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Ahmed Hassan

(ABSTRACT)

Transactional memory (TM) has emerged as a promising synchronization abstraction for
multi-core architectures. Unlike traditional lock-based approaches, TM shifts the burden
of implementing threads synchronization from the programmer to an underlying framework
using hardware (HTM) and/or software (STM) components.

Although TM can be leveraged to implement transactional data structures (i.e., those where
multiple operations are allowed to execute atomically, all-or-nothing, according to the trans-
action paradigm), its intensive speculation may result in significantly lower performance than
the optimized concurrent data structures. This poor performance motivates the need to find
other, more effective, alternatives for designing transactional data structures without losing
the simple programming abstraction proposed by TM.

To do so, we identified three major challenges that need to be addressed to design efficient
transactional data structures. The first challenge is composability, namely allowing an atomic
execution of two or more data structure operations in the same way as TM provides, but
without its high overheads. The second challenge is integration, which enables the execution
of data structure operations within generic transactions that may contain other memory-
based operations. The last challenge is modeling, which encompasses the necessity of defining
a unified formal methodology to reason about the correctness of transactional data structures.

In this dissertation, we propose different approaches to address the above challenges. First,
we address the composability challenge by introducing an optimistic methodology to effi-
ciently convert concurrent data structures into transactional ones. Second, we address the
integration challenge by injecting the semantic operations of those transactional data struc-
ture into TM frameworks, and by presenting two novel STM algorithms in order to enhance
the overall performance of those frameworks. Finally, we address the modeling challenge by
presenting two models for concurrent and transactional data structures designs.



- Our first main contribution in this dissertation is Optimistic transactional boosting (OTB),
a methodology to design transactional versions of the highly concurrent optimistic (i.e.,
lazy) data structures. An earlier (pessimistic) boosting proposal added a layer of abstract
locks on top of existing concurrent data structures. Instead, we propose an optimistic
boosting methodology, which allows greater data structure-specific optimizations, easier
integration with TM frameworks, and lower restrictions on the operations than the original
(more pessimistic) boosting methodology.

Based on the proposed OTB methodology, we implement the transactional version of two
list-based data structures (i.e., set and priority queue). Then, we present TxCF-Tree, a
balanced tree whose design is optimized to support transactional accesses. The core opti-
mizations of TxCF-Tree’s operations are: providing a traversal phase that does not use any
lock and/or speculation and deferring the lock acquisition or physical modification to the
transaction’s commit phase; isolating the structural operations (such as re-balancing) in an
interference-less housekeeping thread; and minimizing the interference between structural
operations and the critical path of semantic operations (i.e., additions and removals on the
tree).

- Our second main contribution is to integrate OTB with both STM and HTM algorithms.
For STM, we extend the design of both DEUCE, a Java STM framework, and RSTM,
a C++ STM framework, to support the integration with OTB. Using our extension,
programmers can include both OTB data structure operations and traditional memory
reads/writes in the same transaction. Results show that OTB performance is closer to the
optimal lazy (non-transactional) data structures than the original boosting algorithm.

On the HTM side, we introduce a methodology to inject semantic operations into the
well-known hybrid transactional memory algorithms (e.g., HTM-GL, HyNOrec, and NOre-
cRH). In addition, we enhance the proposed semantically-enabled HTM algorithms with a
lightweight adaptation mechanism that allows bypassing the HT'M paths if the overhead of
the semantic operations causes repeated HTM aborts. Experiments on micro- and macro-
benchmarks confirm that our proposals outperform the other TM solutions in almost all
the tested workloads.

- Our third main contribution is to enhance the performance of TM frameworks in gen-
eral by introducing two novel STM algorithms. Remote Transaction Commit (RTC) is a
mechanism for executing commit phases of STM transactions in dedicated server cores.
RTC shows significant improvements compared to its corresponding validation based STM
algorithm (up to 4x better) as it decreases the overhead of spin locking during commit,
in terms of cache misses, blocking of lock holders, and CAS operations. Remote Inval-
idation (RInval) applies the same idea of RTC on invalidation based STM algorithms.
Furthermore, it allows more concurrency by executing commit and invalidation routines
concurrently in different servers. Rlnval performs up to 10x better than its corresponding
invalidation based STM algorithm (InvalSTM), and up to 2x better than its corresponding
validation-based algorithm (NOrec).
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- Our fourth and final main contribution is to provide a theoretical model for concurrent and
transactional data structures. We exploit the similarities of the OTB-based data structures
and provide a unified model to reason about the correctness of those designs. Specifically,
we extend a recent approach that models data structures with concurrent readers and a
single writer (called SWMR), and we propose two novel models that additionally allow
multiple writers and transactional execution. Those models are more practical because
they cover a wider set of data structures than the original SWMR, model.

This work is supported in part by US National Science Foundation under grants CNS-
1116190, CNS-1217385, and Air Force Office of Scientific Research (AFOSR) under grant
FA9550-14-1-0187.
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Chapter 1

Introduction

At the beginning of the new century, computer manufacturers faced difficulties in increasing
the clock speed of processors because of hitting the overheating wall. Given that, multicore
architectures have been introduced as an alternative to exploit the increasing number of
transistors that can fit into the same space (according to Moore’s low). In multicore archi-
tectures, increasing performance is achieved by adding more cores rather than increasing the
processor’s frequency.

Given this shift towards multicore machines, software developers were enforced to develop
concurrent programs in which they have to synchronize the blocks of code that access the
same regions of the shared memory (i.e., critical sections) simultaneously. Programmers
used to protect their critical sections leveraging locks. On the hardware level, implementing
efficient locks motivated the addition of more complex special (i.e., atomic) instructions,
such as compare-and-swap (CAS). On the software level, synchronization using locking is
very challenging. On one hand, coarse-grained locking, in which the shared objects are syn-
chronized using a single global lock, is easy to program. However, it minimizes parallelism
(concurrency) and prevents the full exploitation of the multicore computing resources. As a
result, performance in coarse-grained locking is hardly better than executing critical sections
sequentially. On the other hand, fine-grained locking, in which the programmer uses locks
only when necessary, allows more concurrency but it is error-prone and more likely to suffer
from issues like race conditions and deadlocks. To efficiently use fine-grained locking, the
programmer has to ensure that those locks are i) sufficient to satisfy the required applica-
tion correctness guarantees (e.g., consistency and isolation) and progress guarantees (e.g.,
deadlock freedom and fairness), and i) optimized to allow as much concurrency as possible.

With the growing adoption of multicore processors, the design of efficient data structures
that allow concurrent accesses without sacrificing true parallelism becomes more critical than
before. In the last decade, different designs of the concurrent version of well-known data
structures (e.g., lists, queues, hash tables, trees) have been proposed [59, [54] [46, [79] 29, 93],
13, 211, 221 5], [8], 134, 15, B35 [63], 84]. They can be classified as lock-based (mostly fine-grained)
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designs and non-blocking (e.g., wait-free [56], obstruction-free [61]) designs. The former
solutions are easier to design than non-blocking algorithms, but their performance could
suffer from: i) the blocking nature of their operations; and 4i) the possibility of delaying
and /or stalling the lock holders (e.g., due to adverse operating system’s scheduling). On the
other hand, non-blocking algorithms use the atomic primitives (e.g., CAS operations) in a
more efficient way in order to provide higher progress guarantees (e.g., wait-freedom [56]),
which are otherwise prevented in the lock-based approaches [43].

1.1 Transactional Memory

In the last century, the adoption of a certain fine lock granularity has been an obligation for
programmers. Similarly, programmers were responsible for selecting either lock-based or non-
blocking designs for concurrent data structures. Along with that, Transactional Memory [58]
(TM) has emerged as an appealing concurrency control methodology that shifts the burden of
synchronization from the programmer to an underlying framework. With TM, programmers
organize reads and writes to shared memory in “atomic blocks”, which are guaranteed to
satisfy atomicity, consistency, and isolation properties. Two transactions conflict if they
access the same object and one access is a write. If two transactions conflict, one of them
is aborted (to guarantee consistency), undoing all its prior changes. When a transaction
commits, it permanently publishes its writes on shared memory. This way, other transactions
(or at least successful ones) will not see its intermediate states, which guarantees atomicity
and isolation. TM has been proposed in pure software [24], 25| O8] BT, 90, B7, [72, 8], 89,
pure hardware [58] [7, [44) [82], and hybrid [28, [OT) 27] approaches.

TM was introduced as a synchronization alternative to the classical lock-based approaches.
The main goal of TM is to solve the tradeoff between performance an programmability. It
provides high level of programmability, like coarse-grained locking, and it performs closer
to the highly concurrent fine-grained locking applications. The underlying TM framework
encapsulates all of the concurrency control low-level mechanisms and allows the program-
mer to write large and complex concurrent applications with possibly high correctness and
progress guarantees.

Transactional memory is increasingly gaining traction: Intel has released a C++ compiler
with STM support [64]; IBM [16] and Intel [65] have released commodity hardware proces-
sors with transactional memory support; GCC has released language extensions to support
STM [99]. Having standard APTs for TM (like the recently released GCC APT’s) adds another
advantage to be exploited in the coming TM research, which is transparency. Programmers
can evaluate different TM algorithms/approaches and build different what-if scenarios using
the same API’s/benchmarks and with minimum programming overheads. This advantage
is hard to achieve in the traditional lock-based approaches as they are usually application-
dependent.
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1.1.1 Software Transactional Memory

Inspired by database transactions, STM manages an atomic block by storing its memory
accesses in local read-sets and write-sets. Read-sets (or write-sets) are local logs which store
any memory location read (or written) within the transaction, and are used to validate the
transaction at any time of its execution. To achieve consistency, a validation mechanism
is used (either eagerly or lazily) to detect conflicting transactions (i.e., read-write or write-
write conflicts). Writing to the shared memory is protected by locking the modified memory
blocks until the transaction finishes its commit routine.

One of the most performance-critical decisions of an STM algorithm is when to write to
shared memory. On one hand, eager writes (i.e., before commit) obligates a transaction to
undo the writes in case of abort. The main problem of early updates is that writes of doomed
transactions are visible to transactional and/or non-transactional code. On the other hand,
lazy writes (i.e., during commit) are typically kept in a local redo logs to be published at
commit, which solves the previous problem. Reads in this case are more complex, because,
readers must scan their redo logs for the not-yet-committed writes, increasing the STM
overhead. Another performance-critical design decision is the granularity of locking that
STM algorithms use during commit. Commit-time locking can be extremely coarse-grained
as in TML [24] and NOrec [25], compacted using bloom filters [12] as in RingSTM [9§], or
fine-grained using ownership records as in TL2 [31]. In addition, some algorithms replace
the commit-time locking with an eager approach where locks are acquired at encounter
time (e.g., TinySTM [90]). In general, fine-grained locking decreases the probability of
unnecessary serialization of non-conflicting executions with an additional locking cost and
more complex implementation, further affecting STM performance and scalability.

STM algorithms vary in properties such as progress guarantees, publication and privatization
safety [77, 97], support for nesting [83, [100], interaction with non-transactional memory
access, safe execution of exception handlers, irrevocable operations, system calls, and 1/O
operations. However, improving the performance and scalability are still the most important
challenges in making STM a competitive alternative to traditional lock-based synchronization
approaches, especially on emerging multi/many core architectures which offer capabilities for
significantly increasing application concurrency.

We classified the main overheads that affect STM performance into three categories. First,
the overhead of meta-data handling and validation/commit routines. Second, the locking
mechanisms used in STM algorithms. Finally, the false conflicts raised from the intensive
speculation.

The first overhead is the handling of meta-data. An STM transaction can be seen as being
composed of a set of operations that must execute sequentially — i.e., the transaction’s
critical path. Reducing any STM operation’s overhead on the critical path, without violating
correctness properties, will reduce the critical path’s execution time, and thereby significantly
enhance STM’s overall performance. These operations include meta-data logging, locking,
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validation, commit, and abort. Importantly, these parameters interfere with each other.
Therefore, reducing the negative effect of one parameter (e.g., validation) may increase the
negative effect of another (i.e., commit), resulting in an overall degradation in performance
for some workloads.

Another distinguished overhead that affects the performance of STM is the locking mecha-
nism itself. Most of the current STM frameworks, such as DEUCE in Java [67] and RSTM in
C/C++ [13, ], use spin locks in their STM algorithms to protect memory reads and writes.
The evaluation of some recent locking mechanisms, like flat combining [55] (FC) and remote
core locking [71] (RCL), showed better performance than spin locking. The basic idea of
these mechanisms is letting threads spin on a local variable rather than a shared lock. This
local variable is modified either by a nominated thread (in FC) or by a dedicated server (in
RCL). Despite the efficiency of those approaches, they have never been used before in the
TM context.

The last overhead in our study is the overhead of false conflicts, which are the conflicts
that occur on memory when there is no semantic conflict and there is no need to abort
the transaction. By nature, Transactional Memory is prone to false conflicts because it
proposes a generic application-independent synchronization mechanism. Being unaware of
the application logic may result in redundant speculation and unnecessary false conflicts.
The problem of false conflicts is more evident in the context of data structures, which we
cover with more details in Section [3l

1.1.2 Hardware Transactional Memory

TM was firstly proposed in hardware rather than in software, as a modification of the cache
coherence protocols [58]. This way, HTM avoids the overhead incurred by the intensive
speculation in STM. However, HT'M did not attract computer architects for a while be-
cause it adds significant complications on the the design of the multicore architectures. The
lack of commercial processors with HTM support enforced the research efforts to rely on
simulations [44] to evaluate the proposed HTM solutions.

Recently, an important milestone in TM has been achieved by supporting HTM in both
IBM’s and Intel’s commodity processors [16] [65]. HTM does not suffer from the same
overheads of STM, and thus it potentially solves the TM’s performance and scalability issue.
However, the current HI'M proposals come with two other serious limitations:

First, the common design principle in these releases is the best-effort execution. There is no
guarantee that HT'M transactions will eventually commit, independently of the surrounding
circumstances. As an example, in Intel’s Haswell processor with its TSX extensions, an
HTM transaction may fail because of reasons other than conflicting with other transactions.
One (important) of them is what we call capacity failure, which means that transaction’s
footprint (basically its reads and writes) does not fit the L1 cache size, which is private to
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each physical core and is used by TSX as buffer for logging transactional reads and writes.
Other reasons include page faults, system calls invocations, and interrupts.

The architects’ decision of releasing best-effort HTM architectures supports the direction of
designing hybrid TM systems. This means that HT'M transactions need a fall-back software-
base path. Researcher, even before the releases of Intel’s and IBM’s processors, have recently
enriched the literature with various proposals for the fall-back paths to either adapted locking
mechanisms [4, [19] or STM mechanisms [91, 27, [75]. As another direction, HTM has been
proposed to specifically enhance the design of concurrent and transactional data structures [9,
10l 101].

Second, Both Intel’s [65] and IBM’s [16] architectures provide very limited set of APIs to the
programmer. As an example, intel TSX APIs allows identifying the transaction boundaries
without giving the programmer the ability to execute part of it non-transactionally. IBM’s
Power8 APIs allows non-transactional code to be executed inside transactions using the
new suspend instruction. However, recent work [95] showed a significant overhead of using
suspend instruction intensively. It is worth noting that the earlier STM frameworks, such as
RSTM [I] support non-transactional reads/writes within transactions.

Having such a limited API reduces the space of innovation in the execution of the pure-
HTM transactions (before falling back to the software path). It also lets HTM inherit the
problem of having intensive false conflicts, especially in data structures which are the core
of our study, because HTM “blindly” monitors all the memory reads and writes within a
transaction, even if there is no “semantic” need for monitoring them.

1.2 From Concurrent to Transactional Data Structures

With the advent of TM in multicore architectures, programmers are expected to move to-
wards the “transactional” programming model, where transactions represent the basic build-
ing blocks for synchronization. Since concurrent data structures are key actors in the parallel
programming model, and they are complex as well given the semantics that rules their oper-
ations, migrating them to the new (simpler) transactional programming model should help
programmers (especially those non-expert) in developing multi-threaded applications that
encompass data structures. In this dissertation, we make the first step towards identifying
and overcoming the challenges of designing transactional, rather than concurrent, data struc-
tures. Specifically, we discuss three main issues that should be addressed when designing
transactional data structures, such that composability, integration with generic transactions,
and modeling; and along with that we introduce innovative solutions to address them.
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1.2.1 Composability

One of the main limitations of concurrent data structures is that they do not compose. For
example, as shown in Figure [I} all transactions access a shared set setl. Although set1
could be implemented using an efficient highly concurrent data structure, such as lazy [54]
linked-list and Contention-Friendly Tree [22], atomically inserting two elements in set? is dif-
ficult: if the add method internally uses locks, issues like managing the dependency between
operations executed in the same transaction, and the deadlock that may occur because of
the chain of lock acquisitions, may arise. Similarly, composing non-blocking operations is
challenging because of the need to atomically modify different places in the data structure
using only basic primitives, such as a CAS operation. Lack of composability is a serious
limitation of current data structure designs, especially for legacy systems, as it makes their
integration with third-party software difficult.

Algorithm 1 An example of using Atomic blocks to execute two data structure operations.
1: Set setl = new(Set)

2: procedure METHODI(x)
3: TM-BEGIN

4 setl.add(z)

5: setl.add(y)

6: TM-END

T

end procedure

Although the research has reached an advanced point in developing concurrent data struc-
tures, transactional (i.e., composable) data structures have not reached this point yet. There
are two practical approaches, to the best of our knowledge, that enable transactional accesses
on a data structure: 1) The first approach is Transactional Memory (TM) [58] which natively
allows composability as it speculates every memory access inside an atomic block; 2) The
second approach is Transactional Boosting [57] (TB), which protects the transactional access
to a concurrent data structure with a set of semantic locks, eagerly acquired before executing
the operation on the concurrent data structure. Both TM and TB have serious limitations
when used for designing transactional data structures. Those limitations originate from the
same reason: they are both generic, and they do not consider the specific characteristics of
concurrent data structures, which instead are heavily investigated in literature. For example,
TM considers every step in the operation, as low-level memory reads/writes, which increases
the number of false conflicts. On the other hand, TB uses the underlying concurrent data
structure as a black-box, which prevents any further customization, and may nullify the
internal optimizations of the concurrent data structure itself due to the eagerly acquired
semantic locks.

To overcome these downsides, we present an optimistic methodology for boosting concurrent
collections, called Optimistic Transactional Boosting (OTB). Unlike TM and TB, OTB only
provides guidelines to design transactional data structures, and it leaves all the development
details to the data structure designer, thus enabling the possibility of adding further (data
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structure-specific) optimizations. OTB is clearly less programmable than TM and TB, but
it has the potential to provide better performance and scalability, especially when applied
to complex data structures, like the case of skip-lists and balanced trees. Also, since we
propose encapsulating the highly efficient OTB-Based transactional data structures in a
software library similar to java.concurrent.util library, the programming efforts would
be only made once by the data structure designer, and application level high programmability
will be still preserved.

1.2.2 Integration

Since “transactions” are the most appealing candidates to replace locks as synchronization
primitives, transactional data structures become no longer standalone components. For ex-
ample, in Algorithm , all transactions access a shared set (setl), and two shared integers
(n! and n2), which hold respectively the number of successful and unsuccessful add oper-
ations on setl. In methodl, both the set operation (Line [6) and the traditional memory
accesses (Lines [7| and @ have to be executed atomically as one transactional block, without
breaking the transaction’s consistency and isolation.

To execute such an atomic block, the previous proposals use a pure TM-based implementa-
tion of set1, which lets the TM framework instrument the whole transaction. Conversely, in
this dissertation we introduce techniques to extend TM frameworks so that they can use a
more efficient implementation of set! (typically using the OTB methodology), rather than
the fully-instrumented TM implementation, and at the same time allows for an atomic exe-
cution of this type of “mixed” transactions (i.e., embracing efficient data structure accesses
and classical memory accesses), without suffering from false conflicts.

Algorithm 2 An example of using Atomic blocks to execute both data structure operations
and memory reads/writes.

1: Set setl = new(Set)
2: integer nl =0
3: integer n2 = 0

4: procedure METHODI(z)
TM-BEGIN
if setl.add(z) == true then
TM-WRITE(nl, TM-READ(n1) + 1)
else
TM-WRITE(n2, TM-READ(n2) + 1)
10:  TM-END

11: end procedure

Integrating OTB with TM frameworks gives a global perspective to our work: providing
generic transactional frameworks that execute both memory-based operations and data struc-
ture operations with i) as simple API as TM, and i) as efficient “semantic” operations as
OTB. In that sense, enhancing the performance of the overall TM framework (including the
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traditional memory-based operations) becomes also essential for preserving the performance
gains of OTB. For that reason, in this dissertation we analyze the limitations of both STM
and HTM transactions (discussed in Sections|1.1.1]and [L.1.2| respectively) and provide novel
solutions for addressing them.

Specifically, regarding STM, we analyze the parameters that affect the critical path of STM
transaction execution, and summarize the earlier attempts in the literature to reduce their
effects. Then, we present two novel STM algorithm: remote transaction commit (RTC) and
remote invalidation (RInval), which alleviate the overhead on the critical path. Also, in both
algorithms, we address the issue of spin locking during transactions’ commit phases. To the
best of our knowledge, RT'C and Rlnval are the first STM algorithms that make use of more
enhanced locking mechanisms.

On the HTM side, we propose injecting the semantics of OTB data structures into the soft-
ware fallback path of HT'M transactions. We applied this idea on three HTM algorithms: the
default HTM with global locking in the fallback path; HyNOrec [26], 88]; and NOrecRH [74],
and we show how the new algorithms perform significantly better than their traditional
“non-semantic” versions.

1.2.3 Modeling

The design of a data structure has its own challenges that depend on its semantics and
implementation constraints. That is why, historically, proving the correctness of most con-
current data structures followed an ad-hoc approach. This lack of generality contributed
to make the task of assessing their correctness very challenging. Recently, we observed an
initial step towards accomplishing the goal of having a general model for proving the cor-
rectness of concurrent data structures, which is the single writer multiple readers model (we
name it SWMR hereafter) presented by Lev-Ari et. al. in [70]. The SWMR model focuses on
two safety properties (roughly summarized here): validity, which guarantees that no “unex-
pected” behaviors (e.g., access to an invalid address or a division by zero) can occur in all the
steps of a concurrent execution; and reqularity, an extension of the classical regularity model
on registers [68] that guarantees that each read-only operation is consistent (i.e., linearized)
with all the write operations. The appealing advantages of the SWMR model are that: i)
it allows the programmer to use general and well-defined terms to prove the wvalidity and
reqularity of any data structure fitting the SWMR model; and i) it gives a formal way to
prove linearizability [60] by relying on regularity.

Despite the strengths of the SWMR model, the set of data structures that can actually benefit
from it does not include most of the recent highly optimized and practical concurrent [54] [46],
22] data structures which, in addition, allow concurrent writes. In addition, SWMR model
assumes concurrent data structures and does not include transactional (or composable) data
structures, like the OTB-based ones.
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We build two models that extend SWMR: the first one covers the set of OTB-based con-
current data structures; and the second one extends the former to support the composition
using OTB. We do so by leveraging two general observations about OTB-based data struc-
tures. First, the traversal phases do not execute any write and thus they can be considered
as internal read-only operations. Second, the commit phases can atomically run with Single
Lock Atomicity [T8] semantics, rather than executing sequentially. Relying on those observa-
tions, we replace the assumption of having a single writer in SWMR with “more practical”
assumptions. The main advantage of our models is that they allow the programmer to use
well-defined terms, like validity and reqularity, for proving the correctness of this practical
set of data structures, instead of the ad-hoc proof techniques used so far.

1.3 Summary of Dissertation Contributions

In this dissertation we present innovative solutions to design, develop, and model transac-
tional data structures.

To address composability, we design Optimistic Transactional Boosting (OTB) [48], an opti-
mistic methodology for converting concurrent data structures into transactional ones. The
main challenge of optimistic boosting is to ensure comparable (or better in some cases) per-
formance to the highly concurrent data structures, while providing transactional support.
Our approach follows the general optimistic rule of deferring operations to transaction com-
mit. Precisely, transactional operations do not directly modify the shared data structure
at encounter-time. Instead, they populate their changes into local logs during their execu-
tion. This way, OTB combines the benefits of concurrent data structures (i.e., un-monitored
traversals), TB (i.e., semantic validation), and TM (i.e., optimistic conflict detection).

We apply OTB on both list-based data structures and balanced trees. We first developed a
transactional version of linked-list-based set, skip-list-based set, and skip-list-based priority
queue [47]. Then, we move to more complex data structure and introduce TxCF-Tree [51],
the transactionally boosted version of CF-Tree [22], namely one of the most efficient and
recent concurrent balanced tree. In addition to providing a “transactional” rather than
a “concurrent” behavior of TxCF-Tree, we show how OTB can be leveraged to address
one of the main issues of balanced trees, which is the overhead of the structural operations
(i.e., rotations and physical deletion). TxCF-tree addresses this issue by introducing novel
techniques to minimize the interference of such structural operations on the critical path of
the semantic operations (e.g., queries, logical removals, and insertions).

Next, we show how to integrate transactionally boosted data structures with the current TM
frameworks [49]. More specifically, we show how to implement OTB data structures in a
standard way that can integrate with STM frameworks. Our frameworks are designed so that
the integration between semantic operations and memory accesses is completely transparent
to the programmer. Programmer just write the classical atomic block (delimited by TM-BEGIN
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and TM-END) enclosing semantic operations, like that shown in Algorithms || and .

As a test case, we show how to modify both DEUCE [67] and RSTM [I] frameworks to allow
this integration while maintaining the consistency and programmability of the framework.
Using the proposed integration, OTB transactional data structures are supposed to work in
the context of generic transactions. That is why the proposed integration gains the benefits
of both STM and boosting. On one hand, it uses OTB data structures with their minimal
false conflicts and optimal data structure-specific design, which increases their performance.
On the other hand, it keeps the same simple STM interface, which increases programmability.
To the best of our knowledge, this linking between transactional data structures and STM
algorithms has not been investigated in literature before.

We also show how to exploit the recently released HTM-enabled processors when designing
transactional data structures. As we mentioned before, all HT'M algorithms have two paths
of execution: a fast HTM path, and a slow software fall-back path. The fall-back path is
clearly slow because it either uses a global lock that serializes all the ongoing transactions,
or uses a relatively slow STM algorithm such as NOrec [26, [8§]. The fast-path, on the
other hand, is not always as fast as it should be because it may repeatedly fail due to the
HTM limitations mentioned before. Our methodology boosts the capabilities of the HTM
algorithms by i) injecting the efficient semantic operations into the slow-path, and i) using
an adaptation mechanism to decide for each transaction which is the most effective path to
start with. This approach makes significant performance improvements when data structure
operations are dominating because, by relying on the first point, the slow-path will perform
faster due to the exploitation of the efficient semantic versions of those operations, and,
by relying on the second point, the fast-path can be bypassed when it is slower than the
slow-path (e.g., when it repeatedly fails). To evaluate our methodology, we extended RSTM
to support both the original non-semantic-based HTM algorithms and our semantic-based
HTM algorithms. Our experiments show a better performance than the HTM algorithms
that access the data structure without exploiting its semantics.

We then aim at enhancing the overall performance of the proposed transactional frameworks.
To do so, we present Remote Transaction Commit (RTC) [52], a mechanism for executing
commit phases of STM transactions. Specifically, RTC dedicates server cores to execute
transactional commit phases on behalf of application threads. This approach has two major
benefits. First, it decreases the overhead of spin locking during commit, in terms of cache
misses, blocking of lock holders, and CAS operations. Second, it enables exploiting the
server cores for more optimizations, such as running two independent commit phases in two
different servers. As argued by [30], hardware overheads such as CAS operations and cache
misses are critical bottlenecks to scalability in multicore infrastructures. Although STM
algorithms proposed in the literature cover a wide range of locking granularity alternatives,
they do not focus on the locking mechanism (which is one of our focuses in this thesis).

Next, we present Remote Invalidation (RInval) [50], an STM algorithm which applies the
same idea of RTC in invalidation-based STM algorithms [40]. This way, RInval optimizes
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locking overhead because all spin locks and CAS operations are replaced with optimized
cache-aligned communication. Additionally, like other invalidation-based STM algorithms,
RInval’s commit servers are responsible for invalidating the in-flight conflicting transactions.
A direct result of this approach is reducing the execution-time complexity of validation to be
linear instead of quadratic (as a function of the read-st size), because it avoids incremental
validation after each memory read. We also introduce an enhanced version of Rlnval, in
which the commit routine only publishes write-sets, while invalidation is delegated to other
dedicated servers, running in parallel, thereby improving performance.

Finally, we address the issue of modeling concurrent and transactional data structures by
providing an answer to the following question: can we define a model for assessing their
correctness so that current (and maybe future) practical implementations can rely on that?
Seeking such an answer, we present a set of models that cover different data structures
designs [53]: i) Single Writer Commit (SWC), which allows the traversal phases of update
operations to run concurrently (as internal read-only operations), and enforces their commit
phases to be atomically executed under the single lock atomicity (SLA) semantics [78]. The
main challenge addressed by this model is that the traversal phases, unlike the SWMR model,
are not standalone read-only operations but are tightly related with their corresponding
commit phases; ii) Composable Single Writer Commit (C-SWC): which is an extension
of SWC' that allows the composition of the operations by grouping the traversal phases
(respectively commit phases) in a single transactional traversal phase (respectively commit
phase). The main challenge here is that operations in the same transaction have to be able
to exchange the information about their traversal and commit phases.

1.4 Dissertation Outline

The rest of the dissertation is organized as follows. We overview past work in Chapter 2]
We describe OTB methodology in Chapter [3| and we show how we applied it on list-based
data structures and balanced trees in Chapters 4| and |5, respectively. Then, in Chapters
[0 and [7, we show how we integrate OTB with STM frameworks and HTM algorithms,
respectively. Chapters [§ and [9] describe our RTC and RInval STM algorithms, respectively.
Then, we describe SWC and C-SWC models in Chapter [I0} Finally, Chapter [11] concludes
the dissertation and discusses potential future work.



Chapter 2

Background

2.1 STM algorithms

Since the first proposal of Software Transactional Memory implementation (i.e., Transac-
tional Locking [94]), many STM algorithms with different designs have been introduced in
literature. In this section, we overview past STM algorithms that are most relevant to our
work, and contrast them with our algorithms. Basically, RTC is a validation-based algorithm
which extends NOrec [25], and Rlnval is an invalidation-based algorithm which extends In-
valSTM [40]. Also, different works propose NOrec as an efficient fallback path to HTM
transactions. Thus, we describe in details these two algorithms in Section and Section
[2.1.2 respectively. Then, in Section [2.1.3] we briefly discuss other STM algorithms and how
they interleave with our algorithms.

2.1.1 NOrec

NOrec [25] is a lazy STM algorithm which uses minimal meta-data. Only one global times-
tamped lock is acquired at commit time to avoid write-after-write hazards. When a trans-
action T; attempts to commit, it tries to atomically increment a global timestamp (using a
CAS operation), and keeps spinning until the timestamp is successfully incremented. If the
timestamp is odd, this means that some transaction is executing its commit phase. In this
case, the read-set has to be validated before retrying the CAS operation. After the lock is
acquired (i.e., CAS succeeds), the write-set is published on the shared memory, and then the
lock is released.

Validation in NOrec is value-based. After each read, if the transaction finds that the times-
tamp has been changed, it validates that the values in its read-set match the current values
in the memory.

12
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Using single global lock and value-based validation avoids the need to use ownership records
— or orecs (the name NOrec stands for no ownership records or no orecs). Orecs were used
in many STM algorithms [31), 00] as the meta-data associated with each memory block to
detect and resolve conflicts between transactions. Some other STM algorithms, such as
RingSTM [98], use bloom filters instead of orecs. NOrec, however, does not use neither
orecs nor bloom filters, and it limits the meta-data used to be only the global sequence
lock. Having this minimum meta-data allows low read/write overhead, easy integration with
HTM, and fast single-thread execution. Additionally, value-based validation reduces false
conflicts because the exact memory values are validated instead of the orecs.

One of the issues in NOrec is that it uses an incremental validation mechanism. In incre-
mental validation, the entire read-set has to be validated after reading any new memory
location. Thus, the overhead of read-validation is a quadratic function of the read-set size.
NOrec alleviates this overhead by checking the global lock before validation. If the global
lock is not changed, validation is skipped. However, the worst case complexity of the vali-
dation process in NOrec remains quadratic. Another issue is that commit phases have to be
executed serially.

2.1.2 InvalSTM

The invalidation approach has been previously investigated in [45, [62 [40]. Among these
approaches, Gottschlich et. al proposed commit-time invalidation, (or InvalSTM) [40], an
invalidation algorithm that completely replaces version-based validation without violating
opacity [42).

The basic idea of InvalSTM is to let the committing transaction invalidate all active transac-
tions that conflict with it before it executes the commit routine. More complex implementa-
tion involves the contention manager deciding if the conflicting transactions should abort, or
the committing transaction itself should wait and/or abort, according to how many transac-
tions will be doomed if the committing transaction proceeds, and what are the sizes of their
read-sets and write-sets.

Like NOrec, committing a transaction T; starts with atomically incrementing a global times-
tamp. The difference her is that after writing in memory, 7; invalidates any conflicting
transaction by setting their status flag as invalidated. Conflict detection is done by compar-
ing the write bloom filters [I2] of the committing transaction with the read bloom filters of
all in-flight transactions. Bloom filters are used because they are accessed in constant time,
independent of the read-set size. However, they increase the probability of false conflicts
because bloom filters are only compact bit-wise representations of the memory.

When T; attempts to read a new memory location, it takes a snapshot of the timestamp,
reads the location, and then validates that timestamp does not change while it reads. Then,
T; checks the status flag to test if it has been invalidated by another transaction in an earlier
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step. This flag is only changed by the commit executor.

The invalidation procedure replaces incremental validation, which is used in NOrec [25].
Thus, the overhead of read-validation becomes a linear function of the read-set size instead of
a quadratic function. This reduction in validation time enhances the performance, especially
for memory-intensive workloads. It is worth noting that both incremental validation and
commit-time invalidation have been shown to guarantee the same correctness property, which
is opacity [42].

One of the main disadvantages of commit-time invalidation is that it burdens the commit
routine with the mechanism of invalidation. In a number of cases, this overhead may offset
the performance gain due to reduced validation time. Moreover, InvalSTM uses a conser-
vative coarse-grained locking mechanism, which of course makes its implementation easier,
but at the expense of reduced commit concurrency (i.e., only one commit routine is executed
at a time). The coarse-grained locking mechanism increases the potential of commit “over
validation”, because the commit executor will block all other transactions that attempt to
read or commit. Other committing transactions will therefore be blocked, spinning on the
global lock and waiting until they acquire it. Transactions that attempt to read will also be
blocked because they cannot perform validation while another transaction is executing its
commit routine (to guarantee opacity).

2.1.3 Other STM algorithms

RingSTM [98] introduced the idea of detecting conflicts using bloom filters [I12]. Each thread
locally keeps two bloom filters, which represent the thread’s read-set and write-set. All
writing transactions first join a shared ring data structure with its local bloom filters. Readers
validate a new read against the bloom filters of writing transactions, which join the ring
after the transaction starts. Although both RingSTM and RTC use bloom filters, there is a
difference in the use of those bloom filters. RingSTM uses bloom filters to validate read-sets
and synchronize writers, which increases false conflicts according to bloom filter sizes.

TL2 [31] is also an appealing STM algorithm which uses ownership records. However, this
extremely fine grained speculation is not compatible with RTC’s idea of remote execution
because it will require dedicating more servers.

DSTM [62] is an example of partial invalidation which eagerly detects and resolves write-
write conflicts. ST M? [66] proposes executing validation in parallel with the main flow of
transactions. However, it does not decrease the time complexity of incremental validation
(like InvalSTM). Moreover, it does not guarantee opacity and needs a sand-boxing mechanism
to be consistent [23].

Another alternative to an STM algorithm for supporting STM-style atomic sections is global
locking, which simply replaces an atomic block with a coarse grained lock (for example,
using MCS [76]). Although such an STM solution is suitable for applications which are
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sequential by nature, it is too conservative for most workloads, hampering scalability. STM
runtimes like RSTM [73], [I] use such a solution to calculate the single thread overhead of
other algorithms, and to be used in special cases or in adaptive STM systems.

2.2 Best-effort HTM Limitations

Since Intel [65] and IBM [16] announced their first processors with HTM support, the research
of the TM community started deviating from the traditional direction of enhancing the
performance and scalability of STM algorithms to finding the best solution to overcome the
best-effort nature of HT'M transactions.

Minimizing the side-effects of best-effort HI'M architectures requires finding the best fall-back
software path (either to global locking [I8),33] or to lightweight STM algorithms [74), 26], 8]]),
which can be implemented in Haswell using the Restricted Transactional Memory (RTM)
APIs of the TSX extensions. To implement such an efficient fall-back path, it is important to
understand the different sources of HI'M failures. In this section we briefly discuss the sources
of failure in the TSX extensions of Intel’s Haswell processor, since we use Intel architectures
in our frameworks. However, the general concepts discussed here apply to IBM’s power8 as
well.

The first type of failure, called capacity failure, is directly inherited from the capacity limi-
tation on the underlying L1 cache (recall that TSX extensions are built on top of the cache
coherence protocol). This type of failure enables the _zabort_capacity flag. Proposals to
annul the effect of capacity failures include: tuning the number of retries in HTM before
falling back to the software path [33]; and proposing new hardware instruction, like IBM’s
suspend operation [16], to reduce the signature of HT'M transactions.

