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1. INTRODUCTION 

This study models the compaction of soil by a vibratory roller 

compactor and examines changes to current designs that may provide more 

efficient compaction. The modeling of the soil differs from previous 

analyses of the compaction process through the use of two analytical 

methods. First, whereas previous theoretical models of the compactor-

soil interaction have lumped the soil properties of stiffness and damp-

ing, the current model retains the distributed-parameter characteriza-

tion of the soil mass. This is accomplished through a solution of the 

dynamic equations of a linearly elastic half-space, coupled with the 

lumped-parameter dynamics of the compactor, in order to obtain the 

compactor motion and the field of subsurface strains in the soil. 

Secondly, the strains and strain rates estimated from the linear model 

are used as inputs for nonlinear constitutive equations for soil that 

have been proposed by Patten (1). These relations describe the material 

damping in the medium and relate a fraction of the dissipated energy to 

the continuous evolution of residual stresses in the soil. 

The theoretical model of the compaction process is used to estimate 

the effects of varying the frequency of vibration to match the 

evolutionary changes in soil properties during compaction. The effects 

of varying the static pre-load through redistribution of the compactor 

weight is also examined. 

1 



2 

1.1 Purposes of Compaction 

The preparation of a soil bed for the construction of building 

foundations, roadways, airport runways, and earthen dams requires that 

the native stiffness and strength of the soil be augmented by artifical 

techniques. Stiffening and strengthening of the subgrade can be accom-

plished by the addition of bonding agents that affect the adhesive 

properties of the soil particles (2). But the most commonly used and 

least costly technique for improving soil qualities is compaction, where 

the soil is densified by mechanical loadings. 

Tamped-earth construction has been used since prehistoric times 

from Europe to the Far East (3,4). In the 1930's, it was realized that 

the application of a rapidly oscillating load could provide improvements 

in the properties of sand comparable to those obtained by static loads 

(5,6). More recently, vibratory compaction has been applied with some 

success to moderately cohesive soils (7,8). 

The objectives of compaction, whether achieved by static loading or 

by vibration, are the increased strength and stiffness of the soil. 

Secondary beneficial effects include decreases in the permeability and 

subsequent swelling and shrinking of the medium (9). These are the 

observed effects of compaction, but some controversy still attends the 

relative importanGe of several processes occurring in the soil during 

compaction, all of which contribute to the ultimate stiffening. 

In the first place, rapid acceleration of the particles of granular 

soil can produce a state of free-fall wherein the particles realign 
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themselves in a more closely-packed arrangement (5,6,7,10). Inasmuch as 

the mutual adhesion of clay particles can be broken down during vibra-

tion, this purely geometric alteration of the medium can occur in 

cohesive soils as well an in non-cohesive ones (5,11). The densifica-

tion may be enhanced by the fracturing of angular grains, allowing 

closer fits among the particles (2). 

But the strengthening and attendant densification of the soil is by 

no means accomplished only through this kinematic process. Brumund and 

Leonards (10) and Shatlova et al. (5) cite the importance of stresses 

induced in the medium by its repeated working. 

These stresses are associated with plastic deformation of the soil 

solids themselves, so that some permanent densification results. More-

over, these stresses contribute directly to the stiffening of the medium 

in ways that are not causally related to the attendant deformation. The 

elastic moduli of soil in both shear (12) and compression (13) are 

strongly dependent on the confining pressure. · Field measurements have 

shown that the residual stresses induced in the soil by compaction 

directly augment the confining pressure (6), providing a permanent 

stiffening. 

The success of compaction is typically estimated by the increase in 

the soil density, or equivalently, in the reduction of air and water 

voids as a percentage of the total soil volume. But as Selig (9) points 

out, the objectives of compaction are stiffening and strengthening of 

the soil. Although densification is apparently correlated with these 
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and happens to be easier to measure, the correspondence is not exact and 

reference to density alone can be misleading. 

The strength of the model proposed herein is that it directly 

predicts the increase in soil stiffness associated with the production 

of residual stress. Direct integration of the constitutive equations 

proposed by Patten (1) can predict both cumulative deformation and 

stress. At present, however, such an integration is feasible only for a 

lumped-parameter model of the soil. For reasons that will be made 

clear, the problem of a rolling compactor requires that the distributed-

parameter characterization of the soil be retained. To this end, a 

linear model of the soil continuum that fails to predict permanent 

settlement is used in this study to estimate the displacement and strain 

amplitudes, so that ultimately only the residual stresses and not the 

geometric effects of compaction are obtained. We note again, however, 

that the ultimate aim of compaction is the enhancement of the soil's 

mechanical properties and not its densification. 

1.2 Compactors 

The dynamic loading for compactors is usually generated by rotating 

an eccentrically-mounted weight in a vertical plane, so that the verti-

cal component of the centrifugal force varies sinusoidally with time 

(Fig. 1-1): 

F ( t) 
a 

2 
= m e w sin u1: (1. 1) 
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Fig. 1-1. t;eneration of a harmonic force by rotation of an 

eccentrically-mounted ~ass. 



where 

6 

Fa is the generated force, 

m is the mass of the eccentric, 

e is the distance of the eccentric's center of mass from 

the axis of rotation 

w is the circular frequency of rotation. 

This force is transmitted to a flat plate or a cylindrical drum resting 

on the earth. 

The force transmitted from the compactor to the soil may be either 

smaller or larger than the generated force, depending on the frequency 

of excitation, the inertial and suspension properties of the compactor, 

and the stiffness of the soil. At some resonant frequency, the contact 

force will be maximized. This frequency has been taken by numerous 

authors (S,6,10,11,14) to be the optimal frequency of compaction, since 

it maximizes the energy transmitted to the soil. It is important to 

note that the resonant frequency is a property of the coupled dynamics 

of the compactor-soil system and is not an innate property of the soil 

alone. Thus, variations in compactor design can alter the location of 

the resonance peak. 

The amplitude of the drum motion is also maximized at resonance. 

Depending on all of the factors mentioned above, and in addition on the 

relative magnitudes of the dynamic force and the static weight of the 
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compactor, the drum may (6) or may not (14) rise clear of the soil 

during compaction at resonance. The assumption made in this study is 

that contact is maintained over a cycle. It is argued in Section 5 that 

the violation of this hypothesis should not compromise the model's 

predictions of the amplitudes of the drum motion and soil strains. 

The compactor modelled herein is the Ingersoll-Rand SP-56DD, a 

20,700 lb (9387 kg) smooth-drum compactor with specifications given in 

Table A-1 and Fig. 3-1. The eccentric is driven by a hydrostatic motor 

at speeds of up to 30. 4 Hz. The drum is connected to the yoke by 12 

rubber vibration isolators loaded in shear. Large compactors are 

classed according to gross weight, but the distribution of weight over 

the frame is a design decision. Optimizing such a distribution with 

respect to compaction performance is therefore one object of this study. 

1.3 Description of the Problem 

Yoo and Selig (14) have noted that the interaction of a stationary 

compactor and the soil beneath it is quite different from the dynamics 

of a compactor travelling over the soil. Conceptually, the difference 

between the two processes resembles the distinction made in the study of 

heat-transfer and fluid-flow problems between "system" and "control 

volume" descriptions. In the first instance, one studies the evolution 

of the properties of some fixed quantity of matter. The soil beneath a 

stationary compactor may be compared to, say, the vapor in the cylinder 

of a reciprocating engine during a power or compression stroke (Fig. 1-
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2(a)), in that the identity of the material being studied is fixed 

during the analysis. 

By contrast, in the steady-state, steady-flow control-volume prob-

lem, a region of space through which the matter flows is analyzed. The 

identity of the matter inside the volume constantly changes, and so do 

the properties of an element of the material as it passes through the 

control volume. But the properties of the material entering or exiting 

the control volume remain unchanged over time. If we attach our control 

volume to the moving drum of the compactor, we note that the soil 

"entering" the volume always has the properties of the uncompacted 

medium, whereas the "exiting" soil has the properties of compacted 

earth. The analogy made in Fig. l-2(b)) is to the flow of a gas through 

a compressor. 

The behavior of the stationary compactor is thus obtained by 

integrating its transient response over time, as the compactor settles 

into the earth and the properties of the soil beneath it change with 

time. By contrast, the dynamics of the travelling compactor are char-

acterized by their steady-state nature, with the compactor always acting 

upon a soil mass of unchanging properties -- loose and pliant at the 

leading edge of the contact area, dense and resilient at the trailing 

edge. The variation of soil properties experienced by the travelling 

compactor is therefore spatial rather than temporal, even though the 

physical pr0cesses occurring in the soil beneath it are identical to 

those experienced by the soil beneath the stationary compactor. 
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The instantaneous distribution of soil properties beneath the 

rolling compactor depicts soil elements in all stages of compaction and 

therefore illustrates the stress history that any particular soil ele-

ment will undergo. The evolution of residual stresses and permanent 

settlement in soil is determined precisely by the stress history, i.e., 

the soil has a "memory" (13). In tracing the stress history of soil 

elements subjected to rolling compaction, we must therefore consider the 

spatial modulation of the stress field through which the element 

"moves." The steady-state characterization of the rolling compactor 

affords some theoretical simplification in treating the time dependence, 

but only at the cost of requiring that the spatial distribution of the 

soil properties be retained in the model. Previous studies (11,14) that 

have applied a lumped-parameter analysis to the moving compactor have 

been able to predict only the compactor dynamics, with no treatment of 

the evolution of the soil properties with time. 

1.4 Overview of the Solution Method 

The following steps are taken in modeling the soil and compactor: 

(a) The compactor is treated as a two-degree of freedom lumped-

parameter system: an effective frame inertia coupled to a drum inertia 

by a linear spring and a linear hysteretic damper (Section 3). 

(b) The underlying soil is first treated as a conservative, 

linearly elastic, semi-infinite solid ("elastic half-space") acted on by 

a load distributed over a constant area and varying sinusoidally with 
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time (Section 4). This simplified treatment permits a solution for the 

coupled compactor-soil dynamics, as well as affording an estimate of the 

distribution of strains in the underlying soil (Section 5). 

(c) The stress history of a soil element moving relative to the 

compactor is then traced. The elastic and plastic stresses in the soil 

are obtained from constitutive equations that relate the stresses to the 

strains and strain rates previously estimated. The effect of the 

accumulated stresses on the elastic moduli is then determined in terms 

of the growth of the soil's confining pressure, so that the alteration 

of soil properties for subsequent passes can be estimated. 

The treatment afforded under (b) manifestly involves numerous 

oversimplifications of the properties of soils, each of which requires 

some defense. Specifically, the following simplifying (and erroneous) 

assumptions are made: 

(1) The underlying soil mass is homogenous and its properties 

isotropic. The problem of compacting a shallow fill overlying a more 

dense layer is not accurately treated. Moreover, the inhomogeneity 

introduced by the compaction process itself (i.e., the difference in 

material properties at the leading and trailing edges) is ignored in the 

linear model. 

(2) The soil is a conservative, continuous, linearly-elastic 

medium. In estimating the st ran amplitudes, no cognizance is taken of 

material damping. The elastic half-space model does treat "georJetric 

damping" (Section 4) which is typically the dominant mechanism of energy 
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dissipation in soil problems. To the extent that material damping is 

neglected in the linear model, the strain amplitudes are probably 

overestimated. 

Other effects not considered under the assumptions of continuity 

and linear elasticity are the effects of granular rearrangement and the 

localized plastic failure of soil immediately beneath the drum (16). 

(3) The soil and drum remain in contact over a cycle, and during a 

cycle the variation in contact area can be ignored by treating an 

"average" contact area equal to that resulting from the compactor's 

deadweight. More generally, the assumption is made that the drum 

displacement and soil strains are simple harmonic functions of time. 

These assumptions, their justifications, and their attendant errors 

are discussed more extensively in Sections 4 and 5. A second aspect of 

the modeling that requires some defense is the compatibility of the 

constitutive relations in parts (b) and (c) above. To what extent is it 

meaningful to use an estimate of soil properties obtained from one set 

of constitutive relations (i.e., strains estimated by linear elasticity 

theory) in generating other properties from other relations (i.e., 

residual stresses obtained from the nonlinear constitutive equations)? 

The author freely admits the inelegance of coupling the two methods, but 

notes the frequency in engineering practice of just such "contradictory" 

patching-together of different models. In the study of fluids, for 

instance, one set of assumptions is invoked in treating a viscous 

boundary layer, while a whole other set of assumptions is introduced in 
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treating predominantly inviscid behavior in the region beyond the 

boundary layer. In Hertz's classic solution for contact stresses, 

apparently contradictory assumptions are invoked at different stages of 

the solution (17). Ultimately, the appropriateness of using the strains 

offered by the simpler theory rests solely on whether the estimate is a 

good approximation to the actual strains in the soil, regardless of 

whether the constitutive equations in the two stages of the solution 

have identical algebraic forms. In Section 4, the argument is made that 

the estimates of elastic strains made by the linear theory are 

acceptable. 

1.5 Model Summary 

Section 2 of this work reviews the previous efforts to model and 

measure soil vibrations and the compaction process. Section 3 develops 

the lumped-parameter model of the compactor. In Section 4 the integral 

equations for a linear elastic half-space are developed, and their 

suitability to the current problem is discussed. In Section 5, the 

equations describing the coupled dynamics of the soil and compactor are 

assembled. Section 6 introduces the nonlinear, nonconservative consti-

tutive relations by which the growth of residual' stresses in the soil is 

described. The results of model simulations for various frequencies and 

compactor weight distributions are described in Section 7, together with 

a proposed optimization strategy for varying the compactor frequency 

with each successive pass of the compactor. Conclusions and recommenda-
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tions are made in Section 8, both for the compaction process and for the 

further development of the model. 

Model inputs are summarized in Appendix A and numerical methods are 

detailed in Appendix B. A program listing showing the model implementa-

tion is given in Appendix C. 



2. REVIEW OF PREVIOUS INVESTIGATIONS IN SOIL VIBRATIONS 

This section reviews previous efforts to model or measure the 

compaction process and summarizes some of the findings in soils research 

that bear on the compactor problem. Some special attention is paid to 

the historical efforts to model the dynamics of soil as those of an 

elastic medium, since much of the current study is based on such a 

model. 

2.1 Experimental Treatments of Compaction 

Converse (36) was one of the earliest investigators to note the 

efficiency of compacting sand at resonance. Working with a circular-

plate stationary vibrator, he developed empirical formulas for determin-

ing the frequency of resonance based on the compactor weight, the plate 

diameter, and the soil density and elastic modulus. 

In 1953 Whiffin (15) sought to measure the dynamic pressures gener-

ated in silty clay by rolling compactors. Because of its cohesion, the 

soil was capable of sustaining tensile as well as compressive stresses 

during vibration. The largest stresses and densities occured at the 

shallowest depth of measurement (1 ft, 0.3 m). This is in contrast with 

observations made by other investigators working with sand, which will 

not support tensile stresses and which, at shallower depths, is actually 

loosened by vibration. 

In 1957 Converse ( 11) measured displacement amplitudes and phase 

angles to determine parameters for a linear single-degree of freedom 

15 
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model of the compaction process for cohesive soils. Both the measure-

ments and the model confirmed that compaction at resonance maximizes the 

rate of compaction. 

Lewis (8) conducted tests on several soil types using both vibra-

tory plate and roller compactors. The greatest compaction was achieved 

at the soil surface, even for granular soils. Compaction of soils at 

resonance was found to offer some slight improvement over operation at 

other frequencies. For sand the resonance condition occurred at 38 Hz; 

for clay, at about 35 Hz. For some reason a mixture of sand and clay 

produced the lowest frequency of resonance, at about 32 Hz. 

An exhaustive experimental study of compaction of sand using a 

vibratory roller was undertaken by D'Appolonia et al. (6) in 1967. 

Measurements of density, acceleration, and in situ stress were made at 

various depths in the sand for up to 50 passes by the compactors. The 

investigators also measured drum displacements and accelerations. Their 

results, in contrast to those of Lewis, showed that the greatest 

densification occurred at depths of 2 ft (0. 6 m) for a 12. 5-kip (5700 

kg) drum. The acceleration measurements verified that the sand parti-

cles at this depth were in a state of free-fall for part of each 

cycle. At shallower depths, the sand was not compacted and was in fact 

somewhat loosened by the vibration. Measurements were also made of the 

horizontal stresses remaining in the soil following each pass of the 

~ompactor. These were noted to be substantially larger than the at-rest 

pressures generated by the weight of the soil column. Moreover, the 
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induced stresses normal to the path of the roller were far larger than 

the stresses parallel to the path, indicating that some anisotropy in 

the applied stresses was carried over in the induced state of residual 

stress. 

Moorhouse and Baker (37) studied the compaction of a 10 ft (3 m) 

lift of sand and found the greatest compaction occurring at nearly 4 ft 

(1.2 m) below the surface. The compactor employed in this study had a 

drum weighing 25.5 kips (11,600 kg), twice that of the compactor used by 

D'Appolonia. 

Brumund and Leonards ( 10) undertook laboratory experiments that 

related the settlement of vibrating sand to the energy transmitted to it 

by the applied dynamic force. They observed a linear relationship 

between settlement and transmitted energy and a logarithmic relation 

between densification and transmitted energy. They emphasized the 

importance of irrecoverable shear strains induced in the sand in 

accounting for the amount of subsidence. 

Several studies were undertaken by Selig and Yoo in the 1970's. In 

1977 (7) they introduced a simple two-degree-of-freedom model of a 

compactor that treated the frame and drum as lumped inertias and the 

soil as a lumped stiffness and viscous damper. The model and its 

predictions were more fully described in a later publication (14). The 

stiffness and damping parameters for soil were obtained from direct 

measurements of the compactor, rather than from elastic theory. 

Although such direct measurements are highly desirable for a medium as 
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complex as soil, the authors make the curious asertion that the elastic 

theory is more germaine to the problem of a vibrating foundation than to 

that of a moving compactor. Inasmuch as elastic theory fails to predict 

residual settlement,. which is more marked under a stationary vibrator 

than a travelling one, it would seem to the author that elastic theory 

is more applicable for moving compactors. 

2.2 Models of Soil Vibration Based on the Theory of Elasticity 

Problems involving periodic loading of a semi-infinite solid can be 

classified by several typologies. First, there are the assumptions made 

about the constitutive properties of the solid, whether they are elastic 

or viscoelastic, isotropic or anisotropic, homogeneous or varying with 

depth, etc. Most of the analytical treatments to date have assumed the 

simplest case of a homogeneous, isotropic, linearly elastic medium, and 

inasmuch as that is the soil model employed in this study, the discus-

sion below is restricted to such analyses. 

A second typology by which the various works may be classified lies 

in the geometry of the loading. The earliest treatment by Lamb (18) in 

1904 dealt with point and line loads. The distributed loading of a 

circular plate resting on the half-space, perhaps the most frequently 

considered problem, has been analyzed by Reissner (19), Sung (20), 

Quinlan (21), and Arnold, Bycroft, and Warren (22). All of these 

problems are simplified by the radial symmetry of the loading, which 

permits a two-dimensional (r,z) description of the spatial dependence. 
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In 1962, Kobori published the first results for the loading of 

rectangular regions (28). An expanded treatment was given by Thomson 

and I<obori the following year (23). The lack of radial symmetry in this 

problem requires that the solutions be couched in terms of double inte-

grals with infinite limits of integration. In addition to demonstrating 

how such a complication can be overcome, Thomson and I<obori introduced a 

numerical technique for the direct evaluation of the integrals, which 

previously were treated by demanding and intricate contour integrations 

in the complex plane. 

A third typology by which the various authors may be grouped is the 

treatment they accord to the stiffness of the plate bearing on the half-

space surface, which affects the assumptions they make about the 

distribution of the contact stress beneath it. Reissner and Kobori both 

assumed a uniform distribution of the contact stress. Such a result is 

only obtained from uniform loading of a perfectly flexible plate. If 

the plate possesses flexural rigidity, the contact pressure is 

redistributed according to the relative stiffnesses of the plate and the 

underlying medium. The difficulty in solving such a problem is that it 

has mixed boundary conditions: on the unloaded part of the half-space 

surface, the stresses and tractions are specified to be zero, whereas on 

the loaded region the displacements are prescribed by the flexural 

stiffness of the plate. The transform method used to solve such a 

problem requires that the boundary conditions be specified as integrals 

over the entire surface of the half-space. The mixed conditions imposed 
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by plate rigidity therefore lead to a problem of dual integral 

equations. 

In their studies of circular plates, Sung and Quinlan skirted the 

problem by assuming various distributions of the contact stress: uni-

form, parabolic, and a distribution proportional to that produced .by 

static loading. None of these distributions accords with the actual 

contact pressures developed under dynamic loading, although the static 

distribution gives an approximation for very low frequencies. 

The first direct solutions for rigid plates were made for simple 

geometries that afford a two-dimensional treatment of the spatial depen-

dency. In 1965 Awojobi and Grootenhuis (29) considered the circular 

plate; in 1967, Karasudhi et al. solved the plane-strain problem of a 

rigid, infinitely long strip resting on the half-space (30). In both 

cases the authors were able to reduce the set of dual integral equations 

to a single integral amenable to evaluation by contour integration. 

The more demanding problem of rigid rectangular plates required a 

more practical approach. Since the first solution by Elorduy, Nieto, 

and Szekely (31) in 1967, the favored technique for attacking non-

radially symmetric geometries has been to divide the contact area into 

elemental regions, each of whose loads is of an assumed distribution but 

of unknown magnitude. Superposition is invoked, and the magnitudes of 

the elemental loads are adjusted to yield the correct force-displacement 

characteristics corresponding to the rigidity of the plate. To this 

end, Elorduy et al. considered approximations to the response functions 
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of the half-space to elemental point loads. Wong and Luco (32) obtained 

a superior approximation by considering rectangular elements with 

uniformly distributed loads, using the methods of Thomson and Kobori to 

obtain the elemental response functions. Such an approach is 

computationally quite burdensome, however, since the response function 

for each pair of elements is expressed as a double integral. Kitamura 

and Sakurai (33) introduced a low-frequency approximation for the ele-

mental response functions that avoids integration altogether; Adeli et 

al. (34) took the intermediate approach of treating rectangular elements 

whose response functions are approximated by those of circular elements 

of equal area. Most recently, Whittaker has used elemental point loads 

to study the response of the half-space to loaded plates of intermediate 

rigidity ( 35). 

The approach taken in this study is essentially that of Wong and 

Luco, modified for the simpler problem of plane strain. That is, we 

approximate the contact area between the drum and the soil as an infin-

itely long rigid plate subject to a periodic load. The contact area is 

decomposed into elemental strips, under each of which the contact stress 

is assumed uniform but of undetermined magnitude. The response of each 

strip to a unit loading of every other strip (and of itself) is obtain-

ed, so that an overall compliance matrix is generated relating the 

elemental displacements to the elemental loads. By requiring that the 

loaded areas experience uniform displacement (corresponding to the 

motion of a rigid drum) we achieve results identical to those of 

Karasudhi albeit by a wholly different approach. 



3. COMPACTOR MODEL 

Vibratory-drum compactors range in weight from 1000 lb (500 kg) 

walk-behind models to 35,000 lb (16,000 kg) machinery used in compacting 

rock fills. The roller modeled here is Ingersoll-Rand's SP56-DD, a 

20,700 lb (9400 kg) smooth-drum compactor used on granular soils. Its 

dimensions are shown in Fig. 3-1 and other data is given in Table A-1. 

The two-degree-of-freedom model·of the compactor, shown in Fig. 3-

2(a), is essentially that used by Yoo and Selig (14), except that the 

suspension damping is taken to be structural rather than viscous. · The 

suspension connecting the drum to the yoke is comprised of twelve rubber 

isolators loaded in shear and acting in parallel. The linearized force-

displacement characteristic for such mounts is given as a complex 

stiffness, wherein the damping in steady-state vibration is related to 

the amplitude of the deflection rather than the velocity: 

where 

F jwt ke is the force transmitted from the frame to the drum, 

'wt w eJ is the frame displacement, F 
"wt w eJ is the drum displacement. 

D 
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I. 

Dimension 

L 
2c 
2d 

L 

i._____. 

Customary (SI) 

101 1• (3.22m) 
56" ( 1.42m) 
84 1 (2. 13m) 

FiR. 3-1. Ingersoll-~an<l S~-56nD comoactor. 
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All displacements and forces are taken as positive downwards. Manu-

facturer's data (38) provides an overall estimate of the complex stiff-

ness as 

K1 = 24060 lb/in. (4210 kN/m) 

Kz = 3850 lb/in. ( 674 kN/m). 

The lumped drum inertia is just the mass of the drum. (Rotational 

effects are not considered.) Estimating the effective frame inertia, 

however, is less straightforward. Yoo and Selig assume that the rubber 

tires of the tractor act as a static pivot about which the frame 

executes small-amplitude angular oscillations (Fig. 3-2(b)). 

moments about the pivot, 

Taking 

where J is the mass moment of inertia of the frame about the tires and L 

is the wheelbase. Using the small-angle approximation 8 ~ (wF/L), 

so that the effective frame inertia in Fig. 3-2(a) is 



26 

The spatial distribution of the frame mass is needed to calculate J and 

was not available to the author. However, various assumptions about the 

distribution lead to estimates for the effective mass as 20 to 30 per-

cent of the total frame mass. (Yoo and Selig's estimate was 30 

percent.) Since estimating the optimal mass distribution is one of the 

aims of this study, an exact value is not required. A nominal value of 

25 percent (2980 lb= 1350 kg) was assumed when examining the effects of 

other variables. 

