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Resource Allocation and Adaptive Antennas in Cellular

Communications

Paulo Cardieri

(ABSTRACT)

The rapid growth in demand for cellular mobile communications and emerging

fixed wireless access has created the need to increase system capacity through more

efficient utilization of the frequency spectrum, and the need for better grade of service.

In cellular systems, capacity improvement can be achieved by reducing co-channel

interference. Several techniques have been proposed in literature for mitigating co-

channel interference, such as adaptive antennas and power control. Also, by allocating

transmitter power and communication channels efficiently (resource allocation), overall

co-channel interference can be maintained below a desired maximum tolerable level,

while maximizing the carried traffic of the system.

This dissertation presents investigation results on the performance of base station

adaptive antennas, power control and channel allocation, as techniques for capacity

improvement. Several approaches are analyzed. Firstly, we study the combined use

of adaptive antennas and fractional loading factor, in order to estimate the potential

capacity improvement achieved by adaptive antennas.

Next, an extensive simulation analysis of a cellular network is carried out aiming

to investigate the complex interrelationship between power control, channel allocation

and adaptive antennas. In the first part of this simulation analysis, the combined use

of adaptive antennas, power control and reduced cluster size is analyzed in a cellular

system using fixed channel allocation. In the second part, we analyze the benefits

of combining adaptive antennas, dynamic channel allocation and power control. Two

representative channel allocation algorithms are considered and analyzed regarding how

efficiently they transform reduced co-channel interference into higher carried traffic.

Finally, the spatial filtering capability of adaptive antennas is used to allow several

users to share the same channel within the same cell. Several allocation algorithms

combined with power control are analyzed.
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Chapter 1

Introduction

1.1 Cellular Communication System

The rapid growth in demand for cellular mobile communications and emerging fixed wireless

access have created the need to increase system capacity through more efficient utilization

of the frequency spectrum, and the need for better grade of service. Even though cellular

systems using different access techniques (such as FDMA, TDMA and CDMA) differ from

each other in several key aspects, all cellular systems have in common the fundamental

tradeoff between system capacity and link quality, which can be exploited to increase the

system capacity. System capacity refers to the amount of traffic a system can handle. Link

quality is usually measured in terms of bit error rate (BER), in digital systems, or the ratio of

desired signal to interference signal (SIR). Before discussing how capacity in cellular systems

can be improved, a brief description of the most common access techniques is presented.

In analog systems, such as AMPS [1], FDMA (Frequency Division Multiple Access)

is used and the entire spectrum allocated to the service area is divided into channels of

appropriate bandwidth, and users transmit on different frequencies. In AMPS, for example,

voice channels have a bandwidth of 30 kHz. Channel reuse is employed in order to increase

system capacity, as described subsequently. In TDMA (Time Division Multiple Access),

used in digital system, such as IS-136 and GSM [1], the entire spectrum is divided into

channels, as in FDMA systems. However, in TDMA systems, several users can use the same

frequency channel. Each user is assigned a time-slot of a frame and transmits its time-slot

at a given time. For example, in the IS-136 digital system, channels have a bandwidth of

30 kHz, and a single channel can support up to three users (three time-slots per frame). As

1
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Reuse distance D

N = 3

Cluster with N=3 cells

Figure 1.1: Cell clustering in cellular communication systems: Cluster with N = 3 cells.

in FDMA, channels and time-slots in TDMA systems are reused over the coverage area in

order to improve system capacity. In CDMA systems, such as IS-95 [1], which are based on

spread spectrum transmission, all users within a cell share the same frequency band at the

same time and the users are separated by assigning them different spreading codes [1].

Therefore, all access techniques have in common that capacity improvement is achieved

by reusing channels throughout the entire service area. Channel reuse, however, creates co-

channel interference. A link using a particular channel in a cell, interferes with other links

reusing that particular channel, degrading transmission quality. Thus, it is well accepted

that capacity of cellular systems is interference limited, as discussed next.

In TDMA and FDMA systems, adjacent cells of the service area are grouped into clusters

of an appropriate number N of cells [1], as shown in Figure 1.1 for cluster size N = 3. The

entire set of channels available in the system is divided into N subsets of channels, and each

subset is assigned to a cell in the cluster. As this pattern is replicated over all clusters in

the coverage area, channels are reused, increasing system capacity and creating co-channel

interference. The shortest distance between the centers of two cells sharing a given channel

is called reuse distance D. For hexagonal shape for the cells, D =
√
3NR, where R is the cell

radius [1]. Therefore, the smaller the cell cluster size N , the larger the number of channels

available in the cell, which means higher maximum carried traffic. However, reduction in

cell cluster size increases co-channel interference, since the reuse distance D decreases. A

straightforward technique for increasing system capacity is to decrease cell cluster size, while

controlling the increased co-channel interference.

The approach for assigning channels to cells described above is called fixed channel as-

signment. A base station can assign to calls only channels from its subset of channels. Fixed

channel assignment guarantees that a call served on any channel of a given subset of channels
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will present a link quality above the performance specification. The performance specifica-

tion refers to the minimum tolerable ratio of desired signal to co-channel interference (SIR).

Therefore, reuse distance in fixed channel allocation is defined on a subset of channels basis.

Since the desired and interference signals vary within the cell, due to shadow fading, user

mobility, etc, many calls will have SIR larger than the minimum tolerable, while other calls

will have lower SIR. Calls experiencing high SIR could be allocated channels with smaller

reuse distance. A dynamic channel allocation technique based on interference level can be

used to allocate channels to calls such that the reuse distance is minimized and, consequently,

improving system capacity.

It is clear that, in both fixed or dynamic channel allocation scenarios for TDMA and

FDMA systems, reduction in co-channel interference can be traded for capacity enhancement,

that is, for more users in the system.

In CDMA system (Code Division Multiple Access), as mentioned before, all users trans-

mit on the same wideband channel and each user is assigned a spreading code [1]. Therefore,

each user adds to the total interference in the system, and system capacity is limited by the

interference produced by in-cell co-channel users. As for TDMA/FDMA systems, system

capacity in CDMA system can be enhanced by mitigating co-channel interference.

As one can expect, all access techniques have in common that the transmitted power

plays an important role in the total co-channel interference. Excessive transmitted power

only adds to the interference with users sharing the same channel. Therefore, along with the

communication channel set, transmitted power is an important resource in cellular system,

since the allocation strategy adopted affects the overall system capacity.

We conclude that, regardless of the access technique used, co-channel interference reduc-

tion in wireless cellular systems can be traded for capacity improvement. Two approaches

can be used for controlling co-channel interference: In the first approach, the interference

produced by a link with other co-channel links is mitigated. For example, base station adap-

tive antennas (narrow beam antennas) can significantly mitigate co-channel interference. By

steering narrowbeams toward the desired users and significantly low antenna gains toward

the undesired users, the overall co-channel interference can be reduced.

In the second approach, resources in a cellular system, namely transmitted power and

communication channels, are appropriately allocated, such that the overall interference is

maintained below a desired maximum tolerable level, while maximizing the carried traffic in

the system
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In this dissertation, the interrelationship between resource allocation algorithms, namely

power control and channel allocation, and adaptive antennas is investigated. Power control

and channel allocation have been extensively studied for application in cellular systems.

Also, it is well known that adaptive antennas are efficient techniques for reducing co-channel

interference. However, little has been done aiming to investigate how power control, channel

allocation and adaptive antennas interrelate to each other. In a combined application of

power control, adaptive antennas, channel allocation, the role of adaptive antennas and

power control is to reduce co-channel interference, allowing channels to be reused more

often throughout the entire cellular system. Dynamic channel allocation algorithms, on

the other hand, attempts to organize the channel reuse. Reduced co-channel interference,

provided by the use of adaptive antennas or power control, is expected to help the channel

allocation algorithm to allocate channels more efficiently. In this dissertation, we investigate,

by extensive simulation, how efficiently channel allocation algorithms transform reduced

interference into higher carried traffic.

Most of the studies carried out on application of resource allocation algorithms (such as

power control and channel allocation) use the resulting capacity improvement, in terms of

carried traffic, as a measure of the performance of such algorithms. Capacity improvement

is, in fact, an important performance measure of resource allocation algorithms. However,

a detailed analysis of such algorithms and their combination, reveals that there is always

a price to be paid for capacity improvement. In general, capacity improvement is at the

expense of degradation of other performance parameters, such as the number of required

intracell handoffs. In this dissertation we also investigate the negative side effects of resource

allocations algorithms and their combinations.

1.2 Outline

The remainder of this dissertation is organized as follows. Chapter 2 introduces adaptive

antennas in mobile communications. The benefits of adaptive antennas in mobile communi-

cations are briefly discussed, followed by an introduction to optimal beamforming techniques.

Since the operation of adaptive antennas is based on spatial filtering, spatial properties of

wireless communications channels are also discussed in this chapter. Macrocell and microcell

spatial channel models are presented. Based on spatial filtering properties of adaptive anten-

nas, co-channel interference reduction and the consequent system capacity improvement are
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discussed. Some representative studies on capacity improvement using adaptive antennas in

TDMA, FDMA and CDMA cellular systems are reviewed.

A statistical analysis of co-channel interference in mobile communications is presented in

Chapter 3. The total cochannel interference signal received at a given location is generally

modeled as a sum of lognormally distributed signals [1, 2]. It is well accepted that the

distribution of a sum of lognormally distributed random variables can be approximated by

a log-normal distribution. We analyze the accuracy of two methods for computing the mean

value and standard deviation of a sum of log-normal random variables, namely Fenton-

Wilkinson’s and Schwartz & Yeh’s methods, when the summands (individual interference

signals) have different mean values and standard deviations.

In Chapter 4, we analyze the effectiveness of reducing co-channel interference using nar-

rowbeam adaptive antennas with the fractional loading factor. As discussed in Chapter 2,

narrowbeam adaptive antennas mitigate co-channel interference by steering narrow beams

in the direction of the desired mobile stations, and significant side lobe attenuation in the

direction of undesired users. The fractional loading factor technique exploits the fact that

interference is related to the loading factor, pch, which defines the probability that a given

channel is in use within a cell. As shown in Chapter 4, it is possible to increase capacity by

manyfold, by decreasing the cluster size (i.e. increasing frequency reuse), although the proper

combination of antenna specifications and fractional loading are surprisingly non-intuitive.

We show that large capacity gains with respect to a reference cellular system (N = 7, 3 sec-

tors per cell) can be obtained by combining narrowbeam antennas and a fractional loading

factor.

In Chapter 6, we discuss important aspects of channel allocation and power control, from

system capacity improvement perspectives. We also present an extensive literature search on

joint power control and channel allocation. Representative works on combined power control

and adaptive antennas and channel allocation strategies combined with adaptive antennas

are also presented.

In the remaining chapters of this dissertation, we concentrate on an extensive simula-

tion analysis of combined use of power control, adaptive antennas and channel allocation

algorithms.

In Chapter 7, we describe the main features of the cellular network simulation used in

the analysis presented in the subsequent Chapters 8 through 10.

Chapter 8 presents results of performance analysis of a cellular system using fixed channel
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allocation, base station adaptive antennas, power control and reduced cluster size. Cluster

size reduction increases the number of channels allocated to each cell, but degrades the link

quality, due to high co-channel interference levels. Adaptive antennas and power control are

then used to mitigate the increased interference. Simulation results show that the use of

power control allows the use of a less complex antenna required to achieve a given capacity

improvement.

In Chapter 9, we analyze the benefits of combining adaptive antennas, dynamic channel

allocation and power control. We will focus our attention on dynamic channel allocation al-

gorithms based on interference. The performance of such algorithms depends on the level of

interference experienced by the channels. By combining channel allocation with interference

reduction techniques, such as adaptive antennas and power control, one expects to improve

the performance of such allocation algorithms. Different channel allocation strategies trans-

form the reduced interference into higher carried traffic in different ways. This chapter aims

to analyze how efficiently two representative channel allocation algorithms transform the

reduced interference level into higher carried traffic and higher performance.

The spatial filtering capability of adaptive antennas can be used to allow several users

to share the same channel within the same cell, using the so called Spatial Division Multiple

Access Technique (SDMA). It is well known that the channel allocation strategy used in

SDMA systems plays an important role in the performance of such systems. In Chapter

10, we present the analysis of some representative allocation algorithms for SDMA systems.

Some of the algorithms analyzed are specially designed for SDMA systems, while others

do not explicitly exploit the SDMA mechanism. Also, we analyze the performance of such

allocation algorithms when power control is used.

Finally, Chapter 11 summarizes the contributions of this dissertation and outlines future

areas to be investigated.



Chapter 2

Adaptive Antennas in Cellular

Communication Systems

2.1 Introduction

Adaptive antennas for cellular systems can significantly increase system capacity and im-

prove performance. As we will see in this chapter, adaptive antennas can reduce co-channel

interference, which can be traded for system capacity improvement. The benefits of adap-

tive antennas are based on spatial filtering and the performance of such antennas is highly

dependent on the spatial characteristics of the radio propagation channel.

This chapter aims to review the basic concepts of array antennas and beamforming tech-

niques. We also review spatial channel models and describe the differences between macrocell

and microcell environments from the point of view of spatial channel models. Finally, some

representative studies on capacity improvement using adaptive antennas are reviewed and

discussed.

2.2 Performance Improvement Using an Array Antenna

Before introducing the concepts of adaptive antennas and beamforming, we briefly describe

the performance improvement using array antennas in cellular communication systems.

• Reduction in Co-channel Interference

In the transmit mode, base station adaptive antennas can focus radiated energy in

7
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the region the desired mobile is located, reducing the interference in other directions.

Also, nulls can be steered towards co-channel mobiles, providing further reduction in

co-channel interference. In the receive mode, a high antenna gain can be steered toward

the desired signal, reducing the interference received from other co-channel mobiles.

Note that, in both modes, some information about the desired mobile is required, such

as its location. In the receive mode, a reference signal correlated with the transmitted

signal by the mobile can also be used to determine the mobile location.

• System Capacity Improvement

System capacity refers to the amount of traffic a given system can handle. System

capacity can be improved by using adaptive antennas, based on two approaches. In

the first approach, the reduction in co-channel interference due to the use of base

station adaptive antennas can be traded for more users in the cell. For example, in

TDMA/FDMA systems, the reduction in co-channel interference may be sufficient to

allow cluster size reduction, increasing the number of channels per cell. In CDMA

systems, the use of adaptive antennas allows users to transmit less power, reducing the

multiple access interference, which, in turn, increases the number of users in the cell.

In the second approach, a base station adaptive antenna can be used to create additional

channels in the cell, by spatial filtering. By steering narrow beams towards mobiles,

in-cell mobiles can share the same channel, provided that they are sufficiently distant

(in angle) from each other. This technique is often called Spatial Division Multiple

Access (SDMA) and is discussed in Chapter 6.

Results of studies on capacity improvement based on both approaches are discussed in

Section 2.6.

• Reduction in Delay Spread

By forming narrow beams in certain directions and nulls in others, adaptive antennas

can reduce delay spread. In the receive mode, when a beam is steered towards the

main signal, multipath components impinging upon the antenna from directions other

than the direction of the main signal are attenuated. In the transmit mode, the energy

is focused in the desired direction, reducing multipath reflections that cause the delay

spread.
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Figure 2.1: Antenna Array with M elements in a media of L point sources.

2.3 Beamforming Techniques

2.3.1 Signal Model

We present in this section a brief description of the basic concepts of array antennas and

beamforming, following Godara in [14].

Consider an array of M omnidirectional elements in the far field of L uncorrelated point

sources of frequency f0, as shown in Figure 2.1. Assume that the origin of the coordinate

system corresponds to the time reference, so that the plane wave from the l-th source in

direction (φl, θl) reaches the origin at time t = 0. Therefore, the same plane wave impinges

upon the m-th element at time τm,l

τm,l =
um · v(φl, θl)

c
, (2.1)

where · represents the inner product, um is the position vector of them-th element, v(φl, θl) is

the unit vector in direction (φl, θl) and c is the speed of light. Using rectangular coordinates,
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Figure 2.2: Three-element linear array.

we have:

v(φl, θl) = cosφl sin θl x̂+ sin φl sin θl ŷ + cos θl ẑ, (2.2)

and

um = xm x̂+ ym ŷ + zm ẑ, (2.3)

where (xm, ym, zm) is the location of the m-th antenna element. Thus, the delay τm,l can be

expressed as:

τm,l =
1

c
(xm cos φl sin θl + ym sinφl sin θl + zm cos θl) . (2.4)

Since the distance between the base station and the mobiles are usually much larger than

the base station antenna height, it is usually assumed that θl ≈ π/2.

Consider a simple example shown in Figure 2.2, where a uniformly spaced linear array

with three identical isotropic antenna elements is depicted. The interelement spacing d is

usually chosen to be equal half the wavelength of the received signal, λ. A point source

is located in the direction (φ1, θ1), and, for simplicity, we assume that θ1 = π/2. Thus,

v = cosφ1 x̂+ sinφ1 ŷ. The position vectors are, therefore,

u1 = 0, u2 = d x̂, u3 = 2d x̂. (2.5)

Using (2.1) and assuming, for example, f = 1.9 GHz and d = λ/2 ≈ 15.8 cm, we have

τ1,1 = 0, τ2,1 = 0.263 cosφ1 ns τ3,1 = 0.526 cosφ1 ns (2.6)

The time delays between the signals received at different element antennas will be maximum

when the distances between the elements, seen from the direction of propagation φ1, are

maximum, that is, for φ1 = 0 or φ1 = 180o.
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Let gl(t) denote the physical bandpass signal transmitted by the point source l:

gl(t) = <{ml(t)e
2πf0t}, (2.7)

where ml(t) is the complex envelope of gl(t) amd <{.} represents the real part of {.}. Also,
let qm,l(t) denote the signal induced by the point source l on the m-th element. Assuming

that the distances between the array elements are small enough, such that the amplitude

differences between the signals received at different elements are negligible, and recalling

that the antenna elements are omnidirectional, we can write:

qm,l(t) = gl(t− τm,l). (2.8)

Using complex envelope representation:

qm,l(t) = <{ml(t− τm,l)e
2πf0(t−τm,l)}

= <{ml(t)e
−2πf0τm,l︸ ︷︷ ︸

complex envelope

e2πf0t}. (2.9)

Note that, we have assumed in (2.9) that the bandwidth of the signal ml(t) is narrow enough

such that the approximation ml(t) ≈ ml(t− τm,l) is valid.

Thus, the complex envelope of the signal induced by the l-th source on the m-th element,

rm,l(t), is a phase shifted version of the transmitted signal ml(t):

rm,l(t) = ml(t)e
−2πf0τm,l

= ml(t)e
−∆ψm(θl,φl). (2.10)

The phase shift ∆ψm(θ, φ) can be written in terms of the element location (xm, ym, zm) and

source direction (φl, θl):

∆ψm(θl, φl) = 2πf0τm,l

=
2πf0
c

(xm cosφl sin θl + ym sinφl sin θl + zm cos θl)

= β (xm cosφl sin θl + ym sin φl sin θl + zm cos θl) , (2.11)

where β = 2πf0/c. Note that ∆ψ0(θl, φl) = 0, since we are assuming that τ0,l = 0, for all l.

Since we have L sources, the complex envelope of the total received signal at the antenna

element m is

xm(t) =
L∑
l=1

rm,l(t) + ηm(t)

=
L∑
l=1

ml(t)e
−∆ψm(θl,φl) + ηm(t), (2.12)
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where ηm(t) is the background random noise, assumed to be white with zero mean and

variance σ2
η . We also assume that ηm(t) and ηn(t) are uncorrelated for m 6= n.

Consider now that each signal xm(t) is multiplied by a complex weight wm and summed,

as shown in Figure 2.3, to form the output of the array, denoted by y(t),

y(t) =
M∑
m=1

w∗
m xm(t) = wH x, (2.13)

where ∗ denotes the complex conjugate and H denotes the complex conjugate transpose of

a vector or matrix. The vectors x and w, referred to as the array signal vector and array

weight vector, respectively, are:

x = [x1(t) x2(t) · · ·xM(t)]T , (2.14)

w = [w1 w2 · · ·wM ]T , (2.15)

where T denotes the transpose of a vector or matrix. The array signal vector x can also be

written as:

x =
L∑
l=1

ml(t)a(θl, φl) + n(t), (2.16)

where

n = [η1(t) η2(t) · · · ηM(t)]T , (2.17)

and al is the steering vector or array response vector associated with the l-th source or

direction (φl, θl):

a(θl, φl) = [1 e−∆ψ2(θl,φl) · · · e−∆ψM (θl,φl)]T . (2.18)
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The m-th element of a(θl, φl) denotes the phase shift of the signal available at the m-th

antenna element, relative to the phase of the signal at the reference antenna element. To

simplify the notation, we will use hereinafter a(θl, φl) = al.

The mean output power of the array is given by:

P (w) = E{y(t) y∗(t)}
= wHR w, (2.19)

where E{.} denotes the expectation operator and R is the array correlation matrix, defined

as:

R = E{x xH}. (2.20)

Using (2.14) and (2.12), and assuming that the signals ml(t) and mk(t) are uncorrelated for

l 6= k, the element Rij of R can be written as:

Rij = E

{(
L∑
l=1

ml(t)e
−∆ψi(θl,φl)

)(
L∑
l=1

m∗
l (t)e

∆ψj(θl,φl)

)}
+ E

{
ηi(t)η

∗
j (t)

}

=
L∑
l=1

E{|ml(t)|2}e−∆ψi(θ,φ) e∆ψj(θ,φ) + σ2
η δij , (2.21)

where

δij =


 1 for i = j

0 otherwise.
(2.22)

Using (2.18) in (2.21), the matrix R can be written as:

R =
L∑
l=1

pl al a
H
l + σ2

ηI. (2.23)

where pl = E{|ml(t)|2} is the power of the l-th source.

Consider now that there is only one point source, that is, L = 1. Therefore, the array

output y(t) is:

y(t) =
M∑
m=1

w∗
m m1(t)e

−∆ψm(θ1,φ1) + ηm(t)

= m1(t)
M∑
m=1

w∗
m e−∆ψm(θ1,φ1) + ηm(t)

= m1(t) f(θ1, φ1) + ηm(t), (2.24)

where

f(θ, φ) =
M∑
m=1

w∗
m e−∆ψm(θ,φ) (2.25)
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Figure 2.4: Antenna Array with M = 3 elements and one point source.

is called the array factor. The array factor is the ratio of the array output signal y(t) to the

total signal impinging upon the array, as a function of the direction (θ, φ). The radiation

pattern of the array, denoted by F (θ, φ), is the product of the array factor f(θ, φ) and the

antenna element radiation pattern ga(θ, φ)

F (θ, φ) = f(θ, φ)ga(θ, φ). (2.26)

By adjusting the weight coefficients wm, we can “form” beams or nulls such that signals

received from a certain direction are maximized or minimized, as illustrated in the following

examples.