The second type of HTM failures is called conflict failure (detected via the _xabort_con flict
flag). This failure is the result of any conflict happened either due to the access on application
data, or accessing the meta-data shared between the HTM path and the fall-back paths (like
the global lock). Most of the research in HTM focuses on reducing conflicts on the meta-
data [26], 88 [18, [74] because conflicts on the application data are considered as natural and
unavoidable conflicts.

Finally, HTM transactions can abort by external sources (e.g., page faults, system calls,
timer interrupts). Those kinds of aborts raise the _zabort_other flag.

2.3 Remote Core Locking

Remote Core Locking (RCL) [7I] is a recent mutual exclusion mechanism based on the
idea of executing lock-based critical sections in remote threads. Applying the same idea in
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STM is appealing, because it makes use of the increasing number of cores in current multi-
core architectures, and at the same time, allows more complex applications than lock-based
approaches.

The main idea of RCL is to dedicate some cores to execute critical sections. If a thread
reaches a critical section, it will send a request to a server thread using a cache-aligned
requests array. Unlike STM, both the number of locks and the logic of the critical sections
vary according to applications. Thus, RCL client’s request must include more information
than RTC, like the address of the lock associated with the critical section, the address of
the function that encapsulates the client’s critical section, and the variables referenced or
updated inside the critical section. Re-engineering, which in this case means replacing critical
sections with remote procedure calls, is also required and made off-line using a refactoring
mechanism [39)].

RCL outperforms traditional locking algorithms like MCS [76] and Flat Combining [55] in
legacy applications with long critical sections. This improvement is due to three main en-
hancements: reducing cache misses on spin locks, reducing time-consuming CAS operations,
and ensuring that servers that are executing critical sections are not blocked by the scheduler.

On the other hand, RCL has some limitations. Handling generic lock-based applications, with
the possibility of nested locks and conditional locking, puts extra obligations on servers. RCL
must ensure livelock freedom in these cases, which complicates its mechanism and requires
thread management. Also, legacy applications must be re-engineered so that critical sections
can be executed as remote procedures. This problem specifically cannot exist in STM because
the main goal of STM is to make concurrency control transparent from programmers. As
we will show later, RT'C does not suffer from these limitations, retaining all the benefits of
RCL.

An earlier similar idea is Flat Combining [55], which dynamically elects one client to tem-
porarily take the role of server, instead of dedicating servicing threads. However, simply
replacing spin locks in STM algorithms with RCL locks (or Flat Combining locks) is not the
best choice because of two reasons. First, unlike lock-based applications, STM is a complete
framework that is totally responsible for concurrency control, which allows greater innova-
tion in the role of servers. Specifically, in STM, servers have more information about the
read-set and write-set of each transaction. This information cannot be exploited (for im-
proving performance) if we just use RCL as is. Second, most STM algorithms use sequence
locks (not just spin locks) by adding versions to each lock. These versions are used in many
algorithms to validate that transactions always see a consistent snapshot of the memory.
Sequence locks cannot be directly converted to RCL locks while maintaining the same STM
properties unless it is modified by mechanisms like RTC. In conclusion, RTC can be viewed
as an extension of these earlier lock-based attempts to maintain all their benefits and adopt
them for use inside STM frameworks.
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2.4 Transactional Boosting

Herlihy and Koskinen’s transactional boosting methodology [57](TB) enables transactions
to run on top of a concurrent data structure object by defining a set of commutativity rules.
Two operations are said to be commutative for a data structure object if their execution in
either order will transition the (shared) object to the same state and return the same result.
To support transactional operations, transactional boosting relies on the so called semantic
synchronization layer. This layer is composed of: (i) abstract locks, which are used on top
of the linearized data structure object to prevent non-commutative operations from running
concurrently; and (ii) a semantic undo log, which is used to save operations to be rolled
back in case of abort. This way, both synchronization and recovery of the transactions are
guaranteed. Each operation acquires the necessary abstract locks to guarantee synchroniza-
tion (abstract locks are released at the end of the transaction, either it commits or aborts).
Saving the inverse operations in an undo-log guarantees transactions’ recovery.

We argue that this protocol is pessimistic: locks are acquired at encounter-time, and writes
are eagerly published. The semantic layer of locking boosts a concurrent object to be trans-
actional. It also uses a simple interface, which wraps concurrent data structures as black
boxes.

Pessimistic semantic locking has the following downsides:

- Although abstract locking in TB prevents boosted operations from conflict with each other,
it does not natively cope with STM validations, and may suffer from doomed transac-
tions if data structures are accessed outside its interface, either by transactional or non-
transactional memory accesses). Additionally, adding eager abstract locks to guarantee
opacity is costly, especially for lock-free operations which can be converted to be blocking
operations, as we will show in details in Chapter [3]

- TB has limitations when integrated with STM frameworks. Even though it saves the
overhead of monitoring unnecessary memory locations, its semantic two-phase locking
mechanism is different from the mechanism of STM frameworks (which usually use read-
sets and write-sets to monitor shared memory accesses). Using an optimistic boosting
approach, which is similar to the mechanism of STM frameworks, allows easier and more
efficient integration.

- TB assumes: a) well defined commutativity rules on the data structure operations and
b) the existence of an inverse operation for each operation. If both these rules cannot be
defined for a data structure, then the boosting methodology cannot be applied.

- Decoupling the boosting layer from the underlying concurrent data structure may result
in losing the possibility of providing data structure-specific optimizations. In general,
decoupling is a trade-off. Although decoupling the underlying data structures as black-
boxes means that there is no need re-engineer their algorithms, it does not optimize these
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algorithms for the new transactional specifications, especially when the re-engineering can
be easily achieved.



Chapter 3

Optimistic Transactional Boosting

3.1 Motivation

The increasing ubiquity of multi-core processors motivated the development of data struc-
tures that can exploit the hardware parallelism of those processors. The current widely used
concurrent collections of elements (e.g., Linked-List, Skip-List, Tree) are well optimized for
high performance and ensure isolation of atomic operations, but they do not compose (as
mentioned early in Section . For example, Java’s Concurrent Collections yield high
performance for concurrent accesses, but require programmer-defined synchronized blocks
for demarcating transactions. Such blocks are trivially implemented using coarse-grain locks
that significantly limit concurrency. This is a significant limitation from a programmability
standpoint, especially for legacy systems as they are increasingly migrated onto multicore
hardware (for high performance) and must seamlessly integrate with third-party libraries.

Software transactional memory (STM) can be used to implement transactional data struc-
tures, which makes them composable — a significant benefit. However, monitoring all of the
memory locations accessed by a transaction while executing data structure operations is a
significant overhead. As a result, STM-based transactional collections perform inferior to
their optimized, concurrent (i.e., non-transactional) counterparts.

One of the main overheads in STM-based transactional data structures is that monitoring
all of the memory locations accessed by a transaction results in false conflicts. For example,
if two transactions are trying to insert two different items into a linked-list, these two inser-
tions are usually commutative (i.e., they are supposed to be executed concurrently without
breaking their correctness). However, STM may not be able to detect this commutativity,
and can raise a false conflict, aborting one of them.

Figure shows an example of false conflicts in a linked-list. If a transaction ¢1 tries to
insert 55 in the shown list, it has to put all of the traversed nodes (gray nodes in the figure)

19
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in its local read-set. Assume now that another transaction ¢2 concurrently inserts 4 (by
modifying the link of 2 to point to 4 instead of 5). In this case ¢t1 will abort because the
nodes 2 and 5 are in its read-set. This is a false conflict because inserting 55 should not
be affected by the concurrent insertion of 4. In some cases, like long linked-lists, these false
conflicts dominate any other overheads in the system. Importantly, most of the efficient
concurrent (non-transactional) linked-lists, such as lazy and lock-free linked-list [59], do not
suffer from this false conflict.

False Conflict

Figure 3.1: An example of false conflicts in a linked-list.

Recent works in literature propose different ways to implement transactional data structures
other than the traditional use of STM algorithms. One direction is to adapt STM algorithms
to allow the programmer to control the semantic of the data structures. Examples of trials
in this direction include elastic transaction [38], open nesting [85], and early release [62].
Another direction is to use STM as support to design libraries of data structures. Examples
in this direction include transactional collection classes [20], transactional predication [14],
and speculation friendly red-black tree [21].

Another appealing alternative is Herlihy and Koskinen’s Transactional Boosting (TB) [57]
methodology, which converts concurrent data structures to transactional ones by providing
a semantic layer on top of existing concurrent objects. However, as we showed in Section
2.4 TB has downsides that limit its applicability. Those downsides are mainly raised be-
cause in TB i) the abstract lock acquisition and modifications in memory are eager, and
i) the technique uses the underlying concurrent data structure as a black box. To over-
come these downsides, in this chapter we present an optimistic methodology for boosting
concurrent collections, called Optimistic Transactional Boosting (OTB). OTB allows data
structure-specific optimizations, an easier integration with TM frameworks (as we will detail
in Chapters |§| and , and less restrictions than TB on the boosted operations.

3.2 Methodology

Optimistic transactional boosting (OTB) [4§] is a methodology to boost optimistic data
structures (also known as lazy [54]) to be transactional. A common feature that can be
identified in all lazy data structures is that they have an unmonitored traversal step, in which
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the object’s nodes are not kept locked until the operation ends. To guarantee consistency,
this unmonitored traversal is followed by a validation step before the last step that physically
modifies the shared data structure. OTB modifies the design of these lazy data structures
to support transactions. Basically, the OTB methodology can be summarized in three main
guidelines.

(G1l) Each data structure operation is divided into three steps.

- Traversal. This step scans the data structure, and computes the operation’s results
(i.e., its postcondition) and what it depends on (i.e., its precondition). This requires
us to define (in each transaction), what we call semantic read-set and semantic write-
set, which store these information (semantic write-sets can also be called semantic
redo-logs).

- Validation. This step checks the validity of the preconditions. Specifically, the
entities stored in the semantic read-set are validated to ensure that operations are
consistent.

- Commit. This step performs the modifications to the shared data structure. Un-
like concurrent data structures, this step is not done at the end of each operation.
Instead, it is deferred to the transaction’s commit time. All information needed for
performing this step are maintained in the semantic write-sets during the first step
(i.e., traversal). To publish the write-sets, a classical (semantic) two-phase locking is
used. This semantic (or abstract) locking prevents semantic conflicts at commit.

(G2) Data structure design is adapted to support opacity. The correctness of transactional
data structures does not only depend on the linearization of its operations (like concur-
rent data structures), but it also depends on the sequence of the operations executed
in each transaction. Data structure design has to be adapted to guarantee this serial-
ization part. OTB provides the following guidelines, which exploit the local read-sets
and write-sets to guarantee opacity [42] (In Section [4.1.3| we prove that those guide-
lines are sufficient to guarantee opacity.), the same consistency level of most STM
algorithms [25], 311, 89, [62]:

(G2.1) Each operation scans the local write-set first, before accessing the shared object.
This is important to include the effect of the earlier (not yet published) operations
in the same transaction.

(G2.2) The read-set is re-validated after each operation and during commit, to guar-
antee that each transaction always observes a consistent state of the system (even
if it will eventually abort).

(G2.3) During commit, semantic locks of all operations are acquired before any phys-
ical modification on the shared data structure.



Ahmed Hassan Chapter 3. Optimistic Transactional Boosting 22

(G2.4) Operations are applied during the commit phase in the same order as they
appeared in the transaction and, in case the outcome of an operation influences
the subsequent operations recorded in the write-set, they are updated accordingly.

(G2.5) All operations have to be validated, even if the original (concurrent) opera-
tion does not make any validation (like contains operation in set). The goal of
validation in these cases is to ensure that the same operation’s result occurs at
commit.

(G3) Data structure design is adapted for more optimizations. Each data structure can be
further optimized according to its own semantic and implementation. For example,
in set, if an item is added and then deleted in the same transaction, both operations
eliminate each other and can be completed without physically modifying the shared
data structure.

Unlike the first two guidelines, which are general for any lazy data structure, the third
guideline varies from one data structure to another. It gives a hint to the developers that
the data structures now are no longer used as black boxes, and further optimizations can be
applied. It is important to note that the generality of the first two guidelines does not mean
that they can be applied “blindly” without being aware of the data structure’s semantics.
OTB, like TB, performs better than the naive STM-based data structures only because
it exploits semantics. However, we believe that OTB’s guidelines make a clear separation
between the general outline that can be applied on any lazy data structure (like validation, in
G2.2, and commit, in G2.4, even if the validation/commit mechanisms themselves vary from
one data structure to another) and the specific optimizations that are completely dependent
on the data structures implementation. Evidences of such a claim are in Chapters [4] and
where we deploy these guidelines to develop a transactional lazy set, priority queue, and
tree.

3.3 Analyzing OTB

Using OTB to design transactional data structures is clearly better than using TM. This is
because, unlike the classical meaning of read-sets and write-sets in STM (and also HTM,
if we consider the L1 cache as an internal read-set and write-set), not all memory reads
and writes are saved in the semantic read-sets and write-sets. Instead, only those reads and
writes that affect linearization of the object and consistency of the transaction are saved.
This avoids the false conflicts discussed in Section [3.1]

To compare OTB with TB (we also call it pessimistic boosting), Figure shows the
execution flow of: concurrent (lazy) data structures, TB, and OTB. Concurrent (non-
transactional) data structures yield high performance because they traverse the data struc-
ture without instrumentation, and they only acquire locks (or use CAS operations in case
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Figure 3.2: Execution flow of: concurrent (lock-based or lock-free) data structures; TB
(Pessimistic Boosting); OTB.

of lock-free objects) at late phases. To add transactional capabilities, pessimistic boosting
acquires semantic locks eagerly, and saves the inverse operations in an undo-log (to rollback
the transaction in case of abort). Then, it uses the underlying concurrent data structure as
a black box without any modifications. (In both TB and OTB, dark blocks in Figure are
the same as the concurrent versions, while white blocks are added/modified.) At commit
time, the only task to be accomplished is the release of semantic locks, because operations
have already been executed eagerly.

In contrast to pessimistic boosting, OTB acquires semantic locks lazily, and uses the under-
lying data structure as a white box. Similar to concurrent data structures, OTB traverses
objects without instrumentation. However, it differs from them in three aspects: i) lock
acquisition and actual writes are shifted to commit time; i) the validation procedure is
modified to satisfy the new transactional requirements; and i) the necessary information is
saved in local semantic read-sets and write-sets.

Thus, OTB gains the following benefits over pessimistic boosting. First, it does not require
well defined commutativity rules or inverse operations. Second, integration with STM frame-
works is easy, as OTB uses the same phases of validation and commit (with the same meaning
as in STM). Third, it uses highly concurrent collections as white boxes to design new trans-
actional versions of each concurrent (non-transactional) data structure. This allows greater
optimizations according to the new transactional features, with minimal re-engineering over-

head.
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3.4 The Optimistic Semantic Synchronization trend

A set of recent methodologies leverage the same idea of OTB: dividing the transaction
execution into phases and optimistically executing some of them without any instrumentation
(also called unmonitored phases).

We use the term Optimistic Semantic Synchronization (OSS) to represent this set of method-
ologies. We used the word optimistic because all of these solutions share a fundamental
optimism by dividing transactions into phases. In this section, we overview some of those
approaches.

Consistency Oblivious Programming (COP) [3, [0, [I1] splits the operations into the same
three phases as OTB (but under different names). We observe two main differences between
COP and OTB. First, COP is introduced mainly to design concurrent data structures and it
does not natively provide composability unless changes are made at the hardware level [T1].
Second, COP does not use locks at commit. Instead, it enforces atomicity and isolation by
executing both the validation and commit phases using STM [3] or HTM [9] transactions.

Partitioned Transactions (ParT) [I01] also uses the same trend of splitting the operations
into a traversal (called planning) phase and a commit (called update) phase, but it gives
more general guidelines than OTB. Specifically, ParT does not restrict the planning phase
to be a traversal of a data structure and it allows this phase to be any generic block of code.
Also, ParT does not obligate the planning phase to be necessarily unmonitored, as in OTB
and COP. Instead, it allows both the planning and update phases to be transactions.

Transactional Predication [I4] applies a similar methodology to the aforementioned ap-
proaches. However, it solves the specific problem of boosting concurrent sets and maps
to be transactional.

We consider this line of research as a confirmation of OTB’s effectiveness. We also keep all
those approaches into consideration when we discuss the other challenges towards designing
and modeling transactional data structures. In fact, although we focus on OTB (as the
main contribution of this thesis) when discussing the integration of transactional data struc-
tures with generic transactions (Chapters @-@ and modeling transactional data structures
(Chapter , the solutions proposed also apply to the other methodologies just overviewed.

3.5 Summary

In this chapter we presented Optimistic Transactional Boosting, an optimistic methodol-
ogy to convert optimistic concurrent data structures to transactional ones. Transactions
use semantic read-set and write-set to locally save the operations of boosted objects, and
defer modifying the shared objects to the commit phase. Optimistic boosting can be eas-
ily integrated with current STM systems, while keeping the same correctness and progress
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guarantees. Instead of using concurrent data structures as black boxes, optimistic boost-
ing is used to implement new transactional versions of concurrent collections that allow for
effective low-level optimizations given the new transactional characteristics.



Chapter 4

Transactional List-Based Data
Structures

In this chapter we present two types of optimistically boosted data structures: set and
priority queue. These were specifically chosen as they represent two different categories:

- Commutable Objects. In set, operations are commutative at the level of keys themselves.
In other words, two operations are semantically commutative if they access two different
keys in the set.

- Non-commutable Objects. Priority queue operations are commutative at the level of the
whole object. This means that, even if two operations access two different items in
the queue, they cannot execute in parallel. In fact, any removeMin operation is non-
commutative with another removeMin operation as well as any add operation of items that
are smaller than the removed minimum.

Despite this difference, the design and implementation of optimistically boosted versions of
both the data structures follow the same basic principles illustrated in section with slight
modifications to cope with the different levels of commutativity.

4.1 Set

Set is a collection of ordered items, which has three basic operations: add, remove, and
contains, with the familiar meanings [59]. No duplicate items are allowed (thus, add returns
false if the item is already present in the structure). All operations on different items of the
set are commutative — i.e., two operations add(x) and add(y) are commutative if x # y.
Moreover, two contains operations on the same item are commutative as well. Such a high
degree of commutativity between operations enables fine-grained semantic synchronization.

26
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Lazy linked-list [54] is an efficient implementation of concurrent (non transactional) set.
For write operations, the list is traversed without any locking until the involved nodes are
locked. If those nodes are still valid after locking, the write takes place and then the nodes
are unlocked. A marked flag is added to each node for splitting the deletion phase into two
steps: the logical deletion phase, which simply sets the flag to indicate that the node has been
deleted, and the physical deletion phase, which changes the references to skip the deleted
node. This flag prevents traversing a chain of deleted nodes and returning an incorrect result.
It is important to note that the contains operation in the lazy linked-list is wait-free and
is not blocked by any other operation.

Lazy skip-list is, in general, more efficient than linked-list as it takes logarithmic time to
traverse the set. In skip-list, each node is linked to multiple lists (i.e., levels), starting from
the list at the bottom level (which contains all the items), up to a random level. Therefore,
add and remove operations lock an array of pred and curr node pairs (in a unified ascending
order of levels to avoid deadlock), instead of locking one pair of nodes as in linked-list. For
add operation, each node is enriched with a fullyLinked flag to logically add it to the set
after all levels have been successfully linked. Skip-list is also more suited than linked-list in
scenarios where the overhead of rolling back (compared to execution) is dominating. In fact,
for a linked-list (and especially a long linked-list), even if aborts are rare, their effect includes
re-traversing the whole list again, in a linear time, to retry the operation. In a skip-list, the
cost of re-traversal is lower (typically in a logarithmic time), which minimizes the overhead
of the aborts.

The implementation of the transactional boosted (i.e., TB [57]) version of the set is straight-
forward and does not change if the set implementation itself changes. In fact, it uses the
underlying concurrent lazy linked-list (or skip-list) to execute the set operations. If the
transaction aborts, a successful add operation is rolled back by calling the remove operation
on the same item, and vice versa (more details are in [57]).

Despite the significant improvement in the traversal cost and abort overhead, the implemen-
tation of OTB skip-list and OTB linked-list are very similar. With the purpose of making
the presentation clear, we focus on the linked-list implementation, and we highlight the main
differences with respect to the skip-list implementation when necessary.

4.1.1 Non-Optimized OTB-Set

Following the first two guidelines (i.e., GI and G2) as mentioned in Section [3.2] in this
section we show how to boost the lazy set to design a transactional set without any specific
optimization related to the details of its implementation. According to G1, we divide OTB-
Set operations into three steps. The Traversal step is used to reach the involved nodes,
without any addition to the semantic read-set. The Validation step is used to guarantee
the consistency of the transaction and the linearization of the list. We define two different
validation procedures: one is named post-validation, which is called after each operation,
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and the other is named commit-time-validation, which is called at commit time and after
acquiring the semantic locks. The Commit step, which modifies the shared list, is deferred
to transaction’s commit. Following G2, we show how the usage of lazy updates, semantic
locking, and post-validation guarantees opacity.

Similar to the lazy linked-list, each operation in OTB-Set involves two nodes at commit time:
pred, which is the largest item less than the searched item, and curr, which is the searched
item itself or the smallest item larger than the searched item[] To log the information about
these nodes, with the purpose of using them at commit time, we adopt the same concept
of read-set and write-set as used in lazy STM algorithm (e.g., [25, 31]), but at the semantic
level. In particular, each read-set or write-set entry contains the two involved nodes in the
operation and the type of the operation. In addition, the write-set entry contains also the
new value to be added in case of a successful add operation.

The only difference in skip-list is that the read-set and write-set entries contain an array of
pred and curr pairs, instead of a single pair. This is because the searched object can be in
more than one level of the skip-list.

Algorithm 3 OTB Linked-list: add, remove, and contains operations.

1: procedure OPERATION(z) 11: rse = new ReadSetEntry(pred,curr,op)
> Step 1: search local write-sets ~ 12: read-set.add(rse)
2: if z € write-set then 13: if op is add or remove then
3: ret = write-set.get-ret(op,x) 14: wse = new WriteSetEntry(pred,curr,op,z)
4: if op is add or remove then 15: write-set.add(wse)
5 write-set.append(op,x) > Step 4: Post Validation
6: return ret 16: if - post-validate(read-set) then
> Step 2: Traversal 17: ABORT
7 pred = head and curr = head.next 18: else if Successful operation then
8: while curr.item < z do 19: return true
9: pred = curr 20: else
10: curr = curr.next 21: return false

> Step 3: Save reads and writes
22: end procedure

Algorithm [3|shows the pseudo code of the linked-list operations. We can isolate the following
four parts of each operation.

- Local writes check (lines 2H6]). Since writes are buffered and deferred to the commit phase,
this step guarantees consistency of further reads and writes. Each operation on an item x
checks the last operation in the write-set on the same item z and returns the corresponding
result. For example, if a transaction previously executed a successful add operation of item
x, then further additions of x performed by the same transaction must be unsuccessful and
return false. In addition, if the new operation is a writing (i.e., add/remove) operation, it
should be appended to the corresponding write-set entry (line . If there is no previous
(local) operation on z in the write-set, then the operation starts traversing the shared
linked-list as shown in the next step.

!Sentinel nodes are added as the head and tail of the list to handle special cases.
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- Traversal (lines|7H10)). This step is the same as in the lazy linked-list. It saves the overhead
of all unnecessary monitoring during traversal that, otherwise, would be incurred with a
native STM algorithm for managing concurrency.

- Logging the reads and writes (lines . At this point, the transaction records the
accessed nodes, that are semantically relevant to the set, into its local read-set and write-
set. All operations must add the appropriate read-set entry, while add/remove operations
modify also the write-set (line . It is worth to note that having no entries in the
write-set for contains operation means that it does not need to acquire locks during the
commit phase. This way, although the contains operation is no longer wait-free, like its
concurrent lazy version (because it may fail during the commit-time-validation), it still
performs efficiently due to the absence of the semantic locks acquisition. We recall that,
rather than OTB, TB has to acquire semantic locks even for the contains operation to
maintain consistency and opacity.

- Post-Validation (lines . At the end of the traversal step, the involved nodes are
stored in local variables (i.e., pred and curr). At this point, according to point G2.2 and
to preserve opacity [42], the read-set is post-validated to ensure that the transaction does
not observe an inconsistent snapshot. The same post-validation mechanism is used at
memory-level by STM algorithms such as NOrec [25]. More details about post-validation
are discussed later in Algorithm [4]

As mentioned before, there is a difference between linked-list and skip-list regarding the add
operation. In fact, in the skip-list the new node has to be linked to multiple levels, thus
there could be a time window where the new node is only linked to some (and not all) levels.
To handle this case in our OTB-Set, any concurrent operation waits until the fullyLinked
flag becomes true, and then it proceeds.

Algorithm [4 shows the post-validation step. The validation of each read-set entry is similar
to the one in lazy linked-list: both pred and curr should not be deleted, and pred should still
link to curr (lines . According to G2.5 of OTB guidelines, contains operation has to
perform the same validation as add and remove, although it is not needed in the concurrent
version. This is because any modification made by other transactions after invoking the
contains operation and before committing the transaction may invalidate the returned
value of the operation, making the transaction’s execution semantically incorrect.

To enforce isolation, a transaction ensures that its accessed nodes are not locked by another
writing transaction during validation. This is achieved by implementing locks as sequence
locks (i.e., locks with version numbers). Before the validation, a transaction records the ver-
sions of the locks if they are not acquired. If some are already locked by another transaction,
the validation fails. (lines[2}[5). After the validation, the transaction ensures that the actual
locks’ versions match the previously recorded versions (lines .

Algorithm |5 shows the commit step of OTB-Set. Read-only transactions have nothing to
do during commit (line , because of the incremental validation during the execution of
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Algorithm 4 OTB Linked-list: validation.

1: procedure VALIDATE(read-set) 8: return false

2: for all entries in read-sets do 9: for all entries in read-sets do

3: get snapshot of involved locks 10: check snapshot of involved locks

4: if one involved lock is locked then 11: if version of one involved lock is changed then
5: return false 12: return false

6: for all entries in read-sets do 13: return true

7 if pred.deleted or curr.deleted or pred.next #

curr then 14: end procedure

the transaction. For write transactions, according to point G2.3, the appropriate locks are
first acquired using CAS operations (lines [4}f]). Like the original lazy linked-list, any add
operation only needs to lock pred, while remove operations lock both pred and curr. As
described in [54], this is enough for preserving the correctness of the write operations. To
avoid deadlock, any failure during the lock acquisition implies aborting and retrying the
transaction (releasing all previously acquired locks).

After the semantic lock acquisition, the validation is called, in the same way as in Algo-
rithm 4] to ensure that the read-set is still consistent (line[7). If the commit-time-validation
fails, then the transaction aborts.

Algorithm 5 OTB Linked-list: commit.

1: procedure CommiIT 18: n.next = curr
2: if write-set.isEmpty then 19: pred.next = n
3: return 20: for all entries in write-sets do
4: for all entries in write-sets do 21: if entry.pred = pred then
5: if CAS Locking pred (or curr if remove) failed 22: entry.pred = n
then 23: else > remove
6: ABORT 24: curr.deleted = true
7 if = commit-validate(read-set) then 25: pred.next = curr.next
8: ABORT 26: for all entries in write-sets do
9: sort write-set descending on items 27 if entry.pred = curr then
10: for all entries in write-sets do 28: entry.pred = pred
11: curr = pred.next 29: else if entry.curr = curr then
12: while curr.item < z do 30: entry.curr = curr.next
13: pred = curr 31: for all entries in write-sets do
14: . curr = curr.next 32: unlock pred (and curr if remove)
15: if operation = add then
16: n = new Node(item) 33: end procedure
17: n.locked = true

The next step of the commit procedure is to publish writes on the shared linked-list, and
then release the acquired locks. This step is not straightforward because each node may be
involved in more than one operation of the same transaction. In this case, the saved pred
and curr of these operations may change according to which operation commits first.

For example, in Figure |4.1(a)l both 2 and 3 are inserted between the nodes 1 and 5 in the
same transaction. During commit, if node 2 is inserted before node 3, it should be the new
predecessor of node 3, but the write-set still records node 1 as the predecessor of node 3. In
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(a) Two add operations (2 and 3). (b) add(4) and remove(5) .

Figure 4.1: Executing more operations that involve the same node in the same transaction.

OTB guidelines, G2.4 solves this issue. When node 2 is inserted, the operation scans the
write-set again to find any other operation that has node 1 as its pred and replaces it with
node 2. The same technique is used in the case of removal (Figure . When node 5 is
removed, any write-set entry that has node 5 as its curr replaces it with node 6, and any
write-set entry that has node 5 as its pred replaces it with node 1. Lines and

illustrate these cases.

It is clear that the inserted nodes have to be locked until the whole commit procedure is
finished. Then they are unlocked along with the other pred and curr nodes (line . For
example, in Figure 4.1(a)l all nodes (1, 2, 3, 5) are locked and no transaction can access
them until the commit terminates.

4.1.2 Optimized OTB-Set

One of the main advantages of OTB over TB is that it uses the underlying (lazy) data
structure as a white-box, which allows more data structures-specific optimizations.

In general, decoupling the boosting layer from the underlying concurrent data structure is a
trade-off. Although, on the one side, considering the underlying data structure as a black-box
means that there is no need to re-engineer its implementation, on the other side, it does not
allow to customize its implementation and thus to exploit the new transactional specification,
especially when the re-engineering effort can be easily achieved. For this reason, as showed
in the previous section, we decided to split the re-engineering efforts (required by OTB) into
two steps: one general (concluded in OTB guidelines G1 and G2); and one more specific per
data structure (concluded G3). We believe this division makes the re-engineering task easier
and, at the same time, it allows specific optimizations for further enhancing the performance.
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In this section, we show optimizations for our OTB-Set, leveraging the fact that it treats the
underlying lazy linked-list as a white-box and, therefore, it can be adapted as needed.

Unsuccessful add and remove.

The add and remove operations are not necessarily considered as writing operations, because
duplicated items are not allowed in the set. For example, if an add operation returns false,
it means that the item to insert already exists in the set. The commit of such operation
can be done by only checking that the item still exists in the set, which allows to treat
unsuccessful add operations as successful contains operations. This way, the transaction
does not acquire any lock for this operation at commit. The same idea can be applied on the
unsuccessful remove operation which can be treated as an unsuccessful contains operation
during commit.

Accordingly, in our OTB-Set, both contains and unsuccessful add/remove operations are
considered as read operations (which add entries only to the semantic read-set and do not
acquire any semantic locks during commit). Only successful add and remove operations are
considered read/write operations (which add entries to both the read-set and the write-set
and thus acquire semantic locks during commit).

In the lazy linked-list, the add and remove operations acquire locks on the pred and curr
nodes even if the operations are unsuccessful. TB inherits this unnecessary lock acquisition
because it uses the lazy linked-list as a black-box.

Eliminating Operations.

As shown in Algorithm [3], each operation starts with checking the local writes before travers-
ing the shared list. During this step, for improving OTB performance, if a transaction adds
an item x and then removes the same item x, or vice versa, we allow those operations to
locally eliminate each other. This elimination is done by removing both entries from the
write-set, which means that the two operations will not make any physical modification on
the shared list. No entry in the read-set is locally eliminated because, this way, the commit
time-validation can still be performed on those operations in order to preserve transaction’s
correctness.

In TB, due to the usage of the underlying lazy linked-list as a black-box, this scenario is han-
dled by physically adding x to the shared set, and then physically removing it, introducing
an unnecessary overhead.
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Simpler Validation.

In the case of successful contains and unsuccessful add operations, we use a simpler val-
idation than the original validation of the lazy linked-list. In these particular cases, the
transaction only needs to check that curr is still not deleted, since that is sufficient to guar-
antee that the returned value is still valid (recall that if the node is deleted, it must first
be logically marked as deleted, which will be detected during validation). This optimization
prevents false invalidations, where conflicts on pred are not real semantic conflicts.

The validation in the skip-list is similarly optimized because we leverage the rule that all
items have to appear in the lowest level of the skip-list. For successful contains and unsuc-
cessful add operations, it is sufficient to validate that curr is not deleted, which ensures that
the item is still in the set. We can also optimize unsuccessful remove and contains by only
validating the pred and curr in the lowest level to make sure that the item is still not in
the set, because if the item is inserted by another transaction, it must affect this level. For
successful add and remove operations, all levels need to be validated to prevent conflicts.

Optimized Commit.

To ensure that the operations in Figure 4.1] are executed correctly, the write-set has to be
re-scanned for each write operation (according to the OTB guideline G2.4), as we showed
in Section [.1.1] This overhead becomes significant if the write-set is relatively large. We
optimize this routine and avoid the need of re-scanning the write-set by the following points.
(1) The items are added/removed in descending order of their values, regardless of their
order in the transaction execution. This guarantees that the pred of each write-set entry
is always valid, non-deleted, and not touched by any previous operation in the transaction.
(2) Operations resume traversal from the saved pred to the new pred and curr nodes.
At this stage, the pred and curr nodes can only be changed because of some previous
local operations. This is because the transaction already finished the lock acquisition and
validation, which prevents any conflicting transaction from proceeding.

Using these two points, the issue in Figure is solved without re-scanning the write-set.
The first point enforces that node 3 is inserted first. Subsequently, according to the second
point, when 2 is inserted, the transaction will resume its traversal from node 1 (which is
guaranteed to be locked and non-deleted). Then, it will detect that node 3 is its new succ,
and will correctly link node 2.

The removal case is shown in Figure [£.1(b)| in which node 5 is removed and node 4 is
inserted. Again, 5 must be removed as first (even if 4 is added earlier during the transaction
execution), so that when 4 is added, it will correctly link to 6 and not to 5. Two subsequent
remove operations follow the same procedure.

Skip-list uses the same procedure but at all levels. This is because each level is independent
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from the others, which means that the preds of the same node in two or more levels may
be different. For this reason, the same procedure described above is repeated at each level,
independently.

In the following algorithms, we show how to modify Algorithms [3 ], and [f| to maintain these
optimizations.

Algorithm 6 OTB Linked-list: Optimized add, remove, and contains operations.

1: procedure OPERATION(x) 14: delete write-set entry
15: return true
> Step 1: search local write-sets
2: if z € write-set and write-set entry is add then 16:
3: if operation = add then
4: return false > Step 3: Save reads and writes
5: else if operation = contains then 17: read-set.add(new ReadSetEntry(pred, curr, opera-
6: return true tion))
7 else > remove 18: if Successful add/remove then
8: delete write-set entry 19: write-set.add(new WriteSetEntry(pred, curr, op-
9: return true eration, z))
10: else if z € write-set and write-set entry is remove  9(): if Successful operation then
then 21: return true
11: if operation = remove or operation = contains 929: else
then 23: return false
12: return false
13: else >add 24: end procedure

Algorithm [ shows the modification to steps 1 and 3 of Algorithm [3] to achieve the first two
optimizations. In step 1, eliminated operations are removed from the write-set, while still
keeping them in the read-set (lines [§ and [14). In step 3, only successful add and remove
operations are added to the write-set (line

Algorithm 7 OTB Linked-list: optimized validation.

1: procedure VALIDATE(read-set) 8: if pred.deleted or curr.deleted or pred.next
2: # curr then
3: for all entries in read-sets do 9: return false
4. if successful contains or unsuccessful add then 10: return true
5: if curr.deleted then 11:
67;: return false 12: end procedure
: else

Algorithm [7] shows the optimized validation procedure. Lines replace lines in Algo-
rithm [4]
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Algorithm 8 OTB Linked-list: optimized commit.

1: procedure CommiIT 6: while curr.item < z do
2: 7 pred = curr

3: sort write-set descending on items 8: curr = curr.next

4 for all entries in write-sets do 9:

5 curr = pred.next

10: end procedure

Algorithm [§] describes the modified commit procedure, which replace lines and
of Algorithm [5)). Line [3|applies the first guideline point in Section [4.1.2] Lines apply the
second guideline point.

4.1.3 Correctness of OTB-Set

In this section, we give more details about the correctness of OTB-Set. In Section we
assume, without loss of generality, transactions composed of only one OTB-Set operation
and we prove that this operation is linearizable. Then, in Section [£.1.3, we prove that if
the transaction contains more than one operation of a non-optimized OTB-Set, the imple-
mentation of OTB guidelines guarantees opacity [42]. Finally, Section discusses the
correctness of the optimized OTB-Set.

Linearization

Although OTB-Set does not use the lazy set as a black box, it uses similar mechanisms
for traversing the set and validating the nodes accessed. For this reason, we can assess the
correctness of our OTB-Set implementations by relying on the correctness of the lazy set.
Again, we focus on a linked-list-based set, assuming that applying the same concepts to a
skip-list-based set is straightforward.

- Successful add. As described in [54], a successful add operation in a lazy linked-list is
linearized in the moment when pred.next is set. This is because, at this point, the add
operation already 7) acquired the lock on pred, ii) validated that pred and curr are not
deleted and that pred still links to curr. This means that the operation is still valid and
no other concurrent operation can interfere with it. In OTB-Set, the same linearization
point is selected. We now assume that transactions consist of only one operation. This
means that, until the moment of acquiring the lock on pred, both the lazy set and OTB-Set
behave in a similar way, even though the lock acquisition itself is delayed to the commit
phase in OTB-Set. Once the lock is acquired in OTB-Set (at commit), it uses the same
validation as the lazy set which allows having the same linearization point.

