implemented by using a piezoelectric polymer cable (PVDF
cable) wrapped an exact number of turns around the shell and excited through a
high voltage power amplifier. Axisymmetric control forces and error sensors are also
implemented by means of PVDF cable. Using a feedforward adaptive controller, the
axisymmetric radial displacement of the shell wall is minimized at discrete locations.
The effect of the discontinuity created by the active control arrangement is evalu-
ated from the residual vibrations of the shell beyond the error sensors as well as
from the attenuation of the pressure in the fluid field.

The active control of a point force disturbance, implemented using an elec-
tromechanical shaker, is experimentally investigated. A set of point and ring forces
(shakers and PVDF cables) are used to control the radial wall motion associated
with various circumferential modes. The modes are observed by modal error sen-
sors made of PVDF film and cable. The performance of the control arrangement is
determined from the modal radial motion of the shell beyond the error sensors as

well as from the attenuation of the pressure in the fluid field.
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1.4 Organization

A comprehensive review of the theory of wave propagation in fluid-filled
cylindrical shells is presented in Chapter 2. The characteristic equation of the cou-
pled fluid-shell system is derived and the free wave characteristics are discussed.
In Chapter 3, an active approach to control the propagation of a single free wave
by means of radial line forces is analytically investigated. The chapter includes the
derivation of the forced response of a fluid-filled cylindrical shell to a radial line force
as well as the derivation of an expression for the total power flow in the coupled
system. The linear quadratic optimal control theory is also introduced in Chapter 3.
The control problem associated with more realistic disturbances, i.e. disturbances
yielding the simultaneous presence of several propagating wave types, is addressed
in Chapter 4. An active control approach to minimize the total power flow gener-
ated by a point force or an internal monopole source at low frequency is presented.
Experiments have been performed in order to validate the analytical models. The
arrangement and the characterization of the experimental apparatus are discussed
in Chapter 5. The results of the active control experiments are presented in Chapter
6. Based upon the results of the investigations presented in the previous chapters,
some conclusions are given in Chapter 7. Recommendations are also made for future

work.
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Chapter 2

Free Wave Propagation in
Cylindrical Shell Systems

A thorough characterization of the free wave propagation in infinite cylin-
drical elastic shells, whether they are in vacuo or filled with a fluid, is a key step to
the understanding of the dynamic behaviour of shell systems subjected to any type
of disturbance. In this chapter, the characteristic equation of a cylindrical elastic
shell filled with fluid is derived. The dispersion curves of two different shells, in
vacuo or filled with water, are presented. The behaviour of each individual branch,

or free wave, is explained in physical terms.

2.1 Equations of motion of the coupled system

The cylindrical coordinate system used in the analysis is shown in Figure
2.1 . Different formulations of the equations of motion for cylindrical shells are
available in the literature. Most of them can be found in Leissa’s monograph [2].

The Donnell-Mushtari shell equations [5] were proved to be particularly convenient

13



Figure 2.1: Coordinate system.
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in describing the harmonic motion of thin-walled cylindrical shells containing an
acoustic field. They were extensively used by several authors, such as Junger and
Feit [5], Fuller [20, 29, 30, 39], Leyrat [23] or Brévart [24], in a great number of
books and papers. The Donnell-Mushtari equations, which are a simplified version
of Kennard’s differential equations [40], were recently found to give unsatisfactory
results at very low frequencies. On the other hand, Kennard’s shell equations give
reliable results at very low frequencies and are thus preferred to describe the shell
motion in this investigation. Kennard’s shell equations are only valid for thin-walled
shells and exclude the effects of rotary inertia and transverse shear stresses. Thus,
they can only be used for analysis in the low frequency range, i.e. below and just
above the ring frequency of the shell, as it the case in the present investigation on
active control. For high frequency analysis of cylindrical shells, it is recommended
to use a “thick” shell theory that includes the effects of both rotary inertia and
transverse shear deformations, such as the one presented by Borgiotti and Rosen [13]
for example. The validity of the Donnell-Mushtari and Kennard’s shell equations,
with respect to the exact three dimensional equations of linear elasticity [13], will

be assessed in Section 2.2.2 by looking at the dispersion curves of an in vacuo shell.

The inhomogeneous form of Kennard’s shell equations [40], including a pres-
sure fluid loading, p.(f, ), and an external pressure load pg with axial, tangential

and radial components pZ, p} and pj respectively, is written as:

32u+1—1/82u+1+1/ 0% +K6_w i py(l-0v?)
0z? ' 2a? 862 2a 0200  adz <&  Eh
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where 3 is the shell thickness parameter given by A2 = h?/12a?, a is the mean
radius of the shell and & is the shell thickness. The extensional phase speed in the
shell material is defined as ¢; = \/E—/Po—(—l—_-:); , where E, v and p, are the Young’s
modulus, the Poisson’s ratio and the specific mass of the shell material, respectively.

Note that the pressure fluid loading, p, (8, z), acts normally to the cylindrical surface

of the shell and thus only appears in the third equation.

The assumed solution for the displacement of the shell wall, associated with

an axial wavenumber k,,,, consists of standing waves in the circumferential direction

u= 33" U, cos(nf)eiknsz=wt=n/2) (2.4)
n=0 s=1
v=3"3" V., sin(nf)e krez=wt) (2.5)
n=0 s=1
w= Y3 W, cos(nf)elkrsz=21), (2.6)
n=0 s=1

The subscript “ns” refers to a particular wave s of circumferential order n. The

circumferential mode shapes are illustrated in Figure 2.2.

The acoustic wave equation for the internal fluid in the cylindrical co-ordinate
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Figure 2.2: Circumferential mode shapes.
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system is [41]

19 108%
"or) * 7o " gom % (2.1

where ¢y denotes the speed of the acoustic free wave in the fluid.

An assumed form of the pressure field in the contained fluid which satisfies

this equation is:

p=5_3 Pu,cos(nb)Jn(k;r)eiknez=wt) (2.8)

n=0 s=0

where k] is given by the vector relation
(k:)2 = k.f2 - kns2- (29)
ks in Equation (2.9) is defined as w/ey.

At the shell-fluid interface, the radial displacement of the fluid must equal

the radial displacement of the shell. Using Euler’s equation [41] in the fluid field,

dp 0w

where p; is the specific mass of the fluid, and Equations (2.6) and (2.8), we obtain

the following relation between pressure and shell radial displacement amplitudes

_ ppw?
P, = —k;J,',(k;a)W"" (2.11)

The pressure fluid loading at the shell wall can thus be expressed in terms of

the shell radial vibration as

= — pfwz‘]ﬂ(k;a) t(knsz—wt)
p.(0,2) = Whs——7+~—-=cos(nf)e''** . 2.12
6.2 = 2 2 Ve T ey, ) (212
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In order to study the free vibrations of the system, the forcing function, po,
whose components pg, p§ and pj appear in the right hand side of Equations 2.1, 2.2
and 2.3, is set equal to zero. Substituting Equations (2.4), (2.5), (2.6) and (2.12)
into Equations (2.1), (2.2) and (2.3), the free vibrations of the coupled system can

be represented in matrix form as

Lyy Ly Ly Uns 0
Lyy Ly Ly Vas | =0 ], (2.13)
L3y L3y Lss Wis 0

Ln = -—Q2 + (kn,a)z + %(1 - V)nz, L12 = %(l + V)n(knca)a L13 = V(kn-’a)a

K v
Loy = L, Loy =0+ (1 —v)(knsa)® +n?% Lyz=n-——

2
8a?21 — Vn(n -1,

L31 = L13, Li; = n,

4 —vy 24v
Ly = =02+ 1+ B2 [(kna)? +n?]" - 2 _
a3 +1+p8 {[(k a) +n] =" +2(1_V)} FIL,

where (2 is the non-dimensional frequency, defined as = wa/cr. FL is the fluid

loading term due to the presence of the fluid acoustic field,

FL:Q2&(& Jﬂ(ksa)

503 )T (kla) (2.14)

In terms of the shell non-dimensional frequency {2, the radial fluid wavenumber k]a

is related to the axial wavenumber k,,a by the expression

kja = £1/Q2(cr/cs)? — (knsa)?. (2.15)

The homogeneous system of equations (2.13) does not have a solution unless
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the determinant of the matrix L is zero,
|L| = 0. (2.16)

Equation (2.16) provides the characteristic equation of the coupled system. Solving
Equation (2.16) for k,,a, for various non-dimensional frequencies 2, yields the so

called dispersion curves of the coupled system.

2.2 Dispersion curves

Different numerical techniques which have been used to determine the roots
of Equation (2.16) are discussed in this section. Following this, the quality of Ken-
nard’s shell equations is appraised by comparing, for a simple shell system, the
dispersion plots emanating from various shell theories. Finally, dispersion plots
for two different types of shells (in vacuo and filled with water) are presented and

analyzed.

2.2.1 Root searching procedure

In order to determine the roots of the characteristic equation, it is first as-
sumed that the shell material is undamped. Considering an in vacuo shell,i.e. FL=0
in Equation (2.13), the characteristic equation (2.16) is a fourth order polynomial in
(knsa)? and it can be solved for (k,,a)? using Laguerre’s method for example (IMSL
subroutine DZPLRC [42]). The corresponding dispersion curves for one direction
of propagation consist of four different waves or branches. With the inclusion of an

internal fluid loading, it can be proved that the transcendental Equation (2.16) has
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an infinite number of roots; this result is made apparent by expressing the Bessel
functions in Equation (2.14) as power series. Several steps are thus necessary to find
the most important roots of the characteristic equation. First, similar to Fuller’s
method [20], an approximate location of the purely real roots and the purely imag-
inary roots is determined using a stepping procedure and testing the sign of the
left-hand term of Equation (2.16). Singularities in the characteristic function are
eliminated by noting that these occur when the fluid loading term FL changes sign
[20]. The actual roots are then found by using an algorithm that combines linear
interpolation, inverse quadratic interpolation and the bisection method (IMSL sub-
routine DZBREN [42]). The complex roots associated with the near field waves
in the system are obtained from an algorithm using Miiller’s method and the in
vacuo near field waves as initial guesses (IMSL subroutine DZANLY [42]). Finally,
structural damping can be added to the shell material. Then, all the corresponding
roots of the system become complex, as will be seen in Section 2.2.4. They are
obtained by means of Miiller’s method and using the pre-determined roots of the
characteristic equation as initial guesses. If the damping in the shell material is
large, as in the case of rubbers or glassy materials for example (see Section 2.2.4),
it is necessary to start with a small value of damping, find the associated roots and
iterate the procedure until the desired amount of damping in the shell material is

reached.

2.2.2 Validity of Kennard’s shell equations

At this point, it is important to assess the quality of the Kennard’s shell

equations by comparing the dispersion curves (real roots) of an in vacuo steel shell
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Figure 2.3: Dispersion curves (real roots) obtained from various shell equations,
considering a steel shell in vacuo, h/a=0.05, n=1, € [0.001;0.1].
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Figure 2.4: Dispersion curves (real roots) obtained from various shell equations,
considering a steel shell in vacuo, h/a=0.05, n=1, 2 € [0.1; 3].
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using the Donnell-Mushtari shell equations [20], Kennard’s shell equations and the
full elasticity theory [13]. Results for the propagating wave of circumferential order
n=1 in the very low non-dimensional frequency range [0.001;0.1], using the three
different formulations, are shown in Figure 2.3. While the results using Kennard’s
equations and the full elasticity theory seem to agree very well, the Donnell-Mushtari
shell equations predict that there is no wave which can propagate at frequencies
below 2 = 0.01. This contradicts experimental observations and contravenes the
expectation that flexural vibrations of a pipe are analogous to those of a rod at low

frequencies.

Figure 2.4 shows the dispersion curves in the non-dimensional frequency
range (0 € [0.1;3]). In this range, Kennard’s and the Donnell-Mushtari shell equa-
tions yield the same dispersion curves. However, the full elasticity theory predicts
a slower phase speed of the flexural wave at frequencies above the ring frequency
0 = 1. This gap increases with frequency because the simplified equations ne-
glect rotary inertia and transverse shear forces, whose effects also increase with
frequency. However, the error introduced by the simplified shell equations remains
relatively small, below 2%, in the frequency range §2 € [0.1;3]. Therefore, in the
non-dimensional frequency range [0;3], Kennard’s shell equations provide a good
alternative to the complex shell theory that is based on a full elasticity of the shell

material.

2.2.3 Dispersion plots of undamped shell systems

The damping in the shell material is first assumed to be zero and will be

considered in the next section. Typical dispersion curves for a steel shell of thickness
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h/a=0.05 vibrating in the breathing mode (n=0), in vacuvo and filled with water, are
shown in Figures 2.5 and 2.6. The properties of the material used in the calculations
are indicated in Table 2.1. Note that, when considering an in vacuo shell, the
essential nature of each wave, i.e. whether it is flexural, extensional, torsional, etc...,
can be determined from the amplitude ratios, Uy,,/Wy, and V,,/W,,, obtained by
re-substituting the roots of the characteristic equation into the equations of motion
(2.13) [3]. For each waves propagating in a fluid-filled shell, there is a distribution
of vibrational energy between the shell wall and the contained fluid. The solution
for this energy distribution has been derived by Fuller and Fahy [20]. The degree to
which the energy is concentrated in the fluid or in the shell wall provides additional

information on the nature of a travelling wave.

Considering an in vacuo shell, there are two waves denoted as s=1 and 2
which are purely real and thus propagating at low frequencies. The s=2 wave
is a pure torsional shear wave. It is uncoupled from the radial shell motion and
it is thus unaffected by a fluid loading, as Figure 2.6 reveals. The s=1 wave is
extensional in nature at low frequencies and changes into a flexural wave around
the ring frequency Q2 = 1, at which its wavelength equals the mean circumference
of the shell. At frequencies below 2 = 1, the complex branches s=3 and 4 together
represent an attenuated standing wave in the positive z direction. This bending
near field changes into an extensional wave and a flexural near field above the ring

frequency.

If the shell is now filled with water, two waves, denoted as s=1 and 2, in
addition to the torsional shear wave (denoted as s=0), can propagate at all fre-

quencies. The branch s=1 is an “acoustically slow” wave, relatively close in nature
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Table 2.1: Shell characteristics and material properties.

Material Steel Plexiglass | Water
Thickness ratio h/a 0.05 0.0426 —
Young’s modulus | 19.2 x 10%° { 1.9175 x 10° | —
(N/m?)
Poisson’s ratio 0.3 0.4 —
Specific mass 7800 1109 1000
(kg/m?)
Free wave speed 5200 1435 1500
(m/s)
Damping Ratio 5.x 1074 0.036 0

n
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Figure 2.5: Dispersion curves for an in vacuo steel shell, h/a=0.05, n=0.
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to the acoustic plane wave in a rigid-walled tube at low frequencies. This branch
approaches the in vacuo flexural solution at very high frequencies. The main char-
acteristic of this wave is that its radial wavenumber is purely imaginary at all fre-
quencies. This implies that, in the fluid field, the nature of the wave consists of a
pressure near field located close to the shell wall. In more physical terms, the fluid
loading for this particular wave appears as a mass loading added on the inner side
of the structure. The branch s=2 is a structural type of wave at low frequencies,
close to the in vacuo extensional solution. Because of the heavy fluid introduced in
the system and the induced coupling phenomenon, this branch turns into a pressure
release duct solution above the ring frequency [20]. Around the frequency 2 = 0.85
at which the coupled system strongly resonates as a ring, a fourth branch (s=3)
becomes propagative. The frequency at which a branch wavenumber changes from
imaginary to real is called the cut-on frequency. The branch s=3 initially follows
the in vacuo extensional shell solution until it coincides with a fifth branch that cuts
on at ) = 1.3. Around this frequency, the nature of s=3 wave approaches the sec-
ond rigid walled duct mode. The higher order branches, s=4,5,..., have a behaviour
which is very similar to that of the branch s=3, cutting on as fluid waves and chang-
ing to extensional shell waves while the preceding shell type branch converts to a

fluid wave.

Considering the beam mode (n=1) and an in vacuo shell (Figure 2.7), there
is only one wave (s=1) that propagates undamped at low frequencies. Fuller has
shown that the amplitude ratio V,,, /W, associated with this wave approaches unity
below the ring frequency [3]. This implies that the nature of the s=1 wave in this
frequency range is neither largely flexural nor largely torsional; in fact, the shell

motion approaches that of a simple rod. Past the ring frequency however, the
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nature of the s=1 wave changes markedly and becomes mostly flexural. The s=2
wave is purely imaginary at low frequencies and can not actually propagate energy.
However, because its imaginary part is very small, the bending motion associated
with this wave is lightly damped. The s=2 wave can be seen to cut on around

Q1 = 0.6 and turns rapidly into a torsional shear wave.

Considering the water-filled shell (Figure 2.8), the dispersion curves resemble
those of the breathing mode, except for the few differences that appear between the
in vacuo dispersion plots. Again, only one wave (s=1) propagates energy at low
frequencies. The main characteristic of this wave is that its radial wavenumber is
imaginary at all frequencies. This means that the fluid simply acts as an added
mass on the inner side of the shell for this particular wave. The s=2 wave cuts
on as a torsional shear wave and, as it encounters the s=3 wave, quickly reverts
its behaviour to approach the first rigid walled duct mode of circumferential order
n=1. The s=3 wave cuts on as an extensional shell wave, then changes to a torsional
type of wave as the branch s=4 cuts on and finally tends toward the second rigid
walled duct mode. Such a behaviour, for circumferential modes n > 0, leads to two
series of plateaux on the dispersion curves, due to coincidences of both torsional and
extensional shell waves with acoustic duct waves. For more details on the dispersion
curves of the circumferential modes n=0 and n=1, the reader is referred to Fuller

and Fahy [20].

The dispersion curves for higher order circumferential modes (n > 1) are
very similar to those of the beam mode (n=1). However, the s=1 wave, which
cuts on at = 0 for modes n=0 and n=1, does not propagate at low frequencies.

This wave is characterized by a non-zero cut-on frequency which increases with the
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circumferential mode order. Because the s=1 wave is the first wave to cut-on as the
frequency is increased, its cut-on frequency is commonly called the cut-on frequency
of the circumferential mode. For a shell vibrating in vacuo, the cut-on frequency
of the high order circumferential modes (n > 1) can be evaluated by the following
equation [49):
Qo =~ Bl —Un (2.17)
V14 n?+ f3(n? - 1)?

