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ABSTRACT 

In this thesis, the seismic analysis of base isolated structures is carried out using a 

base coordinate relative to the inertial space that renders absolute dynamic response, which 

is fundamental in assessing base isolation. Moreover, the structure is modeled as an Euler- 

Bernoulli beam cantilevered on a massive basement. The isolation system is modeled as 

linear. The stochastic analysis is carried out in the frequency domain using a stationary 

Clough-Penzien spectral representation for the ground excitation. Standard deviations of 

the structure’s generalized coordinates and their second derivatives are obtained, which 

characterize the response, including stresses, of the structure. The effectiveness of base 

isolation can be evaluated by comparing the response of the isolated structure with the 

nonisolated counterpart. The results show that base isolation is highly effective in reducing 

the overall response of the structure. Additionally, it is found that the Clough-Penzien 

representation does not model adequately in the high frequency range. A modification of 

this model is proposed.
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1.- INTRODUCTION 

Current earthquake engineering practice is to build very strong, well supported 

structures capable of resisting moderate earthquakes through plastic deformations. Failure 

of some structural members is sometimes tolerated. However, such designs tend to be 

expensive and disastrous in major earthquakes. Therefore, new approaches are imperative. 

Base isolation is a novel engineering technique for improving the overall 

performance of structures during earthquakes. The simple idea behind this technology 1s to 

isolate the structure from the moving ground through flexible mountings so as to reduce the 

dynamic response and internal forces in structures. 

Base isolation was developed mainly empirically. Pioneers in the field used mainly 

one degree of freedom models, with the displacement measured with respect to a reference 

frame attached to the moving ground. The mechanical models have been improved, but the 

ground-based reference frame is still used. With the early models, the shifting of the 

“structure’s natural frequency” away from the excitation spectral band, due to the added 

flexibility, was the reason for the reduced (relative) response. Lately, the focus is on 

reducing the response by increasing the dissipative characteristics of the isolation system. 

In this work, we analyze and compare the response of isolated and unisolated 

structures subjected to earthquakes. Because the objectives of earthquake engineering are 1) 

to prevent injury to the occupants and damage to the contents and 2) to protect the integrity 

of the structure, while keeping the amplitudes of motion at reasonable levels, comparison 

criteria are based on absolute displacement and acceleration amplitudes and stress levels in 

the structure. 

Because the idea is to stabilize the base relative to the inertial space, an inertial- 

based reference frame is used. The analysis is performed modeling the structure as a 

continuous flexural beam. The beam is cantilevered from a large lumped mass acting as the 

base. 

The equations of motion of the structure are derived in Chapter 2. In Chapter 3, we 

first obtain the response to harmonic excitation. Then, in Chapter 4, which represents the 

core of this work, we address the actual stochastic problem.



2. EQUATIONS OF MOTION 

2.1 Mathematical Model 

Civil structures tend to be very complex, not easy to model. Mathematical models 

must consider the essential dynamic characteristics. Clearly, what 1s essential and what can 

be ignored often depends on the effects to be studied. 

Most research on the response of structures to earthquakes has been carried out 

using lumped-parameter models, with the mass concentrated in the floors and the stiffness 

in the walls. More sophisticated models include the continuous shear beam . In this study, 

we model the structure as an Euler-Bernoulli uniform beam. This model is superior, as it 

regards the mass and stiffness properties as distributed. The effect of the floors can be 

added later as lumped masses in a more refined continuous model. One of the advantages 

of this model is that not only the internal shear but also the flexural moment can be 

calculated; it is well known that the moment is more critical than the shearing force in 

beams. The internal damping, inherently nonviscous, tends to be low, so that it is ignored. 

Several devices for base isolation have been proposed and a complete review has 

been done by Kelly (Ref. 1). We perform the analysis for the rubber bearing type which 

are the most used in base isolated buildings. As we show later, damping is important in 

reducing the response. Because damping provided by the rubber pads is very low, it is 

necessary to add other damping mechanisms. We carry out the analysis with hydraulic 

dampers. A complete description of these devices can be found in Ref. 2. The physical 

model for the base isolated building is drawn in Fig. 2.1 which includes a massive base 

whose influence is studied. 

We idealize the isolation system as a spring with elastic constant k and a dashpot 

with viscous coefficient c which act horizontally. Thus, the mechanical model is depicted in 

Fig. 2.2 in which M is the mass of the base while m, E, I and L represent the linear 

density, Young’s modulus, section moment of inertia and height of the uniform beam, 

respectively. 

2.2 Equations of Motion 

The equations of motion are obtained by means of the extended Hamilton's
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Figure 2.1 Physical model for the base isolated building 

principle (Ref. 3). To this end, we refer to Fig. 2.2 where X is an axis fixed to the inertial 

space and x is an axis fixed to the base. We denote by u(t) the absolute ground 

displacement, by r(t) the absolute displacement of the base from its original position and by 

y(x,t) the elastic deformation of the beam relative to x. This definition of base coordinate is 

not the one commonly used in the analysis of base isolated structures; most of the work in 

this field is done using the relative displacement of the base, which leads to the paradox that 

the structure is stabilized relative to the moving ground, instead to the inertial space. 