In Fig. 3-2(a), the model is shown acted upon by the generated 

dynamic force 

and the soil reaction 

·u:i: 2 ·u:i: F ( w)eJ = (m e w ) eJ 
a 

F ( w) ej u:t 
s 

= (F R + F 1) ej u:t. 
s s 

The steady-state soil reaction is assumed to be harmonic at the driving 

frequency but o~ undetermined magnitude and phase. (The validity of 

this assumption is examined in Section 5.) The steady-state equations 

of motion are: 

(3.0-1) 
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where the coefficient ej uJ; is understood to multiply all displacements 

and forces. 

Eliminating the frame displacement from these equations allows us 

to write 

F + F a s 

The amplitude of the complex frequency-response function is shown in 

Fig. 3-3. Note that the input treated is the resultant of the driving 

force and the soil reaction. Although the applied force is a pure 

sinusoid, the soil reaction will probably contain harmonics at higher 

frequencies because of the intermittent contact at the leading and 

trailing edges of contact and because of nonlinearities in the soil 

properties. Note, however, that the response to frequencies higher than 

10 Hz falls off at a rate of 40 dB/decade. It will be shown in Section 

7 that efficient compaction requires operation at frequencies well above 

the cut-off frequency in Fig. 3-3. Therefore, any higher harmonics 

introduced by the clipping of the contact area will be selectively 

attenuated, providing some measure of confidence in the linear 

approximation introduced in the following sections. 
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4. THE LINEAR ELASTIC MODEL 

In this section the solutions of the dynamic equations for a 

linearly-elastic body are obtained. The boundary conditions appropriate 

for a surface-loaded half-space and a finite elastic layer on a rigid 

base are introduced, and the formal solutions to these problems are 

expressed as Fourier integrals. The reduction of the integral solutions 

for a half-space to the special case of plane strain is then made. 

The plausibility of the linear model for the study of soil vibra-

tions is then discussed. The selection of appropriate elastic moduli 

for soil is also treated. 

4.1 Transformation of the Dynamic Equations for an Elastic Body 

This section develops the integral relations for an elastic body 

subject to harmonic excitation. The treatment given here is essentially 

that of Thomson and Kobori (23), but numerous authors (18,20,21,22,23) 

have supplied other derivations. 

Timoshenko and Goodier (17) developed the dynamic equations for an 

elastic body. These can be expressed concisely in vector notation: 

M M ot. 2 a2 
0.+G) < ox , oy , ~ > + (G'v - p ;- 2 ) <u,v,w> = 0 (4.1-1) 

In the foregoing, p is the material density and G and A are Lame' s con-

stants, related to Young's modulus E and Poisson's ratio v by 

29 
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V E ;\ = ~---=-=----""" (1 + v)(l - 2v) 

E 
G = 2( 1 + v) = shear modulus. 

6 is the volume dilation, expressed in terms of the coordinate strains 

2 V is the Laplacian operatoi: 

Finally, <•,•,•> denotes a vector, and u, v, and ware the displacements 

in the x, y, and z directions, respectively. 

If we consider the steady-state vibration of the body subject to a 

harmonic force, we can write, for example, 

( ) = ( ) ju£ u x,y,z,t u x,y,z e 

0 A ju£ 
~ u(x,y,z,t) = jw(x,z,z,) e 

02 2· .£.,£ 
- 2 u(x,y,z,t) = - w u(x,y,z) eJ 
ot 
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etc. Henceforth, the circumflex ( ") will be dispensed with and the 
• uJ:. 

factor eJ will be understood to multiply all time-varying properties 

(displacements, forces, stresses, and strains). 

Then Eq. 4.1-1 may be rewritten: 

0. + G) <~!, ~;, ~ > + (G'i/2 + p}) <u,v,w) = 0 • (4.1-2) 

Equations 4.1-2 can be treated as the superposition of a volume dilation 

and a rotational distortion (17). That is, we write 

u(x,y,z) = u0 (x,y,z) + us(x,y,z), 

etc. Timoshenko and Goodier show that, for dilation without distortion, 

Eq. 4.1-2 reduces to 

2 2 ('i/ + h ) t. = 0 (4.1-3) 

where 

A + 2G 1/2 
CD= ( p ) = dilational wave velocity. 
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Conversely, for distortion without dilation, we require 

Li(x,y ,z) = o 

oli M M 
ox = oY = Tz - o. 

Then Eq. 4.1-2 reduces to 

(4.1-4) 

We note t;hat the dilation given by Eq. 4.1-3 satisfies Eq. 4.1-2 in 

addition to the constraints of irrotation. Writing Eq. 4.1-2 for the 

dilation alone and adding the expressions of Eq. 4.1-4 gives 

0. .. + G)<M oA o~ + (G•i+ 2 > 0 pw )<uo, VD ,wD = ox' oy' oz 
+ (Gv2+ 2 0 pw )<us,vs,ws > = 0 

O .. +G)<M M M> + (Gv2 + 2 = 0 c,x' ClY • C)Z pw )<uc+us,vo+vs,wo+ws> 

which is just the original dynamic equation. Thus, although the expres-

sion for the dilation in Eq. 4.1-3 was obtained by assuming irrotation-

ality, it is evidently valid for dilation in the presence of distortion 

as well. If Eq. 4.1-3 is solved for the dilation, the results may be 

directly inserted into the more general expression of Eq. 4.1-2. 
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At this point, we introduce the double Fourier transform. A single 

Fourier-transform pair is given by 

... 
f( S) = f}'{f(x)} 1 I 

. ex 
= f(x) e-J dx 

I 2 n - ... 
... 

f(x) 01'-l {f ( S) } 1 I f( S) ej f3xd e. = :!ft = 
12 n -= 

In reducing Eq. 4.1-3 to an ordinary differential equation, we transform 

over both horizontal coordinates, using the double Fourier transform: 

2 1 
... ... 

e -j ( f3x+yy) dxdy f(S,y) =§' {f(x,y)} =- I I f(x,y) 2 n 
- 00 -Cl) 

... "" ej ( f3x+yy) f(x,y) = fj'-2 {f< e, y)} 1 I I f < e, y) d 13d Y• =-
2 7T -ao -co 

Here, e and y are wave numbers along the x and y coordinates, 

corresponding to the frequency parameter w in a time-series transform. 

Transforms in the ( e, y) space will be represented by 

tilde (-) overscore. 

Just as ordinary differentiation is transformed in the single-

transform case· to multiplication by j e (or in a time series, by j w), we 

have, for partial differentiation, 

/¥ Z { ~ f ( X , y ) } = j efj'2 { f ( X , Y ) } = j Sf ( S, Y) 
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2 a 2 ..... 
~ {ay f(x,y)} = jif {f(x,y)} = jyf(t3,y). 

Equation 4.1-3, transformed, becomes 

2 
[ L - < s2 + l - h 2)] ~ = o dz2 (4.1-5) 

where t3 and y are treated as parameters independent of z. Note 

that t3 and y may vary over (- =, =), so that a comprehensive solution to 

Eq. 4.1-5 requires that we define a complex variable 

C\ = I a2 + l - h 2 

To ensure single-valued functions, we take C\ as positive real or posi-

tive imaginary. We can then write the transform solution as 

~(z; e, y) (4.1-6) 

with the coefficients A1 and A2 to be determined. Note that, since the 

solution has been obtained in a transform space, the values of these 

coefficients are parameterized in terms of the transform 

variables t3 and Y• The boundary conditions necessary for their evalua-

tion TIUlSt therefore be imposed in the transform space, since the Fourier 

transforms may not be inverted without knowledge of the dependence of A1 

and A2 on t3 and y. 
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We therefore transform the whole of Eq. 4.1-2 before substituting 

for the dilation. Doing so leads ultimately to 

where 

d 2 2 [-2 - O:z J < ';;.,v,w > 
dz 

C = s 

a:lz 
+ < j ~, j y, a:, > Ale } 

G 1/2 
(-) p 

k w 
= cs 

shear wave velocity. 

(4.1-7) 

The solution of Eq. 4.1-7 is given in terms of unevaluated coefficients 

< u,v,w > 

(4.1-8) 

We note that the expression for the dilation in Eq. 4.1-6 can be used to 

eliminate two of the coefficients, yielding 
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Dl = L (~ B 
C'lz 1 + y Cl) 

(4.1-9) 

D2 = L (~ B 
C'lz 2 

+ y C2) • 

4.2 Imposition of the Boundary Conditions 

In this section we apply the boundary conditions for both an elas-

tic half-space and an elastic layer of finite depth supported by a 

rigid, smooth base. 

In the half-space defined by z ) O, we require that the effects of 

a load on the plane z = 0 vanish as z -+- .... Since the 

quantities a:1 and a:2 have been taken as positive real for some values 

of~ and y, we must have 

The applied load is assumed to be normal to the bounding plane and 

distributed over some region Ac, and the surface tractions are assumed 

zero. Then 

= {-S(x:y) for (x,y) e: AC 
a (x,y,O) z for (x,y) e: Ac 

,: (x,y,O) = 0 xz 

,: (x,y,O) = 0 yz 
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where the distributed load S(x,y) is directed along the positive z axis 

and the normal stress cr is negative in compression (i.e., when S is z 

positive). In terms of the displacements, 

(J ( X' y '0) = ( Al::. + 2G ~) Z uZ 

( ) = G ( ~ + ou) 
,:XZ X ' y ' O OX OZ 

,: (x y o) = G ( ~ + ov) 
yz ' ' oy oz 

These conditions can be transformed to yield three equations in the four 

remaining unknowns Al' B 1' C 1' and D 1• Equation 4.1-9 provides the 

remaining relation needed to evaluate the coefficients. The formal 

solution of these equations yields, for the elastic half-space, 

where 

< -;;,v,w > = S(S,x) {[2(~2 + y2)-k2]< j~,jy, - al> 
GF( ~' y) 

sc~,y) = _1 2,i; 
ff S ( x, y) e - j ( ~ + YY) dxdy 

AC 

Inverting these transforms leads to expressions like 

(4.2-1) 



1 w(x,y,O) = -2 1t 

for example. 

38 

2 
co co ctlk -f f -G- S( ~,y) 

F( ~, y) -co -ca 

Several difficulties are presented in the evaluation of such inte-

grals. In the first case, there are four infinite limits of integra-

tion. For the special cases of point loads or radially symmetric 

loading on a circular region, or for loading on an infinitely long line 

or strip (plane strain), the double integrals reduce to single inte-

grals. For the more unwieldy problems of non-axisymmetric loads (e.g., 

rectangular regions of loading), Thomson and Ko bori introduce polar 

coordinates, writing 

w(x,y,O) 
21t co 

I I 1 

0 0 

~ = r cos e 
y = r sin e 

1r2 _ h2 
F(r) 

S ( r, e) ej (xrcos 8 + yr sin 9\drd e 

(4.2-2) 

,. 
S(r,9) = S(~,y). 
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Thus, the number of infinite limits is reduced to one. 

A second and more difficult problem is posed by the denominator 

F(r), which contributes two branch-point singularities and a simple 

pole. The customary method of evaluating. such integrals is to treat the 

real variable r as complex and perform a contour integration in the 

complex plane, taking care not to cross the branch barriers. Ewing, 

Jardetsky, and Press show that the branch lines are hyberbolas in the 

second and fourth quadrants of the r-plane ( 25). Thomson and Kobori 

introduced a more straightforward approach, discussed below, that 

permits direct integration along the real axis past the singularities. 

Before describing the techniques used for evaluating the integrals, 

we present the related results for a finite layer and for the 

specialization of the half-space results to the case of plane strain. 

Each of these cases has some practical bearing on the modelling of a 

vibratory roller compactor. Whereas the former affords enormous compli-

cations, the latter provides some simplification of the numerical 

problem. 

Compaction is frequently accomplished by laying a thin fill of sand 

on the subgrade, rolling it, and then repeating the operation several 

times. 

ones. 

The underlying layers are therefore stiffer than the upper 

A better approximation to such operations is obtained by 

considering the response of a surface-loaded elastic layer of thickness 

H supported by a rigid, smooth base. Instead of requiring all effects 

to vanish at infinite depths, we impose instead the conditions 



40 

w(x,y,H) = 0 

,; (x,y,H) = 0 xz 
,; (x,y,H) = 0. yz 

These conditions lead to the following expressions, for use with Eq. 

4.1-8: 
a 1H -a H 

< Al ,A2 ) = F 1 ( ~' y) < e e 1 > , 
~H -a H 

< Bl'B 2 ) = F2 (~,y) < e e 2 > , 

(Cl,C2) = F3(~,y) < e 
~H -~H 

' e ) 

~H -a H 
< Dl,02) = F 4 ( ~, y) < e e 2 ) , 

= - S(8,y). h2 (a.2 + ~2 + /) sinh a.2H 
G F0 (~,y) 2 2 

2 
F ( A ) = [2( A2 + y2 ) - k 2 ] h H ' h H 0 ,..., Y ,... cos a.1 sin ~ 
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The resemblance of the denominator F ( ~, y), to the Rayleigh func-
o 

tion F(~,y) is noted. But whereas F(~,y) is algebraic and contributes a 

single pole, F (~,y) is transcendental. 
0 

Ewing et al. (25) offer us 

scant comfort in their reassurances that the number of zeroes 

of F (~,y) is finite. 
0 

The integration of these relations, while 

undoubtedly relevant to the problem at hand, was not undertaken by the 

author. 

A second geometry of interest to the rolling compactor is that 

associated with plane strain. For harmonic loading of a rectangular 

region on the surface of a half-space, a plane-strain approximation 

(corresponding to the loading of an infinite strip) yields errors on the 

order of 10 percent when the length-to-width ratio of the rectangle is 

10:1. Computational time is reduced by approximately 90 percent, since 

the transforms and their inversions are now accomplished with single 

integrals. By techniques similar to those of the last section, we can 

arrive at the following expressions for the case of plane strain in an 

elastic half-space, where the infinite dimension of the loaded area is 

parallel to they axis and the z axis is positive downwards. 

< ~,; > S 2 2 -cclz 
= G F( ~) { ( 2 ~ - k ) < j ~, - cc1 > e 

F( ~) 
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a:l = I ~2 _ h2 

<Xz = I ~2 - k2 

1 C 
- j ~dx sc ~) =-- J S(x) e 

./ 2 7t -c 

where 2c is the finite dimension of the loaded area. Of special 

interest to us are the resulting expressions, 

w(x,o) 1 (4.2-3) 

and 

(4.2-4) 

4.3 Evaluation of the Integrals 

The principal contribution of Thomson and Kobori in (17) is a 

direct method for the evaluation of integrals like those of 4.2-2, 4.2-

3, and 4.2-4. Consider an integral of the form 

b !!ifil. 
f F ( ~) d ~ 
a 
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F(~) = O, ~ real 
0 

The integrand, as written, is an integral over the real ~ axis. Unfor-

tunately, the pole contributed by the denominator lies in the path of 

integration. One workable approach to the problem is a tedious contour 

integration along a path encircling the pole. The branch barriers, 

however, require that a convoluted path be taken to maintain analyticity 

(25). 

Thomson and Kobori consider, instead, a path along the real axis. 

In the vicinity of the pole an excursion is made on a semicircular arc 

of radius R (Fig. 4-1). The integral over this path is given as 

= 

J 
C 

~ d~ F( ~) 

~ -R 
f o !!ifil. d~ + f HF((~)) d~ + 
a F( ~) r ,-, 

b 
J 
~ +R 

0 

fil.fil. 
F( ~) d ~ 

where ~ is the pole and r is the semicircular arc. 
0 

The value of the 

first integral is obtained in the limit by letting R? 0: 

The integral over the segment r, in the limit, goes 

to -jrcRes(~ ), according to Hildebrand (25). The remaining terms define 
0 

the Cauchy principal value of the integral: 
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Im fJ 

a {Jo b 

Fig. 4-1. Path of integration around a singularity. 
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b !!ifil_ f3 -R b 

P f F(A) df3 ~ lim  { JO !!ifil. df3 + J ~~~ df3} • 
a ,., R+O a F(f3) f3+R ,., 

Thus,  we  write 

0 

b !!.ill - b .!!ifil. 
f F ( f3) d f3 - p f F ( f3) d f3 -j 1t Res ( f3o)' 
a a 

Res( f3 ) 
0 

= H(@) 
FI  ( f3) 

As described  so  far,  the  approach  is  not  new. 

(4.3-1) 

The  problem  of 

evaluating  the  improper  integral  has  been  reduced  to  the  evaluation  of 

its  principal  value.  The  contribution  of  Thomson  and  Kobori  is  in  their 

application  of  a  technique  developed  by  Longman  (26)  for  obtaining  the 

principal  value.  We  first  translate  the  origin  of  the f3 axis  to  the 

singularity,  writing,  say, 

!!..LJll. = f  ( f3 -f3 ) = f  ( ~) • 
F ( j3) o 

We then  consider  an  interval  symmetric  about f3 and  express  the  inte-
o 

grand  as  the  sum  of  even  and  odd  components: 
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The integral of the odd component on the symmetric interval vanishes, 

whereas the integral of the even component is just twice the integral 

over one half of the interval: 

a a 

f = 2 f 
-a 0 

Thus, the problem of obtaining the Cauchy principal value is in turn 

reduced to one of evaluating the integral of a function unbounded at one 

limit, for which methods are known (27). 

The subtraction of the residue term in 4. 3-1 has an interesting 

interpretation attributed to Lamb (18) but developed more fully by 

Quinlan (21). As improper integrals, expressions like those of Eq. 4.2-

2 and 4. 2-3 have some indeterminateness. As formal solutions to the 

problem posed, they satisfy the dynamic equations and the prescribed 

boundary conditions, but they admit the possibility of waves propagating 

inwards from infinity to the source. Physically, such a possibility is 

obviated by material damping in the medium, but no such damping has been 

incorporated in our model thus far. By subtracting half of the residue 

at the pole, we are eliminating the energy associated with incoming 

waves, enforcing a Sommerfeld radiation condition (25). The physical 

significance of the pole is that it is associated with a (non-existent) 

resonance condition of standing waves in the horizontal planes in which 

we executed our transforms. These standing waves are the superposition 

of outgoing and incoming waves, and their presence in our solution is 

avoided by removing half the energy contributed by the Rayleigh pole. 
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A more complete description of the procedures followed in evaluat-

ing the integrals of Eqs. 4.2-3 and 4.2-4 is given in Appendix B. 

4.4 Applicability of the Linear Model 

The foregoing development rests on the assumption that the soil 

mass is homogeneous and of semi-infinite extent and that it possesses 

the properties of isotropic linear elasticity._ All of these assumptions 

are contradicted to some degree by real soil and pose some restrictions 

on the applicability of the model. 

In the first place, the linear-elastic constitutive relations are 

conservative, whereas soil is a dissipative medium. Figure 4-2 compares 

the stress-strain relations under cyclic loading of actual soil to the 

idealized behavior assumed so far. Two important features are absent 

from the linear model. The first is the characteristic hysteresis loop, 

where the stress path taken during unloading differs from the path 

during loading. Since the linear model is conservative, the stress 

state it predicts is a single-valued function of the strain alone. The 

second feature lacking is the permanent settlement associated with 

repeated loading, which progressively translates the points of the 

hysteresis loop to the right on the stress-strain diagram. 

Although the most visible effect of compaction is the permanent 

deformation of the soil, the usefulness of the linear model is less 

restricted than it may first appear. The linear model will not predict 

any plastic behavior, but the transmission of energy from the compactor 



48 

a 

(a) 

a 
Permanent settlement 

(b) 

CJ 
.E 
"O 
aJ 
0 -C: 

:) 

E 

Fig. 4-2. Cyclic loading of (a) linearly elastic material, 
(b) material with hysteresis darnpin~. 
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to the soil is intimately connected with stresses and deformations that 

are largely elastic. It is this transmission of energy, according to 

Brumund and Leonards (14), that determines the plastic evolution of the 

medium. The validity of the linear model, at this stage, rests on the 

relative importance of the elastic and plastic processes during this 

energy transfer. 

Although the linear model does not incorporate material damping, it 

does model a second mechanism of energy dissipation known as "geometric 

damping", which is the radiation of energy away from the vicinity of 

loading. The description of the loss as "geometric" reflects that it is 

the infinite dimensions of the medium rather than its material proper-

ties that permits the conservative model to predict steady-state 

vibrations. (In the absence of some dissipation, a steady state would 

not be attainable.) In foundation engineering, it is recognized (12,39) 

that geometric damping is the dominant mechanism of energy dissipation 

in soil undergoing steady-state vibration, to the extent that material 

damping may be neglected in a first estimate of the frequency-response 

characteristics. Since ours is a steady-state problem as well, the 

linear model should adequately predict the amplitudes of forces and 

displacements. 

A caution is in order, however, that the soil beneath foundations 

is already in a compacted state, so that its behavior is more elastic 

than that of uncompacted soil. We are concerned, by contrast, with soil 

that is undergoing transition to this state, and the internal damping 
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supplied by the soil will probably modify the compaction dynamics con-

siderably from those predicted by the linear model. Two features of our 

problem are encouraging: 

( 1) The principal effect of damping is to. alter the magnitudes of 

a system's response at resonance. It only weakly affects the frequency 

at which resonance occurs. Thus, the underdamping of the linear model 

may cause us to overestimate somewhat the effectiveness of compaction at 

resonance, but we should still obtain a usable prediction of the desir-

able frequency of operation. 

(2) Satisfactory compaction is almost never accomplished in a 

single pass of the roller. Typically 5 to 10 passes are required. The 

greatest plastic deformations accumulate in the earliest stages (6,14), 

so that the quantitative accuracy of the linear model should improve 

after a few passes have been made. 

This multi-pass requirement also gives us some confidence in our 

treatment ~f the soil as a homogeneous mass with isotropic properties. 

There is certainly some difference in the properties of the soil at the 

leading and trailing edges of the contact area, owing to the accumula-

tion of residual stress and settlement during the passage of the compac-

tor. Furthermore, the geometry of the drum-soil interface is asymmetric 

because of the settlement behind the drum. These effects are not 

treated by the linear model, which is used to estimate the spatial 

distribution of strains during a single pass of the compactor. If the 

asymmetry and inhomogeneity introduced by a single pass is not great, 

the linear model should provide useful estimates. 
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The constitutive properties of an isotropic, linearly elastic 

medium are characterized by various parameters: Young's modulus (E), 

the shearing modulus (G), Lame 's constant (A), and Poisson's 

ratio (v). Any two of these are sufficient to determine the others. 

In this study we have used Poisson's ratio and the shear modulus. 

Poisson's ratio for granular soils can vary from 0.25 to 0.35 (12); for 

cohesive soils, it is somewhat higher and can exceed 0.5 for 

overconsolidated soils (16). Since the principal applications of vibra-

tory compaction are to non-cohesive or moderately cohesive soils, we 

have assumed a value of 0.3. 

The shear modulus of soils is affected by properties and conditions 

as diverse as the average confining pressure, the void ratio, the degree 

of saturation, the soil temperature, and the grain sizes and shapes. 

The two dominant parameters in a non-cohesive soil are the void ratio 

(e) and the average confining pressure ( er ). Richart (12) has provided 
0 

the following correlations, 

for round-grained sands: 
2 1/2 

G = 2630 ( 2• 17 - e) 
1 + e 0o 

for angular-grained sands: 
2 1/2 

G = 1230 <2• 97 - e) -
1 + e 0o (4.4-1) 
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where G and a are in lb/in. (For SI units of kPa, substitute 6905 for 
0 

2630 and 3230 for 1230.) The formula for angular-grained sands has been 

used in this study, since it also affords a reasonable estimate for 

moderately cohesive soils. 

The void ratio of a soil declines considerably as compaction 

proceeds. This in turn has a powerful effect on the stiffening of the 

soil. In the author's opinion, the worst failing of the model proposed 

in this study is that it does not track the changes in the void ratio. 

This is a settlement effect that neither the linear model nor the non-

linear constitutive relations directly predicts, although in Patten's 

lumped-parameter model the effect is encompassed in the overall plastic 

deformation by suitable selection of coefficients. The best treatment 

that the distributed parameter model can accord is to employ an average 

value (e = O. 8) in all computations. Some empirical correlations for 

residual settlement have been offered (14,40) but owing to their lack of 

generality they have not been introduced here. Conceivably, such 

correlations could be used to update the model properties following each 

pass of the compactor. 

The dependence on confining pressure is more useful to us, since 

the nonlinear relations of Section 6 predict the augmentation of the 

confining pressure by induced stresses. We are therefore able to simu-

late the stiffening properties of soil during compaction. The initial 

confining pressure at any point in the soil depends on the weight of the 

soil column overtop and the additonal pressure introduced by the static 
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weight of the compactor. 

coordinate stresses is 

The average confining pressure in terms of 

A 

The contribution of the soil column is 

(j = pgz z 

(j = (j = K z 
X y 0 

K V = 
0 1 - V 

where 

pg is the specific weight of the soil, 

z is the depth of interest, 
K is the "coefficient of earth pressure at-rest" (2). 

0 

This gives a contribution to the confining pressure 

1 + V 
al = 3(1 - v) pgz. 