In Table 2.2 are indicated the cut-on frequencies of the circumferential modes n=2 to

5 for the steel shell on vacuo, obtained from the exact characteristic equation (2.16)
and from the simplified Fligge equation (2.17). The results reveal the accuracy of
Equation (2.17). This equation predicts that the cut-on frequencies of an in vacuo
shell system are only a function of the shell geometry. The cut-on frequencies of the
circumferential modes n=2 to 5 for the steel shell filled with water, obtained from
the exact characteristic equation (2.16), appear in Table 2.3. It can be noticed that
these frequencies are lower than for the in vacuo shell. This behaviour is associated
with the overall mass increase of the shell system. At cut-on, the shell motion has
infinite axial wavelength and resonates like a single degree of freedom system. If k,,
is the shell stiffness associated with a given circumferential mode shape n and m is
the mass of the shell per unit length, the natural frequencies of the in vacuo shell

system can be roughly given by

0, = — /==, (2.18)

For the fluid-filled shell system, this expression becomes

a ky

ccVm+m’

(2.19)
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where m/' is the mass of the fluid per unit length of shell.

For various reasons, which will be detailed in Chapter 5, the experimental
validation of the theory developed in Chapters 3 and 4 was performed on a plexiglass
cylindrical shell whose properties are given in Table 2.1. It is thus important to
extend the theoretical work and study this shell configuration, in addition to the

steel shell which is commonly utilized in industrial applications.

The damping in the shell material is again assumed to be zero and will be
considered in Section 2.2.4. Using non-dimensional frequencies 2 = wa/cy, on the x-
axis, the dispersion plots (Figures 2.9 and 2.10) for the modes n=0 and n=1 obtained
for an in vacuo plexiglass shell are very similar to those of the steel shell. However, as
the phase speed ¢y, of the extensional wave in plexiglass is much lower than in steel,
the actual frequencies w considered in the plots are much lower (approximately 3.5
times lower). For this reason, when considering the plexiglass shell filled with water
(Figures 2.11 and 2.12), the acoustic modes cut on at much higher values of non-
dimensional frequency 2 than with a water-filled steel shell of the same dimensions.
The dispersion curves for the plexiglass shell filled with water are thus very different

from those obtained previously for the water-filled stell shell.

Figure 2.11 shows the results for a plexiglass shell filled with water and
vibrating in the breathing mode (n=0). The s=0 wave is a torsional shear wave
uncoupled from any other motion. The s=1 wave is an acoustically slow wave, close
to the rigid walled acoustic plane wave at very low frequencies and quickly changing
to a shell type of wave as the frequency increases. The s=2 wave is extensional in
nature over the entire frequency range Q € [0;3]. The first cut-on of an acoustic

type of wave occurs near ) = 2.4. For ) < 2.4, the fluid thus appears to have
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Table 2.2: Cut-on frequencies of high order circumferential modes for a steel shell
in vacuo.

Mode order | Exact cut-on frequency Cut-on frequency
obtained from Eq. (2.16) | obtained from Fligge Eq. (2.17)
2 0.039 0.039
3 0.110 0.109
4 0.211 0.210
5 0.341 0.339
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Table 2.3: Cut-on frequencies of high order circumferential modes for a steel shell
filled with water.

Mode order | Cut-on frequency
2 0.028
3 0.083
4 0.166
5 0.279
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a high impedance relative to the shell wall. This has been previously noticed by
Fuller et al. when studying hard rubber shells with properties approaching those of

plexiglass [20].

The dispersion curves for the beam mode (Figure 2.12) reveal similar effects
of the change in shell material. The s=2 wave cuts on as a torsional shear wave and
remains purely torsional throughout the frequency range. The s=3 wave cuts on as
an extensional shell wave and it is unaffected by the fluid in the frequency range

studied.

The cut-on frequencies of the circumferential modes n=2 to 5 for in vacuo
and water-filled plexiglass shells are indicated in Table 2.4. They were obtained
from the exact characteristic equation (2.16). The plexiglass shell is slightly thinner
than the steel shell and, therefore, the cut-on frequencies for the in vacuo plexiglass
shell are slightly smaller than for the in vacuo steel shell, as expected from Equation
(2.17). The differences between the cut-on frequencies for the in vacuo shell and
those for the water-filled shell appear substantial because of the high impedance of

the water relative to the plexiglass shell wall.

2.2.4 Effect of shell hysteretic damping on the dispersion
plots

Up to this point, it has been assumed that the shell materials were un-
damped. However, all real materials dissipate energy, no matter how little, during
cyclic deformation [43]. This energy loss is very small in steel but relatively impor-
tant in glassy materials like plexiglass. The inorganic oxides found in glass form dif-

ferent lattice geometries. Damping arises from the relaxation processes that occurs
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Table 2.4: Cut-on frequencies of high order circumferential modes for in vacuo and
water-filled plexiglass shells.

Mode order | In vacuo shell Water-filled shell
cut-on frequencies | cut-on frequencies

2 0.033 0.011

3 0.095 0.036

4 0.183 0.074

5 0.294 0.129
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after deformation, the recovery being due to various conditions of thermodynamic
equilibrium [43]. As explained by Nashif et al. [43], the complex Young’s modulus
approach, E’ = E(1 — jn), is a valid and convenient way to model the energy dissi-
pation in materials for frequency domain analyses. The sign of the imaginary part
of E' was chosen to obtain a decay of the wave amplitudes as propagation occurs.
As only steady state harmonic response of the system is of concern in this study, the
hysteretic assumption, for which E and 7 are considered constant over a frequency
range at a specific temperature, can be used; note that this assumption leads to
causality problems when considering the transient response [43]. In addition, as 7
is smaller than 0.1 for both shell materials used in this analysis, the constant F,
n model can be seen as a good representation of the real system behavior in the
frequency range 2 € [0;3]. Values for the loss factor  in common materials can
be found in [44]. The actual values of 7 for steel and plexiglass materials used in
this analysis appear in Table 1. The value of 5 for plexiglass was obtained from

experimental data, as will be described in Chapter 5.

The addition of 0.05% hysteretic damping in steel has very little effect on the
dispersion curves. The main effect appears on the initially purely real roots; they
now reveal a very small imaginary part associated with a slight attenuation of the
wave amplitude as propagation occurs. Considering the plexiglass shell, the effect
of 3.6% damping on the real branches of the dispersion curves becomes relatively
important. Figure 2.13 shows the imaginary part of the propagating waves for an
in vacuo plexiglass shell vibrating in the breathing mode. Note that the real part of
the waves is unchanged from the results shown in Figure 2.9. One can notice from
Figure 2.13 that damping mainly affects the s=1 branch. The imaginary part of the

s=1 wave is particularly large near the ring frequency at which the shell resonates as

43



a ring. The attenuation is also large on the s=2 branch as it cuts on. The torsional

shear wave is lightly affected by the structural damping.

When the shell is filled with water (Figure 2.14), the effect of hysteretic
damping on the dynamics of the system is much smaller than when the shell is in
vacuo. This is again due to the high impedance of the fluid relative to the shell
wall. One may notice that the damping effect on the s=1 wave at low frequencies
increases sharply between {1 = 0 and 0.4, as the branch characteristics change from
those of a rigid walled acoustic plane wave to those of a shell type of wave, near
field at the wall. Above  ~ 0.4, the attenuation of the s=1 wave is moderate and

relatively constant.
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Chapter 3

Active Control of Wave
Propagation

Harmonic disturbances in real piping systems are often complex and some-
times even unknown. However, as long as the piping system is close to being ho-
mogeneous, i.e. suiting the model presented in Chapter 2, the vibrational waves
generated by these sources are all solutions of the characteristic equation of the infi-
nite shell system, determined in Chapter 2. Then, depending on the driving source,

some of these “free” waves are more excited than others.

In this chapter, the disturbance on the infinite shell system is assumed to be
a single propagating free wave s of circumferential order n = 0 or n = 1. The control
forces are radial line forces along the shell circumference. Their dependence upon
the circumferential angle follows the distribution of the disturbance field. Radial
forces were preferred to other type of forces because they provide the best coupling
between the shell wall and the fluid field. The radial displacement of the shell
wall at discrete locations downstream of the control forces is minimized using linear

quadratic optimal theory. The rationale is that the radial displacement of the shell
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wall can be measured with sensors made of polyvinylidene fluoride material (PVDF).
This will be explained in Chapter 5. The difference of total power flow through the
system before and after control is then used to evaluate the impact of the fluid on

the performance of the control approach.

3.1 Control configuration

The diagrams in Figure 3.1 describe the arrangements of the two control
approaches investigated in this chapter. The first approach (case 1 in Figure 3.1)
consists in using one radial control line force with the same circumferential distri-
bution as the incident wave, i.e. n=0 or n=1, to minimize the radial displacement
of the shell at one axial position along the circumference of the shell. The second
approach (case 2 in Figure 3.1) consists in using two control forces spaced a distance
Az, apart to minimize the radial displacement at two different locations spaced a
distance Az, apart. As in case 1, the two control line forces follow the distribution

of the disturbance field.

3.2 Incident wave disturbance

The disturbance considered in this investigation is a single propagating free

wave which, in terms of shell radial displacement, may be written as

w?,(z) = W2, cos(nf) e**ne? (3.1)

n

where the axial wavenumber k2, is given by the dispersion curves of the shell system

for a mode n, investigated in Chapter 2, and W2, is the amplitude of the wave at

48



Case 1

Control Force Minimization Position Residual Vibrations
Incident wave
[y — — -
LNENCONENONTSON,

A\ W A W T/\/\/WV\/"vAv‘

yaN /\‘/\’\/\/’\/\’\A e e
N NS NN "

VAN A\/\;";/\G/\’XA i,
NSNS NSNS

Case 2

Minimization Positions
Control Forces Ax
€
Ax -

<

Residual Vibrations

-
Incident wave ¢ ¢ /

1 |

]
0 e X x, X

Figure 3.1: Control configurations.

49



x=0. As discussed previously in Chapter 2, k2, is strongly dependent upon the
frequency and the type of wave for a given shell system. In addition, due to the
added damping in the shell material, the wave amplitude will slightly decay as
the wave propagates through the control discontinuity. Finally, as only harmonic

vibrations are considered, the time variation e~** in Equation 3.1 has been omitted.

3.3 Response of a fluid-filled cylindrical shell to
a distributed radial line force

As seen in Section 3.1, the control forces considered are radial line forces
of the same circumferential distribution as the disturbance. The response of an
infinite fluid-filled cylindrical elastic shell to a line force, in terms of shell radial
velocity or displacement, has been previously derived by Fuller [29]. For the sake of
completeness, Fuller’s derivation is included in this section . The solution for the

pressure in the fluid field is also presented.

In terms of external pressure loading on the shell wall, a radial line force of

circumferential order n applied at z, can be written as

P 0
po = (pg) = ( 0 ) (3.2)
Ph Fy cos(nb)é(z — o)

where Fy has the unit of force per unit length of circumference.

Given a circumferential mode n, the shell displacements, the pressure in the

fluid field and the radial component of the forcing function, p,, are expressed as
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inverse wavenumber transforms:

u = QL/ U, cos(nf)e'kne="/2 gk, . (3.3)
v = 51_ [ " ¥, sin(nb)e* = dk, (3.4)
w = ,,L '/+ W, cos(nf)e**dk,,, (3.5)
p = -21—r -‘ P, J,.(k"r)cos(nb)e**dk,, (3.6)
P = Qi, :: Fy cos(nf)e*r===0)dk,,. (3.7)

The boundary condition at the shell-fluid interface yields the following rela-
tion between the spectral amplitudes of the shell radial displacement and the fluid

pressure,

5 _ P’
R (3.8)

The pressure fluid loading at the shell wall can thus be expressed as

1t prwiJ,(kTa)

-_ Fr¥ vmi\™ =/ tknz
Pa = 5o /_w "R T (ka) cos(nf)e* " dk,. (3.9)

Substituting Expressions (3.4), (3.5), (3.6) and (3.9) into Kennard’s shell
equations (Equations (2.1), (2.2) and (2.3) in Chapter 2), one obtains the spectral

equations of motion of the forced response of the system in a matrix form:

Lu L12 L13 IZﬂ 0
Ly Ly Ly Vo | = 9“‘ E - (3.10)
L31 L32 L33 Wn aI;.::L’ h/a >

where the terms of the matrix L are the same as in Equation 2.13.

Solving for W, and taking the inverse transform, the radial displacement w

51



is given by

Fycos(nf) [+ 4 (z-%2)
,9:—/ Izet™\a~ % ) dk,a, 3.11
w(z,9) 2npscihfa J-oo 53¢ ¢ (311)
where
133 = (L11L22 - L12L21)/|L|. (3.12)

Using Equation (3.8) and the solution for W, given by Equation (3.10), the

forced response in terms of pressure in the fluid field may be written as:

FopsQ? cos(nb) /+°° I33J, (k)

fna(5-3)
9mpeh Jew Kadi(ka) dk.a. (3.13)

p(z,0) =

The integrals in Equations (3.11) and (3.13) are computed by using the the-

orem of residues, as performed by Fuller [29]. Each of the residues are evaluated at

the poles of the I3; term, i.e. at the zeros k,, of the characteristic equation solved
for previously.

The radial displacement can thus be written as

1 Fy cos(n9)
w(z,d Res;( 3.14
(2,6 = Dol 5 (3.14)
Res¥(s) = L1y Ly; — Ly Ly gikn a(2-22) (3.15)

|Ll° kn=kns '
The diamond superscript in Equation 3.15 denotes the derivative with respect to
k.a. The computation of this derivative is presented in Appendix A.

The forced pressure in the fluid field is derived similarly and is given by:

Fops 0 c0s(n0) $ peg(s), (3.16)

P(:r,e) - p,h/a =~
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(s) = Jn(k™r) (L11 Loy — L12L21)e;kna(§_£al) . (3.17)

Res? 7 [
(kraJ,(kma)|L|) kn=kns

n

As the number of roots of the characteristic equation, for a given circumfer-
ential mode n and a given frequency, is infinite when the shell is filled with fluid, the
theoretical number of residues required to evaluate the shell radial displacement and
the fluid pressure is also infinite, as indicated in Equations (3.14) and (3.16). How-
ever, high order branches in the imaginary plane, corresponding to acoustic waves
in a rigid walled duct, are nearly uncoupled from the shell motion and yield very
small values of residue in the shell response calculation. The number of residues in
Equation (3.14) can thus be truncated to a finite number S,. For all the results
in the present analysis, the branch number was truncated to S, = 8. As for the
computation of the pressure in the fluid field, the truncation is not so staightfor-
ward. The high order acoustic waves discussed above are evanescent at the source
plane. Consequently, the residues associated with these waves are only negligible
when evaluating the pressure well away from the source plane where higher order

wave contributions have decayed to zero.

Figure 3.2 shows the non-dimensional input mobility (w/Fo X pscih/a at
z = zg) of in vacuo steel and plexiglass shells vibrating in the breathing mode.
At low frequencies (2 < 0.5), the real part of the input mobility for both shells is
very small because the shell motion is largely extensional and radial motion of the
shell is only induced by Poisson’s coupling. Between @ = 0.5 and 2 = 0.8, the
mobility rises slightly, more markedly for the plexiglass shell as its Poisson’s ratio is
larger. Above ) ~ 0.8, as the nature of the s=1 wave changes from extensional to

flexural, the mobility increases dramatically to reach a maximum around the ring

53



9))
o

H
o
T

W
o
T

N
o
T

AN

-_
o
-

Non-dimensional mobility, Re

—
10_r ‘I'\.\

Non-dimensional mobility, Im
&)
o
‘I’ T LI

—

| — ] — | —

_50 — ! L | '
0 0.5 1 1.5 2 2.5 3

Non-dimensional frequency, €2

_____ Steelshell
_ Plexiglass shell

Figure 3.2: Input mobility for steel and plexiglass shells in vacuo, n=0; (a) Real
part, (b) Imaginary part.

54



frequency. Whereas the steel shell resonance peak at {} = 1 is large and sharp, the
resonance of the plexiglass shell, near  ~ 0.9, appears strongly damped. As seen
in Chapter 2, all the propagating waves in the plexiglass shell system are damped,
with the largest damping effect taking place at the system resonance. The reactive
mobility (imaginary part) for both shells is small and negative at low frequencies as
the system appears very stiff to radial motion. This apparent stiffness of the system
decreases slowly as the frequency is increased (more markedly for the plexiglass
shell) and drops sharply as the shell resonates radially near 2 = 1. Above the ring
frequency, the reactive mobility changes sign indicating that the shell motion, which

is almost purely flexural, is sensitive to mass effects.

Figure 3.3 shows the non-dimensional input mobility of water-filled steel and
plexiglass shells vibrating in the mode n=0. First, it must be noted that the present
results for the water-filled steel shell slightly differ from those obtained by Fuller [29]
for the same shell system. This is because the mobility is here evaluated at a larger
number of frequencies, using a much smaller value of damping ratio than the one
used by Fuller in his analysis. The same remarks also apply to Leyrat’s work [23].
For both shells, at frequencies, below 2 ~ 0.6, the real part of the mobility is
larger than the mobility corresponding to the in vacuo case. This is due to the s=1
branch behaving like a fluid wave in a compliant tube in this frequency range. Near
1 ~ 0.8, the steel shell mobility rises dramatically as the branch s=2 approaches
the first pressure release duct solution [29] and the coupled media strongly resonate
in the radial direction. Near () ~ 1.4, a second resonance of the water-filled steel
shell occurs as the branch s=4 cuts on and the s=3 branch approaches the second
rigid walled duct solution. Similar behaviour also occurs around @ ~ 2.2. The

other two resonances of the system near 2 ~ 1.8 and } ~ 2.5 are related to the
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“meander” behaviour of the imaginary branches [20] as these branches coincide
with the bending near field. These resonances of the system sharply decay away
from the input force location. The reactive mobility of the water-filled steel shell is
close to that of the in vacuo steel shell at low frequencies. However, the mobility
does not fall as dramatically at the system resonance (near ? ~ 0.8) because the
fluid at this frequency increases the mass type reactance of the system. The reactive
mobility remains mostly positive above §) ~ 0.8 but reverts to negative as the system
resonates and reveals an apparent stiffness loss. Unlike that of the steel shell, the
mobility of the water-filled plexiglass shell does not reveal any major peak due to
resonances of the system and remains relatively small across the whole frequency
range. A small increase of the system response appears near () ~ 2.4 as the branch
s=3, corresponding to the first pressure release duct solution, cuts on. The reactive
mobility is small and negative at low frequencies but quickly reverts to a mass type

reactance above {2 ~ 0.6.

Figure 3.4 shows the non-dimensional pressure field (p/iFop;Q? X p,h/a) in
the water-filled steel shell ten radii from an axisymmetric radial line force for non-
dimensional frequencies between 0 and 3. Because the pressure field is axisymmetric,
the results illustrate a single value of circumferential position. It appears that the
pressure in the fluid is particularly large when the waves approaching the acoustic
duct solution cut on (these waves are denoted as s=3, 4 and 5 in the dispersion
plot of Figure 2.6). Near ) ~ 0.85, the pressure distribution is close to that of
the first pressure release duct mode. Near §} ~ 1.35, the pressure distribution
approaches that of the second hard walled duct solution. Finally, near 2 ~ 2.1, the
distribution approaches that of the third hard walled duct mode. At low frequencies,

the pressure distribution is quasi-uniform in the cross section. This is due to the
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s=1 wave behaving like the acoustic plane wave, as explained in Chapter 2.