The kinetic energy of the system is 

lo. lf. dy 
T =—Mr’ +—m|] (f+) dx 2.1 5 Mi + {¢ 5.) (2.1) 

and the potential energy is 

V= Lea —u) + lero ax (2.2) 
2 2 0 Ox’ 

The variation in the kinetic energy has the form 
L 

ST = Midi + m J (t+ PY vg: + 5 2Y ax 
rc! at 

t 0 oy..0 = Midi + m[ [Fe + 5 8F+ +5857) dx (2.3) 

and the variation in the potential energy is simply 
L 22 2 

8V = k(r—w)6r + EI 2% 82 ax (2.4) 
00x” Ox 

Moreover, the nonconservative virtual work of the system is 

éWw . = —c(r — adr (2.5)
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Figure 2.2 Mechanical model 

The extended Hamilton’s principle can be written as 

f(8T-8V+8W,,)dt=O0 , Sr=Sy=0 at t=ty,t (2.6) 
tj 

where t, and t, are arbitrary times. Introduction of Eqs. (2.3), (2.4) and (2.5) into Eq. 

(2.6) leads to 

dx   (orembaen[s demise a dxtk(u-nbr— BI SY X52 x 

+c(u—r)dr ] dt = (2.7) 

The variation and nl processes are interchangeable, so that we can write 
t, 

jon + mL yi at = (M+ mL)(i6r{ -{ for dt) 

f oy ddr dor 4 -% | *y 5 = at 5,8 -t 7 or dt 

tr 

Ie +2) 90 s at= ul fees, <2 Sy dt 

? 3 2 

y ody dy . dy|_ y aby d’y . dy! 2 dx = § | -(2-2 > gx = 7 
is ox’ x ax? ax}, [2 ox dx ax? Ox}, 

Introducing Eqs. (2.8) into Eq. (2.7), we obtain 

2455) 4 
  

  

    

‘Ys 
——oy dx (2.8 “JP Sy dx (2.8) 

0
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[LOM +mLyF + e( A) + Ku S27 5a Hoy dx 

2 L 3 L 

oY 3 29 + E124 y| ]dt =0 (2.9) 
Ox” OXI, ox” "|, 

  

  

The virtual displacements dr, dy and 5a) are arbitrary and independent, so that, using the 
x 

standard arguments of the calculus of variations, we obtain the differential equations 

  

   

  

  

  

L >? 
“M+mLjf—m]5 dx+c(u-r)+k(u-r)=0 (2.10) 

2 4 

m(+ 3+ ESS - =0 (2.11) 
ox" 

and the boundary conditions 

d’y dy a*y « | 
= , oys = 2.12 a,b 

Ox Ox ax |, ( 
Considering the system geometry, Eqs. (2.12) lead to the boundary conditions 

y=0 , 2° 9 at x=0 (2.13 a,b) 
Ox 

avy ory >=0 , —57=0 at x=L 2.13 c,d) 
Ox" ox ( 

Because boundary conditions (2.13) are those of a cantilever beam, we express the 

elastic deformation in the form (Ref. 3) 

y(x,t) = ¥s,(t)¥ (x) (2.14) 
j=l 

where s; are modal amplitudes and Y; are the cantilever beam eigenfunctions (Ref. 4) 
C, 

Y,(x) = a LA; (sin B,x —sinhB,x) + B,(cosB,x — coshB,x)] (2.15) 
J 

where 

A, =sinB|L—-sinhB,L , B,=cosB,L+coshB,L (2.16) 

in which BL are roots of the characteristic equation 

cosB,L coshB,L=-1 (2.17) 

We determine C; such that the functions are not only orthogonal but also orthonormal, or 

(Ref. 4) 
L 

[mY,(X)Y, (x)dx = 8; (2.18) 
0 

in which case we also have that



L d*Y, (x) 3 JELY, (x) dx = 0,8), (2.19) 

, [EI 0, =8?,/— (2.20) 
m 

are the cantilever beam natural frequencies. 

Next, we insert Eq (2.14) into Eqs. (2.10) and (2.11), multiply the second by Y, 

and integrate over x and obtain the discretized equations of motion 

  

where 

n L 

my) §\(t)[ ¥j(x)dx + (M+ mL)F+ ci + kr = ci + ku (2.21) 
j=l J 0 L 

g(t) + @,7s,(t) = -mit | Y,(x)dx (2.22) 
0 

It is not difficult to show that 
L 2C, 
[¥,@odx = (2.23) 
9 B; 

So that the equations of motion, Eqs. (2.21) and (2.22) can be expressed in the matrix 

form 

Mgq+Cq+Kq=f (2.24) 

where 

r cu+ ku 

S, ) 

q=| : |, f=/ : (2.25 a,b) 
S.-) 0 

S 0 

are the configuration vector and force vector, and 

M+mbL 2mC,/B, --; 2mC,_,/B,, 2mC, /B 
n 

2mC, /B, 1 vs 0 0 
M= : : 

2mC,_,/B,_, 0 os 1 0 
2mC, /B, 0 ve 0 1 

c 0-00 k 0 0 0 
00-. 00 00, - O O 

C=/: : 5: K=|: : 0. : (2.26 a,b,c) 
00.00 0 0 = 0 
00-00 00 + O @,?



are the mass, damping and stiffness matrices. 