- Successful remove. In the lazy linked-list, the successful remove operation is linearized
when the entry is marked as deleted. We can safely select the same linearization point
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in OTB-Set because, although this point is shifted to the transaction’s commit, OTB-Set
still behaves similar to the lazy set, like the add operation.

- Successful contains. Here, the linearization points of lazy set and OTB-Set are different.
In lazy set, the contains operation is wait-free and the successful contains operation
is linearized immediately when the deleted flag of a matching entry is observed to be
false. In OTB-Set, however, this point cannot be selected as the linearization point for
two reasons. First, the linearization point should be selected somewhere in the commit
phase, thus allowing the further extension of having more than one operation in the same
transaction (that we will discuss in Section [£.1.3)). Second, according to the point G2.4 of
the OTB guidelines, all operations, including the contains operation, should re-validate
their results at commit, which means also that the operation may fail during the commit
and therefore the transaction may abort. For this reason, we select the linearization point
of the contains operations when those operations are successfully re-validated at commit
time.

- Unsuccessful contains. Like successful contains, the unsuccessful contains operations
are re-validated at commit time and we select this re-validation point as our linearization
point. It is worth to note that the definition of the linearization point of the unsuccessful
contains operations in the lazy set is not straightforward. In fact, in the lazy linked-list,
the linearization point of a logically (but not physically) deleted node has to be before
that any other transaction occasionally added a new node with the same item. However,
this case in our OTB-Set is not relevant because we abort the transaction in this case
(remember that we validate that both the pred and curr nodes are not logically deleted).
Although this abort can be seen as a false conflict, we allow it for the sake of making a
simple validation process, and assuming that such case is rare. The lazy set also suffers
from a similar false conflict in the case of unsuccessful remove, and they also chose not to
optimize this case for the sake of a simple and clear validation process.

- Unsuccessful add/remove. In the non-optimized version of the OTB-Set, described in
Section [4.1.1] the linearization points of the unsuccessful add/remove operations are the
same as in the lazy set. This is because, in this non-optimized version, the same locks (on
the pred and curr nodes) are acquired and the same validation is used. In the optimized
version of the OTB-Set, as described in Section [.1.2] those linearization points change
because we now consider the operations as read operations and we do not acquire any
locks for them during commit. As we mentioned in Section those operations are
considered during commit as successful /unsuccessful contains operations, which motivates
using the same linearization points as the contains operation in this case, rather than the
linearization points mentioned in [54].
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Opacity - Non-Optimized OTB-Set

Opacity was proposed in [42] to formally proof the correctness of TM implementations,
and most STM algorithms are proven to guarantee opacity [25, 31, 89 [62]. Intuitively,
as mentioned in [42], opacity is guaranteed if three requirements are captured: i) every
committed transaction atomically appears in a single indivisible point in the history of
the committed transactions, i) live transactions do not see the intermediate results of any
aborted transaction, 7i) transactions are always consistent even if they will eventually abort.
In this section and in the following section, we show that those three requirements are
preserved in both the “non-optimized” and the “optimized” OTB-Set, respectively. The
correctness of the non-optimized OTB-Set can be also used for any other lazy data structure
as far as it follows the same two guidelines mentioned in Section (i.e., GI and G2).

In the following, we borrow the same terminology used in [42]. However, for brevity, instead
of having two points in the history for each operation (the invocation point and the return
point), we will only show one point which reflects the return point. This is acceptable
because any transaction is serial, meaning that it does not invoke a new operation until the
previous operation returns its value, and the invocation point is not relevant to the execution
of any other transaction.

- Equivalence to a legal sequential history. The first requirement for a history H to be opaque
is that if we remove all non-committed transaction, the resulting sub-history H’ is equiv-
alent to a legal sequential history S that preserves the real-time order of the transactions
in H'. In OTB-Set, H' preserves the real-time order because all operations are linearized
during the commit phases of their transactions. For that reason, a committing transaction
can be serialized in one point, right after the transaction successfully acquires its semantic
locks. After this serialization point, if the transaction successfully validates its read-set,
all conflicting transactions in H’ will be serialized after it. If it fails in validation, it will
simply abort.

Precisely, we have five cases to cover for proving the legality of any sub-history H’ of some
committed OTB-Set transactions 11,75, ..., Ty:

1. Transaction are executed serially: which means that each transaction starts after
the previous transaction commits. The real-time order in this case is natively pre-
served because after T; commits, all its writes are immediately visible to the following
transactions (threads are not caching any state of the objects).

2. Concurrent transactions are independent (which means that they have no intersec-
tion in their read/write-sets or the intersection is only between read-sets). Natively,
they can be serialized in any order. The history of each transaction as a standalone
transaction is kept legal using the guidelines G2.1 and G2.4. For example, in the
following history:

H1 =< add(T;, z, true), contains(T;, x, true), remove(T;, x, true), tryCr,,
CTi >
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G2.1 guarantees that both the contains and the remove operations cannot return
an illegal value (which is false in this case) during the execution of the transaction,
and G2.4 guarantees that the remove operation will be executed correctly at commit
(remember that we are now proving the non-optimized version of OTB-Set which
means that operations are executed according to their invocation order and without
any local elimination during commit).

3. The write-sets of two concurrent transactions, 7; and 7Tj, intersect. Clearly the commit
phases of those transactions can never execute concurrently. Either one of them will
fail in acquiring the semantic locks and thus will abort, or 7; will start its commit
after T; entirely finishes its commit and releases its locks, which allows serializing T;
before T}.

4. The read-set of T; intersects with the write-set of 7, and the read-set of Tj does
not intersect with the write-set of 7T;. In this case, T; will either abort during the
commit-time validation, or it will successfully finish its validation before T} acquires
the “conflicting” semantic locks. In the latter case, T; can be safely serialized before
T;.

5. The read-set of T; intersects with the write-set of T} and the read-set of 7T} inter-

sects with the write-set of T;. In this case, any scenario where both transactions
concurrently commit is illegal. For example, in the following two historiesﬂ
H2 =< remove(Ty, x, true), remove(Ty, y, true), tryCr, , Cr, , add(T;, x, true),
contains(1}, z, false), add(T}, y, true), contains(T;, y, false), tryCr,, Cr,,
tryCr,;, Cp; >
H3 =< remove(Ty, x, true), remove(Ty, y, true), tryCr, , Cr, , add(T;, x, true),
contains(T}, x, true), add(T}, y, true), contains(T;, y, true), tryCr,, Cr,
tryC’Tj, CTj >
Both histories are illegal because the contains operations in 7; and 7} cannot return
both false or both trudﬂ A possible legal case is that the contains operation of T;
returns false and the one of 7} returns true (which allows T; to be legally serialized
before T3).
Our validation process in Algorithm [] prevents that all these illegal scenarios can
happen. As we validate that the nodes in the read-set are both unlocked and wvalid.
T; and T} cannot both successfully acquire the semantic locks and then successfully
validate their read-sets before starting to write. At least one transaction will abort
because some entries in its read-set is locked by the other transaction.

- The effect of the aborted transactions. Aborted transactions in OTB-Set have no effect on
the live transactions. This is simply because transactions do not publish any writes until
their commit phase. During commit, if a transaction successfully acquires the semantic
locks and then it successfully validates its read-set, it cannot abort anymore. Accordingly,
it is safe at this point to start writing on the shared set.

ZWe put the first two operations of T} to enforce that z and y are both in the set before T; and T} start.
3This case is an example of producing a cyclic opacity graph which is mentioned in [42].
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- Consistency of live transactions. Transactions which guarantee opacity should always ob-
serve a consistent state. This also includes the live transactions, which are the transactions
that did not yet commit or abort. Theoretically, as mentioned in [42], we can transform any
history which contains some live transactions to a complete history by either committing or
aborting those live transactions. The challenge here is to prove that this completed history
is still legal (which means that the operations executed so far inside the live transactions
are legal). In OTB-Set we guarantee that live transactions always observe a consistent
state by the post-validation procedure which validates, after each operation, that the en-
tire read-set is still valid. Precisely, in a history H, an operation < op(T}, x, true/ false) >,
can be implicitly extended to either < op(T;, x,true/ false),validate(T;, succeeded) > or
< op(T;, x, true/ false), validate(T;, failed), Ay, > according to whether its validation suc-
ceeds or fails, which guarantees preserving the legality of H.

Opacity - Optimized OTB-Set

In this section we show how each optimization discussed in Section does not prevent
transactions to guarantee opacity.

- Unsuccessful add/remove. OTB-Set validates the unsuccessful add/remove operations
as contains operations. It can be easily shown that this does not break transactions’
consistency. Although operations are semantically different, handling them in the same
way at commit (at the memory level) does not break the semantics with any means, as far
as the same result is validated during commit.

- Eliminating Operations. Elimination does not break consistency because operations are
eliminated only from the write-sets. If the operations were also eliminated from the read-
sets, opacity may be broken because another transaction may modify the set and then
commit successfully before the commit of the former transaction, which violates the serial-
ization points we mentioned in the previous section. For example, in the following history:
H4 =< add(T;, x, true), remove(T;, x, true), add(T};, x, true), tryC(T;), C(T;), tryC(T;),
C(T;) > transaction T; becomes illegal. This is because at the serialization point of T;,
when it commits, the add operation cannot return true because 7} already added z to
the set and committed. In our OTB-Set implementation, T; will detect during its commit
that T added x because the eliminated operations are still in the read-set and they will
be validated during commit, and thus triggering the abort of T;.

- Simpler Validation. For the successful contains and the unsuccessful add operations, the
curr node is detected to match the searched item x, and to be not deleted. During the
commit phase of a transaction Tj, it is sufficient to check the deleted mark of the curr
node. This is because any other transaction cannot execute any new writing operation on
x before deleting the previous node, and deleting x is done first by logically mark the node
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as deleted. This means that, if T; observes at commit that z is not logically deleted, then
the operation is still valid. In this case, there is no need to validate the pred node.

- Optimized Commit. The correctness of this optimization is based on two facts. First,
as write operations on the same item are eliminating each other, we cannot observe two
entries of a transaction T;’s write-set, which add (or remove) the same item x. This means
that all operations in the write-set are commutative (i.e., not semantically conflicting),
and can be (semantically) executed in any order. Second, at memory level, it becomes also
unnecessary to execute those write operations in the same order as their original order,
because each operation does not change the pred of any subsequent operation (as they are
sorted in a descending order). As the pred node is not changed, it is safe for any operation
to start from that pred node to reach the new pred and curr nodes.

4.1.4 FEvaluation

In this section we evaluate the performance of our OTB-Set’s Java implementation equipped
with the optimizations described in Section (OptimisticBoosted in the plots). We com-
pared it with lazy set [54] and TB set [57] (PessimisticBoosted in the plots). In order to
conduct a fair comparison, the percentage of the writes in all of the experiments is the per-
centage of the successful ones, because an unsuccessful add/remove operation is considered
as a read operation. Roughly speaking, in order to achieve that, the range of elements is
made large enough to ensure that most add operations are successful. Also, each remove
operation takes an item added by previous transactions as a parameter, such that it will
probably succeed. In each experiment, the number of add and remove operations are kept
equal to avoid significant fluctuations of the data structure size during the experiments.

The experiments were conducted on a 64-core machine, which has four AMD Opteron (TM)
Processors, each with 16 cores running at 1400 MHz, 32 GB of memory, and 16KB L1 data
cache. Threads start execution with a warm up phase of 2 seconds, followed by an execution
of 5 seconds, during which the throughput is measured. Each plotted data-point is the
average of five runs.

We use transactional throughput as our key performance indicator. Although abort rate is
another important parameter to measure and analyze, it is meaningless in our case. Both lazy
set and TB set do not explicitly abort the transaction. However, there is an internal retry
for each operation if validation fails. Additionally, TB aborts only if it fails to acquire the
semantic locks, which is less frequent than validation failures in the OTB-Set. We recall that
the lazy set is not capable to run transactions at all (i.e., it is a concurrent data structure,
not transactional). We only show it as a rough upper bound for the OTB-Set and TB, but
it actually does not support transactional operations.

We first show the results for a linked-list implementation of the set. In this experiments,
we used a linked-list with 512 nodes. In order to conduct a comprehensive evaluation of
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Figure 4.2: Throughput of linked-list-based (LL) and skip-list-based (SL) set with 512 el-
ements (labels indicate % write transactions). Four different workloads: read-only (0%
writes), read-intensive (20% writes), write-intensive (80% writes), and high contention (80%
writes and 5 operations per transaction).

OTB-Set’s performance, in the first row of Figure [4.2] we show the results for four different
linked-list workloads: read-only (0% writes and 1 operation per transaction), read-intensive
(20% writes and 1 operation per transaction), write-intensive (80% writes and 1 operation
per transaction), and high contention (80% writes and 5 operations per transaction). In
both read-only and read-intensive workloads, OTB-Set performs closer to the (upper bound)
performance of the lazy list than TB-Set. This is expected, because TB incurs locking
overhead even for read operations. In contrast, OTB-Set, like lazy linked-list, does not
acquire locks on read operations, although it still has a small overhead for validating the
read-set. For the write-intensive workload, TB starts to be slightly better than OTB-Set, and
the gap increases in high contention workloads. This is also expected, because contention
becomes very high, which increases abort rate (recall that aborts have high overhead due
to re-traversing the list in linear time). In these high/very high contention scenarios, the
“pessimism” of TB pays off more than the “optimism” of OTB-Set. For example, in the
high contention scenario, five operations are executed per transaction. In TB, each operation
(pessimistically) locks its semantic items before executing each operation and then it keeps
trying to execute the operation on the underlying (black-box) concurrent data structure. On
the other hand, OTB suffers from aborting the whole transaction even if the last operation
of the transaction fails.

In the second row of Figure [1.2] the same results are shown for the skip-list-based set of the
same size (512 nodes). The results show that OTB-Set performs better in all cases, including
the high contention case. This confirms that OTB-Set gains because of the reduced overhead
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of aborts. Although the semantic contention is almost the same (for a set with 512 nodes,
contention is relatively high), using a skip-list instead of a linked-list supports OTB-Set
more than TB. This is mainly because skip-list traverses less nodes of the set through the
higher levels of the skip-list. Thus, even if the whole transaction aborts, re-executing skip-list
operations is less costly than linked-list.
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Figure 4.3: Throughput of skip-list-based set with 64K elements (labels indicate % write
transactions). Four different workloads: read-only (0% writes), read-intensive (20% writes),
write-intensive (80% writes), and high-contention (80% writes and 5 operations per transac-
tion).

The last set of experiments (Figure 7 shows the performance when the contention is
significantly lower. We used a skip-list of size 64K and measured throughput for the same
four workloads. The results show that in such cases, which however are still practical,
OTB-Set is up to 2x better, even in write-intensive and high contention workloads. This
is mainly because in the very low contention scenario, the TB’s eager locking mechanism
becomes ineffective and a more optimistic algorithm, such as OTB-Set, is preferable.

4.2 Priority Queue

Priority queue is a collection of totally ordered keys with duplicates allowed, and provides
three APIs: add(x)/-, min() /x, and removeMin() /x.

In addition to the well-known heap implementation of priority queue, skip-list has also
been proposed for implementing priority queue [59]. Although both implementations have
the same logarithmic complexity, skip-list does not need periodic re-balancing, which is
more suited for concurrent execution. Generally, cooperative operations such as re-balancing
increase the possibility of conflict and degrade concurrency. Also, heap is not suitable if items
must be unique. Skip-list, on the other hand, can be used even if items are not unique, like
our implementation, or if duplicates are allowed, by slight modification (e.g., by adding
internal identifiers to each node).

Herlihy and Koskinen’s pessimistically boosted priority queue uses a concurrent heap-based
priority queue. A global readers/writer lock is used on top of this priority queue to maintain
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semantic concurrency. An add operation acquires a read lock, while getMin and removeMin
operations acquire a write lock. Thus, all add operations will be concurrently executed at
the semantic level because they are semantically commutative. Global locking is a must
here, because the removeMin operation is not commutative with either another removeMin
operation or an add operation with a smaller item. Recall that, commutativity between
operations is necessary for boosting.

Algorithm [J] shows the flow of pessimistic boosted operations (more details are in [57]). It
is important to notice that the inverse of the add operation is not defined in most priority
queue implementations. This is one of the drawbacks of pessimistic boosting, which cannot
be implemented without defining an inverse for each operation. A work-around to this
problem is to encapsulate each node in a holder class with a boolean deleted flag to mark
rolled-back add operations (line . removeMin keeps polling the head until it reaches a
non-deleted item (lines . This adds greater overhead to the boosted priority queue.

Algorithm 9 Pessimistic boosted priority queue.

procedure ADD(z)
readLock.acquire
concurrentPQ.add(z)
undo-log.append(holder(z).deleted = true)
end procedure

procedure REMOVEMIN
readLock.acquire
z = concurrentPQ.removeMin()
while holder(z).deleted = true do
10: x = concurrentPQ.removeMin()

11: undo-log.append(add(z))

12: end procedure

Pessimistic boosting uses the underlying priority queue as a black box, either based on heap
or skip-list or any other structure. This means that, the gains from using skip-list may be
nullified by the pessimistic abstract locking. For example, since pessimistic boosting does
not open the black box, if the underlying concurrent priority queue uses fine-grained locking
to enhance performance, this optimization is hidden from the semantic layer and will be
nullified by the coarse-grained semantic locking when non-committing operations execute
concurrently. Optimistic boosting, on the other hand, inherits these benefits of using skip-
list, and avoids eager locking. Since skip-list does not have a re-balance phase, we can
implement an optimistic boosted priority queue based on it. However, before we show this
version, we quickly describe how to extend TB to implement semi-optimistic heap-based
priority queue in the following section.

4.2.1 Semi-Optimistic Heap Implementation

A semi-optimistic implementation of a heap-based priority queue is achieved by using the
following three optimizations on top of the TB implementation (these optimizations are
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illustrated in Algorithm [10)):

1)

i)

iii)

The add operations are not pessimistically executed until the first removeMin or getMin
operation has occurred. Before that, all add operations are saved in a local semantic
redo log. Once the first removeMin or getMin operation occurs, a single global lock
on the whole data structure is acquired and all the local add operations stored in the
redo log are published before executing the new removeMin operations. If only add
operations occur in the whole transaction, they are published at commit time. This
way, semi-optimistic boosting does not pay the overhead for managing read /write locks
because add operations do not acquire any lock.

Since the transaction that holds the global lock cannot be aborted by any other trans-
action, there is no need to keep the operations in a semantic undo log anymore. This
is because, no operation takes effect on the shared objects until the global lock is
acquired. This enhancement cannot be achieved in pessimistic boosting because add
operations are executed eagerly on the shared object. Moreover, this optimization leads
to further enhancement, because the guidelines of optimistic boosting relax the obli-
gation of defining an inverse operation for the add operation. This way, the overhead
of encapsulating each node in a holder class is avoided.

In semi-optimistic priority queue, there is no need for thread-level synchronization,
because no transaction accesses the shared object until it acquires the global semantic
lock, which means that there is no contention on the underlying priority queue. Pes-
simistic boosting, on the other hand, has to use a concurrent priority queue, because
add operations are executed eagerly and can conflict with each other.

Algorithm 10 Optimistic boosted heap-based priority queue.

7
8:
9:
10:
11:

procedure ADD(z)

if lock holder then
PQ.add(z)

else
redo-log.append(z)

end procedure

. procedure REMOVEMIN

Lock.acquire

for entries in redo-log do
PQ.add(entry.item)

z = PQ.removeMin()

12: end procedure

The same idea of our enhancements has been used before in the TML algorithm [24] for
memory-based transactions. In TML, a transaction keeps reading without any locking and
defers acquiring the global lock until the first write occurs (which maps to the first removeMin
operation in our case). It then blocks any other transaction from committing until it finishes
its execution.
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Although these optimizations diminish the effect of global locking, it cannot be considered as
an optimistic implementation because removeMin and getMin operations acquire the global
write lock before commit time (this is why we call it a “semi-optimistic” approach). In the
next section, we will show how we can use skip-list to implement a completely optimistic
priority queue.

4.2.2 Skip-List OTB Implementation

In this version, optimistic boosted priority queue wraps the same optimistic boosted skip-list
described in Section [£.1 The same idea of using skip-list is proposed for a skip-list-based
concurrent priority queue. However, implementation details are different here because of the
new transactional nature of the boosted priority queue (more details about the concurrent
implementation can be found in [59]).

Slight modifications are made on the optimistic boosted skip-list to ensure priority queue
properties. Specifically, each thread saves, locally, a variable called last RemovedMin, which
refers to the last element removed by the transaction. It is mainly used to identify the next
element to be removed if the transaction calls another removeMin operation (note that all
these operations do not physically change the underlying skip-list until commit is called).
Thus, this variable is initialized as the head of the skip-list. Additionally, each thread saves
a local sequential priority queue, in addition to the local read/write sets, to handle read-
after-write cases.

Algorithm [11{ shows the wrapped priority queue. Each add operation calls the add operation
of the underlying (optimistic boosted) skip-list. If it is a successful add, it saves the added
value in the local sequential priority queue (line . Any removeMin operation compares the
minimum items in both the local and shared priority queues and removes the lowest (line .
If the minimum is the local one, the transaction calls the underlying contains operation
to make sure that the shared minimum is saved in the local read-set to be validated at
commit (line . Before returning the minimum, the transaction does a post-validation to
ensure that the shared minimum is still linked by its pred (lines [14] and . It then updates
last RemovedMin (line22)). A similar procedure is used for the getMin operation.

Using this approach, optimistic boosted priority queue (based on skip-list) does not acquire
any locks until its commit. It follows the same general concepts of optimistic boosting,
including lazy commit, post validation, and semantic read-sets and write-sets. Unfortunately,
the same approach cannot be used in a heap-based implementation because of its complex
and cooperative re-balancing mechanism. However, we already discussed a semi-optimistic
heap-based implementation in the previous section.

One of the main advantages of this optimistic implementation is that the getMin operation is
again wait-free. Pessimistic boosting, even with our enhancements on the heap-based imple-
mentation, enforces getMin to acquire a write lock, thereby becoming a blocking operation,
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Algorithm 11 Optimistic boosted skip-list-based priority queue.

: procedure ADD(z)
if skipList.add(z) then
localPQ.add(z)
return true
else
return false
end procedure

procedure REMOVEMIN
local Min = localPQ.getMin()
sharedMin = lastRemovedMin.next[0]
if local Min | sharedMin then
if — skipList.contains(sharedMin) then
Abort
if last RemovedMin.next[0] # sharedMin then
Abort
return localPQ.removeMin()
else
if — skipList.remove(sharedMin) then
Abort
if lastRemovedMin.next[0] # sharedMin then
Abort
lastRemovedMin = sharedMin
return sharedMin

O e e e e e e el s

DO N DO
o

o
b

. end procedure

even for non-conflicting add or getMin operations.

4.2.3 Correctness

Correctness of the priority queue is easier to show than for the set. For the heap-based
implementation, add operations are commutative because duplicates are allowed. This is the
reason why deferring add operations to the lock acquisition phase does not affect consistency.
Transactions will not be able to execute removeMin operations until they acquire the global
lock and publish earlier add operations. The global locking yields the same correctness and
progress guarantees of pessimistic boosting.

For the skip-list implementation, lock acquisition and validation are inherited from the un-
derlying skip-list (the calling of add, remove, and contains adjusts the local read-set and
write-set of each transaction). Additionally, the local priority queue is used to save the pre-
viously added items to maintain the case of getting or removing a locally added minimum.
This follows the same approach of searching the local write-set in STM algorithms to cover
the cases of read-after-write.
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4.2.4 FEvaluation

We now show the performance of heap-based priority queue and illustrate how our semi-
optimistic implementation enhances performance. Then, we discuss the skip-list-based pri-
ority queue, and compare the performance of pessimistic and optimistic implementations.
The testing environment is the same as in Section [£.1.4]

For heap-based implementations, we used Java atomic package’s priority queue for pes-
simistic boosting implementation, and Java’s sequential priority queue for semi-optimistic
boosting implementation. Figure illustrates how our three optimizations (described in
Section enhance performance with respect to the pessimistic boosting algorithm. Since
both min and removeMin operations acquire global lock, they will have the same effect on
performance. This is why, for brevity, we only show results for workloads with 50% add
operations and 50% removeMin operations. However, we also conducted experiments with
different percentage of getMin operations and obtained similar results.
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Figure 4.4: Throughput of heap-based priority queue with 512 elements, for two different
transaction sizes (1, 5). Operations are 50% add and 50% removeMin.

The results show that our semi-optimistic boosting implementation is faster than pessimistic
boosting irrespective of the transaction size (1 or 5 operations). Increasing the transaction
size to 5 affects the performance of both algorithms, because both acquire global locks when
the first removeMin occurs. However, semi-optimistic boosting is 2x faster than pessimistic
boosting when transaction size is 5.

For skip-list-based priority queue, we use our skip-list set implementation (Section as the
base of priority queue implementation. Figure shows the performance of both optimistic
and pessimistic boosting. Optimistic boosting is better than pessimistic boosting in almost
all the cases, except for the high contention case (5 operations per transaction and more
than 48 transactions). Comparing the results in Figures and we see that optimistic
boosting achieves the best performance with respect to all other algorithms (both heap-based
and skip-list-based) for small number of threads. This improvement is achieved at the cost
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Figure 4.5: Throughput of skip-list-based priority queue with 512 elements, for two different
transaction sizes (1, 5). Operations are 50% add and 50% removeMin.

of a slightly lower performance when the number of transactions increases. This is expected,
and reasonable for optimistic approaches in general, given that the gap in performance for
high contention cases is limited.

4.3 Summary

In this chapter we provided a detailed design and implementation of two representative
optimistically boosted data structures: set and priority queue, and we showed how the same
concept of optimistic boosting can be applied to different implementations of these data
structures. Our evaluation revealed that the performance of optimistic boosting is closer to
highly concurrent data structures than pessimistic boosting in most of the cases.



Chapter 5

Transactional Balanced Trees

Balanced binary search trees, such as AVL and Red-Black trees are data structures whose self-
balancing guarantees an appealing logarithmic-time complexity for their operations. One of
the main issues in balanced trees is the need for rotations, which are complex housekeeping
operations that re-balance the data structure to ensure its logarithmic-time complexity.
Although rotations complicate the design of concurrent balanced trees, many solutions have
already been proposed: some of them are lock-based [13, 211, 22] Bl [8, 34], while others are
non-blocking [15], 35 63, 84]. However, none of those approaches allows tree operations to
compose.

We leverage OTB methodology and design TxCF-Tree, the first balanced tree that is acces-
sible in a transactional, rather than just a concurrent, manner without monitoring (speculat-
ing) the whole traversal path (like in TM) or nullifying the benefits of the efficient concurrent
designs (like in TB). TxCF-Tree offers a set of design and low-level innovations, but roughly
it can be seen as the transactional version of the recently introduced Contention Friendly
Tree (CF-Tree) [22]. The main idea of CF-Tree is to decouple the structural operations
(e.g., rotations and physical deletions) from the semantic operations (e.g., queries, logical
removals, and insertions), and to execute those structural operations in a dedicated helper
thread. This separation makes the semantic operations (that need to be transactional in
TxCF-Tree) simple: each operation traverses the tree non-speculatively (i.e., without instru-
menting any accessed memory location); then, if it is a write operation, it locks and modifies
only one node. In an abstract way, the TxCF-Tree’s semantic operations can be seen as
composed of a traversal and commit phases, which makes CF-Tree a good representative of
the OTB-based data structures.

In addition to the new transactional capabilities, TxCF-Tree claims one major innovation
with respect to CF-Tree, which is fundamental for targeting high performance in a trans-
actional (not only concurrent) data structure. Although CF-Tree decouples the structural
operations, those operations are executed in the helper thread with the same priority as the
semantic operations, and without any control on their interference. With TxCF-Tree, we

49
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make the structural operations interference-less (when possible) with respect to semantic
operations. This property is highly desirable because structural operations do not alter the
abstract (or semantic) state of the tree, thus they should not force any transaction to abort.
To reduce this interference, one operation should behave differently if it conflicts with a
structural operation rather than with a semantic operation.

TxCF-Tree uses two new terms, which help to identify those false-interleaving cases and
alleviate their effect: structural lock, which is a type of lock acquired if the needed modifi-
cations on the node do not change its abstract (semantic) state; and structural invalidation,
which is a transactional invalidation raised only because of a structural modification on the
tree rather than having actual conflicts at the abstract level. In TxCF-Tree, transactions
do not abort if they face structural locks or false-invalidations during the execution of their
operations. We further reduce the interference of the helper thread by adopting a simple
heuristic to detect if the tree is almost balanced. If so, we increase the back-off time between
two helper thread’s iterations.

We assessed the effectiveness of TxCF-Tree through an evaluation study. Our experiments
show that TxCF-Tree performs better than the other transactional approaches (TB and
STM) in almost all of the cases.

5.1 Background: Contention Friendly Tree

Contention Friendly Tree (CF-Tree) [22] is an efficient concurrent lock-based (internal) tree,
which finds its main innovation on decoupling the semantic operations (i.e., search, logical
deletion, and insertion) from the structural operations (i.e., rotation and physical deletion).
The semantic operations are eagerly executed in the original process, whereas the structural
operations are deferred to a helper thread. More in details:

Semantic Operations: each semantic operation starts by traversing the tree until it reaches
a node that matches the requested key or it reaches a leaf node (indicating that the searched
node does not exist). After that, a search operation returns immediately with the appropriate
result without any locking. For a deletion, if the node exists and it is not marked as deleted,
the node is locked and then the deleted flag is set (only a logical deletion), otherwise the
operation returns false. For a successful insertion, the deleted flag is cleared (if the node
already exists but marked as deleted) or a new node is created and linked to the leaf node (if
the node does not exist). An unsuccessful insertion simply returns false. In all cases, each
operation locks at most one node.

Rotations: re-balancing operations are isolated in a helper thread that scans the tree seeking
for any node that needs either a rotation or a physical removal. Rotation in this case is
relaxed, namely it uses local heights. Although other threads may concurrently modify these
heights (resulting in a temporarily unbalanced tree), past work has shown that a sequence
of localized operations on the tree eventually results in a strictly balanced tree [13, [69]. A
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rotation locks: the node to be rotated down; its parent node; and its left or right child
(depending on the type of rotation). Also, rotations are designed so that any concurrent
semantic operation can traverse the tree without any locking and/or instrumentation. To
achieve that, the rotated-down node is cloned and the cloned node is linked to the tree
instead of the original node.

Physical Deletion: The physical deletion is also decoupled and executed separately in the
helper thread. In addition, a node’s deletion is relaxed by leaving a “routing” node in the
tree when the deleted node has two children (it is known that deleting a node with two
children requires modifying nodes that are far away from each other, which complicates the
operation). The physical deletion is done as follows: both the deleted node and its parent
are locked, then the node’s left and right children links are modified to be pointing at its
parent, and finally the node is marked as physically removed. This way, concurrent semantic
operations can traverse the tree non-speculatively without being lost.

Among the concurrent trees presented in literature, we select CF-Tree as a candidate to be
transactionally boosted because it provides the following two properties that fit the OTB
principles. First, it uses a lock-based technique for synchronizing the operations, which
simplifies the applicability of the OTB methodology. Second, CF-Tree is traversed without
any locking and/or speculation, allowing the separation of an unmonitored traversal phase.
Also, the semantic operations (add, remove, and contains) are decoupled from the com-
plex structural operations (although they can interfere with each other), like rotations and
physical removals, allowing a simple commit phase.

5.2 Reducing the interference of structural operations

Balanced trees store data according to a specific balanced topology so that their operations
can take advantage of the efficient logarithmic-time complexity. More specifically, operations
are split into two parts: a “semantic” part, which modifies the abstract state of the tree,
and a structural part, which maintains the efficient organization of the tree. For example,
consider the balanced tree in Figure . The tree initially represents the abstract set {1,
2} (Figure[5.1(a))). If we want to insert 3, we first create a new node and link it to the tree in
the proper place (Figure[5.1(b))). Subsequently, the tree is re-balanced because this insertion
unbalanced a part of it (Figure [5.1(c)). Semantically, we can observe the new abstract set,
{1, 2, 3}, right after the first step and before the re-balancing step. However, without the
re-balancing step, the tree structure itself may become eventually skewed, and any traversal
operation on the tree would take linear time rather than logarithmic time.

Although the structural operations are important, like the aforementioned rotations in our
case, they represent the main source of conflicts when concurrent accesses on the tree oc-
cur. Two independent operations (like inserting two nodes in two different parts of the

'We assume that higher keys are in the left sub-tree to match CF-Tree’s design.
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Figure 5.1: An insertion followed by a right rotation in a balanced tree.

tree) may conflict only because one of them needs to re-balance the tree. This additional
conflict generated by structural operations can significantly slow down the performance of
transactional data structures more than their concurrent versions due to two reasons. First,
in long transactions, the time period between the tree traversal and the actual modification
during commit may be long enough to generate more conflicts because of the concurrent
re-balancing. Second, in transactional data structures, any conflict can result in the abort
and re-execution of the whole transaction, which possibly includes several non-conflicting
operations, unlike concurrent operations that just re-traverse the tree if a conflict occurs.

Although CF-Tree decouples the structural operations in a dedicated helper thread, which
forms an important step towards shortening the critical path of the processing (i.e., the
semantic operations), it does not prevent the structural operations running in the helper
thread from interfering with the semantic operations and delaying/aborting them. To min-
imize such a interference, we propose the following simple guideline (named G-Pr), which
can be added to the general guidelines of OTB presented in Section

“Semantic operations should have higher priority than structural operations.”

This guideline allows semantic operations to proceed if a conflict with structural modifica-
tions occurs. Our rationale is that, delaying (or aborting) semantic operations affects the
performance, whereas delaying (or aborting) structural operations only defers the step of
optimizing the tree to the near future.

5.3 TxCF-Tree

In this section, we discuss how to boost CF-Tree to be transactional using the OTB guide-
lines. The key additions of TxCF-Tree over CF-Tree are: i) supporting transactional ac-
cesses; and 7i) minimizing the interference between semantic and structural operations. to
simplify the presentation, we focus on the changes made on CF-Tree to achieve those two
goals, and we briefly mention the unchanged parts whose details can be found in [22].

Each node in TxCF-Tree contains the same fields as CF-Tree: a key (with no duplication
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allowed), two pointers to its left and right children, a boolean deleted flag to indicate the
logical state of the node, and an integer removed flag to indicate the physical state of the
node (a value from the following: NOT-REMOVED, REMOVED, or REMOVED-BY-LEFT-ROTATION).
The node structure in TxCF-Tree is only different in the locking fields. In CF-Tree, each
node contains only one lock that is acquired by any operation modifying the node. In TxCF-
Tree, each node has two different locks: a semantic-lock, which is acquired by the operations
that modify its semantic state (either the deleted or the removed flag); and a structural-lock,
which is a acquired by the operations that modify the structure of the tree without affecting
the node itself (i.e., modifying the right or left pointers). Each lock is associated with a lock-
holder field that saves the ID of the thread that currently holds the lock, which is important
to avoid deadlocks.

TxCF-Tree implements a set interface with the semantic operations: add, remove, and
contains. Extending TxCF-Tree to have key-value pairs is simple, but for clarity we assume
that the value of the node is the same as its key.

5.3.1 Structural Operations

The helper thread repeatedly calls a recursive depth-first procedure to traverse the entire
tree. During this procedure, any unbalanced node is rotated and any logically removed node
is physically unlinked from the tree. To minimize the interference of this housekeeping pro-
cedure, we use an adaptive back-off delay after each traversal iteration. We use a simple
hill-climbing mechanism that increases (decreases) the back-off time if the number of house-
keeping operations in the current iteration is less (greater) than the most recent iteration.
While acknowledging the simplicity of the adopted heuristic, it showed effectiveness in our
evaluation study.

Physical Deletions. We start by summarizing how the helper thread in CF-Tree physically
deletes a node N,, ( marked as deleted and at least one of its children is null). First, both
N,, and its parent NV, are locked. Then, the node’s left and right children fields are modified
to point back to the parent (so that the concurrent operations currently visiting N,, can still
traverse the tree, without experiencing any interruption) and then N, is marked as REMOVED
and unlinked by changing N, child to be N,,’s child instead of IV,.

TxCF-Tree modifies this mechanism by providing less-interfering locking. Specifically, we
only acquire the structural-lock of N, because its semantic state will not change. On the
other hand, both the semantic-lock and the structural-lock have to be acquired on NV,, because
N,’s removed flag, which is part of its semantic state, should be set as REMOVED. To further
minimize the interference, the locking mechanism uses only one CAS trial. If it fails, then
the whole structural operation is aborted and the helper thread resumes scanning the tree.

Rotations. In CF-Tree, a right rotation (without losing generality) locks three nodes: the
parent node [V, the node to be rotated down N, and its left child V;. Then, rotation
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is done by cloning N, and linking the cloned node at the tree instead of N,, (similar to
physical deletion, this cloning protects operations whose “unmonitored” traversal phase is
concurrently visiting the same nodes. More details are in [22]). Subsequently N,, is marked
as REMOVED (in case of left-rotation it is marked as REMOVED-BY-LEFT-ROTATION) and nodes
are unlocked.