Figure 3.5 shows the distribution of the pressure field in the water-filled
plexiglass shell. The pressure is particularly large near §) ~ 2.4 as the wave s=3,
behaving like a duct wave, cuts on. At this frequency, the pressure distribution is
very close to that of the first pressure release duct mode. At lower frequencies, the
pressure is dominant near the shell wall due to the s=1 wave being pressure near-
field at the wall. Between Q2 = 0 and  ~ 0.3, the pressure distribution is consistent
with the fact that the s=1 wave approaches the first rigid walled duct solution, i.e.

the plane wave.

3.4 Power flow in the coupled shell system

The total vibrational energy flowing through the coupled shell system is
the sum of two quantities: the acoustic axial power flow in the fluid field and the
structural axial power flow in the shell wall. Solutions for these two quantities have
appeared in various studies by Fuller [3, 20, 29]. The derivation is recalled here for

completeness.

3.4.1 Power flow in the fluid field

The pressure in the fluid field for one particular circumferential mode n is

first expressed as a series
Sn .
p=Y_ Pa,cos(nf)J,(kir)eilknez=ut), (3.18)

s=1
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Using the usual Euler equation,

dp Ov,

oz = PfW) (3'19)

one can obtain the axial component of the particle velocity written as follows
Sn .
Ve = 3 (Kns/ psw) Pry cos(nf)J, (k]r)eiknez=et), (3.20)
s=1

The axial component of the time-averaged acoustic intensity is then given by
! 1 .
Iz (7‘, 0) = '2_ Re(pvx% (321)

where * denotes the complex conjugate. Substituting the Equations (3.18) and
(3.20) into (3.21) yields

n

ZE (1/2psw)Pny Py Ky cos (ne).]ﬂ(k:r)J,’:(If:J’-r)e"(k"‘""r‘u')’c .(3.22)

njnj

Il(r,6) = Re

s=1j=1
The power flow in the fluid field is finally obtained by integrating I} over the cross-

section area as follows

27 pa
_ f
I, /0 /0 I(r, 0)rdbdr. (3.23)

Using the relation between the modal pressure and displacement amplitudes
(Eq. 2.11), the solution for the total power flow in the fluid can be written as
Hf - Re [_CLQ pfsn Z Z anw* '(k’u k"J)xF_,Jn] ) (3.24)
8=0 =0

where €9 = 2 and €, = 1 for n > 1. The fluid power factor Fj;, is given by

1 1 knja e r xr1r
F,,ﬂ_g[ kza];(k:a)] [k;_a J’,‘(k;a)] /0 (K r) T2 (K] r)rdr. (3.25)
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The solution of the integral in Equation (3.25) can be written as [46]

a®

(k7a)? — (ki"a)?
—(k}*a)? T3 (K} a) Jnsa (K a)]

/oa Jn(k:r)J,:(k;r)rdr = [(k:a)an(k:a)J;H(k;a) (3.26)

It should be noted that two different modes s, associated with the same
circumferential distribution n, are not orthogonal [26]. Consequently, the cross
terms in Expression (3.24) carry appreciable power and must be retained for a

correct evaluation of the fluid power flow.

3.4.2 Power flow in the shell wall

The first expression for the power flow in thin cylindrical elastic shells was
presented by Fuller [3]. The derivation was based on the integration around the
shell circumference of the structural intensity which was made of four terms. More
recent investigations by Romano [47] and Williams [48] have shown that a more
exact expression of the axial component of the instantaneous structural intensity in

a thin cylindrical shell is actually a sum of five terms,
I? = Nyu + Npgv + Qw0 + My, + Mgewy, (3.27)

representing, respectively, the extensional power flow, the in-plane shear power flow,
the out-of-plane shear power flow, the work of the bending moment M, against the
angular rotation w, of the shell element in the x-direction and the work of the
twisting moment M4 against the angular rotation wy of the shell element about the
x axis. This last term had been omitted by Fuller in his derivation of the shell power

flow. It will be shown that this term is small for low circumferential mode orders.
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In Equation (3.27), N, Ny and Q. are the axial force, the in-plane shear force
and the transverse shear force resultants; ‘" indicates a differentiation with respect

to time.
The total time-averaged axial power flow in the shell wall is thus given by
1 27
L = ;Re ( [N+ Nag® + Qu” + Meti” + Mo ado) . (3.28)

If the shell is thin enough, as in the present analysis, a good approximation

of the elastic law is given by the simplified Fligge equations [49]:

N, = D[%+%(%+w)], (329)

Ny = 2 (12_ V) (0661; + %) : (3.30)

M, = K (?;Tf + 2?2?9271:) , (3.31)

Meo = K(IQ_ 2 ;:;)9’ (3-32)
OM; | Mz

Q = 0z + adf’ (3.33)

where, in Equations (3.29) to (3.33), the membrane stiffness is D = Eh/(1 — v?)
and the bending stiffness is K = Eh3/12(1 — »?).

The shell displacements for a particular circumferential mode n are expressed
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as series,

Sn
u = EU,,,co.s(n0)e'(k"‘x""t""/2), (3.34)
=0
Sn .
v = Y Visin(nf)ellknez—t) (3.35)

8=0

w = % Wiscos(nf)eikne—wt), (3.36)
s=0
Introducing the expressions (3.29) to (3.33) and (3.35) to (3.36) into Equation
(3.28), one obtains the following solution for the structural power flow in the sheli
wall:
Sn Sa
I, = Re |mp,c}Q 3. Y W, Wyeflknehnideg . | (3.37)

=1 j=1

where the shell factor S,;, is given by

Sein = [(k/a)*/12] [(knsa)® + (knsa)?(k};a)]
+ (h/a)[(knsa)Ra Ry + vRy;] n =0, (3.38)
Siin = [(h/a)*/24] [(kns@)® + (Knsa)*(k3;a) + 0 (knsa) + vn* (k7 ja)

+ (knaa)(n2 - Tl2l/ + nR;} - Tlej)]
+ [(1/0)/2] [(kns@) Ras B; + nvRey Ry; + vRY)
+ [(h/a)(l - V)/4] [nRaaR:j + knaaRtaR:j] s n>1. (3.39)

In Equations (3.38) and (3.39), R,,, R, R,.; and Ry; are the ratios of axial and
torsional to radial amplitudes of vibration obtained by re-substituting the derived
axial wavenumber k,, or k,; into the equations of motion (2.13) of the free vibrating

system [3].
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As for the fluid power flow, Equation (3.37) includes cross interaction terms

that must be retained for a correct evaluation of the shell power flow.

3.4.3 Total power flow in the coupled shell system

The total power flow in the shell system is defined as the sum of the power

flows in each of the two coupled media,

I, = 1, + II,. (3.40)

As seen from Equations (3.24) and (3.37), the power flow in either of the
coupled media can vary from one axial position to another due to interferences,
represented by cross interaction terms in the equations, between the various propa-
gating waves. This phenomenon results in an exchange of energy between the fluid
and the shell as the waves propagate [33]. The total power flow in the shell system
is not subject to these oscillations. Nevertheless, the hysteretic damping in the shell

material yields a slight decay of the total power flow as the various waves propagate.

3.5 Linear quadratic optimal control theory

The second case of control approach on Figure 3.1, with two control
forces/two minimization points is considered (the first case, one control force/one
minimization point, being a simplified case). Note that two error points are needed
to avoid an overdetermined system, i.e. more than one solution for the control

forces. The total radial displacement of the shell at the error locations z! and z?
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can be expressed in matrix form as
wl = (dWZ + Cf.) cos(nf) (3.41)
where the vectors and matrices are given by

d = [elhed) gitktied |7, (3.42)

1 ffw Iaaeik“(d-’é)dkna f_+°°=° Isse"""(’i"g)dk,,a
C = 5—a (3.43)
2 . ,
2mpicih/e 120 Igetbn(ee=2dkya [T Ipzettn(#2-s0dk,a

e = [F FY, (3.44)

T
wt o= [wi(el,6) w'(z2,6)] . (3.45)
The superscript “T” denotes the matrix transpose operator.

In order to minimize the radial displacement at the axial positions z! and z?
along the circumference of the shell, the following cost function is defined
J=3 /0 2" (=, 0)| do. (3.46)
i=1
This cost function is a real quadratic function of the strength of the control inputs.
For a given magnitude of the incident propagating wave, J has a unique minimum
value associated with an optimal set of control forces. This cost function can be

written in matrix form as

J = we, [WwhH[wl (3.47)

= 7, [dWE + Cf)H[dWE, + Cf]
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= me, {Wa[d¥dWY, + £H[CHAIWY, + Wi [d7 Cfe

+H[CHC]te } (3.48)
where the superscript “H” denotes the Hermitian operator.

A general solution for this type of optimization problem has been developed
by Nelson et al. [45]. The condition for the global minimum of the cost function J
is

-gé + i%]g =0, (3.49)
where fI and fi represent the real and imaginary part of the control vector f.
respectively. If L control inputs are considered to minimize the chosen acoustic field,
the function J is dependent on 2L variables constituting the real and imaginary parts
of the control input vector. This type of cost function can then be seen as a "bowl
shaped’ hypersurface with a unique global minimum. Thus, taking the derivatives

of the cost function J with respect to the real and imaginary part of the control

vector leads to the optimal solution for the complex control forces

fOPt = _[CH ]! [CHA)WE,. (3.50)

3.6 Control performance

The performance of the discontinuity created on the shell system by the
active control forces is evaluated by comparing the total power flow in the system
beyond the minimization points after control to the total power flow due to the

incident wave alone at the same position. This approach differs from that previ-
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ously used by Brévart and Fuller [50] who compared the power flow beyond the
minimization points to the power flow of the incident wave just before it reached
the discontinuity. Using this last approach, the passive power loss due to a decay
of the disturbance amplitude, as the wave propagates through the discontinuity, is
included in the performance parameter. This power loss can be important for large
values of the shell hysteretic damping. The present approach gives more pertinent
results as far as the control performance is concerned. The control performance

parameter is thus defined as follows

(Ht):g:g control
= (Ht)before control * (351)

z>z?

I

The power insertion loss, in decibels, due to the active control approach is

then given by

IL = 10 log,o(y). (3.52)

3.7 Results

In this section, the performance of the two control configurations described in
Section 3.1 is computed considering various shell systems. The results are analyzed
and explained in physical terms. For all the cases, the amplitude of the incident
wave, in Equation (3.1), is assumed to be W2, =1 at z = 0. The first control force
is applied at z. = 2a. When considering the second case of control configuration,
the two forces are closely spaced a distance Az, = 0.1a apart in order to introduce
a line moment component into the shell system. Note that this spacing is about ten

times smaller than the minimum wavelength at the highest frequency of interest,

68



1 = 3. The spacing between the error points is Az, = 0.2a. The distance between
the control forces and the minimization points is approximately 5 radii. This ensures
that near field waves do not affect the error signals. The total power flow in the

system is evaluated one diameter beyond the minimization points.

3.7.1 Axisymmetric wave motion (n=0)

We first consider axisymmetric disturbances and control forces. If a steel or
plexiglass shell is in vacuo, it has been seen in Chapter 2 that there exist two waves,
denoted as s=1 and s=2, which are real (with a relatively small imaginary part due
to hysteretic damping), and therefore propagating at all frequencies. These two
waves can thus be regarded as potential incident disturbances on the shell system.
As the torsional shear wave s=2 is uncoupled from the radial motion of the shell, it
can not be controlled by radial line forces. Hence, it will not be considered in the
present analysis. When the shell is filled with water, it has been seen in Chapter
2 that two waves denoted as s=1 and s=2, in addition to the torsional shear wave
s=0, can propagate at all frequencies. Both of these waves will be considered as

disturbances.

Figure 3.6 shows the shell power loss L considering an in vacuo steel shell.
The reader is refered to Table 2.1 for shell material properties and geometrical
characteristics. The branch s=1 of the dispersion curves, as seen in Figure 2.5, was
used as an incident disturbance wave corresponding to a structural source. At low
frequencies (2 < 0.95), even though the incident wave is extensional in nature, it is
possible to reduce the downstream power flow because of Poisson’s coupling effect.

As the s=1 wave is the only propagating wave within this frequency range, one
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Figure 3.6: Power insertion loss, in vacuo steel shell, n=0, branch s=1 incident.
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control force provides total control of the shell power flow (< —100 dB). At the
ring frequency Q = 1, the shell strongly resonates and the one radial force/one error
point control configuration does not yield any reduction of the shell power flow.
Using two control forces and two minimization points, it is possible to keep the shell
element from both translating and rotating. Total control of the shell power flow
is thus obtained. Above the ring frequency, the incident wave changes in nature
towards a purely flexural wave. One control force yields 10 to 20 dB of attenuation.
Using two control forces, total control of the shell power flow is achieved as only two

waves propagate in the system.

Figure 3.7 shows the total power loss due to active vibration control on a
water-filled steel shell when the incident wave is the branch s=2. This branch
behaves like a structural wave at low frequencies. For the case of one control force,
even though the radial displacement is perfectly controlled at the error point (see in
Figure 3.8 for example the magnitude of the radial displacement through the control
discontinuity at ) = 0.5 and Q = 3), the active input appears to be very ineffective
in controlling the total power flow. Increases of the total power flow in the system
occur at various frequencies. The reason for this behavior is that part of the energy
introduced in the system by the control input is diverted from the shell to the fluid
field at the error point. Using two control forces yields very large attenuations of
the total power flow at low frequencies. Around 2 = 0.85, the control performance
drops dramatically as the coupled system, subjected to a coincidence phenomenon,
strongly resonates. In the frequency range Q € [0.9;1.35], attenuations from 10
to 40 dB are seen to occur. At higher frequencies, the incident wave becomes a
dominantly fluid type wave and most of the energy propagates via the fluid path;

the attenuations achieved are thus negligible.
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Figure 3.9 shows the variations of the control performance with frequency
when the incident disturbance on the water-filled steel shell is the s=1 wave. This
wave predominantly has fluid wave type characteristics. As explained in Chapter
2, the s=1 wave is subsonic in the fluid field and consists of a pressure near field
at the shell wall. Furthermore. Fuller and Fahy [20] demonstrated that below the
ring frequency 2 = 1, the power flow of the s=1 branch is dominant in the fluid
field. Performing the control with only one force, the total power flow is seen to be
reduced nearly across the entire frequency range. Good attenuations of 15 dB are
obtained at low frequencies and an average 6 dB attenuation is obtained above the
frequency 2 = 0.8. Because of resonances of the coupled system associated with
cut-on of high order duct modes, an increase of the power flow in the system is
seen to occur at a few discrete frequencies such as 2 = 0.85. When two control
forces are used, more noticeable attenuations of the total power flow are observed,
reaching total control (< —100 dB) at low frequencies and varying from 10 to 60
dB above Q) = 0.8. The explanation for this unexpected high control performance is
associated with the particular nature of the incident wave s=1. The pressure near
field acts like a mass loading on the shell and is thus strongly affected by structural

radial forces.

Figure 3.10 shows the total power loss IL considering an in vacuo plexiglass
shell. The reader is refered to Table 2.1 for shell material properties and geometrical
characteristics. The branch s=1 of the dispersion curves in Figure 2.9 was used as
a disturbance. The results are very similar to those obtained for the in vacuo steel
shell. However, using one control force and one error sensor results in spillover or
poor control performances in a frequency range extending from Q ~ 0.9 to Q ~

1.25. This has only appeared at the ring frequency 2 = 1 for the steel shell. This
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Figure 3.9: Power insertion loss, water-filled steel shell, n=0, branch s=1 incident.
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behaviour may be due to the contribution of the extensional wave s=3 to the radial
motion near cut on being larger in plexiglass than in steel; Poisson’s ratio is larger
in plexiglass and so is the damping effect on the s=1 wave. As for the steel shell,
the use of two forces and two error sensors yields total control of the shell power

flow.

Figure 3.11 shows the total power loss due to active vibration control on a
water-filled plexiglass shell when the incident wave is the branch s=2, which behaves
like an extensional shell wave across the entire frequency range Q € [0;3]. As for
the steel shell, no control of the total power flow is achieved using one control
force. Using two control forces, a maximum of 1.5 dB attenuation of the power
flow appears at low frequencies, despite the fact that the radial displacement is
perfectly controlled at the error sensors (see in Figure 3.12 for example the radial
displacement through the control discontinuity at @ = 1.5). This is due to the
radial motion associated with the extensional wave s=2 being much smaller than
that of the waves excited by the radial line forces, i.e. the s=1 wave and even the
evanescent s=3 wave, whose energy is predominantly in the fluid field. As a result,
the power flow initially in the shell wall is diverted to the fluid at the error sensor
location. Part of the energy in the fluid is transferred back to the shell beyond the

error sensors due to the interferences between the propagating waves.

Figure 3.13 shows the control performance parameter when the incident dis-
turbance considered is the s=1 wave. This wave is subsonic in the fluid field and
consists of a pressure near field at the shell wall. This near field acts on the shell like
an added mass and the wave motion is thus strongly affected by structural radial

forces. Using one control force, total power attenuations varying from 50 to 70 dB
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Figure 3.12: Magnitude of the shell radial displacement, one control force/one error
point, water-filled plexiglass shell, n=0, branch s=2 incident.
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are observed at frequencies below ! = 2.3. Near (! = 2.4, the control performance
drops dramatically as the s=3 wave, approaching the first pressure release duct
mode, cuts on. When two control forces are used, the total power flow is reduced

by about 70 dB across the whole frequency range.

3.7.2 Beam type wave motion (n=1)

We now consider beam-type disturbances and control line forces (n=1).
Chapter 2 revealed that, whether the shell (made of steel or plexiglass) is in vacuo
or filled with water, there is only one wave, denoted as s=1, which is real (with a
relatively small imaginary part), i.e. propagating, at low frequencies. Therefore,
for each of the shell systems considered, only the s=1 wave will be regarded as a

potential disturbance.