Examples of Beamforming

Consider that a bandband signal g(t) of frequency f0 impinges upon a 3-element linear

antenna array from direction (θ = π/2, φ), as shown in Figure 2.4. Assuming that the

elements are omnidirectional and element 1 is the reference, the signals received at each

element is a delayed replica of the transmitted signal g(t):

element 1 ⇒ g(t)

element 2 ⇒ g(t+ τ)

element 3 ⇒ g(t+ 2τ)
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Figure 2.5: Radiation pattern of a 3-element linear array, whose coefficients are adjusted in
order to produce a main lobe steered toward φ = 120o.

where τ , using (2.11), is:

τ =
d cosφ

c
, (2.27)

and d is the inter-element spacing. The transmitted signal m(t) can be recovered at the

array output by introducing additional delays in each element signal, as shown in Figure 2.4.

Using complex envelope representation, the coefficients wm should be:

w1 =
1

3
, w2 =

1

3
e−2πf0τ and w3 =

1

3
e−2πf02τ , (2.28)

so that the output signal y(t) is:

y(t) =
3∑

m=1

w∗
mm(t)e2πf0(m−1)τ

= m(t), (2.29)

where m(t) is the complex envelope of g(t). For example, consider a point source located in

direction φ = 120o and θ = π/2. Assuming that the array elements are omnidirectional, the

amplitude of the array radiation pattern is shown in Figure 2.5.

Likewise, the weights wm can be adjusted in order to null signals impinging upon an

array from certain directions. Consider, for example, that L signals ml(t) impinge upon a

M-element array and we desire to null signals m2(t), m3(t), · · · , mL(t), while steering a unity
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array response towards signal m1(t). The array weight vector w must, therefore, satisfy the

following conditions:

wHa1 = 1

wHal = 0 for l = 2, 3, · · · , L, (2.30)

or, in matrix notation

wHA = eT1 , (2.31)

where A is a matrix composed by all steering vectors

A = [a1 a2 · · · aL], (2.32)

and e = [1 0 · · · 0]. If the number of elements in the array, M , is equal to the number of

signals we want to null out, L− 1, A is a square matrix. Assuming that all steering vectors

are linearly independent, the solution for the weight vector is:

wH = eT1 A−1. (2.33)

If M < L− 1, then A is not a square matrix. Post-multiplying both sides of (2.31) by AH ,

we obtain

wHAAH = eT1A
H (2.34)

where AAH is a square matrix, and wH is, therefore,

wH = eT1A
H(AAH)−1. (2.35)

As an example, consider three signals with equal powers impinging upon a 4 element linear

antenna array, with angles φ1 = 30o, φ2 = 60o and φ3 = 150o, and θ1 = θ2 = θ3 = π/2. The

element spacing is d = λ/2. The radiation pattern of the array, adjusted to receive signals

from direction φ1 = 30o, but null out the signals from φ2 = 60o and φ3 = 150o, is shown in

Figure 2.6.

We reviewed in this section the basic concepts of beamforming. In few words, by adjusting

the coefficients wm, we can “form” beams or nulls such that signals received from a certain

direction are maximized or minimized at the array output. In the next section we present

three optimal approaches for computing the coefficients wm (beamforming) which minimize

a given cost function. In the approaches presented in the next section, a beam or null is

formed towards a particular direction, giving the antenna the ability to adaptively change

its radiation according to the environment. Another approach for beamforming is based on

forming a set of fixed beams steered towards predefined directions. Fixed beam systems are

discussed in Section 2.4.
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Figure 2.6: Radiation pattern of a 4-element linear array, receiving signal from φ1 = 30o and
nulling out signals from φ2 = 60o and φ3 = 150o.

2.3.2 Optimal Beamforming

Minimum Mean Square Error (MMSE)

Consider again a M-element array immersed in an environment where there is one desired

signal m1(t), arriving at the array with the angle (φ1, θ1), and L−1 interfering signals ml(t),

l = 2, 3, · · · , L, impinging upon the array with angles (φl, θl). The array signal vector, x(t),

is:

x(t) = m1(t)a1 +
L∑
l=2

ml(t)al

= z(t) + u(t), (2.36)

where z = m1(t)a1 and u =
L∑
l=2

ml(t)al. Let us assume that a reference signal d(t), that

closely enough represents m1(t), can be generated at the receiver. The weights of the array

can be chosen in order to minimize the mean square error (MSE) between the array output,

y(t), and the reference sinal, d(t):

J(w) = E{[d(t)− y(t)]2}
= E{[d(t)−wHx(t)]2}
= E{d2(t)]} − 2wHr+wHRw, (2.37)
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where r = E{x d(t)∗} is the cross-correlation vector between the array signal vector and

the reference signal, and R is the correlation matrix, given by (2.20). The optimum weight

vector wopt can be computed by setting the derivative of J(w) with respect to w∗ equal to

zero. In order to compute the derivative of J(w), we use the following rules of differentiation

with respect to a vector [15]:

∂

∂w∗ (w
HRw) = 2Rw,

∂

∂w∗ (w
Hc) = 2c,

∂

∂w∗ (c
Hw) = 0. (2.38)

where c is an arbitrary vector.

Therefore,

∂

∂w∗J(w) = −2r+ 2Rw

= 0. (2.39)

Thus,

wopt = R−1r. (2.40)

Ideally, the reference signal is equal to the desired signal m1(t), and, assuming the messages

ml(t) are uncorrelated with one another, r is:

r = E{[m1(t)a1 + u(t)]m∗
1(t)}

= E{[|m1(t)|2}a1

= p1a1. (2.41)

Therefore, (2.40) can be rewritten as

wopt = p1R
−1a1. (2.42)

Further, using (2.23), the matrix R can be expressed as:

R = p1 a1 a
H
1 +

L∑
l=1

pl al a
H
l + σ2

ηI

= p1 a1 a
H
1 +Ru. (2.43)

Using a special case of matrix inversion lemma, known as Woodbury’s Identity [16], we have

R−1 = R−1
u +

p1R
−1
u a1 a

H
1 R

−1
u

1 + p1aH1 R
−1
u a1

. (2.44)
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Post-multiplying both sides of (2.44) by a1

R−1a1 = R−1
u a1 − R−1

u a1 (p1a
H
1 R

−1
u a1)

1 + p1aH1 R
−1
u a1

=
p1R

−1
u a1

1 + p1a
H
1 R

−1
u a1

. (2.45)

Using (2.45) in (2.42), the MSE solution can be written as [16]

wopt = βMSER
−1
u a1 (2.46)

βMSE =
p1

1 + p1sHR−1
u s

. (2.47)

Maximum Signal-to-Interference Ratio (MSIR)

Another criterion for selecting array weights is based on maximizing the Signal-to-Interference

Ratio (SIR) at the array output. The array output signal y(t) can be expressed as:

y(t) = wHz(t) +wHu(t), (2.48)

where z(t) = m1(t)a1 is the portion of the x(t) corresponding to the desired signal m1(t),

and u(t) =
L∑
l=2

ml(t)al is the total interference signal.

The signal-to-interference ratio is defined as the ratio of the portion of the power of

y(t) corresponding to the desired signal, denoted by σ2
z , to the portion of the power of y(t)

corresponding to the interference signal, denoted by σ2
u:

SIR =
σ2
z

σ2
u

=
E{|wHz(t)|2}
E{|wHu(t)|2} =

wHRzw

wHRuw
, (2.49)

where Rz = E{z(t)zH(t)} and Ru = E{u(t)uH(t)}. Setting the derivative of SIR with

respect to w equal to zero, we obtain:

∂

∂w∗SIR =
(wHRuw) Rzw − (wHRzw) Ruw

(wHRuw)2
= 0, (2.50)

or

Rzw =
wHRzw

wHRuw
Ruw. (2.51)

Pre-multiplying both sides of (2.51) by R−1
u , we obtain

R−1
u Rzw =

wHRzw

wHRuw
w. (2.52)
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Computing w from (2.52) is a generalized eingenvalue problem. The scalar wHRzw
wHRuw

= SIR

is bounded by the eigenvalues of R−1
u Rz:

λmin ≤ wHRzw

wHRuw
≤ λmax, (2.53)

where λmin and λmax are the minimum and maximum eigenvalues of R−1
u Rz. Therefore, the

maximum SIR is achieved when wopt is equal to the eigenvector of R−1
u Rz corresponding to

λmax:

R−1
u Rzwopt = λmaxwopt. (2.54)

Recalling that Rz = p1s s
H , we have [16]

wopt = βMSIRR
−1
u a1. (2.55)

where

βMSIR =
p1s

Hwopt

SIR
. (2.56)

In this method, we must know the statistics of the interference (matrix Ru) and angle-of-

arrival of the desired signal, in order to construct the matrix Rz.

Minimum Variance (MV)

In the Minimum Variance criterion, we compute the weight vector w that minimizes the

variance, or power, of the output signal y(t)

P (w) = E{y(t) y∗(t)}
= wHR w. (2.57)

Using x(t) = z(t) + u(t), we can rewrite (2.57) as

P (w) = wHRz w︸ ︷︷ ︸
desired signal term

+ wHRu w,︸ ︷︷ ︸
interference term

(2.58)

whereRz andRu are the autocorrelation matrices of the desired signal z(t) and total interfer-

ence signal u(t), respectively. The minimization of P (w) can be accomplished by minimizing

the interference term in P (w), wHRu w.

To ensure that the desired signal z(t) is going to be preserved by the array, we impose

the condition that the response of the array to z(t) is an arbitrary constant ζ :

wHa1 = ζ. (2.59)
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Therefore, we have the following constrained optimization problem:

min
w

wHRu w

subject to wHa1 − ζ = 0. (2.60)

We solve this problem using the Method of Lagrange Multipliers as follows. First, we con-

vert the problem of constrained minimization into one of unconstrained minimization by

introducing the complex Lagrange multiplier λL. Define the real-valued function h(w):

h(w) = wHRu w + <{λ∗L(wHa1 − ζ)}. (2.61)

Next, we minimize h(w) with respect to w, which can be accomplished by setting the

derivative ∂h/∂w∗ to zero:

∂h

∂w∗ =
∂

∂w∗ (w
HRu w) +

∂

∂w∗<{λ∗L(wHa1 − ζ)} = 0. (2.62)

Using the rules for differentiation with respect to a vector, we have:

∂

∂w∗ (w
HRu w) = Ru w, (2.63)

and

∂

∂w∗<{λ∗L(wHa1 − ζ)} =
∂

∂w∗ [λ
∗
L(w

Ha1 − ζ)− λL(a
H
1 w − ζ)]

=
∂

∂w∗ [λ
∗
Lw

Ha1 − λLa
H
1 w + ζ={λL}]

= λ∗L
∂

∂w∗ (w
Ha1) + λL

∂

∂w∗ (a
H
1 w)

= λ∗La1, (2.64)

where ={.} denotes the imaginary part of {.}. Substituting (2.63) and (2.64) into (2.62) we

have:

Ru w = λ∗La1, (2.65)

or

wopt = λ∗LR
−1
u a1. (2.66)

In order to determine λ∗L, we pre-multiply (2.66) by the transposed complex conjugate of the

steering vector of the desired signal, aH1 = aH(θ1, φ1)

aH1 wopt = λ∗La
H
1 R

−1
u a1. (2.67)
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Noting that wH
opta1 = aH1 wopt = ζ , we have

λ∗L =
ζ

aH1 R
−1
u a1

, (2.68)

and, finally

wopt =
ζR−1

u a1

aH1 R
−1
u a1

, (2.69)

or,

wopt = βMVR
−1
u a1, (2.70)

where

βMV =
ζR−1

u a1

aH1
. (2.71)

In practice, where the determination of Ru may not be available, the autocorrelation R

of total array signal vector x may be used to compute w. In this case, wopt is:

wopt =
ζR−1a1

aH1 R
−1a1

. (2.72)

Comparison

Note that, in all approaches the optimum weights are given by equations in the form:

wopt = βR−1
u a1 (2.73)

where β assumes the values βMSE, βMSIR or βMV , depending on the approach adopted. It

is interesting to note that all three approaches result the same SIR [16]:

SIR =
σ2
z

σ2
u

=
wH
opt Rz wopt

wH
opt Ru wopt

=
β2 aH1 R

−1
u Rz R

−1
u a1

β2 aH1 R
−1
u Ru R−1

u a1

=
aH1 R

−1
u p1sa

H
1 R−1

u a1

aH1 R−1
u a1

= p1a
H
1 R

−1
u s. (2.74)

As already noted, the differences between the approaches are the information needed to

compute the quantities involved in the computation. The differences between the require-

ments of each approach make a particular approach more suitable for a particular situation,

as discussed subsequently.
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• Minimum Mean Error Square: A disadvantage of this method is that a reference

signal d(t) is required. However, in TDMA cellular systems, such as IS-136 and GSM

[1], each time slot includes a syncronization sequence that can be used as the reference

signal for adaptive array weight aquisition. Another disadvantage of the MMSE ap-

proach arises from the fact that it is not possible to implement ensemble averaging, as

required to obtain R and r, in a practical application. Thus, ergodicity and station-

arity must be assumed when implementing an algorithm based on MMSE [15]. The

advantage of this approach is that no direction of arrival information is required.

• Maximum SIR:

In this method, we must estimate matrix Ru (interference signal) and Rz (desired

signal). These matrices can be estimated by using the expressions

Rz =
L∑
l=2

pl al a
H
l

Rz = p1 a1 a
H
1 , (2.75)

which require estimates of the angle of arrival of the desired signal and interfering

signals.

• Minimum Variance:

This method doe not require the knowledge of the angle of arrival of the interferences,

but it requires the angle of arrival of the desired signal.

2.4 Switched Beam Systems

In Section 2.3.2, we presented beamforming techniques based on forming a beam or null

towards any particular direction. Another approach for beamforming is based on forming

a set of fixed beams, steered towards predefined directions, and selecting a beam for trans-

mittion or reception based on a beam-selection algorithm. In the receive mode, the switched

beam system selects the beam that provides the best reception of a particular signal. In the

transmit mode, the beam selected is the one that better illuminates the region where the

desired receiver is located. Figure 2.7 shows a switched beam system in the receive mode

with M fixed beams. The output y = [y1(t) y2(t) · · · yM(t)]T of the Beamforming Network
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Figure 2.7: Switched Beam System.

is (see Figure 2.7)

y = THu(t), (2.76)

where

T = [w1 w2 · · ·wM ]. (2.77)

The m-th output ym(t) corresponds to the output of an array with weight vector wm and,

consequently, wiht a particular radiation pattern. Fixed beamforming can be implemented

by using the Butler matrix [17]. An example of the radiation pattern of a fixed beamforming

using the Butler matrix with 4 antenna elements is shown in Figure 2.8.

The advantage of switched beam systems is the low complexity compared to the com-

plexity of fully adaptive antennas. Also, the integration of a switched beam system in an

existing cellular system requires few modification in the cellular system.

2.5 Vector Channel Impulse Response

In the analysis of adaptive antenna systems, it is important to understand the spatial prop-

erties of the wireless communication channel, since these properties will have a strong impact

on the performance of adaptive antenna systems. Classically, channel models provide infor-

mation on signal power level distribution, Doppler shifts of the received signals and time

delay spread. When antenna array is incorporated to the transmission system, additional

spatial information on the RF propagation channel must be provided by the channel model.
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In this section, we introduce the vector channel impulse response, that is used to character-

ize the wireless channel, where each multipath component arrives from a discrete direction

at a discrete time delay. Also, channel models including spatial properties information are

presented. Portions of this section are based on [6].

Consider a simplified multipath environment depicted in Figure 2.9. Each signal com-

ponent experiences a different path environment, which will determine the amplitude Al,k,

carrier phase shift ϕl,k, time delay τl,k, angle-of-arrival (AOA) φl,k, and Doppler shift fd of

the l-th signal component of the k-th mobile. In general, each of these signal parameters

will be time-varying. Representing the RF channel as a time-variant channel and using a

baseband complex envelope representation, the channel response for mobile 1 has classically

been represented as:

h1(t, τ) =
L(t)∑
l=0

Al,1 exp[ϕl,1]δ(t− τl,1(t)). (2.78)

where L(t) is the number of multipath components and the other variables have already been

defined. The amplitude Al,k of the multipath components is usually modeled as a Rayleigh

distributed random variable, while the phase ϕl,k is uniformly distributed.

The time-varying nature of a wireless channel is caused by the motion of objects in

the channel. A measure of the time rate of change of the channel is the Doppler power

spectrum, introduced by M. J. Gans in 1972 [18]. The Doppler power spectrum provides us
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Figure 2.9: Multipath propagation channel.
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Figure 2.10: Channel impulse responses for mobiles 1 and 2: (a) received signal from mobile
1 at the base station; (b) received signal from mobile 2 at the base station; (c) combined
received signal from mobiles 1 and 2 at the base station, assuming omindirectional base
station antenna; (d) received signal at the base station when a narrow beam steered toward
mobile 1 is employed.

with statistical information on the variation of the frequency of a tone received by a mobile

traveling at speed v. Based on the flat fading channel model developed by R. H. Clarke in

1968, Gans assumed that the received signal at the mobile station came from all directions

and was uniformly distributed

Assuming that both mobiles in Figure 2.9 are transmitting narrow pulses on the same

channel and the base station is omnidirectional, the signal received at the base station is a

combination of all multipath components of signal transmitted by all mobiles, as shown in

Figure 2.10. However, when a narrow beam is steered toward mobile 1, multipath compo-

nents are attenuated, as also shown in Figure 2.10.

The channel model in (2.78) does not consider the AOA of each multipath component

shown in Figures 2.9 and 2.10. For narrowband signals, the AOA may be included into the

vector channel impulse response using

h1(t, τ) =
L(t)∑
l=0

Al,1a(θl,1, φl,1) exp[ϕl,1]δ(t− τl,1(t)). (2.79)

where a(θ, φ) is the steering vector, defined in (2.18).

If the differences between the path delays τl,1(t) of multipath components are very small

compared with the channel symbol duration, the channel is call a narrowband channel and
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the fading is said to be flat. Therefore, the approximation

τl,1(t) ≈ τ0,k(t) for all l (2.80)

is valid and the vector channel impulse response h1(t, τ) may be expressed by

h1(t, τ) = δ(t− τ0,1(t))
L(t)∑
l=0

Al,1 exp[ϕl,1] a(θl,1, φl,1)

= δ(t− τ0,1(t)) b1(t), (2.81)

where b1(t) is given by

b1(t) =
L(t)∑
l=0

Al,1 exp[ϕl,1] a(θl,1, φl,1) (2.82)

and is called the spatial signature of the channel for mobile 1.

The spatial channel impulse response given in expression (2.79) is a summation of several

multipath components, each of which has its own amplitude, phase, and AOA. The distri-

bution of these parameters depends on the type of environment. In particular, the angle

spread of the channel is known to be a function of both the environment and the base sta-

tion antenna heights. Next, we describe macrocell and microcell environments and discuss

how the environment affects the signal parameters.

2.5.1 Macrocell Environment

Figure 2.11 shows the channel on the forward link for a macrocell environment. It is usually

assumed that the scatterers surrounding the mobile station are about the same height as

or are higher than the mobile. This implies that the received signal at the mobile antenna

arrives from all directions after bouncing from the surrounding scatterers as illustrated in

Figure 2.11.

Under these conditions, Gans’ assumption that the AOA is uniformly distributed over

[0, 2π] is valid. The classical Rayleigh fading envelope with deep fades approximately λ/2

apart emanates from this model [1].

However, the AOA of the received signal at the base station is quite different. In a

macrocell environment, typically, the base station is deployed higher than the surrounding

scatterers. Hence, the received signals at the base station result from the scattering process

in the vicinity of the mobile station, as shown in Figure 2.12. The multipath components at

the base station are restricted to a smaller angular region, BW, and the distribution of the
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Figure 2.11: Macrocell environment - mobile station perspective.
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Figure 2.12: Macrocell environment - base station perspective.



Chapter 2 - Adaptive Antennas in Cellular Communication Systems 30

AOA is no longer uniform over [0, 2π]. Other AOA distributions are presented later in this

chapter. The base station model of Figure 2.11 was used to develop the theory and practice

of base station diversity in today’s cellular systems and has led to rules of thumb for the

spacing of diversity antennas on cellular towers [4].

2.5.2 Microcell Environment

In the microcell environment, the base station antenna is usually mounted at the same

height as the surrounding objects. This implies that the scattering spread of the AOA of the

received signal at the base station is larger than in the macrocell case since the scattering

process also happens in the vicinity of the base station. Thus, as the base station antenna

is lowered, the tendency is for the multipath AOA spread to increase. This change in the

behavior of the received signal is very important as far as antenna array applications are

concerned. Studies have shown that statistical characteristics of the received signal are

functions of the angle spread. Lee [4] and Adachi [19] found that the correlation between the

signals received at two base station antennas increases as the angle spread decreases. This

section has presented some of the physical properties of a wireless communication channel.

A mathematical expression that describes the time-varying spatial channel impulse response

was given in equation (2.79).

In the next section, two models that provide information about the spatial channel are

presented.

2.5.3 Geometrically Based Single Bounce Circular Model - Macro-

cell Model

This model is based on the assumption that, in a macrocell environment, there will be no

signal scattering from locations near the base station antenna, as discussed in Section 2.5.1.

The geometry of this model is presented in Figure 2.13. Scatterers are assumed to be re-

radiating elements whereby the plane wave, on arrival, is reflected to the mobile antenna,

without the influence from other scatterers [20]. Also, it is assumed that the scatterers are

uniformly distributed within radius RC about the mobile. The transmitter-receiver (T-R)

distance is D0. It can be shown that the probability density function (PDF) of the angle of
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Figure 2.13: Illustration of the Geometrically Based Single Bounce Circular Model.

arrival φ of the multipath components at the base station is:

fφ(φ) =




2D0 cosφ
√
D2

0 cos2 φ−D2
0+R

2
C

πR2
C

, −φmax ≤ φ ≤ φmax

0 , otherwise.
(2.83)

where φmax = sin−1(RC/D0).

Figure 2.14 shows the PDF fφ(φ) for D0 = 5 km and radius of scatterers RC of 200 m,

500 m and 1 km.

2.5.4 Geometrically Based Single Bounce Elliptical Model - Mi-

crocell Model

This model assumes that the base station antenna is usually mounted at the same height

as the surrounding objects and, therefore, there will be signal scattering from locations near

both the base station and mobile station antennas. The geometry of this model is shown

in Figure 2.15, where the base station and the mobile are located at the foci of an ellipse.