In TxCF-Tree, rotations also use a less intrusive locking mechanism. Both N, and NV; acquire
only the structural-lock because the rotated-down node N, is the only node that will change
its semantic state (and thus needs to acquire the semantic-lock). Also, we found that there
is no need to lock the parent node (i.e., NV,) at all. This is because the only change to N, is
to make its left (or right) child pointing to N; rather than N,. This means that N,’s child
remains not null before and after the rotation. Only the helper thread can change it to
null in a later operation by rotating the node down or physically deleting its children. On
the other hand, semantic operations only concern about reading/changing the deleted flag of
a node, if the searched node exists in the tree, or reading/changing a (null) link of a node,
if the searched node does not exist in the tree. Thus, modifying the child link of N, cannot
conflict with any concurrent semantic operation, thus it is safe to make this modification
without locking. Similarly, if all the sub-trees of NV,, and NV; are not null, then no structural
locks are acquired, and the only lock acquired is the semantic-lock on N,,.

5.3.2 Semantic Operations

According to OTB, each operation is divided into the traversal, validation, and commit
phases. We follow this division in our presentation.

Traversal. The tree is traversed by following the classical rules of the sequential binary
search tree. Traversal ends if we reach the searched node or a null pointer. To be able to
execute the operation transactionally, the outcome of the traversal phase is not immediately
returned. Instead it is saved in a local semantic read/write sets. Each entry of those sets
consists of the following three fields. Op-key: the searched key that needs to be inserted,
removed, or looked up. Node: the last node of the traversal phase. This node is either a
node whose key matches op-key (no matter if it is marked as deleted or not) or a node whose
right (left) child is null and its item is greater (less) than op-key. Op-type: an integer that
indicates the type of the operation (add, remove, or contains) and its result (successful
or unsuccessful).

Those fields are sufficient to verify (by the transaction validation) that the result of the
operation is not changed since the execution of the operation, and to modify the tree at
commit time. All the operations add an entry to the read-set, but only successful add and
remove operations add entries to the write-set.

Before traversal, the local write-set is scanned for detecting read-after-write hazards. If the
key exists in the write-set, the operation returns immediately without traversing the shared
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tree. Moreover, if a successful add operation is followed by a successful remove operation of
the same item (or vice versa), they locally eliminate each other, in order to save the useless
access to the shared tree. The elimination is done only on the write-set, and the entries are
kept in the read-set so that the eliminated operations are guaranteed to be consistent.

Validation. The second phase of TxCF-Tree’s operation is the validation phase. To have
a comprehensive presentation, we show first the validation procedure in CF-Tree, and then
we show how it is modified in TxCF-Tree.

Algorithm 12 Operation’s validation in CF-Tree.

1: procedure VALIDATE(node, k) 8: else

2: if node.removed # NOT-REMOVED then 9: next = node.left
3: return false 10: if next = null then
4: else if node.k = k then 11: return true

5: return true 12: return false

6: else if node.k > k then

7. next — node.right 13: end procedure

In Algorithm the validation in CF-Tree succeeds if the node’s key is not physically
removed and either the node’s key matches the searched key (line [5)) or its child (right or left
according to the key) is still null (line [I1)). Otherwise, the validation fails (lines [3| and [12)).
This validation is used during add/remove operations as follows (details are in [22]): each
operation traverses the tree until it reaches the involved node, then it locks and validates
it (using Algorithm . If the validation succeeds, the operation stops its traversal loop
and starts the actual insertion/deletion. If the validation fails, the node is unlocked and the
operation continues the traversal. In [22], it has been proven that continuing the traversal
is safe even if the node is physically deleted or rotated by the helper thread, due to the
mechanism used in the deletion/rotation, as discussed in Section m (e.g., modifying the
left and right links of the deleted node to be pointing to its parent before unlinking it).

Algorithm 13 Example of semantic opacity.

1: @Atomic > initially the tree is empty

2: procedure T1 7: @Atomic

3: if tree.contains(x) = false then 8: procedure T2
4: if tree.contains(y) = true then 9: tree.add(x)
5: > hazardous action10: tree.add(y)
6: end procedure 11: end procedure

In TxCF-Tree, this validation procedure is modified to achieve two goals.

The first goal regards the correctness: since TxCF-Tree is a transactional tree, valida-
tion has also to ensure that the operation’s result is not changed until transaction commits;
otherwise, the transaction consistency is compromised. As an example, in Algorithm [13] let
us assume the following invariant: y exists in the tree if and only if x also exists. If we use
the same validation as Algorithm [12] 71 may execute line [3] first and return false. Then,
let us assume that 72 is entirely executed and committed. In this case, T'1 should abort
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right after executing line 4| because it breaks the invariant. Aborting the doomed transaction
T'1 should be immediate and it cannot be delayed until the commit phase because it may
go into an infinite loop or raise an exception (line . To prevent those cases, all of the
read-set’s entries have to be validated (using Algorithm [14] instead of Algorithm after
each operation as well as during commit.

Algorithm 14 Operation’s validation in TxCF-Tree.

1: procedure VALIDATE(read-set-entry) 14: return SEMANTICALLY-INVALID
2: if entry.op-type € (unsuccessful add, 15: else if entry.node.k > entry.op-key then
3: successful remove/contains) then 16: next = node.right
4: item-existed = true 17: else
5: else 18: next = node.left
6: item-existed = false 19: if next = null then
T if entry.node.removed # NOT-REMOVED then 20: if item-existed then
8: return STRUCTURALLY-INVALID 21: return SEMANTICALLY-INVALID
9: else if entry.node.k = entry.op-key then 22: else

10: if entry.node.deleted xor 23: return VALID

11: item-existed then 24: return STRUCTURALLY-INVALID

12: return VALID 925. d

13: else . end procedure

The second goal regards performance: if the node is physically removed or its child
becomes no longer null (which are the invalidation cases of CF-Tree), that does not mean
that the transaction is not consistent anymore. It only means that the traversal phase
has to continue and reach a new node to be validated. It is worth noting that aborting the
transaction in those cases does not impact the tree’s correctness, while its performance will be
affected. In fact, this conservative approach increases the probability of structural operations’
interference. For this reason we distinguish between those types of invalidations and the
actual semantic invalidations, such as those depicted in Algorithm [13] The modified version
of the validation is shown in Algorithm [I14] The cases covered in CF-Tree are considered
structural-invalidations (lines [§ and [24)), and the actual invalidation cases are considered
semantic-invalidations (lines [14] and [21)).

Algorithm 15 Read-set validation in TxCF-Tree.

1: procedure VALIDATE-READSET(read-set) 12: newNode = CONT-TRAVERSE (entry)
2: for all entries in the read-set do 13: entry.node = newNode
3: while true do 14: write-entry = write-set.get(entry.op-key)
4: if entry.op-key = entry.node.k then 15: if write-entry # null then
5: lock = semantic-lock 16: write-entry.node = newNode
6: else 17: else if r = SEMANTICALLY-INVALID then
7 lock = struct-lock 18: return false
8: if lockedNotByMeOrHelper(lock) then 19: else
9: return false 20: break;

10: r = VALIDATE((entry) 21: return true

11: if r = STRUCTURALLY-INVALID then

22: end procedure

Algorithm shows how to validate the read-set. For each entry, we firstly check if the
entry’s node is not locked (lines 4H9). In this step we exploit our lock separation by checking
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only one of the two locks because each operation validates either the deleted flag or the
child link. Specifically, if the node’s key matches op-key, node’s semantic-lock is checked,
otherwise the structural-lock is checked. Moreover, if the entry’s node is locked by the helper
thread, we consider it as unlocked because the helper thread cannot change the abstract
state of the tree. The only effect of the helper thread is to make the operation structurally
invalid, which can be detected in the next steps.

The next step is to validate the entry itself (line . If it is semantically-invalidated, then
the transaction aborts (line [18). If it is structurally-invalidated, the traversal continues as
in CF-Tree and the entry is updated with the new node (lines , then the node is
re-validated. If the operation is a successful add/remove, the related write-set entry is also

updated (line [16)).

Commit. The commit phase (Algorithm is similar to the classical two-phase locking
mechanism. The nodes in the read/write sets are locked and/or validated first, then the tree
is modified, and finally locks are released.

From the commit procedure of TxCF-Tree it is worth mention the following points. The first
point is how TxCF-Tree solves the issue of having two dependent operations in the same
transaction. For example, if two add operations are using the same node (e.g., assume a
transaction that adds both 3 and 4 to the tree shown in Figure . The effect of the first
operation (add 3) should be propagated to the second one (add 4). To achieve that, the add
operation uses the node in the write-set only as a starting point and keeps traversing the tree
from this node until reaching the new node. Also, the operations lock the added nodes (3
and 4 in our case) before linking them to the tree. Those nodes are unlocked together with
the other nodes at the end of the commit phase. Any interleaving transaction or structural
operation running in the helper thread cannot force the transaction to abort because all the
involved nodes are already locked. Also, the other cases of having dependent operations,
such as adding (or removing) the same key twice and adding a key and then removing it,
are solved earlier during the operation itself (as mentioned in the traversal phase).

The second point is how TxCF-Tree preserves the reduced interferences between the struc-
tural and the semantic operations without hampering the two-phase locking mechanism.
The main issue in this regard is that structural invalidations may not abort the transaction.
Thus, a transaction cannot lock the nodes in the write-set and then validate the nodes in the
read-set because, if so, in case of a structural invalidation, the invalidated operation (which
can be a write operation) would continue traversing the tree and reach a new node (which
is not yet locked). To solve this problem, we use an inline validation of the entries in the
write-set. The write-set entries are both locked and validated at the same time. If the write
operation fails in its validation: 1) it unlocks the node; 2) re-traverses the tree; 3) locks the
new node; and 4) re-validates the entry.
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Algorithm 16 Commit in TxCF-Tree.

procedure COMMIT
for all entries in the write-set do
while true do

> Try to acquire the lock
if entry.op-key = entry.node.k then
lock = semantic-lock
else
lock = struct-lock
if lockholder # myID and !lock.acquire then
if lockholder # helperID then
ABORT
else
continue
> Inline Validation
> Similar to Algorithm
> But unlock before retrying
result = VALIDATE((entry)

> Validate the remaining read-set entries
> Exactly like Algorithm

Rl e e e e el e ]

21: > But skips the entries that are also in the write-set
22: VALIDATE-READ-OPERATIONS(read-set)

23: > Publish write-sets
24: for all entries in the write-set do

25: if entry.op-type = remove then

26: entry.node.deleted = true

27: else > add operation
28: if entry.op-key = entry.node.k then

29: entry.node.deleted = false

30: else

31: newNode = CREATE-NODE(entry.key)

32: node = CONT-TRAVERSE(entry)

33: if node.key > entry.k then

34: node.right = newNode;

35: else

36: node.left = newNode;

37: > Unlock
38: UNLOCK (write-set)

39: return true

40: end procedure

5.4 Correctness

Similar to OTB-Set, the correctness of TxCf-Tree can be inferred by the following two steps.
The first step is to show, without loss of generality, that if the transactions are composed of
only one TxCF-Tree operation, then these operations are linearizable. The second step is to
prove that if the transaction contains more than one operation, then it is opaque. We can
easily achieve that by following the same procedure described in Section [4.1.3] Thus, in this
section we focus on the points specifically related to TxCF-Tree.

Since we use the OTB methodology to make CF-Tree transactional, the operations of TxCF-
Tree are serialized as described in [61]rialization point of a read-write transaction is the point
right after acquiring the locks and before the (successful) validation during commit. For a
read-only transaction, the serialization point is the return of its last read operation. Both
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those points are immediately followed by a validation procedure (Algorithm [15)). If this
validation succeeds, then all the transaction operations are guaranteed to be consistent.

The correctness of the mechanisms used to achieve interference-less structural operations
can be inferred as follows.

i) Splitting locks into structural and semantic locks does not affect correctness by any
mean, because any two conflicting operations (e.g., two operations that attempt to
delete the same node, or two operations that attempt to insert new nodes on the same
link) acquire the same type of lock.

ii) Structural invalidations are raised and handled in the same way as CF-Tree (as we show
in Algorithms |12 and . Since we use the same approach for rotation and physical
deletion (e.g., cloning the rotated down node and linking the physically deleted node
to its parent), re-traversing the tree after a structural invalidation is guaranteed to be
safe as in CF-Tree itself (see [22] for the complete proof of validation in CF-Tree).

iii) Semantic invalidations preserve the consistency among the operations within the same
transaction. Unlike structural invalidations, in those cases, the whole transaction is
aborted.

iv) The inline validation during commit does not affect the correctness (although it violates
two-phase locking) because every inline-validated node is locked before being validated
and cannot be invalidated anymore if the validation succeeds.

v) Validating the whole read-set after each operation and before committing preserves
consistency in the presence of concurrent structural operations. For example, assuming
the scenario where a structural operation physically removes a node that is used by a
running transaction T1, which can be followed by a semantic operation (executed in
another transaction T2) that adds this node in a different place of the tree. Although
this new addition will not be detected by T1’s validation, the expected race condition
will be solved because T1 will detect during the validation (after the next operation or
at commit) that the removed flag of the node has been changed (line [7in Algorithm
and will continue traversing the tree. At this point, T1 will reach the same new
node as T2, and they will be serialized independently from the structural operation.

It is clear that those serialization points are not sufficient to guarantee opacity at memory
level (i.e., in a history composed of all the memory locations accessed while performing
the semantic operations). This is mainly because each operation in TxCF-Tree traverses the
tree non-speculatively and all the reads during this traversal phase can be invalidated by any
concurrent transaction. However, our target is to make TxCF-Tree semantically consistent.
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5.5 Evaluation

In our experiments we compared the performance of TxCF-Tree with the performance of
TB and some STM approaches. Our implementation of TB uses CF-Tree as the underlying
(black-box) tree, which makes a fair comparison. Regarding STM, we tested three different
algorithms: LSA [89]; TL2 [31]; and NOrec [25], and, to make plots clear, we reported the
best performance collected.

All experiments were conducted on a 64-core machine, which has 4 AMD Opteron (TM)
Processors, each with 16 cores running at 1.4 GHz, 32 GB of RAM, and 16KB L1 data
cache. Throughput is measured as the number of semantic operations (not transactions) per
second to have consistent data points. However, since the benchmark executes 256 no-op
instructions in between two transactions, this may result in different throughput ranges for
different sizes of transactions. Each data point is the average of five runs.

1M ops/sec

- 10 20 30 40 50 60
Number of threads

Figure 5.2: Throughput of tree-based set with 10K elements, 50% add/remove operations,
and one operation per transaction.

In Figure[5.2we show the results for a scenario that mimics the concurrent (non-transactional)
case (i.e., each transaction executes only one operation on the tree). We leverage this plot
to show the cost of adopting a transactional solution over a pure concurrent tree. Clearly
STM does not scale because it “blindly” speculates on all the memory reads and writes.
This poor scalability of STM is confirmed in all the experiments we made. On the other
hand, both TB and TxCF-Tree scale better than STM and close to CF-Tree (TxCF-Tree is
slightly closer). This behavior shows an overhead that is affordable in case one wants to use
the TxCF-Tree library even for just handling the concurrency of atomic semantic operations
without transactions.

Figure [5.3| shows the transactional case, in which we deployed five operations per transac-
tion for different sizes of the tree (1K, 10K, and 100K) and different read/write workloads
(10%, 50% and 80% of add/remove operations). We do not include CF-Tree because it only
supports concurrent operations and thus it cannot handle the execution of transactions.
TxCF-Tree performs generally better than TB. The gap between the two algorithms de-
creases when we increase the percentage of the write operations. This is reasonable because
the conflict level becomes higher, and it best fits the more pessimistic approach (as TB).
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Figure 5.3: Throughput with five operations per transaction (labels indicate the size of the
tree and the % of the add/remove operations).

Increasing the size of the tree also decreases the gap between TxCF-Tree and TB. At first
impression it appears counterintuitive because increasing the size of the tree means generally
decreasing the overall contention, which should be better for optimistic approaches like
TxCF-Tree. The actual reason is that, in the case of very low contention, most of the
transactions do not conflict with each other and both algorithms linearly scale. Then, when
the conflict probability increases, the difference between the algorithms becomes visible. A
comparison between Figure and Figure (which differ only for the size of the tree)
confirms this claim. In Figure |5.3(d), both algorithms scale well up to 32 threads because
threads are almost non-conflicting, then TB starts to suffers from its non-optimized design
while TxCF-Tree keeps scaling. On the other hand, in Figure both algorithms scale
until 60 threads because the tree is large.

Summarizing, analyzing the above results we can identify two points that allow TxCF-
Tree to outperform competitors: i) having an optimized unmonitored traversal phase that
reduces false conflicts, and i) having optimized validation/commit procedures that minimize
the interferences between structural and semantic operations. Both TB and TxCF-Tree
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Figure 5.4: Throughput of tree-based set with 10K elements, 50% add/remove operations,
and 32 threads.
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Figure 5.5: Percentage of the two interference types with 10K elements, 50% add/remove,
and 32 threads.

gain performance by exploiting the first point, in fact TB itself performs (up to an order
of magnitude) better than STM. However, only TxCF-Tree uses an optimized design for a
balanced tree data structure, and it makes its performance generally (much) better than TB.
In the aforementioned experiments we use two versions of TxCF-Tree, one with the adaptive
back-off time in between two helper thread iterations (named BTxCF-Tree), and one without.
The results show that this optimization further enhances the performance, especially in the
small tree (the cases of 10% add/remove operations). This gain may increase with a more
effective heuristic.

In Figure [5.4] we report the behavior of TxCF-Tree’s while changing the size of the trans-
actions. We can observe a significant gap between TxCF-Tree and TB for all of the tested
sizes, which confirms our conclusion: reducing operations’ interference is important in order
to avoid unnecessary aborts.

The last experiment we report regards the capability of TxCF-Tree to reduce interferences
with structural operations. Although breaking down TxCF-Tree’s operations to measure this
gain is not straightforward, we roughly estimated the gain by quantifying two metrics: the
true interferences count, which is simply the actual transactional aborts count; and the false
interferences count, which is the count of the cases in which the transaction does not abort
because the tree is re-traversed instead or because the operations in TxCF-Tree acquire only
one (structural or semantic) lock. In Figure the false-interferences are 25%-30% of the
total interferences for different sizes of the transactions.
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5.6 Summary

In this chapter we presented TxCF-Tree, the first interference-less transactional balanced
tree. Unlike the former general approaches, it uses an optimized conflict management mech-
anism that reacts differently according to the type of the operation. Our experiments confirm
that TxCF-Tree performs better than the general approaches.



Chapter 6

Integrating OTB with STM

All previous proposals to implement transactional data structures, including TB, do not give
details on how to integrate the proposed transactional data structures with STM frameworks.
Addressing this issue is important because it allows programmers to combine operations of
the efficient transactional data structures with traditional memory reads/writes in the same
transaction.

In this chapter, we show how to integrate OTB-Based data structures with the current
STM frameworks. One of the main benefits of OTB (compared to the original TB method-
ology) is that it uses the terms validation and commit in the same way as many STM
algorithms [25, B1], but at the semantic layer. Thus, OTB allows building a system which
combines both semantic-based and memory-based validation/commit techniques in a unified
consistent framework. More specifically, we show in this chapter how to implement OTB
data structures in a standard way that can integrate with STM frameworks. We also show
how to modify STM frameworks to allow such integration while maintaining the consistency
and programmability of the framework.

We use DEUCE [67] as our base framework. DEUCE is a Java STM framework with a
simple programming interface. It allows users to define @Atomic functions for the parts of
code that are required to be executed transactionally. However, like all other frameworks,
using transactional data structures inside @Atomic blocks requires implementing pure STM
versions, which dramatically degrades the performance. We extend the design of DEUCE to
support OTB transactional data structures (with the ability to use the original pure STM
way as well). To do so, we integrate two main components into the DEUCE agent. The
first component is OTB-DS (or OTB data structure), which is an interface to implement any
optimistically boosted data structure. The second component is OTB-STM Context, which
extends the original STM context in DEUCE. This new context is used to implement new
STM algorithms which are able to communicate with OTB data structures. The new STM
algorithms should typically be an extension of the current memory-based STM algorithms
in literature.

64
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As a case study, we integrate our OTB-Set (as described in Chapter {f) in DEUCE framework.
We extend two STM algorithms to communicate with OTB-Set (NOrec [25] and TL2 [31]).
We select NOrec and TL2 as examples of STM algorithms which use different levels of
lock granularity. NOrec is a coarse-grained locking algorithm, which uses a single global
lock at commit time to synchronize transactions. TL2, on the other hand, is a fine-grained
locking algorithm, which uses ownership records for each memory block. We show in detail
how to make the extended design of DEUCE general enough to support both levels of lock
granularity.

6.1 Extension of DEUCE Framework

DEUCE [67] is a Java STM framework which provides a simple programming interface with-
out any additions to the JVM. It allows programmers to define atomic blocks, and guarantees
executing these blocks atomically using an underlying set of common STM algorithms (e.g.,
NOrec [25], TL2 [31], and LSA [89]). We extend DEUCE to support calling OTB data struc-
tures’ operations along with traditional memory reads and writes in the same transaction,
without breaking transaction consistency. Our framework is designed in a way that inte-
gration between data structures’ operations and memory accesses is completely hidden from
the programmer. For example, a programmer can write an atomic block like that shown in

Algorithm [2]

Figure|6.1| shows the DEUCE framework with the proposed modifications needed to support
OTB integration. For the sake of a complete presentation, we briefly describe in Section
the original building blocks of the DEUCE framework (the white blocks with numbers 1-3).
Then, in Section we describe our additions to the framework to allow OTB integration
(gray blocks with numbers 4-7). More details about the original DEUCE framework can be
found in [67].

6.1.1 Original DEUCE Building Blocks

The original DEUCE framework consists of three layers:

Application layer. DEUCE applications do not use any new keywords or any addition to
the language. Programmers need only to put an @Atomic annotation on the methods that
they need to execute as transactions. If programmers want to include in the @Atomic blocks
some operations that are not transactional by nature, like system calls and 1/O operations,
DEUCE allows that by using an @FEzclude annotation. Classes marked as excluded are not
instrumented by DEUCE runtime.

DEUCE runtime layer. Given this simple application interface (only @Atomic and @Ez-
clude annotations), DEUCE runtime guarantees that atomic methods will be executed in
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Figure 6.1: New design of DEUCE framework.

the context of a transaction. To achieve that, all methods (even if they are not @Atomic) are
duplicated with an instrumented version, except those in an excluded class. Also, @Atomic
methods are modified to the form of a retry loop calling the instrumented versions. Some
optimizations are made to build these instrumented versions. More details about these
optimizations can be found in [67].

STM context layer. STM context is an interface which allows programmers to extend
the framework with more STM algorithms. DEUCE runtime interacts with STM algorithms
using only this interface. Thus, the context interface includes the basic methods for any
STM algorithm, like init, commit, rollback, onReadAccess, and onWriteAccess.

6.1.2 New Building Blocks to Support OTB

The design of our framework extension has three goals: 1) keeping the simple programming
interface of DEUCE; 2) allowing programmers to integrate OTB data structures’ operations
with memory reads/writes in the same transaction; and &) giving developers a simple API
to plug in their own OTB data structures and/or OTB-STM algorithms. To achieve that,
we added the following four building blocks to DEUCE framework.

OTB Data Structures Delegator. In our new framework design, the application interface
is extended with the ability of calling OTB data structures’ operations. For example, in
Algorithm [2] the user should be able to instantiate set!, and call its operations from outside
the DEUCE runtime agent. At the same time, OTB data structures have to communicate
with STM algorithms to guarantee consistency of the transaction as a whole. This means
that OTB data structures have to interact with both the application layer and the DEUCE
runtime layer.
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To isolate the applications interface from the DEUCE runtime agent, we use two classes for
each OTB data structure. The main class, which contains the logic of the data structure,
exists in the runtime layer (inside the DEUCE agent). The other class exists at the applica-
tion layer (outside the DEUCE agent), and it is just a delegator class which wraps calls to
the internal class operations.

This way, the proposed extension in the applications interface does not affect programma-
bility. There is no need for any addition to the language or any modifications in the JVM
(like the original DEUCE interface). Also, all synchronization overheads are hidden from
the programmer. The only addition is that the programmer should include delegator classes
in his application code and call OTB operations through them.

OTB Data Structures. Calls from the application interface are of two types. The first type
is traditional memory reads/writes, which are directly handled by the OTB-STM context
(as described in the next block). The second type is OTB operations, which are handled
by a new block added to DEUCE runtime, called OTB-DS (or OTB data structures). The
design of an OTB data structure should satisfy the following three points:

- The semantics of the data structure should be preserved. For example, set operations
should follow the same logic as if they are executed serially. This is usually guaranteed
in optimistic boosting using a validation/commit procedure as shown in [48]. As a case
study, in Section |6.2.1] we show in detail how the semantics of linked-list-based set are
satisfied using such a validation/commit procedure.

- Communication between OTB-DS and OTB-STM algorithms. As shown in Figure [6.1],
OTB data structures communicate with STM algorithms in both directions. On one hand,
when an OTB operation is executed, it has to validate the previous memory accesses of the
transaction, which requires calling routines inside the STM context. On the other hand,
if a transaction executes memory reads and/or writes, it may need to validate the OTB
operations previously called in the transaction.

- The logic of the underlying STM algorithm, which affects the way of interaction between
OTB-DS and OTB-STM context. For example, as we will show in detail in Section [6.2]
OTB-Set interacts with NOrec [25] and TL2 [31] in different ways. In the case of NOrec,
which uses a global coarse-grained lock, acquiring semantic locks in OTB-DS may be useless
because all transactions are synchronized using the global lock. On the contrary, TL2 uses
a fine-grained locking mechanism, which requires OTB-DS to handle fine-grained semantic
locks as well. It is worth noting that although a general way of interaction between OTB-
DS and OTB-STM can be found, this generality may nullify some optimizations which are
specific to each STM algorithm (and each data structure). We focus now on the specific
optimizations that can be achieved separately on the two case-study STM algorithms
(NOrec and TL2), and we keep the design of a general interaction methodology that works
with all STM algorithms as a future work.
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To satisfy all of the previous points, while providing a common interface, OTB-DS imple-
ments an interface of small sub-routines. These subroutines allow flexible integration between
OTB operations and memory reads/writes.

- preCommit: which acquires any semantic locks before commit.
- onCommit: which commits writes saved in the semantic write-sets.
- postCommit: which releases semantic locks after commit.

- walidate-without-locks: which validates semantics of the data structure without checking
the semantic locks’ status.

- validate-with-locks: which validates both the semantic locks and the semantics of the data
structure.

Each OTB-STM context calls these subroutines inside its contexts in a different way, ac-
cording to the logic of the STM algorithm itself. If a developer designs a new OTB-STM
algorithm which needs a different way of interaction, he can extend this interface by adding
new subroutines. It is worth noting that an @FEzclude annotation is used for all OTB-DS
classes to inform DEUCE runtime not to instrument their methods.

OTB-STM Context. As we showed in Section [6.1.1, STM context is the context in which
each transaction will execute. OTB-STM context inherits the original DEUCE STM context
to support OTB integration. We use a different context for OTB to preserve the validity of
the applications which use the original DEUCE path (through block 7). OTB-STM context
adds the following to the original STM context:

- An array of attached OTB data structures, which are references to the OTB-DS instances
that have to be instrumented inside the transaction. Usually, an OTB data structure is
attached when its first operation is called inside the transaction.

- Semantic read-sets and write-sets of each attached OTB data structure. As the context is
the handler of the transaction, it has to include all thread local variables, like the semantic
read-sets and write-sets.

- Some abstract subroutines which are used to communicate with the OTB-DS layer. In our
case study described in Section [6.2], we only need two new subroutines: attachSet, which
informs the OTB-STM context to consider the set for any further instrumentation, and
onOperation Validate, which makes the appropriate validation (at both memory level and
semantic level) when an OTB operation is called.

To implement a new OTB-STM algorithm (which is usually a new version of an already
existing STM algorithm like NOrec and TL2, not a new STM algorithm from scratch),
developers define an OTB-STM context for this algorithm and do the following:
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- Modify the methods of the original STM algorithm to cope with the new OTB character-
istics. Basically, init, onReadAccess, commit, and rollback are modified.

- Implement the new subroutines (attachSet and onOperation Validate) according to the logic
of the STM algorithm.

Like OTB-DS, all OTB-STM contexts have to be annotated with @Ezclude annotations.

Transactional Data Structures. This block is only used to support a unified application
interface for both OTB-STM algorithms and traditional STM algorithms. If the programmer
uses a traditional (non-OTB) STM algorithm and calls an OTB-DS operation inside the
transaction, DEUCE runtime will use a traditional pure STM implementation of the data
structure to handle this operation, and it will not use optimistic boosting anymore.

6.2 Case Study: Linked List-Based Set

Following the framework design in Section we show a case study on how to integrate an
optimistically boosted version of a linked-list-based set with the modified DEUCE frame-
WOI‘kE|. This is done using the following two steps:

- Modifying OTB-Set implementation (described in Section to use OTB-DS interface
methods.

- Implementing OTB-STM algorithms which interact with the new OTB-Set. We use two
algorithms in this case study, NOrec and TL2. As we showed in Section [6.1, we will need
to implement a new OTB-STM context for both algorithmg?

6.2.1 OTB-Set using OTB-DS interface methods

OTB-Set is communicating with the context of the underlying OTB-STM algorithm using
the subroutines of the OTB-DS interface. OTB-Set implements these subroutines as follows:

Validation: Transactions validate that read-set entries are semantically valid. In addition,
to maintain isolation, a transaction has to ensure that all nodes in its semantic read-set are
not locked by another writing transaction during validation. As it is not always the case (in
some cases, semantic locks are not validated, as shown in the next section), it is important
to make two versions of validation:

1Skip-list-based OTB-Set is implemented in a similar way with few modifications.

ZNote that the original STM contexts of NOrec and TL2 can still be used in our framework (using block
7 in Figure , but they will use an STM-based implementation of the set rather than our optimized
OTB-Set.
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- walidate-without-locks: This method validates only the read-set and does not validate the
semantic locks.

- validate-with-locks: This method validates both the values of the read-set and the semantic
locks.

Commit: To be flexible when integrating with the STM contexts, commit consists of the
following subroutines:

preCommit: which acquires the necessary semantic locks on the write-sets. Like lazy
linked-list: any add operation only needs to lock pred, while remove operations lock both
pred and curr. This can be easily proven to guarantee consistency, as described in [54].

postCommit: which releases the acquired semantic locks after commit.

onAbort: which releases any acquired semantic locks not yet released when abort is called.

onCommit: which publishes writes on the shared linked-list.

6.2.2 Integration with NOrec

To integrate NOrec with OTB-Set, two main observations have to be taken into considera-
tion. First, using a single global lock to synchronize memory reads/writes can be exploited
to remove the overhead of the fine-grained semantic locks as well. Semantic validation has to
use the same global lock because in some cases the validation process includes both semantic
operations and memory-level reads. As a result, there is no need to use any semantic locks
given that the whole process is synchronized using the global lock. Second, both NOrec
and OTB-Set use some kind of value-based validation. There are no timestamps attached
with each memory block (like TL2 for example). This means that both NOrec and OTB-Set
require an incremental validation to guarantee opacity [42]. They both do the incremental
validation in a similar way, which makes the integration straightforward.

The implementation of OTB-NOrec context subroutines is as followﬂ:

wnit: In addition to clearing the memory-based read-set and write-set, each transaction
should clear the semantic read-sets and write-sets of all previously attached OTB-Sets, and
then it detaches all of these OTB-Sets to start a new empty transaction.

attachSet: This procedure is called in the beginning of each set operation (modifying
Algorithm . It simply checks if the set is previously attached, and adds it to the local
array of the attached sets if it is not yet attached.

3We skipped the implementation details of NOrec itself (and TL2 in the next section), and concentrate
only on the modifications we made on the context to support OTB.
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onOperation Validate: As both memory reads and semantic operations are synchronized
and validated in the same way (using the global lock and a value based validation), this
method executes the same procedure as onReadAccess, which loops until the global lock is
not acquired by any transaction, and then it calls the validate subroutine.

validate: This private method is called on both onReadAccess and onOperation Validate. 1t
simply validates the memory-based read-set as usual, and then validates the semantic read-
sets of all the attached OTB-Sets. This validation is done using the validate-without-locks
subroutine, which is described in Section [6.1.1], because there is no use of the semantic locks
in OTB-NOrec context. If validation fails in any step, an abort exception is thrown.

commit: There is no need to call the attached OTB-Sets’ preCommit and postCommit
subroutines during transaction commit. Again, this is because these subroutines deal with
semantic locks, which are useless here. The commit routine simply acquires the global lock,
validates read-sets (both memory and semantic read-sets) using the validate subroutine, and
then starts publishing the writes in the shared memory. After the transaction publishes the
memory-based write-set, it calls the onCommit subroutine in all of the attached OTB-Sets,
and then it releases the global lock.

rollback: Like preCommit and postCommit, there is no need to call OTB-Set’s onAbort
subroutine during the rollback.

6.2.3 Integration with TL2

TL2 [31], as opposed to NOrec, uses a fine-grained locking mechanism. Each memory block
has a different lock. Reads and writes are synchronized by comparing these locks with
a global version-clock. Also, unlike NOrec, validation after each read is not incremental.
There is no need to validate the whole read-set after each read. Only the lock version of the
currently read memory block is validated. The whole read-set is validated only at commit
time and after acquiring all locks on the write-set.

Thus, the integration with OTB-Set requires validation and acquisition of the semantic locks
in all steps. That is why we provide two versions of validation (with and without locks) in
the layer of OTB-DS. The implementation of OTB-TL2 context subroutines is as follows:

wnit: It is extended in the same way as OTB-NOrec.
attachSet: It is implemented in the same way as OTB-NOrec.

onOperation Validate: There are two differences between OTB-NOrec and OTB-TL2 in
the validation process. First, there is no need to validate the memory-based read-set when
an OTB-Set operation is called. This is basically because TL2 does not use an incremental
validation, and OTB-Set operations are independent from memory reads. Second, OTB-
Sets should use the wvalidate-with-locks subroutine instead of validate-without-locks, because
semantic locks are acquired during commit.
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onReadAccess: Like onOperationValidate, this subroutine has to call the validation-with-
locks subroutines of all of the attached sets in addition to the original memory-based vali-
dation.

commit: Unlike OTB-NOrec, semantic locks have to be considered for the attached OTB-
Sets. Thus, preCommit is called for of all the attached OTB-Sets right after acquiring the
memory-based locks, so as to acquire the semantic locks as well. If preCommit of any set fails,
an abort exception is thrown. During validation, OTB-TL2 context calls the validate-with-
locks subroutine of the attached sets, instead of validate-without-locks. Finally, postCommit
subroutines are called to release semantic locks.

rollback: Unlike OTB-NOrec, onAbort subroutines of the attached sets have to be called
to release any semantic locks that are not yet released.

6.3 Evaluation

We now evaluate the performance of the modified framework using a set micro-benchmark.
In each experiment, threads start execution with a warm up phase of 2 seconds, followed by
an execution of 5 seconds, during which the throughput is measured. Each experiment was
run five times and the arithmetic average is reported as the final result.

The experiments were conducted on a 48-core machine, which has four AMD Opteron (TM)
Processors, each with 12 cores running at 1400 MHz, 32 GB of memory, and 16KB L1 data
cache. The machine runs Ubuntu Linux 10.04 LTS 64-bit.

In each experiment, we compare the modified OTB-NOrec and OTB-TL2 algorithms (which
are internally calling OTB-Set operations) with the traditional NOrec and TL2 algorithms
(which internally call a pure STM version of the set).

We run two different benchmarks. The first one is the default set benchmark in DEUCE. In
this benchmark, each set operation is executed in a transaction. This benchmark evaluates
the gains from using OTB data structures instead of the pure STM versions. However, they
do not test transactions which call both OTB operations and memory reads/writes. We
developed another benchmark (which is a modified version of the previous one) to test such
cases. In this second benchmark, as shown in Algorithm 2] each transaction calls an OTB-Set
operation (add, remove, or contains), and increment some shared variables to calculate the
number of successful and unsuccessful operations. As a result, both OTB-Set operations and
increment statements are executed atomically. We justify the correctness of the transaction
execution by comparing the calculated variables with the (non-transactionally calculated)
results from DEUCE benchmark.
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6.3.1 Linked-List Micro-Benchmark

Figure [0.2 shows the results for a linked-list with size 512. Both OTB-NOrec and OTB-TL2
show a significant improvement over their original algorithms, up to an order of magnitude
of improvement. This is reasonable because pure STM-based linked-lists have a lot of false
conflicts, as we described earlier. Avoiding false conflicts in OTB-Set is the main reason
for this significant improvement. The gap is more clear in the single-thread case, as a
consequence of the significant decrease in the instrumented (and hence logged) reads and
writes. It is worth noting that in both versions (with and without OTB), TL2 scales better
than NOrec, because NOrec is a conservative algorithm which serializes commit phases using
a single lock.
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Figure 6.2: Throughput of linked-list-based set with 512 elements, for two different work-
loads.

6.3.2 Skip-List Micro-Benchmark

Results for skip-list are shown in Figure[6.3] Skip-lists do not usually have the same number
of false conflicts as linked-lists. This is because traversing a skip-list is logarithmic, and
the probability of modifying the higher levels in a skip-list is very small. That is why the
gap between OTB versions and the original STM versions is not as large as for linked-lists.
However, OTB versions still perform better in general. OTB-NOrec is better in all cases,
and it performs up to 5x better than NOrec for a small number of threads. OTB-TL2 is
better than TL2 for a small number of threads, and it is almost the same (or slightly worse)
for a high number of threads. Performance gain for a small number of threads is better
because false conflicts still have an effect on the performance. For higher numbers of threads
contention increases, which reduces the ratio of false conflicts compared to the real conflicts.
This reduction in false conflicts reduces the impact of boosting, which increases the influence
of the integration mechanism itself. That’s why OTB-TL2 is slightly worse. However, plots
in general show that the gain of saving false conflicts dominates this overhead in most cases.
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Figure 6.3: Throughput of skip-list-based set with 4K elements, for two different workloads.