The effect of the compactor weight is estimated from the formula 

for uniform loading of an infinite strip on the half-space surface 

( 41). For the geometry shown in Fig. 4-3, 

(j =.9..[ex + sin ex cos ( ex + 2 ~)] z 1t 

(j =.9..[ex- sin ex cos ( ex + 2 ~)] 
X 1t 

(4.4-2) 

(jy =v(a +a) . 
X Z 
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Fig. 4-3. Uniform loading of an infinite strip on the surface 
of an elastic half-space. 
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Here, q is the contact stress, assumed uniform; we divide the weight of 

the compactor at the drum-end by the contact area: 

w 
C 

q = 4 cd 

where 

Wc is the static load at the drum, 

2c is the contact area width,. 

2d is the contact area length. 

Directly beneath the compactor, Eqs. 4.4-2 reduce to 

4 -1 C cr2 = 31t ( 1 + v) q tan z 

The initial confining pressure beneath the drum is just the sum of 

the soil and compactor effects: 

Figure 4-4 shows the superposition of these effects for both the confin-

ing stress aµd the resulting shear modulus. The depth dependences of 

the two effects largely cancel and their superposition yields a reason-

ably uniform distribution for depths greater than 1 ft (0.3m). Based on 

this results, an average confining pressure of 3 psi ( 21 kPa) was 

assumed for uncompacted soil in the linear model. Section 6 discusses 

the introduction of range and depth dependence in the expressions des-
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cribing the growth of residual stress and how the latter is used to 

update the linear model's simulation of subsequent passes by the compac-

tor. 



5. SOLUTION OF THE COUPLED DYNAMICS OF THE COMPACTOR AND THE SOIL 

In this section we describe the coupling between the lumped-para-

meter compactor model and the distributed-parameter linear soil model. 

We also consider the errors introduced by treating a time-varying con-

tact area as time-invariant. 

5.1 Assembly of the Equations 

For the compactor model, we have the displacements wD and wF of the 

drum and frame, respectively, in terms of the known applied force F and a 

the unknown soil fraction Fs: 

(3.0-1) 

For the soil, we are able to express the surface displacement w(x,O) in 

terms of the spatial transform of the unknown contact stress distribu-

tion S(x): 

2-

w(x,O) 1 r a:1k S(~) 
ej ~dp =-- G F( ~) l21t -a, 

(4.2-3) 
a) 

sc ~) 1 J S(x) e - j ~dx. =--
l21t -a, 

58 
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Note the dependence of cx1, k, and F( ~) on the frequency w, as given in 

Section 4.1. 

The coupling of the compactor and soil is expressed by requiring 

F 
s 

w(x,O) = w0 for !xi < c 

d C 

I I 
-d -c 

C 
S(x) dx dy = 4cd f 

0 

S(x) dx 

where c and dare the dimensions of the contact area shown in Fig. 5-1, 

and where a symmetric distribution of stress · about x = 0 has been 

assumed. Note that the force F is taken as positive downwards on the s 

drum and upwards on the soil, which yields a positive (tensile) stress 

in the soil. 

The assumptions here are that the soil and drum remain in contact 

over one cycle, that the contact area between them is constant, and that 

the reaction and displacements are all simple harmonic functions at the 

frequency of the applied force. The first assumption may or may not be 

true, and the second and third assumptions are certainly false; the 

gravity of treating an average contact area and ignoring the intermit-

tent separation is discussed at the end of this section. 

With the assumptions made, there is still the problem that we do 

not know the magnitude of the contact force, let along its distribution 

as contact stresses. We follow the line of attack of Wong and Luco 

discussed in Section 2 and discretize the contact area by treating N 
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Fig. 5-1. Finite-length contact area. 
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elemental strips, as shown in Figs. 5-1 and 5-2. The stress across a 

single strip is assumed uniform, although of unknown magnitude and 

phase. We first translate the coordinate origin to the center of the 

j-th element, so that the surface displacement of the i-th point on the 

surface due to the stress beneath the j-th strip is 

2-
1 ... 0:1 k S. ( f3) j tbcij 

f J d f3 wij =--
G F ( f3) e 

l21t -... 
1 b 

ej~dx sj < f3> =-- f S. (x) 
l21t -b J 

P. 
S/x) = ....J... 2b 

where P j is the contact force per unit length on the j-th strip, 2b is 

the width of an elemental strip, and xij is the coordinate of the i-th 

point relative to the center of the j-th strip. Note that we employ a 

plane-strain approximation: both the length of a strip and its fraction 

of the total contact force are actually finite, and the total soil 

reaction is 

F = 
s 

N 
E (2d) PJ .• 

j=l 

Evaluating the transform of the contact stress for a uniform 

distribution across the element, 
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Fig. 5-2. Plane-strain approximation, showing discretization 
of contact area. 
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or 

where the compliance Hij is given by 

sin Sb 
~ 

j i3xij 
e d~. 

The evaluation of this integral is described in Appendix B. 

(5.1-2) 

(5.1-3) 

Equation 5.1-1 thus relates the incremental surface deflection at 

the i-th point to the contact force per unit length under the j-th 

strip. The total deflection at the i-th point is 

w "" i 

N 

r HiJ. 
j =1 

• p • 
j 

We chose the interpolation points i = 1, ••• ,N to be the centers of the 

strips j = 1, ••• ,N. Because the drum is rigid, and because the soil at 

the contact surface is assumed to stay in contact with the drum, 

i=l, ••• ,N 
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or 
N 
E HiJ" P. - w0 = 0, 

j=l J 
i = l, ••• ,N. (5.1-4) 

This gives us N equations in the N unknown forces Pj and the unknown 

drum displacement. We also have, from Eqs. 3.0-1 and 5.1-1, 

(5.1-5) 

(5.1-6) 

We therefore acquire two more equations, with one more unknown (wF), 

giving us N + 2 equations in N + 2 unknowns. In fact, the quantities 

Pj, w0 , wF, and Fa are all complex, so that there are actually 2(N+2) 

unknowns; the equations must be separated into expressions for real and 

imaginary parts. 

The solution of these equations yields the discretized distribution 

of contact stresses. This in turn permits the evaluation of Eq. 4. 2-4 

by superposition of the elemental effects, which yields the strain field 

beneath the compactor. 

5.2 Effects of a Time-Varying Contact Area 
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Throughout all of the foregoing the contact area between the soil 

and drum was assumed constant. In fact, it varies approximately with 

the square root of the deflection: 

where w1 and w2 are deflections at the center of the contact area. 

The effect of intermittent loss of contact at the edges of the 

contact area is a clipping of the reactive stress in these regions. 

This in turn introduces higher harmonics in the stress that the 

monochromatic model does not consider. Such effects are compounded in a 

sandy soil when the dynamic force exceeds the static load of the com-

pactor's weight, so that the soil cyclically goes into tension. A non-

cohesive soil will not support tensile stresses, so that clipping occurs 

in the subsurface stresses as well. But as noted in Section 3, the 

compactor inertia possesses a low-pass filter characteristic that makes 

the drum motion insensitive to the effects of any higher harmonics. We 

note, moreover, that the Fourier expansion for a clipped sinusoid 

sin <.it:' 0 < u1: < 1t 

f(t). { o, 1t < u1: < 2 TC 

f(t _2~ 2 TC < <.it: TC , 

is 
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1 1 f ( t) = "i + 2 sin wt 
2 

co 

!: 1 
7t n = 1 ( 2n / - 1 

cos (2n) wt 

which decays as l/n 2• Finally, we note that the linear model is being 

used to predict subsoil strains and not stresses. Even a noncohesive 

soil will support tensile strains, in the sense that the soil can dilate 

under its own inertia. For all these reasons, clipping of the stresses 

at the edges of the contact surface and beneath it is probably not a 

major liability to the model's accuracy. 

On the other hand, a more serious problem is created if the entire 

· drum rises clear of the soil. Figure S-3(a) shows measurements made by 

D'Appolonia et al. (6) of the drum displacement and acceleration of a 

vibratory compactor that hammers on the soil. Again, the fundamental 

frequency appears to dominate, and the effect of higher harmonics is not 

worrisome. But Fu (42) has noted the presence of long-period subhar-

monies in data published by Cowley ( 43) which Fu associated with the 

separation of the drum from the soil. Cowley's data is reproduced in 

Fig. 5-3(b). It is not clear, however, that the data were taken during 

steady-state vibration, and they may illustrate a transient associated 

with too-rapid variation of the driving frequency. In any event, when 

the compactor is travelling, a soil element can only experience a few 

pulses associated with a long-period subharmonic. 

To summarize, the nonlinear effects introduced by a time-varying 

geometry generate higher harmonics and possibly subharmonics in the 

response of even a linear medium. Although a considerable portion of 
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Effects of separation of comoactor drum from the soil. 
Drum displacement and acceleration measured by 
D'Appolonia et al. (6). 
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Cowley (43). 
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the stress spectrum is probably associated with frequencies higher than 

that of the driving force, the implications for the model's predictions 

of displacements and strains are not severe. The effect of subhar-

monies, if they exist, is more difficult to gauge, but it seems unlikely 

that they can promote or hinder the soil compaction in any substantial 

manner. 



6. THE NONLINEAR SOIL MODEL 

In this section we introduce the effects of material damping, the 

growth of residual stresses, and the attendant stiffening of the soil. 

Patten (1) has proposed that the stresses in soil be treated as the 

algebraic sum of an elastic and plastic component: 

o( E, ~ ) = oe ( E, ~ ) + op ( E, ~ ) • 

Both components of the stress are strain-rate dependent, which agrees 

with experimental results described by Adachi and Okano (44). The 

proposed functional form for each component is discussed in the next two 

sections, followed by a description of their implementation in the 

model. Further treatment of the implementation is given in Appendix B. 

6.1 The Elastic Component 

The proposed form of the elastic component is 

(6.1-1) 

For negligible strain rates (i.e., quasi-static loading), this reduces 

to 

E 
O' ( E,0) = --~-
e a1 + az E ' 

69 
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which is the well-known hyperbolic form (45) that models the onset of 

plastic deformation under static loading. The parameters a:1 and a:2 are 

the inverses of the initial tangent modulus and the ultimate strength of 

the soil. Figure 6-1 illustrates the significance of these parameters 

in a typical stress-strain diagram for sandy soil. 

For small stresses well below the ultimate strength, Eq. 6.1-1 can 

be approximated by 

• 
(6.1-2) 

E 1/a:1 = Young's modulus, 

which is the form employed in this study. 

The exponential term in 6.1-1 and 6.1-2 introduces rate-dependence 

into the constitutive relations, which in turn is associated with energy 

dissipation through material damping. If either a periodic stress or a 

periodic strain is prescribed in Eq. 6.1-1, the resulting path on a 

stress-strain diagram is a closed hysteresis loop (Fig. 6-2). The 

parameter a:3 determines the area inside the loop, that is, the amount of 

energy dissipated in one cycle. 

Patten (1) has suggested values for a:1, a:2, and a:3 suitable for a 

lumped-parameter force-displacement model. We require, on the other 

hand, a constitutive relation for stress and strain at a point, since 

our model is distributed. The tangent modulus E in Eq. 6.1-2 can be had 

from the shear modulus and Poisson's ratio, determined in Section 3.4: 
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Fig. 6-1. Hyperbolic :orr.i of stress-strain relation 
under static loadin~. 



0 
8 
X 

la ... 

0 

"' -. 
~ -

-B w .... ' . 
t)a, 

~ 

~ 

a3e: 
a • E e: e 

e 

~ .aHl .ClEO .cxn'.l .ClBl .CXB:l .OlCD .0110 .Ol2J .Ol3l .0140 .01!:D 
Strain E l'l'.> 

Fig. 6-2. Model prediction of elastic stress component, showing hysteresis loop. 

"-J 
N 



73 

E = 2 ( 1 + v) G. 

The value of a3 can be estimated from measurements of damping in 

soils. Two of the more commonly-used descriptors are the logarithmic 

decrement (o) and the specific damI?ing capacity (<Ji). The logarithmic 

decrement is obtained from the decaying amplitude of free vibration: 

where x 1 and x 2 are successive vibration peaks, as shown in Fig. 6-

3(a). The damping capacity is obtained from the steady-state vibration 

as the ratio 

u0 is the energy dissipated over one cycle and is given by the area 

inside the hysteresis loop on a stress-strain diagram (area A0 in Fig. 

6-3(b)). The definition of Up varies from author to author 

(46,47,48). We follow Hall and Richart (47) and use the area Ap in Fig. 

6-3(b). Noting that the width of the loop in this figure is greatly 

exaggerated by the scaling, we approximate Up by 
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(a) 

(b) 

Fig. 6-3. Description of damping in transient and steady-state 
vibrations. 

(a) Log decrement: o = ln (x 1/x 2). 

(b) Damping capacity: ~ = ~/~. 

From Hall e,;nd Richart (47). 
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where e is the amplitude of the oscillatory component of strain. 
a 

The log decrement and the damping capacity are related, according 

to Hall and Richart, by 

-2 c5 
<Ii "" l - e 

For dry sand in longitudinal oscillation with a confining pressure of 

5 4.3 psi (30 kPa) and an initial strain amplitude on the order of 5 x 10 

in./in., Hall and Richart report a log decrement of 0.1, which 

corresponds to a damping capacity of 18 percent. These conditions most 

nearly approximate those in the compaction process modelled here. 

We determine the damping capacity predicted by Eq. 6.1-2 by 

prescribing the strain as 

E = E + E sin ~. m a 

This gives 

w cos uJ; 
(j = E ( E + E sin ~) 
e m a 

The energy dissipated over one cycle is 
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= J (J e 
• e: dt. 

Letting a= wt, we can substitute from the expressions above to obtain 

CL. e:a w cos a I2Jt ( ) _j 
I!; e: e: + e:a sin a cos a e d a, a m 

0 

cj, = 2 

cj, = 2 

2ri; e: 
J [2!. + sin a J cos 
o e:a 

a:3 e: W COS 9 
a e a de 

2ri; 132 cos a 
f [ 131 + sin a] cos a e d a, 

0 

131 = e: / e: , m a 

132 = e: • 
a 

, 

Taking 131 = 1 and numerically integrating, we find by trial and error 

than an 18 percent damping capacity is given by 

132 = o. 03. 

For a frequency of 30 Hz and a strain amplitude of 5 x 10- 5 , we arrive 

at 
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~ = 3 sec (3 s) 

6.2 The Plastic Component 

The proposed form for the plastic component of stress is 

(6.2-1) 

• W( e,e) is a functional that describes the work history of a soil 

element: 

e t 
W( e, ~) J J • = a de = a(t)edt (6.2-2) a a e 0 

0 

where (J is the applied stress. ER is a bounding energy configuration a 
related to the recoverable energy at a given stress state: 

(6.2-3) 

where T and V are the kinetic and recoverable strain energies, on a 

volumetric basis: 

T 1 ·2 = - p w 2 

V 1 2 =-E e 2 
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A principal feature of these expressions is that they relate the growth 

of residual stresses to the stress history of the soil, a dependence 

noted by Feda (13). Moreover, the expressions agree with the 

observations of Brumund and Leonards about the proportionality between 

the energy transmitted to a soil element and its plastic deformation. 

The applied stress in Eq. 6. 2-2 is transmitted from element to 

element by non-conservative elastic forces, but some of the work it 

performs appears as kinetic energy rather than as strain energy or as 

energy dissipated by material damping. To see this, we consider a force 

balance on the element shown in Fig. 6-4. The applied stress is taken 

as the elastic stress acting on one side of the element while an 

incrementally smaller elastic stress acts on the other side. A force 

balance yields 

or 

p(~ !:::.y &.) w = (~ t:::.y)(cr - cr) a e 

cr =cr +pwt;z.. a e 

Integrating for the volumetric energies 

J cr d e = J cr d e + J p w M d e. a e 
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We note that 

(t.z) de: = d( e: tsr.) - e: d(t.z) = dw - e: d(t.z). 

In the limit as t.z + O, the second term vanishes as a second-order 

differential. Then 

lim f p w tsr. de:= J ·· du pw 
t.z+O 2 1 • = - pw 2 

= T . 
Thus, 

J aa d e: = J ae d e: + T, 

and, for a5 = 1, we can rewrite Eq. 6.2-1 as 

~ dt - ~ E e:2 }. (6.2-4) 

The coefficient a4 in 6. 2-4 governs the rate of growth of the 

plastic stress. A value of a4 was estimated from measurements made by 

D'Appolonia (6) of the residual stresses induced by a vibratory roller 

similar to the one modelled here. D'Appolonia's measurements are shown 

in Fig. 6-5. Iterations with the model indicated that a suitable value 

would be 

a4 = 1 (dimensionless) • 
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6.3 Implementation of the Nonlinear Relations 

Figure 6-6 depicts a compactor rolling over a fill with a 

speed v to the left. 
0 

We consider a soil element initially at a 

distance x0 to the left of the compactor. If we take the origin of the 

x axis as being fixed to the base of the drum so that it translates to 

the left with speed v O , then we may characterize the position of the 

soil element relative to the drum as 

x(t) = V t 
0 

- X • 
0 

(6.3-1) 

By the assumptions of the linear soil model, the strain field in the 

soil can be described by 

e:(x,z,t) = e:5(x,z) + ~(x,z,t), (6.3-2) 

En(x,z,t) 
A 

= e:(x, z) j u1: e , (6.3-3) 

where e:5(x,z) is the static strain introduced by the compactor's 

deadweight and En(x,z,t) is the assumedly sinusoidal dynamic strain. 

If we take x(O) = x0 sufficiently large, then we may consider the 

strains at earlier instant (t < 0) as negligible. Then we can fully 

characterize the strain history of an element at a given depth, z: 

e:(t; z) = e:5(x(t),z) + ~(x(t),z,t). (6.3-4) 
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Use of Eq. 6. 3-4 with Eq. 6. 1-2 permits us to describe the elas.tic 

stress as a function of time alone for a given depth; Eq. 6. 2-4 then 

provides us with the growth of the residual stress. Finally, the 

residual stress can be taken to augment the subsurface confining 

pressure, which, through Eq. 4.4-1, describes the progressive stiffening 

of the soil. The effects of previous compaction are thus introduced 

into the simulation of subsequent passes by the compactor. 

In Section 4.4 a formula (Eq. 4.4-2) was introduced for determining 

the subsurface stresses associated with the uniform static loading of an 

infinite strip on the surface of an elastic half-space. This permits 

computation of the strains by Hooke's Law, e.g., 

1 
E = - [ cr - v( cr + cr ) ] • z E z X y 

The static component of strain ES in Eq. 6. 3-4 can be computed using 

this formula. A somewhat better approximation is to be had, however, by 

relaxing the requirement that the static contact stress be uniform. 

Figure 6-7(a) illustrates the distribution of normal stress beneath a 

rigid wheel. The deformation of the soil immediately beneath the wheel 

is plastic, but the distribution can be taken to be approximately that 

predicted by the Hertz theory of contact stress (17), which provides the 

semi-ellipsoidal distribution of Fig. 6-7(b): 



Fig. 6-7. 
(a) 

(b) 
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under a rigid wheel (from Karafiath (16)); 
according to Hertz theory of contact stress 
(Timoshenko and Goodier (17)). 



a (x) 
C 

86 

= q / 1 - ( x/ C) 2 , 
w 

C q =-
'Jt'Cd 

(6.'.j-5) 

where, as before, W c is the compactor deadweight and 2c and 2d are, 

respectively, the width and length of the contact area. 

The subsurface strain fields generated by such a distribution may 

be obtained by a difficult integration. A somewhat simpler approach is 

to treat the static contact stress distribution as we did the dynamic 

contact stresses. We again discretize the contact area into elemental 

strips whose individual loads are assumed uniform. We then determine 

the magnitudes of the elemental loads by applying Eq. 6. 3-5 at the 

center of each strip. The strains generated by each elemental load are 

then to be had from Eq. 4.4-2 and from Hooke's Law, and by superposition 

we finally obtain the static component of strain at any subsurface point 

of interest. 

The evaluation of the integral in Eq. 4. 2-4 yields the complex 

representation of the dynamic component of strain in terms of the 

contact stress. Again, the contact stress distribution is discretized 

(its computation is outlined in Section 5) and superposition is applied 

to obtain the dynamic strain ~ at a point. The phasor representation 

of the strain in Eq. 6.3-3 derives from treating the applied force as 

F (t) 
a 

2 . ut = m e w eJ 

2 = me w (cos uJ:. + j sin u:J:.). 



If instea~ we write 

F (t) 
a 
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2 = m e w cos ti1: 

then the dynamic strain may be characterized as 

A A 

= (Re e:) cos ti1: - (Im e:) sin t£• 

(6.3-6) 

In numerically integrating the expression for residual stress over 

time, it is necessary to employ the static and dynamic strains at 

numerous instants (at least several times per vibration cycle). It is 

not computationally feasible to evaluate the static and dynamic 

components of strain on the correspondingly dense spatial mesh (because 

some thousands of integral evaluations would be required). However, the 

strain fields are sufficiently smooth that a somewhat coarser mesh will 

suffice as a basis for linear interpolation at intermediate points. 

Figure 6-8 illustrates the discretization that was employed in the 

computation of the contact stresses and subsurface strains, for both 

static and dynamic loading. We note in passing that, although Eq. 6.3-6 

can be represented as a single sinusoid with a phase lag, the bi-

harmonic representation is more suitable for interpolation, since some 

ambiguity may arise in the selection of the appropriate value of the 

phase angle. The results described in this study were obtained by 

separate interpolations in the real and imaginary parts of the dynamic 

strain. 
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Having the strain [ield so characterized, the elastic stress may be 

evaluated immediately using Eq. 6.1-2. The value of Young's modulus E 

has been permitted to vary with depth and range from the compactor in 

the computation of the elastic stress, since the spatial variation in 

confining pressure is directly calculable from the expressions in 

Section 4. 4. 

Finally, the residual stress may be obtained by numerically 

integrating Eq. 6.2-4. Although direct numerical integration is 

feasible, the author has chosen to rewrite the expression as a 

differential equation: 

and has used a variable-step Runge-Kutta integration. The Runge-Kutta 

algorithm affords an estimate of the relative error at each step and 

adjusts the step size accordingly (49). Moreover, the Runge-Kut ta 

method is easily adapted to a vector representation, so that the 

residual stresses at several depths may be obtained simultaneously. 

The integration is initialized at a large distance (16 ft = 5 m) 

ahead of the compactor and is continued until the drum has advanced a 

similar distance beyond the elements. At the end of the pass, the 

residual stress is averaged over the depth mesh. The averaged residual 

stress is considered to augment the horizontal components a and a of 
X y 

the average confining µressure, 
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a +a +a 
X y Z 

3 

so that the average pressure is augmented by one third of the computed 

change in the average residual stress. That is, if we consider the 

confining pressure at the beginning of a pass (t 1) and at the end of a 

pass (tz), 

[ C1 + C1 + a/t 1 )] + C1 ao (t 1) 
X Y. z = 3 

[ C1 + C1 + <11:/ t2)] + C1 

a/t 2 ) 
X Y. z = 3 

- 1 = 0o ( t 1 ) 3 [ 0p ( t 2 ) - 0p ( t 1 ) , 

where a , . a , and a are taken as identical at t 1 and t 2 because the 
X y Z 

initial and final points are equidistant from the compactor. The new 

value of the confining pressure is then used to update the estimates of 

the overall elastic moduli, for use in the simulation of the next pass. 



7. RESULTS AND DISCUSSION 

In this chapter we investigate the possibilities of improving 

compactor performance through several strategies: 

(1) redistributing the weight of the frame towards or away from 

the drum (Section 7.2); 

(2) varying the forward speed of the compactor (Section 7.3); 

(3) implementing a controller that will track the change in the 

system resonant frequency from one pass to another (Section 7.4). 

The results presented in this chapter estimate the effects of 

various parameters on the compaction process. The approach taken in the 

investigation was to vary one parameter at a time while holding all 

others constant. It was therefore necessary to select certain "default" 

values. These are tabulated in Appendix A, Table 2. We emphasize that, 

unless stated otherwise in the discussion below, the value of every 

parameter is that given by Table A-2. 

The predictions made by the linear compactor-soil model using the 

default values are shown in Figs. 7-1 and 7-2. The soil model employed 

is that of previously uncompacted earth; that is, the elastic moduli are 

those predicted by the model on the first pass, without adding in the 

effects of induced stress. We note several characteristics of these 

frequency-response functions that seem to hold true in all the cases 

examined in this investigation: 

(1) Two resonance peaks are observed in the response functions for 

drum displacement, frame displacement, and force transmitted to the 
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soil. The lower resonant frequency occurs in the range of 5 to 10 Hz 

and its effects are most pronounced for the frame motion; its presence 

is barely discernible in the plots of the drum motion and the 

transmitted force. By contrast, the resonance peak in the range of 25 

to 30 Hz seems merely to weaken the high-frequency roll-off in the frame 

motion, but it magnifies considerably the amplitudes of the drum motion 

and transmitted force. The implications for design and operation of a 

compactor are fortunate, since one would like to maximize the 

transmitted force while minimizing frame vibrations (in the interest of 

increased operator comfort and reduced maintenance). Most vibratory 

roller compactors of the size treated here are designed to operate in 

the range of 20 to 30 Hz, so that, for single-pass compaction at least, 

they are likely to be operating near the optimum frequency. 

(2) The transmitted force is maximized at the same frquency (or 

slightly higher, by 2 or· 3 Hz) as the drum motion. Thus, if the 

interest is in maximizing the transmitted force, it should prove 

sufficient to measure the drum motion to determine whether operation is 

at resonance. (A double integration of an accelerometer output would 

yield the drum displacement.) We note that, although increasing the 

operating frequency causes the generated force to grow without bound, 

· the transmitted force slackens and appears to reach a constant value. 