Assuming that the line-of-sight path is not obstructed, the first multipath components arrives

at a time τ0 = D0/c, where D0 is the T-R distance and c is the speed of light.

Consider that a multipath component arrives at time τi (also called the time-of-arrival

(TOA)) at the base station, as shown in Figure 2.15. Assuming that this component is the

result of a single bounce, the scatterer that causes the reflection lies on an ellipse with major

and minor axes 2ai and 2bi, respectively, where:

ai = cτi/2 and bi =
√
a2i −D2

0/4. (2.84)

Using the properties of ellipse geometry and assuming that the scatterers are uniformly

distributed over the ellipse, we can show that the PDF of the angle-of-arrival φ of multipath
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components arriving at a time τi is [15]:

fφ,ri(φ, ri) =
(r2i − 1)3/2(r2i − 2r cos φ+ 1)

π(2r2i − 1)(r − cosφ)3
for − π ≤ φ ≤ π, (2.85)

where ri = τi/τ0 is the normalized multipath delay. Figure 2.16 shows fφ,ri(φ, ri) for a T-R

distance of 1 km.

Assuming that the maximum multipath delay is τm, we can show that the probability

density function of the multipath delay τ is [15]:

fτ (τ) =
c

D0γ

2(cτ/D0)
2 − 1√

τ/D0)2 − 1
for τ0 ≤ τ ≤ τm (2.86)

where γ = τm/τ0
√
(τm/τ0)2 − 1. The maximum delay spread τm determines the delay spread

and angle spread of the channel.
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2.6 Capacity Improvement by Using Adaptive Anten-

nas

Adaptive antennas can be used in TDMA/FDMA cellular systems to reduce co-channel in-

terference from other cells, allowing cluster size reduction and system capacity improvement.

Additionally, adaptive antennas can be used to allow channel reuse within the cell. In CDMA

systems, on the other hand, adaptive antennas are used to reduce interference from in-cell

co-channel users, since in-cell interference is the major limiting factor of system capacity in

such systems.

In the following, we present some representative studies on cellular capacity enhancement

using adaptive antennas. Different approaches for increasing system capacity are used in

these studies, but all based on the spatial filtering capability of antenna arrays.

2.6.1 TDMA and FDMA Cellular Systems

Before presenting studies that analyze system capacity improvement by using adaptive an-

tennas, we discuss how array antennas are able to improve system capacity in FDMA/TDMA

cellular systems. The formulas presented can be used to predict capacity improvement when

array antennas are used. This description follows in part the approach proposed by Lopez

[21]. We consider the forward link, but the same approach can be used for the reverse link.

Consider the forward link of a cellular system with cluster size N and cell radius R.

The base stations are equipped with omnidirectional antennas. In the present analysis, we

consider only the first tier of co-channel cells. The area mean signal-to-interference ratio

(SIR) at a mobile located at the cell boundary is

SIRomni =
1

6

(
R

D

)γ

=
1

6
(3N)γ/2 , (2.87)

where we have assumed that all distances between the interfering base stations in the first

tier and the mobile where the SIR is measured are equal to the reuse distance D =
√
3NR.

The parameter γ is the path loss exponent, usually assumed to be between 3 and 4.

Consider now that the base stations are equipped with switched-beam antennas that are

able to form any number m of ideal beams, with beamwidth BW = 2π/m. The antenna gain

within the beamwidth is equal to the gain of the omnidirectional antenna, and zero outside
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the beamwidth. Assuming that the co-channel interference from interfering base stations is

uniformly distributed over [0, 2π], the SIR at the mobile located at the cell boundary is

SIRnb =
1

6
(3N)γ/2

2π

BW

=
m

6
(3N)γ/2 . (2.88)

Therefore, the SIR at the mobile can be improved by increasing the number of beams in the

antenna. The improvement in the SIR achieved by using narrowbeams may be sufficient to

reduce the cell cluster size. Assume that the minimum tolerable SIR is equal to 23.4 dB,

which is the SIR (computed using (2.88)) in a conventional system using cluster size N = 7

and 3 sectors (m = 3 beams) with BW = 120o. For a particular number of beams m, the

smallest cluster size N that guarantees SIR ≥ 23.4 dB is computed using

N =
1

3

(
6 SIR

m

)2/γ
∣∣∣∣∣
SIR=220.5=23.4 dB

. (2.89)

Its worth noting that, for cells with hexagonal shapes, N assumes only the values N =

i2 + ij + j2, where i and j are non-negative integers. Therefore, N = 1, 3, 4, 7, 9, 12, 13, · · ·.
Figure 2.17(a) shows the minimum cluster size required to guarantee SIR ≥ 23.4 dB, for

several values of m and γ = 4. It is interesting to note that, increasing the number of beams

from m = 3 to m = 8 is not enough to reduce the cluster size. The reason is that the

correponding increase in SIR is not sufficient to allow cluster size reduction from N = 7 to

N = 4 and maintain SIR ≥ 23.4 dB.

Reduction in cell cluster size increases system capacity, since more channels are assigned

to each cell. However, additional capacity improvement can be achieved by maximizing the

trunking efficiency. Conventional cellular systems, such as AMPS, employ cells with three

sectors (or beams) and the available channels in the cell are equally divided among the

sectors to form three trunks. The advantage of forming trunks is that no control among

the sector is required to allocate a channel to a call. However, trunking (i.e. dividing the

channel available in the cell into subsets) reduces the maximum carried traffic by the cell. In

a multibeam base station antenna, trunking efficiency is maximized if any given beam can

use any channel available in the cell. Assume that NS = 395 channels are available in the

entire cellular system under consideration. Therefore, Nc = 395/N channels are available in

each cell, where N is the cluster size shown in Figure 2.17(a). Assume also that, on average,

a user generates a traffic of 0.03 Erlangs. Figure 2.17(b) shows the maximum number of

users when m antenna beams are used at the base stations. We see that, in addition to the
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Figure 2.17: (a) Minimum cluster size required to guarantee SIR ≥ 23.4 dB, when base
station antennas with m beams are employed; (b) Maximum number of users per cell when
m beams are used at the base stations.

capacity improvement achieved by reducing cell cluster size (when possible), capacity can

be improved by forming only one trunk. Even though the analysis presented above is rather

simplified, some basic concepts regarding how array antennas can reduce cluster size and

improve system capacity could be discussed. An extensive study on capacity improvement

by combining narrowbeam antennas with fractional loading factor is presented in Chapter

4. Several other studies based on capacity improvement achieved by reducing cluster size

and controlling the increased co-channel interference using adaptive antennas can be found

in the literature. We describe some of these studies next.

Swales et. al [22] studied the capacity improvement in a TDMA cellular system with base

stations equipped with adaptive antennas on the foward link. The adaptive antennas are

assumed to be ideal, with beamwidth BW = 2π/m, where m is the number of beams formed

in the array, and no side lobe level (SLL = −∞ dB). It is also assumed that any mobile

is perfectly tracked by its serving base station. Channels are assigned to the base stations

following the fixed channel allocation approach (see Chapter 6). The capacity improvement

is measured in terms of increase in spectrum efficiency E, defined in [22] as the number of



Chapter 2 - Adaptive Antennas in Cellular Communication Systems 37

channels per bandwidth per area:

E =
Bt/Bc

BtNA

number of channels

MHz/km2 , (2.90)

where Bt is the total bandwidth available in the system in MHz, Bc is the channel spacing

in MHz and A is the cell area in km2. N is the cluster size required to guarantee that the

interference level does not exceed a maximum tolerable level. Since the interference level is a

random variable, it is necessary to introduce the concept of outage probability Po, defined as

the probability that the signal-to-interference ratio is lower than a threshold SIR0. In order

to guarantee a minimum link quality, it is usually required that Po ≤ 10%. In [22], Po = 1%

is used and only the first tier of co-channel cells is considered. The capacities of systems using

adaptive antennas and omnidirectional antennas at the base stations are compared. If the

systems to be compared employ the same transmission system (same modulation technique

and channel spacing), and same cell area, the efficiency is then proportional to the inverse of

the cluster size N . Thus, the spectrum efficiency improvement achieved by using adaptive

antennas is the ratio G

G =
Eadapt
Eomni

=
Nadapt

Nomni
, (2.91)

whereNomni is the cluster size of the system employing omnidirectional base station antennas,

while Nadapt is the cluster size of the system employing adaptive antennas. The propagation

channel model in [22] includes the path loss (path exponent n = 4), Rayleigh fading and

shadowing fading (shadowing standard deviation of 6 dB). An analytical approach is then

used to compute the required cluster size when base station adaptive antennas with m beams

are used, such that the outage probability is below 1%. Figure 2.18 shows the spectrum

efficiency improvement G, computed using (2.91), as a function of the number of beams m

formed by the base station adaptive antennas, for SIR0 = 8 and 20 dB. We see that, for

instance, the use of 8-beam adaptive antennas at the base stations increases the spectrum

efficiency by almost 300%. The results presented in [22] demonstrate the benefits of adaptive

antennas in TDMA systems.

In [22], capacity improvement is obtained by reducing cluster size and controlling the

increased co-channel interference by using adaptive antennas at the base stations. In [23],

Zetterberg et. al investigate capacity improvement by reusing channels within the cells,

in addition to the cluster size reduction approach. In the study presented in [23], each

120o sector of the cell (a subcell) is covered by a M-element antenna array on the foward

link. Each element of the array is an ideal sectorized antenna with a sector of 120o. The
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Figure 2.18: Relative spectrum efficiency, with respect to the spectrum efficiency of the
reference system (omnidirectional base station antennas), as a function of the number of
beams, for outage probability 1% [22].

weights of the array are adjusted in order to maximize the transmitted power towards the

desired mobile and minimize the transmitted power towards in-cell co-channel mobiles. The

angular positions of the desired and in-cell co-channel mobiles are assumed to be known

by the base station. Note that no attempt to reduce the co-channel interference at the

mobile in other cells is made. A channel allocator is used to allocate d in-cell users on

each of the channels available in the cell. The strategy used for the channel allocator is

such that the users sharing a particular channels are uniformly distributed over [0, 2π]. The

propagation channel model includes path loss (path loss exponent n = 4), shadowing fading

(shadowing standard deviation of 6 dB) and Rayleigh fading. The angles of departure of the

multipath components are modeled as Gaussian random variables, with angular spread σA.

The number of mobiles d and the angular spread σA are simulation parameters. The capacity

of a cellular system employing the proposed base station antenna array transmission system

is compared with the capacity of a reference system. The reference system employs cluster

size N = 4, 3-sectorized cells and allocates only one mobile on each channel (d = 1). The

outage probability in the reference system, for threshold SIR0 = 9 dB, is estimated to be

2.65%, which is deemed to be the minimum acceptable performance that must be achieved
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when using base station adaptive antennas. The capacity improvement analysis is based on

the spectrum efficiency E, defined in [23] as

E = 4
d

C
. (2.92)

Thus, E = 1 for the reference system. Simulation results have shown that, for allM (number

of elements in the array) in the range {1, · · · , 20} and for outage probability less than 2.65%,

the maximum spectrum efficiency is achieved for cluster size N = 4. However, a given

spectrum efficiency requires a minimum number of antenna elements, which depends on the

angular spread σA, as shown in Figure 2.19. We see that the number of elements required

rapidly increases as the angular spread σA increases. For example, in order to increase system

capacity by 500% (6 times) with respect to the capacity of the reference system, 7 elements

are required when σA ≈ 0o. However, if σA is about 2.4o, the number of elements required

increases to 14. Therefore, the performance highly depends on the propagation environment.

2.6.2 CDMA Cellular Systems

In CDMA systems, adaptive antennas are used to reduce interference from in-cell co-channel

users, since in-cell interference is the major limiting factor of system capacity in such systems.
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Table 2.1: The maximum number of users supported at Pr{BER > 10−2} < 10% as a
function of the number of multipath components L and number of elements M in the array
antennas, for switched beam (SB) and optimum beamforming (OB): wideband case [24].

Number of users supported
L omni M = 6 M = 6 M = 12 M = 12

SB OB SB OB

1 14 31 > 31 > 31 > 31
2 10 23 > 31 > 31 > 31
10 4 15 23 20 29
30 0 6 10 13 20

Liberti et. al [24] presented an analysis of a CDMA cellular system with spreading gain

N = 31 and using base station adaptive antennas with M elements on the reverse link.

Both optimum beamforming (OB), based on the minimum mean square error criterion, and

switched beam (SB) approaches are considered. The Geometrically Based Single Bounce

Elliptical Model, discussed in Section 2.5.4, was adopted, with L multipath components for

each user. Both narrowband and wideband cases are considered. In the narrowband case,

all multipath components arrive with delays which are very small compared to a chip and

are assumed to be correlated with one another. On the other hand, in the wideband case,

the multipath components are uncorrelated with one another, due to sufficient difference in

the propagation delays. The path loss assumed is n = 3 and no out-of-cell interference is

considered. It is also assumed that the total received power from each user is the same, that

is, power control is perfect. The capacity of the system is computed based on the outage

probability, which is defined in [24] as the probability that a raw bit error rate (BER) exceeds

10−2. Thus, the capacity of the system is defined as the maximum number of users that can

be supported at an outage probability of less than 10%.

Table 2.1 shows the number of users for the wideband case (uncorrelated multipath

components). We can see that system capacity increases as the number of antenna elements

increases. Note also that an OB system performs better than a SB system for the same

number of antenna elements. As expected, system capacity degrades as the number of

multipath components L increases, especially for a small number of antenna elements.

Table 2.2 shows the performance of the SB and OB systems for the narrowband case

(correlated multipath environment). We see that, unlike for the wideband case shown in
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Table 2.2: The maximum number of users supported at Pr{BER > 10−2} < 10% as a
function of the number of multipath components L and number of elements M in the array
antennas, for switched beam (SB) and optimum beamforming (OB): narrowband case [24].

Number of users supported
L omni M = 6 M = 6 M = 12 M = 12

SB OB SB OB

1 14 31 > 31 > 31 > 31
2 4 23 > 31 > 31 > 31
10 0 6 > 31 25 > 31
30 0 12 > 31 14 > 31

Table 2.1, the performance of the OB system does not degrade as the number of multipath

components increases. Also, the capacity improvement achieved by increasing the number of

elements for the SB systems in the narrowband case is not as large as it is for the wideband

case.

Several other important studies on capacity improvement using adaptive antennas can be

found in literature. In the following, we summarize some of them, with their main conclusions

and results.
Reference Description

[25] Winter et. al show, by Monte Carlo evaluation, that a three-

element base station antenna increases the signal-to-interference-

plus-noise ratio (SINR) by 9.2 dB in the reverse link IS-54 digital

cellular system. Increasing the number of elements in the array

to four and five, the SINR increases 12.4 dB and 15 dB, respec-

tively. Based on the observed SIR improvement, it is claimed

that, with a three-element antenna, the capacity of the IS-54

cellular system can improve 100%, with respect to a conven-

tional cellular system using cluster size N = 7 and omnidirec-

tional antennas. It is also noted that with a two-element antenna

and dynamic channel allocation, a cluster size of 4 is possible.

The dynamic channel allocation would reallocate channels, when

the adaptive antenna cannot sufficiently mitigate the co-channel

interference.
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Reference Description

[26] In the U.S. TDMA digital cellular system IS-136, a carrier is

shared by three users (three time-slots per carrier) and the base

station output power on each carrier must be kept at a con-

stant level for the full duration of the frame. Therefore, in-

dividual beamforming on the reverse link for each time slot is

not possible. Hagerman and Mazuer investigated reverse link

beamforming on a carrier basis, combined with beam packing.

With beam packing, mobiles close to each other (similar angle-

of-arrival) are allocated time-slots on the same carrier. When

beam packing is not used, a carrier is transmitted in several

beams, increasing the total co-channel interference, and reduc-

ing the beamforming gain. The IS-136 system is simulated with

cluster size N = 4, three-sectorized cells and four beams per

cell. Results show that, assuming that P [SIR < 18dB] < 10%

is required, the use of beam packing doubles the served traffic

(number of users/cell/channel). As expected, the gain achieved

by using beam packing increases as the traffic increases.

[27] Petrus et. al analyze the capacity improvement achieved using

base station adaptive antennas for AMPS system. The analysis

is based on outage probability. It is shown that SDMA is not

possible in an AMPS system. A cell cluster size of four can be

achieved using a 5 element array and a cluster size of three is

possible if a 8-element array is used.

[28] The performance of switched-beam for cellular systems is ana-

lyzed by Ho et. al. Both forward and reverse links are analyzed

and it is observed that the performance improvement in the re-

verse link is not uniform over the entire cell area. It has been

shown that switched-beams are robust to imperfect power con-

trol. The trunking degradation caused by narrowbeam sector-

ing is also investigated and a variety of trunkpool techniques is

analyzed.
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2.7 Conclusions

We introduced in this chapter the basic concepts of adaptive antennas and beamforming

techniques. The performance of adaptive antennas are highly dependent on the spatial

characteristics of the propagation channel. Therefore, channel propagation models must

include spatial information, such as angle-of-arrival, time-of-arrival, angle spread, etc. We

discuss in this chapter the differences between microcell and macrocell propagation channel

environments, from the point of view of spatial characteristics. Two spatial channel models

are reviewed.

Adaptive antennas can reduce co-channel interference in cellular systems, increasing sys-

tem capacity. In FDMA/TDMA cellular systems, reduction in co-channel interference allow

cell cluster size reduction, increasing system capacity. Additionally, adaptive antennas can be

use to allow channel reuse within the cell, increasing even more system capacity. In CDMA

system, adaptive antennas are used to reduce interference from in-cell co-channel users, since

in-cell interference is the major limiting factor of system capacity in such systems. We also

reviewed in this chapter some representative studies on system capacity enhancement using

adaptive antennas in cellular systems.



Chapter 3

Statistical Analysis of Co-channel

Interference in Cellular

Communication Systems

3.1 Introduction

Co-channel interference is generally recognized as one of the factors that limits the capac-

ity and transmission quality in wireless communications. An appropriate understanding of

the statistical behavior of the co-channel interference is extremely important when analyz-

ing and designing multi-user wireless systems or for exploring techniques that mitigate the

undesirable effects of co-channel interference.

The performance of wireless communications systems operating under the effects of co-

channel interference has been extensively studied [29]-[32]. Co-channel interference in a

wireless system occurs, for example, when a mobile simultaneously receives signals from co-

channel base stations. In this instance, one co-channel forward link is the desired signal, and

the other co-channel signals are received as interference and compose the total co-channel

interference at the receiver.

In wireless communications, the statistical characterization of the desired or interference

signals involves mainly two propagation effects: small scale fading, induced by multipath over

a local area, and shadowing (large scale fading), induced by random attenuators of the local

mean signal, such as trees, buildings and terrain [1, 33]. Measurements have shown that the

local mean signal level in a wireless communications system [34, 35] can be accurately model

44



Chapter 3 - Co-channel Interference in Cellular Communication Systems 45

as a lognormal random variable (RV). When expressed in decibel units, the local mean signal

level follows a normal variation and it is characterized by an area mean value and standard

deviation, both in dB. The area mean value is a function of particular parameters, such as

the transmitter to receiver separation (T-R) distance, transmitter power levels and antenna

gains, while the shadowing standard deviation depends on the physical environment. In

the general case of system design or simulation, the effects of small fading and shadowing

fading must be taken into consideration, although, in some cases, shadowing of the desired

and interference signals is the main source of performance degradation. For example, spatial

diversity, spread spectrum, and coding and interleaving techniques have been extensively

employed to combat the effects of small scale fading [1, 33, 4], such that received signals are

mainly dependent on large scale channel variations. In the analysis presented in this work,

we assume that the small scale fading effects are averaged out and only shadowing fading

and path loss are considered.

Based on the assumption that the received signals are affected by shadowing fading and

path loss only, the total co-channel interference is therefore modeled as a composition of

individual interference signals, whose local mean power levels follow lognormal variation. It

is usually assumed that the phase shift observed in each individual interference signal varies

significantly due to scattering, such that we can assume that the signals add incoherently

(e.g. their powers add) when averaged over the local area. Therefore, the total co-channel

interference received at a given location is modeled as the sum of lognormally distributed

signals.

It is well accepted that the distribution of the sum of lognormal RVs can be approximated

by another lognormal distribution [36]-[37], and several methods have been proposed for

computing the mean value and standard deviation in decibel units of the resulting log-

normal distribution. Wilkinson’s [36] and Schwartz and Yeh’s methods [38] are among the

most popular methods, and several studies have been published on both methods [36]-[37],

comparing the estimated distribution functions (DFs) and moments of the sum. While

Wilkinson’s and Schwartz and Yeh’s methods allow the individual signals in the sum to

have different mean values and standard deviations in decibel units, previous works have

surprisingly assumed that all the summands have identical means and standard deviations.

However, practical situations where the individual interference signals have different mean

values and different standard deviations occur very often in wireless communications, and

will become more important as future wireless systems proliferate. Since the mean values of
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the interference signals depend on parameters such as the T-R distance and antenna gains,

the area means of each signal differ significantly if the distances and the antenna patterns

are significantly different. Furthermore, it is likely that each interference has a different

standard deviation about the area mean, due to different physical shadow environments. A

typical situation where interference signals have different area means and standard deviations

occurs in indoor wireless communications systems in multifloored buildings. Measurements

have shown [39, 40] that the standard deviation in decibel units of the signal received at

a given location depends on the number of floors separating the transmitter and receiver.

When analyzing the performance and capacity of wireless systems, the assumption that all

interference signals have the same mean and standard deviation may be used for a first-order

prediction. However, for more accurate capacity and performance predictions of emerging

in-building and microcell wireless systems, a more accurate description of the statistics of

the individual interference signals is required, by considering the appropriate values of mean

and standard deviation of each individual interference signal.

In this chapter, we present an accuracy analysis of Schwartz & Yeh’s and Wilkinson’s

methods for the general case, when the individual interference signals that compose the total

interference have different mean values and different standard deviations. We show that the

accuracy of Wilkinson’s method, unlike for Schwartz & Yeh’s method, is very sensitive to the

difference between the mean values and standard deviations of the individual interference

signals, and the number of signals in the sum.

The analysis presented in this work is based on comparing the estimates of the mean and

standard deviation of the sum computed using each method [41, 42]. In many applications,

such as the simulation of wireless communications systems, we are interested in the mean

value and standard deviation of the sum of the interference signals, rather than the distri-

bution function of the sum, for simplified analysis of outage, frame error rate, capacity or

other system performance parameters.