6.3.3 Integration Test Case

In this benchmark (Figure [6.4), we have six shared variables in addition to the shared
OTB-Set (number of successful/unsuccessful adds, removes and contains). Each transac-
tion executes a set operation (50% reads) and then it increments one of these six variables
according to the type of the operation and its return value. As all transactions are now ex-
ecuting writes on few memory locations, contention increases and performance degrades on
all algorithms. However, OTB-NOrec and OTB-TL2 still give better performance than their
corresponding algorithms. The calculated numbers match the summaries of DEUCE, which
justifies the correctness of the transactions. Also, NOrec versions relatively perform like the
previous case (without increment statements), compared to TL2 versions. This is because
NOrec (like all coarse-grained algorithms) works well when transactions are conflicting by

nature.
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Figure 6.4: Throughput of Algorithm [2f (a test case for integrating OTB-Set operations with
memory reads/writes). Set operations are 50% add/remove and 50% contains.
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6.4 Summary

In this chapter we presented an extension of the DEUCE framework to support integration
with transactional data structures that are implemented using the idea of Optimistic Trans-
actional Boosting. As a case study, we implemented OTB-Set, an optimistically boosted
linked-list-based set, and showed how it can be integrated in the modified framework. We
then show how to adapt two different STM algorithms (NOrec and TL2) to support this
integration. Performance of micro-benchmarks using the modified framework is improved by
up to 10x over the original framework.



Chapter 7

Integrating OTB with HTM

The main issue of HTM processors is their best-effort nature, which means that transactions
are not guaranteed to progress in HT'M even in absence of conflicts, thus an efficient software
fall-back path is still a mandatory requirement. Other issues are raised because of relying
on the cache as a repository to keep the memory locations read and written by an ongoing
transaction, such as the limited size of the cache, the false conflicts due to mapping differ-
ent memory locations to the same cache line, and the possibility of aborting a transaction
(especially if it is long) due to external interferences such as context switches or interrupts.
The main side-effect of those issues is having transactions that are prone to frequent aborts.

The probability of having the aforementioned issues clearly increases when transactions
include data structure operations, as we showed in Chapter However, exploiting HTM
in OTB is still feasible. One approach that has been already investigated in OTB-like
approaches [9, [I01] (which we named OSS in Chapter [3)) is to execute only the commit
phase as an HTM transaction. This way, both the footprint of the HTM transactions and
the probability of having false conflicts are minimized. In this chapter, we provide the
opposite: a methodology and a practical framework to inject efficient semantic operations
(e.g., operations on a data structure with a certain semantics) into the commonly used generic
HTM algorithms. (in this chapter, we use to term HTM also for hybrid transactions, i.e.
the combination of fast-path and slow-path).

As we mentioned before, all HT'M algorithms have two paths of execution: a fast HTM
path, and a slow software fall-back path. The fall-back path is clearly slow because it
either uses a global lock that serializes all the ongoing transactions, or uses a relatively slow
STM algorithm such as NOrec [26], 88]. The fast-path, on the other hand, is not always as
fast as it should be because it may repeatedly fail due to the HT'M limitations mentioned
before. Our methodology boosts the capabilities of the HTM algorithms by i) injecting the
efficient semantic operations into the slow-path, and i) using an adaptation mechanism to
decide for each transaction which is the most effective path to start with. This approach
makes significant performance improvements when data structure operations are dominating

76
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because, by relying on the first point, the slow-path will perform faster due to exploiting
the efficient semantic versions of those operations, and, by relying on the second point, the
fast-path can be bypassed when it is slower than the slow-path (e.g., when it repeatedly
fails).

Clearly, semantic operations cannot be injected into the fast-path because the HTM APIs
provide no control on that path (for example, Intel’s TSX extensions simply speculate every
memory access between the start and the end of the transaction). However, we claim that
even if it is possible to inject semantics in the HTM path, it may not be the best alternative:
if HTM is likely to succeed, then the best alternative would be to keep it as is; any trial
to include semantics in this path will have a negative effect. On the other hand, if HTM
is prone to failure, the same goal of modifying the fast-path is achieved by bypassing the
fast-path to the enhanced slow-path in our proposal.

To inject semantic operations into the slow-path, we add two advanced versions of the con-
ventional transactional read-set and write-set (we name them abstract read-set and abstract
write-set). More in detail, any read-set entry can be seen as a generic entry equipped with
one method, #sValid, which is used to ensure that the read-set entry is still consistent with
the other transactional reads and writes. Similarly, any write-set entry can be seen as a
generic entry equipped with one method, called writeback, which is used to publish the entry
into the shared memory at commit. We show that having those advanced read-sets and
write-sets is enough to allow semantics in the slow-path of the common HTM algorithms.

From the practical perspective, we deployed our methodology by extending RSTM, a C++
STM framework [I]. We applied our proposal to a set of recent HTM algorithm [26], 88| [74]
and we added them to RSTM (along with the original memory-based version of each). The
design of our extended framework achieves three goals: 1) keeping the simple programming
interface of TM frameworks while supporting both HTM and STM; 2) allowing programmers
to integrate transactional data structure operations with memory reads/writes in the same
transaction; and 3) allowing developers to plug-in their own semantic operations through a
simple API offered by the framework. The last two points enrich RSTM framework with the
same semantics we already provided in DEUCE framework (in Chapter @

In conclusion, our framework allows HTM algorithms to work efficiently in different execution
scenarios:

- In those scenarios favorable for HTM transactions, it works as efficient as the original
HTM algorithm because its fast-path is not affected by the integration, which means that
it maximizes the benefit of the underlying HTM support.

- In cases where HTM transactions likely fail, the adaptation phase allows an efficient short-
cut to the slow-path.

- In cases where false conflicts are dominating (which inherently result in repeated failures in
the fast-path as well), the slow-path exploits the integration with the semantic operations,
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which results in much better performance.

- Also, if the underlying hardware does not support HTM, our framework can be used in a
pure software mode by running all transactions in the slow-path from the beginning.

7.1 Can I Integrate My Transactional Data Structures?

In this section we show the requirements needed for a data structure to be integrated with our
framework. The framework we propose can integrate data structures with any semantics, as
long as their operations can be divided into the traversal and update phase. This separation
is not enforced by the framework itself, whereas it is required that the data structure follows
such a scheme. All the methodologies mentioned in Section (including OTB) can be
independently proven to be correct and compliant with that scheme. To move forward and
allow other data structures to be integrated into our framework, we summarize the key points
that the new implementations should satisfy in the following lemmas. In Chapter L0 we
give more formal details about those points.

Lemma 1. The traversal phase is always read-only.

This phase is a pre-processing phase that calculates the return value of the operation and
saves it to be validated later. All the actual modifications on the data structure should be
done in the update phase.

Lemma 2. Validation is always sound and pessimistic.

No false positives are allowed. A validation may fail for a consistent scenario but it cannot
succeed for inconsistent ones. The parameters passed to the validation procedure should be
enough to detect any invalidation due to any concurrent operation. That is important to
keep the data structure always consistent (i.e., after each operation and during commit).

Lemma 3. All internal dependencies are solved during commit.

If two dependent operations are executed in the same transaction (e.g., inserting and re-
moving the same key), the result of the first operation should be propagated to the second
one.

Given such a correct data structure, the following rules should also be satisfied by the design
of the semantic operation to allow the integration with our framework.

- Data structures are accessed only using their APIs. The internal nodes of each data
structure should never be accessed as a traditional memory locations.
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- Each data structure operation should be cloned with a classical sequential version. That
is because, if the transaction is in the fast-path mode, the operation should be executed
inside an HTM transaction.

- The HTM (sequential) version should run safely with any concurrent (non-instrumented)
traversal phase of a semantic operation on the same data structure (running in the slow-
path). This rule requires moving any memory reclamation outside the HTM transaction.
The problem of memory reclamation is orthogonal to our work and has been addressed
before in different ways (e.g., [80, []).

- The output of the traversal phase is saved in the local abstract read /write sets (our frame-
work supports any generic form of the sets’ entries).

- All the logic used to validate and commit the operation is encapsulated inside two meth-
ods, named isValid and writeback. This abstraction allows the framework to validate the
traversal phase at any time and to execute the update phase (which is encapsulated in the
writeback method) during the commit of the enclosing transaction.

Theorem 1. Data structures that respect those rules are decomposable.

Proof. As each data structure is accessed only using its APIs, the validation of the traversal
phase and the commit of the update phase of one data structure’s operation is not affected
by (and does not affect) the validation and the commit of any operation belongs to another
data structure. O

7.2 HTM Algorithms

We now move to the semantically-enabled implementations of the known HTM algorithms.
In the following three subsections, we discuss three common hybrid TM algorithms with
different fall-back paths (HTM-GL, HyNOrec, and NOrecRH), and we show how it is possible
to inject semantic operations into the fall-back path as long as they do not contradict the
rules illustrated in Section [7.1 Then, in Section we show how our methodology can
be applied to other HT'M algorithms.

7.2.1 Global Locking (HTM-GL)

The default fall-back mechanism for an HTM transaction is to protect the whole slow-path
with a global loc!] The only requirement for safely executing both fast-path and slow-path

n fact, TSX extensions allow this straightforward path using another mode (other than RTM) called
Hardware Lock Elision (HLE). However, we stick with RTM to be able to modify the implementation of the
fall-back path.
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concurrently is to check the global lock at the very beginning of the fast-path; otherwise,
pathologies like those illustrated in [32] can occur.

Algorithm (17| shows how we inject semantic operations into the slow-path (we call the new
algorithm S-GL). First, the global lock is not acquired at the beginning of the fall-back
path. Instead, it is acquired before the first memory-based read or write (or at commit if
there is not any). If a semantic operation appears before the first memory-based read/write,
the transaction executes only the traversal phase of the operation and saves the results in
the corresponding abstract read-set (and the abstract write-set, if the operation is writing),
then the whole abstract read-set is validated (each entry is validated using its own isValid
method) to ensure that the semantic operations executed so far are all still consistent.

This way, we allow the execution of as many traversal phases as possible, performed concur-
rently with other transactions’ fast-paths and with other traversal phases, before acquiring
the global lock. Once the slow-path reaches either the first memory read/write or the com-
mit phase, it acquires the global lock, then validates any existing semantic operation in the
abstract read-set (using the per-entry isValid method), and completes the update phase of
any semantic operation in the abstract write-set (using the per-entry writeback method).

From this point on, the execution will be similar to the original implementation. Clearly, any
semantic operation that appears after the first memory-based read/write will be executed
in the traditional sequential mode because there is no need to add more overhead after the
global lock acquisition.

S-GL pays off only if the semantic operations appear early in the transaction. However, we
discovered that this situation is a common trend in several benchmarks and real applications
(e.g., some transactions in Genome execute only semantic operations without any memory
read/write). Also, in the worst case when the transaction starts by a memory operation,
S-GL performs as the original HT'M-GL algorithm. This issue will be solved by the following
algorithms in Section [7.2.2]

Theorem 2. HTM transactions that use S-GL as a fall-back path are consistent.

Proof. The correctness of our approach is easy to show. In the slow-path, as long as the
operations respect the rules mentioned in Section [7.1] all the traversal phases executed before
the first memory access are consistent because each operation is followed by a validation of
the whole abstract read-set. Once the global lock is acquired, it is guaranteed that no other
concurrent transaction is currently in its fast-path or in the commit phase of its slow-path. At
this point, the abstract read-set is validated again and the abstract write-set is published,
then the execution is entirely protected by the global lock. Although deferring the lock
acquisition has been known to have side effects on the correctness of the live transactions [32],
those side effects cannot happen in our case, because we prevent any memory access before
the lock acquisition and we allow only the traversal phase of the semantic operations to
be executed. Those traversal phases are consistent by relying on the correctness of the
underlying data structure. O]
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Algorithm 17 S-GL Algorithm.

1: procedure FAST-PATH-POST-BEGIN
2: if isLocked(lock) then
3: TM-ABORT
4: end procedure
5:
6: procedure SLOW-PATH BEGIN
T // Do not acquire the lock here.
8: end procedure
9:
10: procedure SLOW-PATH ONFIRSTMEMORY ACCESS
11: commit-pending-semantics()
12: end procedure
13:
14: procedure SLow-PaTH COMMIT
15: commit-pending-semantics()
16: release(lock)
17: end procedure
18:
19: procedure SEMANTIC-OPERATION
20: if Fast-Path OR. afterFirstMemoryAccess then
21: Execute the sequential version.
22: else
23: Execute ONLY the traversal phase.
24: Save the result in the abstract read(write)-set.
25: Validate the abstract read-set.
26: end procedure
27:
28: procedure COMMIT-PENDING-SEMANTICS
29: acquire(lock)
30: if isValid(abstract-read-set) = false then
31: release(lock)
32: TM-ABORT
33: writeback(abstract-write-set)
34: end procedure
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7.2.2 Hybrid NOrec (HyNOrec)

Two hybrid TM algorithms [26], B8] propose NOrec as the fall-back software path of HTM
transactions. The main reason of selecting NOrec is that it has minimal meta-data (only
one global lock acquired at commit time), which means that HTM transactions need only
to check (and update) this global lock in order to avoid any conflict with STM transactions.
In those proposals, to safely fall back to NOrec, two modifications are made on the fast-
path: the global lock is checked at the beginning of the transaction (like HTM-GL), and the
global lock’s version is incremented at the end of the transaction. The latter requirement is
important because the fall-back path now is not completely protected by the global lock (this
lock is acquired only at commit) and the slow-path should be notified somehow about the
newly-committed fast-paths. Although this increment generates conflicts among fast-paths,
its effect is minimal because it is done at the very end of the HT'M transaction.

In this section we enrich HyNOrec with semantic operations, thus producing a new algorithm
(named S-HyNOrec), as shown in Algorithm [18] Unlike S-GL, S-HyNOrec injects semantic
operations into the slow-path along with memory-based reads/writes without the need of
acquiring the global lock before the commit phase. If a read or write operation is executed,
it is handled in the same way as the original HyNOrec algorithm, and saved in the original
read-set or write-set, respectively. If a semantic operation is called, only its traversal part
is executed and the needed information is saved in the semantic read-set or write-set. The
validation and commit procedures in S-HyNOrec are the same as HyNOrec, except that
they scan both the semantic and the memory-based read-set and write-sets (the semantic
read-set and write-set are accessed using the isValid and writeback methods). To guarantee
opacity [42], both the memory-based read-set and the abstract read-set are validated after
each semantic operation, after each new memory read, and at commit phase.

To prove the correctness of S-HyNOrec, we first note that in the slow-path we may have
both memory accesses and semantic operations coexisting in the read-set and the write-set.
However, the consistency of each type is independent from the other because, as the rules in
Section state, the data structures are accessed only using their APIs. Corollary [I] shows
that.

Corollary 1. The consistency of a data structure as defined in Section[7.1] cannot be affected
by (or affect) the other non-semantic memory accesses performed in the same transaction or
in another concurrent transaction.

Theorem 3. HTM transactions that use S-HyNOrec as a fall-back path are consistent.

Proof. The slow-path of S-HyNOrec follows the same scheme as the one of HyNOrec. The
main difference is that S-HyNOrec has two different types of read-set and write-set. However,
according to Corollary[I] those two types of sets are completely independent. As long as both
types are considered during the transaction validation and commit, consistency is preserved.
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Algorithm 18 S-HyNOrec Algorithm.
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procedure FAST-PATH-POST-BEGIN
if isLocked(lock) then
TM-ABORT
end procedure

procedure FAST-PATH-PRE-COMMIT
lock += 2 // The same as HyNOrec
end procedure

procedure SLOW-PATH VALIDATE
// Do not acquire the lock here.

. end procedure

. procedure SLOW-PATH ONFIRSTMEMORYACCESS

if isValid(memory-read-set) = false then
TM-ABORT

if isValid(abstract-read-set) = false then
TM-ABORT

. end procedure

: procedure SLOW-PAaTH COMMIT

writeback (memory-write-set)
writeback (abstract-write-set)

. end procedure

. procedure SEMANTIC-OPERATION

if Fast-Path then

Execute the sequential version.
else

Execute ONLY the traversal phase.

Save the result in the abstract read(write)-set.
Validate both the memory and the abstract read-sets.

. end procedure
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Live transactions are kept consistent because their read-sets are validated after each semantic
operation, as well as after each non-semantic memory read. O

7.2.3 Reduced Hardware NOrec (NOrecRH)

Both HTM-GL and HyNOrec expose two main issues. First, the global lock has to be checked
(and accordingly instrumented) at the beginning of the HTM transaction, which introduces
several false conflicts. Second, the fall-back path uses either mutual exclusion or a pure STM
algorithm, which is notably slower than the faster HTM path.

Reduced Hardware NOrec (NOrecRH) [74] has been proposed to solve those two issues. It
uses an intermediate path between the HTM transaction and the pure STM execution. In
this intermediate path, the body of the transaction is executed in a similar way as NOrec,
but during commit an HTM transaction is used to apply the entries of the write-set to the
shared memory instead of acquiring the global lock. The intermediate path is considered the
slow-path, and the final (pure STM) path is called slow-slow-path.

In more details, the commit phase of the slow-path starts by reading the global lock in a local
snapshot, re-validating the read-set, and then using a short HTM transaction as explained
above. Inside this small HTM transaction, the version of the lock is re-checked to make
sure that it is not changed during the writing process. This way, both the fast-path and
the slow-path read and increment the global lock only at the end of the HT'M transaction
(because all conflicts between them will be solved by the HTM hardware conflict detection
itself). Doing so decreases the window of false invalidation due to the conflict on the global
lock. Additionally, transactions are now more likely to succeed in the slow-path, even if the
main transaction body contains external causes of HTM aborts (e.g., system calls and page
faults) because the small HTM transaction executed during the slow-path’s commit phase
is only responsible for publishing the write-set.

The slow-slow-path is synchronized with the other paths by acquiring another lock, which
is instrumented at the beginning of the HTM transactions running in the fast-path and
the slow-path. Although the overhead of the two former HyNOrec proposals seems the
same, the likelihood of falling back to the slow-slow-path in NOrecRH is much lower because
transactions try (and likely succeed) in the slow-path first.

Semantic operations are injected into NOrecRH as we explained in Section[7.2.2)for HyNOrec.
The only difference is that semantic operations are now injected into both the slow-path
and the slow-slow-path. In the slow-path, the execution of the update phase is atomically
executed (along with any other memory write) using the enclosing short HTM transaction,
which guarantees consistency against the fast-path. In the slow-slow-path, the (second)
global lock protects the execution of the update phase and avoids conflicting with any other
semantic operation executed in any of the three paths.

One distinguishing point between the original NOrecRH and S-NOrecRH is in the decision of
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when to fall back to the slow-slow-path. The original NOrecRH assumes that the small HTM
transaction (executed at the end of the slow-path) cannot abort for any external reason, like a
system call invocation. That is because the small transaction is in charge of just publishing
the values stored in the transaction’s write-set into the shared memory. For this reason,
they only fall back to the slow-slow-path if the failure is for capacity. This assumption
is acceptable in absence of the semantic operations, because failures due to conflicts can
be eventually solved, and failures due to external sources cannot happen. However, this
assumption does not hold anymore with S-NOrecRH, because semantic operations are now
integrated and the writeback method depends on the semantic of each data structure. As
an example, if the write-set entry represents an insertion into a linked-list, it will need
to allocate memory for the new node, which may result in repeated page faults (resulting
in a failure with _zabort_other flag). For that reason, we experienced infinite loops in our
experiments when we adopted the same assumption as NOrecRH. To overcome this problem,
S-NOrecRH falls back to the slow-slow-path if the HTM failure is, for any reason, different
from _xabort_conflict.

Theorem 4. HTM transactions that use S-NOrecRH as a fall-back path are consistent.

Proof. Leveraging the Corollary [1], the proof follows the one of S-HyNOrec. ]

7.2.4 Other Hybrid Algorithms

Our methodology is not limited to the above algorithms. We can infer that from Theorem
and Corollary Although both semantic and memory-based operations are allowed in
the same transaction, they are physically isolated through the read-set and the write-set,
and they are validated and committed independently from each other. That is why injecting
semantic operations into the slow-path, which is mandatory in any hybrid TM algorithm, is
always possible. We list below some other hybrid TM algorithms that can also be extended
according to our methodology:

- Algorithms with lazy subscription. A non-opaque [42] version of HTM-GL has been pro-
posed in [I8]. In this versions, the global lock is read at the end of the fast-path instead of
its beginning (this technique is also called lazy subscription). Committed transactions are
not affected by this modification; however, live transactions (that will eventually abort)
may see an inconsistent snapshot of the memory because the changes by the concurrent
slow-paths will be detected only at the end of the transaction [32]. The same idea of lazy
subscription has been proposed as an enhancement of one of HyNOrec’s two versions [8§].
Our methodology can be applied to those versions because the slow-path is not changed.

- TL2-RH. Before NOrecRH, TL2 [31] has been proposed as a fall-back STM algorithm in
the slow-path and the slow-slow-path [74]. However, TL2 is a fine-grained algorithm which
has more meta-data than NOrec. That is why the performance of the fast-path (which has
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to instrument those meta-data) is significantly affected and the algorithm itself becomes
much more complex. Although practically NOrecRH dominated TL2-RH in literature, our
methodology is still compatible with the latter.

- Invyswell: The main idea of Invyswell [I7] is to fall back to InvalSTM [40] instead of
NOrec. In InvalSTM, the committing transaction uses bloom filters to detect any conflict
with the live transactions and invalidate them accordingly. Applying our methodology
on Invyswell is not straightforward like the others because semantic operations cannot
be easily compacted into bloom filters. One way to solve this issue is to handle the
semantic operations in a similar way to S-HyNOrec, and use the bloom filters (and the
whole Invyswell mechanism) to invalidate the memory-based parts only.

7.3 The Framework

In this section we integrate the previously discussed semantically enhanced hybrid TM al-
gorithms (see Section into the RSTM framework. Then we show how these algorithms
can be further enhanced by an adaptation mechanism that selects at runtime the best path

to start with (see Section [7.4).

The design of our framework should maintain the simple API of TM and allow the injection
of the efficient semantic operations. To achieve both goals, we extend RSTM in three steps,
as shown in Figure (gray blocks are the added /modified blocks). First, we add both the
memory-based and the semantic-based versions of three Hybrid TM algorithms (HTM-GL,
HyNOrec, and NOrecRH). Second, we add an abstract method, called Semantic-Operation,
to the runtime layer of the framework, which enables the integration of any semantic opera-
tion with our framework as long as it follows the guidelines presented in Section[7.1] Finally,
in the application interface layer, we modify the basic API constructs, like TM-BEGIN, TM~END,
TM-READ, and TM-WRITE to support both HTM and STM transactions, and we add a new
API method, called TM-OPERATION, which allows the programmer to call any operation that
extends Semantic-Operation inside a transaction. This abstraction isolates any low-level
details, including the integration with the semantic operations and the exploitation of the
HTM constructs, from the programmer. It is important to mention that any software de-
signed for running in STM can still run in our modified RSTM framework without any
modification and without suffering from any additional overhead.

Unified API

As shown in Figure one of our goals is to provide a unified API to interact with the
framework. Programmers should be isolated from all framework implementation decisions

2Unlike DEUCE, RSTM allows the programmer to identify which reads and writes in the transactional
should be transactional (using the TM-READ and TM-WRITE primitives).
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Basic Constructs
(TM-BEGIN, TM-END, ...) TM-OPERATION
1
i 1Y T Ratime
NOrec | | HTM-GL S-GL \J

emantic-Operation{

TL2 | | HyNOrec| s-HyNOrec

| NOrecRH | |S-N0recRH

Figure 7.1: Extension of the RSTM framework.

such as: how to integrate data structures; checking the compatibility with HTM; and deciding
in which path transactions should start or retry. To achieve that, our framework adds only
one new API (called TM-OPERATION). All the other basic transactional APIs like TM-BEGIN,
TM-END, TM-READ, and TM-WRITE are unchanged, whereas their implementation is slightly
modified to implicitly decide in which path a transaction should execute without involving
the programmer in this decision. For all the hybrid algorithms, transactions try five times
in each path before falling back to the slower path. These modifications are reported in

Algorithm

For TM-BEGIN, if the used TM algorithm is a hybrid one, then the transaction starts first in
the fast-path. Otherwise it starts directly with the slow-path. Doing so allows the framework
to use the classical STM algorithms (e.g., NOrec and TL2) as usual. Additionally, if the
underlying hardware has no HTM support, the framework automatically switches from the
hybrid algorithm to the pure STM versions of it (the default is NOrec). The other basic
constructs (TM-READ, TM-WRITE, and TM-END) check if the transaction is in the fast-path or
in another path and call the appropriate handling method accordingly.

The new TM-0PERATION API calls the methods that extend the internal Semantic-Operation
interface, which is handled in each hybrid TM algorithm as mentioned in Section This
way, the programmer uses the same interfaces provided by RSTM, without the need to modify
the previous benchmarks, and with the additional capability of calling any TM-OPERATION
inside the transaction.
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Algorithm 19 API Interfaces

10:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23:

24
25:
26:
27:
28:
29:
30:
31:
32:
33:

34:

procedure TM-BEGIN
if No HTM Support OR STM Algorithm then
tx.path = SLOW-PATH
else
tx.path = FAST-PATH

// According to tz.path, use htm-begin or stm-begin
if tx.path = FAST-PATH then
tries = 5
while 1 do
status = _zbegin
if status = _xbegin_succeeded then
// Start HTM. Post-Begin differs according to the HTM algorithm
Fast-Path-Post-Begin
break
tries - -
if tries <= 0 then
tx.path = SLOW-PATH
break
// Fall-back slow-path
if tx.path = SLOW-PATH then
stm-begin()
end procedure

// All other constructs like TM-READ, TM-WRITE are the same
procedure TM-END
if tx.path = FAST-PATH then
// Finish HTM according to the HTM algorithm used
Fast-Path-Pre-Commit
_rend
else
// If NOrecRH or S-NOrecRH, they will implicitly decide if
// stm-end will commit in slow-path or slow-slow-path
stm-end()

end procedure
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7.4 Adapting the Starting Path of the Hybrid Algo-
rithms

Due to the limited API given by Intel’s TSX extensions, the fast-path of any hybrid TM
algorithm, which is completely executed in HTM, cannot exploit the semantic operations to
reduce the false conflicts and the transaction’s footprint. This limitation means that if the
long traversals of the data structures represent the dominating overhead of the workload,
the hybrid algorithms cannot avoid the overhead of the fast-path (that will likely fail).

To address this issue, we provide an adapted version of each of the three hybrid TM algo-
rithms. In these versions, we use a simple heuristic to decide whether it is better to start
with the fast-path or not. The metric we used in our technique is the overall percentage
of failures in the fast-path for each thread. If the number of failures in the fast-path (after
consuming the 5 trials) is larger than the number of successes, we consider that as an indica-
tion that the workload does not represent the best candidate for HTM transactions (for any
of the aforementioned reasons: false conflicts; capacity limitations; and external sources).
When such a situation occurs, we decide to execute the next n transactions directly in the
slow-path, where n is the difference between the number of successful and failed transactions
in the fast-path. Then, we resume the execution in the fast-path and re-calculate the metric.
This simple mechanism is similar to the hill climbing mechanism with only two states (i.e.,
executing in the fast-path and executing in the slow-path).

Algorithm 20 Modified TM-BEGIN and TM-END for adapting the starting path.

1: procedure TM-BEGIN
2: if No HTM Support OR STM Algorithm then
3: tx.path = SLOW-PATH
4: else if tx.slow_path_trials > 0 then
5: tx.path = SLOW-PATH
6: else
7 te.path = FAST-PATH
8:
9: // Here is the point when a trial in the fast-path fails
10: if tries <= 0 then
11: tx.path = SLOW-PATH
12: tzx. fail_count++
13: tx.slow_path_trials = tx.fail _count — tx.success_count
14: break
15:
16: end procedure
17: procedure TM-END
18: if tz.path = FAST-PATH then
19:
20: _zend // Successful fast-path
21: tx.success_count+-+
22: tx.slow_path_trials = tx. fail_count — tx.success_count
23:

24: end procedure

Algorithm (which extends Algorithm [19) shows how we modified the TM-BEGIN and
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TM-END APIs to implement this adaptive mechanism. After the transaction succeeds (fails)
in the fast-path, it increases the local variables tz.success_count (tx.fail_count). Then, it
updates another local variable, tx.slow_path_trials, which is the difference between those
two variables. At the beginning of TM-BEGIN, if tz.slow_path_trials is greater than 0,
then the transaction starts in the slow-path instead of the fast-path, and then it decreases
tx.slow_path_trials. Thus, after each fast-path trial, n transactions will execute in the slow-
path (if n is positive).

In the normal cases, in which the fast-path likely succeeds, n will remain negative during
the whole execution, and will not affect the performance. Furthermore, all those variables
are local to each transaction, so that they cannot produce any new conflict; thus they have
a minimal effect on the execution.

In NOrecRH, we can also apply the same adaptation from the slow-path to the slow-slow-
path. However, the likelihood of falling back to the slow-slow-path is very small due to the
reasons we mentioned in Section [7.2.3] In fact, this path is added for safety issues rather
than to enhance the performance. That is why we decided not to apply the adaptation to
that phase.

Although we propose this adaptation phase mainly to enhance the semantic operations called
within transactions, the same enhancement will be achieved if the transactions are expected
to repeatedly fail for any other reason.

7.5 Evaluation

We developed our framework in C++ and integrated it with RSTM [1]. In this evaluation
we compare the performance of transactions that invoke semantic operations (on OTB-
Set detailed in Section using S-GL and S-NOrecRH against transactions that use the
traditional TM-based implementations of the linked-list and the skip-list. Our selection
of the competitors includes: the default HTM-GL, as the memory based version of S-GL;
NOrecRH, the memory based version of S-NOrecRH; and NOrec[25], a pure STM competitor.
We also show the results of two versions of each semantic-based algorithm, with and without
the adaptation process (named S-GL/S-RH and AS-GL/AS-RH, respectively). We ran each
experiment 5 times and plotted the average of their results.

In all experiments, we use an Intel Haswell chip with 4 cores and 8 hardware threads (using
hyper-threading). We first test the integration of the linked-list in Section and then we
show the performance for the skip-list in Section [7.5.2] Finally in Section [7.5.3] in order to
assess the performance of our framework on a realistic workload, we show the performance
using Genome, one of the applications belonging to the STAMP [8I] benchmark. We se-
lected Genome because it also executes transactions including memory and data structure
operations.



Ahmed Hassan Chapter 7. Integrating OTB with HTM 91

7.5.1 Linked-List

In these experiments, we use a benchmark that executes five linked-list operations in each
transaction. Additionally, if the operation is a successful (add or remove) operation, a shared
counter is incremented inside the transaction to calculate (transactionally) the total number
of the successful operations. This way, the workload contains both memory accesses and
semantic accesses in the same transaction. The results with different sizes of the linked-list
and different percentages of read operations are plotted in Figure [7.2] The object accessed
by the operations are selected in a way such that the size of the linked-list is almost constant
(i.e., no unbalancing).
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Figure 7.2: Throughput of both the semantic-based and the memory-based TM algorithms
in a linked-list benchmark with 5 operations/transaction (higher is better).

Figure [7.2(a)| shows the results when 20% of the operations are contains operations, and
the size of the linked-list is 256. The remaining 80% operations are not all write operations
because some of them are expected to be unsuccessful add or remove operations. In this
workload, the unmonitored traversal of semantic-based algorithms significantly reduces the
signature of the transactions (i.e., the size of their read-set and write-set) in the slow-path,
and in the slow-slow-path for S-NOrecRH. For this reason, the gap between our algorithms
and the others increases, as they suffer from a higher probability of conflict due to the
very long read and write signature. The maximum speedup observed between our semantic
algorithms and the competitors is more than 3x.

In Figure|7.2(b)|, we repeated the same experiment after increasing the size of the linked-list
up to 1024 elements. Here, because of the higher footprint of the transactions, the probability
of failing in the fast-path of the HT'M algorithms increases, along with the probability of
having false conflicts due to the longer size of the list. As a result, the benefit of adopting
our algorithm becomes more evident. Recall that if a contain operation accesses a node
at the end of the linked-list, any concurrent insertions involving any of the previous nodes
will raise a false conflict. Starting from 2 threads, our algorithms perform better than all
competitors, and each algorithm achieves up to 4 x better performance than its corresponding
memory-based competitor. In this experiment, global locking algorithms (HTM-GL and S-
GL) generally perform better than the corresponding NOrecRH algorithms (NOrecRH and
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S-NOrecRH) for 4 and 8 threads because the contention increases and it becomes wise to
serialize the slow-paths.

Figure represents an important case that we made on purpose to show the performance
of our framework under an adverse workload (i.e., without any false conflict). We did that
by converting all operations to be contains operations (read-only scenario). It is important
to note that, despite the absence of false conflicts on the linked-list, transactions in the
NOrecRH approaches can still fail in HTM because they all have to increment the global
lock at the end of the fast-path. Also, as specified by Intel’s architects, HTM transactions
can fail for any other external reason, like interrupts or OS scheduling. Anyway, in this
case the probability of failing in the fast-path is lower than the case in Figure , and
that is the reason why all algorithms scale better. For the cases in which the fast-path
fails, our semantic algorithms perform better than the memory-based algorithms because
they traverse the list (in the slow-path) without instrumentation. In this experiment, the
adaptation enhancement does not have the same impact as in the other (writing) cases,
because here conflicts are rare and the probability of failing while executing the fast-path
is relatively small. Accordingly, HTM-GL is the worst because if a transaction fails for any
reason, it suffers from a fruitless serialization because all operations are commutable (i.e.,
all contains).

One additional comment can be inferred from the analysis of Figure [7.2l The adaptation
process always pays off. We did not discover any scenario where it affects the performance
negatively. That is mainly because the adaptation does not impact the case in which transac-
tions succeed in HTM, and, at the same time, it makes an effective shortcut to the slow-path
if the fast-path likely fails. Also computing the heuristic has minimal overhead.

7.5.2 Skip-List

In these experiments, we assess the performance of our framework for the skip-list benchmark.
As before, the size of the skip-list is kept stable.
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Figure 7.3: Throughput of both the semantic-based and the memory-based TM algorithms
in a skip-list benchmark with 64K nodes and 5 operations/transaction (higher is better).
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Figure shows the results when 20% of the operations are contains operations and the
size of the skip-list is 64K. Unlike the linked-list case, here TM-based algorithms scale better
because the skip-list has a lower footprint and lower conflict probability (as it traverses the
set in a logarithmic time using the higher levels of the skip-list). However, the semantic
algorithms remain better because they still reduce the false conflicts. Unlike the linked-list,
global locking algorithms generally perform worse than the corresponding NOrecRH algo-
rithms for 4 and 8 threads because the contention in the skip-lists is lower. The adaptation
process still pays off and enhances the performance of S-NOrecRH.

Figure 7.3@ :) shows the case of the read-only workload. The trends are similar as those in
Figure 7.2. of the linked-list. However, here the gap between NOrecRH and its semantic
versions is smaller.

7.5.3 Genome

Time (sec)

1 2 3 4 5 6 7 8
Number of threads

Figure 7.4: Execution time in genome benchmark (lower is better).

In these experiments, we assess the performance of our framework on Genome, one appli-
cation of the STAMP benchmark that internally leverages a hash-table of linked-lists. The
latter has the same interfaces as OTB-Set (presented in Section . Figure plots the
results. In Genome, some transactions call N insertions into the linked-lists, which may
consist of hundreds of elements after some processing time. That is why the semantic-based
algorithms always perform better than the memory-based algorithms. The only exception is
for 8 threads, in which NOrec performs better than the non-adapted version of the semantic-
based algorithms. Although negative, it is reasonable because the contention is high and the
HTM fast-path repeatedly fails. However, the adapted version of the proposed algorithms
outperforms NOrec as it promptly detects that it is better to start immediately from the
slow-path.

7.6 Summary

In this chapter we introduced a methodology to include semantic operations alongside mem-
ory accesses within the same HTM transaction. We achieved that by injecting the semantic
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operations into the fall-back path of well-known HTM algorithms. Furthermore, we proposed
an adaptation process that starts the transactions using the best execution path according to
their observed conflicts. Our experiments show a better performance than the TM algorithms
that access the data structure without exploiting its semantics.



Chapter 8

Remote Transaction Commit

In this chapter we present Remote Transaction Commit (RTC), a mechanism for processing
commit phases of STM transactions remotely. RTC’s basic idea is to execute the commit
part of a transaction in dedicated servicing threads. In most STM algorithms, the commit
part has high synchronization overhead, compared to the total transaction overhead (see
Section for a detailed discussion on this). Moreover, this overhead becomes dominant in
high core count architectures, where the number of concurrent transactions can (potentially)
increase significantly. By dedicating threads for servicing the commit phase, RT'C minimizes
this overhead and improves performance.

In RTC, when client transactiong!| reach the commit phase, they send a commit request to
a server (potentially more than one). A transaction’s read-set and write-set are passed as
parameters of the commit request to enable the server to execute the commit operation on
behalf of the clients. Instead of competing on spin locks, the servicing threads communicate
with client threads through a cache-aligned requests array. This approach therefore reduces
cache misses (which are often due to spinning on locks), and reduces the number of CAS
operations during commitP} Additionally, dedicating CPU cores for servers reduces the prob-
ability of interleaving the execution of different tasks on those cores due to OS scheduling.
Blocking the execution of commit phase, for allowing other transactions to interleave their
processing on the same core, is potentially disruptive for achieving high performance.