In the case of an unisolated cantilevered structure, r=u and the equation of motion 

for the beam can be obtained from Eq. (2.11) in the form 

no y O’y 

rye ox" 

Using Eq. (2.14), Eq (2.27) becomes 

mDy, (x)8, (O+EIZs oe 

= —mu (2.27)        

2“ 
= —mu (2.28)   

Multiplying by Y,, integrating over x and using Eq.(2.23), the discretized equations of 

motion can be written as 

2mC, ., . 
Lij , j=l,2...n (2.29) 

B; 
  

oe 2 — _ 

We notice that they are uncoupled. 

The stresses in the structure are related to the bending moment which is given by 

M, (x,t) = EID Y) (2.30) 
ox 

which, upon substitution of Eq. (2.14), becomes 

M, (x,t) = BIDS wo a (2.31)  



3. RESPONSE TO HARMONIC EXCITATION 

3.1 Analysis 

Before we study the response to actual earthquake excitation, we propose to study 

the effect of the isolation system on the response of structures subjected to harmonic 

ground excitation so as to gain some insight into the dynamics of the system. The ground 

displacement in the case of harmonic motion can be expressed as 

u=Ueim (3.1) 

from which it follows that 

f= F eio (3.2) 

where the only nonzero component of F is the first one, or 

F, = (k+ia@c) U (3.3) 

In this case, the steady-state response can be written 

q=Qem (3.4) 

Introducing Eqs. (3.2) and (3.4) into Eq. (2.24), we can write 

Q=D'F (3.5) 

in which D is the symmetric impedance matrix 

D=-@M +H1@C +K 

k-@’(M+mL)+iace -w’M,, -- -@'M,, -w'M,,., 
—w’M, , 0, -@° + 9) 0 

= . , : (3.6) 
-0°M, , 0 OO.) —@ 0 

-o'M.,,,, , 0 vs 0 oO, -@ 

For given beam parameters and excitation amplitude and frequency, the response depends 

on the isolation system parameters M, c and k only. 

Equation (3.5) can be rewritten as 

(CofD)' 
= ——_—__ F 3.7 Q DI (3.7) 

where |_D | is the determinant of D. We recall that the matrix of cofactors is defined as 

(Cof D ); = (-1)#) m, (3.8)



in which m, are the minor determinants of D , so that Eq. (3.7) can be written in the more 

explicit form 

  

mM, I 

: —M, > 

Q= (K+ i@0)U #1000) Mm, 3 (3.9) 

| D| : 
( 1)"**m, n+l 

where 

m,,= |] (0, -o*) (3.10 a) 
s=l 

[](@,? - 0’) 
m,, = (-l*! o M, , <—— ~°7 , for j>l (3.10 b) 

0; —@ 

Finally, introducing Eq. (3.9) into Eq. (3.4) the displacement vector can be written 

as 

q= RU v eiore) (3.11) 

in which 
i 

Rew = #10 (3.12) 
| D| 

and v is the vector of signed minors in Eq. (3.9) which is independent of M, c and k. 

From Eq. (2.14) the elastic deformation of the structure relative to the base is given 

  

by 

y(x,t)}=R f¥ Ha ei(ar+4) (3.13) 
j=l 

moreover, the motion of the base is 

r(t)=R U v, eter (3.14) 

Furthermore, the acceleration of a point on the beam is 

y(x,t) = -@’ R f¥ vt ome (3.15) 
j=l 

while the base acceleration is 

r(t) = -@? RR U v, exo) (3.16) 

From Eq. (3.13), we obtain the bending moment 

en = d°Y¥(x)) | 
M,(x,t)=EIR U| Yv,,, 5 +— | eior) (3.17) 

j=l X 

We notice that there is a single dimensionless amplitude parameter R and a single phase



for the system response. 

On the other hand, from Eqs. (2.29) the equations of motion for the unisolated 

Structure are 

» 3 _2mC Uo ; 
$,+@,s; = ——-——e j=l,2,....n (3.18) 

Bj 
The steady-state solution is 

(t) 2mC Uo" el (3.19) Ss. =O tort . 

B,(@,” -@") 

Introducing the notation 

2mC Uw" 
)=y (3.20) 

B(o, —-@ ) 

and using Eq. (2.14), the motion of the structure is given by 

— ~¥(X,t) = ERp v.00 e (3.21) 
j=l 

Comparing Eqs. (3.13) and (3.21) we conclude that Rb; J=1,2,..,n) is analogous to R U v, 

(i=2,3,...n+1). Additionally, the acceleration of a point on the beam is 

¥(x,0 = -(S Rb, Y (cole (3.22) 
j=l 

The bending moment in this case is given by 

n a?Y (x) 
M, (x,t) = EIXRb;— 3 e'ot (3.23) 

j=l X 

The amplitude parameter Rb; defines the response in this case. 