The remainder of this chapter is organized as follows. Section 3.2 briefly reviews Wilkin-

son’s and Schwartz & Yeh’s methods. Section 3.3 compares the mean values and standard

deviations of the total interference signal computed using both methods, for a wide range

of statistical distributions of the individual co-channel interference signals. Section 3.4 con-

cludes the chapter.
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3.2 Sum of Lognormal Random Variables

Consider that N interference signals arrive at the receiver from co-channel mobiles or base

stations. Assuming that the effects of small scale fading are averaged out, the local mean

power level Ii of the i-th signal undergoes lognormal variation. Using decibel units, the local

mean power level can be modeled as [1, 33]

Xi = 10 log10 Ii = mXi
+ χi (in dBm), (3.1)

where mXi
is the area mean power (or, alternatively, average large-scale propagation path

loss) and χi is a zero-mean normally distributed RV in dB with standard deviation σXi
, also

in dB, due to the shadowing caused by large obstacles [1, 33]. The area mean mXi
is usually

modeled as a function of the T-R separation di, path loss exponent γ, transmitted power

PT,i, in dBm, and transmitter and receiver antenna gains GT,i and GR,i, both in dB

mXi
= PT,i +GT,i +GR,i − 10γ log10 di (in dBm). (3.2)

Under the reasonable assumption that the individual signals Ii add incoherently, the total

interference signal is modeled as the sum of N lognormally distributed signals

I =
N∑
i=1

Ii. (3.3)

It is well accepted that the distribution of I can be approximated by another lognormal

distribution [36]-[37], or, equivalently, that X = 10 log10 I follows a normal distribution.

Assuming that the sum I is lognormally distributed, which is a fair assumption based on

numerous and well known empirical and analytical studies, Wilkinson’s [36] and Schwartz

and Yeh’s methods [38] compute the mean mX and standard deviation σX of X.

In the derivation of these two methods, it is convenient to use the natural logarithm

instead of the logarithm with base 10 to define the normal RV that corresponds to a lognormal

RV. Thus, define the normal RV Yi as

Yi = ln Ii, (logarithmic units) (3.4)

with mean value mYi and standard deviation σYi given, respectively, by

mYi = λ mXi
and σYi = λ σXi

, (logarithmic units) (3.5)

where λ = ln(10)/10. Note that Yi = λXi.
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Using (3.4) and recalling that we are approximating the distribution of I by a lognormal

distribution, we have

I = eY1 + eY2 + · · ·+ eYN ≈ eZ = 10X/10, (3.6)

where Z (in logarithmic units) and X (in dB) are normally distributed, and Z = λX.

Wilkinson’s and Schwartz & Yeh’s methods then compute the mean value and standard

deviation of Z (mZ and σZ) orX (mX and σX) from the mean values and standard deviations

of the summands Yi, as shown subsequently.

For generality, it is useful to assume that the individual signals Ii may be correlated

to each other. This correlation may be due to the fact that shadowing loss is caused by

large objects surrounding the mobiles or base stations. Therefore, even signals coming from

different directions may be attenuated by the same obstacles, leading to correlation among

the received signals. Also, uncorrelated shadowing is simply a specific case for the general

correlated shadowing assumption. Therefore, in order to consider the correlated interference

signals case, let us define the correlation coefficient rij of Yi and Yj by

rij =
E{(Yi −mYi)(Yj −mYj )}

σYi σYj
. (3.7)

Since Yi is a scaled version of Xi, rij is also the correlation coefficient of Xi and Xj .

3.2.1 Wilkinson’s Method

According to Wilkinson’s method, the mean value and standard deviation of Z in (3.6) are

determined by matching the first and second moments of I with those of I1 + I2 + · · ·+ IN .

For the first moment, we have

E{eZ} = E{eY1 + eY2 + · · ·+ eYN}. (3.8)

The moments in (3.8) are evaluated by observing that, for a normal RV u with mean value

mu and variance σ2
u, and any integer n, we have [13]

E{enu} = exp(nmu +
1

2
n2σ2

u). (3.9)

Therefore,

E{eZ} = exp(mZ + σ2
Z/2), (3.10)

and

E{eY1 + eY2 + · · ·+ eYN} =
N∑
i=1

exp(mYi + σ2
Yi
/2). (3.11)



Chapter 3 - Co-channel Interference in Cellular Communication Systems 49

Using (3.10) and (3.11) in (3.8), we have

exp(mZ + σ2
Z/2) =

N∑
i=1

exp(mYi + σ2
Yi
/2) = u1. (3.12)

The summation in (3.12), henceforth denoted by u1, is a function of the mean values mYi

and standard deviations σYi of the summands Yi, which are assumed to be known.

Now, matching the second moments of I and I1 + I2 + · · ·+ IN , we have

E{e2Z} = E{(eY1 + eY2 + · · ·+ eYN )2}. (3.13)

Using again the property (3.9) in both sides of (3.13), we obtain

exp(2mZ + 2σ2
Z) =

N∑
i=1

exp(2mYi + 2σ2
Yi
) +

+2
N−1∑
i=1

N∑
j=i+1

exp(mYi +mYj )×

exp
[
1

2
(σ2

Yi
+ σ2

Yj
+ 2rijσYiσYj )

]
= u2. (3.14)

The left-hand side of (3.14) can be evaluated using the mean values mYi, standard deviations

σYi and correlation coefficient rij , and will be denoted by u2.

Expressions (3.12) and (3.14) form a system of equations with unknowns mZ and σZ . By

solving this system of equations, and using Z = λX, we finally obtain

mX = (1/λ) (2 ln u1 − 1

2
ln u2), (3.15)

σX = (1/λ)
√
ln u2 − 2 lnu1. (3.16)

An important feature of Wilkinson’s method is that the assumption of
∑
i Ii being lognor-

mally distributed is actually used in the computation of mX and σX .

3.2.2 Schwartz and Yeh’s Method

Schwartz and Yeh proposed a method based on the exact computation of the mean value

mX and standard deviation σX of the sum of N = 2 lognormal RVs. For N > 2, a recursive

approach is used, approximating the sum of two lognormal RVs by another lognormal RV,

and computing the mean and standard deviation of the sum.

Consider the sum of N lognormal RVs in (3.6), rewritten as

Z = ln(eY1 + eY2 + · · · eYN ). (3.17)
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Let Zk denote ln(eZk−1 + eYk), where Zk−1 is assumed to be normally distributed. Schwartz

and Yeh’s method then computes the mean mZk
and standard deviation σZk

of Zk, for

k = 2, 3, · · · , N . Following notation used in [36], mZk
and σZk

, for k = 2, 3, · · · , N , are given

by

mZk
= mZk−1

+G1(mwk
, σwk

) (3.18)

σ2
Zk

= σ2
Zk−1

−G2
1(mwk

, σwk
) +G2(mwk

, σwk
) +

+2
(r(Zk−1)(Yk)σYk − σZk−1

)σZk−1

σ2
wk

G3(mwk
, σwk

), (3.19)

where mwk
and σwk

are the mean and standard deviation of wk = Yk − Zk−1. Since Yk is

normally distributed and Zk−1 is assumed to be normally distributed, wk is also assumed to

be a normal RV, with probability density function pwk
(wk)

pwk
(wk) =

1√
2πσwk

exp

[
−(wk −mwk

)2

2σ2
wk

]
, (3.20)

where

mwk
= mYk −mZk−1

(3.21)

σwk
=

√
σ2
Yk

+ σ2
Zk−1

− 2 r(Zk−1)(Yk) σYk σZk−1
. (3.22)

The term r(Zk−1)(Yk) in (3.19) and (3.22) is the correlation coefficient of Zk−1 and Yk, given

by [44]

r(Zk−1)(Yk) = σZk−2

r(Zk−2)(Yk)

σZk−1

+
r(k−1)(k)σYk−1

− r(Zk−2)(Yk)σZk−2

σZk−1
σ2
wk−1

G3(mwk−1
, σwk−1

). (3.23)

The functions G1, G2 and G3 in (3.18), (3.19) and (3.23) are given by

G1(mwk
, σwk

) = E{ln(1 + ewk)}
=

∫ ∞

−∞
ln(1 + ewk) pwk

(wk) dwk, (3.24)

G2(mwk
, σwk

) = E{ln2(1 + ewk)}
=

∫ ∞

−∞
ln2(1 + ewk) pwk

(wk) dwk, (3.25)

and

G3(mwk
, σwk

) = E{(wk −mwk
) ln(1 + ewk)}

=
∫ ∞

−∞
(wk −mwk

) ln(1 + ewk) pwk
(wk) dwk. (3.26)
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The integrals in (3.24), (3.25) and (3.26) must be numerically evaluated. It should be noted

that Z1 = Y1. Therefore, by recursively applying expressions (3.18) through (3.26), for

k = 2, 3, · · · , N , the mean and standard deviation of X are finally given by mX = λmZN
and

σX = λσZN
, respectively.

3.2.3 Discussion

Schwartz & Yeh’s method directly computes the mean value mX and standard deviation σX

in dB of the sum of lognormal RVs, while Wilkinson’s method obtains the moments of X

by computing the first two moments of I = 10X/10. Furthermore, Schwartz & Yeh’s method

computes the exact moments of X for N = 2 summands. For more than two summands, the

method is recursively applied, assuming that the sum of two lognormal RVs is lognormally

distributed. On the other hand, Wilkinson’s method computes mX and σX assuming that

I =
∑
i Ii is lognormally distributed. We will see subsequently that Schwartz & Yeh’s method

gives more exact results than Wilkinson’s method, when estimating mX and σX .

3.2.4 Monte Carlo Simulation

The accuracy analysis of Wilkinson’s and Schwartz & Yeh’s methods is carried out by com-

paring the mean values and standard deviations of the sum computed using these two meth-

ods, to the mean value msim and standard deviation σsim of the sum computed using exten-

sive Monte Carlo simulation. The Monte Carlo simulation is based on generating K (where

K > 10000) sets of samples (denoted by (v
(k)
1 v

(k)
2 · · · v(k)N )) of N lognormally distributed

signals vi (representing the interference signals Ii) with a specific range of means mXi
and

standard deviations σXi
in decibel units, and correlated with correlation coefficient rij. To

generate the k-th set of samples (v
(k)
1 v

(k)
2 · · · v(k)N ), we first generate the vector a,

a = [a1 a2 · · · aN ]T , (3.27)

where ai, 1 ≤ i ≤ N , are samples of N uncorrelated normal processes with the specific

means mXi
and standard deviations σXi

, and T indicates transpose operation on a vector.

The vector a is then converted into vector b = [b1 b2 · · · bN ]T , using [6]

b = La, (3.28)

in order to induce the desired correlation among the samples. The matrix L is a lower

triangular matrix, computed from Cholesky decomposition on the desired autocorrelation
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matrix R

R = E{b bT} = L LH , (3.29)

whose elements are given by

Rij =


 rij for i 6= j

1 for i = j.
(3.30)

The variables bi are then converted into the desired samples v
(k)
i , by using v

(k)
i = 10bi/10.

The samples v
(k)
i (1 ≤ i ≤ N) are added to generate the k-th sample p(k) of the sum of N

lognormally distributed processes. By repeating the entire procedure K times, we generate

a collection of K samples p(k) (1 ≤ k ≤ K). The samples p(k) are then converted into

decibel units, and the mean value msim and standard deviation σsim of the collection are

then determined.

Once msim and σsim are computed by simulation, and mX and σX are computed using

Schwartz & Yeh’s and Wilkinson’s methods, the absolute errors in the mean value and

standard deviation for each method are determined as

error in the mean = |mX −msim| (in dB), (3.31)

error in the standard deviation = |σX − σsim| (in dB). (3.32)

In the following, several cases of the sum of log-normal RVs are analyzed for uncorrelated

and correlated signals, where the correlation coefficient between signals Xi and Xj is set to

rij = 0.7, for the correlated case.

3.3 Comparison

3.3.1 Two summands with different mean values and standard

deviations

Consider the sum of two lognormal RVs I1 and I2. The mean value and standard deviation

of X1 = 10 log10 I1 are set to mX1 = 0 dBm and σX1 = 8 dB, respectively, while the mean

value and standard deviation of X2 = 10 log10 I2 are chosen such that ∆m = mX2 −mX1 and

∆σ = σX2 − σX1 are within the ranges

−40 dB ≤ ∆m ≤ 40 dB ⇒ −40 dBm ≤ mX2 ≤ 40 dBm (3.33)

−4 dB ≤ ∆σ ≤ 4 dB ⇒ 4 dB ≤ σX2 ≤ 12 dB. (3.34)
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Figure 3.1: Absolute errors in the mean value and standard deviation of the sum of two
uncorrelated lognormal signals, using Wilkinson’s method.

−40
−20

0
20

40 −5
0

5
0

2

4

6

∆σ (dB)

Mean − Wilkinson: r
12

 = 0.7

∆m (dB)

er
ro

r 
(d

B
)

−40
−20

0
20

40 −5
0

5
0

2

4

∆σ (dB)

Std Dev − Wilkinson: r
12

 = 0.7

∆m (dB)

er
ro

r 
(d

B
)

Figure 3.2: Absolute errors in the mean value and standard deviation of the sum of two
correlated (r12 = 0.7) lognormal signals, using Wilkinson’s method.

The errors in the mean and standard deviation for uncorrelated and correlated I1 and I2,

using Wilkinson’s method, are shown in Figure 3.1 and 3.2, respectively. For Wilkinson’s

method, when one of the summands is dominant (|∆m| > 20 dB), the errors in the mean

and standard deviation are negligible. However, when the summands have about the same

mean value and different standard deviations, the errors in the mean value and standard

deviation of X are not negligible and can be as high as 6 dB and 4 dB, respectively, for

uncorrelated summands. For correlated summands, the maximum errors in the mean and

standard deviation drop to 4 dB and 2 dB, respectively. On the other hand, the errors for

Schwartz & Yeh’s method can be shown to be zero, for both correlated and uncorrelated

summands, since this method computes the exact mean and standard deviation of X.

The higher accuracy of Schwartz & Yeh’s method, compared with Wilkinson’s method,

is at the expense of higher complexity, as one can see from expressions presented in Section

3.2. However, Figures 3.1 and 3.2 show that, for some values of ∆m and ∆σ, Wilkinson’s
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deviation are less than 1 dB in Wilkinson’s method - correlated signals (r12 = 0.7).

method presents accuracy that may be acceptable for some applications. Let us assume that

the maximum tolerable error between the true values and the analytical approach is 1 dB,

in both mean and standard deviation. Figures 3.3 and 3.4 show the regions on the plane

[∆σ ×∆m] where the errors using Wilkinson’s method are less than 1 dB, for uncorrelated

and correlated signals (r12 = 0.7), respectively. As a rule of thumb, if the difference between

the mean values of two uncorrelated signals X1 and X2 is less than 10 dB, the errors in both

mean value and standard deviation computed using Wilkinson’s method are larger than 1

dB, regardless of the difference between the standard deviations. For correlated signals with

correlation coefficient of 0.7, the errors in the mean value and standard deviation are larger

than 1 dB if the difference between the mean values is less than 10 dB and the difference

between the standard deviations is larger than 2 dB.
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Figure 3.5: Absolute errors in the mean value and standard deviation of the sum of N
uncorrelated lognormal signals with same standard deviation (σXi

= 8 dB) and different
means, using Wilkinson’s method.

3.3.2 N summands with different mean values and same standard

deviation

Now consider the case of the sum of N (2 ≤ N ≤ 18) lognormal RVs with the same standard

deviation σXi
= 8 dB, but different mean values. The mean values mXi

of the N summands

are equally spaced distributed over the interval from (0 dBm − δm/2) to (0 dBm + δm/2),

where δm is the width of the interval and is adjusted from 0 to 50 dB in our simulation. For

example, for N = 5 signals and δm = 20 dB, the mean values are −10, −5, 0, 5 and 10 dBm.

Figure 3.5 shows that the errors in mX and σX , computed using Wilkinson’s method for

uncorrelated summands, are non-zero over the entire ranges of δm and N considered. The

manner in which the errors vary with δm depends on the number of summands N . For small

N (N < 8), both errors tend to decrease as δm increases. This is due to the fact that, with

few summands and large δm, the summand with the largest mean value dominates the sum

and the other summands are negligible, reducing the errors. However, when the number

of summands is large (N > 10), the errors in mX and σX increase as δm increases. For

large N , several summands will have large mean values, giving rise to the conclusion that

the accuracy of Wilkinson’s method degrades as the number of summands with about the

same mean value increases. We see that the errors in the mean and standard deviation in

Wilkinson’s method are larger than 1 dB in almost all the ranges considered, except when

the number of summands is small (N < 3) and δm < 10 dB.

For N correlated RVs, with correlation rij = 0.7, it can be shown that the errors in mX

and σX are almost invariant with N and δm, and are smaller than 0.3 dB.

Comparisons between our simulations and values of mX and σX for Schwartz & Yeh’s
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Figure 3.6: Absolute errors in the mean value and standard deviation of the sum of N
uncorrelated lognormal signals with same mean (mXi

= 0 dBm), and different standard
deviations, using Wilkinson’s method.

method demonstrate that errors are almost invariant with N and δm, and smaller than 0.5

dB, for both uncorrelated and correlated signals.

3.3.3 N summands with different standard deviations and same

mean value

Consider now the case of the sum of N (2 ≤ N ≤ 18) lognormal RVs with the same mean

value mXi
= 0 dBm, but different standard deviations. The standard deviations σXi

of

the N summands are equally spaced distributed over the interval from (8 dB − δσ/2) to

(8 dB + δσ/2), where δσ can be adjusted from 0 to 8 dB.

The errors in the mean and standard deviation for Wilkinson’s method, with respect to

Monte Carlo simulation results, are presented in Figure 3.6, for uncorrelated signals, and

Figure 3.7, for correlated signals, with correlation rij = 0.7. The results for Wilkinson’s

method agree with the well known results that the accuracy of Wilkinson’s method degrades

as the standard deviations of the individual signals increase [38].

Figure 3.6 also shows that, for uncorrelated signals, the errors are larger than 1 dB over

the entire range analyzed. From the results in Figure 3.7, it can be shown that, for correlated

signals, the errors in the mean and standard deviation may be acceptable (smaller than 1

dB) , if N and δσ meet the following conditions

? error in the mean < 1 dB if δσ < 0.15N + 1.72 (dB)

? error in the standard deviation < 1 dB if δσ < 0.14N + 2.33 (dB)
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Figure 3.7: Absolute errors in the mean value and standard deviation of the sum of N
correlated lognormal signals (rij = 0.7) with same mean (mXi

= 0 dBm), and different
standard deviations, using Wilkinson’s method.

Our results also show that the errors in the mean and standard deviation in Schwartz &

Yeh’s method are virtually zero and invariant with the number of signals N and range δσ.

3.3.4 Summands with different mean values and standard devia-

tions

Now consider the case ofN = 6 summands, with different mean values and different standard

deviations. The standard deviations of the summands are equally spaced distributed over the

interval from (8 dB−δσ/2) to (8 dB+δσ/2), and δσ can be adjusted from 0 to 8 dB. Likewise,

the mean values are equally spaced distributed over the interval from (0 dBm − δm/2) to

(0 dBm+δm/2), where δm can be adjusted from −75 to 75 dB. Note that we allow δm to be

negative in order to analyze not only the effects of the spreads δm and δσ on the accuracy

of both methods, but also the effects of

• summands with small (large) mean values having small (large) standard deviations,

which is obtained by using large δσ and large positive δm,

• summands with small (large) mean values having large (small) standard deviations,

which is obtained by using large δσ and large negative δm.

Figure 3.8 shows the combinations of mean values and standard deviations of the individual

signals on the plane [δσ × δm].

The errors for Wilkinson’s method are shown in Figures 3.9 and 3.10, for uncorrelated

and correlated signals (rij = 0.7), respectively, which are similar to the results presented

in Section 3.3.1, for N = 2. The imprecision of the estimation of mean and standard
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Figure 3.12: Regions on the plane [δσ×δm] where the errors in the mean value and standard
deviation are less than 1 dB in Wilkinson’s method - correlated signals.

deviation using Wilkinson’s method increases as the spread of standard deviation of the

summands increases (large δσ), and the spread of mean values decreases (small δm), for

both uncorrelated and correlated signals. Figures 3.11 and 3.12 show the regions on the

plane [δσ × δm] where the errors are smaller than 1 dB, for uncorrelated and correlated

signals, respectively. For uncorrelated signals, the errors are only acceptable when signals

with small (large) mean values have large (small) standard deviations. For correlated signals,

the errors are not acceptable only when all signals have similar mean values and the spread

of the standard deviations is large.

On the other hand, additional results show that the errors in both mean and standard

deviation in Schwartz & Yeh’s method are virtually zero, for both uncorrelated and correlated

signals.
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3.4 Conclusion

Schwartz & Yeh’s and Wilkinson’s methods are widely used for computing the moments of

the total co-channel interference in wireless communications systems, modeled as the sum of

lognormal distributed signals. These two methods have been extensively analyzed in previ-

ous studies under the assumption of having all the summands identically distributed. This

assumption rarely holds in practical cases of emerging wireless communications systems,

where interference signals coming from different physical environments may present differ-

ent mean values and standard deviations in decibel units. To understand the conditions

needed to accurately use both methods, we developed an extensive simulation to compare

the performance of Schwartz & Yeh’s and Wilkinson’s methods for the general case, when

the summands have different means and different standard deviations.

First, we considered the sum of two interference signals with different mean values and

different standard deviations. As expected, the errors in the mean value and standard

deviation in Schwartz & Yeh’s method are zero, since this method computes the exact

moments for the case of two summands. On the other hand, the accuracy of Wilkinson’s

method is poor when the standard deviations of the summands are different. The accuracy

of Wilkinson’s method is acceptable when the summands have about the same standard

deviation.

We also analyzed cases of the sum of N > 2 signals. In all cases, Schwartz & Yeh’s

method presented excellent accuracy, for both uncorrelated and correlated signals. However,

the accuracy of Wilkinson’s method depends on the spread of the mean values and standard

deviations of the individual signals in the sum. From the results presented in this work, we

have shown quantitative results which highlight the fact that the accuracy of Wilkinson’s

method degrades as the spread of mean values of the summands decreases and as the spread of

the standard deviations of the summands increases. It is also observed that the performance

of Wilkinson’s method degrades as the correlation of the signals in the summation decreases,

and the number of summands increases. Such results may be useful in simulation and analysis

of co-channel signals in emerging wireless communications systems.



Chapter 4

Narrowbeam Antennas and Fractional

Loading Factor in Cellular

Communication Systems

4.1 Introduction

The rapid growth in demand for cellular mobile communications and emerging fixed wireless

access has created the need to increase system capacity through more efficient utilization

of the frequency spectrum. One approach for achieving high spectral efficiency is to reduce

the channel reuse distance by reducing the cluster size N = M/Nc of a cellular system [1],

where M is the total number of voice channels available in the spectrum allocation, and Nc

is the number of channels per cell. For AMPS in North and South America, M = 395, N is

typically 7 (7-cell reuse) and Nc = 57. Reduction in the cluster size leads to greater spectrum

reuse, but increases co-channel interference, which reduces the link quality, thereby requiring

the use of some co-channel interference control techniques at the base station or in the air

interface.