Figure 3.14 shows the shell power loss I L obtained by means of radial control
line forces considering an in vacuo steel shell vibrating in the circumferential mode
n=1. As explained in Chapter 2, the nature of this incident wave at low frequencies
causes the shell to vibrate as a long, slender rod. Therefore, performing the control
with only one line force provides good attenuations, varying from 10 to 30 dB, of the
total power flow. At higher frequencies, the incident wave becomes mostly flexural
and remains largely affected by a single structural line force; power flow reductions
varying from 10 to 20 dB are observed, except around the non-dimensional frequency
1 = 1.4 at which the extensional shell wave cuts on. Increasing the number of control
forces to two leads to a significantly better control performance. At low frequencies,
virtually total control of the disturbance is achieved. Above (! = 1.4, an average 30

dB of attenuation is observed.
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Figure 3.13: Control performance parameter, water-filled plexiglass shell, n=0,
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Figure 3.14: Power insertion loss, in vacuo steel shell, n=1, branch s=1 incident.
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When the steel shell is filled with water (Figure 3.15), two important phe-
nomena affect the control performance. At low frequencies, below the first acoustic
cutoff frequency near 2=0.55, the control effectiveness is increased. Up to 70 dB
of attenuation is obtained with only one control force. In this frequency range, the
fluid simply acts as an added mass decreasing the fluid-filled pipe compliance [51].
However, above ) ~ 0.55, as higher order acoustic modes propagate, the control
performance is severely decreased. Less than 5 dB of attenuation is obtained with
one force and a maximum of 25 dB is achieved with two forces. In this frequency
range, an increased amount of the propagating energy is carried by the fluid medium

and is thus weakly affected by structural forces.

The results considering an in vacuo plexiglass cylindrical shell (Figure 3.16)
are very similar to those obtained for the in vacuo steel shell. However, using one
control force, very poor performance is obtained in the frequency range € [0.9; 1.6]

due to a stronger Poisson’s coupling between extensional and radial shell motion.

When the plexiglass shell is filled with water (Figure 3.17), the control per-
formance is increased across the entire frequency range due to the fluid acting like
an added mass. Below 2 ~ 0.55 at which the torsional shear wave cuts on, atten-
uations of the total power flow varying from 20 to 80 dB are observed using one
control force. Above this frequency, the power flow is reduced by 25 to 35 dB with
one force and by 40 to 50 dB with a pair of control forces. Since the fluid has a high
impedance relative to the shell wall, there is no acoustic mode of circumferential or-
der n=1 cutting on below ) = 3. This explains why the results for the water-filled
plexiglass shell largely differ from those obtained for the water-filled steel shell.
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Figure 3.15: Power insertion loss, water-filled steel shell, n=1, branch s=1 incident.

84



20

= i
= 20 e

8 -40

5 |

2 60| ;

W | ‘.'

‘80 B ::
! I." ! ] 1 |
1.5 2 2.5 3

-100 —
0 0.5 1
Non-dimensional frequency, Q2

1 control force
2 control forces

Figure 3.16: Power insertion loss, in vacuo plexiglass shell, n=1, branch s=1 inci-

dent.

85



Power loss, IL (dB)

_100 I B B l ! | ! | ! | L
0 0.5 1 1.5 2 2.5 3

Non-dimensional frequency, €2

1 control force
2 control forces

Figure 3.17: Power insertion loss, water-filled plexiglass shell, n=1, branch s=1
incident.
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Chapter 4

Active Control of Pipe Vibrations
due to Realistic Disturbances

The potential for active control of total energy flow in fluid-filled piping
systems when considering the simplest disturbance that may appear in the system,
i.e. a single propagating free wave of circumferential order n and radial indice s, was
demonstrated in the previous chapter. In most cases, the results at low frequencies
have revealed that one or two radial line forces with the same azimuthal distribution
as the incident wave were sufficient to achieve considerable reductions of the total
power flow. As only a few circumferential modes propagate at low frequencies, most
harmonic disturbances in the low frequency range should be controllable with a small
number of control inputs. In this Chapter, an active control approach to minimize
the total power flow generated by a point force or an internal monopole source at
low frequencies is investigated. The point force disturbance addresses the problem
of mechanical excitation of the piping system whereas the internal monopole source
directs the attention towards the acoustic excitation of the system. Once again,

one prefers to use structural control inputs such as radial point forces and ring
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forces, which are not obtrusive in the fluid field. The distribution of energy in the
coupled system before and after control is evaluated and analyzed. The rationale is
to determine whether structural control inputs can efficiently reduce the power flow

in the system when it is dominant in the fluid field.

4.1 Point force disturbance

The first disturbance considered is an external radial point force. The point
force disturbance is representative of various realistic structural sources piping sys-
tems are subjected to, such as forcing loads induced by pumps and compressors for
example [51]. The frequency of excitation is assumed to be smaller than the cut-on
frequency of the circumferential mode n=3 (see Chapter 2) so that only three cir-
cumferential modes (n=0, 1 and 2) contribute to the system response in the far-field.
Figure 4.1 illustrates the arrangement of the active control approach investigated.
The point force disturbance is located at z = 0, § = 0°. The control inputs, denoted

2

as F?, F} and F?2, are two radial point forces located at § = 0°, z = zl,2?, and

one axisymmetric ring force located at * = 22. A set of three sensors provides the
error information. A first sensor, at ¢ = z?, is intended to observe the axisym-
metric radial displacement of the shell. A second sensor, at z = z!, observes the
beam type radial displacement of the shell associated with the circumferential mode
n=1. Finally, a third sensor, at z = z?2, observes the ovalling radial displacement
of the shell associated with the circumferential mode n=2. The actual design and
implementation of these modal error sensors will be considered in Chapter 5. The

amplitude of the control forces minimizing these modal quantities is determined by

applying the linear quadratic optimal control theory. The difference of total power
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flow in the system before and after control is then used to evaluate the performance

of the discontinuity created on the shell by the active vibration control.

The solution for the response of the system to a ring force has been presented
in Chapter 3. In this section, the response of the system to a point force excitation is
derived. Then, the optimal control forces are determined. The solution for the total
power flow in the system, including terms associated with waves of various circum-
ferential mode orders, is presented. The results of the investigation are discussed

and analyzed for various configurations of the shell system.

4.1.1 Response of a fluid-filled cylindrical shell to an ex-
ternal radial point force

A radial point force applied at § = 0° and z = z¢ can be written in terms

of external pressure loading on the shell wall as

PG 0
po=| p} | = 0 (4.1)
Po Fo6(0)6(z — zo)

where Fy has the unit of force per unit length, i.e. aFy has the unit of force.

The radial pressure pj is then expressed as a Fourier expansion in the cir-

cumferential direction [5]:

po = Y fg cos(nf)é(z — o), (4.2)
n=0
where
n €n [T ’ /
=2 /0 Fob(#) cos(nf’) df'. (4.3)

89



Control Forces Error Sensors

(point force)

point
forces o — «
® o o
. R T B OB
ring force = £ =
Nt 4 - — - — - — - - — - — - — - — - —_— - — - — - & - — —_l - — - - —- — 0
FRuid-filled pipe
0 x! xt  x? x! x!  x?
1 | | | | 1 |

Figure 4.1: Active control arrangement for a point force disturbance at low fre-
quency.
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Solving the integral in Equation (4.3) yields

cos(nb)é(z — zo), (4.4)

where g =1 and ¢, =2 for n > 1.

Equation (4.4) shows that the point force is modelled as an infinite sum of
radial line forces whose response has been previously derived in Section 3.3. In
terms of shell radial displacement, the system response to a point force can thus be

written as follows

w(z,0) = €n, cos(nf / 336 @20 dk q 4.5
(=,0) 4rn2p, cLh/a nZO —o0 (4:5)

= E €n cos(nf) E Res,(s), (4.6)

27rp, h/a = poet
where the terms I33 and Res,(s) are given by Equations (3.12) and (3.15). As
explained in Section 3.3, the number of residues taken into account to evaluate the
shell response to a line force can be truncated to a finite value S,. In the far-field,
the number of circumferential modes included in the point force response can also be
truncated to a finite value N since high order circumferential modes do not propagate

below a certain frequency (the cut-on frequency), as explained in Chapter 2.

Equation (4.6) can be rewritten as follows:

N
> wa(z,0), (4.7)

n=0

where

+o00 .
cos(nf) / Isse#n @) gk q. (4.8)
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The function wy,(z, #) represents the contribution of the circumferential mode n to

the radial displacement of the shell at a given location M(z,#). In the next section,

it is referred to as the modal radial displacement of the shell system, associated with

the circumferential mode n.

4.1.2 Linear quadratic optimal control

The modal radial displacements of the controlled shell system, corresponding

to the circumferential modes n=0, n=1 and n=2, at the error locations z?, z! and

z? respectively, result from the superposition of the displacement field due the point

force disturbance and the displacement fields due to the control inputs. They are

expressed as

wp(ze,0) =

wi(z:,0) =

w%(l‘z, 8) =

+

+o0 . +00 .
'2171 (Fd / Isse™* dkoa + F° / Inae™® =9 gkoq

+oo R +00 .
F} /_ It =Ddkoa + F /_ ) 1336'k°(”3_“’3)dk0a), (4.9)
1 +00 . +o0 .
B (Fd c0s6 [ Le*iediyat Ficosd [ Ik
- ;
o0 R
Fcost | Isae"“(”i-zi)dkla), (4.10)

+00 , ) . 1
% (Fd cos 20/ Iwe'k’zzdkza + Fcos 26 / Igge’kz(’z‘zc)dkga

+o0 .
F? cos 26 / I33€'k2(zz—r%)dk2(l) , (4.11)

where Fy is the amplitude of the point force disturbance and A is a constant term

equal to (2r2p,cih/a).

It appears from Equations (4.11) and (4.11) that the modal radial displace-

ments of the shell, associated with the modes n=1 and n=2, are independent of the
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control ring force F2. Therefore, they can be expressed in the following matrix form
wt = dF; + Cf, (4.12)

where the vectors and matrices are given by

: . T

d = % [ cos 8 [ Iget17edkia  cos 20 [T Iszet*2=idkya ] (4.13)
1 cosﬁff:: Isze*1(@=)dkia  cos g [1 I3zet™ (=e==)dk, a

C = = (4.14)
cos 26 f_’L:: Isze*2(e2-2)dk,a  cos 26 fj':: Isze*2(#e=28) dkyq

fe = [FFY (4.15)

T
who= [wi(el,6) wie,0) (4.16)

In order to minimize the modal radial displacements of the shell at the axial

positions z! and z? around the circumference, the following cost function is defined

J= i /o 7 iz, 0)[ db. (4.17)

=1

As seen in Chapter 3, the optimal vector of control forces to minimize the

quadratic cost function J is given by

foPt — _[CHC] ! [CHd]F,. (4.18)

Equation (4.10) yields the third optimal control force, F?°, minimizing the
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axisymmetric radial displacement at z2,

o = —1 Fy [ Isgee=ta,
c = f:-:oo Iyzetko(z-22) dkoa ( d/-w 3¢ o
+ ‘ +00 .
+ Fcl/ % Issetko(xg—zi)dkoa + Fg/ 1336'k°(zg‘zz)dkoa) . (419)
-—00 -

4.1.3 Evaluation of the control performance

The performance of the discontinuity created on the shell system by the
active control forces is evaluated by means of the power insertion loss IL, defined
by Equation (3.52) and (3.51). However, the expressions (3.24), (3.37) and (3.40)
for the fluid power flow, the shell power flow and the total power flow have to be

revised to include various circumferential modes n.

To derive the total power flow in the system, the pressure in t:. - fluid a:

the shell displacements are now expressed as the following series

N Sn .
p = Y cos(nb) EPn,Jn(k:r)e’(k"‘“""‘), (4.20)
n=0 s=1
N S" N N
u = E cos(nb) E Un,e'(k"‘x—“'t"m/z), (4.21)
n=0 8=0
N Sn .
v = Y sin(nf) Y V,,efkner=et) (4.22)
n=0 =0
N Sn _
w = z cos(nd) E W, e knaz=wt) (4.23)
n=0 s=0

Following the same steps as in Section 3.4 and applying the orthogonality

principle between different circumferential modes,

en /” cosmpcosnd = bpn, (4.24)

21 Jor
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where 6,,,, is the Kronecker delta function, one obtains the expressions for the fluid

power flow, the shell power flow and the total power flow in the system as

n Sn R .
II; = Re —CLQ3pf anZEWMW;je'(""""m’)’Ffjn‘, (4.25)
n=0 8=0 ;=0
N Sn Sn . .
I, = Re wp.cLQZEZW,,,W;J.e'<’°m-knﬂrs,fjn : (4.26)
n=0 s=1 j=1
I, = I, + I, = EH;‘. (4.27)

n=0
Note that II? in Equation (4.27) denotes the total power flow due to a single cir-
cumferential mode n. This decomposition is possible because two modes (n, s) and

(m, j) are orthogonal for n # m.

4.1.4 Results

In this section, the performance of the control configuration described above
is presented. Various frequencies of excitation are considered. The point force
disturbance is applied at z = 0 and its amplitude was arbitrarily chosen to be
F; = 100N/m. The axisymmetric control force is applied at z° = 3a. The control
point forces are applied at z! = 4a and 2 = 5a. The spacing between the control
forces has very little influence on the performance of the control approach and was
primarily chosen such that it could be implemented experimentally. The modal
error sensors, associated with the breathing mode n=0, the beam bending mode
n = 1 and the ovalling mode n = 2, are located at 20 = 7a, z! = 7.5a and z? = 8a,
respectively. One diameter spacing between the last control force and the first error
sensor ensures a complete decay of the near field waves in the frequency range of

concern () < 0.3). The power flow in the shell system before and after control is
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evaluated at z = 10a.

For any excitation frequency of the disturbance, considering in vacuo and
water-filled steel or plexiglass shells, the control approach yields a total attenuation
of the modal radial displacements of the shell associated with the circumferential
modes n=0,1 and 2, at the error sensor locations. Of interest is the effect of this

control on the total power flow in the system.

Figure 4.2 shows the modal decomposition of the total power flow in an in
vacuo steel shell before and after control for a frequency of excitation 2 = 0.05. This
frequency is about twice smaller than the cut-on frequency of the circumferential
mode n=3. As shown is Figure 4.2, the response of the system at this frequency is
dominated by the beam bending and the ovalling types of motion. When control
is applied, the power conveyed by both of these modes is reduced by 16 dB and
the power transmitted by the breathing mode n=0 is reduced by 27 dB. When
the frequency is increased above 2 = 0.11, at which the mode n=3 cuts on, the
performance of the control approach is severely reduced. At 2 = 2 (Figure 4.3),
the total power insertion loss due to the active control is only 1.1 dB. The power
transmitted by the circumferential modes 0, 1 and 2 is reduced by more than 10 dB
but the control causes the power flow conveyed by the mode n=3 to increase. This
phenomenon is usually called spillover. Spillover here occurs because none of the
error sensors is designed to observe the shell motion associated with the mode n=3.
Consequently, the actuators can easily add energy into higher order modes without
affecting the control calculation. At @ = 3 (Figure 4.4), spillover in the modes
n=3 and n=4 becomes very important and control yields an increase of the total

power flow in the system (IL=-5.6 dB). At this frequency, a higher number of control
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Figure 4.2: Modal decomposition of the total power flow in an in vacuo steel shell
excited by a point force at @ = 0.05.
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channels is needed to achieve good reductions of the total power flow. This example
illustrates a drawback of active control. Unlike passive control, active approaches
can lead to an increase of power in the system since they act by introducing energy.
Results for the in vacuo plexiglass shell are very similar to those for the in vacuo

steel shell; therefore, they are not presented.

Figure 4.5(a) shows the modal decomposition of the total power flow in a
water-filled steel shell before and after control for a frequency of excitation 2 = 0.05.
The results before and after control are very similar to those obtained for the vacuo
shell. The fluid loading has a very little influence on the response of the steel shell
system at this frequency. Figure 4.5(b) shows that the point force disturbance at
this frequency creates a flow of energy that is largely carried by the shell wall.
According to the investigation on the free wave propagation in fluid-filled pipes (see
Chapter 2), the effect of the fluid loading is expected to be more noticeable on
the response of the plexiglass shell. In particular, it has be shown that the cut
on frequencies of the circumferential modes n > 1 for the water-filled plexiglass
shell are two to three times lower than those for the in vacuo shell. At Q = 0.05
for example (Figure 4.6), before control, the circumferential mode n=3 propagates
and convey a large amount of the energy in the water-filled plexiglass shell. Even
though none of the error sensors is designed to observe the propagating waves of
circumferential order n=3, the power conveyed by the mode is reduced by 12 dB after
control. This unexpected good performance is due to the waves of circumferential
order n=2 and n=3 having nearly identical phase speeds at this frequency. The
shell radial displacements associated with these two modes, induced by the point
force disturbance, are thus in phase at the error sensor location z?. By minimizing

the ovalling shell motion at z2, the control point forces inevitably minimized the
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Figure 4.3: Modal decomposition of the total power flow in an in vacuo steel shell
excited by a point force at 0 = 0.2.
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Figure 4.4: Modal decomposition of the total power flow in an in vacuo steel shell
excited by a point force at 0 = 0.3.
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Figure 4.5: Total power flow in a water-filled steel shell excited by a point force at
2 = 0.05; (a) modal decomposition, (b) distribution in the system.
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shell motion associated with the mode n=3. This phenomenon would not appear
if the disturbance was further away from the control forces. The slight mismatch
between the two phase speeds would induce larger phase shifts between the modal
displacements. At = 0.1 however (Figure 4.7), poor performance of the control
approach is obtained because of spillover. No attenuation of the total power flow is

achieved.

As similar control performances are obtained for water-filled steel and plex-
iglass shells at 2 = 0.05, it is interesting to compare the control effort associated
with each case. The control effort is here defined as follows

2

E. = Z

n=0

2
n
£

7| (4.28)

It appears from Table 4.1 that the control efforts associated with these two cases
are comparable. The amplitude of the radial control point forces is larger than the
control ring force because the axisymmetric shell motion is not much excited by the

point force disturbance.

4.2 Monopole disturbance

The second type of disturbance that has been studied is the monopole source
inside a fluid-filled shell. This study is representative of common situations in which
the cylindrical shell is excited by internal acoustic waves. This acoustic excitation
may be due to local turbulence created by the presence of a discontinuity in the pipe
flow, such as a valve or a bend for example [51]. The control approach is the same

as the one used for the radial point force disturbance and is illustrated in Figure 4.8.
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Figure 4.6: Total power flow in a water-filled plexiglass shell excited by a point force
at 2 = 0.05; (a) modal decomposition, (b) distribution in the system.
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Figure 4.7: Total power flow in a water-filled plexiglass shell excited by a point force
at = 0.1; (a) modal decomposition, (b) distribution in the system.
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Table 4.1: Control effort for water-filled steel and plexiglass shells excited by a point
force at the frequency 1 = 0.05.

Water-filled [ Water-filled
steel shell | plexiglass shell
|F2/ Fy| 0.36 0.99
|F1/Fy| 3.84 3.45
|F2/ Fy 2.93 2.63
E, 4.84 4.45
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The monopole source is located at z = 0, r = r, and § = 0°. The control inputs are

the same as in the previous section, i.e. two radial point forces located at 6§ = 0°,

z = z!,z?, and one axisymmetric ring force located at z = z2. The modal radial

displacement of the shell wall, associated with the circumferential modes n=0, n=1
0 2

and n=2, is minimized at z = 2%, z = z! and = = z? respectively, using linear

quadratic optimal control theory.