RTC follows similar directions of lazy, lightweight, coarse-grained STM algorithms, like
NOrec [25]. This way, it minimizes the number of locks that will be replaced by remote
execution (precisely, it replaces only one lock). This also makes RTC privatization-safe
[97], and a good candidate for hybrid transactional memory approaches [91]. Validation
in RTC is value-based, like NOrec, which reduces false conflicts, and efficiently deals with
non-transactional code. Moreover, RTC solves NOrec’s problem of serializing independent

"We will call an RTC servicing thread as “server” and an application thread as “client”.
2Tt is well understood that spinning on locks and increased the usage of CAS operations can seriously
hamper application performance [59], especially in multicore architectures.
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commit phases (because of the single lock) by using an additional secondary server to execute
independent commit requests (which do not conflict with transactions currently committed
on the main server). RTC exploits bloom filters to detect these independent requests. In
Section [8.2] we show RTC’s implementation using one main server and one secondary server.
Then, in Section [8.6] we enhance RTC with more than one secondary server, and evaluate
the impact of adding more servers on RTC’s performance.

Extending more fine-grained algorithms like RingSTM and TL2 with remote commit is not
as efficient as doing so with NOrec. With their higher number of locks, more complex
mechanisms are needed to convert those locks into remote commit execution, which also
requires more overhead for synchronization between servers. Although we use bloom filters
to detect independent transactions, like RingSTM, we still use one global lock (not bloom
filters) to synchronize transactions, as we will show later.

RTC is designed for systems deployed on high core count multicore architectures where re-
serving few cores for executing those portions of transactions does not significantly impact
the overall system’s concurrency level. However, the cost of dedicating cores on some archi-
tecture may be too high given the limited parallelism. For those architectures, we extend
RTC by allowing application threads, rather than a dedicated server thread, to combine the
execution of the commit phases. This idea is similar to the flat combining [55] approach
proposed for concurrent data structures (in fact, we name the new version of RTC as RTC-
FC). Our experiments include the comparison between RTC and RTC-FC, thus clarifying
the workloads that can benefit more from one approach or the other.

Our implementation and experimental evaluation show that RTC is particularly effective
when transactions are long and contention is high. If the write-sets of transactions are long,
transactions that are executing their commit phases will be a bottleneck. All other spinning
transactions will suffer from blocking, cache misses, and unnecessary CASing, which are
significantly minimized in RTC. In addition, our experiments show that when the number
of threads exceeds the number of cores, RTC performs and scales significantly better. This
is because, RTC solves the problem of blocking lock holders by an adverse OS scheduler,
which causes chained blocking.

Through experimentation, we show that both RTC and RTC-FC have low overhead, peak
performance for long running transactions, and significantly improved performance for high
number of threads (up to 4x better than other algorithms in high thread count configura-
tions). We also show the impact of increasing the number of secondary servers.

8.1 Design

The basic idea of RTC is to execute the commit phase of a transaction in a dedicated main
server core, and to detect non-conflicting pending transactions in another secondary server
core. This way, if a processor contains n cores, two cores will be dedicated as servers, and the
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remaining n — 2 cores will be assigned to clients. For this reason, RTC is more effective when
the number of cores is large enough to afford dedicating two of them as servers. However,
the core count in modern architectures is increasing, so that reserving two cores does not
represent a limitation for RTC applicability.

RTC architecture can be considered as an extension of NOrec. Figure[8.1/shows the structure
of a NOrec transaction. A transaction can be seen as the composition of three main parts:
initialization, body, and commit. The initialization part adjusts the local variables at the
beginning of the transaction. In the transaction body, a set of speculative reads and writes
are executed. During each read, the local read-set is validated to detect conflicting writes
of concurrent transactions, and, if the validation is successful, the new read is added to the
read-set. Writes are also saved in local write-sets to be published at commit. During the
commit phase, the read-set is repeatedly validated until the transaction acquires the lock (by
an atomic CAS operation to increase the global timestamp). The write-set is then published
into the shared memory, and finally, the global lock is released.

Initialize local timestamp - Tx Initialize
clear read-set and write-set

TxRead(x)
read-set < x
Validate(read-set) Tx Body

TxWrite(x)
write-set < x

While(global lock not acquired)
Validate(read-set)
Tx Commit
Publish(write-set) (Executed remotely in RTC)

Release lock

Figure 8.1: Structure of a NOrec transaction

This well defined mechanism of NOrec can be converted to remotely executing the transaction
commit part. Unlike lock-based applications, which contain programmer-defined locks with
generic critical sections, RTC knows precisely the number of locks to acquire (i.e., only
one global lock), when to execute the commit (i.e., at the transaction end), and what to
execute inside the commit (i.e., validating transaction read-set and publishing its write-set).
This simplifies the role of the servers, in contrast to server-based optimizations for locks
such as RCL [71] and Flat Combining [55], which need additional mechanisms (either by
re-engineering as in RCL or at run-time as in Flat Combining) to indicate the procedures to
execute in behalf of the clients to the servers.
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RTC is therefore simple: clients communicate with servers (either main or secondary) using
a cache-aligned requests array to reduce caching overhead. A client’s commit request always
contains a reference to the transactional context (read-set and write-set, local timestamp,
and bloom filters). This context is attached to the transaction request when it begins. A
client starts its commit request by changing a state field in the request to a pending state,
and then spins on this state field until the server finishes the execution of its commit and
resets the state field again. On the server side, the main server loops on the array of commit
requests until it finds a client with a pending state. The server then obtains the transaction’s
context and executes the commit. While the main server is executing a request, the secondary
server also loops on the same array, searching for independent requests. Note that it does
not execute any client requests unless the main server is executing another non-conflicting
request.

Figure illustrates the flow of execution in both NOrec and RTC. Assume we have three
transactions. Transaction T is a long running transaction with a large write-set. Transaction
Tg does not conflict with T4 and can be executed concurrently, while transaction Ty is
conflicting with T)4. Figure shows how NOrec executes these three transactions. If T
acquires the lock first, then both Ts and T will spin on the shared lock until 74 completes
its work and releases the lock, even if they can run concurrently. Spinning on the same
lock results in significant number of useless CAS operations and cache misses. Moreover, if
T, is blocked by the OS scheduler, then both the spinning transactions will also wait until
T4 resumes, paying an additional cost. This possibility of OS blocking increases with the
number of busy-waiting transactions.

In Figure , RTC moves the execution of T'4’s commit to the main server. Transactions
Tp and T send a commit request to the server and then spin on their own requests (instead
of spinning on a shared global lock) until they receive a reply. During T'4’s execution, the
secondary server (which is dedicated to detecting dependency) discovers that T can run
concurrently with T), so it starts executing Tz without waiting for T4 to finish. Moreover,
when T4 is blocked by the OS scheduler, this blocking does not affect the execution of its
commit on the main server, and does not block other transactions. Blocking of the servers
is much less frequent here, because client transactions are not allowed to execute on server
cores.

8.1.1 Dependency Detection

RTC leverages a secondary server to solve the problem of unnecessary serialization of inde-
pendent commit requests. The secondary server uses bloom filters [12] to detect dependency
between transactions. Each transaction keeps two local bloom filters and updates them at
each read/write (in addition to updating the normal read-set and write-set). The first one
is a write filter, which represents the transaction writes, and the second one is a read-write
filter, which represents the union of the transaction reads and writes. If the read-write filter
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Figure 8.2: Flow of commit execution in NOrec and RTC.

of a transaction Tx does not intersect with the write filter of a transaction Ty currently
executed in the main server, then it is safe to execute Tx in the secondary server. (We
provide a proof of the independence between Tx and Ty in Section |8.3)).

Synchronization between threads in NOrec is done using a single global sequence lock. Al-
though RT'C needs more complex synchronization between the main server and the secondary
server, in addition to synchronization with the clients, we provide a lightweight synchroniza-
tion mechanism that is basically based on the same global sequence lock, and one extra
servers lock. This way, we retain the same simplicity of NOrec’s synchronization. (Sec-
tion [8.2] details RT'C’s synchronization).

The effectiveness of the secondary server is evident when the write-set size is large. The
secondary server adds synchronization overhead to the main server. This overhead will be
relatively small if commit phase is long, and transactions are mostly independent. On the
other hand, if write-sets are short (indicating short commit phases), then even if transactions
are independent, the time taken by the secondary server to detect such independent trans-
actions is long enough so that the main server may finish its execution before the secondary
server makes a substantial progress. To solve this issue, RTC dynamically enables/disables
the secondary server according to the size of the transaction write-set. The secondary server
works on detecting non-conflicting transactions when the write-set size exceeds a certain
threshold (In Section we show an experimental analysis of this threshold). As a con-
sequence, the interactions between main and secondary servers are minimized so that the

performance of the transactions executed in the main server (that represents the critical path
in RTC) is not affected.

Another trade off for RTC is the bloom filter size. If it is too small, many false conflicts
will occur and the detector will not be effective. On the other hand, large bloom filters need
large time to be accessed. Bloom filter access must be fast enough to be fruitful. In our
experiments, we used the same size as in the RSTM default configuration (1024 bits), as we
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found that other sizes give similar or worse performance.

8.1.2 Analysis of NOrec Commit Time

As we mentioned before, RT'C is more effective if the commit phase is not too short. Table
provides an analysis of NOrec’s commit time ratio of the STAMP benchmarks [RI] In
this experiment, we measure the commit time as the sum of the time taken to acquire the
lock and the time taken for executing the commit procedure itself. We calculated both A)
the ratio of commit time to the transactions execution time (%trans), and B) the ratio of
commit time to the total application time (%total). The results show that the commit time
is already predominant in most of the STAMP benchmarks. The percentage of commit time
increases when the number of threads increases (even if the %total decreases, which means
that the non-transactional execution increases). This means that the overhead of acquiring
the lock and executing commit becomes more significant in the transactional parts.

Benchmark 8 threads 16 threads 32 threads 48 threads
Y%trans | %total | %trans | %total | %trans | %total | %trans | %total

genome 49 32 53 14 54 5 56 3
intruder 25 19 37 31 39 26 19 9
kmeans 43 34 56 27 60 15 62 11
labyrinth 0 0 0 0 0 0 0 0
ssca2 83 53 94 63 95 66 92 39
vacation 6 5 17 16 42 36 50 45

Table 8.1: Ratio of NOrec’s commit time in STAMP benchmarks.

As our experimental results show in Section [8.5 the increase of RTC performance is pro-
portional to the commit latency. In fact, benchmarks with higher percentage of commit
time (genome, ssca2, and kmeans) gain more from RTC than the others with small com-
mit execution time (intruder and vacation) because the latter do not take advantages from
the secondary server. However, they still gain from the main server, especially when the
number of transactions increases and competition between transactions on the same lock be-
comes a significant overhead. Benchmarks with a dominating non-transactional workloads
(labyrinth) show no difference between NOrec and RTC because no operations are done for
those non-transactional parts during the commit phase.

3We excluded yada here and in all our further experiments as it evidenced errors (segmentation fault)
when we tested them on RSTM, even in the already existing algorithms like NOrec. We also excluded bayes
because its performance varies significantly between runs, so it is not useful for benchmarking.



Ahmed Hassan Chapter 8. Remote Transaction Commit 101

8.2 RTC Algorithm

The main routines of RT'C are servers loops and the new commit procedure. The initialization
procedure and transaction body code are straightforward, thus we only briefly discuss them.

8.2.1 RTC Clients

Client commit requests are triggered using a cache-aligned requests array. Fach commit
request contains three items:

- state. This item has three values. READY means that the client is not currently executing
commit. PENDING indicates a commit request that is not handled by a server yet.
ABORTED is used by the server to inform the client that the transaction must abort.

- Tx. This is the reference to the client’s transactional context. Basically, servers need the
following information from the context of a transaction: read-set to be validated, write-set
to be published, the local timestamp, which is used during validation, and filters, which
are used by the secondary server.

- pad. This is used to align the request to the cache line (doing so decreases false sharing).

RTC initialization has two main obligations. The first one is allocating the requests array
and starting the servers. The second one is to set the affinity of the servers to their reserved
cores.

When a transaction begins, it is bound to the clients’ cpuset to prevent execution on server
cores (note that it’s allowed to bound more than one client to the same core, according to the
scheduler). It also inserts the reference of its context in the requests array. Finally, the local
timestamp is assigned to the recent consistent global timestamp. Reads and writes update
the bloom filters in addition to their trivial updates of read-sets and write-sets. Reads update
the read-write filter, and writes update both the write filter and the read-write filter.

Client post validation is value-based like NOrec. Algorithm [21]shows how it generally works.
In lines [3}{4] transaction takes a snapshot of the global timestamp and loops until it becomes
even (meaning that there is no commit phase currently running on both main and secondary
servers). Then, read-set entries are validated (line . Finally, the global timestamp is read
again to make sure that nothing is modified by another transaction while the transaction

was validating (Lines [6H9).

Servers need also to validate the read-set before publishing the write-set. The main difference
between server validation and client validation is that there is no need to check the timestamp
by the server, because the main server is the only thread that changes the timestamp.
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Algorithm 21 RTC: client validation

procedure CLIENT-VALIDATION
t = global_timestamp
if ¢t is odd then
retry validation

Validate read-set values

if ¢t # global_timestamp then
retry validation

else
return ¢

10: end procedure

Algorithm 22 RTC: client commit

procedure COMMIT
if read_only then

else
if — Client-Validate(Tz) then
TxAbort()
req.state = PENDING
loop while req.state ¢ (READY, ABORTED)
if req.state = ABORTED then
TxAbort()
else
TxCommit()

13: ResetFilters()

=

14: end procedure

Algorithm [22] shows the commit procedure of RTC clients. Read-only transactions do not
need to acquire any locks and their commit phase is straightforward. A read-write transaction
starts its commit phase by validating its read-set to reduce the overhead on servers if it is
already invalid (line [p]). If validation succeeds, it changes its state to PENDING (line [7).
Then it loops until one of the servers handles its commit request and changes the state to
either READY or ABORTED (line [§). It will either commit or roll-back according to the
reply (lines . Finally, the transaction clears its bloom filters for reusing them (line [13)).

8.2.2 Main Server

The main server is responsible for executing the commit part of any pending transaction.
Algorithm shows the main server loop. By default, the dependency detection (DD) is
disabled. The main server keeps looping on client requests until it reaches a PENDING
request (line @ Then it validates the client read-set. If validation fails, the server changes
the state to ABORTED and continues searching for another request. If validation succeeds,
it starts the commit operation in either DD-enabled or DD-disabled mode according to a

threshold of the client write-set size (lines [7}H14)).

Execution of the commit phase without enabling DD is straightforward. The timestamp
is increased (which becomes odd, indicating that the servers are working), the write-set is
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published to memory, the timestamp is then increased again (to be even), and finally the
request state is modified to be READY.

Algorithm 23 Main server loop. Server commit with dependency detection dis-

abled /enabled.
1: procedure MAIN SERVER LooP
2: DD = false
3: while true do
4: for i + 1, num_transactions do
5: req < req-arrayli|
6: if req.state = PENDING then
7 if — Server-Validate(req.Tz) then
8: req.state = ABORTED
9: else if write_set_size < t then
10: Commit(DD-Disabled)
11: else
12: DD = true
13: Commit(DD-Enabled)
14: DD = false

15: end procedure
16: procedure CommiT(DD-Disabled, req)

17: global timestamp++
18: WriteInMemory (req.Tz.writes)
19: global timestamp++

20: req.state = READY
21: end procedure

22: procedure CommIT(DD-Enabled, req, i)

23: mainreq = req_arrayli)

24: global _timestamp++

25: WriteInMemory (req.Tx.writes)

26: loop while |CAS(servers_lock, false, true)
27: global timestamp++

28: mainreq = NULL

29: servers_lock = false

30: req.state = READY
31: end procedure

When DD is enabled, synchronization between the servers is handled using a shared servers_lock.
First, the main server informs the secondary server about its current request number (line
23)). Then, the global timestamp is increased (line . The order of these two lines is
important to ensure synchronization between the main and secondary servers. The main
server must also acquire servers_lock before it increments the timestamp again at the end
of the commit phase (lines to prevent the main server from proceeding until the sec-
ondary server finishes its work. As we will show in the correctness part (in Section , this
servers_lock guarantees that the secondary server will only execute as an extension of the
main server’s execution. Comparing the two algorithms, we see that DD adds only one CAS
operation on a variable, which is (only) shared between the servers. Also, DD is not enabled
unless the write-set size exceeds the threshold. Thus, the overhead of DD is minimal.
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8.2.3 Secondary Server

Algorithm [24] shows the secondary server’s operation. It behaves similar to the main server
except that it does not handle PENDING requests unless it detects that:

- DD is enabled (line {4));
- Timestamp is odd, which means that main server is executing a commit request (line @;

- The new request is independent from the current request handled by the main server (line

9.

Algorithm 24 RTC: secondary server

1: procedure SECONDARY SERVER Loop
2: while true do
3: for i + 1,num_transactions do
4: if DD = false then continue
5: s = global_timestamp
6: if s&1 = 0 then continue
T req < req-arrayli|
8: if req.state = PENDING then
9: if Independent(reg,mainreq) then
10: Commit(Secondary)
11: end procedure
12: procedure COMMIT SECONDARY (req)
13: if — Server-Validate(req.Tz) then
14: aborted = true
15: if CAS(servers_lock, false, true) then
16: if s <> global_timestamp or mainreq = NULL then
17: servers_lock = false
18: else if aborted = true then
19: req.state = ABORTED
20: servers_lock = false
21: else
22: WriteInMemory(req.Tx.writes)
23: req.state = READY
24: servers_lock = false
25: loop while global_timestamp = s
26: end procedure

The commit procedure is shown in lines[I2}H26] Validation is done before acquiring servers_lock
to reduce the time of holding the lock (lines . However, since it is running concur-
rently with the main server, the secondary server has to validate that the main server is still
handling the same request (line after acquiring servers_lock. This means that, even if
the secondary server reads any false information from the above three points, it will detect
that by observing either a different timestamp or a NULL mainreq after the acquisition of
servers_lock. The next step is to either commit or abort according to its earlier valida-
tion (lines . Finally, in case of commit, secondary server loops until the main server
finishes its execution and increases the timestamp (line . This is important to prevent
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handling another request, which may be independent from the main server’s request but not
independent from the earlier request.

The secondary server does not need to change the global timestamp. Only the main server
increases it at the beginning and at the end of its execution. All pending clients will not
make any progress until the main server changes the timestamp to an even number, and
the main server will not do so until the secondary server finishes its work (because if the
secondary server is executing a commit phase, it will be holding servers_lock).

8.3 Correctness

To prove the correctness of RT'C, we first show that there are no race conditions impacting
RTC’s correctness when the secondary server is disabled. Then, we prove that our approach
of using bloom filters guarantees that transactions executed on the main and secondary
servers are independent. Finally, we show how adding a secondary server does not affect
race-freedom between the main and the secondary server, or between clients and servers |7_f]

RTC with DD Disabled: With the secondary server disabled, RTC correctness is similar
to that of NOrec. Briefly, the post validation in Algorithm [21| ensures that: i) no client is
validating while server is committing, and 4i) each transaction sees a consistent state after
each read. The only difference between NOrec and RTC without dependency detection is
in the way they increment the timestamp. Unlike NOrec, there is no need to use the CAS
operation to increase the global timestamp, because no thread is increasing it except the main
server. All commit phases are executed serially on the main server, which guarantees no write
conflicts during commit, either on the timestamp or on the memory locations themselves.

Transaction Independence: The secondary server adds the possibility of executing two
independent transactions concurrently. To achieve that, each transaction keeps two bloom
filters locally: a write-filter “wf(t)”, which is a bitwise representation of the transaction
write-set, and a read-write filter “rwf(t)”, which represents the union of its read-set and
write-set. Concurrent commit routines (in both main and secondary servers) are guaranteed
to be independent using these bloom filters. We can state that: if a transaction 7} is
running on the RTC main server, and there is a pending transaction 75 such that rw f(73) N
wf(Ty) = (), then T3 is independent from 77 and can run concurrently using the secondary
server. This can be proven as follows: 77 does not increase the timestamp unless it finishes
validation of its read-set. Thus, T5 will not start unless 77 is guaranteed to commit. Since
rwf(Ty) Nwf(Ty) = 0, Ty can be serialized before Ty. T cannot invalidate Ty because T1’s
write-set does not intersect with T5’s read-set. The write-after-write hazard also cannot

4In all of the proof arguments, we assume that instructions are executed in the same order as shown in
Section s algorithms — i.e., sequential consistency is assumed. We ensure this in our C/C++ implemen-
tation by using memory fence instructions when necessary (to prevent out-of-order execution), and by using
volatile variables when necessary (to prevent compiler re-ordering).
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happen because the write filters are not intersecting. If T, aborts because of an invalidated
read-set, it will not affect 77’s execution.

RTC with DD Enabled: Finally, we prove that transaction execution is still race-free when
the secondary server is enabled. Synchronization between the main and the secondary server
is guaranteed using the servers_lock. The main server acquires the lock before finishing the
transaction (clearing mainreq and incrementing the global timestamp) to ensure that the
secondary server is idle. The secondary server acquires the servers_lock before starting, and
then it validates both mainreq and the timestamp. If they are invalid, the secondary server
will not continue, and will release the servers_lock, because it means that the main server
finishes its work and starts to search for another request.

More detailed, in lines of Algorithm [23] the main server increments the timestamp in
a mutually exclusive way with lines of the secondary server execution in Algorithm
(because both parts are enclosed by acquiring and releasing the servers_lock). Following
all possible race conditions between line [27] of Algorithm 23] and the execution of the sec-
ondary server shows that the servers’ executions are race-free. Specifically, there are four
possible cases for the secondary server when the main server reaches line (incrementing
the timestamp after finishing execution):

- Case 1: before the secondary server takes a snapshot of the global timestamp (before
line [5)). In this case, the secondary server will detect that the main server is no longer
executing any commit phase. This is because, the secondary server will read the new
(even) timestamp, and will not continue because of the validation in line []

- Case 2: after the secondary server takes the snapshot and before it acquires the servers_lock
(after line [f| and before line [15)). In this case, whatever the secondary server will detect
during this period, once it tries to acquire the servers_lock, it will wait for the main server
to release it. This means that, after the secondary server acquires the servers_lock, it will
detect that the timestamp is changed (line and it will not continue.

- Case 3: after the secondary server acquires the servers_lock and before this lock is released
(after line|15|and before line . This cannot happen because the servers_lock guarantees
that these two parts are mutually exclusive. So, in this case, the main server will keep
looping until the secondary server finishes execution and releases the servers_lock.

- Case 4: after the secondary server releases the servers_lock (after line 24). This scenario
is the only scenario in which the main and secondary servers are executing commit phases
concurrently. Figure |8.3| shows this scenario. In this case, the secondary server works only
as an extension of the currently executed transaction in the main server, and the main
server cannot finish execution and increment the timestamp unless the secondary server
also finishes execution.

Thus, the main server will not continue searching for another request until the secondary
server finishes its execution of any independent request. Line [25] of Algorithm [24] guarantees
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the same behavior in the other direction. If the secondary server finishes execution first,
it will keep looping until the main server also finishes its execution and increments the
timestamp (which means that the secondary server executes only one independent commit
request per each commit execution on the main server).

Increment timestamp [ |

7

Read timestamp

| _|Pick independent request
| |Acquire servers_lock
Validate timestamp

Acquire servers_lock
Increment timestamp

v/
L | Release servers_lock

Release servers_lock

Main Server Secondary Server

Figure 8.3: Flow of commit execution in the main and secondary servers. Even if the main
server finishes execution before the secondary server, it will wait until the secondary server
releases the servers_lock.

In conclusion, the RTC servers provide the same semantics of single lock STM algorithms.
Although two independent commit blocks can be concurrently executed on the main and
secondary servers, they appear to other transactions as if they are only one transaction
because they are synchronized using different locks (not the global timestamp). Figure
shows that the global timestamp increment (to be odd and then even) encapsulates the
execution of both the main and the secondary servers. This also guarantees that the clients’
validations will not have race-conditions with the secondary server, because clients are not
validating in the period when the timestamp is odd.

Using a single lock means that RTC is privatization-safe, because writes are atomically pub-
lished at commit time. The value-based validation minimizes false conflicts and enables the
detection of non-transactional writes. Finally, servers repeatedly iterate on clients requests,
which guarantees livelock-freedom and more fair progress of transactions.
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8.4 RTC with Flat-Combining

The approach of dedicating cores for executing server threads has its own cost because it
disallows cores from running application threads and it enforces data accessed by transactions
to be cached on those cores. As we show later in Section [8.5] in most workloads this cost is
dominated by the benefits of reducing cache misses, reducing CAS operations, and preventing
lock holders from being descheduled. However, in some architectures, especially those with
low core count, this cost may become notable and impact the performance. To address this
issue, we extend RTC by introducing RTC-FC, a version of RT'C with no dedicated cores for
servers.

The only distinguishing point between RTC-FC and RTC is on the assignment of the thread
that plays the role of the server. In RTC-FC, we use an idea similar to flat combining [55] that
selects one of the running clients to combine the requests of pending clients. To do that, each
client changes its request status from READY to PENDING, and then it tries to be the combiner
(using one CAS operation on a combiners-lock). If it succeeds, it executes one server
iteration, serving all the PENDING requests, including its own request, similar to an iteration
of Algorithm [23| with DD-DISABLED. If the CAS fails, this means that another thread
became the combiner, thus, the thread spins on its request status similarly to RTC. During
its spinning, it periodically checks if the current combiner releases the combiners-lock. If
so, it retries to be the combiner.

Although RTC-FC avoids dedicating cores for servers, it has the following overheads: first,
it adds at least one more CAS operation for each transaction; second, it increases the proba-
bility of descheduling the combiners-lock holder; and finally, it obligates threads to pause
their executions while servicing other requests, which also adds an overhead due to caching
the data of other requests. The problem of descheduling a combiner can be partially solved
by enforcing the clients that fail to CAS the combiners-lock to call sched_yield in order
to give up their OS time slice instead of spinning. The effect of overloading the combiner
cache with the data of other transactions can also be alleviated by using a NUMA-aware
flat-combining algorithm similar to [36], where the combiner executes the commit phases of
transactions belonging only to its NUMA-zone in order to exploit the locality of this NUMA-
zone. In the next section we show how those parameters affect the performance of RTC-FC,
and discuss the cases in which RTC-FC fits best.

8.5 Experimental Evaluation

We implemented RTC in C++ (compiled with gee 4.6) and integrated into the RSTM
framework [73] (compiled using default configurations). Our experiments are performed on
a 64-core AMD Opteron machine (128GB RAM, 2.2 GHz, 64K of L1 cache, 2M of L2 cache)
with 4 sockets and 16 cores per socket (with 2 NUMA-zones per physical socket, making a



Ahmed Hassan Chapter 8. Remote Transaction Commit 109

total of 8 NUMA-zones). Each NUMA-zone has a 6M of L3 cache.

Our benchmarks for evaluation included micro-benchmarks (such as red-black tree and linked
list), and the STAMP benchmark suite [81]. We also evaluated multi-programming cases,
where the number of transactions is more than the number of cores. Our competitors include
NOrec (as representative of approaches relying on global metadata), RingSW (because it
uses bloom filter), and TL2 (representing an ownership-record based approach). We used
a privatization-safe version of TL2 for a fair comparison. All the STM algorithms and the
benchmarks used are those available in RSTM. All reported data points are averages of 5
runs.

8.5.1 Red-Black Tree

Figure 8.4 shows the throughput of RTC, RTC-FC, and their competitors on a red-black tree
with 1M elements and a delay of 100 no-ops between transactions. In Figure , when
50% of operations are reads, all algorithms scale similarly (RTC-FC is slightly better than the
others), but both versions of RTC sustain high throughput, while other algorithms’ through-
put degrades. This is a direct result of the cache-aligned communication among transactions.
In high thread count, RTC is slightly better than RTC-FC because of the overheads of the
latter as discussed in Section In Figure , when 80% of the operations are reads,
the degradation point of all algorithms shifts (to the right) because contention is lower.
However, RTC scales better and reaches peak performance when contention increases. At
high thread count, RT'C improves over the best competitor by 60% in the first case and 20%
in the second one.
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Figure 8.4: Throughput (per micro-second) on red-black tree with 1M elements.

Additionally, we focused on making a connection between the performance (in terms of
throughput) and the average number of cache misses per transaction generate by NOrec
and RTC. Figure [8.5] shows the results. At high number of threads, the number of cache
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Figure 8.5: Cache misses per transaction on red-black tree with 1M elements.

misses per transaction on NOrec is higher than RTC. Comparing Figures and , an
interesting connection can be found between the point in which the performance of NOrec
starts to drop and the point in which the number of NOrec’s cache misses starts to increase.
This comparison clearly points out the impact of RT'C design on decreasing cache misses due
to spin locks. RTC-FC on the other hand, suffers from more cache-misses. However, those
misses are not generated because of spinning. Rather, they are generated because each client
is playing the role of the server frequently, and thus it is obligated to validate the read-set
of the other clients, which may result in evicting its own data from its cache. Summarizing,
although the number of cache misses is not the only parameter that affects the performance
of RTC, Figure [8.5| gives an important reasoning about the effect of RTC and RTC-FC on
the cache misses on both the actual data and the meta-data. Such a comparison allows for
a better understanding of their behavior.

In the next experiment, we created up to 256 threadﬁ and repeated the experiment while
progressively enabling the cores of only one socket (16 cores), two sockets (32 cores), and the
whole four sockets (64 cores). Our goal in this experiment is to make a stress test to reveal
the side effect of having server-client communication in heavy loads, as well as to seek RTC’s
performance saturation point. More specifically, we use the approach of enabling/disabling
CPU sockets to analyze the effect of i) running very large number of concurrent threads on
few number of cores, while dedicating two of them as servers, and i) having inter-socket
synchronization rather than intra-socket synchronization.

Figure shows the results in a red-black tree with 50% reads. In Figure [8.6(a), when only
one socket is enabled, all the transactions execute on one socket, which decreases the over-
head of cache misses and CAS operations. For this reason, both versions of RT'C cannot gain
a lot from the efficient remote core locking mechanism, and thus the gap between them and
the other algorithms is small. Additionally, dedicating two cores out of sixteen as servers in
RTC has a significant effect on the overall performance. That is why in this case, RTC-FC
performs better than RTC. In Figure [8.6(b), when the number of cores becomes 32 (on 2

5This is the maximum number of threads allowed by RSTM.
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Figure 8.6: Throughput on red-black tree with 1M elements, 100 no-ops between transac-
tions, 50% reads.

sockets), the penalty of dedicating two cores for RTC decreases, thus RTC and RTC-FC
perform similarly. At the same time, the overheads in the other algorithms increase because
meta-data now are cached in two sockets rather than one. As a result, the overall perfor-
mance of RTC/RTC-FC increases compared to the other STM algorithms. The performance
improvement continues in the last case (Figure|8.6(c)|), when the number of cores becomes 64
(on 4 sockets). Specifically, starting from 32 threads, RTC/RTC-FC perform better than the
best competitor by an average of 3x at high thread count. Our analysis confirms previous
studies, which conclude that cross-socket sharing should be minimized as it is one of the
performance killers [30]. Also, in this case, RTC becomes better than RTC-FC because the
overhead of dedicating cores is minimized while the overhead of overloading the clients with
the combiner tasks increases.

Figure also shows that in the multi-programming case (when threads become more than
cores), RTC’s performance starts to slightly degrade like the other STM algorithms. How-
ever, this degradation is the normal degradation due to the contention on the shared red-black
tree, which confirms that RTC solves the issue of spin locking and leaves the overhead of
STM framework limited to the contention on the application-level data.

To conclude, RTC still has some limitations, like the effect of dedicating cores for servers, and
the normal contention on the application-level data (which is not targeted by RTC’s mech-
anism). However, when the number of cores increases, these negative effects are dominated
by the improvements due to the optimized locking mechanism.

8.5.2 Linked List

In Figure 8.7(a)l we show the results using the linked list benchmark. It represents the
worst case workload for RTC/RTC-FC and we include it in order to show the RTC design’s
limitations in unfavorable scenarios. Linked list is a benchmark which exposes non optimal
characteristics in terms of validation and commit. In fact, in a doubly linked list with
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only 500 nodes, each transaction makes on average hundreds of reads to traverse the list,
and then it executes few writes (two writes in our case) to add or remove the new node.
This means that the read-set size is too large compared to the write-set size. Since RTC
servers have to re-validate the read-set of the clients before publishing the write-set, pulling
a large read-set like that affects the performance significantly and nullifies any gains from
optimizing the actual commit phase (which mainly consists of acquiring the global timestamp
and publishing the write-set). Figure confirms that by showing the cache-misses per
transaction in that case. Here, the cache misses saved by the cache-aligned communication
are clearly dominated by thrashing the cache of the servers with the read-sets of the clients.
The problem increases in RTC-FC since the combiners are actual client threads that may
sacrifice their own cached data to validate the reads-set of the other clients. It is worth to
note that this issue does not occur for read-only workloads, because RTC does not involve
servers in executing read-only transactions.

As a solution to this issue, an STM runtime can be made to heuristically detect these cases
of RTC degradation by comparing the sizes of read-sets and write-sets, and switching at run-
time from/to another appropriate algorithm as needed. Earlier work proposes a lightweight
adaptive STM framework [96]. In this framework, the switch between algorithms is done
in a ”stop-the world” manner, in which new transactions are blocked from starting until
the current in-flight transactions commit (or abort) and then switch takes place. RTC can
be easily integrated in such a framework. Switching to RTC only requires allocating the
requests array and binding the servers and clients to their cpusets (which can be achieved
using C/C++ APIs). Switching away from RTC requires terminating the server threads and
deallocating the requests array.

RingSW —+— NOrec TL2 ——»- RTC -z RTC-FC --—#&--
1 c T
09 | 2 30 NOrec -~ /
) 8 25 RTC =) |
08 | @ RTC-FC = -
g 07 £ 20t "
o 06} j 5 o
& 05 # 2 15 :
o [%2] i
s 04 + 3 o oy
- 03¢ 8 10 ¢ s -
02 | 5 = 5
041 ! g %1 - SRR e
0 — S o : : : :
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Number of threads Threads
(a) Throughput (b) Cache-misses

Figure 8.7: Throughput and cache-misses per transaction on doubly linked list with 500
elements, 50% reads, and 100 no-ops between transactions.
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8.5.3 STAMP

Figure shows the results for six STAMP benchmarks, which represent more realistic
workloads with different attributes. It is important to relate these results to the commit
time analysis in Table [8.1] RTC has more impact when commit time is relatively large,
especially when the number of threads increases.

In four out of these six benchmarks (ssca2, kmeans, genome, and labyrinth), RTC has the
best performance when the number of threads exceeds 20. Moreover, for kmeans and ssca?2,
which have the largest commit overhead according to Table[8.1 RTC has better performance
than all algorithms even at low number of threads. For labyrinth, RTC performs the same as
NOrec and TL2, and better than RingSW. This is because, RT'C does not have any overhead
on non-transactional parts, which dominate in labyrinth. Also, in all cases, RTC outperforms
NOrec at high number of threads. Even for vacation and intruder, where the commit time
percentage is small (6%-50% and 19%-39%, respectively), RTC outperforms NOrec and has
the same performance as RingSW for high number of cores. In those two benchmarks, TL2
is the best algorithm (especially for low thread count) because they represent low-contention
workloads, where serializing the (mostly independent) commit phases, as in NOrec and RTC,
affects the performance. For RTC specifically, like linked list, scalability in those benchmarks
is clearly affected by the small ratio of the commit phase (as mentioned in Table .

In general, both RTC and RTC-FC perform similarly. However, RTC-FC performs better in
the low-contention workloads (e.g., genome and vacation), especially for small thread count
(less than 8). This gap decreases at high number of threads (more than 8), because the
benefit of dedicating cores for servers in RTC (e.g., disallowing lock holder descheduling)
increases.

8.6 Extending RTC with more servers

The current implementation of RT'C uses only two servers: one main server and one secondary
server. It is easy to show that using one main server is reasonable. This is because we replace
only one global lock (in NOrec) with a remote execution. Even if we add more main servers,
their executions will be serialized because of this global locking. Adding more secondary
servers (which search for independent requests) is, however, reasonable. This is because it
may increase the probability of finding such an independent request in a reasonable time,
which increases the benefits from secondary servers. However, leveraging on a fine grain
performance analysis, we decided to tune RTC with only one secondary server. This decision
is supported by the results obtained by running RTC with more secondary servers, which are
shown in Figure 8.9} They highlight that the synchronization overhead needed for managing
the concurrent execution of more secondary servers, is higher than the gain achieved.

In Figure[8.9, N reads and N writes of a large array’s elements are executed in a transaction,
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Figure 8.8: Execution time on STAMP benchmark suite’s applications.

which results in write-sets of size N. The writes are either totally dependent by enforcing at
least one write to be shared among transactions, or independent by making totally random
reads and writes in a very long array. Figure shows that the overhead of adding another
secondary server is more than its gain. Performance enhancement using one DD is either the
same or even better than using two DD in all cases. The same conclusion holds for executing
more than one commit phase on the secondary server in parallel with the same main server’s
commit. Although both enhancements should have a positive effect in some theoretical cases
of very long main server commits, we believe that in practical cases, like what we analyzed,
the gain is limited.