The implication is that the effectiveness of a compactor cannot be 

improved simply by driving the eccentric at higher speeds to generate a 

large force. 
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( 3) The frequency dependence of the magnitudes of both the drum 

motion and the transmitted force are markedly lopsided. Operation below 

the resonant frequency incurs a severe penalty in the force transmitted, 

while operation above resonance is only slightly suboptimal. For 

operation at a constant frequency, or in the absence of good estimates 

of soil properties, one should select as high a frequency as possible. 

As the soil stiffens with repeated coverage, the resonance peak will 

shift to the right on the frequency-response diagram, but if the initial 

operating frequency is sufficiently high, the compactor will remain on 

the "plateau" to the right of the peak. (This is a conclusion at which 

Converse (11) arrived through experimentation.) 

Figure 7-3 illustrates the growth of residual stress with each pass 

of the compactor for the various default conditions. It also 

illustrates a deficiency of the model, in its failure to treat plastic 

failure at the soil's surface (16). The contact stresses immediately 

beneath a heavy, rigid drum typically exceed the ultimate strength of 

the soil, so that a small zone of plastic failure occurs. But since the 

upper foot or two of the sandy soils modeled here do not usually benefit 

from compaction anyway (11), the failure to treat this region accurately 

is of lesser concern. 

All of these characteristics exhibited by the model were observed 

in the cases discussed below and are not influenced by the selection of 

the default parameters: the frame and drum weights and inertias, the 

suspension stiffness and damping, the contact area dimensions, the 
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elastic moduli of the soil, and the parameters appearing in the 

nonlinear constitutive equations. The compactor weights and suspension 

stiffnesses were obtained from manufacturors' data, and the computation 

of the lumped inertias was discussed in Section 3. The elastic moduli 

of the soil were shown in Section 4. 4 to depend on the · confining 

pressure and void ratio. The method of estimating the material 

constants a3 and a4 was described in Section 6. Thus, the only 

parameters requiring estimation are the contact area width, the average 

confining pressure, and the void ratio. 

The sensitivity of the model to these three parameters is therefore 

discussed in the following paragraphs as a preface to the discussion of 

the results of the optimization studies. 

7.1 Model Sensitivity to Input Parameters 

A value of 9 inches (230 mm) was assumed for the average width (2c) 

of the contact area during vibration. The static sinkage corresponding 

to such a dimension is O. 36 in. (9 mm). Referring to Fig. 7-1, the 

maximum amplitude of the drum vibration (at resonance) is 0.1 in. (3 mm) 

zero-peak, so that the drum and the soil at the center of contact should 

remain in contact over one cycle, with a variation in the contact area 

of -15 percent and +13 percent at the extremes of motion. For the 

compactor modelled here, our failure to consider variation of the 

contact area over time would not appear to warrant concern. 

The effects of assuming other values for the contact area are shown 
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in Figs. 7-4, 7-5, and 7-6. Model predictions for six-inch, nine-inch, 

and twelve-inch widths are shown. The resonant frequency for the widest 

area is about 7 Hz higher than that for the narrowest area, for the 

amplitudes of both the drum displacement and the transmitted force. But 

while the value assumed for the contact area width has a strong effect 

on the estimated magnitude of drum displacement at resonance, it exerts 

hardly any effect on the prediction of the maximum force transmitted. 

Moreover, the high-frequency roll-off in the transmitted force is rather 

gentle, so that the uncertainty in the model's prediction of the peak 

frequency is less damaging. 

In Section 4. 4 it was noted that variations in the void ratio 

during compaction were not accounted for by the model and probably 

represent its most serious failure. Unfortunately, the evidence of 

Figs. 7-7, 7-8, and 7-9 substantiates this conjecture. These figures 

compare model predictions for void ratios of 0.6, 0.8, and 1.0. As with 

the effects of uncertainty in the contact area, the conceivable 

variations in the void ratio introduce a band of uncertainty of about ±5 

Hz in the value of the peak frequency. This time, however, it is the 

magnitude of the transmitted force at resonance and higher frequencies 

that shows sensitivity to the assumed value of the parameters, whereas 

the peak response of the drum motion is nearly unaffected. The model 

simply fails to account for a great deal of stiffening that occurs in 

compaction through the reduction in void ratio, and therefore it will 

consistently underestimate the rate of increase in the peak frequency. 
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Although damaging to the model's credibility, the failing is less 

severe than it initially appears. Figures 7-10, 7-11, and 7-12 show the 

effects of assuming different values for the average confining 

pressure:· pressures of 2, 3, and 5 psi (14, 21, and 34 kPa) are 

compared. The effects are almost identically those of varying the void 

ratio. The model of the compaction process employed in this study does 

treat the variation in confining pressure as compaction proceeds, 

through its computation of the induced stress. The trends in the two 

quantities with increasing compaction--toward lower void ratios and 

higher pressures--cause the same sorts of shifts in the frequency-

response characteristics, since both processes increase the soil 

stiffness. It was noted in Section 6. 2 that the parameter o:4 controls 

the rate of growth of residual stress predicted by the nonlinear 

relations. It would appear that an adjustment to o:4 which would cause 

it to overestimate the residual stress would successfully mimic the 

effects of void ratio reduction. This is not surprising since, first, 

the void ratio and residual stress (which contributes to the confining 

pressure) enter into the compactor dynamics in the same fashion--by 

increasing the elastic moduli. Second, Brumund and Leonards (10) argue 

that the densification provided by compaction is related to the work 

transmitted to the soil, and our model of the growth of residual stress 

is couched in precisely such terms. 

Therefore, an empirical correlation between the two processes of 

veld reduction and stress inducement might do much for the accuracy of 
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the model's prediction of the soil and compactor dynamics. Although 

such a correlation has not been implemented here, we note that any 

trends suggested by the predicted growth of residual stress are merely 

reinforced by the process of void reduction, so that some 

generalizations from the model predictions are still in order. 

7.2 Effects of Redistributing Frame Weight 

A redistribution of the weight of the frame towards the drum will 

have several effects: 

( 1) The static sinkage at the drum will be greater, producing a 

larger contact area. 

(2) The static component of stress in the soil will be increased, 

but not in direct proportion to the change in weight, since the contact 

force is spread over a large area. 

( 3) The average confining pressure in the soil directly beneath 

the drum will be greater, providing a temporary stiffening in the soil 

mass that will increase the frequency of resonance. 

(4) The effective inertia of the frame will be raised. 

The first and third effects both yield an increase in the frequency 

of resonance. The effect of increasing the contact area is to decrease 

the amplitude of drum motion at resonance and higher frequencies, while 

increasing the transmitted force at higher frequencies but leaving the 

magnitude at resonance unaffected (Figs. 7-4 and 7-5). The effect of 

increased confining pressure is also to increase the transmitted force, 
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both at resonance and above. The amplitude of dn•m motion at higher 

frequencies is somewhat reduced, however, tending to cancel the effects 

of increasing the contact area. We note that the work performed on the 

soil (energy transmitted) depends on both the amplitudes of the contact 

force and the displacement of the soil surface under the drum, so that 

the overall effect on the compaction of all these processes is not to be 

had by inspection of their separate effects. 

The interaction of these four effects was gauged in the following 

fashion. We consider cases where the mass distribution of the frame 

components is varied in such a way that the effective frame mass changes 

by -40, -20, 20 and 40 percent, while the total weight remains 

constant. The assumption is made that the mass is transferred from a 

point directly over the rubber tires to a point over the drum. Assuming 

that the effective frame inertia is 25 percent of the total frame mass 

to begin with, we in effect transfer -10, -5, +5, and +10 percent of the 

total frame mass to achieve the results stated above. The mass 

increment previously contributed nothing to the weight of the compactor 

at the drum, and after its transfer it contributes nothing to the weight 

at the tires. Therefore, a 40 percent change in the effective mass will 

produce a 10 percent change in the effective weight, and so forth. 

The contact area is estimated to increase in proportion to the 

square root of the sum of the drum and effective frame weights. This 

result is predicted by the Hertz theory of contact stresses (17) (which 

in its entirety is not applicable here, since it assumes elastic 
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behavior at the contact surface, whereas the soil immediately 

surrounding the drum undergoes plastic deformation). The assumed 

proportionality is based on the soil's acting as a linear spring under 

static loading. The contact area is proportional to the square root of 

the static deflection. If the deflection is directly proportional to 

the static load, then we can treat the contact area width as also 

proportional to the square root of the load: 

where the symbols A, c, 6, and W are, respectively, the contact area, 

contact width, vertical deflection, and total effective weight of the 

drum and frame. 

Figures 7-13, 7-14, 7-15, and 7-16 show the combined effects of the 

variations in contact area and deadweight on the confining pressure 

directly beneath the drum. The differences are negligible for depths 

greater than a few inches, certainly far smaller than the variation of 

the confining pressure with depth, so that the nominal value of 3 psi 

(21 kPa) was retained. The weakness of the effect is probably explained 

by the stress relief associated with the increased contact area. 

Thus, the contact areas and effective frame weights and masses were 

varied to simulate the cases outlined above. The results of the 

simulation are shown in Figs. 7-17 through 7-19. We note that 

increasing the frame mass reduces the amplitude of drum motion at 
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resonance but affects it very little at higher frequencies. The force 

transmitted to the soil at resonance, on the other hand, is hardly 

affected by reallocation of the weight but is magnified at higher 

frequencies by shifting the weight towards the drum. 

These effects seem to owe more to the increased contact area than 

to any dynamic effect of the frame inertias. Figures 7-20, 7-21, and 7-

22 show variations in the response function occasioned by changes in the 

effective frame mass of -40, -20, 20, and 40 percent, other parameters 

such as contact area and static weight being held constant. Practically 

no effect is exerted on the drum displacement or transmitted force. The 

frame's amplitude of vibration is magnified considerably by the 

reduction of its inertia, but this undesirable effect could be cancelled 

by increasing the suspension stiffness. The frame motion was noted 

previously to be not much affected by variations in contact area and 

confining pressure. The implication for design is that the frame mass 

may be distributed in such a way as to optimize compaction with no 

attendant increase in frame vibration if the suspension is suitably 

redesigned. 

However, the nature of this optimal distribution is still somewhat 

ambiguous and seems to depend on the operating frequency. At resonance, 

the contact force is nearly independent of frame mass; the larger drum 

motion provided by the reduced frame weights should therefore maximize 

the energy transmitted to the soil. On the other hand, for operation 

above resonance the reverse situation occurs, with the contact force 
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being maximized by an increased frame mass. 

The predictions for the growth of residual stress indicate the same 

trends. The evolution of the soil's stress profile with additional 

compactor passes is shown in Figs. 7-23 through 7-28, for the following 

cases: 

Figs. 7-23 through 7-25: compaction at 30 Hz for variations in 

effective frame mass of -40, O, +40 percent; 

Figs. 7-26 through 7-28: compaction at 35 Hz for similar 

variations in the frame mass. 

There is apparently some small benefit associated with increased frame 

mass at the higher frequency, but hardly any difference among the 

results for the three frame configurations at the lower frequency. 

Therefore, reallocating the frame mass seems of little utility, since 

the consequences appear to be frequency-dependent and, in any event, not 

very significant. 

7.3 Effects of Compactor Speed 

In all of the foregoing, the forward speed of the compactor was 

assumed to be 2 mph (3 ft/sec= 0.9 m/s). Figures 7-29 and 7-30 show, 

respectively, the effects of halving and doubling the compactor speed. 

As one might expect, the slower-moving compactor generates larger 

stresses per pass, since the underlying soil experiences more vibration 

cycles ( 7). On the other hand, the faster-moving compactor can supply 

more coverages in a given amount of time. If one compares the results 
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of, say, the first pess by the slowest compactor (Fig. 7-29) with those 

of the second pass by the medium-speed compactor (Fig. 7-3) or of the 

fourth pass by the fastest compactor (Fig. 7-30), the differences are 

barely.distinguishable. Therefore, if the goal is to achieve a given 

state of compaction in minimum time, the forward speed makes little 

difference. Faster operation merely requires the compactor to supply 

extra coverages. 

7.4 Effects of Tracking Changes in the Resonant Frequency 

As the soil stiffens under successive passes by the compactor, the 

resonant frequency of the soil-compactor system increases. There is the 

possibility that a compactor operating slightly above resonance will 

find itself, during subsequent passes, operating at a sub-resonant 

frequency, where the force transmitted to the soil is greatly reduced. 

A controller that would track th~ change in the resonant frequency might 

therefore provide more efficient compaction than could be obtained by 

operating at a constant frequency. 

Such a scheme was simulated using the various default values of 

Table A-2. After six simulated passes, the system resonant frequency 

had risen by only 1 Hz (from 30 Hz to 31 Hz). The results of the 

simulation, shown in Fig. 7-31, are barely different from those of 

operating at a constant 30 Hz (Fig. 7-3). It should be pointed out, 

however, that this simulation is probably not a fair test of the 

possible benefits of. a feedback controller. The actual stiffening of 
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the soil may be [ar greater than that predicted by the model developed 

here, which fails to treat the stiffening effects of void reduction. 



8. CONCLUSIONS AND RECOMMENDATIONS 

In this section we summarize the model predictions concerning the 

effects of frame weight distribution and operating speed and the 

usefulness of varying the operating frequency to track the shift in 

system resonance occasioned by stiffening of the soil during 

compaction. We also present a critique of the theoretical model of the 

compaction process upon which the findings are based. Recommendations 

are made for the improvement of the model. 

8.1 Concerning Design and Operation of Vibratory Roller Compactors 

In regard to the various optimization strategies examined: 

(1) The frequencies at which vibratory compactors currently 

operate are already close to the resonant frequencies (25 - 35 Hz) of 

the sandy soils modelled herein. The resonant frequency is the 

frequency of peak response for both the drum motion and the force 

transmitted to the soil. Operation at lower frequencies substantially 

reduces the transmitted force, whereas operation at higher frequencies 

incurs a smaller penalty. On the one hand, there is no benefit to be 

had in redesigning the eccentric drive of a compactor for much higher 

frequencies because, even though the generated force increases without 

bound at frequencies above resonance, the force transmitted to the soil 

approaches a steady value. On the other hand, compaction at a frequency 

slightly above resonance carries only a small penalty and provides an 

operating margin to accomodate changes in the peak frequency caused by 
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stiffening of t~e soil. 

(2) Redistributing the weight of the frame, either towards the 

drum or away from it, seems to have little effect on the force 

transmitted to the soil or in the generation of residual stress in the 

soil, for operation at resonance. For operating frequencies above 

resonance, there is a slight improvement to be had from a heavier frame. 

(3) A slowly-moving compactor generates greater residual stresses 

in its path than does a fast-moving compactor. However, the faster 

compactor is capable of supplying more coverages in the same time 

span. For a minimum-time criterion, there seems to be no marked 

advantage in operating at any of the speeds examined here. 

( 4) A feedback controller that would monitor the drum motion for 

changes in the resonance condition would be of little practical value. 

For the conditions modelled here, the resonant frequency increased by 

only 1 Hz during 6 simulated passes of the compact.or, so that compaction 

at a constant frequency yielded results almost identical to those 

obtained by modelling a feedback controller. On the other hand, there 

is reason to believe that the model underestimates the actual stiffening 

that occurs in the soil because of its failure to treat void 

reduction. Therefore the effectiveness of a feedback controller 

warrants further examination. 

In summary, the current designs and procedures employed in 

vibratory compaction appear to be already very close to optimum, and 

none of the pr~dictions of the model of the compaction process developed 
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in this study holds out much promise of improvement over existing 

designs and methods. 

8.2 Concerning the Validity of the Model and Improvement of its 
Estimates 

The following strengths and weaknesses of the model of the 

compaction process developed in this work should be pointed out: 

(1) The model does not consider the effects of settlement and void 

reduction in the path of the compactor. The asymmetric geometry 

introduced by settlement was not reckoned to be a serious problem but 

the failure to treat void reduction causes the model to underestimate 

the stiffening of the soil considerably. 

(2) The model does treat the cumulative effects of induced 

stresses, which contribute to the confining pressure in the soil and 

thereby increase its stiffness. 

(3) The effects of void reduction and stress inducement are quite 

similar in that they both enter into the system dynamics through 

enhancement of the soil stiffness. Therefore, the trends indicated by 

the model's treatment of the evolution of residual stresses would only 

appear more strongly in the results of a model that adequately treated 

the effects of void reduction. For this reason, the implications for 

compactor design and operation given in the preceding section are 

considered by the author to be valid. 

(4) The effects of other untreated nonlinearities and 

inhomogeneities--variations in the contact area over a vibration cycle 
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and spatial vuriations in material properties--seem to pose less serious 

threats to the model's validity. 

In summary, the model can be most improved by the additional 

treatment of void reduction. This might be accomplished by an empirical 

correlation of densification with energy transmitted to the soil, as 

suggested ·by Brumund and Leonards. In other respects, the model should 

yield a useful characterization of the dynamics of the compaction 

process and the resulting enhancement of the mechanical properties of 

soil. 
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APPENDIX A 

COMPACTOR SPECIFICATIONS AND MODEL INPUTS 

The tables in this section give nominal values for the compactor 

specifications and default values for the model inputs. All data 

presented in the text were obtained using the values given here, except 

where other values are explicitly stated to have been used. 

144 
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Table A-1 

Weights and Dimensions for Ingersoll -Rand SP56-DU Compactor 

FORTRAN 
Symbol Variable Name Customary (SI) 

Weights/ masses 

Overall 
@ drum 7980 lbf (3619 kg) 
@ tires 12720 lbf (5768 kg) 

Total: 20700 lbf (9387 kg) 

Components: 

Drum DWGHT 8777 lbf (3981 kg) 
Frame FWGHT 11923 lbf (5406 kg) 

Total: 20700 lbf (9387 kg) 

Eccentric moment m e ECCENT 444 lbm in. (5.12 kg m) 

Lineal dimensions 
Wheelbase L WB 127 in. (3.3 m) 
Drum length 2d DLNGTH 84 in. (2.1 m) 
Drum radius RADIUS 28 in. (0.7 m) 
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Table A-2 

Model Inputs 

FORTRAN 
Symbol Variable Name Customary (SI) 

I. Compactor 
Effective weights: 

Drum DRUMW 8777 lbf (39040 N) 
Frame FRAMEW 3974 lbf (17680 N) 

Effective inertias: 
Drum mD DRUMM 8777 lbm (3980 kg) 
Frame mF FRAMEM 2981 lbm (1350 kg) 

Contact area: 
Length 2d DLNGTH 84 in. ( 2. 1 m) 
Width 2c 2. *CWIDTH 9 in. (0.2 m) 

Suspension: 
Stiffness Kl STIFF 24054 lbf/in. (4210 kN/m) 
Damping K2 DAMP 3849 lbf/in. (674 kN/m) 

Speed Vo SPEED 3 ft/sec (0.9 m/s) 

II. Soil 
Average confining 

Pressure a (j PRESSC 3 psi (21 kPa) 
Void ratio 0 VOIDR 0.8 e 
Density p DNSITY 0.06 pci (1660 kg/m) 
Linear model: 

Poisson's ratio V PR,POIS 0.3 
Shear modulusa G GMOD 5570 psi (38 MPa) 
Young's modulusa E EMOD,EMODZ 14490 psi (100 HPa) 

Nonlinear model: 
a3 ALPHA(3) 3 sec (3 s) 
0:4 ALPHA(4) 1 

a Uncompacted soil (values updated for multiple passes). 



APPENDIX B 

Numerical Methods 

This appendix describes the numerical procedures used in evaluating 

the Fourier integrals for the elemental surface displacements and the 

subsurface strains; the reduction of the overall compliance matrix used 

to compute contact stresses; the integration of the residual stress 

equation. 

The Fourier integral evaluations and the matrix reductions were 

performed in double-precision (64-bit) arithmetic on a VAX 11/780. The 

numerical integration of the residual stress equation was carried out in 

single-precision (32-bit) arithmetic. A program listing is provided in 

Appendix C. 

B.l Inversion of Transforms 

We are faced with the evaluation of integrals like 

where 

w(x,O) = 

1 e(x,z) = ---
/~ 

1 
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(4.2-3) 

(4.2-4) 
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1 s(~) = ---
C • Av-! S(x) e-Jl-'"'dx, 

F( ~) 

I 21t -c 
2 2 2 2 = ( 2 ~ - k ) - 4 ~ CI l cz2 , 

(Il = ( ~2 _ h 2 ) 1 / 2 , 

CI2 = ( ~2 _ k 2) 1 / 2 • 

For each elemental compliance function, the contact stress S(x) is 

assumed unform, which gives 

S(x) 
p 

=- 2b 

s(x) 1 P sin @b = 
I 21t b ~ 

where P is the force per unit length on the elemental strip and 2b is 

the strip width. Then 

p 
e:(x,z) = 21th f 

a, 

(B.1-1) 

(B.1-2) 

We first note that the terms multiplying ej 13K in both integrands 

are even functions of ~. so that we can write 

w(x,O) 
p 

=-
1th sin ~b cos ~x d ~. (B.1-3) 

e:(x, z) 
p 

=-
1th 
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• sin f3b cos 13>c d ~ • (B. 1-4) 

The expressions may be non-dimensionalized by the following 

substituions: 

u = ~/k 
n = h/k = C /C S D = ( 1 - 2v )1/2 

2( 1 - v) 
a = w/C = kb. 

0 s 

This permits us to write 

where 

F(u) 
H (u) 

0 

p 
w(x, O) = --n:Ga 

0 

e:(x, z) 
p 

= n:Gb 

oo H0 (u)H 2(u) 

f u F(u) du 
0 

= (2u2 _ 1)2 _ 4u\u2 _ n2)1/2 (u2 _ 1)1/2 
X = sin a 0 u cos b a 0 u 

= (u2 _ n2)1/2 

2 2 2 1/2 aoz 2 2 1/2 = (2u - 1) (u - n ) exp [- - (u - n ) ] b 

2u2 (u2 - n2)1/2 (u2 - 1)1/2 exp [- aoz (u2 -1)1/2] • 
b 

(B.1-5) 

(B.1-6) 

Although the numerator terms H1(u) and H2(u) are somewhat different, the 

denominators are identical. It is the simple pole u0 contributed by 
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F(u ) = O, 
0 

that requires us to obtain the principal value of the integral by the 

methods discused in Section 4.3. 

We begin by noting that, although u multiples F(u) in the 

denominator, both integrands have limits as u + O: 

H (u)H 1 (u) 
lim { °u F(u) } = j a n 

0 u~ 

H (u)H 2(u) 
z lim { 

0 uF(u)} = a n exp (- j a n b). 
0 0 u~ 

As z + m, both integrands vanish. 

We next consider the behavior of the integrand terms on different 

intervals: 

Interval u F(u) H1 (u) H2(u) 

la 0 < u < n Real Imaginary Complex 
lb n < u < 1 Complex Real Complex 
2a 1 < u < uo Positive Real Real 

Real 
u = uo 0 Real Real 

2b u < u < (2u 0 -l) Negative Real Real 
Real 

3 ( 2u0 -1) < u < ul Negative Real Real 
Real 

4 u 1 < u Negative Real Real 
Real 
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(Here, the interval (l,2u 0 - 1) is symmetric about the pole, as required 

by the methods of Section 4.3. The value of u 1 depends on the method of 

integration that we employ on the semi-infinite interval 4, and its 

selection is discussed below.) 

Although the interval (0, 1] contains the two branch points (n and 

1), we are not concerned because we do not employ a closed-contour 

integration. A straightforward evaluation by Simpson's rule is employed 

on intervals la and lb. (We note in passing that the integrands are 

rather poorly behaved near the branch points, so that a reduced step 

size was employed in their neighborhoods.) 

In integrating around the pole, we employ Longman' s method, as 

discussed in Section 4.3 and in reference (26). We divide the 

integrands into even and odd components and integrate the even component 

over interval 2a. To ensure adequate convergence, we progressively 

halve the step size as we approach the pole, and halt the approach when 

the product 

H H 
o 1,2 !:JJ. 

u F(u) 

is sufficiently small. 

An additional technique introduced by Thomson and Kobori (23) is 

employed in this region. As u + U and F(u) becomes small, precision is 
0 

lost in the computation of the integrand. 

denominator near the pole, writing 

Therefore, we linearize the 
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F(u) :: F' (u ) (u - u ) • 
0 0 

The radius of linearization is computed from the second order residual 

of .the Taylor polynomial expansion: 

F(u) 

R(a) 

=F'(u) (u -u) +R(a), 
0 0 

= F" (a) (a - u ) 
0 

I a - u I ( lu - u I . 
0 0 

Taking F" (a) :: F" (u ) , we can select a to yield an acceptably small 
0 

error term R. 

Although the integrands diminish with increasing u, they do so only 

slowly. Interval 3 just beyond the pole contributes substantially to 

the value of the integrand, and care must be taken in the evaluation in 

this region. An adaptive-integration scheme described by Johnson and 

Riess (49) is employed here. The algorithm compares the values of 3-

ordinate and 5-ordinate Simpson's Rule approximations at each step to 

estimate the error of the approximation. 

control the error. 

The step size is varied to 

The adaptive integration is terminated at u = u 1, the value of 

which depends on the approximation employed in the last interval, 4. 

Different methods have been employed for the strain and displacement 

integrals, although the first method may be used for both. 