The response of a fluid-filled cylindrical shell to an internal monopole source
is derived next. The derivation of the optimal control forces is then briefly stated.
Finally, the performance of the control approach is evaluated and analyzed for var-

ious system configurations.

4.2.1 Response of a fluid-filled cylindrical shell to an in-
ternal monopole source

The response of an infinite fluid-filled cylindrical elastic shell to an internal
monopole source has been previously investigated by James [27] and Fuller [30]. The

derivation is briefly recalled here for completeness.

We consider a monopole source located in the fluid at r = r,, § = 0° and

z = 0, having a free field pressure equal to
pl(r,0,z) = 2 eiksPo, (4.29)
Ry
where Ry is the distance from the source to the observation point.

The shell displacements are expressed as inverse wavenumber transforms and
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Figure 4.8: Active control configuration for an internal monopole disturbance at low
frequency.
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Fourier series in the circumferential direction,

1 & 400 _ .
= = i(knz—7/2) 4.30
u 5 E%cos(ne) /-w Une dk,, (4.30)
] & T o ik
_ 1 n 4.
v 5 gsm(nO)/_w Vaetr=dk,, (4.31)
l ¢ HO 2 iknz
w 2_W,§JCOS(n0) /_oo Woe*dk,. (4.32)

(4.33)

As only the harmonic response is considered, the time variation e™*** in Equations

(4.29), (4.31), (4.32) and (4.33) has been omitted.

The pressure field at the shell wall associated with a monopole source has
been derived by James [27] and is expressed in a spectral form for a given circum-

ferential mode n as

Pa(kn,0) = 2pmendn(k'ry) [KaTo(Ka)] ™ + py?Wadu(K a) [ adu(Ka)] " (4.34)

Substituting Equations (4.31) thru (4.34) into the Kennard shell equations
(2.1), (2.2) and (2.3) yields the spectral equations of motion of the forced response

of the system to a monopole source for a given circumferential mode n,

Ly Ly Ly Un 0
Ly Lz Ly Vo | = 0, (4.35)
Lyy L3y L W T3

where the terms of the matrix L are given by Equation (2.13) and T3 is defined as

T, = 2apm€ndn(kTry)

" p.cthjakrad, (k) (4.36)

Solving for W, and taking the inverse Fourier transform give the radial dis-
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placement w as

+o0 r .
w(z,6) = Z €n cos(nf) _/oO %(—I:'%Isge'k"’dkna. (4.37)

WpicL a -0

Using the theorem of residues to compute the integral in Equation (4.37) [30],

the radial displacement can be written as

21p,,
w(z, €n, cos(nf Res;! 4.38
( " pucihja ,.z-% ).2-; (4:38)

Jalk"rp)( L1y Loy — L12L21)eiknz

Res™(s) = (ol (F QL) . (4.39)

n

4.2.2 Linear quadratic optimal control

The modal radial displacements of the controlled shell system, corresponding

to the circumferential modes n=0, n=1 and n=2, at the error locations z?, z!

and z? respectively, result from the superposition of the displacement field due the
monopole disturbance and the displacement fields due to the control inputs. They

are expressed as

1 +oo Jo(krf‘ ) ‘L 0
t(..0 _ p tkoze
wg(z,,0) = 24 (47rpm /_ —k’aJé(k'a) I33et™edkga

+00 . +o0 R
+ F° / Inge™o == dkoq 4 F1 / Taze* (=21 dkoq

-00 - 00

+o0 ,
+ B2 f Iase"‘°(”3"3)dkoa), (4.40)

o0

1 Ji(k"rp) iky 2l
1 (47rpm cosﬂ/oo Fad (k" )1336 dk,a

+ Flcosé / Iaae'k‘(ze""‘)dkla

wi(ze, )

too .
+ FZcosf / Igae’kl(’:_IZ)dkla) , (4.41)
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1 +00 Jz(k"r ) . 9
t(..2 _ p thax?
wi(zi,0) = — (47rpm cos 20 /_w —k'aJ;(k'a)Iaae dkya

+ .
+ Flcos26 / oolaae""(’z"”i)dkza

400 .
+ F?cos26 / Iwe'k’(zz"IZ)dkga> , (4.42)
—o0
where p,, is the amplitude of the internal monopole source.

The theory used to derive the optimal control forces is the same as in Section

4.1.2. The optimal vector of control point forces is thus given by
2Pt = —[CHC]™! [CHdlpm, (4.43)

where

cosf [t —J’—(-IiZEL)Iwe"k“’idkla

d Ar 0 kraJ;(k"a
4 cos 2 [+ —‘Mg:ﬁL)Ise,e“‘"dega

= kraJ,(k"a

(4.44)

and the matrix C is the same as in Equation (4.14).

Equation (4.41) yields the third optimal control force, F?, minimizing the

axisymmetric radial displacement at z2,

-1 +00 Jo(k™rp) . ka0
> = —_ P/ thozl
o = [ Iszetko(=-=8) dkya (47rpm /_w kraJ(')(kra)Ia3e dkoa
oo . 400 .
+ F / Isge*o(*==) dkoq + F? / Iase*kous—zz)dkoa). (4.45)

4,.2.3 Results

The monopole source is located at § = 0, z = 0. Its radial position can

vary from r, = 0 to r, = a and its free field amplitude was arbitrarily chosen to be
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pm = 100Pa.m. The position of the control forces and the error sensors is unchanged
from Section 4.1.3 so that the performances of the control arrangement for point
force and monopole disturbances can be compared. The total power flow in the
system at z = 10a, before and after control, is used to evaluate the performance of

the active control approach.

Figure 4.9(a) shows the modal decomposition of the total power flow in a
water-filled steel shell excited by a monopole source pulsating at ) = 0.05. The
monopole is located near the axis of the shell, at r, = 0.1a. Before control, the sys-
tem response is dominated by the breathing mode and most of the energy propagates
in the fluid field (see Figure 4.9(b)). When control is applied, the power conveyed
by the breathing mode and the beam bending mode are respectively reduced by 12
and 7 dB whereas the power flow associated with the ovalling mode n=2 is seen to
increase by 15 dB. The increase in ovalling shell motion is due to a large rotation of
the shell element at the error sensor location z2. Two closely spaced modal sensors
would be necessary to keep the shell element from both translating and rotating at
z2. As Figure 4.9(b) reveals, the control approach results in a 25 dB attenuation of
the power flow in the fluid field, part of which is compensated by an increase (8 dB)
of the power flow in the shell wall. The net insertion loss of total power flow is 12

dB.

As the monopole source is moved toward the shell wall, the contribution of
the circumferential modes n > 1 to the total power flow becomes more important;
Figure 4.10 illustrates the case r, = 0.9a. The system response remains dominated
by the breathing mode and the energy is largely transmitted through the fluid field.

The control performance is equal to that obtained for the case r, = 0.1a.
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Figure 4.9: Total power flow in a water-filled steel shell excited by an internal
monopole source at { = 0.05, r, = 0.1a; (a) modal decomposition, (b) distribution
in the system.
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Figure 4.10: Total power flow in a water-filled steel shell excited by an internal
monopole source at (! = 0.05, r, = 0.9a; (a) modal decomposition, (b) distribution
in the system:.
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Figure 4.11: Total power flow in a water-filled plexiglass shell excited by an internal
monopole source at ! = 0.05, r, = 0.1a; (a) modal decomposition, (b) distribution
in the system.
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Considering a water-filled plexiglass shell and a monopole source near the
axis (Figure 4.11), the insertion loss due to the active vibration control approach
reaches 16 dB. Not only is the power flow in the fluid field reduced by 39 dB but
the power flow in the shell wall is also attenuated (-4 dB). This high performance of
the control is due to the low compliance of the shell yielding good coupling between
the fluid and the shell and large effects of the structural radial forces on the fluid
field. Figure 4.12 shows the results when the monopole is located close to the shell
wall. Spillover in the circumferential mode n=3 is seen to limit the attenuation of the
power flow in the shell wall and the resulting insertion loss is 12 dB. As the frequency
is increased, this behaviour is likely to cause increases of the total power flow in the
system after control. At £ = 0.1 (Figure 4.13), for a position of the monopole near
the axis of the shell, the response of the uncontrolled system is largely dominated by
the breathing mode and the energy is mainly conveyed in the fluid. After control,
the power flow in the fluid is attenuated by 32 dB but the power flow in the shell
wall is increased by 8 dB because of spillover in the circumferential modes n=3 and
n=4. The resulting attenuation of the total power flow is 14 dB. As the disturbance
is moved next to the shell wall (Figure 4.14), the contribution of the asymmetric
circumferential modes (n > 0) to the response of the uncontrolled system becomes
important. Before control, there are similar amounts of energy propagating in the
fluid and in the shell wall. After control, the power flow in the fluid is reduced by
10 dB but the power flow in the shell wall is simultaneously increased by 4 dB. As
a result of this redistribution of the energy in the coupled system, no attenuation of

the total power flow is achieved.

Similar control performances are obtained for water-filled steel and plexiglass

shells at @ = 0.05. It is thus interesting to compare the control effort required by
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Figure 4.12: Total power flow in a water-filled plexiglass shell excited by an internal
monopole source at £ = 0.05, r, = 0.9a; (a) modal decomposition, (b) distribution
in the system.
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Figure 4.13: Total power flow in a water-filled plexiglass shell excited by an internal
monopole source at & = 0.1, r, = 0.1a; (a) modal decomposition, (b) distribution
in the system.
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both configurations. Tables 4.2 and 4.3 show that, considering the monopole source
near the axis of the shell or close to the wall, the control effort associated with
the steel shell case is extremely large and about ten times higher than the control
effort associated with the plexiglass shell system. For both cases, the control ring
force is much larger than the control point forces because the monopole source at
this frequency, whether it is located near the shell axis or close to the shell wall,

predominantly excites the breathing mode n=0.

It has been demonstrated that the present active control approach on steel
piping systems would require a large amount of control power when the disturbance
is an internal acoustic source. The implementation of hard rubber inserts in steel
piping systems would certainly provide a good solution to the transmission prob-
lem of vibrations in fluid-filled piping systems. Fuller [3] demonstrated that such
discontinuities could create high passive transmission losses of the flexural waves
propagating along in vacuo cylindrical shell. The combination of this passive effect
with an active control approach on the insert, as presented here, would provide an
effective means to reduce the total power flow in the piping system. However, be-
cause of the low cut-on frequencies of the high order circumferential modes in hard
rubber shells filled with fluid, the frequency range in which these “smart” inserts
could be used will be directly limited by the number of control channels. At least

one control channel per propagating circumferential mode is necessary.

118



H before control B after control

(dB)

n
t

Total power flow,I1

0 1 2 3 4 5
Circumferential mode order, n

Power flow (dB)
>
o o

-
N
(&)

100

Figure 4.14: Total power flow in a water-filled plexiglass shell excited by an internal
monopole source at = 0.1, r, = 0.9a; (a) modal decomposition, (b) distribution
in the system.
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Table 4.2: Control effort for water-filled steel and plexiglass shells excited by a

internal monopole source near the axis of the shell (r, = 0.1a) at the frequency
Q = 0.05.

Water-filled | Water-filled
steel shell | plexiglass shell
|FO/Fy| 137 14.9
|/ Fyl 0.34 0.19
|F2 ] Fy| 0.32 0.18
E, 137 149
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Table 4.3: Control effort for water-filled steel and plexiglass shells excited by an
internal monopole source near the shell wall (r, = 0.9a) at the frequency 0 = 0.05.

Water-filled | Water-filled
steel shell | plexiglass shell
|FO/ Fy| 135 14.8
|F1/Fy| 2.82 2.09
|F2/Fy| 2.29 1.68
E, 135 15
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Chapter 5

Arrangement and
Characterization of the
Experimental Apparatus

A broad experimental study has been carried out in order to verify some
of the analytical results presented in the previous chapters. Two sets of control
experiments were performed. The first one was related to the work of Chapter 3
and focussed on the axisymmetric shell motion. The objective of the experiments
was to show that the propagation of axisymmetric waves in infinite fluid-filled pipes
can be effectively controlled by active means applied to the pipe wall in a large
frequency range. The second set of experiments was related to the work of Chapter
4 and concerned the active control of the shell-fluid vibrations induced by a point

force disturbance at low frequencies.

Before presenting the results of these experiments (which will be reviewed in
Chapter 6), the experimental apparatus is discussed in detail in this chapter. The

test structure is described along with a discussion on the achievement of the desired
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boundary conditions. Preliminary experiments that were carried out in order to de-
termine the shell material properties are presented. The results of other experiments
assessing the validity of the theory developed in Chapter 2 and Chapter 3 are also
included in this chapter. Among these results are the cut-on frequencies of the high
order circumferential modes (n > 1) for the test shell in air and filled with water.
These frequencies are compared to the calculated ones. The measured pressure field
inside the shell filled with water, for an axisymmetric broadband excitation, is also
presented and analyzed by comparison to the corresponding analytical computa-
tion. Upon completing this overview of the test structure, the control actuators and
sensors are described and their implementation is discussed. Finally, the controller
implementing the multi-channel version of the filtered-x adaptive LMS algorithm is

presented.

5.1 Description and characterization of the test
structure

In this section, the experimental shell system is described. The results
of preliminary experiments that were performed in order to characterize the test
structure are also included in this section. The experimental data is analyzed by

comparison to numerical results presented in Chapter 2 and Chapter 3.

5.1.1 Description of the experimental shell system

Figure 5.1 shows a schematic of the experimental shell system investigated

and Figure 5.2 shows a photograph of the arrangement. The cylindrical shell studied
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Figure 5.1: Schematic of the experimental setup.
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Figure 5.2: Photograph of the experimental arrangement.



was made of plexiglass. It had a length of 1.83 m, an outside diameter of 15.2 cm and
a wall thickness of 3.17mm. The use of a plexiglass shell to conduct the experiments

was justified by various aspects of the investigation, as listed below

¢ It was desired to study the active control of the axisymmetric wave propagation
in a range of non-dimensional frequencies varying from 0 to 3 (2 = 27 fa/cr).
As the 3I30 controller used for experiments (based on the Texas Instruments
TMS 320C30 microprocessor) was limited to frequencies of the disturbance
below 10 kHz, it was preferable to use a material with a small extensional
phase speed, such as plexiglass. The actual frequency range corresponding
to € [0,3] for the present plexiglass shell was 0-9183 Hz. The frequency
corresponding to ) = 3, for a shell with the same geometry but made of steel

for example, would have been around 33000 Hz.

¢ A major concern for the shell system was to minimize the wave reflections at
one end of the pipe, i.e. to build an anechoic termination. If reflections do
not occur at either end of the pipe, the shell system appear infinite to the
waves propagating toward that end. It is then possible to relate the experi-
mental results to the theory developed for infinite shell systems in the previous
chapters. Building an anechoic termination for the second set of control ex-
periments conducted was impossible because the pipe length was too small
compared to the wavelength of the propagating waves in the frequency range
of concern (2 < 0.3). For this set of experiments, wave reflections at the
ends of the pipe will thus be accounted for in the interpretation of the results.
However, building an anechoic termination for the first set of experiments,

associated with the axisymmetric wave propagation, appeared more feasible.
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As the next section will reveal, plexiglass is a highly damped material. Based
on the measured value of hysteretic damping in the present plexiglass shell,
the attenuation of the axisymmetric wave amplitudes, as propagation occurs,
has been determined in Chapter 2. According to the values of the imaginary
part of the waves indicated in Figure 2.13, the attenuation of the in vacuo ex-
tensional and flexural waves is larger than 6 dB per meter for non-dimensional
frequencies between 0.5 and 3. Above the ring frequency, this attenuation is
about 23 dB per meter for the flexural wave and 12 dB per meter for the
extensional wave. According to the results in Figure 2.14, when the shell is
filled with water, the attenuation of the axisymmetric fluid-type wave, (s=1)
is larger than 15 dB per meter above = 0.5 and that of the extensional
shell wave is larger than 6 dB per meter in the same frequency range. Thus,
considering a vibration source located near one end of the plexiglass pipe, the
reflected axisymmetric waves at the other end of the pipe will be highly at-
tenuated by natural propagation alone for excitation frequencies above 1500

Hz (2 ~ 0.5).

Finally, plexiglass is a transparent material. It is thus possible to check for
the presence of unwanted bubbles in the fluid and at the interface between
the two media. Gas bubbles modify the boundary condition at the shell-fluid
interface.They also affect the properties of the fluid medium: the speed of
sound is altered and the sound waves are damped [53]. In opaque pipes, the
presence of bubbles or rust can not be noticed. This matter has been used by

some authors to explain discrepancies in their experimental results {54, 55].
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The plexiglass pipe was closed at both ends and could be filled with liquid.
In order to increase the amount of damping in the system near the end of the
pipe away from the disturbance, thin stripes of light viscoelastic damping material
were wrapped around the shell. In addition, an absorptive layer (Saper D acoustic
tile [52]) was bonded on the inner side of the brass end cap used to seal the pipe.
According to the manufacturer BFGoodrich, the layer can provide up to 10 dB
attenuation of the reflected acoustic pressure field in the fluid at frequencies above
2000 Hz. No particular treatment was applied to the other end of the pipe, implying
that wave reflections at this end did occur. The shell was supported by an air tube
whose resonance frequency and stiffness were so low that it did not significantly
affect the pipe dynamics. The tube also minimized the transmission of noise from

the bench to the test structure.