Several techniques for controlling co-channel interference have been proposed in literature.

Narrowbeam adaptive antennas (“smart antennas”) at the base stations can significantly

reduce co-channel interference by steering a high gain in the direction of the desired mobile

stations and/or very low gains in the direction of the undesired co-channel mobile stations

[15], [22], [27], [46]. Power control has also been considered to control co-channel interference,

allowing cluster size reduction and capacity improvement [47]. Another technique that has

61
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been proposed is based on a fractional cell loading factor [48], which reduces the probability

that a given channel is in use in the co-channel cells which, consequently, reduces the total

co-channel interference level for a particular channel.

In this chapter, we analyze, by means of extensive simulation, the combined application

of narrowbeam adaptive antennas at the base stations and the fractional loading factor.

The combined application of these two techniques was first analyzed by Frulluone et al. in

[49], using an 8-element circular array at base stations in a GSM system. It was shown in

[49] that the use of a specific adaptive antenna combined with the fractional loading factor

allows cluster size reduction from N = 12 to 4. This reduction in cluster size, along with

the higher trunking efficiency, leads to an increase of about 500% in system capacity. We

extend and generalize the results of [49] by considering narrowbeam antennas with a wide

range of beamwidths (BWs) and side lobe levels (SLLs) on both forward and reverse links.

We determine, by simulation, the capacity improvement from cluster size reduction, with

respect to a reference 7-cell reuse system (N = 7, 3 sectors per cell). As shown subsequently,

the reduction of the loading factor leads to a reduction in the co-channel interference at the

expense of an intrinsic capacity loss. Therefore, when using narrowbeam antennas combined

with a fractional loading factor, we first explore controlling the co-channel interference by

using narrowbeam antennas alone, with no reduction in channel loading in each cell. Then,

as additional reduction in interference is needed to maintain a particular ratio of signal

to co-channel interference (SIR), we reduce the cell loading factor. From the results of the

extensive system simulations, we are able to observe how blocking probability and co-channel

interference limit the resulting system capacity.

In the remainder of this chapter, Section 4.2 reviews how narrowbeam antennas and the

fractional loading factor may be used for controlling co-channel interference. The limiting

factors for capacity of a cellular system are also presented in Section 4.2.

In Section 4.3, the simulated macrocellular system is described, and Section 4.4 presents

results along with an extensive analysis of capacity improvement that is achieved by combin-

ing narrowbeam antennas and the fractional loading factor. Finally, Section 4.5 summarizes

the results of this chapter.
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Figure 4.1: Narrowbeam antennas in cellular system: forward and reverse links.

4.2 Methods for Reducing Cochannel Interference

4.2.1 Narrowbeam Antennas

When adaptive narrowbeam antennas are used at base stations in both the forward and

reverse links, beams are steered toward the desired in-cell users, as shown in Figure 4.1. In

this figure, the first tier of co-channel cells is shown, which consists of six cells. Throughout

this chapter, we consider only the first tier of co-channel cells, and more distant tiers of

co-channel cells are not considered in the simulation. We show in Appendix A that using

only the first tier of cells induces a worst-case error of less than 1.1 dB in the estimation

of SIR, regardless of the cluster size, when 40 dB/decade of path loss is assumed, and a

worst-case error of less than 2.3 dB for 30 dB/decade of path loss. It should be noted that

the methodology presented here may be generalized for an arbitrary path loss value.

Assuming that all co-channel cells in the first tier are active, the total forward link

interference power at the mobile at the center cell is:

If = If2 + · · ·+ If7 , (4.1)
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where Ifi is the interference power received from the i-th co-channel base station. Likewise

for the reverse link, the total reverse link interference power received at the base station at

the center cell is:

Ir = Ir2 + · · ·+ Ir7 , (4.2)

where Iri is the interference power received from the i-th co-channel mobile stations. We

assume that the interference signals add incoherently, so that the powers can be summed1.

The co-channel interference received at the mobile at the center cell, caused by a given

co-channel base station, is attenuated by the antenna gain when the mobile is not within

the main lobe of the antenna of that co-channel base station transmission. For example, in

Figure 4.1, the co-channel interference signals from base stations 2, 4, 6 and 7 are attenuated

due to the use of narrowbeam antennas. However, there is no reduction in the interference

caused by base stations 3 and 5. The same principle is valid for the reverse link.

It is obvious that the extent of co-channel interference reduction depends on the beamwidth

and the side lobe level of the base station antennas. If the antenna is implemented using

an array of antennas, the BW and SLL will depend on the number of elements in the array.

The first tradeoff presented in this chapter demonstrates how the reduction of interference

(which is required in order to decrease cluster size and thus improve capacity) is related to

the beam pattern and complexity of the base station antenna.

4.2.2 Fractional Loading Factor

The total co-channel interference at a given mobile or base station depends on the k co-

channel cells that are using the same pair of forward and reverse channels (active cells) as

the cell where the interference level is being measured. This number k is related to the

loading factor pch of each cell, which defines the probability that a given channel is in use

within a cell. Considering the first tier of co-channel cells, a given channel is in use in k out

of six co-channel cells (interferers). The random variable k is binomially distributed and the

probability of having n (0 ≤ n ≤ 6) interferers is, therefore,

Pn = Prob{k = n} =


 6

n


 pnch(1− pch)

6−n. (4.3)

1This is a realistic assumption for wireless signals, since the phase shifts of the individual interference
signals may be assumed to be independent and vary significantly due to scattering and travel distance.
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Figure 4.2: Probability that a given channel is in use in n co-channel cells.

The loading factor pch is a function of the offered traffic A (in Erlangs), blocking proba-

bility PB, and number of channels Nc assigned to each cell (or sector) [22]:

pch =
A(1− PB)

Nc

. (4.4)

Assuming that blocked calls are cleared, the quantities A, PB and Nc are related to each

other through the Erlang B formula [1],

PB =
ANc

Nc!

Nc∑
i=0

Ai

i!

. (4.5)

Figure 4.2 shows Pn for several values of pch.

We see that, as the loading factor increases, the probability of having all six co-channel

cells active also increases, which corresponds to a higher total co-channel interference level.

Therefore, the number of interferers and, consequently, the total interference depend upon

the loading factor.

Consider now a standard AMPS cellular system with 395 voice channels and a target

blocking probability of 0.02. Table 4.1 shows the number of channels and traffic capacity per

cell, as well as the corresponding loading factor for different cluster sizes. We see that pch

increases as the cluster size decreases. This means that cluster size reduction has a twofold

effect, as far as interference is concerned: (1) the interference increases, since co-channel cells

are closer to each other and (2) due to the increase in the loading factor, the probability that

co-channel cells are using the same channel increases (see Figure 4.2), which implies that
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Table 4.1: Number of channels (Nc), traffic capacity (A) for a blocking probability of 0.02,
and maximum loading factor (pch) for a system with 395 voice channels and different values
of cluster sizes N . (*) Trunking loss is one limiting factor in overall capacity in cell.

cluster channels A pch
size N per cell Nc (Erlangs) (%)

7, 3-sector 3× 18 3× 11.5 = 34.5∗ 62.6
7, omni 56 45.9 80.2
4, omni 98 86 86.0
3, omni 131 118 88.4
1, omni 395 380 94.2

the total interference increases. It should be clear, then, that the loading factor pch plays

an important role in the total system co-channel interference, which could enable a smaller

reuse factor to be used.

The Fractional Loading Factor technique, introduced by Frullone et al [48], aims to reduce

the co-channel interference level by reducing the loading factor. The reduction of the loading

factor is achieved by hard limiting the number of channels that may be used simultaneously

in a cell. However, the hard limit imposed on the instantaneous channel usage reduces the

maximum possible carried traffic and thus the maximum capacity of each cell. Considering

again a cellular system with M = 395 channels and a target blocking probability of 0.02,

Figure 4.3 plots the loading factor versus the maximum number of channels (Nmax) that

may be used simultaneously, for cluster sizes N = 1, 3, 4 and 7, using (4.4). Note that in

(4.4), A is the traffic carried by Nmax trunked channels and is determined by (4.5).

While the use of a low loading factor reduces the total co-channel interference, it also

reduces the system capacity, since only a fraction of the channels assigned to a cell are allowed

to be used at the same time. This leads to the second tradeoff: the reduction in interference

level (which is required for smaller reuse factor and thus capacity improvement) is related to

the loading factor reduction and the corresponding capacity loss, and this relationship varies

as a function of cell cluster size.

When the fractional loading factor technique is used, an appropriate call admission con-

trol (CAC) must be employed in order to keep the cell loading factor (or, equivalently, the

number of channels in use in a cell) at the desired level [50]. In the chapter presented here,

we implement CAC simply by adjusting the number of active cells, according to the desired



Chapter 4 - Narrowbeam Antennas and Fractional Loading Factor 67

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

N
max

lo
ad

in
g 

fa
ct

or
 p

ch

N = 1
N = 3
N = 4
N = 7

Figure 4.3: Loading factor vs. Nmax (number of channels that can be in use simultaneously)
for cluster sizes N = 1, 3, 4 and 7 for a blocking probability of 0.02.

loading factor pch and the probability Pn (equation (4.3)) of having n active cells.

We determine total system capacity by conducting a parametric study of the cellular

system performance by systematically adjusting the specifications of the antennas at the

base stations (in both the forward and reverse links), the fractional loading factor, and

cluster size. For each combination of parameters, the system capacity is computed and

compared to a reference cellular system (7-cell reuse, 3 sectors per cell). As shown in Section

4.4, we find that, by combining these techniques, low complexity narrowbeam antennas can

be used, and that results are sometimes counter-intuitive.

4.2.3 Interference-Limited and Blocking-Limited Capacity

The fractional loading factor technique and narrowbeam antennas have some intrinsic char-

acteristics that are now discussed. Suppose that, in order to increase the capacity of a

cellular system, the cluster size is reduced, while employing narrowbeam antennas at the

base stations and reducing the loading factor to control the co-channel interference. Two

different cases for the resulting system capacity can occur:

• Capacity is limited by blocking probability: In this first case, the side lobe level

and the beamwidth of the antennas are such that the total interference per user is

smaller than a maximum level. Therefore, no loading factor reduction is needed and

the traffic capacity per cell will, consequently, be limited by blocking probability.
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• Capacity is limited by co-channel interference: In this case, suppose that the

narrowbeam antennas do not sufficiently reduce the interference to or below the max-

imum tolerable level and a reduction in the loading factor is required in order to

provide the needed additional interference reduction for sufficient average link perfor-

mance. This means that each cell will be allowed to use only a portion of its channel

set at the same time, thereby limiting the capacity in favor of co-channel interference

mitigation.

To illustrate these two cases, consider a cellular system with 395 voice channels and a

target blocking probability of 0.02. Considering the forward link, suppose that the signal-

to-interference ratio (SIR) is required to be greater than 17 dB with a probability of 95%

or higher in order to guarantee the minimum acceptable system performance. If cluster size

N = 3 is employed, each cell is assigned Nc = 131 channels, corresponding to 118 Erlangs at

2% of blocking probability. Using expression (4.4), we see that the loading factor is 88.4%.

Consider now that narrowbeam antennas are used at the base stations in order to meet or

exceed the co-channel interference performance specification. If the narrowbeam antennas are

able to guarantee P [SIR > 17dB] ≥ 95%, the resulting capacity per cell will be 118 Erlangs,

which is limited by blocking probability. Suppose now that the narrowbeam antennas are

not able to guarantee P [SIR > 17dB] ≥ 95% and, therefore, an additional interference

reduction is needed. Then, the loading factor must be reduced from 88.4% to some value

p∗ch in order to reduce the co-channel interference below the performance specification. In

an actual system, the SIR or the corresponding frame error rate may be monitored for each

user, and used for determination of p∗ch. In this chapter, we determine the value of p∗ch by

simulation in several conditions, as described in Section 4.4.

Let us assume that, for the present example, p∗ch is found to be equal to 60%. Using

expression (4.4) again, with pch = 60%, PB = 2% and Nc = 131, we find that the traffic

capacity per cell is only 80.2 Erlangs, and only 92 of the 131 channels may be used at any

one time in order to provide 2% of blocking probability and 80.2 Erlangs. The control of the

number of simultaneously active channels can be performed by an appropriate call admission

control. The capacity in this case is limited by interference, rather than by blocking. An

extensive discussion on this subject is found in reference [51].
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4.3 Simulated System

The capacity of a cellular system employing narrowbeam antennas at the base stations on

both links, fractional loading factor, and reduced cluster size is compared to a standard

AMPS system defined in Section 4.3.3. The comparison is made under the condition that

both the reference system and the system using narrowbeam antennas have the same system

performance regarding SIR. We compute the probabilities P f
th and P r

th that the SIRs at the

mobile (forward link) and at the base station (reverse link), respectively, exceed a given

threshold SIR0

P f
th = P [SIRr > SIR0] and P r

th = P [SIRr > SIR0]. (4.6)

The probabilities P f
th and P r

th are usually referred to as system reliability.

We consider an Advanced Mobile Phone System (AMPS), where the base stations are

placed at the center of the cells. To simplify the simulation, a flat-top radiation pattern [15] is

used for the base station narrowbeam antennas, with beamwidth BW and side lobe level SLL

as parameters, as shown in Figure 4.1. Several values of BW (10o, 30o, 45o, 60o and 120o) and

SLL (−12 dB,−18 dB,−30 dB,−40 dB and−∞ dB) are used in simulations. The maximum

antenna gain within the main lobe is set to 0 dB, which is a valid simplification since SIR,

and not absolute power levels, form the basis of the system performance specification, and all

base stations and mobile stations are assumed to transmit with identical powers, respectively.

We do not consider power control here, although power control will likely improve the system

capacity even more, by reducing interference and increasing p∗ch. The probabilities P f
th and

P r
th are computed for the mobile and base station in the center cell (see Figure 4.1).

4.3.1 Channel Model

The propagation channel model considers path loss and shadowing with path loss exponent

γ = 4 and a shadowing standard deviation of σ = 6 dB in both links. The desired signal

power S and the individual co-channel interference signal powers Ifi and Iri are, therefore,

local mean powers and are lognormally distributed. Assuming that the interference signals

add incoherently, the power of total interference signal at the mobile station at the center

cell, If , is the sum of the signal powers received from all active co-channel base stations

If =
∑

Ifi . (4.7)
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Likewise, the power of total interference signal at the base station at the center cell, Ir, is

Ir =
∑

Iri . (4.8)

Both If and Ir are assumed to be lognormally distributed [38], as discussed below.

Only the first tier of co-channel cells is considered, regardless of cluster size N , which

corresponds to a maximum of six interfering co-channel cells. It is assumed that the effects

of further tiers of co-channel cells can be neglected. This assumption has been adopted in

similar works [22, 28], and we show in Appendix A that the inaccuracy associated with this

assumption is small for path loss exponents greater than 3. Considering area mean values,

we show that the error when computing SIR (at a mobile near the cell boundary) induced by

considering only the first tier is less than 1 dB for path loss γ = 4 and cluster sizes N = 1,

3, 4 and 7. We also consider in Appendix A the case with shadow fading, with standard

deviation σ = 6 dB, and a reliability of 95%. We show in Appendix A that the error induced

by considering only the first tier when estimating SIR0, such that P [SIR > SIR0] = 95%,

is smaller than 1.1 dB, for path loss γ = 4 and cluster sizes N = 1, 3, 4 and 7. The results

are valid for both the forward and reverse links.

4.3.2 Computation of P f
th and P r

th

Both the forward and reverse link probabilities P f
th and P

r
th are computed as described below.

For the sake of clarity, the superscripts f and r are used only when necessary. Expressing the

desired signal power S and the total interference power I =
∑
Ii in decibel units, SIR = S−I

is normally distributed. Therefore, denoting SIR by X, Pth is

Pth =
∫ +∞

SIR0

1√
2πσX

exp

[
(X −mX)

2

2σ2
X

]
dX, (4.9)

where mX and σ2
X are the mean value and variance of X, respectively, given by

mX = mS −mI (in dBm) (4.10)

σX =
√
σ2
S + σ2

I (in dB). (4.11)

mS and mI are the mean values of S and I, respectively. Since S and I are local mean

powers, mS and mI are usually referred to as area mean powers. σS and σI are the standard

deviations of S and I, respectively.
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For the forward link, the mean value of S is modeled as

mf
S = PBS − 10Kγ log dfD (dBm), (4.12)

where PBS is the base station transmitted power in dBm (assumed to be equal for all base

stations) and dfD is the transmitter to receiver (T-R) separation. The constant K comprises

all terms that do not change in the model. Likewise, the mean value of S for the reverse link

is

mr
S = PMS − 10Kγ log drD (in dB), (4.13)

where PMS is the mobile station transmitted power in dBm (assumed to be equal for all mo-

bile stations) and drD is the T-R separation. The mobile antennas on both links are assumed

to be omnidirectional. Perfect knowledge about the position of the mobile is assumed, so

that the serving base station beams are perfectly centered on the desired mobiles and the

antenna gains on both links in the direction of the desired mobile are always equal to 0

dB (the maximum gain) and do not appear in expressions (4.12) and (4.13). The standard

deviations of S on both links are equal to the shadowing standard deviation σ.

The computation of the mean and standard deviation of the total interference signal

power (both links), mI and σI , is more intricate. It can be shown [38] that the distribution

of the sum of lognormal random variables can be approximated by a lognormal distribution,

whose moments depend on the mean values and variances of the summands. Therefore,

we assume in this chapter that If =
∑
Ifi and Ir =

∑
Iri are lognormally distributed.

Several techniques have been proposed for computing the mean and variance of the resulting

lognormal distribution. In this chapter, we employ Schwartz and Yeh’s method [38]. The

mean values of the individual interferers, mI,i, are modeled as mS in (4.12), with appropriate

modifications. For the forward link, we have:

mf
I,i = PBS +Gf

BSi
(θi)− 10Kγ log dfI,i (dBm), (4.14)

where Gf
BSi

(θi) is the antenna gain of the i-th base station in the direction θi toward the

mobile in the center cell (see Figure 4.1) and dfI,i is the corresponding T-R separation. For

the reverse link,

mr
I,i = PMS +Gr

BS1
(αi)− 10Kγ log drI,i (dBm), (4.15)

where Gr
BS1

(αi) is the antenna gain of the base station in the center cell in the direction αi

toward the mobile in the i-th co-channel cell (see Figure 4.1) and drI,i is the corresponding
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T-R separation. The standard deviations σfI,i and σ
r
I,i are equal to the shadowing standard

deviation σ.

The number of individual interference signals, or in other words, the number of summands

in
∑
Ifi and

∑
Iri , is equal to the number k of co-channel cells in the first tier that are using

the same pair of forward/reverse channels as the center cell. As described in Section 4.2.2, k

is a random variable varying from zero to six and binomially distributed with the probability

of a given co-channel cell being active equalling the desired loading factor pch.

The system simulation is performed as follows. Mobiles are placed within the center cell

and within k (out of six) co-channel cells, following a uniform distribution in each cell area.

The number k is the outcome of a binomial random process with probability of k being equal

to n (0 ≤ n ≤ 6) given by (4.3). The assumed loading factor pch is the same in all cells. These

1 + k mobiles define a set of mobile positions. Narrow beams are then steered toward each

mobile by their serving base stations. The mean value of the desired and interference signal

powers in both links are determined using (4.12) through (4.15). Schwartz & Yeh’s method

is then used to compute the mean values and standard deviations of the total interference

signal powers in both links. Using (4.9), (4.10) and (4.11), the probabilities P f
th and P r

th

for the threshold SIR0 are then computed for that set of mobile positions. A Monte Carlo

procedure is repeated for 5000 sets of mobile positions, so that 5000 values of P f
th and P

r
th are

generated for a specific set of system parameters {SLL, BW, pch, and N}. The area-averaged
P f
th and P r

th, denoted by P
f
th and P

r
th, respectively, are then computed by averaging P f

th and

P r
th. This approach for computing P

f
th and P

r
th has been used in a similar work in [28].

4.3.3 Reference System

The reference cellular system employs cluster size N = 7, 3-sector antennas (BW = 120o),

with a SLL of −30 dB and 395 channels available per cluster (18 channels per sector).

This corresponds to 34.5 Erlangs per cell at 2% of blocking probability and a loading factor

pch = 62.6%, and is typical for the AMPS cellular system. Following common practice for

AMPS [1], [52], we assume that the minimum acceptable SIR0 is 17 dB for both links.

Simulation results have shown that, for the reference system, the area-averaged probabilities

P [SIR > 17 dB] on both links (denoted here as P
f
th,ref and P

r
th,ref) are equal to 95%,

which we deem to be the minimum acceptable system performance (regarding co-channel

interference) and must be achieved when using other cluster sizes.
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4.4 Simulation Results

We are interested in finding the maximum BW and most relaxed SLL (i.e. minimum array

complexity), and maximum loading factor (minimum intrinsic capacity loss), when the clus-

ter size is reduced from N = 7 (reference system) to N = 4, 3 and 1, while maintaining the

same quality in both links, that is, P
f
th = P

f
th,ref and P

r
th = P

r
th,ref . It should be noted that,

in practical cases, different antenna configurations may be used in each link, but the loading

factor is necessarily the same for both links.

Table 4.1 presents the number of channels assigned to each cell, the corresponding traffic

capacity A in Erlangs, and the maximum loading factor pch (based on equation (4.4)) at 2%

blocking probability (PB = 0.02) for cluster sizes N = 4, 3 and 1. The capacities shown in

Table 4.1 are limited by blocking probability.

As discussed before, controlling co-channel interference by using narrowbeam antennas

does not intrinsically decrease system capacity. Therefore, after reducing the cluster size,

we first try to reduce the co-channel interference below the maximum tolerable level using

narrowbeam antennas alone, with no reduction in loading factor in each cell. If the nar-

rowbeam antennas are unable to sufficiently reduce the co-channel interference, the loading

factor must then be reduced. In the following we describe the procedure used to determine

the capacity gain over the reference system for cluster size N = 4. The same procedure is

used for cluster sizes N = 1 and 3.

There are two antenna parameters to be adjusted, namely SLL and BW. Figure 4.4

shows the forward and reverse link probabilities P [SIR > 17 dB], for cluster size N = 4 and

narrowbeam antennas at the base stations with different values of SLL and BW.

The loading factor was set to its maximum value (pch = 86 %). Note that for SLL ≤ −18

dB and BW ≤ 20o, it is possible to obtain equal or better performance than the reference

system on a SIR basis, while reducing the cluster size from 7 to 4. This provides a 150%

capacity improvement (2.5 times) over the reference system, as shown in Table 4.1 (86 vs.