The first method, also developed by Longman (SO) and introduced to 

soil-vibration problems by Thomson and Kobori (23), is an adaptation of 
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a technique for acelerating the convergence of a slowly converging 

alternating series. The series 

can be rewritten in terms of forward differences: 

"" 
E 

n=o 

where 

Two conditions must be satisfied by the original series: 

(1) V > 0 n (i.e., the series alternates); 

(b.1-7) 

(2) Vn > Vn+l (i.e., the terms in the series are uniformly decreasing.) 

If these conditions are met, then the convergence of the forward-

difference representation is quite rapid. 

This technique can be adapted to the evaluation of the integral of 

an oscillatory function on a semi-infinite . interval. We divide the 

interval into subintervals whose endpoints are the zeroes of the 

integrand. The terms Vn in the series treated in Eq. B.1-7 are just the 
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integrals evaluated over each successive subinterval: 

a, 

J f(u) du = 
ul 

u 
J 2 f(u) du + 

u 
J 3 f(u) du+ ••• 

ul 

V 
0 

u2 

+ 

To use this method, we select u 1 to be the first zero of H0 (u) 

beyond (2u 0 1). We employ a Simpson's rule evaluation of the 

successive half-cycle intervals Vn. After each evaluation, we update 

the forward-difference table and add a new term to the series in Eq. 

B.1-7 and check for convergence. 

Several difficulties do arise in the application of this method. 

The satisfaction of conditions (1) and (2) above requires that the 

integrand oscillate about f(u) = 0 and that the magnitudes of the half-

cycle integrals be decreasing. The term H0 (u) does oscillate but in no 

simple fashion for x/b * 1. It is better to write 

H (u) 
0 

= sin au 
0 

1 = 2 [sin 

X cos b a 0 u 

(a + .!. ) u + sin (a 
0 b 0 

X 

b 
) u] 

and then integrate each term separately by Longman 's method. Each 

function will have a fixed period, and the denominator term F(u), which 

grows without bound, will provide a diminishing magnitude to successive 

integrals. 

For the surface displacement w(x, 0), a simpler method was found to 

work. For sufficiently large u, we can approximate 
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Hl (u) 1 
u F ( u) ::: -2-( n-,2,--_-1 )-u~2 • 

At u = 10, the error of the approximation is O. 7 percent for v = O. 3 

and it diminishes with larger u. We therefore take u 1 = 10 and write 

CD 
1 f 2 

u 1 2(n - 1) 
du. 

The approximation can be evaluated in terms of the cosine integral: 

where 

CD 
1 

f 2 2 
u 1 2(n - 1) u 

sin au 
0 

cos~ au du b 0 

1 sin k 1 u 1 + sin k2 u 1 
{-----=--2---

4(n - 1) u 

- kl Ci ( I kl u l I ) - k 2 Ci ( I k2 u l I ) } 

kl = a (1 + x/b) 
0 

k2 = a 
0 

(1 - x/b) 

CD 

cos(u) Ci(v) f du . u 
V 

The series representation used for evaluating Ci(v) is, from reference 

(51), 
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a, 

Ci(v) = y + ln V + r 
n=l 

(-l) nv2n 
2n (2n)? 

where y is Euler's number. 

expansion 

For large v (v) 20), the asymptotic 

Ci(v) = f(v) sin v - g(v) cos v 

f(v) 1 2? 4? 6 ! ... ) - - (l --+---+ 
- V 2 4 6 

V V V 

g(v) l 3? 5! 7! ... ) - - (l --+---+ 
- V 2 4 6 

V V V 

is used. We note that if k 1 or k 2 is zero, the product 

even though Ci(O) does not exist. 

The remaining operation in the evaluation is the subtraction of the 

residue term j1t Res(u ), 
0 

where 

F' (u) 

Res(u ) = 
0 

H (u ) Hi (u ) 
0 0 0 

u F' (u ) 
0 0 

i = 1, 2 

5 2 3 2 
= f { 4u 3 _ 2u _ 4u 4 - 3 ( n + l) 2 u + 2 2n / ~ } • 

[ u - (n + 1) u + n ] 1 

B.2 Solution of the Coupled Dynamics of the Linear Models 
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In Section 5, N + 2 equations were derived that permit us to solve 

for N discrete values of the· contact stress, plus the drum and frame 

displacements (Eqs. 5.1-4,5,6). Some complication is introduced because 

the coefficients and the unknowns are complex, but each complex equation 

may be written as two real expressions. That is, 

may be rewritten as 

and the unknowns ci and di solved for in terms of the coefficients a1 

and bi and the right-hand terms e and f. The solution method used here 

was Gauss elimination with implicit pivoting (49). 

B.3 Numerical Integration of the Nonlinear Relations 

A variable-step vector Runge-Kutta algorithm (subroutines RKO and 

RKl in Appendix C) was used to integrate the relation 

; (t) = 
p 

(6.2-4) 

Johnson and Riess ( 49) provide an extensive discussion of the methods 

employed for estimating the error at each step and for adjusting the 
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step size accordingly. 



APPENDIX C 

Program Listing 

The theoretical model developed in this study was implemented in 

the VAX FORTRAN program listed in the following pages. Three 

subprograms called in subroutine DYNMCS (FACTOR, SOLVE, and AKAPPA) are 

not listed here. FACTOR and SOLVE triangularize the compliance matrix 

by Gauss elimination; AKAPPA estimates the matrix's condition number. 

These subroutines may be replaced by similar routines from any 

mathematical library (e.g., IMSL). 
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C ************************************************************** 
C COMPACTION MODEL WITH HYSTERETIC STRESS GENERATION 
C ************************************************************** 
C 

IMPLICIT REAL*8CA-H),REAL*8CO-Z) 
C 

COMMON /UNIT/ NPRT,NDBUG,NPLOT,NSTRS,NIN,NOUT,NDBASE 
C 

INTEGER TITLEC20) 
CHARACTER DAY*9,THYME*8 

C 

C 
C 

C 
C 
C 

C 
C 
C 
C 

C 
C 

C 
C 

C 

PRINT 1000 
1000 FORMAT(' ENTER TITLE') 

READCNIN,1100) TITLE 
1100 FORM~TC20A4) 

WRITlCNPRT,1200) TITLE 
1200 FORMAT(//,lX,20A4) 

1300 

10 

CALL DATECDAY). 
CALL TIMECTHYME) 
WRITECNPRT,1300) DAY,THYME 
FORMAT(' PROGRAM RUN ON: 1 ,A9,3X,A8) 
WRITECNPLOT) TITLE,DAY,THYME 

INITIALIZE SOME PARAMETERS FROM DATA BASE 
CALL INIT 

LOOP ON ROLLER PASSES 
NPASS = 0 
CONTINUE 
NPASS = NPASS + 1 

LINEAR MODEL TO ESTIMATE STRAIN AMPLITUDES 

DYNAMIC SOLUTION FOR CONTACT STRESS AND COMPACTOR MOTION 
CALL DYNMCSCNPASS) 

GENERATE STRESS AND STRAIN FIELD 
CALL FIELDCNPASS) 

HYSTERETIC STRESS 
CALL STRESS CNPASS) 



161 

PRINT 2000 
2000 FORMAT<' ANOTHER PASS! (Y/N) ') 

READCNIN,2010) IYN 
2010 FORMATCAU 

IFCIYN .EQ. lHY) GO TO 10 
C 
C 

STOP 
END 
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C ********************************************************* 
C INITIALIZE COMMON 
C NOTE ALL DIMENSIONS IN INCHES, LB F, LB M. 
C (EXCEPT ROLLER SPEED, IN IN FT/SEC) 
C ********************************************************* 
C 

IMPLICIT REAL*8 CA-H), REAL*8CO-Z) 
C 

C 

C 

COMMON /UNIT/ NPRT,NDBUG,NPLOT,NSTRS,NIN,NOUT,NDBASE 

COMMON /SOIL/ EMOD,GMOD,PR,DNSITY,VOIDR,CSFT,PRESSC 

REAL*4 ALPHA 
COMMON /HYS/ ALPHACS) 

C 
COMMON /CMPCTR/ DLNGTH,CWIDTH,RADIUS,WBASE,FWGHT,DWGHT, 

1 ECCENT,FREQH,DAMP,STIFF,SPEED 
C 
C LINEAL DIM:1SIONS 

DATA DLNGTH,CWIDTH,RADIUS,WBASE 
1 /84.D0,4.5,28.D0,127.DO/ 

C 
·C STATIC HEIGHTS AND ECCENTRIC MOMENT. NOTE THESE ARE OVERALL 
C WEIGHTS, **NOT EQUIVALENT!** CI.E., MUST BE REFLECTED TO 
C DRUM END) 

C 
C 
C 
C 
C 

DATA FWGHT,DWGHT,ECCENT 
1 /ll923.D0,8777.D0,444.29DO/ 

SUSPENSION AND FORWARD SPEED. 
IS STRUCTURAL C IN LB/IN.) AND 
AMPLITUDE OF DISPLACEMENT, NOT 
FT/SEC. 2 MPH= 3. FT/SEC 
DATA DAMP,STIFF,SPEED 

1 /3849.D0,24054.D0,3.DO/ 
C 
C DEFAJLT SOIL PARAMETERS 

DATA EMOD,GMOD,PR 
1 /0.DO, O.DO, 0.3DO/ 

DATA DNSITY,VOIDR 
1 / 0.06D0,0.8DO/ 

NOTE THAT THE DAMPING COEFFICIENT 
SHOULD BE MULTIPLIED BY THE 
VELOCITY. THE SPEED IS IN 

DATA ALPHA/ 0., 0., 3., 1., O. / 
C 
C I/0 

DATA NPRT,NDBUG,NPLOT,NSTRS,NIN,NOUT,NDBASE 
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l / 1, 2, 3, 4, 5, 6, 
C 

END 
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SUBROUTINE INIT 
C 
C ************************************************************** 
C OBTAIN SOME PARAMETERS FROM DISK (TIRESOME TO INPUT FROM 
C TERMINAL EACH TIME, BUT NOT CONVENIENT TO BE HARDWIRED.) 
C O'S IN A FIELD ALLOW PROGRAM DEFAULTS TO TAKE OVER, EXCEPT 
C FOR ELASTIC CONSTANTS. THERE, EITHER 
C CA) ALL 3 ARE ZERO (DEFAULTS WILL BE USED) 
C CB) ANY ONE IS ZERO CANDIS COMPUTED FROM OTHER TWO) 
C CC) ALL 3 ARE NON-ZERO. CIN THIS CASE, POISSONS RATIO 
C IS MODIFIED FOR CONSISTENCY.) 
C ************************************************************ 
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

IMPLICIT REAL*8CA-H), REAL*8CO-Z) 
REAL*4 ACS) 

COMMON /UNIT/ NPRT,NDBUG,NPLOT,NSTRS,NIN,NOUT,NDBASE 

COMMON /SOIL/ EMOD,GMOD,PR,DNSITY,VOIDR,CSFT,PRESSC 

REAL*4 ALPHA 
COMMON /HYS/ ALPHAC5) 

COMMON /CMPCTR/ DLNGTH,CWIDTH,RADIUS,WBASE,FWGHT,DWGHT, 
1 ECCENT,FREQH,DAMP,STIFF,SPEED 

COMMON /EFFECT/ FRAMEW,FRAMEM,DRUMW,DRUMM 

DATA IY /lHY/, IN /lHN/ 

OPENC7,FILE=1 DBASE.DAT1 ,STATUS=1 0LD') 

PRINT 999 
999 FORMAT(' ENTER FREQUENCY IN HZ') 

READCNIN,*) FREQH 

READCNDBASE,1000) 
1000 FORMATCAl) 

READCNDBASE,*) R,D,C 
IFCR .NE. O.DO) RADIUS= R 
IFCD .NE. O.DO) DLNGTH = D 
IFCC .NE. O.DO) CWIDTH = C 
WRITECNPRT,1100) CWIDTH,DLNGTH,RADIUS 

1100 FORMAT(' CONTACT AREA GEOMETRY:', 
1 /,5X,'HALF-WIDTH:1 ,T20,Gl5.5,' IN.', 
2 /,5X,'LENGTH:',T20,Gl5.5,' IN.', 
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C 

165 

3 /,SX,'DRUM RADIUS11 ,T20,Gl5.5,' IN. 1 ) 

READCNDBASE,1000) 
READCNDBASE,*) STF,DMP,WF,WD,EC,SPD 
IFCSTF .NE. O.DO) STIFF= STF 
IFCDMP .NE. O.DO) DAMP= DMP 
IFCWF .NE. O.DO) FWGHT = WF 
IFCWD .NE. O.DO) DWGHT = WD 
IFCEC .NE. O.DO) ECCENT = EC 
IFCSPD.NE. O.DO) SPEED= SPD 
WRITECNPRT,1200) STIFF,DAMP 

1200 FORMAT(' SUSPENSION:1 ,/,SX, 1 K11 ,Dl5.7,' LB/IN.', 
1 /,SX,'C:',DlS.7,' LB/IN. (STRUCTURAL)') 
HRITECNPRT,1300) FHGHT,DWGHT,ECCENT 

1300 FORMAT(' COMPONENT WEIGHTS11 ,/,SX, 1 FRAME11 ,Dl5.7, 1 LB', 
1 /,SX,'DRUM1 ',DlS.7, 1 LB', 
2 /,SX, 1 M-E1 ',DlS.7,' LB-IN.') 

C EFFECTIVE WEIGHTS AND INERTIAS 
DRUMW = 0 DWGHT 
DRUMM= DRUMH 
FRAMEW = FWGHT/3.DO 
FRAMEM = 0.25DO*FHGHT 
PRINT 1400,FWGHT,DWGHT 

1400 FORMAT(' FRAME WEIGHT11 ,T30,Gl5.7,' LB F', 
1 /, 1 DRUM HEIGHT11 ,T30,Gl5.7, 1 LB F') 

PRINT 1500,FRAMEW,FRAMEM 
WRITECNPRT,1500) FRAMEW,FRAMEM 

1500 FORMAT(' FRAME WEIGHT AND MASS REFLECTED TO DRUM,', 
1 /,SX,'WEIGHT OF FRAME AT DRUM:',T30,Gl5.7,' LB F', 
2 /,SX,'INERTIA OF FRAME AT DRUM11 ,T30~Gl5.7, 1 LB M') 

PRINT 1600 
1600 FORMAT(' ENTER FRACTION OF TOTAL FRAME MASS TO BE TRANSFERRED', 

1 /, 1 FROM TIRES TO BACK END') 
READCNIN,*) FRACM 
IFCFRACM .EQ. O.DO) GO TO 100 
FRAMEM = C0.25DO + FRACM)*FWGHT 
PRINT 1700 

1700 FORMAT(' ADJUST DEADWEIGHT? CY/N)') 
READCNIN,1800) IYN 

1800 FORMATCAl) 
IFCIYN .cQ. IY> FRAMEW = FRAMEW + FRACM*FWGHT 

100 CONTINUE 
WRITECNPRT,1900) FRACM,FRAMEW,FRAMEM 
PRINT 1900,FRACM,FRAMEW,FRAMEM 

1900 FORMAT(' FRACTION OF FRAME MASS MOVED TO DRUM-END',Gl0.3, 
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1 /,5X,' EFFECTIVE FRAME WEIGHT11 ,T30,Gl2.5,' LB F', 
2 /,5X,' EFFECTIVE FRAME INERTIA11 ,T30,Gl2.5, 1 LB M') 

READCNDBASE,1000) 
READCNDBASE,:lE)E,G,P,D,VR 
IFCP.NE.O.DO) PR= P 
IFCD.NE.O.DO) DNSITY = D 
IFCVR.NE.O.DO) VOIDR = VR 
WRITECNPRT,2000) DNSITY,VOIDR 

2000 FORMAT(' SOIL PARAMETERS:', 

C 

C 

C 

1 /,5X,'DENSITY: 1 ,T20,Gl5.4,' PCI', 
2 /,5X,'VOID RATI0:',T20,Gl5.4) 

IFCE.EQ.O.DO .AND. G.EQ.O.DO)GO TO 200 
IFCE.NE.O.DO) EMOD = E 
IFCG.NE.O.DO) GMOD = G 
IFCE.NE.O.DO .AND. G.NE.O.DO) PR= 0.5:lEE/G - 1. 
DENOM = 2.DO:lECl.DO+PR) 
IFCEMOD .EQ. O.DO) EMOD = GMOD:lEDENOM 
IFCGMOD .EQ. O.DO) GMOD = EMOD/DENOM 
GO TO 300 

200 CONTINUE 
COEF = PR/Cl.DO - PR) 
PRINT 2100 

2100 FORMAT(' ENTER AVERAGE CONFINING STRESS IN SOIL MASS FOR', 
1 /, 1 ESTIMATING SHEARING MODULUS. (SUGGEST 3. PSI)') 

READCNIN,:lE) PRESSC 
WRITECNPRT,2200) PRESSC 

2200 FORMAT(' AVG CONFINING STRESS11 ,T30,Gl5.6,' PSI') 
GMOD = 1230.DO:lEC2.97 - VOIDR):lE:lE2 
GMOD = GMOD:lEDSQRTCPRESSC)/(l.DO + VOIDR) 
EMOD = 2.DO:lECl.DO + PR):lEGMOD 

300 CONTINUE . 
CSFT = DSQRTCGM0DlE386.088DO/DNSITY)/l2.DO 
WRITECNPRT,3000) EMOD,GMOD,PR,CSFT 

3000 FORMAT(' INITIAL ELASTIC CONSTANTS11 , 

1 /,SX,'Er 1 ,D12.3, 1 PSI', 
2 /,SX,'G: 1 ,D12.3,' PSI', 
3 /,SX, 1v: ',D12.3, 
4 /, 1 SHEAR WAVE VELOCITY:1 ,Gl4.7,' FT/SEC') 

C 
C 
C HYSTERETIC CONSTANTS 

READCNDBASE,1000) 



C 
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READCNDBASE,*) CACI),I=l,5) 
DO 400 I= 1,5 

400 IFCACI) .NE. 0.) ALPHACI) = ACI) 
WRITECNPRT,4000) CALPHACI),I=l,5) 

4000 FORMAT(' HYSTERETIC AND RESIDUAL STRESS COEFFICIENTS:', 
l /,lX,5Gl5.7) 

RETURN 
END 
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SUBROUTINE DYNMCSCNPASS) 
C 
C **********************************************************~*** 
C DETERMINE 1;fE DYNAMIC CONTACT STRESS DISTRIBUTION AND SURFACE 
C MOTION. ASSUME THAT THE DYNAMIC CONTACT STRESS IS DISTRIBUTED 
C OVER THE STATIC CONTACT AREA (WHICH IS THE MEAN CONTACT AREA 
C OVER ONE CYCLE). 
C THE MAGNITUDES OF THE STRESSES ARE UNKNOWN. HOWEVER, THE 
C DISTRIBUTION MUST CONFORM TO THAT PRODUCING UNIFORM DISPLACEMENT 
C OF POINTS ON THE CONTACT SURFACE, SINCE THE DRUM IS RIGID, AND 
C THIS DISPLACEMENT MUST EQUAL THE DRUM DISPLACEMENT. MOREOVER, 
C THE INTEGRAL OF THE CONTACT STRESS OVER THE CONTACT AREA GIVES 
C THE SOIL REACTION SEEN BY THE DRUM. THEREFORE WE MUST ASSEMBLE 
C EQUATIONS DESCRIBING THE COUPLED DYNAMICS OF SOIL AND COMPACTOR. 
C THE METHOD THAT FOLLOWS IS ESENTIALLY THAT OF WONG AND LUCO 
C (1975), EXCEPT THAT SIMPLIFYING ASSUMPTIONS OF PLANE STRAIN ARE 
C INVOKED TO REDUCE THE NUMBER OF INTEGRAL EVALUATIONS. THE 
C CONTACT AREA IS DIVIDED INTO ELEMENTAL STRIPS. THE STRESS IN 
C EACH STRIP IS ASSUMED UNIFORM. THE INFLUENCE OF EACH ELEMENTAL 
C LOAD ON THE DISPLACEMENT OF EVERY OTHER STRIP IS FIRST 
C DETE~MINED, USING THE INTEGRATION METHOD OF THOMSON AND 
C KOBORI CJAM, 1963). THESE EFFECTS ARE SUPERIMPOSED IN AN 
C OVERALL COMPLIANCE MATRIX. THIS MATRIX IS AUGMENTED BY TWO 
C OTHER COMPLEX EQUATIONS DESCRIBING THE FRAME AND DRUM DYNAMICS. 
C *************************************************************** 
C 

C 

C 

IMPLICIT REAL*8 CA-H), REAL*8CO-Z) 
EXTERNAL Gl,Hl,APPRXl 

DIMENSION AMPClO), PHASEClO), FC24), CRC20), CIC20) 
DIMENSION IPIVOTC24) 

COMMON /UNIT/ NPRT,NDBUG,NPLOT,NSTRS,NIN,NOUT,NDBASE 
C 

COMMON /SOIL/ EMOD,GMOD,PR,DNSITY,VOIDR,CSFT,PRESSC 
C 

COMMON /EFFECT/ FRAMEW,FRAMEM,DRUMW,DRUMM 
C 

C 

C 

C 

COMMON /CMPCTR/ DLNGTH,CWIDTH,RADIUS,WBASE,FWGHT,DWGHT, 
1 ECCENT,FREQH,DAMP,STIFF,SPEED 

COMMON /TRIGD/ PI,TWOPI,DTR 

REAL*4 RANGE,DEPTH 
COMMON /MESH/ HALF,FULL,RANGEC40),DEPTHC15),N,KVAR,NR,NZ 
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C UIS THE PARTITIONED VECTOR OF UNKNOWN FORCES AND DISPLACEMENTS 
COMMON /STRDAT/ F~~,FSI,SC20),WC4),GC24,25),DUMMYC300) 
DIMENSION UC24) 

C 

C 

EQUIVALENCE CUCl),SCl)) 

DATA NMAX /10/, NMX /24/ 
DATA GRVITY /386.044/ 

C NO. ELEMENTS TO ONE SIDE OF DRUM CENTERLINE: 

C 

IFCNPASS .NE. 1) GO TO 50 
PRINT 1000 

1000 FORMAT(' ENTER NO. ELEMENTS PER HALF-WIDTH OF CONTACT AREA') 
READCNIN,3E) N 
N = MINOCN,NMAX) 
N2 = 23EN 
N2 = MAXOCN2, l> 
HALF= CWIDTH/DFLOATCN2) 
FULL = 2. D03EHAL F 
WRITECNPRT,1100) N,FULL 

1100 FORMAT(' NO. ELEMENTS PER HALF-WIDTH: ',T40,I5, 
1 /,' ELEMENT WIDTH:',T40,G20.10) 

50 CONTINUE 

C SET UP FOR INFLUENCE FACTORS 
CALL INFLOCHALF) 

C 

C 

WRITECNPRT,1300) NPASS 
1300 FORMATClHl,' CONTACT STRESSES AND SURFACE DISPLACEMENTS', 

1 'FOR PASS N0.',13) 

C COMP~TE INFLUENCE COEFFICIENTS 
DO 200 J = l,N2 
X = FULL3EDFLOATCJ-l) 
Y = O.DO 
KVAR = 1 
CALL INFLNCCFREQH,X,Y,KVAR,Gl,Hl,APPRXl,CRCJ),CICJ)) 

200 CONTINUE 
C 
C FORM COEFFICIENT MATRIX G FOR SOLVING 
C G3EU = F 
C FOR U, WHERE 
C U =CS I WI WF ]-TRANSPOSE 
C F = [ 0 I FAI D ]-TRANSPOSE 
C HERE, THE (COMPLEX) UNKNOWNS ARE 
C S: CONTACT FORCE/UNIT LENGTH ON EACH STRIP ELEMENT 
C (SCALED BY GMOD) 
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C W1 CONTACT SURFACE DISPLACEMENT 
C WF1 FRAME DISPLACEMENT 
C FA IS THE KNOWN DYNAMIC FORCE APPLIED TO THE DRUM CALSO SCALED 
C BY GMOD.) 
C FOR N ELEMENTS, WE HAVEN UNKNOWN FORCES, PLUS TWO UNKOWN 
C DISPLACEMENTS CDRUM AND FRAME). SINCE All QUANTITIES ARE 
C COMPLEX, WE HAVE 2*CN+2) UNKNOWNS. IN THE FOLLOWING, 
C Il AND Jl INDEX REAL PARTS 
C I2 AND J2 INDEX IMAGINARY PARTS. 
C 
C 1. FIRST 2*N EQNS RELATE ELEMENT LOADS/UNIT LENGTH SCJ) 
C TO SURFACE DISPLACEMENTS, WHICH ARE ALL EQUAL TO THE DRUM 
C DISPLACEMENT. THE COEFFICIENTS OF THE UNKNOWN LOADS ARE 
C THE APPROPRIATE COMPLIANCE FUNCTIONS. NOTE THAT, IN ORDER 
C TO REDUCE THE NUMBER OF EQUATIONS, WE HAVE USED SYMMETRY TO 
C SOLVE ONLY FOR THE LOADS ON THE RIGHT-HALF OF THE CONTACT 
C AREA CX.GT.O). HOWEVER, DISPLACEMENTS THERE ARE ALSO 
C INFLUENCED BY LOADS ON THE LEFT SIDE OF THE SAME MAGNITUDE 
C BUT AT GREATER DISTANCE. OVERALL INFLUENCE FOR AN ELEMENTAL 
C LOAD IS THE SUM OF INFLUENCES FROM BOTH SIDES. IN THE FOLLOWING 
C IJl INDEXES INFLUENCE FROM RIGHT 
C IJ2 INDEXES INFLUENCE FROM LEFT. 