In order to measure the pressure field in the fluid, before and after control, the
pipe was equipped with an internal traverse carrying a miniature Bruel and Kjaer
hydrophone (model 8103). The hydrophone was 4 cm long and had a diameter of
9.5 mm. A close-up of the hydrophone on the traverse head is shown in Figure 5.3.
The traversing system was designed to provide three dimensional movement of the
hydrophone inside the shell. The basis of the traverse was a rigid stainless steel tube
positioned on the axis of the pipe. This tube was supported by the brass end cap
of the anechoic termination. It could move axially and circumferentially relative to
the cap. The traverse head is shown in Figure 5.4 for two different radial positions
of the hydrophone . Radial traversing, from r=0 to r=0.9a, was obtained by pulling
nylon strings attached to a small sliding piece carrying the hydrophone. The signal
cable of the hydrophone and the nylon positioning strings were routed through the

steel tube.
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Figure 5.3: Photograph of the hydrophone inside the plexiglass shell.
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5.1.2 Properties of the shell material

Preliminary experiments were carried out in order to determine the ring
frequency, the extensional phase speed, ¢z, and the hysteretic damping, 7, of the
plexiglass cylindrical shell. The shell hysteretic damping was used in the previous
chapters to present analytical results for in vacuo and water-filled plexiglass shells.
The ring frequency and the extensional phase speed had to be determined in order
to find the relation between the non-dimensional frequencies used in the previous
chapters and the actual frequencies they correspond to for the actual shell system. It
is recalled that the frequency, in Hz, corresponding to a non-dimensional frequency

1, is given by
f=FfxQ, (5.1)

where f, is the ring frequency, corresponding to 2 = 1, which is defined as

fr=oe (5.2)

The non-dimensional cut-on frequencies of the high order circumferential
modes (n > 1) for the shell in vacuo have been determined in Chapter 2. By mea-
suring the actual frequencies they correspond to, the ring frequency can be obtained,
using Equation (5.1). To this purpose, the following experiment was performed. The
shell, without end caps, was hung in the air with soft bungee cords. This arrange-
ment corresponds to free-free boundary conditions of the shell. The shell was driven
by an electromechanical shaker which was attached to the structure 30 cm from one
end using a stinger and a bolt glued to the shell. At the same angular position,

60 cm from the other end of the shell, the radial response of the shell was mea-
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sured by a Bruel & Kjaer mini accelerometer, weighting 0.65 gram. A band limited
whitenoise signal (0-800 Hz) issued from the signal generator of a Bruel & Kjaer
spectrum analyzer (model 2032) was amplified and fed to the shaker. The transfer
function between the input signal and the amplified output of the accelerometer was
processed by the B&K spectrum analyzer. The magnitude of the transfer function
is shown in Figure 5.5. It is characterized by various peaks corresponding to the
resonances of the two-dimensional cylinder modes (n,m). To isolate the resonant
peaks due to circumferential modes cutting on, i.e. the modes (2,1), (3,1), (4,1),...,
the above measurement was repeated for different boundary conditions of the shell.
Indeed, it has been shown in Chapter 2 that the cut-on frequency of a circumfer-
ential mode is only a function of the shell geometry. The resonances of the shell
associated with these cut-on frequencies are thus independent of the shell boundary
conditions. For the second measurement, the shell was arranged as indicated in
Figure 5.1. The resonant frequencies which were unchanged from one measurement
to the other were the cut-on frequencies of circumferential modes n > 1. These fre-
quencies, for the circumferential modes n=2, n=3 and n=4, are indicated in Figure
5.5. By comparing these three frequencies to the non-dimensional cut-on frequencies
calculated in Chapter 2 (see Table 2.4), one obtains three values of ring frequency.
The average of the results gives f, = 3061 Hz. The corresponding extensional phase

speed in the plexiglass shell wall is ¢ = 1435 m/s.

A common method to determine the hysteretic damping in the shell mate-
rial is the “half-power bandwidth” [43]. For a single degree of freedom system, the
method consists in measuring the frequency bandwidth between points on the re-
sponse curve for which the response is 1/4/2 times the response at the resonance.

It can be shown that a good evaluation of the damping is given by the ratio of
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Figure 5.5: Frequency response of the in vacuo plexiglass shell with free ends to a
radial point force (shaker).
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the frequency bandwidth divided by the resonant frequency. For free-free boundary
conditions, the plexiglass shell was driven by a ring force in order to minimize the
number of cylinder modes in the response. The implementation of the axisymmet-
ric excitation, using a PVDF cable, will be addressed in Section 5.2.1. The ring
force was applied 30 cm from one end of the shell and the response of the shell
was measured 60 cm from the other end by a B&K mini accelerometer. Figure 5.6
shows the magnitude of the transfer function between the input signal (band limited
whitenoise 0-6400 Hz) and the amplified output of the accelerometer, for frequen-
cies between 3000 and 6000 Hz. The value of hysteretic damping in the shell was

obtained from the response near the resonance at 4400 Hz:

Af 160
n= f,.,, = m = 0.036 . (53)

This value of hysteretic damping in the plexiglass shell was assumed to be constant

below 9183 Hz (Q = 3).

5.1.3 Cut-on frequencies of the shell system

Using the average value of ring frequency determined in the previous section,
one can now compare in Table 5.1 the values of cut-on frequencies calculated from
Table 2.4 to those obtained experimentally for the shell in vacuo. The discrepancies

are seen to be small, the largest error being equal to 3.9% (mode n=3).

The cut-on frequencies of the circumferential modes n=2, n=3 and n=4 for
the shell filled with water were also determined. The shell was arranged as indicated
in Figure 5.1 and was filled with water. It was driven by an electromechanical

shaker 30 cm from the end of the pipe supported by the air tube and the radial
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Table 5.1: Comparison of theoretical and experimental cut-on frequencies of the
circumferential modes n=2,3 and 4, in vacuo shell

Mode order Calculated Measured
cut-on frequency | cut-on frequency
(Hz) (Hz)
2 101 101.5
3 285.2 274
4 546.7 564
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response of the shell at the same angular position, 60 cm from the other end of
the shell, was measured by a Bruel & Kjaer mini accelerometer. A band limited
whitenoise signal (0-400 Hz) was amplified and fed to the shaker. Figure 5.7 shows
the magnitude of the transfer function between the whitenoise signal and the output
of the accelerometer in the frequency range 0-300 Hz. Again, the resonances due
to circumferential modes cutting on were determined by changing the boundary
conditions. The air tube in Figure 5.1 was removed and the measurement was
repeated. The cut-on frequencies of the circumferential modes n=2, n=3 and n=4
for the shell filled with water are shown in Table 5.2 and compared to the theoretical
values determined in Chapter 2. Measured and calculated values are once again very

consistent.

These results suggest that the cut-on frequencies of a cylindrical shell,
whether it is in vacuo or filled with liquid, are accurately determined by using

the characteristic equation (2.16), derived in Chapter 2.

5.1.4 Axisymmetric broadband pressure field in the fluid

The pressure field in an infinite cylindrical shell filled with fluid, due to an
axisymmetric radial line force, has been analytically derived in Chapter 3. Results

for the plexiglass shell in the frequency range §) € [0; 3] are shown in Figure 3.5.

The experimental data corresponding to this computation is shown in Fig-
ure 5.8. The implementation of the axisymmetric excitation, using a PVDF cable,
will be addressed in the next section. To obtain the experimental data, a band

limited whitenoise signal (0-12800 Hz) was amplified and fed to the PVDF cable.
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Figure 5.7: Frequency response of the plexiglass shell filled with water to a radial
point force (shaker).
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Table 5.2: Comparison of theoretical and experimental cut-on frequencies of the
circumferential modes n=2.3 and 4, water-filled shell

Mode order Calculated Measured
cut-on frequency | cut-on frequency
(Hz) (Hz)
2 33.7 28
3 110.2 114
4 226.5 213
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The hydrophone was located ten radii from the ring force. The transfer function
between the input signal and the amplified output of the hydrophone was processed
for 72 positions of the hydrophone in the pipe cross section (one measurement ev-
ery 30° around the shell for 6 radial positions between r=0 and r=0.9a). For each
radial position, Figure 5.8 shows the average of the pressure measured around the
shell interior, associated with the breathing mode n=0. The measured response at
high frequency is very consistent with the numerical computation. At low frequency
(< 3200 Hz), the trend is verified but substantial discrepancies are observed. The
coherence of the measurements in this frequency range was very low. This could be
due by the very low level of the pressure in this frequency range. More importantly,
the excitation by the PVDF cable in this frequency range was non-linear (this will
be discussed in more detail in the next section). The pressure in the fluid at one
frequency thus resulted from various frequencies of excitation. This is the main
explanation for the low coherence of the measurements. The numerical computa-
tion has also revealed that the pressure was dominant near the shell wall at low
frequencies. However, this behaviour could not be assessed as the measurements of

the pressure field in the fluid were restricted to radial position r < 0.9a.

5.2 Control actuators and sensors

The experimental study on axisymmetric shell motion investigates the use
of KYNAR piezoelectric polymer wires [56] as actuators and sensors. The imple-

mentation of the PVDF wires is discussed in this section.

The actuators used in the second set of control experiments were two elec-
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tromechanical shakers and a PVDF wire. Shakers applied to the shell as radial
point forces largely excite the flexural waves of circumferential order n > 0 but are
rather ineffective at driving the axisymmetric shell motion. On the other hand, a
PVDF cable wrapped around the wall can only excite the shell breathing mode.
The combination of these two types of actuators was thus necessary to control the
propagation of the circumferential modes in the system. Regarding sensors, the
axisymmetric shell displacement was observed by a PVDF cable. The radial dis-
placement of the shell associated with the circumferential modes n=1 and n=2 was
observed by modal error sensors made of PVDF film. Design and implementation

of these modal sensors are reviewed in this section.

5.2.1 PVDF wires

The KYNAR PVDF cable is illustrated in Figure 5.9. It has the appearance
of a standard coaxial cable but is constructed with a piezoelectric polymer insu-
lation layer between the copper braided inner conductor and the outer shield. It
is protected by a rugged polyurethane jacket. Typical properties of the cable are
indicated in Table 5.3.

The PVDF cable can be used as a sensor. Its electrical response, in terms of
charge collected at the electrodes, is proportional to the strain induced within the
volume of piezoelectric polymer. As strain can be applied radially and longitudinally,

the cable is sensitive to stretch but can also monitor radial impacts [56].

The PVDF cable was demonstrated to be a good transducer for axisymmetric

wave motion in cylindrical shells by Pinnington and Briscoe [58]. The sensor imple-
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Figure 5.9: Schematic of the KYNAR PVDF wire.
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Table 5.3: Typical properties of KYNAR Piezo Cable.

Properties Value Units
Tensile Strength 240 M Pa
Young’s Modulus 2.3 GPa
Density 1890 Kg/m?®
Hydrostatic Piezo Coefficient 15 pC/N
Longitudinal Piezo Coefficient | 250 x 10~° Vm/N
Energy Output 10 mJ/Strain(%)
Voltage Output 5 kV/Strain(%)




mentation described by Pinnington et al. consists in firmly attaching the cable to
the pipe surface so that the longitudinal strain in the cable equals the surface strain
of the shell. A single layer of double sided self-adhesive tape is wrapped around
the pipe. The PVDF cable is then wrapped an exact number of turns around the
circumference of pipe on top of the tape. Finally, an electric tape is firmly wrapped

around the cable to totally eliminate any flapping of the wire.

Assuming perfect bonding between the cable and the shell, the net extension
Al of the wire, arising from the radial displacement of the shell wall w at the sensor

position z,, is given by
27
Al = N, (/ (a +w)dd — 27ra), (5.4)
0

where N; is the number of cable loops.

Using Equation (4.23) to describe the radial shell motion yields

2r N Sn .
Al = N, (/ (a + E cos(nﬂ)z Wme'k""")dﬂ - 27ra) (5.5)
0 n=0 8=0
= 0 ifn#0 (5.6)
So _
= 27N, Y Wo,e™ ™ ifn=0. (5.7)
8=0

This results proves that, ideally, i.e. if the cable is perfectly bonded to the shell
wall, the transducer is only sensitive to the axisymmetric waves which involve a net

extension of the pipe circumference.

A schematic of the electrical circuit modeling the PVDF sensor is depicted in
Figure 5.10. The sensor can be seen as a charge generator, ¢,, with a capacitor, C,,

and a resitor, R,, in parallel. The resistivity of the sensor is very high (~ 1.5 x 102
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ohm-m) and can be ignored. It appears from the electrical circuit that the output
voltage of the sensor is not only determined by the charge source but also by the
capacitance and, above all, by the input impedance of the device the sensor is
connected to. For the sensor to provide strain measurement, care must thus be
taken in choosing the voltage amplifier used to increase the electrical response of the
sensor. Due to the high output impedance of the sensor, an operational amplifier
with a high input impedance (> 10® ohms) is required to eliminate impedance

mismatch and loading of the circuit [57].

Like any other piezoelectric material, the PVDF wire can be used as an in-
duced strain actuator. If a voltage is applied to the cable, a charge will be created
at the electrodes and the cable will stretch. The PVDF cable is carefully wrapped
an even number of turns around the pipe, as described previously. If it was perfectly
bonded to the shell, the cable would only generate axisymmetric waves, as demon-
strated above. However, the attachment of the cable to the shell is not perfect. The
compliance of the cable is high and the plexiglass shell thus appears very stiff to the
actuator. Therefore, during a period of vibration, part of the cable may not always
be in contact with the shell. For example, the cable may be able to constrict the
shell circumference but may not be able to outstretch it. This behaviour results
in non-linearities of the system response. These non-linearities may be observed
on the frequency response which exhibits contents at other frequencies than the
excitation frequency. If the cable is not uniformly bonded to the shell around the
circumference, higher order circumferential modes (n=1,2,...) may also be excited

by the PVDF cable.

For the cases studied, good excitation of the axisymmetric shell motion was
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Figure 5.10: Schematic diagram of PVDF electrical circuit.
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obtained with 4 loops of cable at frequencies above 1500 Hz (Q ~ 0.5). Below
1500 Hz, the input mobility of the shell (n=0) is very low (see Chapter 3) and the
excitation of the pipe by the PVDF cable was highly non-linear. The best results
appeared above the ring frequency (near 3060 Hz) as the shell motion was largely
flexural in nature. The input mobility of the shell (n=0) in this frequency range is

high, i.e. small inputs induce large radial motion of the shell wall.

5.2.2 Shaped PVDF film sensors

The modal error sensors used in the second set of experiments were made
of Kynar PVDF film [61]. The thickness of the film was 28um. The electrical
response of the PVDF film is proportional to the integral of the strain induced
within the volume of the sensor. The three directions in which strain can be applied
are indicated in Figure 5.11. Associated with the 6, z and r-direction of the material
are the piezo strain constants dz;, di; and das respectively. Values for each of
these constants as well as properties of polyvinylidene fluoride appear in Table 5.4.
The film is bonded to the shell material such that the circumferential direction
corresponds to the piezo strain constant d3;. As ds; is much larger than the other
piezo constants, the charge generated by the film is mainly due to the strain in
the @-direction. If the shell vibrations are highly dominated by flexural modes, the
response of the film in units of charge can be expressed as

¢=Yduo / F(z,0 a‘z‘ggz) dbdz, (5.8)

where F'(z,0) represents the effective surface of the sensor electrodes.

The radial displacement of the shell at the sensor location z, may be written
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Figure 5.11: Schematic of PVDF coordinate system.
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Table 5.4: Typical properties of KYNAR Piezo Film.

Properties Symbol Value Units

ds 23 x 10** | (C/m?*)/(N/m?)
Piezo Strain Constants d3z 3 x 10% [ (C/m*)/(N/m*)

das —33 x 10%* | (C/m?)/(N/m*)
Young’s Modulus Y 2 x 10° N/m*
Permitivity € 106 x 10~12 F/m
Capacitance C, |379x1071 F/em?
Density p 1780 kg/m°
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in its more general form as
N Sn _
w=Y"5" W, cos(n(6 — 8,))e*n=. (5.9)
n=0 s=0
For a given circumferential mode shape n, 8, in Equation (5.9) defines the angular
position of the closest antinode to the § = 0 axis. In the following discussion as
well as in Chapter 6, 8, is referred to as the polarization angle of the circumferential

mode n.

Using Equation (5.9) and assuming that the width, b, of the sensor is much
smaller than the length of the propagating waves in the system, Equation (5.8)
becomes

¢= -Ydalg—:‘ i i W, eibmss /O *" G(6) cos(n(6 — 6,))d8, (5.10)
n=02=0
where G(0) represents the variation of the electrode profile in the circumferential

direction.

First, it is assumed that the polarization angle, 6,,, of a given circumferential

mode m is known. G(8) is then chosen to be
G(0) = cos(m(6 — 6,,)). (5.11)

Applying the orthogonality principle (4.24), Equation (5.10) becomes

bhr Sm ;
q= _Yd313£.' Z Wmae'km‘x'- (5.12)

=0
For the chosen variation G(6) of the electrode profile, the above equation shows that
the charge collected is proportional to the modal radial displacement of the shell

associated with the circumferential mode of order m. The resulting sensor (mode
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m) can thus be made of 2m pieces of PVDF film etched as half sine waves which
are attached around the shell and wired with alternating polarities. The sensor is
illustrated in Figure 5.12 for m=2. Care must be taken to amplify the sensor output

using an amplifier with a high input impedance, as explained in the previous section.

Practically, the exact angular position of the various circumferential modes
propagating in the system is often unknown. Consequently, if the sensor is shaped
as a cosine function (G(8) = cosm#f) and the circumferential mode m is polarized at
0, = 90°, i.e. distributed as a sine function with respect to § = 0, the output of the
sensor, given by Equation (5.10), will be zero. One way to avoid the problem is to use
two closely spaced modal sensors, one shaped as a cosine function (G(6) = cos m#)
and the other shaped as a sine function (G(8) = sinm#@). Using Equation (5.10),

the outputs of the two sensors may be written as
q1 = gcos mb,,, g2 = gsinméb,,, (5.13)

where the expression for the charge ¢ is given by Equation (5.12). Both of the sensor
outputs are proportional to the modal radial displacement of the shell associated
with the circumferential mode m. For any value of 6,,, at least one of the sensor
output will not be zero. Therefore, minimizing the output of both sensors ensures
a minimization of the shell modal displacement (mode m) at the sensor location.
Note that two control channels are required in order to implement this strategy.

In cases where the application of the control forces has little influence on the
polarization of the circumferential modes, minimization of the shell modal displace-
ments can be achieved by using a single control channel per propagating mode. The

amplified outputs of the two sensors are added together using a multiplexer with
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Figure 5.12: Schematic of unwrapped modal sensor (n=2).
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variable input gains. The output voltage of the multiplexer may be written as
V = ¢qC (Acosmb,, + Bsinmby,), (5.14)

where C is a constant gain, A and B are the input gains of the multiplexer. For
any value of 6,,, there always exists a pair of gains A and B such that the voltage
V is not zero. The output of the multiplexer is proportional to the modal radial
displacement of the shell associated with the circumferential mode m and may thus

be used as the error signal.

The pairs of modal sensors (n=1,2) used in the experiments are shown in the

photograph of Figure 5.13.

5.2.3 The controller

The minimization of the error signals in the control experiments was achieved
by using a feedforward adaptive controller with three inputs, i.e. the error sig-
nals, and three outputs driving the control actuators. A schematic diagram of the
controller is shown in Figure 5.14. The control system uses the adaptive MIMO
Filtered-x LMS algorithm to adapt the coefficients of FIR control filters based upon
a reference signal and the error signals. This technique is now well known in the field
of adaptive control and the reader is referred to books by Widrow and Stearns [59]
or Nelson and Elliot [60] for detailed information. The control algorithm was im-
plemented on a TMS 320C30 signal processing chip programmable in assembly lan-
guage. The digital signal processing board (DSP) was manufactured by Spectrum.
It was resident in an IBM-compatible host computer which was used to execute the

controller. The control program was written by Jeff Vipperman, a former gradu-
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Figure 5.13: Close-up photograph of the error sensors.
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ate student in the Vibration and Acoustics Laboratories, Mechanical Engineering

Department at Virginia Polytechnic Institute and State University.