3.2 Comparative analysis of the isolated and unisolated structure response 

With base isolation, we are interested in reducing the displacement, acceleration and 

stress in the structure and the displacement and acceleration of the base. From Eqs. (3.13)- 

(3.17), we observe that these quantities depend on the dimensionless amplitude parameter 

R only for a given structure and excitation amplitude and frequency. 

Accordingly, we are interested in minimizing R which can be written as 

k? +@°¢? 

[a+ b(k —@°(M+ mL))) + (bac)? 

after operating on Eq. (3.12). We have that 

  

(3.24)   R(M,c,k) = | 

10



Table 3.1 Parameters of the mechanical model of the building 

Section 

Ext. diameter [m] 10 

Int. diameter [m] 9.5 

Area moment of inertia[m*] 91.054 

Height [m] 30 

Young’s modulus [N/m?] 25 10° 

Mass density [Kg/m] 17766 

n 

_ 2 j+3 
a= 0 CV My js: My jut 

j=l 

b=m,, (3.25) 

However, this function has only a trivial minimum (R=0, for c=O0 and k=0) that makes no 

sense with the physical model. Nevertheless, the function has a maximum (R=1/b, for 

M=(a/ba?)—mL and k=0). 

Consequently, we are confined to ask just for small parameters c and k. This 

smallness has limits however, defined by wind load consideration which is important on 

designing isolated structures. In addition, the basement mass can be chosen so as to avoid 

the maximum of R. 

At this point, we need to define the parameters of the building’s mechanical model 

to carry out an engineering design for wind load to determine k and c, and then, to obtain 

and compare the response of the isolated and unisolated structures. We study a concrete 

Structure with annular section that models a 10-story building, which is defined in Table 

3.1. 

A simple isolation system design that limits the base horizontal displacement under 

wind load was carried out. The analysis was static and did not consider base rotation. The 

results for k and c are: 

k = 4.5 105 N/m c=105Ns/m (C=0.1) 

We need also to define the number of cantilever eigenfunctions n involved in the 

analysis, we choose n=5 to study this system. Table 3.2 shows results from solving Eq. 

(2.17) numerically and using Eq. (2.20), and results for C,. Note that the 0; are not natural 

frequencies of the isolated structure, but of the unisolated one. 

We have to define also the excitation frequency @. We select this frequency out of 

the range of dominant frequencies in power spectra of ground displacement for common 

11



Table 3.2 Modal parameters of the building 

, [r/s] 44.2 

Ws 277.1 

W; 776.0 

Oy 1520.6 

(Os 2513.7 

C, 10.055 104 

C, 13.951 10+ 

C; 13.687 10+ 

Cy 13.698 10+ 

C,; 13.702 10+ 

earthquakes, although it is difficult to find those spectra since most of the measured spectra 

are of acceleration. We choose W=2.0 r/s as a representative value. We set the amplitude of 

the ground displacement U=0.1 m. 

The only parameter not defined thus far is the mass of the base. The value of this 

parameter depends on engineering considerations mainly; and on the fact that the function 

R, now R(M) only, attains a maximum for M=(k+a/b)/w?— mL. In Fig. 3.1 we can see the 

variation of R as M changes. In this case the maximum of the curve is in the negative range 

of M; if @ were lower the peak could be in the positive range. Using engineering 

considerations and these plots M can be chosen; we select M as 40,000 Kg. Again, if @ 

were lower this choice would be more critical. 

Now we can carry out the performance comparison between the isolated and the 

unisolated buildings. The results (absolute values) for the comparable amplitude parameters 

R U v,, that is called Ra;, and Rb; are shown in Table 3.3 where U has been included for 

comparison with Ra,, the base amplitude. 

As we see from these results, the amplitude parameters Ra; are smaller than their 

unisolated counterparts Rb;; moreover, the base absolute amplitude of motion is lower than 

the amplitude of the ground motion. Therefore, the isolated structure performs better in all 

senses. We can show however, that if M is chosen near a value it renders R maximum (M 

near zero in this case) we may not get these reductions relative to the unisolated buildings; 

in fact, we could get amplifications. This is easily seen by evaluating R at the critical value 

of M ((k+a/b)/@?— mL) and comparing with R evaluated at c=k=ce (unisolated structure) in 

12
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Figure 3.1 Amplitude parameter R as a function of base mass 

Table 3.3. Results of the amplitude parameters Ra; and Rb, 

i Ra; [m] j Rb; [m] 

] 02654 U=0.10 

2 .03110 ] .11716 

3 .00044 2 .00165 

4 .00003 3 .00012 

5 .00001 4 .00002 

6 0 5 00001 

Eq. (3.24), which gives respectively 

(+ ) 1 1 

c~cb b b 

It is also seen from the plot that if we augment M we obtain additional reduction in the 

response. 