34.5 Erlangs). No significant improvement is obtained by using SLL < −18 dB for any BW

in both links for N = 4.

The results in Figure 4.4 show that if we desire N = 4 and have antennas with BW > 20o

and SLL > −18 dB, additional interference reduction is required in order to achieve the

minimum acceptable performance. This means that we must reduce the loading factor to

some value, denoted here by p∗ch, to maintain the threshold of P [SIR > 17 dB] = 95%. Since

a small loading factor corresponds to reduced capacity, we need to find the highest value of
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Figure 4.4: P [SIR > 17 dB] for the forward and reverse links, N = 4 and several values of
BW and SLL, with no reduction in loading factor.

p∗ch possible.

The value of p∗ch for a given BW and SLL is determined by interpolation, as follows.

First, we determine, by simulation, the probability P [SIR > 17 dB] using course values of

pch (10%, 50% and 86%). Then, using a second order curve-fit interpolation, we compute

the required value p∗ch to achieve P [SIR > 17 dB] = 95%. As an example of this procedure,

Figure 4.5 shows the adjusted curve P [SIR > 17 dB] vs. pch for cluster size N = 4, BW

45o, SLL = −18 dB on the forward link.

From this plot, we can see that p∗ch must be equal to 47% to maintain P [SIR > 17 dB]

= 95%.

Figure 4.6 presents the resulting required loading factor p∗ch for both links and several

values of BW and SLL.

We see that both links require about the same loading factors for the same antenna

configuration.

The maximum value of p∗ch plotted in Figure 4.6 is 86%, which is the maximum loading

factor for N = 4. When p∗ch is equal to 86% in this figure, the corresponding values of SLL

and BW are the side lobe level and beamwidth required so that no reduction in the loading

factor is needed. When the required p∗ch is equal to the maximum loading factor, the capacity

is limited by blocking probability, instead of interference, as we shall see later.

So far we have computed the required loading factor that maintains P [SIR > 17dB] =

95% for several antenna configurations. However, as mentioned before, the drawback of
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reducing the loading factor is the intrinsic capacity loss. The resulting overall capacity must

be analyzed at this point.

Using the required loading factor p∗ch shown in Figure 4.6 and (4.4), we can compute the

capacity per cell in Erlangs, AN , for cluster size N and a given BW and SLL as

AN =
Nc p

∗
ch

1− PB
. (4.16)

Note that Nc in this expression is equal to the total number of channels assigned to each cell

(see Table 4.1) and PB = 0.02. The capacity gain Ψ with respect to the reference system

(N = 7, 3-sector cells) is then computed as

Ψ =
AN − Aref

Aref
× 100%, (4.17)

where Aref is the capacity per cell of the reference system, 34.5 Erlangs.

The required loading factors p∗ch and the resulting capacity gains Ψ with respect to the

reference system, for the most significant cases for cluster sizes N = 1, 3 and 4, are presented

in Table 4.2 and 4.3, respectively.

We see that, for the same antenna configuration and cluster size, both links present about

the same capacity gains. For a given SLL and cluster size, the capacity gain increases as BW

decreases, since a smaller reduction in the loading factor is needed to achieve the minimum

acceptable system performance. The results in Table 4.3 can be classified into two scenarios,

as discussed in Section 4.2.3. In the first scenario, which comprises the majority of the cases

in Table 4.3, the narrowbeam antennas are unable to reduce the co-channel interference below

the maximum tolerable level, and the loading factor needs to be reduced in order to achieve

P [SIR > 17 dB] = 95%. The capacity in this group is limited by interference [51]. Therefore,

for a given BW and SLL, the capacity gain decreases as cluster size decreases, despite the fact

that the number of channels per cell increases. This can be explained by noting that small

cluster size leads to high co-channel interference, which requires a considerable reduction in

the loading factor in order to achieve P [SIR > 17 dB] = 95%. This reduction in the loading

factor leads to capacity loss, that offsets the capacity gain achieved from the cluster size

reduction.

In the second scenario, the narrowbeam antennas are able to reduce the co-channel

interference below the maximum tolerable level and no loading factor reduction is required

to achieve the minimum acceptable performance. Therefore capacity is limited by blocking

probability [51]. For a given beamwidth and side lobe level, the capacity gain increases
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Table 4.2: Loading factor required to achieve P [SIR > 17 dB] = 95%, for cluster sizes
N = 1, 3 and 4. † maximum loading factor.

Antenna Loading factor p∗ch (%)
Configuration Forward Link Reverse Link

SLL BW N=1 N=3 N=4 N=1 N=3 N=4

10o 49.5 88.4 † 86.0 † 47.9 88.4 † 86.0 †
−∞ dB 30o 13.7 59.3 80.5 11.8 52.8 75.0

45o 4.5 34.3 52.4 0 31.5 50.3
60o 0 20.5 37.3 0 19.0 32.0

10o 49.3 88.4 † 86.0 † 47.7 88.4 † 86.0 †
−40 dB 30o 13.3 59.0 81.0 9.7 49.2 76.1

45o 2.9 34.0 52.0 0 34.8 54.1
60o 0 20.3 37.0 0 19.7 35.0

10o 38.0 88.4 † 86.0 † 39.6 88.4 † 86.0 †
−30 dB 30o 7.8 50.7 81.1 7.0 54.9 78.4

45o 0 33.5 52.0 0 32.0 51.9
60o 0 20.3 37.1 0 19.3 33.0

10o 0 72.6 86.0 † 0 76.4 86.0 †
−18 dB 30o 0 39.3 66.7 0 38.2 74.2

45o 0 27.1 46.9 0 28.1 50.2
60o 0 14.4 32.6 0 16.4 32.6

10o 0 30.0 52.9 0 28.3 55.8
−12 dB 30o 0 17.7 37.6 0 18.1 39.3

45o 0 10.9 30.0 0 14.2 31.8
60o 0 8.1 23.4 0 7.8 22.0
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Table 4.3: Capacity gains with respect to N = 7, 3-sector cells reference system: (†) capacity
is limited by blocking probability rather than by interference; (?) P [SIR > 17 dB] = 95%
is achieved only if p∗ch is zero, i.e. the system performance specification cannot be met.

Antenna Capacity Gain Ψ (%)
Configuration Forward Link Reverse Link

SLL BW N=1 N=3 N=4 N=1 N=3 N=4

10o 477 243† 150† 460 243† 150†
−∞ dB 30o 60 130 134 37 105 120

45o −48 33 52 (?) 22 46
60o (?) −20 8 (?) −26 −6

10o 477 243† 150† 460 243† 150†
−40 dB 30o 55 129 134 14 91 121

45o −65 32 52 (?) 35 57
60o (?) −21 7 (?) −24 2

10o 344 243† 150† 363 243† 150†
−30 dB 30o −9 97 135 −18 112 127

45o (?) 30 51 (?) 24 50
60o (?) −21 7 (?) −25 −5

10o (?) 182 150† (?) 196 150†
−18 dB 30o (?) 52 93 (?) 48 96

45o (?) 5 36 (?) 9 38
60o (?) −44 −5 (?) −36 −5

10o (?) 5 54 (?) 10 62
−12 dB 30o (?) −31 9 (?) −30 14

45o (?) −58 −13 (?) −45 −8
60o (?) −68 −33 (?) −70 −36
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Figure 4.7: Forward link capacity gain for N = 3, SLL = −30 dB and several values of
beamwidth.

as cluster size decreases, since the number of channels per cell increases. This scenario is

indicated in Table 4.3 by (†).
As examples of these two distinct situations, consider the forward link case for cluster size

N = 3, SLL = −30 dB. The simulations show that the maximum beamwidth required such

that no reduction of loading factor occurs is 18o. Figure 4.7 presents the graph of capacity

gain versus beamwidth, showing the operating points where capacity is limited by blocking

probability and by interference.

Points within the region where capacity is limited by interference represent the cases

where the loading factor is smaller than the maximum loading factor for cluster size N =

3 (88.4%). In this region, capacity increases as beamwidth narrows, since the required

loading factor increases. On the other hand, when the beamwidth is narrower than 18o

(operating points where capacity is limited by blocking probability), the loading factor is

equal the maximum value and further reduction in the beamwidth does not lead to capacity

improvement.

Analyzing the results presented above, we conclude that the fractional loading factor

technique plays an important role in this combined technique. In most of the cases, narrow-

beam antennas alone are not able to reduce the co-channel interference below the maximum

tolerable level. By reducing the fractional loading factor, a less complex antenna (less re-

strictive side lobe level and beamwidth) can be used, providing substantial capacity gain.

Also, when the fractional loading factor is introduced, the relationship between BW, SLL,
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the cluster size, and the capacity gain may change unexpectedly. The commonly held belief

that the lower the base station SLL/narrower BW, the higher the system capacity is not

always valid. For example, from Table 4.3, we see that, for the forward link, the use of

cluster size N = 4 with SLL = −18 dB and BW = 30o leads to a higher system capacity

(Ψ = 93%) than cluster size N = 1 with SLL = −30 dB and BW = 30o (Ψ = −9%). The

reason is that for N = 1 system, a greater reduction in the loading factor is required to meet

the system performance specification, which induces system capacity loss.

4.5 Conclusions

Capacity improvement which comes about by reducing cluster size causes an increase in co-

channel interference, which can then be controlled by the application of narrowbeam (smart)

antennas combined with the fractional loading factor. The capacity gain, with respect to

a reference system (cluster size N = 7, tri-sectorized cells), for a wide range of antenna

parameters and fractional loading factors, was computed by extensive simulation. Results

show that combinations of cluster size/antenna configuration/fractional loading factor can

be divided into two scenarios: blocking-limited capacity and interference-limited capacity.

For the first scenario, which implies the use of highly directional narrowbeam antennas, no

loading factor reduction is required. On the other hand, when the antennas are unable to

sufficiently reduce the interference, the loading factor must be reduced, reducing the system

capacity, which implies the capacity is limited by interference.

Capacity gains as high as 477% above the reference system were observed, but at the

expense of large SLL reduction and narrow beamwidth. Lower, but still considerable capacity

gains can be obtained with less complex antennas. The simulation results show that, as

expected, BW and SLL play an important role in the capacity gain. However, when the

fractional loading factor was introduced, we showed that the relationship between antenna

parameters, the cluster size and the capacity gain may change in a non-intuitive fashion.

An important conclusion from the results is the importance of the fractional loading

factor. In most of the cases shown here, minimum acceptable system performance was

achieved because of the combined use of narrowbeam smart antennas and fractional loading

factor, allowing cluster size reduction. This means that low complexity antennas can be

used and still provide system capacity gain, while decreasing cluster size. The results and

methodology presented here may be used for cellular and fixed wireless system design.



Chapter 5

Power Control in Cellular

Communication Systems

5.1 Introduction

Transmitted power in cellular radio systems is a scarce resource. From the mobile station

perspective, the transmitted power level limits battery life, which can be prolonged by

controlling the mobile transmitted power, while maintaining it at the minimum level required

to achieve the desired link quality. When a mobile approaches its serving base station, the

mobile transmitted power level can be reduced, since the received power at the base station

increases [1]. From the point of view of battery life conservation, power control is particularly

important on the reverse link (communication link from mobile to base station).

From the cellular system perspective, controlling the transmitted power level, on

both forward and reverse links, eliminates unnecessary co-channel interference. Excessive

transmitted power does not improve system performance, but adds to the co-channel inter-

ference in the system. The reduction in co-channel interference can be traded for capacity,

since it allows more users to share the same channel. Power control as a method for in-

creasing system capacity has been extensively studied for application in systems employing

orthogonal multiple access techniques, such as FDMA and TDMA. As is well known, the

capacity of such systems can be improved by reducing the cluster size, which, in turn, leads

to undesired increased co-channel interference. Several authors have investigated the use of

power control in TDMA and FDMA systems as a technique for increasing capacity by si-

multaneously controlling the co-channel interference and reducing cluster size. An extensive
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discussion on this subject is presented in Chapter 6.

In this chapter, we study reverse link power control techniques applied to TDMA or

FDMA systems. The same techniques can be used on the forward link (communication link

from base station to mobile). The power control techniques studied in this chapter can be

divided into two groups: In the first group, the power control is solely based on the level

of the desired signal. The transmitter power is adjusted in order to compensate a fraction

of the path gain of the received signal. Power control techniques based on the level of the

desired signal, usually called Signal-Level-Based Power Control techniques, are intrinsically

distributed techniques, since the adjustment of the power of a given link requires only the

knowledge of its own path gain.

In the second group, the power control techniques are based on balancing the SIR in the

co-channel links, that is, the SIR of all links using the same channel are equalized. Several

techniques based on this approach are discussed in this chapter. Power control techniques

in this group are usually called Signal-to-Interference Balancing Ratio Techniques, require

the knowledge of path gains of all links using the same channel, being, therefore, centralized.

However, distributed versions of such techniques have been proposed, as described in this

chapter.

5.2 The Cellular System and the Propagation Channel

Model

Consider a cellular radio system with cluster size N (N = 1, 3, 4, 7, · · ·). Assuming hexagonal

shapes for the cells, the number of co-channel cells in the i-th tier is 6i. Figure 5.1 shows

a cellular system with cluster size N = 4 and the first tier of co-channel cells. We assume

that base stations are located at the center of the cells and mobiles are connected to the

nearest base stations. Thus, a given base station receives its desired signal from the mobile

located in its cell, but also receives interference signals from all mobiles located in the other

co-channel cells, as shown in Figure 5.1. The propagation channel model adopted in present

chapter models the local mean power of the received signals. The propagation path gain Gij

between the mobile at the i-th cell (MSi) and the BS at the j-th cell (BSj) (see Figure 5.2)

is given by:

Gij =
Aij Gt,ij Gr,ij

dnij
, (5.1)



Chapter 5 - Power Control in Cellular Communication Systems 83

A

C

D

B

A

C

D

B

A

C

D

B

A

C

D

B

A

C

D

B

A

C

D

B

A

C

D

B

Figure 5.1: Cellular system with cluster size N = 4 and first tier of co-channel cells.

where Aij models the power variation due to shadowing caused by obstruction in large

objects, dij is the transmitter to receiver (T-R) distance and n is the path loss exponent.

Gt,ij and Gr,ij are the antenna gains at the mobile and base station, respectively, in the

direction of propagation, as shown in Figure 5.2. The variable Aij is assumed to be log-

normally distributed, such that Aij,dB = 10 log10Aij , in dB, is normally distributed with

zero mean and standard deviation σij dB. The power received by the i-th base station from

the mobile at the j-th cell is, therefore, PjGij , where Pj is the power transmitted by the

mobile.

Gjj

GjiGij

Giidii

Gt,ij

BS i BS j

MS j
MS i

Antenna gain

Figure 5.2: Radio Propagation Model
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The total interference power received by base station BSi is modeled as the sum of

the signal powers received from all interfering co-channel mobiles. We assume that the

interference signals add incoherently, so that the powers can be summed. This is a realistic

assumption for wireless communication, since the phase shifts of the individual interference

signals may be assumed to be independent and vary significantly due to scattering.

The Signal-to-Interference Ratio (SIR) Γi at the i-th base station is the ratio of the power

received from the desired mobile, GiiPi, to the power of the total interference:

Γi =
GiiPi

M∑
j 6=i

GijPj

, (5.2)

where M is the number of co-channel cells.

Dividing both the denominator and numerator of the right-hand side of equation (5.2)

by Gii, we have:

Γi =
Pi

M∑
j 6=i

Gij

Gii
Pj

=
Pi

M∑
j=1

ZijPj − Pi

, (5.3)

where

Zij =
Gij

Gii

. (5.4)

Gij and Zij define the (M ×M) matrices link gain G and normalized link gain Z [47]

G = [Gij]i,j=1,···,M and Z = [Zij]i,j=1,···,M . (5.5)

Next section introduces the power control techniques studied in this chapter.

5.3 Power Control Techniques

According to (5.2), the SIR at any given base station depends on the path gains of all co-

channel links. In order to control the SIR of any link, an ideal power control technique

requires the use of a central controller, connected to all cells, as shown in Figure 5.3. The

path gains Gij and the current transmitter powers Pi of all links are reported to the central

controller, that properly adjusts Pi. In this case, power control is classified as centralized

and the transmitter power of any given mobile is a function of the link gain matrix G and

the power vector P = [P1 P2 · · ·PM ]T :

Pi = f(G,P). (5.6)
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Figure 5.3: Centralized Power Control

However, the use of a central controller sometimes is not feasible, especially in large

cellular systems, since it requires additional infrastructure and communication links between

the base stations and the central controller. In these cases, a distributed power control is more

suitable, where the control is based on local information, as shown in Figure 5.4. Therefore,

the adjustment of Pi is based on the link gain between MSi and its serving base station,

BSi, and the SIR at BSi: , and:

Pi = f(Gii,Γi). (5.7)

The function f(.) in both centralized and distributed cases is chosen such that a cost

function is minimized. In the following, we discuss two approaches for selecting the function

f(.). The first approach is intrinsically distributed and the transmitter power is adjusted

based on the level of the desired signal, aiming to minimize the variance of SIR. In the second

approach, the objective is to balance the SIR of all co-channel links and both centralized

and distributed techniques are presented.

5.3.1 Minimum-Variance Signal-Level-Based Power Control

The Signal-Level-Based approach is based on adjusting the transmitter power Pi according

to the path gain of the corresponding link, Gii, being, therefore, a distributed approach.
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Figure 5.4: Local Power Control

Using dB values, we have

Pi,dB = f(Gii,dB), (5.8)

where

Pi,dB = 10 log10 Pi and Gii,dB = 10 log10Gii. (5.9)

We have seen that the SIR at the i-th base station is

Γi =
GiiPi
IT

, (5.10)

where IT is the total interference, given by:

IT =
M∑
j 6=i

GijPj . (5.11)

IT is the sum of log-normally distributed random variables (GijPj) and is usually approx-

imated by another log-normal random variable, as discussed in Chapter 3. Therefore, the

SIR in dB at the i-th base station is modeled as a normal random variable and is given by:

Γi,dB = Pi,dB +Gii,dB − 10 log10


∑
j 6=i

10
Pj,dB+Gij,dB

10




= f(Gii,dB) +Gii,dB − 10 log10


∑
j 6=i

10
f(Gjj,dB)+Gij,dB

10


 . (5.12)
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Figure 5.5: Reduction in the standard deviation of ΓdB leads to a reduction in the outage
probability.

G12
G21

G22G11

P2P1

S1
I12

S2

I 21

MS 1

BS 1 BS 2

MS 2

Figure 5.6: Model with two co-channel cells.

In cellular communications, the quality of a communication link is usually measured

by the outage probability, defined as the probability that the SIR in that link is below a

minimum tolerable level SIR0:

Prob{outage} = Prob{Γi,dB < SIR0}. (5.13)

Assuming that the mean value of Γi,dB remains fixed, a reduction in the variance of Γi,dB

will correspond to a system performance improvement, since the outage probability reduces

(see Figure 5.5).

Therefore, the function f(.) in (5.8) must be selected such that the variance of Γi,dB is

minimized. We will determine the function f(.) for the case of only two co-channel cells, as

depicted in Figure 5.6, and assume that the result can be extended to the general case with

more than two co-channel cells.
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Using variational analysis, Whitehead showed in [53] that, for the case of only two co-

channel cells, the function f(.) that minimizes the standard deviation of Γi,dB is linear

Pi,dB = f(Gii,dB) = α Gii,dB + β. (5.14)

Next, we determine the constant α in (5.14). β is an arbitrary constant.

The SIR Γi,dB, in dB, at base station BS1 is:

Γ1,dB = S1,dB − I12,dB, (5.15)

where S1,dB is the desired signal and I12,dB is the interference caused by mobile MS2

S1,dB = (α+ 1)G11,dB + β (5.16)

I12,dB = αG22,dB + β +G12,dB. (5.17)

The variance of Γ1,dB, denoted by σ2
Γ1,dB

is

σ2
Γ1,dB

= σ2
S1

+ σ2
I12
. (5.18)

The variances σ2
S1

and σ2
I12 can be determined using expressions (5.16) and (5.17), assuming

that Gij and Gkl are independent for ij 6= kl. Therefore, we have

σ2
S1

= (α + 1)2σ2
G11

(5.19)

σ2
I12

= α2σ2
G22

+ σ2
G12
, (5.20)

where σGij
is the standard deviation of Gij,dB. Note that, σGij

is not equal to the shadowing

standard deviation associated with the path gain Gij ( denoted by σij). The path gain Gij,dB

can be split into two terms:

Gij,dB = Aij,dB︸ ︷︷ ︸
shadowing attenuation

+ Xij,dB︸ ︷︷ ︸
large scale path loss

(5.21)

where

Aij,dB = 10 log10Aij , (5.22)

and

Xij,dB = 10 log10
Gt,ijGr,ij

dnij
. (5.23)

The large scale path loss, Xij,dB, is also a random variable, due to the spatial distribution of

the mobile. Therefore, σGij
also includes the variation of Xij,dB.
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Substituing expressions (5.19) and (5.20) into (5.18), we finally get

σ2
Γi,dB

= σ2
G12

+ (1 + 2α + 2α2)σ2
G11
. (5.24)

Note that we have assumed that σG11 = σG22 . The variance σ
2
Γ1,dB

reaches its minimum value

at α = −1/2. Therefore, the signal-level-based power control technique, that minimizes the

variance of SIR, adjusts the transmitter power level Pi,dB by compensating half of the path

gain Gii,dB [53]

Pi,dB = −1

2
Gii,dB + β, (5.25)

where β is an arbitrary constant.

It is worth noting that the power control in (5.25) (α = −1/2) minimizes the outage

probability when the mean value of Γi,dB remains constant with α, which is the case for two

co-channel cells.

Constant Received Power

The Signal-Level-Based approach can also be used to adjust the transmitter power Pi,dB

such that the received power at the base station is kept constant. In this case, the path gain

Gii,dB is fully compensated, which corresponds to setting the coefficient α to −1, or

Pi,dB = − Gii,dB + β, (5.26)

CDMA cellular systems employ power control techniques based on the Constant Received

Power approach, since, in such systems, the primary objective of a power control technique

is to equalize the power levels received by the base station from all users.

5.3.2 Signal-to-Interference Ratio Balancing

In the Signal-to-Interference Ratio Balancing approach, the primarily goal is to equalize,

or balance, the signal-to-interference ratio of all links using the same channel [47]. Both

centralized and distributed techniques can be designed based on this approach, as described

below.