C 

C 

300 
C 

Il = -1 
DO 400 I= 1,N 
Il = Il + 2 
I2 = Il + 1 

Jl = -1 
DO 300 J = l,N 
Jl = Jl + 2 
J2 = Jl + 1 
IJl = IABSCI-J) + 1 
IJ2 = IABSCI+J) 
GR= CRCIJl) + CRCIJ2) 
GI= CICIJl) + CICIJ2) 

GCil,Jl) = GR 
GCI1,J2) = -GI 
GCI2,Jl) = GI 
GCI2,J2) = GR 
CONTINUE 

C COEFFICIENTS OF DRUM AND FRAME DISPLACEMENT. ONLY THE 
C DRUM DISPLACEMENT (EQUAL TO THE CONTACT AREA DISPLACEMENT) 
C ENTERS INTO THESE EQUATIONS. 

N21 = N2 + l 



N24 =·N2 + 4 
DO 350 J = N21,ij24 
GCil,J) = O.DO 
GCI2,J) = O.DO 

350 CONTINUE 
GCI1,N2+1) = -1.DO 
GCI2,N2+2) = -1.DO 

C 
400 CONTINUE 

C 
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C 2. NOW ADD 2 MdRE ROWS TOG TO DESCRinE DRUM DYNAMICS. 
C TOTAL CONTACT FORCE ON DRUM PER UNIT LENGTH IS 
C FS = SUMjC SCJ) ) 
C COVER BOTH SIDES -- HENCE, FACTOR OF 2. BELOW). 
C WE DIVIDE THE OTHER FORCE TERMS-- STIFFNESS, DAMPING, AND 
C APPLIED FORCE -- BY THE OVERALL DRUM LENGTH, FOR A 2-D 
C FORMULATION. 
C AS BEFORE, WE NORMALIZE ALL FORCES BY GMOD. 

410 
C 

II = N2 + 1 
I2 = Il + 1 
Jl = -1 
DO 410 J = l,N 
Jl = Jl+2 
J2 = Jl+l 
GCII,Jl) = -2.DO 
GCI1,J2) = O.DO 
GCI2,Jl) = O.DO 
GCI2,J2) = -2.DO 
CONTINUE 

C NEXT TWO ENTRIES GIVE INERTIA AND SUSPENSION FORCES ON DRUM 
C NOTE THAT THE SUSPENSION DAMPING IS STRUCTURAL, NOT VISCOUS, 
C SO THAT TH~ DAMPING IS INDEPENDENT OF FREQUENCY, 
C F =:Kl+ j*K2)*X 

C 

Jl = N2 + 1 
J2 = Jl + l 
OMEGA= TWOPI*FREQH 
A= STIFF/(GMOD*DLNGTH) 
B = DAMP/(GMOD*DLNGTH) 
C = -CDRUMM/GRVITY)*OMEGA*OMEGA/(GMOD*DLNGTH) 
GCil,Jl) = A + C 
GCI1,J2) = -B 
GCI2,Jl) = B 
GCI2,J2) = A+ C 

C LAST TWO ENTRIES REDUCE SUSPENSION FORCE DUE TO MOTION OF FRAME 



C 

JI = Jl+2 
J2 = Jl+I 
GCil,Jl) = -A 
GCI1,J2) = B 
GCI2,JI) = -B 
GCI2,J2) = -A 
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C 3. FINALLY, ADD THO ROHS FOR FRAME MOTION. ONLY FORCE 
C IS SUSPENSION FORCE. 

C 
C 

Il=Il+2 
I2 = Il+I 
DO 420 J = I,N2 
GCil,J) = O.DO 
GCI2,J) = O.DO 

420 CONTINUE 
JI= N2 + I 
J2 =JI+ I 
D = -CFRAMEM/GRVITY)*OMEGA*OMEGA/CGMOD*DLNGTH) 
GCil,Jl) = -A 
GCI1,J2) = B 
GC I2, Jl) = -B 
GCI2,J2) = -A 
JI = Jl + 2 
J2 =JI+ I 
GCil,Jl) = A+D 
GCil,J2) = -B 
GCI2,Jl) = B 
GCI2,J2) = A+D 

C FORM THE VECTOR OF APPLIED FORCES. THE ONLY NON-ZERO ENTRY IS 
C THE REAL PART OF THE APPLIED DYNAMIC FORCE, WHICH IS 
C APPLIED TO THE DRUM. 

C 

N3 = N2 + I 
N6 = N2 + ~ 

DO 450 J = I,N6 
450 FCJ) = O.DO 

FA= ECCENT*OMEGA*OMEGA/GRVITY 
FCN3) = FA/CGMOD*DLNGTH) 

C SOLVE FOR THE UNKNOWNS: 
NEQS = N2 + 4 
GNORM = AN~~MlCG,NEQS,NMX) 
CALL FACTORCG,IPIVOT,NEQS,NMX,IFLAG) 
CONNUM = AKAPPACG,GNORM,IPIVOT,S,NEQS,NMX) 

3000 FORMAT(' CONDITION NUMBER1 ,G20.IO) 
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WRITECNPRT,3000) CONNUM 
CALL SOLVECG,U,F,IPIVOT,NEQS,NMX) 
WRITECNPRT, 4000) 

4000 FORMAT(' CONTACT STRESS CPSI)1 1 , 

4100 

1 /, 1 CJ)',4X,'(+/-) X',11X,'RE',13X,'IM',13X,'AMP',11X,'PHASE') 
SUMR = O.DO 
SUMI= O.DO 
Kl= -1 
X = -HALF 
DO 500 K = l,N 
Kl= Kl+ 2 
K2 =Kl+ 1 
X = X + FULL 
SUMR = SUMR + SCKl) 
SUMI= SUMI+ SCK2) 
SCKl) = SCKl)/FULL 
SCK2) = SCK2)/FULL 
AMPCK) = DSQRTC SCK1)**2 + SCK2)**2) 
PHASECK) = DATANCSCK2)/SCK1))/DTR 
SCKl) = SCKl)*GMOD 
SCK2) = SCK2)*GMOD 
AMPCK) = AMP(K)*GMOD 
FORMATC1X,I4,5Gl5.5) 

500 
C 

WRITECNPRT,4100) K,X,SCK1),SCK2),AMPCK),PHASECK) 
CONTINUE 

C 

C 

FSR = 2.DO>ESUMR>EDLNGTH 
FSI = 2.DO*SUMI*DLNGTH 
FSA = DSQRTCFSR*FSR + FSI*FSI) 
FSP = DATANCFSI/FSR) / DTR 
FSR = FSR>EGMOD 
FSI = FSI*GMOD 
FSA = FSA>EGMOD 

DO 520 I= 1,4 
520 WCI) = UCN2 + I) 

WDA = DSQRTCWCl)>EW(l) + WC2)*WC2)) 
WDP = DATANCWC2)/W{l))/DTR 
WFA = DSQRTCWC3)*WC3) + WC4)*WC4)) 
WFP = DATANCWC4)/W{3))/DTR 
WRITECNPRT,5000) FA,FSR,FSI,FSA,FSP,WC1),WC2),WDA,WDP, 

1 WC3),WC4),WFA,WFP 
5000 FORMATC/,1 DYNAMIC FORCE11 ,T66,Gl5.5,' LB ; ',3X,'0.',9X, 

1 ' DEG', 
1 /, 1 SOIL REACTI0N:1 ,T30,'C',Gl5.5,',',Gl5.5,') = ',Gl5.5, 



C 

174 

1 • LB a •,Gl4.5,' DEG', 
2 /, 1 DRUM DISPLACEMENT:1 ,T30,'C',Gl5.5, 1 , 1 ,Gl5.5, 1 ) = ', 
2 Gl5.5,' IN. a ',Gl4.5,' DEG', 
3 /, 1 FRAME DISPLACEMENT;',T30,'C',Gl5.5, 1 , 1 ,Gl5.5,') = ', 
3 Gl5.5,' IN. a ',Gl4.5,' DEG') 

CALL CDIVCFSR,FSI,HC1),HC2),SSTIFF,SDAMP) 
SSTIFF = -SSTIFF 
SDAMP = -SDAMP/OMEGA 
HRITECNPRT,5100) SSTIFF,SDAMP 

5100 FORMAT(' SOIL STIFFNESS: ',T25,G20.5, 1 LB/IN.', 
l /, DAMPING: ',T25,G20.5,' LB-SEC/IN.') 
HRITECNPLOT) FREQH,FA,FSA,FSP,FSR,FSI,HDA,HDP,HFA,HFP 
HRITECNPLOT) FREQH,N2,CSCKl,K=l,N2) 

800 CONTINUE 
C 

RETURN 
END 
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SUBROUTINE FIELD CNPASS) 
C 
C ************************************************************ 
C GENERATE STRESS AND STRAIN FIELDS FROM LINEAR MODEL. 
C **************************~********************************* 
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 
C 

IMPLICIT REAL*8 CA-H),REAL*8CO-Z) 
EXTERNAL G2,H2,APPRX2 

DIMENSION LABL1C3),LABL2C2,2) 
DIMENSION CRC50),CIC50) 

COMM1N /UNIT/ NPRT,NDBUG,NPLOT,NSTRS,NIN,NOUT,NDBASE 

COMMON /SOIL/ EMOD,GMOD,PR,DNSITY,VOIDR,CSFT,PRESSC 

COMMON /CMPCTR/ DLNGTH,CWIDTH,RADIUS,WBASE,FWGHT,DWGHT, 
1 ECCENT,FREQH,DAMP,STIFF,SPEED 

COMMON /EFFECT/ FRAMEW,FRAMEM,DRUMW,DRUMM 

COMMON /TRIGD/ PI,TWOPI,DTR 

REAL*4 RANGE,DEPTH 
COMMON /MESH/ HALF,FULL,RANGEC40),DEPTHC15),N,KVAR,NR,NZ 

REAL*4 FR,FI,FST 
COMMON /STRDAT/ FSR,FSI,SC20),WC4),FRC15,40),FIC15,40),FSTC15,40) 

DATA LABLl/4H STR,4HAIN ,4HESS / 
DATA LABL2/4HuIN.,4H/IN.,4HPSI ,4H / 

KVAR = 2 
LVAR = 1 

C WRITECNPRT,1030) LABLlCl),LABLlCKVAR),FREQH 
1030 

C 
C 
C 

100 

FORMATClHl,/, 1 FIELD GENERATION1 

LOOP ON DEPTH 
NZ= 0 
CONTINUE 
NZ= NZ+ 1 
IFCNZ .EQ. 16) GO TO 600 
IFCNPASS .NE. 1) GO TO 110 
PRINT 1100 

',2A4,' AT ',FlS.5,' HZ') 
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1100 FORMAT(' ENTER DEPTH IN FEET. ENTER NEGATIVE DEPTH TO QUIT.') 
READCNIN,*) DEPTHCNZ) 

110 CONTINUE 
DEP = DEPTHCNZ)*l2. 
IFCDEP .LT. O.DO) GO TO 600 

C 
C 1. NEAR FI~LD--GENERATE ON ORIGINAL SURFACE MESH 

N2 = 2*N 

C 

N3 = 3*N 
N4 = 4*N 
CALL INFLOCHALF) 
DO 200 J = l,N3 
X = FULL*DFLOATCJ-1) 
CALL INFLNCCFREQH,X,DEP,KVAR,G2,H2,APPRX2,CRCJ),CICJ)) 

200 CONTINUE 

C SUPERIMPOSE THE DYNAMIC EFFECTS 
FACT= I.DO 
IFCKVAR .EQ. 2) FACT= GMOD 
PRINT 3010,DEPTHCNZ),LABL1Cl),LABL1CKVAR),LABL2(1,LVARJ, 

1 LABL2C2,LVAR) 
C WRITECNPRT,3010) DEPTHCNZ),LABL1Cl),LABL1CKVAR),LABL2Cl,LVAR), 
C 1 LAB~2C2,LVAR) . 

3010 FORMATC' FOR ',Gl5.6,' FT DEPTH1 ', 
1 X CIN.), DYNAMIC',2A4,'IN ',2A4,'CAMP AND PHASE)') 

C WRITECNPRT,3020) 
3020 FORMAT(' NEAR FIELD11 ) 

X = -HALF 
Il = -1 
DO 400 I= l,N2 
Il=Il+2 
I2 = Il + 1 
X = X + FULL 
RANGECI) = X/12.DO 
Jl = -1 
SUMR = O.DO 
SUMI= O.DO 
DO 300 J = l,N 
Jl = Jl + 2 
J2 = Jl + 1 
IJl = IABSCI-J) + l 
IJ2 = IABSCI+J) 
GR= CRCIJl) + CRCIJ2) 
GI= CICIJl) + CICIJ2) 
SUMR = SUMR + CGR*SCJl) - GI*SCJ2))*2.DO 
SUMI= SUMI+ CGI*SCJl) + GR*SCJ2))*2.DO 



300 

3100 
C 

400 
C 
C 
C 
C 

C 
4000 

C 
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CONTINUE 
AMP= DSQRTCSUMR*SUMR + SUMI*SUMI) 
PHASE= DATANCSUMI/SUMR)/DTR 
AMP= AMP/FACT 
IFCKVAR .EQ. 2) AMP= AMP*l.D6 
PRINT 3100,X,AMP,PHASE 
FORMATC1X,3G20.10) 
WRITECNPRT,3100) X,AMP,PHASE 
FRCNZ,I) = SUMR/FACT 
FICNZ,I) = SUMI/FACT 
CONTINUE 

FAR FIELD 
2. FAR FIELD--INVOKE ST VENANTS PRINCIPLE AND SAY THE HELL 
IT, WAY OUT THERE, IT LOOKS LIKE A UNIFORM LOAD. 
CALL INFLOl~WIDTH) 
WRITECNPRT,4000) 
FORMAT(' FAR FIELD1') 
PRINT 4000 

C REPEAT THE LAST POINT, FOR COMPARISON OF NEAR-AND FAR-FIELD 
C RESULTS 

X = X - CWIDTH 
DO 500 I= N2,N3 
X = X + CWIDTH 
RANGE(!) = X/12.DO 
CALL INFLNCCFREQH,X,DEP,KVAR,G2,H2,APPRX2,GR,GI) 
STR = CGR*FSR - GI*FSI)/CCWIDTH*DLNGTH) 
STI = CGI*FSR + GR*FSI)/CCWIDTH*DLNGTH) 
AMP= DSQRTCSTR*STR + STI*STI) 
PHASE= DATANCSTI/STR)/DTR 
AMP= AMP/FACT 
IFCK\fAR .EQ. 2) AMP = l.D6*AMP 
PRINT 3100,X,AMP,PHASE 

C WRITECNPRT,3100) X,AMP,PHASE 
IFC I.NE.N2) FRCNZ,I) = STR/FACT 
IFC I.NE.NZ) FICNZ,I) = STI/FACT 

500 CONTINUE 
C 

GO TO 100 
C 

600 CONTINUE 
NZ = NZ - 1 
NR = N3 

C 
C STATIC EFFECT 

WITH 



178 

DEADWT = CFRAMEW + DRUMW) / DLNGTH 
QO = 2.DO*DEADWT/CPI*CWIDTH) 

C WRITECNPRT,6000) LABL1(1),LABL1CKVAR),LABL2Cl,LVAR),LABL2C2,LVAR) 
6000 FORMATC/,1 XCIN.), STATIC',2A4, 1 IN ',2A4) 

DO 700 I= l,NZ 
C WRITECNPRT,6010) DEPTHCI) 

6010 FORMAT(' DEPTH: 1 ,G20.10) 
DO 7 0 0 J = 1, NR 
Xl = RANGECJ)*l2. 
DEP = DEPTHCI)*l2. 
SUM= O.DO 
X2 = -CDFLOATCN)*FULL + HALF) 
DO 670 K = l,N2 
X2 = X2 + FULL 
XB = X2/CWIDTH 
Q = QO*DSQRTC DABSCl.DO-XB*XB) )/PI 
X = DABS~Xl-X2) 
D = Pl/2.DO 
IFCX .LT. HALF) D = -D 
IFCDEP .NE. 0.00) D = DATANC CX-HALF)/DEP) 
E = Pl/2 .DO 
IFCDEP .NE. O.DO) E = DATANC CX+HALF)/DEP) 
A = E - D 
CY= A+ DSINCA)*DCOSCA + 2.DO*D) 
ex= A - DSIN{A)*DCOSCA + 2.DO*D) 
SX = CX*Q 
SY= CY*Q 
EY = Cl.DO+PR)*C Cl.DO-PR)*SY - PR*SX)*Cl.D6/EMOD) 
DF = EY 
IFCKVAR .EQ. 3) DF = SY 
SUM= SUM+ DF 

670 CONTINUE 
XINCH = RANGECJ)*l2.DO 
FSTCI,J) = SUM/l.D6 

C WRITECNPRT,3100) XINCH,SUM 

C 
700 CONTINUE 

800 CONTINUE 
RETURN 
END 
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SUBROUTINE STRESSCNPASS) 
C 
C *************************************************************** 
C THIS ROUTINE INTEGRATES THE NONLINEAR CONSTITUTIVE EQUATIONS 
C THAT GENERATE RESIDUAL STRESSES 
C *************************************************************** 
C 

C 

DIMENSION STATE1C30),STATE2C30),WORKC300) 
DIMENSION SPAVGC15,ll) 

COMMON /HYS/ ALPHAC5) 
C 

REAL*8 EMOD,GMOD,PR,DNSITY,VOIDR,CSFT,PRESSC 
COMMON /SOIL/ EMOD,GMOD,PR,DNSITY,VOIDR,CSFT,PRESSC 

C 
COMMON /UNIT/ NPRT,NDBUG,NPLOT,NSTRS,NIN,NOUT,NDBASE 

C 

C 

C 

C 

C 

C 

C 
C 

REAL*8 DLNGTH,CWIDTH,RADIUS,WBASE,FWGHT,DWGHT, 
l ECCENT,FREQH,DAMP,STIFF,SPEED 
COMMON /CMPCTR/ DLNGTH,CWIDTH,RADIUS,WBASE,FWGHT,DWGHT, 

l ECCENT,FREQH,DAMP,STIFF,SPEED 

REAUE8 ·FRAMEW, FRAMEM, DRUMW, DRUMM 
COMMON /EFFECT/ FRAMEW,FRAMEM,DRUMW,DRUMM 

REAL*8 Pl,TWOPl,DTR 
COMMON /1RIGD/ PI,TWOPI,DTR 

REAL*8 HALF, FULL 
COMMON /MESH/ HALF, FULL, RANGE( 40), DEPTHC15), N, KVAR, N_R, NZ 

REAL*8 DUMMY 
COMMON /STRDAT/DUMMYC26),FRC15,40),FIC15,40),FSTC15,40) 

COMMON /INTEG/ Tl,T2,Xl,X2,0MEGA,AVGPC15),EMODZC15),SEC15), 
l EC15),EDOTC15),SPC15) 

C INITIALIZE THE COMPACTION. STORE THE DEPTH-DEPENDENT VALUES 
C OF THE AVERAGE CONFINING PRESSURE AND ELASTIC MODULUS IN 
C AVGP AND EMODZ. NOTE THAT AVGP CONTAINS THE CONTRIBUTIONS 
C OF THE WEIGHT OF THE SOIL COLUMN AND THE RESIDUAL STRESSES, 
C BUT NOT THE EFFECT DUE TO THE COMPACTOR DEADWEIGHT. THIS 
C MUST BE ADDED IN SEPARATELY CAT EACH RANGE) TO THE 
C CONFINING PRESSURE USED TO ESTIMATE THE LOCAL STIFFNESS. 

IFCNPASS .GT. 1) GO TO 150 



C 

C 

C 

C 

NSTATE = NZ 
POIS= PR 
HIDTH = CHIDTH 
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PCMPCT = CFRAMEH + DRUMH)/CDLNGTH*2.DO*CHIDTH) 
OMEGA= TWOPI*FREQH 
DIST= 12.*RANGECNR) 
GEO= Cl.+ POIS)/C3,*Cl. - POIS)) 
RICHRT = Cl230.*C2.97 - VOIDR)**2)/Cl. + VOIDR) 
CALL RKO 
T2 = 0. 
KAVG = 0 
DO 110 I = l,NZ 
DEP = 12.*DEPTHCI) 
SZ = DNSITY*DEP 
AVGPCil = GEO*SZ 
Pl = AVGPCI) 
CALL SINFLCDIST,DEP,HIDTH,POIS,SX,SY,SZ) 
P2 =CSX+ SY+ SZ)*PCMPCT/3. 
EMODZCI) = 2.*Cl. + POIS)*RICHRT*SQRTCPl + P2) 

DO 105 J = 1,10 
105 SPAVGCI,J) = 0. 

SPCil = 0. 
STATE2CI) = SPCI) 

lliJ CONTINUE 

CALL INTERPCT2,RANGECNR)) 
WRITECNSTRS) NZ,CDEPTHCI),I=l,NZ) 
WRITECNSTRS) T2,X2,NPASS,NZ,CAVGPCI),EMODZCI),SECI),ECI),SPCI), 

1 SPAVGCI, 11), I= l,NZ) 

C INITIALIZE FOR THIS PASS--

C 

150 CONTINUE 
DT = 0. l/FREQH 
DTOMIN = DT/50. 
JFLAG = 0 
SMAX = -1. E6 
X2 = -RANGECNR) 
DX= SPEED*DT 

DO 170 I= 1,NZ 
170 STATE2CI) = SPCI) 

C 
200 CONTINUE 

Tl = T2 
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Xl = X2 
X2 = Xl + DX 
X2 = AMIN1CX2,RANGECNR>> 
T2 =Tl+ CX2 - Xl)/SPEED 
KAVG = KAVG + 1 
IFCKAVG .GT. 10) KAVG = 1 

C 
DO 210 I= l,NSTATE 

210 STATElCI) = STATE2CI) 
C 

C 

C 

CALL RK1CT1,T2,DTOMIN,STATE1,STATE2,NSTATE,WORK,l.E-4,IFLAG) 

IFCIFLAG .NE. 0) GO TO 220 
JFLAG = JFLAG + 1 
IFCJFLAG .LT. 5) GO TO 230 
JFLAG = 0 
DTOMIN = DTOMIN*2. 
DTOMIN = AMINlCDTOMIN,DT/20.) 
GO TO 230 

220 CONTINUE 
JFLAG = 0 
DTOMIN = DTOMIN/2, 
DTOMIN = AMAXlCDT/200.,DTOMIN) 

C 

C 

C 

230 CONTINUE 

DO 240 I= l,NZ 
SPCI> = STATE2CI) 
SPAVGCI,KAVG) = SPCI) 
SMAX = AMAXlCSMAX,SPCI)) 
SUM= O. 
DO 235 J = 1,10 

235 SUM= SUM+ SPAVGCI,J) 
SPAVGCI,11) = SUM/10. 

240 CONTINUE 

C OUTPUT QUANTITIES FOR THIS STEP 
CALL INTERPCT2,X2) 
WRITECNSTRS) T2,X2,NPASS,NZ,CAVGPCI),EMODZCI),SECI),ECI),SPCI), 

1 SPAVGCI,11), I= l,NZ) 
C 
C UPDATE THE CONFINING PRESSURES AND STIFFNESS MODULI 

DIST= 12,*X2 
DO 250 I= 1,NZ 
Pl = AVGPCI> 



C 

C 
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DEP = 12.*DEPTHCI) 
CALL SINFLCDIST,DEP,WIDTH,POIS,SX,SY,SZ) 
P2 =CSX+ SY+ SZ)*PCMPCT/3, 
EMODZCI) = 2.*Cl. + POIS)*RICHRT*SQRTCPl + P2) 

250 CONTINUE 

IFCX2 .LT. RANGECNR)) GO TO 200 

C AVERAGE THE RESIDUAL STRESS OVER DEPTH--
SUM= 0. 

C 

DO 500 I= l,NZ 
AVGPCI) = AVGPCI) + SPAVGCI,11)/3. 

500 SUM= SUM+ SPAVGCI,11) 
SUM= SUM/FLOATCNZ) 

C AUGMENT THE ESTIMATED PRESSURE 
PCON = PRESSC + SUM/3. 