However, we find that the analysis carried out before is strongly dependent on 0); 

as a consequence, the conclusions reached apply for exciting frequencies near w=2 r/s. We 

will not present here the analysis done with @ as variable since in the next chapter we study 

the actual random input; nonetheless, we can state conclusions reached through that 

analysis. If we reduce @ the plots R(M) keep their shape, but augment and move to the 

right; consequently, the response amplitudes are larger and the base mass is likely to be 

13



near critical M. As a result, the dynamic and stress amplitudes may be larger in the isolated 

case than in the unisolated one, as it was shown. That being the case, we find that damping 

helps greatly in reducing the amplitudes in this near “resonant” condition, as expected. 
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4. RESPONSE TO RANDOM EXCITATION 

4.1 Analysis 

In this chapter, we compare the response of the isolated and unisolated structures 

subjected to stationary random earthquake excitation. The analysis is carried out in the 

frequency domain, so that we compare the mean value and standard deviation of the base 

displacement r, of the modal amplitudes s, , of the base acceleration r and of the modal 

accelerations s,. They characterize in a probabilistic sense the structure's dynamics 

(Eq.(2.14)) and stresses (Eq.(2.31)), thus permitting a performance comparison. 

First, we wish to recast the equations of motion of the isolated structure, Eq. 

(2.24), in state form. To this end, we define the 2(n+1)-dimensional state vector 

x=(q' q’)'. Then, the state equations have the familiar form 

x= Ax+ Bf (4.1) 

where 

0 I 0 
A= (arix uc) B= (ar) (4.2 a,b) 

are coefficient matrices, in which 0 and / are the (n+1) x (n+1) null and identity matrices, 

respectively. 

We are interested in the mean value and standard deviation of q; and its second 

derivatives. The mean of the state vector m, is expressed as (Ref. 5) 

m,(t)= [@(t—t) Bm, (t) dt (4.3) 

where @ (t) is the transition matrix of the system and m, is the mean of the force vector. 

The latter can be set equal to zero vector, because the mean of the force vector depends only 

on cu+ku, which can be assumed zero in view of actual earthquake records. Then, we 

obtain our first result as 

m, = 0 (4.4) 

it follows that 

m, =0 (4.5) 

so that the mean value of the modal amplitudes, the base displacement and their first and 
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second derivatives is zero. 

To obtain the standard deviation of gq; and its second derivative, we must first 

calculate the power spectral density matrix S,.(w) of the state vector, which can be 

expressed as (Ref. 5) 

S..(@) = H*(w)S,(@) H" (0) (4.6) 

where H(0)) is the 2(n+1) x (n+1) frequency response matrix of the system and S,,(0) is 

the (n+1) x (n+1) power spectral density matrix of the force vector. 

The frequency response matrix of the system is 

H =(igl -A)'B (4.7) 

where / is the 2(n+1) x 2(n+1) identity matrix. The force vector power spectral density 

matrix requires more elaboration. This matrix is the inverse Fourier transform of the force 

vector correlation matrix K,(t). Because only the first element of the force vector is 

different from zero, the excitation power spectral density matrix has the form 

Sir, 9 + 0 0 
0 0: 0 0 

S=| i ion ie (4.8) 
0 O0-:- 0 0 
0 O-:-- 0 0 

Now, the force vector’s first element autocorrelation function R,, is expressed 
T/2 

R, (= lim = [[ca(t) + ku(t)][cu(t + t) + ku(t + t)] dt (4.9) 
oe Ll _t/2 

Expanding we have 

Ree, = CRig (T) + kK’R,, (T) + ckR,, (T) + ckR,, (T) (4. 10) 

so that 

Sp¢, =¢°Sy,(@) + k*S,, (@) + ck[S,, (@) + S,, (@)] (4.11) 

Because the sum in the last term is zero (Ref. 5 ), we have finally 

S,¢, =c°S,, +k’S,, (4.12) 

The velocity and displacement power spectral density functions of the ground, 

S,,(@) and S,,,(@) respectively, are defined using the Clough-Penzien model (Ref. 6). 

This model is a representation of the power spectral density function of ground acceleration 

during earthquakes. It 1s a modification of the Kanai-Tajimi model (Ref. 5) which 

represents the horizontal motion of the ground as the motion of a linear oscillator subjected 

to white noise, i.e., the movement of the ground near the structure is approximated as a 

filtered white noise excitation generated deep in the ground according to simple seismic 

theory. The Kanai-Tajimi model is expressed as 
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46,°0,,O +0," 
; (4.13) 

wo *+(40.° — 2)@,°o° +O, 
  

S jij (@) = oO 

where C, and @, are the parameters of the linear ground filter that represents the medium 

between the subsoil and the structure, and S, is the intensity of the subsoil white noise 

signal. However, this representation does not model correctly in the very low frequency 

range; in fact, S,, and S,, are unbounded at w=0. Clough and Penzien (Ref. 6) proposed 

a modification through the addition of a high pass linear filter to the model that eliminates 

the singularities. The Clough-Penzien model can be written as 
2 2.2 4 4 4, 0, © +, w 

w* +(46,° -2)0,"o* +@,* 0° + (46.° - 2)0°0* +0," 
  S (4.14) 

oO Siij(®) = 

where @, and ©, are the parameters of the additional filter with which actual spectra are 

better represented in the low frequency range. 