Centralized Algorithm

In Section 5.2, we have seen that the SIR in the i-th link is

Γi =
Pi

M∑
j 6=i

Gij

Gii
Pj

=
Pi

M∑
j=1

ZijPj − Pi

for i = 1, 2, · · · ,M. (5.27)
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Since the SIR at any given link depends on the path gains and transmitter powers of all

co-channel links, the SIRs Γi and Γj are related to each other. In this context, the SIR level

γ is said to be achievable if there exists a set of powers Pi ≥ 0, such that [47]

Γi ≥ γ for all links. (5.28)

Given a matrix Z = [Zij ]i,j=1,···,M , we want to determine the maximum achievable γ and the

corresponding powers Pi. In other words, we want to determine the powers Pi that maximize

the minimum SIR among all links. Let Γmin denote the minimum SIR among all links:

Γmin = min{Γi}i=1,···,M . (5.29)

Using (5.27), we have

Pi
M∑
j=1

ZijPj − Pi

≥ Γmin for i = 1, 2, · · · ,M (5.30)

or, in matrix form
1 + Γmin
Γmin

P ≥ ZP, (5.31)

where, as already defined, P = [P1 P2 · · · PM ]T . Therefore, we want to determine the vector

P > 0 that satisfies (5.31) and maximize Γmin.

In order to solve this problem, we need to use the following theorem due to Perron,

Frobenius and Wielandt [54].

Theorem 5.1 Let H be a (M × M) non negative irreducible matrix, with eigenvalues

λ1, λ2, · · · , λM . Then:

(a) H has one real positive eigenvalue λ∗ = max{|λi|}i=1,···,M .

(b) The eigenvector V∗ associated with λ∗ is positive, that is, all components of V∗ have

the same sign.

(c) The minimum real value λ, such that the inequality

λV ≥ HV (5.32)

has solution for V ≥ 0, is λ = λ∗.
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(d) The maximum real value λ, such that the inequality

λV ≤ HV (5.33)

has solution for V ≥ 0, is λ = λ∗. 2

In order to apply Theorem 5.1 in our problem, let us rewrite (5.31) as

λP ≥ ZP, (5.34)

where

λ =
1 + Γmin
Γmin

or Γmin =
1

λ− 1
. (5.35)

From (5.35) we see that Γmin is maximum when λ is minimum. Based on Theorem 5.1, the

minimum λ that satisfies (5.34) for P ≥ 0 is equal to the largest eigenvalue of Z, λ∗. Also,

the vector P that maximizes Γmin is equal to the eigenvector corresponding to λ∗. Therefore,

given a matrix Z, the maximum achievable SIR is

γ∗ =
1

λ∗ − 1
, (5.36)

where λ∗ is the largest eigenvalue of Z, and the power vector P∗ achieving this maximum is

the eigenvector associated with λ∗.

From Theorem 5.1, we see that λ∗ and its corresponding eigenvector also provide the

solution for

λP ≤ ZP, (5.37)

for P ≥ 0. Let Γmax be the maximum SIR among all links. Using (5.27), we have

Pi
M∑
j=1

ZijPj − Pi

≤ Γmax for i = 1, 2, · · · ,M (5.38)

or, in matrix form
1 + Γmax
Γmax

P ≤ ZP. (5.39)

Therefore, if P is equal to the eigenvector corresponding to λ∗, we have

1 + Γmax
Γmax

= λ∗ or Γmax =
1

λ∗−1
. (5.40)

We conclude that, by choosing P equal to the eigenvector associated with the largest eigen-

value of Z, the minimum SIR is maximized and all SIRs are balanced, that is

Γi =
1

λ∗ − 1
for i = 1, 2, · · · ,M. (5.41)

Therefore, the Centralized SIR Balancing Power Control is summarized as follows [47]:
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1) Given the normalized link gain matrix Z, compute the maximum eigenvalue of Z, λ∗,

and the corresponding eigenvector, V∗.

2) Set the power P equals the eigenvector V∗. The SIR of all links will be equal to

Γi = γ∗ = 1/(λ∗ − 1).

However, there is no guarantee that γ∗ is higher than a minimum acceptable SIR0.

For the case when the balanced γ∗ is smaller than SIR0, Zander proposed a technique for

increasing γ∗, based on removing cells from the set of co-channel cells, as presented in the

next section.

Centralized Algorithm with Cell Removal

Consider the set SM of M active co-channel links (all using the same channel), with the

maximum achievable SIR denoted by γ∗. Suppose that γ∗ is smaller than a desired threshold

SIR0. From the discussion presented above, we know that it is not possible to have all links

in the set SM with SIR larger than γ∗. However, if some links are turned off, the maximum

achievable SIR of the remaining links will increase and the threshold SIR0 may be achieved.

The cell removal strategy is based on constructing smaller and smaller balanced systems

by removing links from the set of co-channel cells [47]. The optimum procedure is to find

the largest submatrix Z’ (minimum number of cells removed) for which the balanced SIR γ∗

is higher than or equal to the desired threshold SIR0. Starting from the original matrix Z,

links are removed one by one, computing the resulting balanced γ∗. If the desired SIR0 is

not achieved, we then try removing all combinations of two links and so on. This procedure is

straightforward, but tedious, specially for a large number of co-channel links M . Zander has

proposed a simple procedure called Stepwise Removal Algorithm (SRA). In this procedure,

the links are removed one after other, until the balanced γ∗ of the remaining links is higher

than or equal to the required SIR0. The procedure is summarized as follows:

1) Starting from the original matrix Z (all links are active), compute the balanced γ∗

using the largest eigenvalue λ∗ of Z. If γ∗ ≥ SIR0, the power vector P is given by the

eigenvector corresponding to λ∗.

2) If γ∗ < SIR0, form the sub matrix Z’ by removing the link k for which the sum

M∑
i=1

Zki +
M∑
i=1

Zik (5.42)
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is maximum.

3) Compute the balanced γ∗ corresponding to Z’. If γ∗ ≥ SIR0, the power vector P

is given by the eigenvector corresponding to the maximum eigenvalue λ∗ of Z’. If

γ∗ < SIR0, repeat step 2), removing another link.

Although the cell removal strategy may appear to be a drastic way to improve system

performance and a contradictory way to achieve high system capacity, we should note that

those links where the threshold SIR0 could not be achieved (bad links) are useless and the

corresponding calls would be probably dropped or handed off to other channels. With bad

links present in the set of co-channel links, the SIR balancing strategy may be disastrous to

all links, since the SIR of all links may be dropped below the required SIR0. Cell removal

is actually performed by handing off calls to other channels.

Distributed Algorithms

The main drawback of both centralized algorithms presented in the previous sections is that

measurements of the path gains of all co-channel links in the system need to be reported to a

central controller, that adjusts the power levels of each link. In other words, the centralized

algorithm adjusts the transmitter power level, based on all current power levels and SIRs.

In a distributed algorithm, the adjustment of the transmitter power of a given link is

instead based only on the current SIR and transmitter power

P
(k)
i = g

(
P

(k−1)
i ,Γ

(k−1)
i

)
, (5.43)

where P
(k)
i and Γ

(k)
i are the transmitter power and SIR in the i-th link at the k-th time

instant, and g(.) is the function that maps P
(k−1)
i and Γ

(k−1)
i into P

(k)
i . Note that the

quantities used in the power adjustment, namely P
(k−1)
i and Γ

(k−1)
i , can be measured at the

i-th mobile and its serving base station, respectively. Zander [55] and Grandhi [56] proposed

distributed algorithms, based on SIR balancing, as described in the following.

• Distributed Balancing Algorithm (DBA) [55]

In the Distributed Balancing Algorithm, proposed by Zander, the transmitter power level

of the i-th mobile at the k-th time instant is adjusted using the expression:

P
(k)
i = κ P

(k−1)
i

(
1 +

1

Γ
(k−1)
i

)
, (5.44)
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where κ is some positive constant. In matrix form, this algorithm can be expressed as:

P(k) = κ Z P(k−1), (5.45)

where

P(k) = [P
(k)
1 P

(k)
2 · · · P (k)

M ]. (5.46)

The algorithm is initialized with an arbitrary positive vector P(0).

It has been shown in [55] that this scheme converges to the optimum solution, that is:

lim
k→∞

Γ
(k)
i = γ∗ =

1

λ∗ − 1
(5.47)

and

lim
k→∞

P(k) = P∗ = V∗ (5.48)

where λ∗ is the largest eigenvalue of Z and V∗ is the eigenvector corresponding to λ∗.

Since all terms in (5.44) are positive, the transmitter powers in the DBA scheme are all

increasing, unless we select κ at the time instant k as [55]:

κ = κ(k) =
1

|P(k)| . (5.49)

However, this selection of κ is not possible in a completely distributed system.

• Distributed Power Control (DPC) [56]

Grandhi et al. proposed an alternative scheme, where the power adjustments at the k-th

time instant is:

P
(k)
i = ζ

P
(k−1)
i

Γ
(k−1)
i

, (5.50)

where ζ is some positive constant. In matrix form, this algorithm is:

P(k) = ζ B P(k−1), (5.51)

where B = [Bij] and

Bij =


 Zij for i 6= j

0 for i = j.
(5.52)

Note that Z = B + I, where I is the identity matrix. It has been shown that the DPC

scheme also converges to the optimum solution, that is, (5.47) and (5.48) also hold for the

DPC scheme.
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As for the case of the DBA scheme, we need to choose the coefficient ζ in order to ensure

a constant power level. A possible choice is [56]:

ζ = ζ (k) =
1

max(P(k))
, (5.53)

which would require some communication among the base stations.

Distributed Balancing Algorithm with Cell Removal

The DBA and DPC schemes presented above are basically distributed algorithms based on

the SIR balancing approach. As for the case of the centralized algorithm, the maximum

achievable SIR in the distributed algorithms, γ∗, may be smaller than the required threshold

SIR0. Zander proposed a distributed algorithm where the cell removal strategy is employed

[55]. The algorithm basically combines the DBA scheme with the cell removal strategy. The

algorithm is summarized below:

1) With P(0) = 1, determine and store the vector Γ(0); If Γ
(0)
i > SIR0 for all i, stop

algorithm; Otherwise,

(2) Apply the distributed balancing algorithm for at most L iterations. If Γ
(k)
i > SIR0 for

all i and any k ≤ L, stop algorithm; otherwise,

(3) Remove the cell l that has the smallest initial SIR (Γ
(0)
l = min

i
Γ
(0)
i ). Go to step 1).

A critical parameter in this algorithm is the maximum number of iterations in the dis-

tributed balancing algorithm, before a cell is removed (L). We have seen in Section 5.3.2 that,

in the DBA scheme, Γ
(k)
i approaches the maximum achievable γ∗. Therefore, if γ∗ > SIR0,

we should keep applying DBA, without removing any cell, since, eventually, all Γ
(k)
i will

approach γ∗. In this case, L should be large enough to guarantee the convergence. On the

other hand, if γ∗ < SIR0, we should remove a cell as quickly as possible, that is, L should

be short. Therefore, large L is required in order to guarantee the convergence of the algo-

rithm when γ∗ > SIR0. On the other hand, small L is better when γ∗ < SIR0, so that we

quickly remove cells. However, in the DBA scheme, we do not have prior knowledge of γ∗

and the selection of L must be a tradeoff between the benefits of using large L (convergence

is guaranteed, when γ∗ > SIR0) and small L (cells are quickly removed, when γ∗ < SIR0).
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5.4 Autonomous SINR Balancing Algorithm

In this section, we present another power control algorithm based on the SIR balancing

approach. This particular algorithm is employed in the simulation analysis presented in

Chapters 8, 9 and 10 of this dissertation. Since in the analysis presented in those chapters we

take into consideration thermal noise, and following the original description of the algorithm

in [57], we present the Autonomous SINR Balancing Algorithm assuming that thermal noise

is not negligible. Therefore, we redefine the signal-to-interference (plus noise) Γi(t) at the

i-th base station (or mobile), at time t, as

Γi(t) =
GiiPi(t)

M∑
j 6=i

GijPj(t) +Ni

, (5.54)

where Ni is the thermal noise power at the receiver and the other variables were already

defined. In the Autonomous SINR Balancing Algorithm, the i-th base station (or user)

drives its SINR (Γi(t)) toward a target SINR (ΓT ), by an amount proportional to the

offset between ΓT and Γi. This dynamic can be expressed as [57]:

d

dt
Γi(t) = −ρ[Γi(t)− ΓT ], (5.55)

where ρ is the positive proportionality constant. In a distributed implementation, the i-th

base station (or user) can control only its own transmitter power level Pi(t), but not the

transmitter power levels Pj(t) of the other base stations (or users). Therefore, we assume

that all power levels Pj(t), j 6= i in (5.54) do not change, and (5.55) is rewritten as




Gii

M∑
j 6=i

GijPj(t) +Ni




d

dt
Pi(t) = −ρ[Γi(t)− ΓT ], (5.56)

Rearranging the terms in (5.56) we obtain

d

dt
Pi(t) = −ρ


Pi(t)− ΓT

Gii


 M∑
j 6=i

GijPj(t) +Ni




 . (5.57)

Using the matrix notation introduced in Section 5.2, we can write equation (5.57) as

d

dt
P(t) = −ρ [ΓTZ+ I]P(t) + ρN (5.58)
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where N is a vector composed by all terms Ni. From equation (5.58), we can write the

difference equation,

P(k+1) −P(k) = −ρ [ΓTZ+ I]P(k) + ρN (5.59)

or, for the i-th link [58],

P
(k+1)
i − P

(k)
i = − (1− ρ)P (k)

[
1 +

ρΓT

(1− ρ)Γ
(k)
i

]
, (5.60)

where P
(k)
i and Γ

(k)
i are the transmitter power level and SINR at the i-th link and at the

k-th iteration, respectively. It should be noted that, when the i-th base station (or user)

adjusts its transmitter power using (5.60), SINR at all other co-channel links will change.

Consequently, the transmitter power levels of other co-channel links are also adjusted, char-

acterizing a recursive process. It is shown in [57] that the fastest convergence rate is achieved

with ρ = 1, such that (5.60) becomes

P
(k+1)
i = P

(k)
i

ΓT

Γ
(k)
i

. (5.61)

Therefore, the autonomous SINR balancing power control algorithm is based on adjusting

the transmitter power to the value needed to achieve the desired target SINR.

5.5 Conclusion

In this chapter, we have presented several techniques for power control, applied to TDMA

or FDMA cellular radio communications. Power control techniques have been proposed

mainly for battery conservation and link quality improvement by reducing the co-channel

interference level. The link quality improvement that results from the use of power control

may be traded for capacity improvement. The reduction of the co-channel interference level

due to the use of power control may allow reduction in cluster size or channel reuse distance,

increasing the system capacity.

The power control techniques studied in this chapter can be divided into two groups: In

the first group, the power control is based on the level of the desired signal. The transmitter

power is adjusted in order to compensate a fraction of the path gain of the received signal.

When half the dB value of the path gain is compensated, the outage probability is reduced.

When the path gain is fully compensated, the received power is kept constant. Power control

techniques based on the level of the desired signal are intrinsically distributed techniques,
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since the adjustment of the power of a given link requires only knowledge of its own path

gain.

In the second group, the power control techniques are based on balancing the SIR of the

co-channel links, that is, the power control technique aims to equalize the SIR of all links

using the same channel. Based on the knowledge of path gains of all links, the transmitter

powers are adjusted so that all links have the same SIR. However, the resulting SIR may

happen to be lower than a desired threshold. In order to maximize the resulting SIR, a

technique based on switching off links with poor link quality, called the cell removal strategy,

has been proposed in literature and reviewed in this chapter. Switching off links is apparently

a drastic measure, but we should keep in mind that links with low SIR only add to interference

in the system and the calls in those links would be eventually handed off to other channels.

The SIR balancing approach is intrinsically a centralized approach, since it requires path

gain of all links to be reported to some central controller. In order to avoid the use of a

central controller, distributed version of SIR balancing (with and without cell removal) have

been proposed in literature and discussed in this chapter.

The power control techniques presented in this chapter, especially the distributed tech-

niques, are very suitable for combined use with channel allocation techniques and adaptive

antennas, as we will see in Chapter 6.



Chapter 6

Resource Allocation in Cellular

Communication Systems

6.1 Introduction

The rapid growth in the demand for cellular mobile communications has motivated the

study of more efficient methods and strategies for resource allocation. An efficient resource

allocation strategy guarantees the quality of service of all ongoing calls, while efficiently

using the radio resources. Basically, two resources are involved in the maintenance of a call

in cellular communications [59]:

• Communication channels: a pair of channels that provide the communication link

on both forward (base station to mobile) and reverse (mobile to base station) links,

between a mobile and its serving base station.

• Transmitter power: In cellular systems, many mobiles share the same communi-

cation channel and transmission from one mobile causes interference to the others.

Therefore, transmitter power must be appropriately assigned both to provide mobiles

an acceptable connection and to minimize the interference caused by each mobile to

the others.

Channel allocation and power allocation are usually studied and implemented independently,

even though they are closely related to each other through the basic trade-off in cellular

communication: capacity versus link quality. The cell clustering is an example of this trade-

off: the geographic area where cellular communication service is to be provided is split into

99
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Figure 6.1: Cell clustering in cellular communication systems.

cells, which are grouped into cluster of N cells (see Figure 6.1). The total available spectrum

for the geographic service is then assigned to each cluster, so that cells in the same cluster do

not share any communication channel [1]. If M channels are available for the service area,

each cell is assigned M/N channels. As the clusters are replicated, the reuse of channels

leads to tiers of co-channel cells and co-channel interference, and the level of interference

is directly related to the cluster size N . The minimum distance between the center of two

co-channel cells is called the reuse distance DN , which, for cells with hexagonal shapes, is

DN =
√
3NR, (6.1)

where R is the radius of the cell. Therefore, small cluster size leads to high capacity at

the expense of low transmission quality, due to the increased co-channel interference (small

D), while high transmission quality (low co-channel interference) can be achieved by using

a large cluster size or reuse distance.

The basic problem of resource allocation can be stated as follows: given a set SC of C

communication channels

SC = {c1 c2 · · · cC}, (6.2)

a set SM of M mobiles requiring a radio connection to the cellular system,

SM = {m1 m2 · · · mM}, (6.3)
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and, finally, a set SB of B base stations

SB = {b1 b2 · · · bB}, (6.4)

allocate a communication channel from the set SC and appropriate transmission power levels

to each radio link between a mobile from the set SM and its serving base station. Usually,

the number C of channels is limited, limiting the number of mobiles that are going to be

able to establish a radio link with a base station. Additionally, another constraint is the

co-channel interference level required to guarantee an acceptable link quality. Therefore, the

two major constraints in any resource allocation is the limited number of channels and the

required Signal-to-Interference Ratio (SIR). By efficiently allocating channel and transmitter

power, system capacity improvement can be achieved, which means more calls carried at the

same time by the system, while maintaining an acceptable link quality. It should be noted

that the capacity improvement achieved by a particular allocation technique is sometimes

measured by the reduction in the probability that a new call is blocked (blocking probability

Pb). The reduction in the blocking probability means that more call can be admitted in the

system, before the blocking probability reaches a maximum acceptable level.

As mentioned earlier, channel and power allocation techniques have been extensively

studied, but in most of the studies, they have been considered separately. Only in the last

few years have some studies been carried out on joint channel and power allocation. A short

description of the basic ideas of power and channel allocation techniques and a literature

review on these topics are presented in the remainder of the chapter.

6.2 Power Control

In the early days of cellular systems, power control techniques were primarily designed for

battery life conservation and link quality, while maintaining the transmitter power at the

minimum level required to achieve the desired link quality. When a mobile approaches its

serving base station, the mobile transmitted power level can be reduced, since the received

power at the base station increases [1]. From the point of view of battery life conservation,

power control is particularly important on the reverse link (communication link from mobile

to base station).

A change in the paradigm regarding the purpose of power control has appeared in lit-

erature in the past few years. This change in paradigm is necessary when one realizes that
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the transmitter power is, in fact, a resource that should be appropriately assigned. Exces-

sive transmitted power only adds to the interference with users sharing the same channel.

Controlling the transmitted power level, on both forward and reverse links, eliminates un-

necessary co-channel interference, and the resulting reduction in co-channel interference can

be traded for capacity, since it allows more users to share the same channel. The relationship

between system capacity and transmitted power is clear in CDMA systems, whose capacity

is limited by the co-channel interference [1].

This new paradigm has motivated the study of new power control techniques for systems

employing orthogonal multiple access techniques, such as FDMA and TDMA. As is well

known, the capacity of such systems can be improved by reducing the cluster size, which, in

turn, leads to undesired increased co-channel interference. Several authors have investigated

the use of power control on both forward and reverse links in TDMA and FDMA systems as

a technique for increasing capacity by simultaneously controlling the co-channel interference

and reducing cluster size.

When no power control technique is employed, the signal-to-interference ratios measured

at mobiles using a particular channel have a large variance, due to path loss and shadow

fading. Some links will have a SIR which is larger than a minimum required SIR0, while

others will present a link quality below the minimum acceptable level. The links in which

SIR is below SIR0 will likely be dropped, reducing the overall system capacity. Zander

has shown [47] that the maximum number of links, in which SIR is larger than SIR0, is

achieved by adjusting their transmitter power in order to balance the SIR of the links that

can be supported. The rest of the links must be handed off to another channel. As a result

of the SIR balancing, the variance of the SIR measured at the links using the same channel

is ideally reduced to zero, as shown in Figure 6.2.

An important aspect of power control is how these techniques are implemented. As dis-

cussed in Chapter 5, power control techniques can be classified or centralized and distributed.

Centralized power control techniques require information about all links, such as path gains,

power settings, etc., and involve additional infrastructure and a central controller. On the

other hand, distributed techniques are based on local information only, being, therefore,

of special interest, since they do not require exchange of information among the different

base stations and a central controller. Results presented in literature have shown that, as

expected, centralized techniques present better results if compared with distributed tech-

niques, at the expense of higher complexity and infrastructure requirements. The better



Chapter 6 - Resource Allocation in Cellular Communication Systems 103

15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

P
ro

b[
S

IR
 <

 x
]

x (dB)

target SIR

No Power Control            
Ideal Interference Balancing

Figure 6.2: Probability that SIR < X.

performance of centralized techniques is due to fact that the decisions on power settings are

based on a global information about the whole system in terms of co-channel interference.

Power control techniques will be briefly discussed in the following and an extensive dis-

cussion on this subject is presented in Chapter 5.

6.2.1 Power Control as a Technique for Controlling Co-channel

Interference

Two approaches for controlling the transmission power of both links have been proposed in

the literature. In the first approach, usually known as Interference Balancing Power Control,

the transmission power levels are adjusted aiming to balance the SIR in all links using the

same channel, that is, the SIR of all links using the same channel are equalized. However,

depending on the propagation conditions and the number of co-channel users, the maximum

achievable balanced SIR may be lower than the minimum required SIR0 for acceptable

performance. In this case, some co-channel links must be switched off in order to increase

the maximum achievable balanced SIR. Finding the optimum set of links to be turned off is

a very difficult problem and some heuristic approaches have been proposed. Zander [47, 55]

has proposed a power control technique based on interference balancing, which is reviewed

in Chapter 5. When the balanced SIR is lower than the minimum required SIR0, co-channel
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links are stepwise turned off, until the remaining links achieve the minimum acceptable SIR0.