C 

5000 
l 
2 
3 
4 
5 

GMOD = RICHRT*SQRTCPCON) 
EMOD = 2.*Cl. + PR)*GMOD 
CSFT = DSQRTCGMOD*386.088DO/DNSITY)/l2. 
WRITECNPRT,5000) EMOD,GMOD,PR,CSFT,PRESSC 
FORMAT(' UPDATED ELASTIC PARAMETERS,', 
/,5X,'E: ',Dl2.3,' PSI', 
/,5X,'G1 ',Dl2.3,' PSI', 
/,5X,'v1 ',Dl2.3, 
/, 1 SHEAR WAVE VELOCITY11 ,3X,Gl4.7,' FT/SEC', 
/,' AVG CONFINING PRESSURE1',Gl4.7,' PSI') 

C DETERMINE RATIO OF PLASTIC STRESS TO OVERBURDEN 
WRITECNPRT,5300) 

C 

5300 FORMAT(/,' PASS NO., DEPTHCFT), SP CPSI), SZ, KX + KY') 
PRINT 5300 
DO 600 I= l,NZ 
SZ = 12.*DNSITY*DEPTHCI) 
SPSZ = SPAVGCI,ll)/SZ 
SXSYSZ = 2.*POIS/Cl. - POIS) 
SUM= SPSZ + SXSYSZ 
WRITECNPRT,5400) NPASS,DEPTHCI),SPAVGCI,11),SZ,SUM 

5400 FORMATC1X,I3,4Dl5.6) 
PRINT 5400,NPASS,DEPTHCI),SPAVGCI,ll),SZ,SUM 

600 CONTINUE 

RETURN 
END 
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SUBROUTINE SYSDECT,STATE,DERIV,NS) 
C 
C ************************************************************** 
C DIFFERENTIAL EQUATIONS FOR STRAIN AND PLASTIC STRESS 
C ************************************************************* 
C 

C 

DIMENSION STATECNS),DERIVCNS) 
DIMENSION SLOPEC15) 

COMMON /HYS/ ALPHACS) 
C 

C 

C 

COMMON /INTEG/ Tl,T2,Xl,X2,0MEGA,AVGPC15),EMODZC15),SEC15), 
l EC15),EDOTC15),SPC15) 

REAL*8 
l 
COMMON 

l 

DLNGTH,CWIDTH,RADIUS,WBASE,FWGHT,DWGHT, 
ECCENT,FREQH,DAMP,STIFF,SPEED 
/CMPCTR/ DLNGTH,CWIDTH,RADIUS,WBASE,FWGHT,DWGHT, 

ECCENT,FREQH,DAMP,STIFF,SPEED 

C DETERMINE POSITION X AT TIME T. 
X = Xl + SPEED*CT - Tl) 

C 
C OBTAIN ELASTIC STRAINS AND STRESSES AT ALL DEPTHS--

CALL INTERPCT,X) 
C 
C PLASTIC STRESS --

DO 200 I= 1,NS 
200 DERIVCI) = ALPHAC4)*EDOTCI)*C SEC!) - EMODZCI)*ECI)) 

C 
RETURN 
END 
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SUBROUTINE INTERPCT,X) 
C 
C ************************************************************** 
C INTERPOLATE THE ELASTIC STRESS AND STRAIN FIELD AT TIME T AND 
C DISTANCE X FROM THE COMPACTOR, FOR ALL NZ DEPTHS. 
C ************************************************************** 
C 

C 

C 

C 

C 

C 

C 

COMMON /INTEG/ Tl,T2,Xl,X2,0MEGA,AVGPC15),EMODZC15),SEC15), 
1 EC15),EDOTC15),SPC15) 

COMMON /HYS/ ALPHACS) 

REAL*8 HALF,FULL 
COMMON /MESH/ HALF,FULL,RANGEC40),DEPTHC15),N,KVAR,NR,NZ 

REAL*8 DUMMY 
COMMON /STRDAT/DUMMYC26),FRC15,40),F1Cl5,40),FSTCI5,40) 

ABSX = ABSCX) 
WT= OMEGA*T 
coswT = coscwn 
SINWT = SINCWT> 
IFCABSX .GT. RANGECI)) GO TO 20 

DO l'J I= l,NZ 
EC!)= FRCI,l)*COSWT - FICI,l)*SINWT + FSTCI,l) 
EDOTCI) = -OMEGA*( FRCI,l)*SINWT + FICI,l)*COSWT) 

10 CONTINUE 
GO TO 100 

20 CONTINUE 
IFCABSX .LT. RANGECNR)) GO TO 40 
DO 30 I= 1,NZ 
EC!)= FRCI,NR)*COSWT - FICI,NR)*SINWT + FSTCI,NR) 
EDOTCI) = -OMEGA*( FRCI,NR)*SINWT + FICI,NR)*COSWT) 

30 CONTINUE 
GO TO 100 

C 
40 CONTINUE 

DO 50 J2 = 2,NR 
50 IFCABSX .LT. RANGECJ2)) GO TO 60 
60 CONTINUE 

Jl = J2 - 1 
DXDR = CABSX - RANGECJl)) /CRANGECJ2) - RANGECJl)) 
DO 70 I= l,NZ 
ER= FRCI,Jl) + CFRCI,J2) - FRCI,Jl))*DXDR 
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EI= FICI,Jl) + CFICI,J2) - FICI,Jl))*DXDR 
ES= FSTCI,Jl) + CFSTCI,J2) - FSTCI,Jl))*DXDR 
ECI) = ER*COSWT - EI*SINWT + ES 
EDOTCI) = -OMEGA*CER*SINWT + EI*COSWT) 

70 CONTINUE 
C 

100 CONTINUE 
C 
C CLIP THE ELASTIC STRESS TO PREVENT UNREALISTIC TENSION EFFECTS 

DO 150 I= l,NZ 
SEC!)= EM0DZCI)*ECI)*EXPCALPHAC3)*EDOTCI)) 
SEC!)= AMAXlCSECI),O.) 

150 CONTINUE 
C 

RETURN 
END 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

186 

SUBROUTINE SINFLCX,Z,B,PR,SX,SY,SZ) 

************************************************************* 
COMPUTE STATIC INFLUENCE COEFFICIENTS FOR INFINITE STRIP 
LOADING. 

X,Z 

B 
PR 
SX,SY,SZ 

COORDINATES OF A POINT RELATIVE TO THE 
CENTER OF THE STRIP ex .GT. 0) 
STRIP HALF-WIDTH 
POISSONS RATIO 
STRESSES AT CX,Z), NORMALIZED BY CONTACT PRESSURE 

DATA PI /3.14159/ 

ABSX = ABSCX) 
D = PI/2. 
IFCABSX .LT. B) D = -D 
IFCZ .NE. 0.) D = ATANC CABSX-B)/Z) 
E = PI/2. 
IFCZ .NE. C.) E = ATANC CABSX+B)/2) 
A = E - D 
TERM= SINCA)*COSCA+2.*D) 
SX = CA - TERM)/PI 
SZ =CA+ TERM)/PI 
SY= PR*CSX + SZ) 
RETURN 
END 
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SUBROUTINE RKO 
C 

C ***************************************************************** 
C RKO INITIALIZES A RUNGE-KUTTA INTEGRATION SCHEME 
C ***************************************************************** 
C 

COMMON /ZRK/ ARKC6), BRK(6,6), CRKC6), DRKC6), DTSUM, NSTEP 
C 

C 

C 

C 

C 

DTSUM = 0. 
NSTEP = 0 

ARKCl) = 0. 
ARKC2) = l ./4. 
ARKC3) = 3./8. 
ARKC4) = 12./13. 
ARKC5) = 1. 
ARKC6) = l ./2. 

BRKCl, 1) = 0. 
BRKC2,l) = l ./4. 
BRKC3,l) = 3 ./32. 
BRKC3,2) = 9 ./32. 
BRKC4,l) = 1932./2197. 
BRKC4,2) = -7200./2197. 
BRKC4,3) = 7296 ./2197. 
BRKC5,l) = 439 ./216. 
BRKC5,2) = -8. 
BRKC5,3) = 3680./513. 
BRKC5,4) = -845./4104. 
BRKC6,l) = -8 ./27. 
BRKC6,2) = 2. 
BRKC6,3) = -3544./2565. 
BRKC6,4) = 1859./4104. 
BRKC6,5) = -ll ./40. 

CRKCl) = 25 ./216. 
CRKC2) = 0. 
CRKC3) = 1408 ./2565. 
CRKC4) = 2197./4104. 
CRKC5) = -1./5. 
CRKC6) = 0. 

DRKCl) = l ./360. 
DRKC2) = o. 
DRKC3) = -128./4275. 
DRKC4) = -2197 ./75240. 



C 

DRKC5) = l./50. 
DRKC6) = 2./55. 

RETURN 
END 
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SUBROUTINE RKlCTO,TF,DTOMIN,XO,XF,N,HORK,EPS,IFLAG) 
C 
C *****~****************************************************** 
C RKl PERFORMS A RUNGE-KUTTA INTEGRATION ON AN INTERVAL FROM 
C CTO,TF) OF THE (VECTOR) DIFFERENTIAL EQUATION, 
C dX/dt = FCX,t) 
C THE METHOD IS 4-TH ORDER, HITH A 6-TH ORDER CHECK TO DETERMINE 
C THE RELATIVE ERROR AND ADJUST THE STEP SIZE ACCORDINGLY. 
C SUBROUTINE RKO MUST BE CALLED PRIOR TO ANY STEPS, FOR 
C INITIALIZATION OF CONSTANTS. 
C ARGUMENTS, 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c· 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

TO 

TF 

DTOMIN 

XO 

XF 

N 
HORK 

EPS 
!FLAG 

VALUE OF THE INDEPENDENT VARIABLE Ct) 
AT THE BEGINNING OF THE INTtRVAL 
VALUE OF THE INDEPENDENT VARIABLE Ct) 
AT THE END OF THE INTERVAL. 
MINIMUM ACCEPTABLE STEP SIZE IN INDEPENDENT 
VARIABLE t. 
VALUECS) OF THE DEPENDENT VARIABLECS) 
CVECTOR X) AT t = TO. N-VECTOR. 
VALUECS) OF THE DEPENDENT VARIABLECS)· 
AT t = TF. RETURNED BY THIS ROUTINE. 
N VECTOR. 
VECTOR DIMENSION 
HORK-SPACE VECTOR. THE VECTOR LENGTH MUST 
BE AT LEAST 9*N 
RELATIVE ERROR CRITERION. 
INITIALIZED TO 0, BUT SET TO 1 IF ERROR 
CRITERION IS NOT MET. 

NOTE THAT.THE FOLLOWING SUBROUTINE MUST BE SUPPLIED: 
SUBROUTINE SYSDE CT,X,XDOT,N) 

SYSDE PROVIDES THE SYSTEM DIFFERENTIAL EQUATIONS. FOR 
INPUTS1 

T 
X 
N 

SYSDE MUST RETURN1 
XDOT 

INDEPENDENT VARIABLE 
DEPENDENT VARIABLE [VECTOR] 
VECTOR LENGTH 

VECTOR DERIVATIVE dX/dT. 

DIMENSION XO(N), XFCN), HORKCN,9) 

COMMON/ ZRK/ ARKC6), BRKC6,6), CRKC6), DRK(6), DTSUM,NSTEP,NDUM 

LOGICAL DONE 



LOGICAL STEP 
DATA NDBUG / 2 / 

C 
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C INITIALIZE STEP QUANTITIES--FIRST TRY FULL STEP CTF - TO) 
IFLAG = 0 
DONE= .FALSE. 
DTSUM = O. 
NSTE? = 0 
Tl = TO 
DTO = TF - TO 
DTl : DTO · 
DO 10 I= 1,N 

10 WORKCI,7) = XOCI) 
C 
C OUTERMOST LOOP ON FULL STEPS 

100 CONTINUE 
C 
C FORM AND SAVE DERIVATIVES AT INITIAL POINT 

CALL SYSDE CTI, WORKCl,7),WORKCl,l),N) 
C 
C IF LAST STEP WAS UNSUCCESSFUL, RETURN HERE--NO NEED TO 
C RECOMPUTE INITIAL DERIVATIVES 

200 CONTINUE 
C 
C 1. EVALUATE DERIVATIVES AT 5 OTHER POINTS 

DO 300 K = 2,6 

C 

C 

C 

KMl = K-1 
TK =Tl+ ARKCK)*DTl 

DO 250 I= l,N 
WORKCI,8) = WORKCI,l)*BRKCK,l) 
IFCK .EQ. 2) GO TO 250 

DO 220 J = 2,KMl 
220 WORKCI,8) = WORKCI,8) + WORKCI,J)*BRKCK,J) 
250 WORKCI,8) = WORKCI,8)*DT1 + WORKCI,7) 

CALL SYSDECTK,WORKCl,8),WORKCl,K),N) 
C 

300 CONTINUE 
C 
C 2. FORM ESTIMATE AT STEP ENDPOINT 

DO 320 I =l,N 
320 XFCI) = WORKCI,7) + DTl*C CRKCl)*WORKCI,l) 

l + CRKC3)*WORKCI,3) 
2 + CRKC4)*WORKCI,4) 
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3 + CRKC5)*WORKCI,5)) 
C 

IF (DONE) GO TO 800 
C 
C 3. ESTIMATE ERROR BY TAKING DIFFERENCE WITH 6-TH ORDER FORM 

DO 360 I= l,N 

C 

WORKCI,9) = WORKCI,l) / 360. 
DO 340 J = 3,6 

340 WORKCI,9) = WORKCI,9) + WORKCI,J)*DRKCJ) 
360 CONTINUE 

C 4. COMPUTE OPTIMUM STEP SIZE 
C IF All COMPONENTS OF COL 9 ARE ZERO, SET STEP TO MAX SIZE. 

DTMIN = 0. l*DTl 
DTMAX = 5.0*DTl 

C 

C 

DO 370 I = 1, N 
370 IFCWORKCI,9) .NE. 0.) GO TO 375 

GAMMA= 6.25 
GO TO 400 

375 CONTINUE 
II = I 
GMIN ~ XFCil)/WORKCil,9) 
IFCGMIN .EQ. 0.) GMIN = EPS/WORKCil,9) 
GMIN = ABSCGMIN) 
GMIN = CEPS*GMIN/DT0)**0.25 
IFC II .EQ. N) GO TO 390 
I2 = II + l 
DO 380 I= I2,N 
IFCWORKCI,9) .EQ. 0.) GO TO 380 
G = XFCI)/WORKCI,9) 
IFCG .EQ. 0.) GO TO 380 
G = ABSCG) 
G = CEPS*G/DT0)**0.25 
GMIN = AMINI CGMIN,G) 

380 CONTINUE 
C 

390 CONTINUE 
GAMMA= GMIN 

C 
C DETERMINE WHETHER STEP WAS ACCEPTABLE 

400 CONTINUE 
STEP= GAMMA .GE. 1, 
DT2 = 0.8*GAMMA*DT1 
DT2 = AMAX1CDT2,DTMIN) 



C 

C 

C 
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DT2 = AMIN1CDT2,DTMAX) 
IFCDT2 GE. DTOMIN) GO TO 500 

PRINT 4000 
4000 FORMAT(' WARNING--ERROR CRITERION VIOLATED. REDUCE STEP SIZE.') 

DT2 = DTOMIN 
IFLAG = 1 
IFCDTl .LE. DTOMIN> STEP= .TRUE. 

500 CONTINUE 
T2 = Tl + ilTl 
DTl = DT2 
IFC.NOT. STEP) GO TO 200 
IFCT2 .GE. TF) GO TO 600 
Tl = T2 
DO 510 I= 1,N 

510 WORK(I,7) = XFCI) 
NSTEP = NSTEP + 1 
DTSUM = DTSUM + DTl 
GO TO 100 

C ONE LAST STEP 
600 CONTINUE 

DONE= .TRUE. 
DTl = TF - Tl 
IFCDTl .GT. 0.) GO TO 200 

C 
800 CONTINUE 

DTSUM = DTSUM + DTl 
NSTEP = NSTEP + 1 
DTAVG = DTSUM / FLOATCNSTEP) 
RETUP.N 
END 



SUBROUTINE INFLOCHALF) 
C 
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C *************************************************************** 
C SET INFLUENCE-FACTOR PARAMETERS 
C *************************************************************** 
C 

IMPLICIT REAL*8 CA-H), REAL*8 C0-2) 
C 

COMMON /INFL/ AO,AN,AN2,B,CS,ZO 
C 

COMMON /SOIL/ EMOD,GMOD,PR,DNSITY,VOIDR,CSFT,PRESSC 
C 

COMMON /UNIT/ NPRT,NDBUG,NPLOT,NSTRS,NIN,NOUT,NDBASE 
C 

C 

C 

COMMON /TRIGD/ PI,TWOPI,DTR 

PI= 4.DO*DATANCl.DO) 
TWOPI = 2.DO*PI 
DTR = TWOPI/360.DO 

C SHEAR WAVE VELOCITY 
CS= CSFT3El2.D0 

100 CONTINUE 
C 
C ELEMENT WIDTH 

B = HALF 
C 

C 

AN2 = 0.53E(l.DO -2.DOlEPR) / Cl.DO - PR) 
AN = DSQRTCAN2) 

CALL POLECZO) 
C 

RETURN 
END 
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SUBROUTINE INFLNCCFHZ,X,Y,KVAR,G,H,APPROX,COMPR,COMPI) 
C 
C ************************************************************* 
C INTEGRATION TO OBTAIN THE RESPONSE OF A UNIFORMLY-LOADED 
C INFINITE STRIP ON A HALF-SPACE. 
C FHZ IS THE EXCITATION FREQUENCY, IN HZ. 
C X GIVES THE DISTANCE IN THE X DIRECTION FROM THE 
C CENTER OF THE STRIP TO THE POINT WHOSE DISPLACEMENT 
C IS SOUGHT; Y IS THE DEPTH. 
C KVAR = l FOR SURFACE DISP1ACEMENT 
C = 2 FOR SUBSURFACE STRAIN 
C = 3 FOR SUBSURFACE STRESS 
C G,H,APPROX ARE THE APPROPRIATE SUBROUTINES FOR THE 
C FUNCTIONS BEING INTEGRATED. 
C COMPR AND COMPI ARE THE REAL AND IMAGINARY PARTS 
C OF THE COMPLIANCE (SCALED DISPLACEMENT). 
C ************************************************************* 
C 

C 

C 

C 

C 

C 

C 
C 

C 

IMPLICIT REAL*8 CA-H), REAL*8 CO-Z) 
EXTERNAL G,H,APPROX 
LOGICAL LINFLG,STPFLG,DONE3 
DIMENSIUN ZINTC4),ZAC5),HAC5) 

COMMON /INFL/ AO,AN,AN2,B,CS,ZO 

COMMON /POINT/ XB,YB,ZB 

COMMON /TRIGD/ PI,TWOPI,DTR 

COMMON /U~!T/ NPRT,NDBUG,NPLOT,NSTRS,NIN,NOUT,NDBASE 

DATA STPMAX /5.D-3/ 

INITIALIZE COMMON--
XB = YB 
YB = Y/B 
ZB = O.DO 
AO = CTWOPI*FHZ)*B/CS 

C DETERMINE SYMMETRIC INTERVAL ABOUT POLE FOR REDUCED 
C STEP SIZE. TOWARDS THE CENTER OF THIS REGION, FCZ) 
C WILL BE LINEARIZED FOR IMPROVED ACCURACY. 
C WE USE THE TAYLOR POLYNOMIAL RESIDUAL TO ESTIMATE THE 
C ERROR ASSOCIATED WITH LINEARIZATION--
C E = CF''(a) * Cz-z0)**2)/2! 
C WHERE a IS BETWEEN zO and z. WE ASSUME F''Ca) = F''CzO) 
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C AND INVERT THE EXPRESSION FOR THE APPROPRIATE RADIUS RLIN 
C FOR SPECIFIED ACCURACY. 

C 
C 
C 

CALL DERIVSCZO,DFDZ,D2FD22) 
CONSYM = 0.0001 
ARG = DABSC2.DO*CONSYM/D2FDZ2) 
RLIN = DSQRTC ARG) 
SYM = ZO - I.DO 
ZSYMl = l.DO 
ZSYM2 = ZO + SYM 

INTEGRATION 1 
WRITECNDBUG,1400) AO,XB,YB 

1400 
C 

FORMAT(//,' AO= ',D20.l0,/, 1 XB = 1 ,D20.10,' YB= 1 ,D20.10) 

C 

C 

FIRST INTERVAL1 C0.,1.). 
ZINTCl) = 0.99*AN 
ZINTC2) = 0.02*AN 
ZINTC3) = l.DO - CZINTCl) + ZINTC2l + 0.01) 
ZINT(4) = 0.01 
NSTEPl = SO 
NSTEP2 = 100 
Z = O.DO 
DCRl = O.DO 
DCil = 0. DO 

C INITIALIZE INTEGRAND FOR APPROPRIATE FUNCTION 
LVAR = KVAR - 2 
IFCLVAR) 10,20,30 

C 
C DISPLACEMENT 

C 

10 CONTINUE 
DR= a.no 
DI= AN*AO 
GO TO SO 

C STRAIN 

C 

20 CONTINUE 
FACT= AO*AN2 
ARG = AO*AN*YB 
DR= FACT~DCOSCARG) 
DI= -FACTADSINCARG) 
GO TO 50 

C STRESS 
30 CONTINUE 

FACT= AO 



ARG = AD*AN*YB 
DR= DCOSCARG)*FACT 
DI= -DSINCARG)MFACT 
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50 CONTINUE 
C 

C 

100 

200 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

DO 200 INT= 1,4 
IFCZINTCINT) .EQ. 0.) GO TO 200 
ISIMPZ = 2 
NSTEP = NSTEPl 
IFC CCINT/2)*2) .EQ. INT) NSTEP = NSTEP2 
DZ= ZINTCINT)/DFLOATCNSTEP) 
SUMR = DR 
SUMI= DI 

DO 100 ISTEP = l,NSTEP 
ISIMPZ = 6 - ISIMPZ 
IFCISTEP .EQ. NSTEP) ISIMPZ = l 
Z = Z + DZ 
CALL FCZ,FR,FI) 
CALL G CZ,GR,GI) 
CALL CDIVCGR,GI,FR,FI,DR,DI) 
SUMR = SUMR + DR*DFLOATCISIMPZ) 
SUMI= SUMI+ DI*DFLOATCISIMPZ) 
CONTINUE 
DCRl = DCRl + SUMR*DZ/3.DO 
DCil = DCil + SUMIMDZ/3.DO 
NS= NS+ NSTEP 
CONTINUE 

SECOND INTERVAL. INTEGRATE "AROUND" POLE. 
ACTUALLY, WE TRANSLATE THE ORIGIN OF THE Z AXIS TO ZD, 
THEN WE EXPRESS THE INTEGRAND AS THE SUM OF EVEN AND 
ODD COMPONENTS. THE INTEGRAL OF THE ODD COMPONENT ON A . . 

SYMMETRIC INTERVAL VANISHES. THE INTEGRAL OF THE EVEN 
COMPONENT IS TWICE THE VALUE OF THE INTEGRAL OF EITHER 
SIDE. THEREFORE THE PROBLEM OF DETERMINING THE CAUCHY 
·PRINCIPLE VALUE OF AN INTEGRAL IS REDUCED TO THE EVALUATION 
OF THE INTEGRAL OF A FUNCTION THAT IS UNBOUNDED AT ONE LIMIT. 
WE WILL INTEGRATE TOWARDS THE POLE, DECREASING OUR STEP SIZE 
BY HALF AS WE APPROACH IT. THUS, WHILE CGCZ)/FCZ)l INCREASES, 
dZ DECREA~ES. WE HOPE THAT THE PRODUCT OF THE TWO IS 
DIMINISHING. MOREOVER, NOTE THAT WE LINEARIZE FCZ) FOR 
IMPROVED ACCURACY IN ITS EVALUATION CLOSE TO THE POLE. 

THE EVEN-ODD SEPARATION IS GIVEN BY WRITING, FOR THE 
INTEGRAND HCZ), 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
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HCZ) = [ HCZO+U) + HCZO-U) l / 2 
+ [ HCZo+U) - HCZO-'') l / 2 

WHERE THE FIRST TERM IS SYMMETRIC AROUND ZO AND THE SE~OND IS 
ANTI-SYMMETRIC ABOUT ZO. HERE, 

U = Z - ZO = DISTANCE FROM POLE 
IN THE FOLLOWING, 

Zll, Z2L, Z3L 

Z1R,Z2R,Z3R 
Gl,G2,G3 

NSTEP = 0 
Z3l = ZSYMl 
U3 = Z3L - ZO 
Z3R = ZO - U3 
Fl = 1. DO 
CALL FCZ3R,FR,FI) 
CALL G CZ3L,GL,GI) 
CALL G CZ3R,GR,GI) 
G3 = Gl/Fl + GR/FR 
DCR2 = O.DO 
DCI2 = O.DO 
LINFLG = .FALSE. 

400 CONTINUE 
NSTEP = NSTEP + 1 
Zll = Z3l 
ZlR = Z3R 
Ul = U3 
Gl = G3 

ARE INTERPOLATION POINTS TO LEFT OF POLE 
CFOR SIMPSON'S 1-4-1 RULE) 
ARE THEIR REFLECTIONS ABOUT ZO 
ARE THE INTEGRANDS: 
Gl = GCZll)/FCZll) + GCZlR)/FCGlR) ETC. 

Z3l = CZO + Zll)/2.DO 
Z3l = DMIN1CZ3L,Zll + STPMAX) 
Z2l = CZ3l + Zll)/2.DO 
U3 = Z3L -ZO 
U2 = Z2l - ZO 
Z3R = ZO - U3 
Z2R = ZO - U2 
STEP= Z3l - Zll 
IFCC-U2) .LE. RLIN) LINFLG = .TRUE. 
IFCLINFLG) GO TO 405 
CALL FCZ2L,Fl,FI) 
CALL FCZ2R,FR,FI) 
GO TO 410 

405 Fl= DFDZ*U2 
FR = -FL 

410 CONTINUE 



C 

C 

CALL G(Z2L,GL,GI) 
CALL GCZ2R,GR,GI) 
G2 = GL/FL + GR/FR 
IFCLINFLG) GO TO 41S 
CALL FCZ3L,FL,FI) 
CALL FCZ3R,FR,FI) 
GO TO 420 

41S CONTINUE 
FL = DFDZ3EU.3 
FR= - FL 

420 CONTINUE 
CALL GCZ3L,GL,GI) 
CALL G(Z3R,GR,GI) 
G3 = GL/FL + GR/FR 
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SUM= (Gl + 4.D03EG2 + G3) 3E STEP/ 6.DO 
IF(NSTEP .NE. 1) GO TO 430 
DCR2 = SUM 
GO TO 400 

430 CONTINUE 
DDCR = DABSCSUM/DCR2) 
DCR2 = DCR2 + SUM 
IFCDDCR .GT. l.D-4) GO TO 400 
NS= NS+ NSTEP 

C THIRD INTERVAL (ZO + SYM, Zl) 
C SELECT 21 DEPENDING ON HOW WE INTEGRATE THE FOURTH INTERVAL 
C FRO~ Zl TO INFINITY. 