We also used this experiment to determine the best threshold of the write-set size after which
we should enable dependency detection. The time taken by the main server to finish the
commit phase is proportional to the size of the write-set (read-set size is not a parameter
because validation is made before increasing the timestamp). Thus, small write-sets will
not allow the secondary server to work efficiently and will likely add unnecessary overhead
(putting into consideration that the time taken by the secondary server to detect independent
transactions does not depend on the transaction size because bloom filters are of constant
size and they are scanned in almost constant time). To solve this problem, RTC activates
the secondary server only when the size of the write-set exceeds a certain threshold.

In case of dependent transactions, the dependency detector (DD) cannot enhance perfor-
mance because it will not detect a single independent transaction. Note that, the overhead
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of DD does not exceed 5% though, and it also decreases when the write-set size increases
(reaches 0.5% when the size is 50). When transactions are independent, DD starts to yield
significant performance improvement when the write-set size reaches 20 elements (obtains
30% improvement when size is 40). Before 10 elements, DD’s overhead is larger than the
gain from concurrent execution, which results in an overall performance degradation.

50 — ;
independent -
40 | independent -
dependent -
dependent -

30

Percentage of Improvement

5 10 20 30 40 50
Transaction Size

Figure 8.9: Effect of adding dependency detector servers.

We also calculated the number of transactions which are executed on the secondary server.
In all the independent cases, it varies from 2% to 11%. Since the percentage of improve-
ment is higher in most cases, this means that DD also saves extra time by selecting the
most appropriate transaction to execute among the pending transactions, which reduces the
probability of abort.

According to these results, we use only one secondary server, and we select a threshold of 20
elements to enable the secondary server in our experiments.

8.7 Using RTC in Hybrid TM

NOrec has been successfully used as a fallback path to best-effort HTM transactions [26], 91,
74]. This is because it uses only one global timestamp as a shared meta-data. Replacing
NOrec with RTC in such hybrid algorithms is a feasible extension to our work. To do so, no
modification is needed at the client (software) execution because HTM transactions only need
to know whether there is a software transaction executing its commit phase or not (which
would be done by the servers exploiting the global timestamp). Moreover, centralizing
the commit phases in the servers allows for more optimizations on the hybrid algorithms
themselves, such as exploiting servers for profiling the HTM execution.
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8.8 Summary

Software transactional memory is a highly promising synchronization abstraction, but state-
of-the-art STM algorithms are plagued by performance and scalability challenges. Analysis
of these STM algorithms on the STAMP benchmark suite shows that transaction commit
phases are one of the main sources of STM overhead. In this chapter we propose Remote
Transaction Commit. RTC reduces this overhead with a simple idea: execute the commit
phase in a dedicated servicing thread. This reduces cache misses, spinning on locks, CAS
operations, and thread blocking. Our implementation and evaluation shows that the idea is
very effective — up to 4x improvement over state-of-the-art STM algorithms in high thread
count.

RTC builds upon similar ideas on remote/server thread execution previously studied in the
literature, most notably, Flat Combining and RCL. However, one cannot simply apply them
to an STM framework as is. In one sense, our work shows that, this line of reasoning is
effective for improving STM performance.



Chapter 9

Remote Invalidation

In this chapter, we present Remote Invalidation (RInval), an STM algorithm which applies
the same principles of RTC on invalidation-based STM algorithms (e.g., InvalSTM [40]).
RTC and RlInval share the advantage of reducing the locking overhead during the execution
of STM transactions. However, locking overhead is not the only overhead in the critical
path of the transaction (i.e., the sequence of operations that compose the execution of the
transaction). Validation and commit routines themselves are overheads that sometimes
interfere with each other. As we discussed in Section [2.1.2] invalidation-based algorithms,
such as InvalSTM, are useful when the overhead of validation is significant because the time
complexity of validation is reduced from a quadratic function to a linear function (in terms
of the size of the read-set). However, InvalSTM adds a significant overhead on the commit
routine, which affects the performance on many other cases. In this chapter, we present a
comprehensive study on the parameters that affect the critical path of the transaction, and
we study specifically the tradeoff between the validation and commit overheads. Then, we
show how RlInval significantly optimizes the transaction critical path.

9.1 Transaction Critical Path

As described in Section InvalSTM serializes commit and invalidation in the same
commit routine, which significantly affects invalidation in a number of cases and degrades
performance (we show this later in this section). Motivated by this observation, we study
the overheads that affect the critical path of transaction execution to understand how to
balance the overheads and reduce their effect on the critical path.

First, we define the critical path of a transaction as the sequence of steps that the transaction
takes (including both shared memory and meta-data accesses) to complete its execution.
Figure shows this path in STM, and compares it with that in sequential execution and
coarse-grained locking.

117
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Figure 9.1: Critical path of execution for: (a) sequential, (b) lock-based, and (c¢) STM-based
code

In Figure , the sequential code contains only shared-memory reads and writes without
any overhead. Coarse-grained locking, in Figure adds only the overhead of acquir-
ing and releasing a global lock at the beginning and at the end of execution, respectively.
However, coarse-grained locking does not scale and ends up with a performance similar to
sequential code. It is important to note that fine-grained locking and lock-free synchroniza-
tion have been proposed in the literature to overcome coarse-grained locking’s scalability
limitation [59]. However, these synchronization techniques must be custom-designed for a
given application situation. In contrast, STM is a general purpose framework that is com-
pletely transparent to application logic. In application-specific approaches, the critical path
cannot be easily identified because it depends on the logic of the application at hand.

Figure shows how STM algorithmﬂ add significant overheads on the critical path in
order to combine the two benefits of i) being as generic as possible and ii) exploiting as
much concurrency as possible. We can classify these overheads as follows:

Logging. Each read and write operation must be logged in local (memory) structures, usu-
ally called read-sets and write-sets. This overhead cannot be avoided, but can be minimized
by efficient implementation of the structures [59)].

Locking. We already studied this overhead when we discussed RTC in Chapter [8, which
can be concluded in i) time of locking, i1) granularity of locking, and iii) locking mechanism.
RInval follows the same RTC’s guidelines to alleviate this overhead.

Validation. As mentioned before, the validation overhead becomes significant when higher
levels of correctness guarantees are required (e.g., opacity). Most STM algorithms use either
incremental validation or commit-time invalidation to guarantee opacity. In the case of
invalidation, the time complexity is reduced, but with an additional overhead on commit, as

'Here, we sketch the critical path of NOrec [25]. However, the same idea can be applied to most STM
algorithms.



Ahmed Hassan Chapter 9. Remote Invalidation 119

we discuss in the next point.

Commit. Commit routines handle a number of issues in addition to publishing write-sets
on shared memory. One of these issues is lock acquisition, which, in most STM algorithms,
is delayed until commit. Also, most STM algorithms require commit-time validation after
lock acquisition to ensure that nothing happened when the locks were acquired. In case of
commit-time invalidation, the entire invalidation overhead is added to the commit routines.
This means that a committing transaction has to traverse all active transactions to detect
which of them is conflicting. As a consequence, the lock holding time is increased. Moreover,
if the committing transaction is blocked for any reason (e.g., due to OS scheduling), all other
transactions must wait. The probability of such blocking increases if the time of holding the
lock increases. Therefore, optimizing the commit routines has a significant impact on overall
performance.

Abort. If there is a conflict between two transactions, one of them has to abort. Transaction
abort is a significant overhead on the transaction’s critical path. The contention manager
is usually responsible for decreasing the abort overhead by selecting the best candidate
transaction to abort. The greater the information that is given to the contention manager
from the transactions, the greater the effectiveness on reducing the abort overhead. However,
involving the contention manager to make complex decisions adds more overhead to the
transaction critical path.
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Figure 9.2: Percentage of validation, commit, and other (non-transactional) overheads on a
red-black tree. The y-axis is the normalized (to NOrec) execution time

Figure shows how the trade-off between invalidation and commit affects the perfor-
mance in a red-black tree benchmark for different numbers of threads (8, 16, 32, and 48).
Here, transactions are represented by three main blocks: read (including validation), com-
mit (including lock acquisition, and also invalidation in the case of InvalSTM), and other
overhead. The last overhead is mainly the non-transactional processing. Although some
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transactional work is also included in the later block, such as beginning a new transaction
and logging writes, all of these overheads are negligible compared to validation, commit, and
non-transactional overheads. Figure shows the percentage of these blocks in both NOrec
and InvalSTM (normalized to NOrec).

The figure provides several key insights. When the number of threads increases, the per-
centage of non-transactional work decreases, which means that the overhead of contention
starts to dominate and becomes the most important to mitigate. It is clear also from the
figure that InvalSTM adds more overhead on commit so that the percentage of execution
time consumed by the commit routine is higher than NOrec. Moreover, this degradation in
commit performance affects read operations as well, because readers have to wait for any
running commit to finish execution.
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Figure 9.3: Percentage of validation, commit, and other (non-transactional) overheads on
STAMP benchmark. The y-axis is the normalized (to NOrec) execution time

The same conclusion is given in the STAMP benchmark. In Figure [9.3] the percentage of
commit in intruder, kmeans, and ssca2, is higher in InvalSTM than NOrec, leading to the
same performance degradation as red-black tree. In genome and wvacation, degradation in
InvalSTM read performance is much higher than before. This is because these workloads
are biased to generate more read operations than writes. When a committing transaction
invalidates many read transactions, all of these aborted transactions will retry executing
all of their reads again. Thus, in these read-intensive benchmarks, abort is a dominating
overhead. In [abyrinth and bayes, almost all of the work is non-transactional, which implies
that using any STM algorithm will result in almost the same performance.

Based on this analysis, it is clear that each overhead cannot be completely avoided. Different
STM algorithms differ on how they control these overheads. It is also clear that some
overheads contradict each other, such as validation and commit overheads. The goal in such
cases should be finding the best trade-off between them. This is why each STM algorithm
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is more effective in some specific workloads than others.

We design and implement RlInval with the goal of minimizing the effect of most previously
mentioned overheads. More in detail, we alleviate the effect of i) the locking overhead, i)
the tradeoff between validation and commit overheads, and i) the abort overhead. The
overhead of meta-data logging usually cannot be avoided in lazy algorithms. For locking,
we used the same idea of RTC by executing commit routines in a dedicated server core.
Validation and commit are improved by using invalidation outside, and in parallel with,
the main commit routine. Finally, we use a simple contention manager to reduce the abort
overhead.

9.2 Remote Invalidation

As described in Section 0.1 Remote Invalidation reduces the overhead of the transaction
critical path. To simplify the presentation, we describe the idea incrementally, by presenting
three versions of RInval?l In the first version, called RInval-V1, we show how spin locks are
replaced by the more efficient remote core locks. Then, in RInval-V2, we show how commit
and invalidation are parallelized. Finally, in RInval-V3, we further optimize the algorithm by
allowing the commit-server to start a new commit routine before invalidation-servers finish
their work.

9.2.1 Version 1: Managing the locking overhead

RInval-V1 uses the same idea of RTC: commit routines are executed remotely to replace
spin locks. Figure [9.4] shows how RInval-V1 works. When a client reaches a commit phase,
it sends a commit request to the commit-server by modifying a local request_state variable
to be PENDING. The client then keeps spinning on request_state until it is changed by the
server to be either ABORTED or COMMITTED. This way, each transaction spins on its
own variable instead of competing with other transactions on a shared lock.

Figure shows the structure of the cache-aligned requests array. In addition to re-
quest_state, the commit-server only needs to know two values: tz_status, which is used to
check if the transaction has been invalidated in an earlier step, and write_set, which is used
for publishing writes on shared memory and for invalidation. In addition, padding bits are
added to cache-align the request.

Since we use a coarse-grained approach, only one commit-server is needed. Adding more than
one commit-server will cause several overheads: i) the design will become more complex, i)
more cores have to be dedicated for servers, i) more CAS operations must be added to

2We only present the basic idea in the pseudo code given in this section. The source code provides the
full implementation details.
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Figure 9.5: RInval’s Cache-aligned requests array

synchronize the servers, and iv) cache misses may occur among servers. Since we minimize
the work done by the commit-server, the overhead of serializing commit on one server is
expected to be less than these overheads.

Algorithm [25/shows the pseudo code of RInval-V1. We assume that instructions are executed
in the same order as shown (i.e., sequential consistency is assumed). We ensure this in our
C/C++ implementation by using memory fence instructions when necessary (to prevent
out-of-order execution), and by using volatile variables when necessary (to prevent compiler
re-ordering). This version modifies the InvalSTM algorithm shown in Section [2.1.2]

The read procedure is the same in both InvalSTM and Rlnval, because we only shift execution
of commit from the application thread to the commit-server. In the commit procedure, if
the transaction is read-only, the commit routine consists of only clearing the local variables.
In write transactions, the client transaction checks whether it was invalidated by an earlier
commit routine (line[5). If validation succeeds, the client changes its state to PENDING (line
7). The client then loops until the commit-server handles its commit request and changes
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Algorithm 25 Remote Invalidation - Version 1

1: procedure CLIENT COMMIT
2: if read_only then
3:
4: else
5: if tz_status = INVALIDATED then
6: TxAbort()
7 request_state = PENDING
8: loop while request_state ¢ (COMMITTED, ABORTED)
9: end procedure
10: procedure COMMIT-SERVER LOOP
11: while true do
12: for i + 1, num_transactions do
13: req < requests_arrayli]
14: if req.request_state = PENDING then
15: if req.tz_status = INVALIDATED then
16: req.request_state = ABORTED
17: else
18: timestamp++
19: for All in-flight transactions t do
20: if me.write_bf intersects t.read_bf then
21: t.tz_status = INVALIDATED
22: WriteInMemory (req.writes)
23: timestamp++
24 req.request_state = COMMITTED
25: end procedure

the state to either COMMITTED or ABORTED (line [§). The client will either commit or
roll-back according to the reply.

On the server side, the commit-server keeps looping on client requests until it reaches a
PENDING request (line [I4). The server then checks the client’s request_state to see if
the client has been invalidated (line [15). This check has to be repeated at the server,
because some commit routines may take place after sending the commit request and before
the commit-server handles that request. If validation fails, the server changes the state to
ABORTED and continues searching for another request. If validation succeeds, it starts
the commit operation (like InvalSTM). At this point, there are two main differences between
InvalSTM and RInval-V1. First, incrementing the timestamp does not use the CAS operation
(line , because only the main server changes the timestamp. Second, the server checks
request_state before increasing the timestamp (line , and not after it, like in InvalSTM,
which saves the overhead of increasing the shared timestamp for a doomed transaction. Since
only the commit-server can invalidate transactions, there is no need to check request_state
again after increasing the timestamp.
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9.2.2 Version 2: Managing the tradeoff between validation and
commit

In RInval-V1, we minimized the overhead of locking on the critical path of transactions.
However, invalidation is still executed in the same routine of commit (in serial order with
commit itself). RlInval-V2 solves this problem by dedicating more servers to execute in-
validation in parallel with commit. Unlike the commit-server, there can be more than one
invalidation-server, because their procedures are independent. Each invalidation-server is
responsible for invalidating a subset of the running transactions. The only data that needs
to be transferred from the commit-server to an invalidation-server is the client’s write-set.
Figure [9.6| shows RInval-V2 with one commit-server and two invalidation-servers. When the
commit-server selects a new commit request, it sends the write bloom filter of that request
to the invalidation-servers, and then starts execution. When the commit-server finishes, it
waits for the response from all invalidation-servers, and then proceeds to search for the new
commit request.

PENDING ]
write_set

_———

Spin on
local Q

requests

«____
D DONE DONE

T1 Commit Invall Inval2
server server server

Remote invalidation -Version 2

Figure 9.6: Flow of commit execution in RInval-V2

Selecting the number of invalidation-servers involves a trade-off. According to Amdahl’s law,
concurrency decreases as the number of parallel executions increases. At some point, adding
more invalidation-servers may not have a noticeable impact on performance. At the same
time, increasing the number of invalidation-servers requires dedicating more cores for servers,
and adds the overhead of servers communication. In our experiments, we found that on a
64-core machine, it is sufficient to use 4 to 8 invalidation-servers to achieve the maximum
performance.

Adding invalidation-servers does not change the fact that no CAS operations are needed.
It also ensures that all communication messages (either between the commit-server and
the clients, or between the commit-server and the invalidation-servers) are sent/received
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using cache-aligned requests. Thus, RInval-V2 inherits the benefits of optimized locking and
parallelizing commit-invalidation routines.

Algorithm 26 Remote Invalidation - Version 2

1: procedure CoMMIT-SERVER LOOP
2: while true do
3: for i + 1,num_transactions do
4: req < requests_arrayli]
5: if req.request_state = PENDING then
6: for i + 1, num_invalidators do
7 while timestamp > inval_timestamp do
8: LOOP
9: if req.tz_status = INVALIDATED then
10: req.request_state = ABORTED
11: else
12: commit bf < req.write_bf
13: timestamp++
14: WriteInMemory (req.writes)
15: timestamp++
16: req.request_state = COMMITTED
17: end procedure
18: procedure INVALIDATION-SERVER LooP
19: while true do
20: if timestamp > inval_timestamp then
21: for All in-flight transactions ¢ in my set do
22: if commit_bf intersects t.read_bf then
23: t.tx_status = INVALIDATED
24: inval_timestamp += 2
25: end procedure
26: procedure CLIENT READ
27:
28: if 1 = timestamp and timestamp = my_inval_timestamp then
29:
30: end procedure

Algorithm [26| shows RInval-V2’s pseudo code. The client’s commit procedure is the same
as in RInval-V1, so we skip it for brevity. Each invalidation-server has its local timestamp,
which must be synchronized with the commit-server. The commit-server checks that the
timestamp of all invalidation-servers is greater than or equal to the global timestamp (line
7). It then copies the write bloom filter of the request into a shared commit_bf variable to
be accessed by the invalidation-servers (line [12).

The remaining part of RInval-V2 is the same as in RInval-V1, except that the commit-server
does not make any invalidation. If an invalidation-server finds that its local timestamp
has become less than the global timestamp (line , it means that the commit-server has
started handling a new commit request. Thus, it checks a subset of the running transactions
(which are evenly assigned to servers) to invalidate them if necessary (lines . Finally,
it increments its local timestamp by 2 to catch up with the commit-server’s timestamp (line
24). Tt is worth noting that the invalidation-server’s timestamp may be greater than the
commit-server’s global timestamp, depending upon who will finish first.

The client validation is different from RInval-V1. The clients have to check if their invalidation-
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servers’ timestamps are up-to-date (line. The invalidation-servers’ timestamps are always
increased by 2. This means that when they are equal to the global timestamp, it is guaran-
teed that the commit-server is idle (because its timestamp is even).

9.2.3 Version 3: Accelerating Commit

In RInval-V2, commit and invalidation are efficiently executed in parallel. However, in order
to be able to select a new commit request, the commit-server must wait for all invalidation-
servers to finish their execution. This part is optimized in Rlnval-V3. Basically, if there
is a new commit request whose invalidation-server has finished its work, then the commit-
server can safely execute its commit routine without waiting for the completion of the other
invalidation-servers. RInval-V3 exploits this idea, and thereby allows the commit-server to
be n steps ahead of the invalidation-servers (excluding the invalidation-server of the new
commit request).

Algorithm 27 Remote Invalidation - Version 3

1: procedure CoMMIT-SERVER LOOP
2: if req.request_state = PENDING and req.inval_timestamp > timestamp then
3:
4:
5: while timestamp > inval_timestamp + num_steps_ahead do
6: LOOP
T
8: commit_bf[my_index + +| + req.write bf
9:
10: end procedure
11: procedure INVALIDATION-SERVER LooOP
12:
13: if commit_bf[my_index + 4] intersects t.read_bf then
14:

15: end procedure

Algorithm [27] shows how RlInval-V3 makes few modifications to Rlnval-V2 to achieve its
goal. In line [2, the commit-server has to select an up-to-date request, by checking that the
timestamp of the request’s invalidation-server equals the global timestamp. The commit-
server can start accessing this request as early as when it is n steps ahead of the other
invalidation-servers (line [5)). All bloom filters of the requests that do not finish invalidation
are saved in an array (instead of one variable as in Rlnval-V2). This array is accessed by
each server using a local index (lines (8] and . This index is changed after each operation
to keep pointing to the correct bloom filter.

It is worth noting that, in the normal case, all invalidation-servers will finish almost in the
same time, as the clients are evenly assigned to the invalidation-servers, and the invalidation
process takes almost constant time (because it uses bloom filters). However, Rlnval-V3
is more robust against the special cases in which one invalidation-server may be delayed
for some reason (e.g., OS scheduling, paging delay). In these cases, RInval-V3 allows the
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commit-server to proceed with the other transactions whose invalidation-servers are not

blocked.

9.2.4 Other Overheads

In the three versions of Rlnval, we discussed how we alleviate the overhead of spin locking,
validation, and commit. As discussed in Section[9.1] there are two more overheads that affect
the critical path of transactions. The first is logging, which cannot be avoided as we use a
lazy approach. This issue is not just limited to our algorithm. Storing reads and writes in
local read-sets and write-sets, respectively, is necessary for validating transaction consistency.
The second overhead is due to abort. Unlike InvalSTM, we prevent the contention manager
from aborting or delaying the committing transaction even if it conflicts with many running
transactions. This is because of two reasons. First, it enables finishing the invalidation
as early as possible (in parallel with the commit routine), which makes the abort/retry
procedure faster. Second, we shorten the time needed to complete the contention manager’s
work, which by itself is an overhead added to the servers’ overhead, especially for the common
case (in which writers invalidate readers).

9.2.5 Correctness and Features

RInval guarantees opacity in the same way other coarse-grained locking algorithms do, such
as NOrec [25] and InvalSTM [40]. Both reads and writes are guaranteed to be consistent
because of lazy commit and global commit-time locking. Before each new read, the transac-
tion check that i) it has not been invalidated in an earlier step, and i) no other transaction
is currently executing its commit phase. Writes are delayed to commit time, which are then
serialized on commit-servers. The only special case is that of RInval-V3, which allows the
commit-server to be several steps ahead of invalidation. However, opacity is not violated
here, because this step-ahead is only allowed for transactions whose servers have finished
invalidation.

RlInval also inherits all of the advantages of coarse-grained locking STM algorithms, including
simple global locking, minimal meta-data usage, privatization safety [97], and easy integra-
tion with hardware transactions [91]. Hardware transactions need only synchronize with the
commit-server, because it is the only thread that writes to shared memory.

9.3 Evaluation

We implemented RInval in C/C++ (compiled with gce 4.6) and ported to the RSTM frame-
work [73] (compiled using default configurations) to be tested using its interface. Our ex-
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periments were performed on a 64-core AMD Opteron machine (128GB RAM, 2.2 GHz).

To assess RInval, we compared its performance against other coarse-grained STM algorithms,
which have the characteristics as RInval, like minimal meta-data, easy integration with HTM,
and privatization safety. We compared Rlnval with InvalSTM [40], the corresponding non-
remote invalidation-based algorithm, and NOrec [25], the corresponding validation-based
algorithm. For both algorithms, we used their implementation in RSTM with the default
configuration. We present the results of both RInval-V1 and RInval-V2 with 4 invalidation-
servers. For clarity, we withheld the results of RInval-V3 as it resulted very close to RInval-
V2. This is expected because we dedicate separate cores for invalidation-servers, which
means that the probability of blocking servers is minimal (recall that blocking servers is the
only case that differentiate RInval-V2 from Rlnval-V3)

We show results in red-black tree micro-benchmark and the STAMP benchmark [81]. In
these experiments, we show how RInval solves the problem of InvalSTM and becomes better
than NOrec in most of the cases. All of the data points shown are averaged over 5 runs.
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Figure 9.7: Throughput (K Transactions per second) on red-black tree with 64K elements

Red-Black Tree. Figure shows the throughput of RInval and its competitors for a red-
black tree with 64K nodes and a delay of 100 no-ops between transactions, for two different
workloads (percentage of reads is 50% and 80%, respectively). Both workloads execute a se-
ries of red-black tree operations, one per transaction, in one second, and compute the overall
throughput. In both cases, when contention is low (less than 16 threads), NOrec performs
better than all other algorithms, which is expected because invalidation benefits take place
only in higher contention levels. However, RInval-V1 and Rlnval-V2 are closer to NOrec
than InvalSTM, even in these low contention cases. As contention increases (more than 16
threads), performance of both NOrec and InvalSTM degrades notably, while both RInval-V1
and RInval-V2 sustain their performance. This is mainly because NOrec and InvalSTM use
spin locks and suffer from massive cache misses and CAS operations, while Rlnval isolates
commit and invalidation in server cores and uses cache-aligned communication. RInval-V2
performs even better than RInval-V1 because it separates and parallelizes commit and in-
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Figure 9.8: Execution time on STAMP benchmark

validation routines. RInval-V2 enhances performance as much as 2x better than NOrec and
4x better than InvalSTM.

STAMP. Figure shows the results of the STAMP benchmark, which represents more
realistic workloads. In three benchmarks (kmeans, ssca2, and intruder), Rlnval-V2 has
the best performance starting from 24 threads, up to an order of magnitude better than
InvalSTM and 2x better than NOrec. These results confirm how RlInval solves the problem
of serializing commit and invalidation, which we showed in Figure 0.3 In genome and
vacation, NOrec is better than all invalidation algorithms. This is mainly because they are
read-intensive benchmarks, as we also showed in Figure [9.3] However, RInval is still better
and closer to NOrec than InvalSTM. For future work, we can make further enhancements to
make these specific cases even better. One of these enhancements is to bias the contention
manager to readers, and allow it to abort the committing transaction if it is conflicting
with many readers (instead of the classical winning commit mechanism, currently used). In
labyrinth, all algorithms perform the same, which confirms the claim made in Section [9.1]
because their main overhead is non-transactional. We did not show bayes as it has a large
variance in its results.
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9.4 Summary

There are many parameters — e.g., spin locking, validation, commit, abort — that affect
the critical execution path of memory transactions and thereby transaction performance.
Importantly, these parameters interfere with each other. Therefore, reducing the negative
effect of one parameter (e.g., validation) may increase the negative effect of another (i.e.,
commit), resulting in an overall degradation in performance for some workloads.

In this chapter we presented Rlnval, an STM implementation showing that it is possible
to mitigate the effect of all of the critical path overheads. RlInval dedicates server cores
to execute both commit and invalidation in parallel, and replaces all spin locks and CAS
operations with server-client communication using cache-aligned messages. This optimizes
lock acquisition, incremental validation, and commit/abort execution, which are the most
important overheads in the critical path of memory transactions.



Chapter 10

Modeling Transactional Data
Structures

The last two decades witnessed many efficient designs of concurrent data structures. A
large set of them shares a common design principle: each operation is split into a read-
only traversal phase, which scans the data structure without locking or monitoring, and a
read-write commit phase, which atomically validates the output of the traversal phase and
applies the needed modifications to the data structure. As we showed in Chapter [3] our
OTB methodology, along with other different approaches [3, [101], extended those designs for
allowing the composition of multiple operations into atomic transactions by building a single
read-only phase and a single update phase for the whole transaction. As a result, we observed
a set of data structures that are optimistic and composable. The former because they defer
any locking and/or monitoring to the comit phase; the latter because they allow atomic
executions of multiple operations. Relying on our discussion about Optimistic Semantic
Synchronization (OSS) in Section [3.4] we name the set of data structures (either concurrent
or transactional) that have the aforementioned characteristics as OSS data structures.

Although all the OSS data structures are designed similarly, the literature lacks of a unified
model to reason about the correctness of those designs. In this chapter we made a step
towards filling this gap by leveraging a recent approach that models data structures with
concurrent readers and just a single writer (called single writer multiple reader, or SWMR).

10.1 Background and Definitions

In this section we illustrate the background of this paper, which is composed of some basic
definitions and an overview of the SWMR model [70]. Throughout the paper, we use similar
terminologies as [70] in order to allow an easy comparison with other existing models.

131
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We define a data structure as a set of shared variables X = {x1,z5,...2;,...} where opera-
tions can be invoked on. An operation execution| O, is a sequence of Stepso = s+ 8% ... S5,
where: s}, is the invocation of the operation, i.e., invokeo, and s? is the operation’s return,
i.e., returno(vper). A dummy return(void) step is added for any operation that does not
have an explicit return value. Any other step is either readp(z;) or writep(x;,v,) (those
steps comply with their common meaning). A transaction T is a sequence of operations
surrounded by a begin and commit/abort steps (T = begin - Oy - Og - ... - Oy - commit/abort).
Steps are assumed to be executed atomically. The size of a transaction is the number of
operations it executes. An operation is called read-only if it does not execute any write step;
otherwise it is called update. Consequently, a transaction is read-only if all its operations
are read-only. A sequential execution of a data structure ds is a sequence of non-interleaving
operations/transactions on ds. A concurrent execution pu is a sequence of interleaved steps
of different operations. A transactional execution p is a sequence of interleaved steps of
different transactions.

The history H of a concurrent execution p on a data structure ds, H|u, is the subsequence of
p with only the invoke and the return steps. In the case of a transactional executions, H |u
also contains the begin, commit and abort steps of the transactions. A pending operation
(transaction) in H is an operation (transaction) with no return(commit) step. complete(H)
is the sub-history of H with no pending operations (respectively transactions). A history H
is sequential if no two operations (respectively transactions) in H are concurrent. We say
that two operations (respectively transactions) are concurrent if the return step (respectively
either the commit or the abort step) of one does not precede the invoke (respectively the
begin) step of the other one.

Any data structure ds has a sequential specification, which corresponds to the set of all the
allowed sequential histories on ds. A history H is linearizable [60] if it can be extended
(by appending zero or more return (respectively commit) steps) to some history H' that
is equivalent (i.e., has the same operations, transactions, and return/commit/abort steps)
to a legal (i.e., satisfies the sequential specification) sequential history S such that non-
interleaving operations (and transactions) in H’ appear in the same order in S.

The shared state s of the data structure is defined at any time by the values of its shared
variables, and it is selected from a set of shared states S. Each operation (respectively
transaction) has a local state [, which is defined by the values of its local variables, that is
selected from a set of local states L,,(Lr). The sets S, L,, and L7 contain initial states
So, Lop, and Lp, respectively (we call both the local states L for simplicity). A step in
the execution of each operation (respectively transaction) represents a transition function
on S and L,, (respectively Lr) that changes the shared state of the data structure and the
local state of the operation (respectively transaction) from (I, s) to (I',s’). At any point
of a concurrent (respectively transactional) execution p, if we have [ pending operations

In this paper we also use the term operation (transaction) to indicate an operation (a transaction)
execution.
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(transactions), we will have [ local states (one for each operation/transaction) and one shared
state s.

Given a data structure ds and an operation O (a transaction T') in a concurrent (respectively
transactional) execution p on ds, we define pre-statep (pre-stater) as the shared state of ds
right before invokeo (respectively beginy), and post-stateo (post-stater) as the shared state
of ds right after returno(vye) (respectively commitr). We also say that a shared state is
sequentially reachable if it can be reached in some sequential execution of a data structure.

The single writer multiple reader (SWMR) model assumes concurrent executions on a data
structure ds where the steps of two update operations in any concurrent execution y on ds do
not interleave (conversely, a multiple writer multiple reader (MWMR) model is the one that
allows such an interleaving). In the following we report the definition of base condition and
base point as defined in the SWMR model of [70]. Note that, unlike in [70], in our models
those definitions apply to all operation/transactions and not only to read-only operations.

- base condition: Given a local state [ of an operation O on a data structure ds, a base
condition ¢ for [ is a predicate over the shared state of ds where every sequential execution
of O starting from a shared state s such that ¢(s) = true, reaches [. A base condition for
a step s' (named also ¢') is the base condition for the local state right before the execution
of s".

- base point: An execution of a step s°, with a local state [, in a concurrent execution j has
a base point if there is a sequentially reachable post-state s, such that the base condition
¢'(s) holds.

The combination of the two definitions makes an interesting conclusion: if an execution of a
step s° in an operation O has a base point in a concurrent execution j, this means that there
is a sequentially reachable post-state from which O can start and reach s* with the same
local state . That also means that the execution of s* in p would have been the same as
performed in a sequential execution. Accordingly, if every step in every concurrent execution
of ds has a base point, then we say that ds is valid. Informally, that means that ds is never
subject to “bad behaviors” (e.g., division by zero or null-pointer accesses).

In addition to the above definitions, the SWMR model [70] names a data structure ds
as regular if for each history H, the sub-history composed of all write operations in H
enriched with one read-only operation (if any) in H is linearizable. The SWMR model
ensures regularity by restricting the candidate base points for the return steps of every read-
only operation ro to be the post-state of either an update operation executed concurrently
with ro in p or of the last update operation that ended before ro’s invoke step in p (those
candidate base points are called regularity base points).
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10.2 The Single Writer Commit (SWC) Model

As mentioned before, in our models each operation is split into read-only traversal phase
and read-write commit phase. This representation is general enough to cover also those
operations with either an empty traversal (i.e., operations whose first step is a write) or an
empty commit phase (i.e., read-only operations).

In this section we present the Single Writer Commit (SWC) model, a MWMR model in
which both read-only and update operations run concurrently with the restriction that only
the commit phases are atomically executed with the Single Lock Atomicity (SLA) semantics
(i.e., as if they are executed sequentially). For the sake of simplifying the presentation, we
first introduce this model by assuming that the commit phases are protected by a single
global lock. Then, in Section we discuss the case of concurrent commits.

Figure [10.1] shows an example of this case with five update operations, uos, ..., uos, and one
read-only operation ro. In this example, the commit phases of all the update operations do
not interleave, even if the operations themselves interleave. The read-only operation ro is
concurrent with uos, uos, and uos. In particular, it interleaves with the commit phases of
uoz and uoy4, while its commit phase only interleaves with uoy.

vo, vo, vo, U0’  UOSC U0, U0 U0’  UOS
vo, vo, uo," U0/ vo,”  UOfC
- NN
RO RO" ROC
(a) Multiple Writers (b) Single Writer Commit

Figure 10.1: An example of a MWMR concurrent execution (a) that can be executed using
our model by converting it to a single writer commit scenario (b).

Algorithm [28 shows a practical (and simple) data structure implementation under the SWC
model: a linked-list with three operations readLast, insertLast, and removeLast (which
gives the semantics of stacks). The head of the list is assumed to be constant (i.e., the
widely used sentinel node). We defer to Section the discussion about more complex
and practical cases. Although all the executions of readLast (respectively insertLast) are
read-only (respectively update), some execution of removeLast (those that return at line
are read-only and some others (those that return at line are update. Unlike the SWMR
model, SWC' does not categorize operations in a concurrent execution p as read-only or
update a priori, but rather it assigns the operation’s type considering its actual execution in
1, which therefore increases the level of concurrency. The SWC' model considers ezxecutions
rather than operations as its building blocks. Accordingly, in Algorithm 28] removeLast is
not treated as an update operation when the linked-list is empty.
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Algorithm 28 A linked list with three operations implemented under the SWC model.

1: procedure READLAST 20: lockRelease(gl)
2: last <L 21: end procedure
3: next < read(head.next) > ¢y : true
4: while next #1 do 22: procedure REMOVELAST
5: last < next 23: last +L1
6: next < read(last.next) > ¢2 : head = last  24: secondlast = read(head) > ¢7 : true
T return(last) > $3 : head = last 25: next « read(head.next) > P : true
8: end procedure 26: if next =1 then
27: return > ¢g : head.next =1
9: procedure INSERTLAST(n) 28: while next #1 do
10: last L 29: secondLast = last
11: next < read(head.next) > dg:true 30 last + next
12: while next #1 do 31: next < read(last.next) > $10 : head = last
13: last < next . 32: lockAcquire(gl)
14: next < read(last.next) > ¢5 : head = last b é11 : head = last
15: lockAcquire(gl) 33: if read(last.next) #L1 then
> ¢6 : head = last  34: lockRelease(gl)
16: if read(last.next) #1 then 35: go to[23|
17: lockRelease(gl) 36: write(secondlast.next, 1)
18: go to 37: lockRelease(gl)
19: write(last.next, n) 38: end procedure

Figure shows how we model a typical OSS data structure operation. Any operation
O is split into two sequences of steps: OT = s' - ... - s™: and OY = s™F!1. . .s" The
sequence O represents the traversal phase, which does not contain any write step. The
sequence O represents the commit phase, which always ends with returno(v,e) and can
contain both read and write steps. Given that a data structure under the SWC model
allows concurrent traversal phases and a single commit phase at a time, the transitions from
the shared traversal phase to the exclusive commit phase and vice versa are represented by
two auxiliary steps S’ and S” (e.g., they can be an acquisition/release of a global lock as in
Algorithm . We do not assume the presence of such a transition in read-only operations,
thus, in those cases, S" and S” are just dummy steps that do nothing. Excluding the auxiliary
steps, the commit phase of a read-only operation O is O = returno(vyer)-

pre-commit-state post-state
S':L JS":U
=] &2 eriw R T < PSS D> o < S S>>
s'=1 s*=r s"=r s™l=r/w §"=
. ) tlT t1C tZT tZC tuT tuc tuHT tu+lC
or o dT o°¢
(a) (b)

Figure 10.2: a) Splitting the operation to support concurrent MWMR execution with single
writer commit (SWC). OT is the traversal phase; O is the commit phase. l:invoke, r:read,
wiwrite, R:return, L:lock, U:unlock. b) Unsuccessful trials are part of the overall traversal
phase in our model.
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In practice, OSS data structures usually start the commit phase by a validation mechanism
to ensure that the output of the traversal phase remains valid until the transition to the
exclusive commit mode; otherwise the traversal phase is re-executed. That is why it is
important to include this re-execution mechanism in our model. To do so, we define for each
operation O on a data structure ds a variable u that represents the number of unsuccessful
trials (u € {0,1, ..., oo})ﬂ The value of u is determined according to the design of ds and the
concurrent execution p that includes O. Every unsuccessful trial resets the local state of the
operation to the initial | state before starting the next trial. The commit phases of all the
unsuccessful trials are clearly not allowed to write on the shared memory because of their
inconsistent local state. As shown in Figure , the traversal phase of the operation O
includes all those unsuccessful trials t; - t5 - ... - t,,, and the commit phase of O is only the
successful commit phase of the last trial (¢,,1°).