The spectral functions in Eq. (4.12) can be calculated using the derivative relations 

for these functions (Ref. 5 ), namely, 

Sua = us , Suu = Si (4.15) 
uu 2 

@ @ 

    

Accordingly, we have that 

5 (@)= 4E,°o, © +@," 1 

rift w* + (40,7 -2)m,’w* +@,* @* + (40 -2)0/0 +0, 
  (k°+@’c*)S, (4.16) 

This defines the force power spectral density matrix, Eq. (4.8), and hence the power 

spectral density matrix (2(n+1) x 2(n+1)) of the state vector, Eq. (4.6). 

At this point, we can determine the complete matrix of covariances of the 

generalized coordinates and their derivatives. We are primarily interested in the standard 

deviation of q;, which is equal to the square root of the variance (Ref. 5), or in this zero- 

mean process 

oo 

= J (H"S_H"). (4.17) 

which upon using Eq. (4.8) reduces to 

. 2 
= 2) || S,-, do i=1,2,.., n+] (4.18) 

0 

Moreover, the standard deviation of the generalized acceleration q, has the form 

5, =,/2Jo'lH,,| S,,, do (4.19) 
0 

  

From Eq. (2.29), the modal equations of motion of unisolated structure are 
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ii j=l.2....n (4.20)   

Because Eqs. (4.20) are independent, the analysis is simpler. We define for each equation a 
. . \r . 

two-dimensional state vector x, = (s ; § i] and each modal state equation can be expressed 

as 

x, =A,x,+ Bf, (4.21) 

where 

A= oa B= 0 4.22 a,b - —0;° 0 _ l ( : a, ) 

The mean of the state space vector in this case is 
t 

m, = | @(t-7)B, m, (T) dt (4.23) 

Because the mean value of the ground acceleration can be assumed to be zero, it follows 

that 

m, = 0 (4.24) 

In addition, 

m, = 0 (4.25) 

or, the mean value of each modal amplitude and its second derivative is zero. 

The 2 x 2 power spectral density matrix S, , of the state vector is 
J 

S,.,(®) = H,"() S,, (@) H,"() (4.26) 
where H; is the 2 x 1 frequency response matrix 

H;(@)=(iol -A;)"'B; (4.27) 

which has the explicit form 

1 
2 2 

Ho) =|") (4.28) 

o, - @° 

The force power spectral density function S,, is the inverse Fourier transform of 

the force autocorrelation function R, ;,, where the latter has the expression 

  

112 4m’C? 
R,,.(t) =lim— | — ii(t)ii(t + T) dt (4.29) 

Mi Toe T fy B, 

Equation (4.29) yields 
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4 

4m°C? 
= J Ri (7) (4.30) 

Ry 5, B- 

J 

where R,,,(T) is the autocorrelation function of the ground acceleration. The inverse 

  

Fourier transform of Eq. (4.30) 1s simply 

  

  

4m°C,” 
Sp p= — a Si (@) (4.31) 

vi B, 

Using the Clough-Penzien model, Eq. (4.15), we obtain 

46°o/o? +o," ay! 4m°C? 
S;+ (0) =— br Oe — 734 5 —— —* §, (4.32) ifj @” +(40,°- 2), +@, O'+(40-2)0,@° +0" By 

The standard deviation of the modal amplitude s; is then 

an) 
6, =,/2) “+; do j=l.2,.,n (4.33) 

» (M; —@") 

whereas the standard deviation of the modal acceleration s i is 

oj§_O Sen ing 4.34) Oo, = —— dw , 
aj 0 (@,” _ 0° y ( 

4.2 Comparative analysis of the isolated and unisolated structure response 

The comparison between the isolated and unisolated structure response is carried 

out on the building whose structural and isolation system characteristics were defined in 

Section 3.2. Therefore, the frequency response matrices are as defined by Eqs. (4.7) and 

(4.28). In addition, we must define the parameters in the Clough-Penzien representation. 

To this end, we use the parameters obtained by Lin, Tadjbakhsh, Papageorgiou and 

Ahmadi (Ref. 7) by fitting the Clough-Penzien model to the specific barrier model of 

Papagergiou and Aki (Ref. 8), which represents faulting on heterogeneous planes during 

earthquakes, and provides a spectral representation of the ground acceleration. This model 

has been applied to typical California earthquakes (Ref. 9) and the results of the fitting 

process for a moment magnitude 6.0 earthquake (Ref. 10) are 

0,=21.80 r/s , €,=0.59 , S,=0.006967 m’/s3 , @,=3.14 r/s , C=1.0 

The ground acceleration power spectral density function, Eq. (4.14), is shown in Fig. 4.1, 

and the corresponding force power spectral density function S, , , Eq.(4.16), is shown in 

Fig 4.2. Note the different frequency range in which they are dominant, and that in the 

unisolated case S, is defined by S;,. 