C 

C 

DCR3 = O.DO 
DCI3 = O.DO 
DCR4 = O.DO 
DCI4 = O.DO 
NINTEG = 2 
IF<KVAR .EQ. 1) NINTEG = 1 
IF(XB .EQ. 1.00) NINTEG = 1 

DO 600 INT= l,NINTEG 
Zl = 10.DO 
TSIGN = l.DO 
IF(KVAR .EQ. 1) GO TO S10 

WO= A03E(l.DO + XB) 
IF(INT .EQ. 2) WO= A03E(l.DO - XB) 
IFCWO .LT. 0.) TSIGN = -1.DO 
WO= DABS(WO) 
P = PI/WO 



Zl = O.DO 
Z2 = ZSYM2 
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505 CONTINUE 

C 
5000 

C 
C 
C 
C 

C 

510 

Zl = Zl + !' 
IFCZl .LT. Z2) GO TO 505 
HRITECNDBUG,5000) HO,P,Zl 
FORMAT(' HO,P,Zl',3D20.7) 

USE FAIRLY SMALL STEPS NEAR THE POLE BUT ADAPT WITH DISTANCE. 
(ADAPTIVE INTEGRATION SCHEME FROM JOHNSON AND RIESS, 
"NUMERICAL ANALYSIS", CH. 5.) 
CONTINUE 
NSTEP = 0 
ZAC5) = ZSYM2 
STEP= STPMAX 
STPMIN = STPMAX 
STPFLG = .TRUE. 
DONE3 = .FALSE. 
CALL FCZAC5),FR,FI) 
CAL~ HCZAC5),HO,GR,GI) 
HAC5) = GR/FR 

C LAST STEP HAS SUCCESSFUL 

C 
C 

C 

516 CONTINUE 

517 

ZA Cl ) = ZA C 5 ) 
HA Cl ) = HA C 5) 
GO TO 518 

LAST STEP HAS 
CONTINUE 
ZAC5) = ZAC3) 
HAC5) = HAC3) 
ZAC3) = ZAC2) 
HAC3) = HAC2) 

TOO LARGE. 

518 CONTINUE 
NSTEP = NSTEP + 1 
NSIMP= 4 
IFCSTPFLG) NSIMP= 5 
DO 519 I= 2,NSIMP 
IF( C.NOT. STPFLG) .AND. I.EQ.3) GO TO ,519 
ZACI) = ZACl) + DFLOATCI-l)*0.25DO*STEP 
CALL FCZACI),FR,FI) 
CALL HCZACI),HO,GR,GI) 
HAC I) = GR/FR 

519 CONTINUE 



C 

200 

Sl = HACl) + 4.DO*HAC3) + HACS> 
S2 = HACl) + HAC5) + 4.DO*CHAC2) + HAC4)) + 2.DO*HAC3) 
Sl = Sl*STEP/6.DO 
S2 = S2*STEP/l2.DO 
IFCS2 .EQ. O.DO) GO TO 600 
IFCDONE3) GO TO 535 
ERRTOL = DABSCl.D-3 * S2) 
ERR= DABS( CS2 - Sl) / 15.DO) 
STPFLG = .FALSE. 
IFCERR .LE. ERRTOL) STPFLG = .TRUE. 
IFCSTEP .LT. l.OOlDO*STPMIN) STPFLG :,,TRUE. 

C IFCKVAR .i~~. 1) WRITECNDBUG,1234) STPFLG,ZAC5),HAC5),STPMIN 

C 

1234 FORMAT(' STPFLG,ZAC5),HAC5),STPMIN',L2,1X,4Dl5.5) 
IFCSTPFLG) GO TO 520 
STEP= 0.5DO*STEP 
STEP= DMAXlCSTEP,STPMIN) 
GO TO 517 

520 CONTINUE 
IFCZAC5) .GE. Zl) GO TO 530 
IFCERR .LT. 0.5DO*ERRTOL) STEP= 2.DO*STEP 
STEP= DMAXlCSTEP,STPMIN) 
DCR3 = DCR3 + TSIGN*S2 
GO TO 516 

530 CONTINUE 
STEP= Zl - ZACl) 
STPFLG = .TRUE. 
DONE3 = .TRUE. 
NST~P = NSTEP - 1 
GO TO 518 

535 DCR3 = DCR3 + TSIGN*S2 
C 

NS= NS+ NSTEP 
C 
C FOURTH INTERVAL1 CZl,INFINITY) 
C APPROXIMATE EXPRESSIONS USING QUADRATIC APPROX TO FCZ) 

CALL APPROXCZ1,H,WO,DDCR4) 
DCR4 = DCR4 + TSIGN*DDCR4 

C 
600 CONTINUE 

C 
C END OF INTEGRATION OVER Z. 
C SUBTRACT RESIDUE TERM. 

CALL GCZO,GR,GI) 
DRESI = PI*GR/DFDZ 



C 
C 1 
cs:78o 
C 1 
C 

C 

C 
C6000 
C 1 
C 
C 

C 

201 

WRITECNDBUG,5780) DCR1,DCR2,DCR3,DCR4, 
DCI1,DCI2,DCI3,DCI4,DRESI 

FORMAT(' DCR 1,2,3,4 ',1X,4Dll.4, 
/, 1 DCI l,2,3,4,RES',1X,5Dll.4) 

COMPR = DCRl + DCR2 + DCR3 + DCR4 
COMP!= DCil + DCI2 + DCI3 + DCI4 - DRESI 

FACT= PI3EAO 
IFCKVAR .NE. 1) FACT= PI 
COMPR = COMPR/FACT 
COMPI = COMPI/FACT 
WRITECNDBUG,6000) AO,COMPR,COMPI 
FORMAT(' FOR AO= ',G15.7,1X,'Re C, Im C =1 , 

2Gl5.7) 

RETURN 

END 
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SUBROUTINE POLECZO) 
C 
C ***************************************************~********* 
C LOCATE ZERO OF RAYLEIGH FUNCTION FCZ) BY INTERVAL BISECTION. 
C. ************************************************************* 
C 

C 

C 

C 

C 

C 

IMPLICIT REAL*8 CA-H),REAL*8CO-Z) 
DATA TOL /l,D-8/ 

A = 1. DO + TOL 
B = 2.DO - TOL 
CALL F CA,FA,FI) 

10 ZO = CA+B)/2,DO 
CALL F CZO,FM,FI1 
IFCFA*FM .LT. O.DO) GO TO 20 

A= ZO 
FA = FM 
GO TO 30 

20 B = ZO 

30 CONTINUE 
IFC CB-A) .LE. TOL) GO TO 40 
GO TO 10 

C . 
40 ZO = CA+B)/2.DO 

RETURN 
END 
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SUBROUTINE F (Z,FR,FI) 
C 
C *************************************************************** 
C COMPUTE THE RAYLEIGH FUNCTION FOR AN ELASTIC HALF-SPACE 
C *************************************************************** 
C 

IMPLICIT REAL*8 CA-H), REAL*8 CO-Z) 
C 

COMMON /INFL/ AO,AN,AN2,B,Cs;zo 
C 

C 

C 

C 

C 

C 

C 

C 

COMMON /TRIGD/ PI,TWOPI,DTR 

COMMON /UNIT/ NPRT,NDBUG,NPLOT,NSTRS,NIN,NOUT,NDBASE 

FI= O.DO 
Z2 = Z*Z 
IFCZ .GT. l.D2) GO TO 100 

FR= C2.DO*Z2 - I.DO) 
FR= FR*FR 
TERM= CZ2 - AN2)*CZ2 - I.DO) 
IFCTERM) 10,20,20 

10 FI= - 4.DO*Z2*DSQRTC-TERM) 
RETURN 

20 PART= 4.D0*Z2*DSQRTCTERM) 
IFCZ .LT. AN) PART= -PART 
FR= FR - PART 
RETURN 

100 CONTINUE 
FR= I.DO -2.DO*Cl.D0-AN2)*Z2 
RETURN 

END 
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SUBROUTINE DERIVSCZ,FP,FPP) 
C 
C ************************************************************** 
C COMPUTE FIRST AND SECOND DERIVATIVES OF THE RAYLEIGH FUNCTION 
C FCZ). 
C ************************************************************** 
C 

IMPLICIT ~EAL*8 CA-H), REAL*8 CO-Z) 
C 

COMMON /INFL/ AO,AN,ANZ,B,CS,ZO 
C 

1 
z 

ZZ = Z*Z 
Rl = DSQRTC DABSCZZ - ANZ)) 
RZ = DSQRTC DABSCZ2 - l.DO) ) 
FP = 4.DO*Z*< 2.DO*C2.DO*Z2 - l.DO) 

- C4.DO*ZZ*ZZ - 3.DO*Cl.DO+ANZ)*ZZ + Z.DO*ANZ) 

24 = ZZ*ZZ 
AN21 =ANZ+ l.DO 
DENOMl = Rl*RZ 

/ CRl*R2) ) 

DENOMZ = DENOMl*DENOMl*DENOMl 
FPP = 4.DO*C lZ.DO*ZZ-2.DO - C20.DO*Z4-9.DO*ANZl*ZZ+Z.DO*ANZ) 

1 /DENOMl + C4.DO*Z4-3.DO*ANZl*Z2 + 2.DO*ANZ)*CZ.DO*Z4-AN2l*Z2) 
2 /DENOMZ) 

RETURN 
END 
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SUBROUTINE CDIVCA,B,C,D,E,F) 
C 
C ***~********************************************************* 
C COMPLEX DIVISION: 
C CA+ jB)/(C + jD) = E + jF 
C ************************************************************* 
C 

C 

C 

REAL*8 A,B,C,D,E,F,DENOM 

DENOM = C*C + D*D 
E = CA*C + B*D)/DENOM 
F = CB*C - A*D)/DENOM 

RETURN 
END 
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SUBROUTINE GlCZ,GR,GI) 
C 
C ***********~************************************************* 
C EVALUATE THE REST OF THE INTEGRAND MULTIPLYING 1,/FCZ) 
C FOR SURFACE DISPLACEMENTS. 
C ************************************************************* 
C 

IMPLICIT REAL*8 CA-H), REAL*8 CO-Z) 
C 

COMMON /INFL/ AO,AN,AN2,B,CS,ZO 
C 

COMMON /POINT/ XB,YB,ZB 
C 

C 

C 

GR= O.DO 
GI= O.DO 
ARGl = AO*Z 
ARG2 = ARGl*XB 
Tl= DSINCARGl)*DCOSCARG2) 

Z2 = Z*Z 
T2 = DSQRTC DABSCZ2-AN2) ) /Z 
IFCZ .LT. AN) GI= Tl*T2 
IFCZ .GT. AN) GR= Tl*T2 

RETURN 
END 
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SUBROUTINE HlCZ,WO,GR,GI) 
C 
C ************************************************************** 
C DUMMY ROUTINE TO PASS CALL TO Gl FOR DISPLACEMENTS 
C ************************************************************** 
C 

C 
IMPLICIT REAL*8CA-H),REAL*8CO-Z) 

CALL GlCZ,GR,GI) 
RETURN 
END 
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~UBROUTINE APPRX1CZ1,H,WO,DCR4) 
C 
C *************************************************************** 
C APPROXIMATE EXPRESSION FOR INTEGRAL FROM Zl TO INFINITY 
C USING QUADRATIC FCZ). 
C *************************************************************** 
C 

C 

IMPLICIT REAL*8CA-H), REAL*8CO-Z) 
EXTERNAL H 

COMMON /!NFL/ AO,AN,AN2,B,CS,ZO 
C 

C 

C 

C 

COMMON /POINT/ XB,YB,ZB 

COMMON /TRIGD/ PI,TWOPI,DTR 

DCI4 = O.DO 
DENOM = -4.DO*Cl.DO - AN2) 
Wl = AO*Cl.DO + XB) 
W2 = AO*Cl.DO - XB) 
ARGl = Wl*Zl 
ARG2 = W2*Zl 
DCR4 = CDSINCARGl) + DSINCARG2))/Zl 
IFCWl .EQ. O.DO) GO TO 100 
ARGl = DABSCARGl) 
DCR4 = DCR4 - Wl*CICARGl) 

100 CONTINUE 
IFCW2 .EQ. O.DO) GO TO 200 
ARG2 = DABSCARG2) 
DCR4 = DCR4 - W2*CICARG2) 

200 CONTINUE 
DCR~ = DCR4/DENOM 

RETURN 
END 
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REAL FUNCTION SI*8CX) 
C 
C ***************************************************************** 
C SINE INTEGRAL 
C 
C 
C 
C 
C 

0 

X 
$ SINCT)/T DT 

C **************************************************************** 
C 

C 

C 

C 

C 

C 

IMPLICIT REAL*8CA-H), REAL*8CO-Z) 

DATA TOL /l.D-6/ 
DATA PI/3.14159265359/ 

SI= O.DO 
IF C X .EQ. O.DO) RETURN 
IFCDABSCX) .GT. 15.DO) GO TO 100 

SUM= X 
TERM= X 
N = 1 

10 CONTINUE 
N = N + 2 
TERM!= -DFLOATCN-2)/DFLOATCN-l) 
TERM2 = X/DFLOATCN) 
TERM= TERM1*TERM2*TERM2*TERM 
EPS = DABSCTERM/SUM) 
SUM= SUM+ TERM 
IFCEPS .GT. TOL) GO TO 10 
SI= SUM 

RETURN 
C 
C ASYMPTOTIC EXPANSION FOR LARGE X 

100 · CONTINUE 
SUMF = l.DO 
TERM= l.DO 
Z = DABSCX) 
22 = Z*Z 
N = 0 
ANTERM = CDSQRTC1.D0 + 4.D0*Z2) - 3.D0)/4.DO 
NTERM = ANTERM - l.DO 
DO 150 I= l,NTERM 



C 

N = N + 2 
TERMl = NJECN-1) 
TERM= -TERMlJETERM/22 
SUMF = SUMF + TERM 

1SO CONTINUE 
SUMF = SUMF/Z 
SUMG = 1. DO 
TERM= l.DO 
N = 0 
NTERM = ANTERM - 2.7S 
DO 200 I= l,NTERM 
N = N + 2 
TERMl = NJECN+l) 
TERM= -TERMlJETERM/22 
SUMG = SUMG + TERM 

200 CONTINUE 
SUMG = SUMG/22 

210 

SI= PI/2.DO - SUMFJEDCOSCZ) - SUMGJEDSINCZ) 
SI= DSIGNCSI,X) 

RETURN 
END 
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REAL FUNCTION CI*8CX) 
C 
C ************************************************************** 
C COSINE INTEGRAL: 
C 
C INFINITY 
C $ COSCT)/T DT 
C X 
C 
C ************************************************************** 
C 

C 

C 

C 

C 

IMPLICIT REAL*8CA-H), REAL*8CO-Z) 

DATA GAMMA/0,5772156649"",TOL/l,D-6/ 

Z = DABSCX) 
IFCZ .GT. 15.DO) GO TO 100 

SUM= GAMMA+ DLOGCZ) 
TERM= -Z*Z/4.DO 
SUM= SUM+ TERM 
N = 2 

10 CONTINUE 
TERM!= N 
TERM2 = N+l 
N = N+2 
TERM3 = N 
TERM3 = Z/TERM3 
TERM= -TERMI*TERM3*TERM3*TERM/TERM2 
EPS = DABSCTERM/SUM) 
SUM= SUM+ TERM 
IFCEPS .GT. TOL) GO TO 10 

C 

C 

CI= SUM 
RETURN 

C ASYMPTOTIC EXPANSION FOR LARGE Z 
100 CONTINUE 

SUMF = 1. DO 
TERM = 1. DO 
22 = Z*Z 
N = 0 
ANTERM = CDSQRT(l.DO + 4.DO*Z2) - 3.D0)/4,DO 
NTERM = ANlfRM - I.DO 
DO 150 I= l,NTERM 



C 

N = N + 2 
TERM! = N*CN-1) 
TERM= -TERMl*TERM/22 
SUMF = SUMF + TERM 

150 CONTINUE 
SUMF = SUMF/Z 
SUMG = I.DO 
TERM = 1. DO 
N = 0 
NTERM = ANTERM - 2.75 
DO 200 I= l,NTERM 
N = N + 2 
TERM! = N*CN+l) 
TERM= -TERMl*TERM/22 
SUMG = SUMG + TERM 

200 CONTINUE 
SUMG = SUMG/22 

212 

CI= SUMF*DSINCZ) - SUMG*DCOSCZ) 

RETURN 
END 
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SUBROUTINE G2CZ,GR,GI) 
C 
C ************************************************************ 
C EVALUATE THE TERMS IN THE STRAIN AND STRESS INTEGRANDS 
C MULTIPLYING 1./FCZ) 
C ****~******************************************************* 
C 

IMPLICIT REAL*8CA-H), REAL*8CO-Z) 
C 

C 

C 

C 

C 

C 

C 

COMMON /INFL/ AO,AN,AN2,B,CS,ZO 

REAL*4 DUMMY 
COMMON /MESH/ DUM1,DUM2,DUMMYC55),IDUM,KVAR,JDUM,KDUM 

COMMON /POINT/ XB,YB,ZB 

GR= O.DO 
GI= O.DO 
TERMO = DSINCAO*Z)*DCOSCXB*AO*Z) / Z 
22 = Z*Z 
Tl= Z2 - AN2 
T2 = DSQRTC DABSCTl) ) 
T3 = 2.DO*Z2 - l.DO 
T3A = Tl 
IFCKVAR .EQ. 3) T3A = T3 
T3 = T3*T3A 
ARG = YB*AO*T2 
IFCZ .GE. AN) GO TO 20 

GR= T3*DCOS(ARG) 
GI= -T3*DSINCARG) 
GO TO 50 

20 CONTINUE 
GR= T3*DEXPC-ARG) 
GI= O.DO 

50 CONTINUE 
T4 = DSQRTC DABSCZ2 - l.DO) ) 
TS= 2.DO*Z2*T2*T4 
IFCKVAR .EQ. 3) TS= 2.DO*TS 
ARG = YB*AO*T4 
IFCZ .GE. AN) GO TO 70 
GR= GR+ T5*DCOSCARG) 
GI= GI - T5*DSINCARG) 
GO TO 100 



C 

C 

C 
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70 CONTINUE 
IFCZ .GE. l.DO) GO TO 90 
GR= GR - T5*DSINCARG) 
GI= GI - T5*DC0SCARG) 
GO TO 100 

90 CONTINUE 
GR= GR - T5*DEXPC-ARG) 
GI= O.DO 

10 0 CONTINUE 
GR= GR*TERMO 
GI = GHETERMO 
RETU1rn 
END 
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· SUBRO•.ITINE H2C2,WO,GR,Gll 
C 
C ************************************************************* 
C COMPUTE THE INTEGRAND TERMS MULTIPLYING l,/FC2) FOR USE BY 
C LONGMAN'S METHOD IN COMPUTING STESS AND STRAIN. NOTE THAT 
C WE HAVE HAD THE BREAK THE PRODUCT OF SIN AND COS INTO THE 
C SUM OF TWO SINES. 
C **********~~************************************************* 
C 

C 

C 

C 

C 

C 

IMPLICIT REAL*8 CA-H), REAL*SC0-2) 

COMMON /!NFL/ AO,AN,AN2,B,CS,20 

COMMON /POINT/ XB,YB,2B 

COMMON /TRIGD/ PI,TWOPI,DTR 

REAL*4 DUMMY 
COMMON /MESH/ DUM1,DUM2,DUMMYC55),IDUM,KVAR,JDUM,KDUM 

GI= O.DO 
TERMO = 0.5*DSINCW0*2) / 2 
22 = 2*2 
Tl= 22 - AN2 
T2 = DSQRTCTl) 
T3 = DSQRTC22 - l.DO) 
T4 = 2.D0*22 - l.DO 
T4A = Tl 
IFCKVAR .EQ, 3) T4A = T4 
TS= T4*T4A 
T6 = T5*DEXPC-YB*AOlET2) 
T7 = -2.D0*22*T2*T3*DEXPC-YB*AO*T3) 
IFCKVAR .EQ. 3) T7 = 2.DO*T7 
GR= TERMO*CT6 + T7) 
RETURN 
END 
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SUBROUTINE APPRX2CZ1,H,WO,DDCR4) 
C 
C **************************************************************** 
C FOR INTRACTABLE INTEGRANDS (STRAIN AND STRESS) USE LONGMAN'S 
C FORWARD DIFFERENCE SCHEME TO ESTIMATE THE INTEGRAL ON THE 
C INTERVAL 21 TO INFINITY. TREAT THE INTEGRAL AS A SUM 
C OF INTEGRALS OVER HALF-CYCLES (BETWEEN ZEROES). SINCE 
C THE INTEGRAND IS OSCILLATORY, THIS SUM REPRESENTS AN 
C ALTERNA:ING.SERIES. USE OF FORWARD DIFFERENCES PERMITS 
C EXPRESSION OF THE SUM IN ANOTHER, MORE RAPIDLY CONVERGING 
C FORM.· 
C ************************************************************ 
C 

C 

C 

C 

C 

IMPLICIT REAL*8CA-H),REAL*8C0-2) 
EXTERNAL H 
DIMENSION VC20,20) 

COMMON /UNIT/ NPRT,NDBUG,NPLOT,NSTRS,NIN,NOUT,NDBASE 

COMMON /TRIGD/ PI,TWOPI,DTR 

22 = 21 
P = PI/WO 
NSTEP = 10 
DZ= PIDFLOATCNSTEP) 
NCY = 0 
VSIGN = -1. DO 
DENOM = -I.DO 
VSUM = O.DO 

C LOOP ON HALF-CYCLES. FOR EACH HALF-CYCLE: 
C CA) INTEGRATE 
C CB) ADD A NEW ROW TO THE DIFFERENCE TABLE. 
C CC) ADD A TERM TO THE DIFFERENCE SERIES AND CHECK FOR 
C ADEQUATE CONVERGENCE. 

S40 CONTINUE 
NCY = NCY + l 
IFCNCY .GT. 20) GO TO 575 
VSIGM = -VSIGN 
DENOM = -DENOM/2,DO 
ISIMPZ = 2 
Z = 22 
22 = 22 + P 
CALL FCZ, FR, FI> 
CALL HCZ,WO,GR,GI) 
SUM = GR/FR 



C 
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DO SSO ISTEP = l,NSTEP 
ISIMPZ = 6 - ISIMPZ 
IFCISTEP .EQ. NSTEP) ISIMPZ = 1 
Z = Z + DZ 
CALL FCZ, FR, FI) 
CALL HCZ,WO,GR,Gl) 
DSUM = GR/FR 
SUM= SUM+ DFLOATCISIMPZ)*DSUM 

550 CONTINUE 
VCNCY,l) = VSIGN*SUM * DZ/3.DO 

C 
C UPDATE DIFFERENCE TABLE 

NS= NS+ NSTEP 

C 

C 

IFCNCY .NE. 1) GO TO 567 
VSUM = VCl,l)*DENOM 
GO TO S40 

S67 CONTINU~ 
DO S70 JTAB = 2,NCY 
ITAB = NCY + 1 - JTAB 
Vl = VCITAB ,JTAB-1) 
V2 = VCITAB+l,JTAB-1) 
VCITAB,JTAB) = V2 - Vl 

570 CONTINUE 

TERM= DENOM*VCl,NCY) 
IFCVSUM .EQ. O.DO) GO TO 575 
DSUM = DABSCTERM/VSUM) 
VSUM = VSUM + TERM 
IFCDSUM .GT. l.E-4) GO TO 540 

C 
57 5 CONTINUE 

DDCR4 = VSUM 
C WRITECNDBUG,1000) NCY,Zl,22,VSUM 

1000 FORMAT(' NCY,Z1,Z2,VSUM',I3,3D20.7) 
RETURN 
END 
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COMPACTION OF SOIL BY A VIBRATORY ROLLER: 

A THEORETICAL DESCRIPTION 

by 

David Towery 

(ABSTRACT) 

This study models the compaction of soil by a vibratory roller 

compactor and examines changes to current designs that may provide more 

efficient compaction. The modeling of the soil differs from previous 

analyses of the compaction process in its use of a distributed-parameter 

characterization of the soil mass and in the application of nonlinear 

constitutive relations that predict the continuous evolution of residual 

stresses_in the soil. 

The model was used to determine whether compactor performance might 

be improved by changes in the forward speed of the compactor or by 

redistribution of the weight of the frame. No improvement was found to 

occur. The model was also used to estimate the effects of varying the 

frequency of vibration to match the evolutionary changes in soil 

properties during compaction. Hardly any improvement over operation at 

constant frequency was indicated, but this finding may reflect the 

tendency of the model to underestimate the rate of stiffening in the 

soil. 
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