In implementing the control, several filters and amplifiers were required to
condition the input and output signals. The sampling frequency of the DSP board
was typically chosen a factor of 5 greater than the frequency to be controlled. To
prevent aliasing problems, the error signals were conditioned by programmable low
pass filters manufactured by Frequency Devices. The cut-off frequency of the filters
was usually chosen 100 Hz larger than the excitation frequency. In order to optimize
the dynamic range of the DSP, the error signals were also amplified to reach the
input level of +1.0 volt. For this purpose, Ithaco amplifiers with variable gain
adjustment were used. In addition to conditioning the inputs, the control outputs
were also filtered and amplified. Since the analog outputs of the controller are based
upon a digital to analog conversion, the electrical signal had to be filtered in order
to eliminate the high frequency chirp created by the zero order hold of the digital-to-
analog converter. Again, this task was accomplished by using low pass filters from
Frequency Devices. The output signals were limited to £2.0 volts. To drive PVDF
cables, the output signals were passed through a high power amplifier built in the
Vibration and Acoustics Laboratories. To drive electromechanical shakers, a NEC
power amplifier was used. The harmonic input used to provide the reference signal
to the controller as well as drive the disturbance was issued from a signal generator

resident in a B&K spectrum analyzer (model 2032).
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Chapter 6

Experimental Results

The experimental apparatus has been extensively described and character-
ized in Chapter 5. In this chapter, the results of two sets of control experiments are
presented and analyzed. Each set is associated with a particular disturbance type.
The first set of experiments deals with the control of the axisymmetric wave propa-
gation in a semi-infinite plexiglass shell containing either air or water. The exterior
medium in both cases is air. The use of PVDF cables to implement axisymmetric
actuators and sensors is investigated. The second set of experiments concerns the
control of the shell vibrations induced by a radial point force disturbance applied to
the shell wall at low frequencies. It will be shown that controlling the propagation
of waves of circumferential order n=1 and n=2 is possible, using two point force ac-
tuators (shakers) and spatially distributed error sensors made of PVDF film. Again,
both air-filled and water-filled shells will be considered.
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6.1 Active control of an axisymmetric radial line
force disturbance

The results of an experimental investigation to minimize the axisymmetric
wave propagation in a semi-infinite plexiglass shell in air or filled with water are
presented in this section. The shell was primarily driven by a PVDF cable at
frequencies varying from 1500 Hz to 9000 Hz. In this frequency range, the excitation

by the PVDF cable may be reasonably modelled by an axisymmetricradial line force.

6.1.1 Experimental arrangement

It has been shown in Chapter 2 that a maximum of three axisymmetric waves
can propagate in the plexiglass shell (in air or filled with water) in the frequency
range () € [0; 3], i.e. for f between 0 and 9183 Hz. Consequently, total control of the
power flow in this frequency range is theoretically achievable using 3 axisymmetric

actuators and 3 sensors (see Chapter 3).

Figure 6.1 shows a schematic of the control arrangement and a photograph
of the actual setup is shown in Figure 6.2. The disturbance is a PVDF cable covered
with black electric tape on the right end side of the pipe. The three actuators and
the three sensors are also PVDF cables, covered with white and black electric tape
respectively. The implementation of the PVDF cable as an axisymmetric actuator
or a modal sensor (n=0) has been described in Chapter 5. The distance between

the actuators/sensors and the disturbance is indicated in Table 6.1.
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Figure 6.1: Schematic of the control arrangement.
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Figure 6.2: Photograph of the control arrangement.
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Table 6.1: Spacing between control actuators/sensors and the axisymmetric distur-

bance (PVDF cable)

Distance from the disturbance
(mm)
Actuator 1 190
Actuator 2 331
Actuator 3 385
Sensor 1 609
Sensor 2 683
Sensor 3 736
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6.1.2 Control layout

All the experiments were performed at single frequencies and, thus, the
signal fed to the disturbance source was a pure tone sinusoid. The excitation fre-
quency varied from 1500 Hz to 9000 Hz. At each frequency, the minimization of
the error signals was achieved by using a feedforward adaptive controller with three
inputs, i.e. the error signals, and three outputs driving the control actuators. The
reader is referred to Chapter 5 for information on the controller and the control

implementation.

The performance of the control approach was evaluated from the residual ax-
isymmetric radial displacement of the shell measured by two PVDF cables termed
the monitor sensors in Figure 6.1, one radius and two radii beyond the last error
sensor. The monitor sensors are covered with the green electric tape in Figure 6.2.

It has been shown in Chapter 2 that only two axisymmetric waves can prop-
agate in the air-filled shell (the torsional shear wave is omitted as it is uncoupled
from the radial shell motion). When the shell is filled with water, there exists only
two propagating axisymmetric waves at frequencies below 7350 Hz (2 < 2.4). Ide-
ally, if only two waves (s=1 and s=2) propagate in the system, two measurements
of the radial shell displacement are sufficient to determine the amplitude of each
propagating wave. Let w, and w, be the shell radial displacement measured at z,
and z,+ a for example; then, providing that the wavenumbers k, and k; are exactly

known, the solution for the wave amplitudes W, and W, at z, is given by:

[%} = [ ea{,a e;:{,a l—l [ Z),: l (6.1)
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Note from Equation (6.1) that there exists a solution for W; and W, only if
h—b¢imm+n£ m=0,1,2,.. (6.2)

The wave amplitudes directly yield information on the total power flow through the
use of Equations (3.24), (3.37) and (3.40).

In the present case, however, none of the required elements for the above
wave decomposition is precisely available. First, the attachment procedure of the
PVDF cables is such that the sensors are very likely to have different sensitivities.
In addition, the width of the PVDF sensors (about 8mm) yields an uncertainty
on their actual position. Finally, small errors on the wavenumbers, due to the ap-
proximate evaluation of the shell material properties, yield large errors in the wave

decomposition at the frequencies of concern.

At frequencies below 7350 Hz, whether the shell is empty or filled with water,
the shell response to an axisymmetric radial line force is largely due to the wave
denoted as s=1 in previous chapters. Assuming that only one wave is propagating,
the attenuation of the shell power flow may be roughly given by the attenuation
of the shell radial displacement at either of the monitor sensor locations. However,
as the two propagating waves (s=1 and s=2) may have similar amplitudes after
control, a sensor located near a destructive interference of the two waves will give
an overestimated value of the insertion loss. It can be shown that the spacing

between two destructive interferences of these waves is given by

A$4 27r

e (6.3)

By measuring the attenuation of the radial displacement at two closely spaced loca-
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tions, i.e. using two monitor sensors, overestimated values of the insertion loss may
be avoided. Let Ij, and Ij, be the attenuations (in dB) of the shell axisymmetric

radial displacement, wq, at the monitor sensor locations, i.e. at z, and z, + a,

p wo(zp)“f‘" control . wO(xp + a)after control
IW =20 logw (wo(zp)bejore control | ? IW =20 logm wo(zp + a)beforc control (64)

The insertion loss is then defined as the minimum attenuation of the shell axisym-
metric radial displacement at either of the two monitor sensor locations. It is thus

given by

IL = max (I}, Ijy ). (6.5)

When the pipe is filled with water, the internal pressure field provides an
indication on the amount of power conveyed by the fluid medium. If the pressure
in the fluid is largely due to a single propagating wave, the axial component of
the time-averaged acoustic intensity in the fluid, given by Equation (3.21), may be

rewritten as

kos .
Ii(r,0) = 2p‘;w ", (6.6)

where kg, is the axial wavenumber of the axisymmetric propagating wave. Therefore,

the power flow in the fluid is proportional to the integral of the pressure square over

the fluid cross section.

6.1.3 Results and discussion

First, the shell was empty, i.e. filled with air. When control was applied,

the attenuations of the three error signals varied from 30 to 60 dB, depending on
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Figure 6.3: Insertion loss due to active control of the axisymmetric wave propagation

in the air-filled shell.
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the frequency of excitation. The axisymmetric radial displacement of the shell at
the two monitor sensor locations was measured before and after control. Figure 6.3
shows the resulting insertion loss, as defined by Equation (6.5), at each frequency.

At low frequencies for this configuration, between 1500 Hz and 2700 Hz, only
the extensional shell wave is propagating. In this frequency range, good attenuations
of the shell radial displacement, varying from 18 to 28 dB, were obtained, as shown
in Figure 6.3. As previously demonstrated by Pinnington et al. [58], the PVDF
cable can monitor the axial strain in an empty pipe as the axial strain is simply
related to the circumferential strain by the Poisson’s ratio. In this frequency range
(1500-2700 Hz), the attenuation of the structural power flow equals the attenuation
of the shell radial displacement.

Between 2700 Hz and 2900 Hz, as the propagating wave changes from ex-
tensional to flexural in nature, the performance of the control approach decreased
severely until no attenuation of the radial shell displacement was achieved near the
ring frequency, at 3000 Hz. Then, as the wave s=2 cut on near 3300 Hz, a large
increase (+7 dB) of the shell radial motion was seen to occur. These poor perfor-
mances of the control arrangement are associated with the extreme behaviour of the
shell system near coincidence and cut-on frequencies. As the system was resonating,
the shell mobility in the frequency range f € [2800;3400] was extremely large. The
wave s=2, near cut on, had an extremely long wavelength, approaching infinity (at
cut-on) according to the shell theory. The sensors may thus have created disconti-
nuities on the shell and caused the propagating waves to be partially reflected. It is
also believed that the sensors were sensitive to higher order circumferential modes
in this frequency range. Between 3400 Hz and 4600 Hz, the system response was

largely governed by the flexural wave and the insertion loss due to active control
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varied from 10 to 15 dB. For frequencies of excitation above 4600 Hz, no attenuation
of the power flow could be achieved; the wavelength of the flexural wave was too
small relative to the width of the PVDF sensors and yielded erroneous error signals.

The sensors might also have been sensitive to higher order circumferential modes.

When the shell was filled with water, the attenuations of the error signals
achieved by the 3130 controller varied from 30 to 70 dB, depending on the frequency
of excitation. Figure 6.4 shows the resulting insertion loss at each frequency.

In a large frequency range, spreading from 1500 Hz to 7600 Hz, the ax-
isymmetric radial displacement of the shell beyond the error sensors was reduced;
the attenuations varied from 7 to 22 dB. As explained in Chapter 3, the inter-
nal pressure field due to axisymmetric motion in the frequency range 1500-7400 Hz
(Q € [0.5;2.4]) is characterized by a near field closely hugging the shell wall. Because
the hydrophone could not be moved very close to the shell wall, the attenuation of
the pressure field in this frequency range could not be determined. As the particle
velocity in the fluid equals the radial velocity of the shell at the interface between
the two medium, it is believed that the pressure near field experienced attenuations
comparable to that of the shell radial displacement. Above 7400 Hz, as the fluid
behaviour approached the pressure release duct solution, the meaningful pressures
in the fluid before and after control could be measured and compared. The transfer
function between the reference signal and the amplified output of the hydrophone
was processed for 72 positions of the hydrophone in the pipe cross section (one mea-
surement every 30° around the shell for 6 radial positions between r=0 and r=0.9a).
Figure 6.5 shows the real part of the pressure field at 7600 Hz at the axial position
of the third error sensor, before and after control. A non-zero pressure field at this

particular position denotes an energy flow crossing the discontinuity created by the
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Figure 6.4: Insertion loss due to active control of the axisymmetric wave propagation
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active control arrangement on the pipe. Figure 6.5 reveals bowl shaped distribu-
tions of the pressure in the fluid (with a maximum pressure on the axis of the pipe)
before and after control, due to the wave (s=3) approaching the pressure release
duct solution. The attenuation of the pressure field is indicated in Figure 6.6. An
average 15 dB reduction of the pressure field is obtained, similar to that of the shell
radial displacement beyond the error sensors. As the fluid field at this frequency was
largely governed by one wave, i.e. the pressure release duct mode (s=3) approaching
cut-on, the attenuation of the pressure field denotes a large attenuation of the power
flow in the fluid. Thus, at 7600 Hz, the total power flow in the system was actually
reduced by about 15 dB.

For a frequency of excitation of 7700 Hz (2 = 2.5), at which the pressure
release duct mode precisely cuts on, no attenuation of the shell radial motion be-
yond the sensors could be achieved. This behaviour was due to the shell and fluid
motions being quasi uncoupled at this particular frequency; even though the radial
displacement of the shell was highly attenuated at the third error sensor location,
Figure 6.8 shows that the pressure field at this position was barely affected by the
control approach. The energy flow in the shell was flanked into the fluid at the error
sensor locations and transferred back to the shell beyond the error sensors because

of wave interferences.

6.2 Active control of a radial point force distur-
bance

In this section, we summarize the results of the experiments carried out

to validate the theory developed in Chapter 4 for the active control of a point
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force disturbance at low frequencies. The control arrangement is described. The
performance of the approach for air and water-filled shells is presented and discussed

in physical terms.

6.2.1 Experimental arrangement

Figure 6.9 shows a schematic of the control arrangement and a photograph
of the actual setup is shown in Figure 6.10. The primary vibration source is an
electromechanical shaker hung vertically, on the right end side of the pipe. The
shaker was fastened to the shell using a stinger screwed on a bolt which was itself
glued to the shell. This arrangement of the disturbance can be reasonably modelled
by a point force excitation at low frequencies. The angular position of the shaker is
defined as @ = 0°. As mentioned in Chapter 5, two types of control actuators were
used simultaneously for this situation: two shakers at the same angular position as
the disturbance and a PVDF cable wrapped around the shell. The axisymmetric
shell displacement was observed by a PVDF cable. The radial displacement of the
shell associated with the circumferential modes n=1 and n=2 was observed by modal
error sensors constructed from PVDF film. The reader is referred to Chapter 5 for
details on the design and the implementation of the sensors. The distance between

the actuators/sensors and the disturbance is indicated in Table 6.2.

As mentioned in Chapter 5, in the frequency range of concern for these exper-
iments (< 700 Hz), the length of the propagating waves is such that the termination
was ineffective at absorbing vibrational energy. Thus, reflections at the end of the
pipe and the resulting axial mode shapes will have to be accounted for in the inter-

pretation of the results.
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Figure 6.10: Photograph of the experimental arrangement.
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Table 6.2: Spacing between control actuators/sensors and the point force distur-
bance (shaker)

Distance from the disturbance
(mm)

Actuator 1 255
Actuator 2 365
Actuator 3 400
Sensor 1 (part 1) 630
Sensor 1 (part 2) 660
Sensor 2 (part 1) 705
Sensor 2 (part 2) 735
Sensor 3 805
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6.2.2 Control layout

The experiments were again performed at single frequencies and, thus, the
signal fed to the disturbance source was a pure tone sinusoid. Similar excitation
frequencies to those considered in Chapter 4 were investigated, i.e. frequencies
below and just above the cut-on frequency of the circumferential mode n=3 which
is not observed. At each frequency, the minimization of the radial displacement of
the shell associated with the first three circumferential modes was achieved by using
a feedforward adaptive controller with three inputs, i.e. the error signals issued
from the modal sensors, and three outputs driving the control actuators. As all the
point forces in the system are applied at the same angular position, the control had
little influence on the angular position of the circumferential modes. As a result, the
minimization of the shell modal displacements associated with the circumferential
modes n=1 and n=2 could be achieved by using a single control channel per mode.

The procedure has been described in Chapter 5.

The radial amplitude of the circumferential modes n=0,1,2,3,4 and 5 one
radius beyond the error sensors was determined before and after control as follows.
The modal decomposition of the shell motion at the designated axial position was
achieved by measuring the radial acceleration of the shell at 11 different locations
around the circumference of the pipe with a small B&K accelerometer (0.65 gram).
For frequencies well below the cut-on frequency of the circumferential mode n=6,
the radial displacement of the shell at the axial position of concern can be modelled
as

w(0) = Ao+ Y Ancos(n(® — 6y) (6.7

n=1
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= Ao + D An (cos(nf)cos(nby) + sin(nd) sin(nb,)) (6.8)

n=1

Ao + i an, cos(nf) + b, sin(nd). (6.9)

n=1

For a given circumferential mode shape n, 6, in Equations (6.7) and (6.8) defines
the angular position of the closest antinode to the § = 0 axis. In the following
discussion, 8, is referred to as the polarization angle of the circumferential mode n.

The radial displacement at the 11 angular positions, 6, around the pipe is

expressed in a matrix form as

[ w(@) ] [1 cos(6') sin(') . . cos(56') sin(56) ][ Ao ]
w(6?) 1 cos(26?) sin(6?) . . cos(56%) sin(56%) a;
. . . . .o . . b
— . . . o« . . . (6.10)
. B . . . . B . as
L w(6) | |1 cos(#*) sin(6') . . cos(50') sin(56') | | bs |

The above system of equations yields the 11 unknowns Ao, a1, by, az, b2, a3, bs, a4,
by, as and bs describing the 6 circumferential mode shapes. The magnitude and the

angular position of each mode are then given by

An=+/a2 +B n=1,2,34,5, (6.11)

tan(nf,) = bpfa,, n=1,2,3,4,5. (6.12)

Note that, as a, and b,, are complex, nf,, does not always have a real solution. It can
be shown a complex nf, yields a time domain rotation of the circumferential mode
n; this mode is said to be spinning. More details on the origin and characteristics

of spinning modes are given in Appendix B.

In the frequency range of concern, each circumferential mode is mainly gov-
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erned by the propagation of a single wave type. If this wave is reflected at the end
of the pipe, the amplitude of the mode at a given axial position z, may be written

as
Ao = A 4 Aremiee (619

where k, is the wavenumber associated with the circumferential mode n and A
and A} are the amplitudes of the incident and reflected waves respectively. We now
assume that the amplitude of the mode n at z, and at another axial position z, is

zero,

t ptknz r ,—tknTp —
{ A, e 4 ATe T = () (6.14)

A;‘te"anq + A:’le—l‘knzq — 0

There exists an non-trivial solution (A, # A7 # 0) to the system of equations (6.14)

only if
i ) (6.15)
i.e. only if
sin kn(zp, —24) =0 (6.16)
or
ka(zp — ) = 2m+1)Z, m=0,1,2,.. (6.17)

2 b
As a result, if the distance z, — z, is smaller than \,/2, A! and A} must be zero.

Therefore, large attenuations of the modal amplitudes, A,, at the error sensor lo-

cations and one radius beyond the error sensors reveal a global attenuation of the

mode propagation.
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6.2.3 Results and discussion

For various excitation frequencies of the disturbance, the performance of the
active control approach investigated is discussed in this section. Both air-filled and

water-filled shells are considered.