Letting the number n of cantilever eigenfunctions in Eq. (2.14) be equal to 4, the 
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Fig. 4.1 Ground acceleration power spectral density function 

standard deviations of the generalized coordinates and accelerations can be calculated by 

means of Eqs. (4.18), (4.19), (4.33) and (4.34). In practice, the upper limit in the integrals 

cannot be infinity, as actual excitation spectra die out at high frequencies. This limit is 

chosen as the value at which the integrand is so small that a change in the chosen limit does 

not affect the result. 

Typical plots for the squared magnitudes of the frequency response functions H), 

(base FRF) and A, (first modal amplitude FRF) are shown in Figs. 4.3 and 4.4 

respectively. The product Hil S.¢ is shown in Fig. 4.5. The area under this curve is 

6,7/2 and can be calculated numerically. The remaining integrands |Hi, Ss are shown in 

Figs. 4.6-4.9. The integrands for calculating the acceleration standard deviations 6, and 

G,, are shown in Figs. 4.10 and 4.11. The remaining integrands of 6, (i=3,4,5) are 

similar to Fig. 4.11 in this frequency range. 

For the unisolated case, the integrands S,, /(@,°—@°)° of the modal amplitude 

standard deviations, are plotted in Figs. 4.12-4.15. We note that the integration for the first 

modal amplitude cannot be carried out, because the integrand is unbounded due to fact that 

the building is undamped. Additionally, Figs. 4.16 and 4.17 show the integrands of the 

standard deviations 6, and 6,, . The remaining integrands of 6, (j=3,4) are similar to 

Fig. 4.17. 

The results are condensed in Tables 4.1 and 4.2. In which the ground displacement 
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Fig. 4.2 Force power spectral density function 

and acceleration standard deviations 

0, = ‘l2fs,,de ; 0; = [2f Sudo (4.35) 
0 0 

have been included for comparison with the base displacement and acceleration standard 

deviations. 

We can compare the performance of the isolated and unisolated structures by 

analyzing Tables 4.1 and 4.2. However, these tables are incomplete since the standard 

deviations of the first modal amplitude and its second derivative cannot be calculated in the 

unisolated case, as explained earlier. Consequently, we need to find some way of 

comparing these parameters with their isolated counterparts. 

We modeled the structure as undamped, although in reality every structure has a 

small amount of damping. Hence, an actual plot of Fig 4.12 . for example, would have a 

sharply peaked shape around the resonance, but no discontinuity at this point. Note that 

these curves are obtained by squaring the undamped SDOF frequency response functions. 

In this particular case, it can be seen that if low damping is considered, the area under the 

curve of the attenuated Fig. 4.12 would be significantly larger than the area under the curve 

in Fig. 4.6 (note the scaling). Hence, the first modal amplitude standard deviation is much 

larger for the unisolated case. In the case of the accelerations, again, if low damping is 

considered, the area under the curve of a damping-adjusted Fig. 4.16 would be much larger 
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Fig. 4.3 Squared magnitude of H,, 
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Fig. 4.4 Squared magnitude of H,. 

than the counterpart in Fig. 4.11. 

From Tables 4.1 and 4.2 we conclude that, in a probabilistic sense, the 

displacement, acceleration and stress levels along the beam are smaller than the levels on 

the unisolated or conventional building. Furthermore, the acceleration levels of the base are 

lower than the ground acceleration levels. It is important to note that these reductions are a 
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Fig. 4.5 Integrand for the base displacement standard deviation 
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Fig. 4.6 Integrand for the first modal amplitude standard deviation 

consequence of two facts. First, when a structure is isolated, the range of the dominant 

excitation frequencies is reduced with respect to the unisolated case and is moved toward 

the lower frequencies and away from the resonant frequencies of the beam, as can be seen 

from Figs. 4.1 and 4.2. In contrast, in the unisolated case, the excitation frequency range is 

broad in the range in which the frequency response functions are swelling before the single 
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Fig. 4.7 Integrand for the second modal amplitude standard deviation 
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Fig. 4.8 Integrand for the third modal amplitude standard deviation 

resonant frequency for each modal coordinate and acceleration. In the second place, the 

magnitude of the frequency response of the isolated structure is smaller than the unisolated 

counterpart. However, the displacement level of the base is larger than the ground 

displacement level, because the first natural frequency of the isolated structure is excited by 

the dominant range of the force spectrum. Here, damping comes into play; Tables 4.3 and 
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Fig. 4.9 Integrand for the fourth modal amplitude standard deviation 
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Fig. 4.10 Integrand for the base acceleration standard deviation 

4.4 show the results with a double damping factor (C=0.2) in the isolation system. As can 

be seen, all the standard deviation are further reduced. In particular, we note that the base 

displacement standard deviation is now about the same as the ground displacement standard 

deviation. 