In Algorithm the commit phase of readLast is always successful (in fact, the operation
itself is wait-free [50]). Thus, it is easy to identify the traversal phase (the whole execution
before line @, and the commit phase (the return step at line . Identifying insertLast’s
phases is more complicated because it may have unsuccessful commit phases. According
to our definitions, the traversal phase of an operation O with u unsuccessful trials is a
concatenation of u executions of lines — in which the condition of line is false, followed
by one execution until right before line . The commit phase is formed by lines -
in which the condition of line [16is true. The phases of the read-only (respectively update)
executions of removeLast are determined similar to readLast (respectively insertLast).

The definitions of base conditions, base points, and validity are similar to the SWMR model,
but in the SWC model they are defined for both read-only and update operations. However,
the definitions of regularity base point and reqularity need to be refined. First, as SWC' is a
MWMR model, we have more than one definition of regularity on registers [92] and there is
no prior work that discusses which of them can be applied to data structures. Second, putting
momentarily this point aside (we will take into account this point later in Section , the
weakest definition of regularity in [92] entails that, for a history H, every sub-history that
contains all the writes plus one read is linearizable. In the SWMR model, update operations
are linearizable because they are executed sequentially. However, in the SWC' model, this is
not trivially guaranteed because an update operation may be invalidated before performing
its exclusive commit phase. To avoid such an issue, in our model we first define a new state
for each update operation uo, called pre-commit-state,,, which represents the local state of
uo after the auxiliary step s’ and before the first real step in the commit phase, s™*'. Then,
we guarantee the linearization of the update operations as follows.

Definition 1. (Executions under SWC) In a concurrent execution p with k update oper-
ations whose commit phases are sequential, those k operations are totally ordered according
to the order of their commit phases {u; <. uy < ... <¢ ur}. A dummy ug operation is

2If for an operation O it is possible to have an execution with u = oo, this (informally) entails that the
operation is not wait-free.
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added such that post-state,, is Sp. A concurrent execution p is under the SWC model if
update operations have sequential commit phases, and for every update operation w; in i,
pre-commit-state,, observes post-state,, .

From now on, we focus on those executions under the SWC' model according to Definition [T}
Theorem [5| shows that in those executions, update operations are linearizable.

Theorem 5. Given a concurrent execution j with k completed update operations, and the
corresponding history of those k operations Hy|u, if p is under SWC model, all the post-
states of the k operations are sequentially reachable, and Hy|u is linearizable.

Proof. Let us consider an execution p under the SWC model with k& completed update
operations such that they are ordered according to the order of their commit phases (i.e.,
Uy <¢ Uz < ... <¢ Ug) by Definition . Let us also consider the history Hy|u that contains
the invocation and return steps of those k operations. We prove that all the post-states of
the k operations are sequentially reachable by induction.

As base step, we prove that the post-state of the first update operation committing in p, i.e.,
uq, is sequentially reachable. This is guaranteed because u, is the first writer by construction
of 1, and no any other operation can concurrently apply write steps when wu; is executing its
commit phase given Definition (1| of SWC. Therefore u;’s base point is the initial state.

As inductive step, we suppose that the post-states of the operations u; <. us <. ... <. Ui_1,
with 1 < ¢ < k, are sequentially reachable, and we prove that also the post-state of wu;
is sequentially reachable. According to Definition , pre-commit,, observes post-state,, ,
which means that u; starts its commit phase observing a sequentially reachable shared state.
As u¢ is executed in isolation from concurrent writers (by Definition , it is able to generate
a sequentially reachable post-state right before it reaches the auxiliary step s”. Thus, post-
state,, is sequentially reachable.

We now prove that Hy|u is linearizable. By construction of u, Hy|p contains only completed
operations, thus complete( Hg|pn) = Hy|p. Then, consider a sequential history S that contains
the k£ update operations in the order of <.. Clearly, <p, |, S<g because if u; <p, |, u;, the
return step of u; precedes the invoke step of w;. Therefore uw; <. u;, and thus u; <g u;.
Then, for each operation w; in S, pre-commit,, also observes post-state,, ,, which infers
that the operations have the same return values in both S and Hy|u, i.e., S and Hy|p are
equivalent. Hence, Hy|u is linearizable.

]

The intuition of the proof is that the operation that commits first trivially produces a
sequentially reachable state. Based on Definition [I| at commit time each operation observes
the post-state of the operation right before it. Then, by induction, all operations produce
sequentially reachable states. Therefore, update operations are linearized according to the
order of their commit phases.
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Based on Theorem [5] in any concurrent execution p with & completed update operations, we
can identify k+1 sequentially reachable shared states that would be the candidate base points
for each step in u. Those points are the post-states of the k completed update operations,
in addition to the initial state S. Next, we refine the definition of reqularity base points as
follows:

Definition 2. (Regularity base points under SWC) A base point bp of a step s' in a
read-only operation ro of a concurrent execution p under the SWC model is a regularity base
point if bp is the post-state of either an update operation whose commit phase is executed
concurrently with ro in p or of the update operation whose commit phase is the last one
completed before ro’s invoke step in p (the initial state is the default).

This definition simply restricts the candidate reqularity base points of any read-only operation
to be the post-state of the operations with interleaving commit phases rather than those of
the interleaving update operations. For example, in Figure the post-state of uosz and uoy
are candidate reqularity base points for ro’s steps, while uos is excluded because its commit
phase starts after ro’s return point (uos is not excluded in the original reqularity in [70]).
Also, the definition uniquely identifies one update operation among those committed before
ro (uoy in our example). wo; is excluded because its commit phase is not the last one before
ro’s invocation. Because the commit phases of update executions do not interleave, this
candidate is always deterministic.

Finally, we define the meaning of regular execution under SWC' in Theorem [6] Intuitively,
the theorem states that a concurrent execution is regular if i) every step in every read-only
operation and in the traversal phase of every update operation is valid (i.e., all operations
execute without any “unexpected” behavior); and i) the history of the update operations plus
one read-only operation is linearizable (recall that Theorem [5| already proves linearizability
of the set of the update operations).

Theorem 6. A concurrent execution p under the SWC model is regular if:

1. In the traversal phase of every operation in u, every step has a base point with some
base condition.

2. The pre-commit-state of every read-only operation in i has a reqularity base point
with some base condition.

Proof. In the first part of the proof we prove wvalidity, which is implied by 1).

In fact, assume first an update operation u; in p. If every step sf in u; traversal phase has a
base point with some base condition, and by the definition of base point and base condition,
this means that the local state observed by u; right before executing sf is sequentially reach-
able. Also, according to Definition [T and Theorem [5] the local state before the first step in
u;’s commit phase, s (which is pre-commit-state,,) also observes a sequentially reachable

i
shared state. This means that u; is safely executing all its steps until s7"*' without any
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unexpected behavior. Starting from this step, u; is executing in isolation because it already
started its exclusive commit phase, so all the next step until s” will be also safely executed
without unexpected behaviors. Hence, all update operations are valid.

Now, assume a read-only operation ro in p. In the same sense, by the definition of base point
and base condition, every step in ro observes a sequentially reachable shared state.

In the second part of the proof we prove that 2) is sufficient for guaranteeing that the sub-
history of H|u composed of all write operations in H |p enriched with one read-only operation
(if any) in H|p (which we name H,,|u) is linearizable. To do so, we rely on the proof of
regularity in [70], given that we define regularity base points in the same way, according to
Definition [2} we restrict the candidate base points for each read-only operation ro to be the
post-state of either an update operation whose commit phase is executed concurrently with
ro in u or of the update operation whose commit phase is the last one completed before ro’s
invoke step in pu.

O

In [70], the authors define a wisible mutation point for an update operation as the write step
that writes to a shared variable that might be read by a concurrent operation. They prove
that a regular concurrent execution where each operation has a single visible mutation point
is linearizable. Proving that the same applies in our model is straightforward (more details

are in Section [10.4]).

Definition 3. (Regular data structures under SWC) A data structure ds is regular
if every concurrent execution on ds is reqular under the SWC model.

Theorem 7. The linked-list in Algorithm |28 is reqular.

Proof. To proof that the linked-list (1) is regular, we prove first that every step in every
operation in [l has a base condition. Then we prove that any concurrent execution on [l
complies with the SWC model (Theorem . And finally, we prove that every concurrent
ezecution on [l is regular (Theorem []).

The predicates ¢; in Algorithm are identified for each step that is reading from the
shared memory, in addition to the return steps. We first prove that if those predicates are
base conditions, all the other steps will also have a base condition similar to one of those ¢;
predicates. This is because any other step s® in any operation O (i.e., readLast, insertLast,
or removeLast) performs one of the following actions:

- Writing in the shared memory. By definition, all those steps exist in the commit phases of
insertLast and removeLast that are ezclusive (because the lock is acquired) and successful
(because the operation cannot perform the first write except in the successful commit).
From our assumptions, the first step in those phases has a base condition (because it is a
read step from the shared memory). Without losing generality, we call this base condition
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¢; (specifically, it is ¢g for insertLast and ¢1; for removeLast). By the definition of base
condition, every sequential execution starting from a shared state s where ¢;(s) = true
reaches the local state [ before the first step in the commit phase. Since the whole execution
after this step is isolated, then every sequential execution starting from a shared state s
where the same ¢;(s) = true reaches the local state [ before any step in the commit phase,
and thus ¢; is the base condition for all the other writing steps in the commit phase.

- Reading from the local state [ of the operation. [ is the same as the local state after the
previous step that reads from the shared memory s57¢¢ (or the initial local state L if this
step does not exist). Thus, in the same way, it has the same base condition as s (or
true if the local state is L).

- Writing on the local state [, which results in a new local state I’. It is clear that if a
sequential execution reaches [, then it also reaches [’. So this step can have the same base
condition as the step before it.

- Acquiring/releasing the locks. This is irrelevant from the shared state of the data structure,
and thus it can also use the same base condition as the step before it.

Next, we prove that ¢; (i = 1,2,...,11) is a base condition for the corresponding step. For
the predicates, ¢1, ¢4, @7, and ¢g, the base condition is clearly true because they are the
first read steps from the shared memory in the operations (actually, ¢7 may be neglected
because the head pointer is constant).

For ¢g, the local state is as follows: last and secondLast are constants, and next is null. If
we start from a shared state where head.next is L, then clearly we will reach line [27] with
this local state observed.

For ¢s, ¢5, and ¢y (inside the while loop), the local state is as follows: both last and next
are the same, and they are different from L (also, in removeLast, secondLast has the old
value of last). If we start from a base condition in which last is reachable from the head,
then any sequential execution will reach the same values of last and next (and secondLast
in removeLast) at some iteration. This is because the while loops start from the head of the
linked list and end when they reach 1.

For (¢3, ¢¢, and ¢11), the local state is as follows: nezt is L, last is the last item in the
list, and secondLast is the one before it. If we start from a shared state such that last is
reachable from the head, and its next equals L, then we will reach those steps only when we
break the while loops, which means that next is 1, and the other two variables are reading
the correct values.

Now we prove that any concurrent execution of ds is correct under SWC' by proving that
commit phases of update operations are sequential and that for each operation O;, pre-
commit-stateo, observes post-statep, ,. The first claim is trivial, because the commit phases
are protected by the global lock gl. To prove the second claim, looking at lines 16| and
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of the commit phases of an operation O; in a concurrent execution pu, the condition at those
lines has to be false because it is the successful commit phase and not one of the unsuccessful
trials, which means that pre-commit-stateo, observes last.next =_L. The only way to achieve
that is when the update operation O;_; committed before O; either inserts the node observed
by last in O;’s local state, or deleted the node the node after last (making last.next =L1).
Thus, O;_; for sure generates a shared state where last is reachable from the head, i.e.,
pre-commit-stateo, observes post-stateo, , (A special case in insertLast, when no item in
the list, which is trivial because this way last =1 and head.next =1).

The next step is to prove validity. We do so by proving that in any concurrent execution p
every step s in every operation O has a base point where ¢, is true. All the steps except
¢9 and those where ¢; = true requires similar base points (i.e., a post-state of an update
operation where the local variable last represents a node that is reachable from the head).
Intuitively, last was linked at some point of the execution to the list (i.e., reachable from
the head), or otherwise O would not be able to reach it in the while loop starting from the
head. What we want to prove is that this point of execution is one of the post-states of the
operations. In fact, this point can be the initial state Sy if the node belongs to the initial
state of the list, which becomes the base point of the step (recall that Sy is accepted as a
base point). Otherwise, the point cannot be an intermediate step in any operation simply
because addLast and removeLast have only one write operation. Then, every step whose
base condition is (head = last) has a base point in y. For the steps where ¢; = true, any
post-state (including Sy) can be a base point. For ¢g, the base point would be either Sy
(if the list is initialized empty) or the post-state of the removeLast oepration that detached
head.next from the list (which has to exist or otherwise line [27] would not be reached).

The last step is to prove regularity. As we already proved that [l is wvalid, the remaining
part is to prove that the base point of the return step of each readLast operation ro in any
concurrent execution y is a reqularity base point. By contradiction, assume that neither the
post-state of a concurrent update operation nor the post-state of the operation committed
before ro is a valid base point of the return step. This means that all those states do not
observe last to be reachable from the head, i.e., last was never reachable from the head
during the whole execution of ro, which contradicts the fact that the while loop starts from
the head and ends with last.

]

10.2.1 Allowing Concurrent Commits

The implementations of 0SS data structures usually do not rely on a global lock-based
mechanism to finalize the writes, but rather, in order to increase the level of concurrency,
the commit phase either executes inside TM transactions (hardware or software) [I01, 1], or
leverages the locking mechanism with fine-grained locks that protect (at least) the written
locations [48, 54, (59]. Fortunately, some of those techniques provide the same atomicity
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guarantees as global locks. For example, some TM implementation provides single lock
atomicity (SLA) guarantees [78] (e.g., the HTM transactions provided by Intel’s TSX ex-
tensions [65] and the SLA version of NORec [25]). By definition, SLA guarantees that all
the non-transactional reads observe the same serialization of all the concurrent transactions.
Thus, if those TM are used to execute the commit phases instead of serializing them with a
global lock, then we can easily prove that the same guarantees are fulfilled. In fact, in [7§]
the authors formally prove that executing atomic blocks with SLA semantics is equivalent
to executing them using synchronized blocks protected by a single lock, which implies that
our model is safe under this new assumption.

An interesting extension of this direction is to allow TMs with weaker semantics to be
used. For example, Disjoint Lock Atomicity (DLA) [78] guarantees that only conflicting
transactions are observed in the same order. Asymmetric Lock Atomicity (ALA) [78] relaxes
DLA by ordering transactions only by forward dependences. Clearly, data structures that
use those semantics cannot be covered by the current version of SWC' because they break
the total order of the commit phases, which is required for any concurrent execution to be
admitted by SWC. At this stage, all those data structures can still be covered by our models
if they execute their commit phases inside transactions under the SLA semantics (e.g., HTM
transactions, which is not expected to severely affect the performance because it exploits
the efficiency of the HTM hardware components). However, we believe that extending our
model to support those semantics is feasible, so we consider that as a future work.

10.3 The Composable Single Writer Commit (C-SWCQC)
Model

We now extend our model by allowing the composition of multiple operations into atomic
transactions. For the sake of simplicity, we assume that all the operations belong to the
same data structure, then we briefly discuss how this assumption can be relaxed. Algorithm
shows an example of a transaction under the C-SWC model.

Algorithm 29 An atomic transaction on a composable version of the linked-list of Algorithm

procedure ATOMIC: T}
=25
if readLast() # x then
insertLast(x)
if readLast() # x then
... // illegal execution

end procedure

In the C-SWC model, as shown in Figure [10.3] each operation O; is split into traversal
(OF) and commit (OF) phases, and the transaction itself is split into a traversal phase that
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combines all the traversal phases of the operations (i.e., T7 = start - OT - O - ... OF), and
a commut phase that combines all the commit phases, surrounded by two auxiliary steps to
move the execution to/from the exclusive mode (i.e., T¢ = S’-O¢-OY -...- O - commit - S").
Like SWC, we assume for simplicity that commit phases are protected by a single global lock.
However, the same arguments adopted in SWC' can be applied here to consider concurrent
executions under the SLA semantics. We also assume that the commit phases of transactions
are the successful ones, and any unsuccessful trial is included in the transaction traversal
phase.

post-traversal-state | post-state

R N s
s'=I s’=r sm=

or oc
(a) Operation split

post-traversal-state, post-state ,

T
Begin qummit

OT OT OT s' \()Cocr OC SH
1 2

(b) Transaction split
Figure 10.3: Splitting operations and transactions in the C-SWC model.

Figure shows how operations are split in the C-SWC' model. First, the return step of
each operation is shifted to be the last step of its traversal phase. This is important because
the return value of the operation may be used later in the transaction (e.g., lines |3 and || in
Algorithm . Second, the auxiliary steps S’ and S” are removed from the commit phases
of operations and they appear only once in the commit phase of the enclosing transaction.
Finally, a dummy step s"°~™"i is added to the commit phase of any read-only operation
ro. This dummy step becomes the only one in the commit phase of ro because the real
return step is shifted to the traversal phase (as said before).

As shown in Figure[10.3] we define for each operation O; one more state called post-traversal-
stateo,, which is the local state before O;’s return step. We also define for the whole trans-
action T" a state called pre-commit-stater which is the local state after s'.

The first step in formalizing the C-SWC model is to refine Definition (1| and Theorem
to guarantee that update transactions are strict serializable, which also implies that their
operations are linearizable.

Definition 4. (Ezecutions under C-SWC) In a transactional execution p with k update
transactions whose commit phases are sequential, those k transactions are totally ordered
according to the order of their commit phases {T7 <. To < ... <¢ Tx}. A dummy T,
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transaction is added such that post-stater, is So. A transactional execution p belongs to the
C-SWC model if update transactions have sequential commit phases, and, for every update
transaction T; in p, pre-commit-stater, observes the post-stater, .

Theorem 8. Given a transactional execution p with k completed update transactions, and
the corresponding history of those k transactions H[ |p, if p is under the C-SWC model,
then all the post-states of the k transactions are sequentially reachable, and H |u is strict
serializable.

Proof. The proof follows the proof of Theorem . HF|u is strict serializable not only serial-
1zable because the commits in its equivalent sequential history follow the order of the commit
phases in H} |u.

]

Corollary 2. Given a transactional execution p with k completed update transactions, and
the corresponding history of the operations in those k transactions Hy|u, if pu is under the C-
SWC model, then all the post-states of the operations in those k transactions are sequentially
reachable, and Hy|u is linearizable.

Next, we observe that the definitions of base points and regularity base points in the C-SWC
model have to be changed as follows. First, and intuitively, reqularity base points have to be
selected from the post-states of the transactions rather than operations, because those are the
serialization points in the execution. For base-points, it is safe to keep using the post-state of
the operations like the SWC' model. This is because any execution should never be subject
to any unexpected behavior (e.g., division by zero) if it always observes a shared state that
is reachable by a sequential execution (even if this shared state breaks the atomicity of the
transactions). Second, any step is seen as a step in a transactional context rather than just
an operation.

Definition 5. (Base conditions under C-SWC) Given a local state | of a transaction
T on a data structure ds, a base condition ¢ for | is a predicate over the shared state of ds
where every sequential execution of T' starting from a shared state s such that ¢(s) = true,
reaches l. A predicate ¢' is a base condition for a step s* in an operation O if it is the base
condition for every local state right before the execution of s in every sequential execution
of every transaction that contains O.

Definition 6. (Base points under C-SWC) An exzecution of a step s', with a local state
l, in a transactional execution p has a base point if there is a sequentially reachable post-state
s, such that the base condition ¢'(s) holds.

Definition 7. (Regularity base points under C-SWC) A base point bp of a step s' in
a transaction T in an execution p under the C-SWC model is a reqularity base point if bp is
the post-state of either an update transaction whose commit phase is executed concurrently
with T in p or of the update transaction whose commit phase is the last one completed before
the begin step of T in u (the initial state is the default).
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Furthermore, unlike the SWC model, the consistency of a data structure under C-SWC' has
to include the notion of internal consistency of a transaction, which informally means that:

- The commit phase of each operation reflects what the operation observed in its traversal.
For example, in Algorithm [29] if the readLast operation in line |3| returns x, the same value
x should be the value of the last node in the linked-list when the commit phase of readLast
is executed during the transaction’s commit.

- The shared state produced by an operation execution is visible to the subsequent operations
in the same transaction. For example, in Algorithm 29| the assertion in line [5|should always
pass because, “semantically”, lines 3| and 4| guarantee that x is the last element in the list
before line [5| (even though the insertion will not be placed into the shared state until the
transaction’s commit).

- The return steps of the operations in the same transaction observe the same shared state.

Those guarantees are formalized as follows:

Definition 8. (Internal consistency under C-SWC) A transactional execution u is
internally consistent if for every transaction T in p, the post-traversal-states of every
operation Oy, have the same base point as pre-commit-stater, .

Definition |8 intuitively covers all the cases above because it guarantees that there is a shared
state from which the execution of any transaction 7" in p in isolation will result in the same
local states observed before the return of each operation (during the traversal phase of T)
and before starting the commit phase of T'. Since the condition in Definition [8] is sufficient
(but may not be necessary) for any data structure to be internally consistent, it allows the
programmer to use the notion of base conditions and base points to prove the correctness of
its design, which is our main goal.

Given the above definitions, the final step is to define reqular executions under the C-SWC
model as follows.

Theorem 9. A transactional execution p under the C-SWC model is regqular if:

1. in the traversal phase of every transaction in i, every step has a base point with some
base condition.

2. 1n every transaction Tj in u, the post-traversal-states of every operation Oy have the
same reqularity base point as pre-commit-stater, .

Proof. p is clearly internally consistent because point 2 is the definition of internal consis-
tency (Definition . The remaining of the proof, which is proving validity from point 1 and
proving regularity from point 2, follows the proof of Theorem [0]

]



Ahmed Hassan Chapter 10. Modeling Transactional Data Structures 146

The first point adds walidity similarly to the SWC model. The second point in Theorem
[9 is the same as Definition [§] except that it restricts the common base point to be a reg-
ularity base point. In fact, our definition of reqularity is tightly related to the consistency
conditions defined for general transactions. Specifically, the second point in Theorem [9] is
sufficient for guaranteeing that a sub-history of H” | composed by all the committed update
transactions in H” |p plus another transaction in H” |y (i.e., either read-only or update and
either live/aborted or committed) is strict serializable. This is similar to extended update
serializability [2, 87) with the addition of “strictness”, i.e., preserving the real-time order.
Also, validity, that is guaranteed by the first point, is not covered in serializability.

Finally, we discuss how operations on different data structures can be executed in the same
transaction under the C-SWC' model as long as the data structures are independent. This
is a reasonable assumption because data structures are usually accessed only through their
“independent” APIs. Intuitively, if two data structures ds; and ds, have non-intersecting sets
of shared variables X; and X5, and both ds; and ds, are reqular under the C-SWC' model,
then we can build a transactional execution that compose their operations without the need
to redefine base conditions of each (because they are independent). The only conditions
in doing that are: i) serializing all transactions using the same TM (that guarantees SLA
semantics); and i) applying the same restrictions on the candidate base points and regularity
base points for each step in the “mixed” transactional executions. Interestingly, if we consider
each memory location not included in the shared state of any data structure as a special data
structure with two operations Read and Write, then we can define generic transactions with
any data structure operations and any memory accesses to follow the C-SWC model. That
enables the possibility of including techniques like [T0T], 48] under our model.

10.4 Comparison With Existing Models and Techniques

In this section we overview the intersections between our models and the literature. This
comparison helps applying our models to the current designs of concurrent and composable
data structures. The first is clearly the relationship with the SWMR regularity model [70],
which is shown in Theorem Intuitively, since the write operations in a reqular execution
pu under the SWMR model are executed sequentially, we can show that u is also regular
under the SWC' model. This is done by considering the commit phase of any operation in
1 as the operation itself, because this way the definition of regqularity base point in p under
SWC' (Definition [2) becomes equivalent to the corresponding definition in SWMR [70].

Theorem 10. For each concurrent execution p, if p is reqular under SWMR, then p is
reqular under SWC.

Proof. We first identify the split of operations in p in the SWC' model, which is straightfor-
ward: for each update operation wo, consider an empty traversal phase and a commit phase
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that has all steps of uo. The split of read-only operations is identified as usual (only the
return step is in the commit phase). Using this split, u complies with SWC' (Definition
because it has sequential commit phases, and for each operation O;, pre-commit-stateo,
obviously observes post-statep, , (because the whole operations are in the commit phases).

Then we prove that p is valid under SWC. In fact, the definition of validity is the same in
both models, and the observed base-points are the same too (because operations have the

same sequential order and generate the same post-state). Then, as we assume by definition
that p is valid under SWMR, it is valid under SWC.

Now we prove that p is regular under SWC. Given that p is reqular under SWMR, every
read-only operation ro observes one of the post-states of the operations intersecting with it
or the one completed right before it. Consider without losing generality that it is u;. Since
we consider the commit phase as the whole operation when we model p under SWC, then the
commit phase of u; is clearly either intersecting with ro or the last commit phase completed
before it. Hence, u; is also a regularity base point for ro under SWC. Thus, p is regular

under SWC.
O

No previous work discusses reqularity in MWMR data structures. However, MWMR reg-
ularity is discussed thoroughly for registers in [92]. Our models can be compared to those
definitions if we consider that: the shared state of the data structure is a register; each
read-only operation ro is a read from the register that returns pre-commit-state,, (which is
the local state before ro’s return step); and each update operation wo is a write that updates
the register to post-state,,. Briefly, the authors of [92] identified three anomalies that can
happen in a MWMR concurrent execution. Based on those anomalies, a lattice of consis-
tency conditions is built according to the possibility of having each of them. The weakest
consistency condition (that allows all the anomalies to happen) is called MW WeakReg and
is similar to the definition of regularity used in the previous sections. The anomalies are
briefly described in the following. 1) For any two reads r; and 79, the set of writes that start
before the completion of either r; or ry is not perceived by both reads as occurring in the
same order. A model that disallows this anomaly is said to satisfy the M WReg consistency
condition. 2) Two reads performed by the same thread (or process) may be observed in a
different order than the one in which they occur at that thread (or process). A model that
satisfies MWReg and disallows this anomaly is said to satisfy MWReg+ consistency condi-
tion. 3) Two reads observe different partial causal order of all the writes (i.e., a real-time
order that takes into consideration the “read-from” relations between reads and writes). A
model that satisfies M WReg+ and disallows this anomaly is proved to be atomic.

Theorem [11] proves that executions under our models avoid the first anomaly, and thus satisfy
at least MWReg. Intuitively, this is because they enforce one permutation of the update
operations (respectively transactions) to be observed by the non-transactional read steps in
the read-only operations (respectively transaction) and the traversal phases of the update
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operations (respectively transactions), either by executing the commit phases sequentially
or by using atomic blocks with SLA semantics.

Theorem 11. Given a data structure ds as a read/write register, every reqular concurrent
execution p on ds under the SWC model satisfies MWReg consistency condition.

Proof. Since p is regular under SWC, according to Theorem [6, then for each read-only
operation ro, the history of all the update operations plus ro, H, ,|p is linearizable, thus, it
is legal and p-consistent. From the definition of MWMR, consistency conditions in [92], this
is sufficient for u to satisty MW WeakReg.

Now we prove that the first anomaly described in Section cannot happen in pu, and
thus p satisfies MWReg, as follows. Given two read-only operations r1 and r2, since Hy, ,1|p
and H, ,o|p are linearizable, then they are equivalent to sequential legal histories S; and
S, respectively. Consider without the loss of generality two update operations in u, u; and
uj, we prove that the anomaly cannot happen by proving that w; <g, u; iff v; <g, u;. By
contradiction, assume without the loss of generality that u; <g, u; and u; <g, u;. Since this
is a case of registers, the anomaly can only happen if both u; and wu; precede both r1 and r2
in p. Hence, according to <g,, 71 observes the value written by u;. Since the commit phases
of u; and u; follow the SLA semantics (by the definition of SWC'), then what r1 observes
enforces the commit of u; to be completed before the commit of u;. As u; and u; precede r2
as well, then r2 also observes u;, which means that u; <g, u; (contradiction).

]

Finally, Theorem (12| proves that, similar to the SWMR model, adding SVMP is sufficient
for a data structure to be atomic.

Theorem 12. In both SWC and C-SWC models, if each update operation (respectively trans-
action) in each concurrent (respectively transactional) execution has a single visible mutation
point, then the data structures under those models are atomic.

Proof. The theorem can be proven in a similar way to the corresponding one in the SWMR
model. We prove that for the concurrent executions, as transactional executions can be
similarly proven. By definition, a single visible mutation point means that the commsit phase
of every update operation has at most one write step that affects the return values of the
concurrent read-only operations. Let us assume the history H|u of all the operations in
a concurrent execution p. We prove the thesis by proving that if u is regular and each
operation in y has a SVMP, then H|u is linearizable. First, as p is regular, then the history
of the update operations H,|u is linearizable. This means that there is a legal sequential
history S that is equivalent to H,|u (i.e., preserves the real-time order of the updates in u).
If we extend S to S’ by adding all the read-only operations as follows: if the last SVMP that
appears before the return step of a read-only operation ro belongs to an update operation
u;, then ro is ordered in S’ after u;. Assume that each read-only operation in S’ returns
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the same value as H|u, we will prove that S’ is legal and equivalent to H|p (which implies
that H|u is linearizable). To prove that, since the return step of ro in u observes the shared
state after the SVMP of u;, and ro comes after u; in S’, then the return values in both S’
and H|u are the same, which is a valid post-state in p. Thus S’ is legal. The order of the
read-only operations in S respects the real-time order in H|u because of the following. First,
two update operations trivially respect the real-time order because they admit the order of
the commit phases in u. For two reads, if their return values come after the same SVMP,
then they can be ordered in any way in S’, so we can select the order that respects their
real-time order in H|u. If they are not after the same SVMP, then the update operation
that includes this SVMP will enforce their real-time order in S’. Finally, for a read-only ro
operation with an update operation u;, assume that the update operation whose SVMP is
observed by rois u;. If u; = u;, then u; and ro are intersecting and can be ordered any way
in S”. Otherwise, ro will come after u; in S, which obviously puts ro in the correct real-time
order with respect to w; (because if u; is after (respectively before) w; it can be safely after
(respectively before) ro in §'.

]

Similar to our models, the LS-Linearizability [41] model adds the notion of wvalidity to lin-
earizability by defining the term local serializability. It roughly means that each process
observes a local serialization at the level of the operation steps. Although local serializability
achieves the same goal as walidity, it is more conservative because it requires that all the
steps of an operation belong to the same sequential execution.

On the implementation side, we claim that many concurrent and composable data structures,
beyond OTB, can be covered by our models. Here we report an example of each:

- Lazy linked-list [54]. This is the closest implementation to the example we give in
Algorithm[28 In fact, it extends Algorithm [28 by allowing the queries, insertions, deletions
to be at any place of a sorted list. This is mainly achieved by tracking two nodes (pred
and curr) instead of the last node we track in Algorithm . Interestingly, lazy linked-list
uses the same split of the operations and a similar validation mechanism at the beginning
of the commit phase, which allows a straightforward extension. The original design of the
lazy linked-list uses fine-grained locks at commit time. For using the courrent models, this
can be easily replaced with HT'M transactions, as we discussed before. In future, if we
allow weaker TMs with ALA [78] semantics, the exact original design can be modeled with

SWC.

- Partitioned Transactions (ParT) [I01]. This is a methodology that composes data
structures operations using the exact split mechanism we propose in C-SWC. It calls the
traversal phase as planning phase and the commit phase as completion phase. Interest-
ingly, ParT proposes using HTM transactions (among other alternatives) for executing the
completion phases, so it complies with our assumption that commit phases are executed
using an SLA TM.
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OTRB is similar to ParT except that it uses fine-grained locks to guard commit phases. As the
lazy linked-list, OTB fits with our models by replacing those locks with HT'M transactions.

10.5 Summary

We addressed the problem of providing a unified model for the current designs of concurrent
and composable data structures. Specifically, we targeted the set of OSS data structures and
we presented two models: SWC, which can be used to model and prove the correctness of
the concurrent data structures on this set; and C-SWC, which extends SWC' to cover the
composable designs.



Chapter 11

Conclusions

In this dissertation we proposed contributions aimed at identifying and addressing the chal-
lenges of designing and modeling transactional data structures.

The first challenge to be addressed is to allow an atomic execution of multiple data structure
operations, named composability. To address this challenge we presented Optimistic Trans-
actional Boosting (OTB), a novel methodology for boosting concurrent data structures to be
transactional. We deployed OTB on a number of concurrent data structures, by producing
the following transactional versions:

- Linked-list-based and Skip-list-based set;
- Skip-list-based priority queue;

- TxCF-Tree, an efficient transactional balanced tree that, in addition to the OTB advan-
tages, it also provides a minimal interference between its structural operations (i.e., rota-
tions and physical removals) and its semantic operations (i.e., logical insertions, deletions,
and queries).

OTB-based data structures showed excellent results when compared to the original boosting
methodology. In fact, they perform close to the optimized concurrent (non-transactional)
version of the data structure. They also perform up to an order of magnitude better than
pure-STM-based data structures implementations.

The second challenge is to integrate transactional data structures with both STM and HTM
transactions. To address this challenge, we integrated OTB-based data structures with
both DEUCE and RSTM framework, while enabling HTM transactions in the latter. Our
integration allows executing both memory-level and semantic-level reads/writes in the same
transaction without losing the performance gains guaranteed by OTB. Experimental results
show that the performance of the modified frameworks is improved by up to 10x over the
original frameworks.

151
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In the same line of addressing the integration challenge, we aim at enhancing the overall STM
performance since OTB becomes part of generic TM frameworks. We do so by presenting
Remote Transaction Commit (RTC) and Remote Invalidation (RInval), two new algorithms
which use an efficient remote core locking mechanism and optimize transactions’ critical path.
RTC outperforms other STM algorithms, by up to 4x in high contention workloads. This
is mainly because executing commit phases in dedicated server cores alleviates the overhead
of cache misses, CAS operations, and OS descheduling. We also showed that executing two
independent commit routines in two different server cores results in up to 30% improvement.

RlInval applied the same idea of RTC on invalidation-based STM algorithms. Additionally,
to optimize the validation/commit overheads, RInval splits commit and invalidation routines
and runs them in parallel on different servers. As a result, RInval performs up to 2x faster
than the corresponding validation-based STM algorithm (NOrec) and up to an order of
magnitude faster than the corresponding invalidation-based STM algorithm (i.e., InvalSTM).

The last challenge addressed in this dissertation is the definition of a unified model for
assessing the correctness of the OTB-based data structures, which has been fulfilled by
introducing two models: one regarding concurrent data structures (named SWC), and one
related to transactional data structures (named C-SWC). SWC and C-SWC can be exploited
to model a wider set of data structure than the former models in literature. We justified that
by showing in detail how to model a linked-list-based set using SWC. Then, we discussed
how to apply them on the more complex (OTB-Based) data structures.

11.1 Summary of Contributions
To summarize, this dissertation made the following contributions:

- OTB, an optimistic methodology to efficiently allow a transactional access to the highly
concurrent data structures.

- A complete design and implementation of two transactional list-based data structures using
the OTB methodology, namely set and priority queue.

- TxCF-Tree, an efficient transactional balanced tree with an optimized communication
between its structural and semantic operations.

- The extended versions of two TM frameworks (DEUCE and RSTM) to support the integra-
tion of OTB data structures with generic memory-based TM transactions. The extension
of RSTM also allows the integration with HTM transactions.

- RTC and Rlnval, the first STM algorithms that exploit more advanced locking mechanisms
than spin locking.
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- SWC and C-SWC, two models to infer the correctness of the concurrent and transactional
data structures in a unified way.

11.2 Future Work

As a future work we suggest designing more data structures using OTB methodology. Having
a library of OTB-Based data structures, similar to java.concurrent.util library, allows
legacy applications to take advantage of the optimized designs of those data structures,
especially if the integration with TM frameworks is also encapsulated in such libraries.

RTC (and RInval) can be used as a fall-back to Haswell’s HTM transactions. RTC centralizes
the commit phases inside its servers, which allows minimum interference with the hardware
fast-path. Additionally, and more importantly, the same improvements we achieved in Chap-
ter [7] by injecting OTB semantics in the slow-path can be achieved when RTC is used in
that slow-path. This way, we further improve the performance by merging the benefits of
OTB and RTC. Finally, RTC servers can be efficiently used for further improvements, like
profiling the committed /aborted transactions and analyzing the abort messages (being either
conflict, capacity, external aborts, ...). This analysis can be used as a guideline for further
improvements (e.g., batching STM transactions).

SWC and C-SWC can be used to model more complex data structures than the example
shown in the dissertation, such as TxCF-Tree. The models themselves can also be extended
to support multiple writers’ commit. Finally, the models can be extended to cover generic
transactions not only data structure operations.
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