The active control approach was first applied to the air-filled shell. At 150
Hz (2 ~ 0.05), the attenuation of the error signals achieved by using the 3130
feedforward controller were 23.3 dB for the mode n=0, 23 dB for the mode n=1
and 39.6 dB for the mode n=2. Figure 6.11 shows the modal decomposition, before
and after control, of the transfer function between the shell radial acceleration one
diameter beyond the error sensors and the input signal to the disturbance source.
Before control, the response of the shell was dominated by the ovalling mode (n=2).
This mode was attenuated by 19 dB after control at the axial position of the mon-
itor accelerometer. Due to the extreme length of the propagating waves at this
frequency, the attenuation of the mode at two different axial positions (including
the error sensor location) spaced 4 radii apart reveals a global attenuation of the
mode propagation. This result has been demonstrated in the previous section. The
mode n=1 was attenuated by 8 dB. The other circumferential modes had very small
amplitudes before and after control. The results at this frequency are very consis-
tent with those obtained in Chapter 4.

At 300 Hz (2 ~ 0.1), the first wave of circumferential order n=3 was propa-
gating. The measured cut-on frequency of the mode is 274 Hz (see Chapter 5). Had
the shell been infinite, it has been shown in Chapter 4 that the mode n=3 would
have dominated the response. However, Figure 6.11 shows that the response of the

shell at the monitor location was dominated by the circumferential mode n=2. This
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Figure 6.11: Modal decomposition of the radial acceleration of the shell one diameter
beyond the error sensors, in vacuo shell excited by a point force at 150 Hz.
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behaviour is associated with the wave reflections at the ends of the shell inducing a
standing wave pattern of the shell vibrations in the axial direction. After control,
the mode n=2 was attenuated by 31 dB beyond the error sensors. As the waves
of circumferential order n=2 and n=3 have nearly identical phase speeds at this
frequency, the mode n=3 was seen to experience a 19 dB reduction. This type of
behaviour has been discussed in Chapter 4. The modes n=0 and n=1 were both
attenuated by 12 dB.

For a frequency of excitation equal to 700 Hz (2 ~ 2.2), three modes (n=1,2
and 3) largely contributed to the shell response before control. After control, the
error signals were attenuated by 22 dB (n=0), 31 dB (n=1) and 39 dB (n=2). Be-
yond the sensors however, the radial acceleration of the shell wall associated with
the beam mode had increased by 6 dB. This surprising result is associated with a
standing wave pattern of the beam mode (n=1) in the axial direction that presented
a node of vibration in the proximity of the modal sensor (n=1). As the circumfer-
ential mode n=1 was not observed, the control point forces yielded an increase of
the beam like shell motion. Such behaviour is more likely to happen at higher

frequencies.

As expected from the analytical work of Chapter 4, the performance of the
control approach on the water-filled shell was quite different. At 80 Hz (2 = 0.026),
Figure 6.14 shows that the response at the monitor position before control was
mainly dictated by the circumferential modes n=1 and n=2, polarized at —58.8°
and 3.5° angles respectively. Note that the angular position of the circumferential
mode n=1 (—58.8°) at this frequency justifies the need of having modal error sensors
made of both sine and cosine shaped PVDF films, as explained in Chapter 5. The

dominance of the circumferential modes n=1 and n=2 before control is also apparent

184



M before control £ after control

Magnitude (dB)

0 1 2 3 4 5
Circumferential mode order, n

Figure 6.12: Modal decomposition of the radial acceleration of the shell one diameter
beyond the error sensors, in vacuo shell excited by a point force at 300 Hz.
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Figure 6.13: Modal decomposition of the radial acceleration of the shell one diameter
beyond the error sensors, in vacuo shell excited by a point force at 700 Hz.
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on the pressure field in the fluid measured with the internal probe one diameter
beyond the error sensors (Figure 6.15(a)). When control was applied, the error
signals generated by the modal sensors were attenuated by 40 dB (n=0), 36 dB
(n=1) and 28 dB (n=2). The attenuation of the circumferential mode n=2 beyond
the error sensors, at the monitor accelerometer position, was nearly identical to that
at the modal sensor location (26 dB). However, the insertion loss of the beam type
(n=1) radial motion was only 7 dB. Figure 6.15(b) shows the imaginary part of the
pressure field in the fluid after control. As a result of the relatively small attenuation
of the beam type motion, the pressure distribution looks like the first acoustic duct
mode of circumferential order n=1. The attenuation of the pressure field in the fluid
is shown in Figure 6.16; the levels are seen to vary from 5 to 40 dB, indicating a net

reduction of the power flow conveyed by the fluid.

At 150 Hz (2 ~ 0.05), the first wave of circumferential order n=3 is prop-
agating. The measured cut-on frequency of the mode is 114 Hz (see Chapter 5).
The mode (n=3) would predominate the shell response if the system was infinite
(see Chapter 4). Because of the axial standing wave pattern associated with the
wave reflections at the ends of the shell, it appeared that the magnitude of the
ovalling mode (n=2) was much larger than that of the mode n=3 at the monitor
accelerometer location (see Figure 6.17). When control was applied, the modes n=2
and n=3 were attenuated by 15 dB and 11 dB respectively beyond the sensors. As
Figures 6.18 and 6.19 reveal, reductions of the pressure in the fluid field are seen to

vary from 0 to 20 dB.

As the frequency of excitation is further increased, higher order circumferen-

tial modes cut on. As these circumferential modes (n=3,4,...) are not observed by
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Figure 6.14: Modal decomposition of the radial acceleration of the shell one diameter
beyond the error sensors, water-filled shell excited by a point force at 80 Hz.
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Figure 6.15: Measured pressure field in the fluid one diameter bevond the error
sensors, point force excitation at 80 Hz; (a) before control, (b) after control.
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Figure 6.17: Modal decomposition of the radial acceleration of the shell one diameter
beyond the error sensors, water-filled shell excited by a point force at 150 Hz.
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Figure 6.18: Measured pressure field in the fluid one diameter bevond the error
sensors, point force excitation at 150 Hz; (a) before control, (b) after control.
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modal error sensors, spillover is expected to happen. Because of the wave reflections
at the ends of the shell, spillover in the circumferential modes n=0, n=1 and n=2 is
also likely to occur if any of the three modal sensor is located near a circumferential
nodal line. At 250 Hz (Figure 6.20), control of the modes n=2 and n=3 was achieved
but spillover appeared in the mode n=1. At 350 Hz (Figure 6.20), spillover occurred
in every circumferential mode for n > 0. At this frequency, an increased number of
control channels is thus necessary to achieve a reduction of the total power flow in
the system. As demonstrated by Gibbs [35] in beams, two identical modal sensors
on the pipe would allow more control of both incident and reflected waves of a given
circumferential mode order. Higher order modal sensors are also needed because the

contribution of the higher order circumferential modes is significant.

The experimental results presented in this section support the conclusions
obtained from the analytical model in Chapter 4. At low frequencies, it is possible
to actively control the total power flow in cylindrical elastic shells filled with air
or liquid. The results successfully demonstrate that the radial motion of the shell
may be observed by modal error sensors made of shaped PVDF film attached to
the shell wall. It has been demonstrated that the use of two control channels per
circumferential mode (n > 0) may not be necessary if the angular position of the
circumferential modes varies little during control. Using two modal sensors (sine
and cosine shaped) for each circumferential mode is however recommended. Finally,
a wave filtering technique requiring two sets of modal sensors per circumferential
mode would ensure the control of both incident and reflected waves in pipes of finite

length.
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Figure 6.20: Modal decomposition of the radial acceleration of the shell one diameter
beyond the error sensors, water-filled shell excited by a point force at 250 Hz.

195



M before control £} after control

Magnitude (dB)

0 1 2 3 4 5
Circumferential mode order, n

Figure 6.21: Modal decomposition of the radial acceleration of the shell one diameter
beyond the error sensors, water-filled shell excited by a point force at 350 Hz.
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Chapter 7

Conclusions and
Recommendations

The main goal of this work was to show that reduction of the total power
flow in fluid-filled cylindrical elastic shells can be achieved by using an active con-
trol approach based on structural control inputs and error sensors. Because of the
coupling between the shell and the internal fluid medium, structural control inputs
are likely to affect the power flow in the shell wall as well as the power flow in the
fluid field.

By considering different infinite shell systems and various types of distur-
bance in these systems, a broad analytical study has revealed the odds and limita-

tions of the active control approach:

e Single propagating free waves of circumferential order n=0 or n=1 were the
first disturbances considered. The objective was to demonstrate the capability
of radial line control forces to reduce the total power flow associated with these

waves. In the axisymmetric case, it was found easier to reduce the total power
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flow propagating along the coupled system when the disturbance was a fluid-
type incident wave. This behaviour was associated with the particular nature
of the wave, i.e. pressure near field close to the shell wall. For structural wave
type propagation, the fluid severely decreased the control performance. In
the n=1 case, it was noticed that the fluid increased the control performance
below the first acoustic cutoff frequency. Above this frequency, good control
of the power flow using structural line forces was difficult to achieve as more

energy was carried by the fluid medium.

Control of the total power flow induced by more complex disturbances, such
as point forces or internal monopole sources, was shown to be feasible. The
control strategy relied on individually sensing the shell motion associated with
each circumferential mode propagating energy in the system. Since the num-
ber of propagating circumferential modes increased with frequency, the perfor-
mance of the control approach was frequency limited by the number of control
channels. With respect to that matter, it was proved that the non-dimensional
cut-on frequencies of in vacuo shell systems are independent of the shell mate-
rial properties. Therefore, given a number of control channels, the higher the
extensional phase speed of the shell material the broader the actual frequency

range over which the control system has authority.

Considering fluid-filled shells, the results have shown that the power flow in-
duced by a point force disturbance was mainly conveyed by the shell wall;
structural control inputs were thus very effective at reducing the power flow
in the system. The internal fluid loading had the effect of lowering the system
cut-on frequencies, more markedly when the shell wall was highly compliant.

Therefore, the frequency range yielding good performances of the control ar-
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rangement for fluid-filled shells was narrower than the one for in vacuo shells.
The results also demonstrated that the power flow induced by an internal
monopole source was predominantly conveyed by the fluid medium. Because
of the coupling between the two media, good attenuations of the power flow
in the system could be obtained. However, considering a fluid-filled steel shell,
i.e. a shell system with a low compliance, the control was a difficult task to
achieve since very large control forces were required. Considering a more com-
pliant shell system, the fluid field was more efficiently affected by radial forces

and the control effort needed was much smaller.

The results of various experiments conducted on a semi-infinite plexiglass shell sys-

tem have been presented:

¢ The cut-on frequencies of the investigated shell system were evaluated and
compared to the calculated ones. The axisymmetric pressure field in the fluid,
induced by a broadband ring force, was measured with an hydrophone and
compared to the pressure computed analytically. These preliminary results

corroborated the accuracy of the general theory developed for fluid-filled shells.

o The active control of an harmonic axisymmetric radial disturbance in the
frequency range 1500-9000 Hz was implemented and the consistency of the
control performance achieved was assessed. Regarding the air-filled shell, the
control arrangement did not have any authority on the shell power flow above
4600 Hz and near the ring frequency (=~ 3060 Hz). When the shell was filled
with water, the insertion loss (in terms of shell radial displacement) varied

from 7 to 22 dB between 1500 Hz and 7600 Hz, indicating a net reduction of
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the total power flow in the shell.

In conducting this study, new actuators and sensors made of PVDF cable were

experimentally tested.

The active approach to control the power flow induced by the disturbance of an
electromechanical shaker was experimentally tested. The shaker was assumed
to generate a radial point force. Modal error sensors (n=0,1,2), constructed
from shaped PVDF film and cable attached to the shell, were used. Regard-
ing the air-filled shell, good attenuations of the power flow beyond the error
sensors were achieved for excitation frequencies below approximately 600 Hz.
At higher frequencies, spillover in the circumferential mode n=1 was seen to
occur because of wave reflections at the ends of the shell which created axial
standing wave patterns sometimes yielding poor modal observability. When
the shell was filled with water, large reductions of the power flow in the shell
and in the fluid could only be achieved at frequencies below 250 Hz. At higher
frequencies, the propagation of circumferential modes n>2 as well as wave

axial reflections resulted in spillover.

The preceding analysis demonstrates the potential for active control of total energy

flow in fluid-filled piping systems. The results indicate that, due to the coupled

nature of the system, it is possible in some situations to control the interior fluid

power flow by applying structural inputs to the piping wall. Future research work

should be devoted to the following topics:

1. Additional experiments dealing with the active control of the total power flow

induced by fluid type disturbances should be conducted.
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. The scope of the experimental work presented in the dissertation was lim-
ited to harmonic disturbances. Real systems, however, are often subjected to
broadband frequency disturbances. It would thus be of interest to extend the

work to a broadband frequency excitation.

. Wave vector filtering, i.e. real time separation of the waves travelling in posi-
tive and negative directions, has been used to control the total power flow in
thin beams [35]. An implementation of the technique on finite shell systems

at low frequencies could be attempted.

. It is believed that embedded PVDF cables could provide good control actua-

tors for real piping systems. This remains to be proven.

. As performed by Fuller (3] for in vacuo shell systems, it would be interesting
to analytically investigate the effect of a finite length discontinuity of the shell
material on the wave propagation in fluid-filled shell systems. Actuators and
sensors could then be added to the insert to achieve a combined active/passive

attenuation effect of the discontinuity on the total power flow in the system.

. There is enough material in the literature [23, 24] to conduct an analytical
study on the effect of fluid convection on the performance of the active control

approaches presented in this dissertation.
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Appendix A

Closed Form Derivative of the
Characteristic Function

In order to compute the residues yielding the response of the fluid filled shell
to a line force or a monopole source, the derivative of the characteristic function with

respect to kn,a must be evaluated.

The characteristic function is first written as

Ajo + Ajpaz? Ainz Az
|L| = Ainz Ao + Agger? Azsoz (A-l)
Asnz Az Aazo + As3oz? + Asggz* — FL
_ A11o + Apzz? Az
- |L|FL=° - FLx \ Ainz Az + Azzziv2 (A'Q)
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where |L|p;_, denotes the characteristic function of the in vacuo system and

z =kna

Ao = =0 + 3(1 — v)n? Anz =1

A =31 +v)n Ay =v

A = A1 Ao = =02 'f; n? A3
A =11 -v) Aggo = n— By ton(n? — 1) (A3)
Asi1 = A Ao =n

A332 = 2,32712

A334 = /62

The characteristic function of the in vacuo system is an eighth order polyno-

mial which can

be written as

8
Lo =2 Bz, (A.4)

k=0

where the coeflicients By are given by

Be=—'

Bs =

B; = Bs = By =0 (A.5)
As30A1104220 — A320A230A110 (A.6)
— Al Aszo — A1z AzsoAszo — AssoAly + AzsoAisiAin

Asz0A1314121 + AssaAnioAz20 + AszoAn124220 + AszoA1104222 (A7)

AszzoA1124222 + AszsaA112A4220 + AzzaA110A220 + AszsA1104220

AsnAly — A Al (A.8)
AszsA112A220 + AssaA110A222 + A112A2224s32 — AsaaAly (A.9)
AazsA112A222 (A.10)

The fluid loading term is expressed in a concise manner as

()
FL = P—yJ,;(y)’ (A.11)
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where y = Ko and P = (1)

The derivative of F'L is

OFL _ [y _ 4'aly) 1 .
oz “P{;‘m[%(y)wh(y)]}, (A.12)

where y' = —z/y.

The first derivative of the characteristic function is finally given by

0

%ILI = - FL [2(A22°A112 + Az Ano — Aly)z + 4A112A222w3]
OFL
~ oz [A110A220 + (Az20A112 + Az22A110 — Adyy)z? + A112A2221:4]
8
+ Z k.B];Zk_l. (A.13)
k=0
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Appendix B

Spinning Circumferential Modes

Spinning modes are commonly seen to occur in real cylindrical shell sys-
tems as well as in circular acoustic ducts. The origin of the phenomenon can be
very complex. In most cases however, the appearance of spinning modes is due to
the presence of various coherent sources in the same system. In order to describe
and explain the phenomenon, we consider here the excitation of the same infinite

cylindrical shell system by several harmonic radial disturbances.

Any harmonic radial disturbance d; can be written as follows
d; = D;X;(z) T;(0) Ri(r) cos(wt), (B.1)

where D;, Xi(z), T;(0) and Ri(r) are the amplitude and distributions of the distur-

bance in the z, § and r directions respectively.

If T;(0) is a function presenting a symmetry with respect to the angle 6;, it

can be expressed as a Fourier series

T:(0) = i t* cos(n(0 — 6;)). (B.2)

n=0
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In this case, it can be shown that the complex solution of the response y; of the shell
system to this single source at a given location M, in terms of shell displacement,
shell velocity, shell acceleration or fluid pressure, can be written as
o
yi = Y AP cos(n(8 — 6;))e™". (B.3)
n=0
This implies that all the circumferential modes propagating in the system are po-

larized at 6 = 0.

Now, if P coherent sources are present in the system, using the superposition
theorem yields the total response,

y = Y (B.4)

=1

P
= Y > Atcos(n(d — 6;))e™. (B.5)

1=1 n=0
By commuting the two summations in Equation (B.5), one obtains the real time
domain solution for the total modal response y™ as

y" = Re (fjA;*cos(n(e-o,-))e"m) (B.6)

=1

P . P .
Re (E A7 cos(nb;) cos(nf) &' + > A?sin(nb;) sin(nf) e“"t> .(B.7)

=1 i=1
Thus, at any time ¢, the polarization angle of the circumferential mode n is given
by

Re (Ef;l A? sin(néb;) e‘“"))
Re ( . A? cos(nb)) e‘“")) .

tg(nf*) = (B.8)

Because A}’s are complex values, Expression (B.8) reveals that only three special

configurations of the disturbances yield time invariant values of §™:
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e there is only one disturbance
e all the modal amplitudes A? are in phase or out of phase

o the disturbances are polarized at the same angle.

These two arrangements excepted, the mode has a time variant polarization angle:

it is said to be spinning.

This phenomenon is illustrated by looking at the case of two disturbances
(P=2). Figure B.1 shows the time variation of ! (n=1), given by Equation (B.8),
at 100 Hz. For A] = 1, A} = ezp(in/2), 6; = —45° and 6, = 45°, the mode n=1
is seen to spin at constant speed w = 27 f. For two close angular positions of the
disturbances (—5° and 5°), the polarization angle of the mode is most of the time
(relative to a period) confined between #; and 6,. Similar behaviour is obtained
when the phase lag between the modal amplitudes A] and A} is small. In this case,

the polarization angle varies little from (6; + 6;)/2.
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Figure B.1: Polarization angle of the circumferential mode n=1, two radial distur-
bances - Spinning mode.
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