In the above calculations, we used @=100 r/s as the upper limit frequency in the 
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Fig. 4.12 Integrand for the first modal amplitude standard deviation (unisolated) 

integrals. This choice is not critical in the calculation of the standard deviation of the 

displacements and accelerations for the isolated case, or displacements in the unisolated 

case, because small variations do not yield different results, as the area under the curve is 

negligible in this range. Furthermore, actual spectra does not present contribution for 

higher frequencies. However, in the calculation of modal acceleration standard deviations 
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Fig. 4.13 Integrand for the second modal amplitude standard deviation (unisolated) 
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Fig. 4.14 Integrand for the third modal amplitude standard deviation (unisolated) 

in the unisolated case, this matter is critical, as can be concluded from Fig. 4.17. As 

Clough and Penzien concluded, from an analysis of the resulting unbounded ground 

velocity and displacement spectra, the Kanai-Tajimi model is not a correct representation in 

the low frequency range; using an analysis of the acceleration response, we also note that 

the Clough-Penzien model is not a satisfactory representation at high frequencies. In view 

27



S,, /(@, -@°) x 10? [m?s] 
id 50, 

aol 

30 

20f 

10;     
0 i020. #2430 40 #450 60. 70 

@ [r/s] 

Fig. 4.15 Integrand for the fourth modal amplitude standard deviation (unisolated) 
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Fig. 4.16 Integrand for the standard deviation of Ss, (unisolated) 

of actual spectra, the curve in Fig 4.17, for example, should begin to decay around 70 r/s 

and should not have any contribution at frequencies larger than 100 r/s. Therefore, the 

model requires yet another filter. In this case, a smooth low pass filter that attenuates even 

more the spectra at high frequencies, and thus permits a more accurate representation of 

actual ground acceleration spectra. Returning to our problem, we note that, in the 
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Fig. 4.17 Integrand for the standard deviation of s, (unisolated) 

Table 4.1 Standard deviation of the generalized displacements 

Isolated 6; [m] 

0.030166 

0.010578 

0.000170 

0.000012 

0.000002 mA
 

BP 
W
N
 

KS 
I
:
 j Unisolated 6; [m] 

6, = 0.019090 

] larger 

2 0.003657 

3 0.000269 

4 0.000050 

Table 4.2 Standard deviation of the generalized accelerations 
i 

1 0.040 

2 28.791 

3 0.559 

4 0.040 

5 0.007 

Isolated o, [m/s*] j Unisolated _o, Un/s’] 

6, =0.872 

1 larger 

2 8.310 

3 0.578 

4 0.107 
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Table 4.3 Standard deviation of the generalized displacements (double C) 

Isolated 6; [m] 

0.021393 

0.008 137 

0.000128 

0.000009 

0.000002 mn 
BR 

WwW
 

N
O
 

SH 

Table 4.4 Standard deviation of the generalized accelerations (double ¢) 

Isolated o, [m/s*] i
—
-
 

  

] 0.030 

2 20.355 

3 0.396 

4 0.028 

5 0.005 

calculations of S,, for the unisolated case, we apply a straight low-pass filter with cut off 

frequency 100 r/s. As a consequence, these calculations are only approximate, because the 

proposed new filter should be smooth so as to model actual spectra. 
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5. SUMMARY AND SUGGESTIONS FOR FURTHER WORK 

5.1 Summary 

The damaging effects of earthquakes on structures can be mitigated by means of 

base isolation, which involves erecting the structure on a massive slab mounted on soft 

supports so as to isolate the structure from the ground motions. In this thesis, an analysis 

of the effectiveness of base isolation has been carried out via a comparison of earthquake 

response of isolated and unisolated structures. To this end, a continuous structural model 

has been used, namely, an Euler-Bernoulli beam. The base isolation system was modeled 

as linear and, more importantly, the motion of the base was measured relative to an inertial 

space, which is fundamental in evaluating base isolation. The earthquake excitation has 

been represented as an stationary stochastic process. In particular, the ground acceleration 

spectrum was represented by the Clough-Penzien model. 

The performance criteria for comparison have been defined in terms of 

displacement, acceleration and stress levels along the building, and displacement and 

acceleration of the base. The frequency domain approach permits a comparison of the 

response in terms of the standard deviation of the generalized coordinates and their second 

time derivatives. 

The results have showed that an isolated structure undergoes lower levels of overall 

response than the nonisolated counterpart and that energy dissipation in the isolation system 

is essential in controlling the displacement of the base. 

5.2 Suggestions for further work 

The continuous model can be refined by modeling the structure as an assemblage of 

columns and beams. Floors and walls can be added to the model either as rigid or as elastic 

plates. The excitation can be assumed to be nonstationary, in the sense that the excitation 

spectrum consists of a stationary part modulated by a time varying amplitude. Of course, all 

these refinements in the model should be introduced one at a time, because otherwise the 

resulting model would not lend itself to easy analysis. . 

Finally, active control can be added to the isolated structure, which can result in 
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near ideal isolation, in the sense that the structure behaves as a rigid body motionless in an 

inertial space, while the ground moves under the base. 
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