Capacity gains of three times, for a distributed version of this technique, and four times, for

a centralized version, with respect to a reference system using cluster size N = 7, have been

reported.

In the second approach, usually known as Signal-Level-Based Power Control and also

reviewed in Chapter 5, the transmission power levels are adjusted aiming to compensate a

fraction of the signal path gain, which consists of the path loss and shadowing. It can be

shown [53], that the policy that minimize the variance of SIR consists of compensating half

of the path gain in dB.

In Chapter 5, interference balancing techniques, proposed by Zander [47, 55] and Grandhi

et. al [56], and Signal-Level-Based techniques, proposed by Whitehead [53], will be reviewed

in details, with simulation results.

6.3 Channel Allocation

Channel allocation techniques have been extensively investigated for application in cellular

communication systems. Several techniques have been proposed and an extensive survey of

most of these techniques can be found in [60]. The basic problem involving channel allocation

consists of allocating a channel from the set SC to each radio link connecting a mobile from

the set SM to a base station from the set SB. The ideal allocation technique is the one that

minimizes the number of required channels to serve all mobiles by reusing channels more

efficiently, while meeting some requirements in terms of link and service quality. Several

techniques can be designed for this allocation process, depending on the constraints that need

to be observed and information available to perform this task. The allocation techniques

can be classified into Fixed Channel Allocation (FCA), Dynamic Channel Allocation (DCA)

and Hybrid Channel Allocation (HCA).

In FCA techniques, a fixed number of channels are assigned to the base station of each

cell, following some reuse pattern and desired link quality. A mobile requesting a channel can

be allocated only a channel from the channel set assigned to its serving base station. FCA

techniques are very simple, but since the number of channel in each cell is fixed, they can not

adapt to traffic changes. It is well known that the number of users in a particular region of

a geographic service area changes throughout the day. For example, during business hours,

more calls are made in the downtown region of a city than in the residential region. On
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the other hand, after business hours, more calls are placed in the residential region. Some

variations of FCA schemes have been proposed to cope with traffic changes, such as channel

borrowing and directed retry [2]. In the channel borrowing technique, channels assigned

to a base station can be borrowed by a neighboring base station if necessary. In the directed

retry, if a base station does not have an available channel to service a call from a mobile

station, the mobile station tries to acquire a channel from a neighboring base station that

provides a satisfactory link quality.

In DCA techniques, any channel can, in principle, be assigned to the base station of any

cell, as long as some requirements are met. The core idea behind all DCA techniques is to

assign a call the channel that minimizes a given cost function. Several cost functions have

been proposed and the most common parameters involved in these functions include the

blocking probability, the reuse distance of the selected channel, propagation measurements,

average blocking probability of the system, channel occupancy, etc. [60]. Since the number

of assigned channels to a given cell is flexible, DCA techniques provide the system with some

flexibility to cope with time varying traffic, explained earlier. It has been shown that FCA

techniques perform better than DCA techniques under high traffic load, However, under low

load, DCA outperforms FCA [60]. Of particular interest are the DCA techniques based on

co-channel interference, which will be discussed in Section 6.3.1.

HCA techniques combine some features of both FCA and DCA techniques. In this class

of algorithms, part of the set of channels available for the system is used for fixed allocation,

while the rest of the channels are dynamically allocated, following some criteria. HCA

techniques have proven to give better results than both FCA and DCA over a wide range of

traffic load.

As mentioned before, different channel allocation techniques can be designed based on

different constraints and requirements. Based on the trade-off between capacity and link

quality, it is clear that the co-channel interference plays an important role in the channel

allocation process. Also, co-channel interference is of special interest in this work since it is

the common physical bond between channel allocation, transmission power allocation and

adaptive antennas. In the following, we briefly discuss channel allocation from the point of

view of co-channel interference.
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Figure 6.3: One-dimension cellular system with 4 cells

6.3.1 Dynamic Channel Allocation and Co-channel Interference

As mentioned earlier, a fundamental trade-off in a cellular system involves capacity and

transmission quality. Channel allocation is a very important component in this fundamental

trade-off and can lead to capacity and link quality improvements. In this context, the

adaptability to interference [61, 62] is an important feature of dynamic channel allocation

techniques and will be discussed next.

For most of the dynamic channel allocation techniques, the transmission quality in terms

of co-channel interference is assured by means of an a-priori planning process, based on the

compatibility matrix G. Two cell are said to be compatible if the same channel can be used

simultaneously in both cells. The compatibility matrix is usually defined as [63]:

C = [cij ]i,j=1,···,K (6.5)

where K is the number of cells in the system. The elements cij defines the compatibility

between the i-th and j-th cells:

cij =


 0 if cells i-th and j-th are compatible

1 if cells i-th and j-th are not compatible
(6.6)

As an example, consider an one-dimensional cellular system with 4 cells (such as along a

highway), as shown in Figure 6.3, where T is the distance between adjacent base stations.

Assuming that the minimum distance between two compatible base stations is D = 2T , the

compatibility matrix for the system in Figure 6.3 is:

C =




1 1 0 0

1 1 1 0

0 1 1 1

0 0 1 1


 . (6.7)
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Therefore, based on the compatibility matrix, a channel in use in BS 2 can be used simulta-

neously in BS 4, but not in BS 1 or BS 3. Note the C is based on worst case assumptions

(regarding the interference level) about the mobile location within the cell and propaga-

tion conditions. Allocation techniques that are based on the compatibility matrix are said

to be traffic adaptive [61]. The assumptions adopted in the compatibility matrix, regard-

ing co-channel interference, require the use of a large margin in the minimum acceptable

signal-to-interference ratio in order to cope with the variations in the desired received and

interference signals on both links. Those signal variations are basically due to:

• propagation conditions: due to shadow fading, the desired received signal may

experience a strong fade,

• user mobility: when the mobile approaches the cell boundary, the co-channel inter-

ference at the mobile increases,

• traffic load: if more users share the same channel, co-channel interference in the

system increases.

The use of a fading margin decreases the probability that the received signal is below a

threshold. Due to the variations in the SIR, many calls will have SIR higher than the

required level SIR0. The excess SIR corresponds to unused capacity, since calls with high

SIR could use a smaller cluster size or lower transmitted power [62]. Therefore, the required

large margin in the SIR when using the compatibility matrix causes a considerable waste in

capacity [64].

Reuse partitioning is one example of techniques that exploit the unused capacity [65].

The basic idea behind reuse partitioning is the use of two or more cluster sizes in the same

geographic area. Small cluster sizes are used for mobiles located closer to their BSs, since

they receive strong desired signal levels and, therefore, are able to tolerate high co-channel

interference. On the other hand, large cluster sizes are used for mobiles located near the

cell boundaries, since the received desired signals are weaker. One way to implement reuse

partitioning is by dividing the cells in inner and outer regions, as shown in Figure 6.4. The

inner regions can be considered as a cellular system where a small cluster size can be used,

while the outer regions must use a larger cluster size. It should be noted that the reuse

partitioning technique can be viewed as an improved version of the FCA technique, suffering

from some problems typically found in FCA techniques, such as lack of ability to deal with

traffic changes.
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As mentioned before, the compatibility matrix is based on worst case assumptions re-

garding the co-channel interference, which depends on traffic load, propagation conditions

and user mobility. For example, it is assumed that the mobiles are located near the cell

boundary, where the SIR is usually low. Additionally, in order to cope with shadowing fad-

ing, a large margin is added to the minimum required SIR0. Consider now that, instead of

assuming these worst case conditions, the compatibility matrix is based on actual or more

realistic co-channel interference conditions. Therefore, lower minimum required SIR0 and

link margin could be used, reducing the waste of capacity and yielding a more accurate

compatibility matrix C. As a consequence, channels could be packed closer, resulting in a

capacity gain. For these reasons, dynamic channel allocation techniques based on signal

strength and SIR measurements have attracted a lot of attention in the past few years.

Several dynamic channel allocation techniques based on signal strength measurement

and SIR information have been proposed [60] and those using a distributed approach are of

particular interested. In an distributed allocation technique, the received signal or the SIR

at the mobile is measured or predicted at the beginning of the call and a channel is selected

to serve the call as long as the SIR on the selected channel is above a threshold. However, the

SIR will likely vary as the mobile moves or the propagation conditions change and call will

have to be handed off to another channel in the the same cell or sector (intra-cell handoff), in

order to keep the SIR above the threshold SIR0. Another issue related to SIR-based DCA

is that the allocation of a given channel to a new call may degrade the SIR in ongoing calls

using the same channel, causing service interruption. When a service interruption occurs,
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an intra-cell handoff is required in order to maintain a high link quality. If no channel is

available for the handoff, the call is terminated, resulting in a deadlock.

Deadlock and interruption in some distributed channel allocation schemes were investi-

gated by Serizawa and Goodman in [66]. Two algorithms for channel allocation were con-

sidered, the Sequential Channel Search (SCS) and the Maximum SIR (MSIR). In the SCS

algorithm, the channels available for the entire cellular system are ordered in an arbitrary,

but fixed, sequence. When a new call arrives at the base station, an idle channel is searched

following the channel ordering. The first channel found in which both the forward and re-

verse SIRs are above a threshold is selected to serve the new call or the handoff request.

In the MSIR algorithm, the channel with the maximum SIR is selected. Simulation results

show that the SCS algorithm is more vulnerable to interruptions than the MSIR algorithm.

In other words, the allocation of a channel to a new call using the SCS technique will likely

cause interruptions in ongoing calls. This can be explained as follows. Since SCS always

searches for channels in the same order, the channel reuse distance (the smaller distance be-

tween cells using the same channel) decreases. Therefore, the SCS algorithm tends to allocate

highly loaded channels to new calls. On the other hand, MSIR attempts to allocate lightly

loaded channels (high SIR). When the blocking probability is examined, simulation results

show that SCS outperforms MSIR. Therefore, it was observed that, in distributed channel

allocation, there is a trade-off between avoiding call blocking and avoiding call interruption.

In order to avoid interruption and deadlock, a channel segregation technique was pro-

posed [67, 68], where the allocation is based on a preferable channel list, adaptively created.

The preferable channel lists are independently formed in each cell by ordering the channel

according to their probability of selectability P (i). When a new call arrives at the system,

the serving base station tunes a radio port at the channel with the highest probability of

selectability and measures the received power of that channel (this operation is usually called

sensing the channel). If the received power is below a certain threshold, the channel is as-

sumed to be idle (i.e. it is not in use in the surrounding cells) and is selected to service

the new call. Simultaneously, the probability of selectability of the selected channel, P (i), is

increased, using the expression

P (i) =
P (i)N(i) + 1

N(i) + 1
and N(i) = N(i) + 1, (6.8)

where N(i) is the number of times channel i is accessed. On the other hand, if the received

power is above the threshold, the channel is assumed to be in use in the surrounding cells.
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Its probability P (i) is then decreased using the expression

P (i) =
P (i)N(i)

N(i) + 1
and N(i) = N(i) + 1, (6.9)

and the next channel on the list is sensed. This technique presents several advantages, such

as adaptation to traffic and interference, reduced blocking probability compared with FCA

and other DCA schemes, reduced number of intra-cell handoffs and no communication among

the base station is required. [60].

6.4 Combined Techniques

We have seen in the previous sections that co-channel interference plays a very important role

in the system capacity and link quality of a wireless system. Also, we have seen how channel

allocation can use co-channel interference information to allocate channels more efficiently

and increase system capacity. In Chapter 5, we have shown that power control can be used

to reduce co-channel interference. Therefore, it seems clear that the combination of power

control and channel allocation techniques may result in additional capacity improvement, if

compared with the capacity gains achieved when both techniques are used independently.

Additionally, since adaptive antennas can be used to control the co-channel interference, as

we have seen in Chapter 2, we can expect that the combination of power control, channel

allocation and adaptive antennas will result in a considerable capacity gain. In the following,

we present some works found in literature where the combination of these three techniques

was studied.

6.4.1 Power Control and Channel Allocation

The combined use of power control and dynamic channel allocation has been investigated

in the past few years, showing promising results in terms of capacity improvement. Percia

and De Marca presented in [69] a performance analysis of the channel segregation technique

combined with two power control techniques: the Distributed Balancing Algorithm (DBA),

proposed by Zander [55], and distributed power control (DPC), proposed by Grandhi et. al

[56]. Both techniques are reviewed in Chapter 5. The combined procedure is rather simple

and is summarized as follows. The mobile and base station power levels of all links using a

given channel are continuously updated using the interference balancing algorithm. When

a call request is received, the serving base station selects a given channel c, according to
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Figure 6.5: Blocking probability of a cellular system with 49 cells and 147 channels: SEGR -
Channel Segregation Technique; DBA - Distributed Balancing Algorithm; DPC Distributed
Power Control.

the channel segregation technique. If the SIR of any ongoing call using the channel c falls

below a threshold after the new call is assigned channel c, the serving base station tries to

reassign the new call another channel. If the reassignment is not possible, the new call is lost

due to excessive interference. A cellular system was simulated, using 49 cells, 147 channels

available for the whole system and propagation model assuming deterministic path loss only

(no shadowing was simulated). Mean duration of calls was equal to 3 minutes and call arrival

rate varied from 1.5 to 3 calls per second. Figure 6.5 shows the blocking probability for the

system using channel segregation scheme combined with both power control techniques.

Results for FCA using cluster size N = 7 without power control and channel segregation

without power control are also presented.

Simulation results have shown that the combination of power control with channel seg-

regation provides additional capacity gain when compared with the gain achieved by using

channel segregation alone. For example, at a blocking probability of 10%, the carried traffic

using channel segregation without power control increased 40% with respect to the carried

traffic using FCA. When power control is combined with channel segregation, the increase

in the carried traffic was 43%, for the DPC scheme. For the DBA scheme, the blocking

probability was almost zero at the traffic levels simulated.

However, simulation results have also shown that the inclusion of power control increases



Chapter 6 - Resource Allocation in Cellular Communication Systems 112

the probability of handoff failure. Channel segregation alone does decrease the probability

of handoff failure if compared with to FCA scheme, but when the balancing power control

is included, this probability increases. It is claimed that power adjustments tend to produce

more handoff requests from mobiles that do not achieve the minimum required SIR0. The

overall conclusion of this study is that, by combining channel segregation and balancing

power control, some aspects of the system performance improve, such as blocking probability.

However, other aspects degrade, such as handoff failure. It should be noted that in the

combined approach proposed in [69], the selection of the channel to serve the new call is

performed solely by the segregation channel algorithm, that is, the power control technique

does not take part in the channel selection process.

The benefits of combining power control with channel allocation was also investigated for

a line-of-sight microcell environment by Valenzuela in [70]. A single street with equidistant

base stations spaced 500 feet apart was assumed. The DCA used was based on the SIRs at

both forward and reverse links. When a new call arrives, the serving base station selects a

channel in which both the forward and reverse link SIRs are above a threshold. The power

control technique studied in [70] attempts to equalize the received power levels at the base

stations, by adjusting the transmitted power. The performance of this system was analyzed

by simulation and, for comparison, a FCA scheme was also simulated, using reuse distance

D = 2, that is, the same channel can be used in every other cell. Simulation results showed

that power control is more beneficial for dynamic channel allocation than for fixed allocation.

This benefit is due to the reduction the interference level. In fixed allocation, this reduction

may not be enough to allow the use of the next smaller cluster size or reuse distance. On

the other hand, in systems using dynamic channel allocation any SIR reduction is used and

converted into a smaller blocking probability. For example, Table 6.1 shows the number of

channels required by a FCA scheme to carry the same traffic as a DCA scheme with and

without power control. In the channel model used here, the received power varies as the

inverse-square of the T-R distance (path loss n = 2).

Foschini and Miljanic [71] investigated a local autonomous dynamic channel allocation

technique including power control, where the selection of the channel to serve a new call is

assisted by the power control algorithm. The power control algorithm adjusts the transmis-

sion power of the mobile, up to an upper limit Pmax, attempting to keep the SIR as close

as possible to the desired level SIR0. If the desired SIR0 is not achievable by controlling

the transmitter power, the mobile will naturally drive its transmission power to the upper
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Table 6.1: Number of required channels by a FCA system to carry the same traffic as a DCA
scheme at a blocking probability of 1% [70]

DCA FCA

10 channels, without power control 12 channels
10 channels, with power control 16 channels

limit Pmax. Therefore, a power transmission equal to the upper limit Pmax is an indication

that the mobile is suffering from excessive interference and an intra-cell handoff must be

performed. This power adjustment is used for both new calls and ongoing calls. When a

new call arrives, a free channel is probed by looking at its required transmitter power. If

Pmax is required, another free channel is probed, until a channel with required transmission

power less than Pmax is found. If no channel is found, the new call is blocked. For ongoing

calls, whenever Pmax is requested, an intra-cell handoff is requested. If no channel is available

for the handoff, the call which is dropped. The performance of this algorithm was analyzed

by simulation, by evaluating the probability of an unsuccessful call. A call is considered

successful if it is accepted for service and served until completed. Therefore, a call dropped

due to increased co-channel interference caused by a new call is considered an unsuccessful

call. The simulation results showed that a local autonomous dynamic channel allocation

technique does not trigger catastrophic events (call interruptions and deadlocks). However,

for the dynamic channel allocation technique studied, most of the unsuccessful call were

inadvertently dropped call due to increased co-channel interference caused by a new call.

Channel allocation algorithms that cause ongoing calls to be dropped are called aggressive.

The results from [71] have shown that an important issue related to dynamic channel

allocation is the ongoing dropped calls caused by new calls. When a channel is assigned

to a new call, the link quality of ongoing calls using that channel may degrade due to the

presence of the new call, requiring an intra-cell handoff. If the handoff is not possible, the

deteriorated one or more of the ongoing call are dropped. Dropping of ongoing calls caused

by new calls can happen very often in distributed schemes, where little (if any) information

about ongoing calls is used in the channel selection process for new calls. Therefore, the

cost of a call admission must be evaluated in order to reduce the link quality degradation of

ongoing calls. Additionally, a power control technique can be used to reduce the interference

caused by the new call. In [72] and [62], DCA techniques were combined with power control,
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Figure 6.6: Rings of interfering cells.

taking into account the cost of call admission.

In [72], Ni proposed a distributed channel allocation technique combined with power

control where a cost function, associated with each free channel in the serving cell, is used

to select the lowest cost channel to be allocated to the new call. The cost function is based

on the tier of the co-channel cell that is using a given candidate channel. For example, if a

candidate channel is in use in a cell in the first tier, a high cost value is attributed to that

channel. For channels in use by a cell in the second tier, a lower cost value is attributed to

it. Channels with lower cost have higher priority for allocation. Once the highest priority

channel is found, its SIR is measured and power control is applied in order to adjust its SIR

to a predefined value. If its SIR cannot be adjusted, the next channel in the priority list is

tested. The search is limited to four channels. Simulation results show that this combined

algorithm presents lower blocking probability than a FCA scheme using cluster size N = 3.

More importantly, the intra-cell handoff rate, defined as the ratio of the number of requests

of intra-cell handoff to the number of admitted calls, is about 40%. That is, each new call

causes only 0.4 intracell handoff requests. For comparison, for the local autonomous dynamic

channel allocation technique proposed by Foschini and Miljanic in [71], the intra-cell handoff

rate was about 700%.

In [62], Whitehead examined two DCA algorithms, called timid and polite, combined

with Minimum-Variance Signal-Level-Based Power Control and Distributed Balancing Power

Control, studied in Chapter 5. The DCA algorithms studied in [62] are based on ring of

interfering cells. Consider Figure 6.6. Assuming hexagonal shapes for the cells and that

a particular channel can be reused in every cell, the first ring of interfering cells of cell A

consists of the six surrounding cells. The timid DCA technique [73] allocates a channel to
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a new call if the SIRs on both forward and reverse links exceed an admission threshold and

none of the cells in the first ring of interfering cells is using that channel. Therefore, new

calls do not deliberately perturb ongoing calls. A base station can check whether a particular

channel is in use or not in the surrounding cells by measuring the received power of that

channel.

The polite algorithm allocates a channel to a new call even if that channel is in use in

one of the cells in the first ring. Because of the increased interference caused by the new

call, ongoing calls using that channel may need to be reassigned.

Note that, even though these algorithms try to be timid or polite, they sometimes are

aggressive [73]. That is because the measurement of the received power of the candidate

channel may not indicate interference caused to ongoing calls. Sometimes the admission of

a new call may cause several ongoing calls to be dropped.

When several channels satisfy the required conditions to be allocated to a new call (as

described above), a channel selection policy must be used. Four policies were studied: (a)

random: channels are searched in a random order and the first one found is assigned; (b)

lowest: the lowest-numbered channel is assigned; (c) priceisright: the channel with the lowest

SIR is assigned and (d) bestquality: the channel with the highest SIR is assigned. The perfor-

mance of all combinations of DCA algorithm and power control techniques were simulated in

a system with 18 channels at different traffic loads. For comparison purpose, a FCA system

with cluster size N = 3 was also simulated. Simulation results, in terms of carried traffic for a

given blocking probability, showed that the combinations using Distributed Balancing Power

Control outperformed the other combinations using Signal-Level-Based Power Control. Also,

for the same power control technique, the polite DCA presented better performance than

the timid DCA, which can be explained by the fact that the former technique accepts a new

call, even when reassignment of ongoing calls is required. When the selection policies are

compared, the lowest strategy provides the highest capacity, followed by priceisright, random

and bestquality. As expected, priceisright required the highest number of reassignments per

call (about one reassignment per call), while the others required less than 0.2 reassignment

per calls. The poor performance of the priceisright policy can be explained by the fact that

calls that are assigned channels with low SIR are likely to request an intra-cell handoff.

Another important issue related to DCA schemes is their performance under imbalance

of load among the cells. This is especially important in microcell systems, where the load

among the cells may vary considerably due to their small sizes. Also, load imbalance is a
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Table 6.2: Blocking probabilities Pb for FCA and DCA at 26 Erlangs per base station and
different load imbalances [74]

FCA FCA

load imbalance 15% Pb = 8.5% Pb = 2%
load imbalance 30% Pb = 21% Pb = 7.5%

typical situation when there is a highway passing through some cells, creating a strip of high

traffic load. Argyropoulos et al. [74] studied the performance of combined distributed DCA

and power control under imbalance of traffic load conditions. The DCA scheme used is based

on selecting the channel with the least interference among all channels. When a new call

enters the system, the interference levels at the co-channel mobiles increase. If the SIR at

any mobile drops below a threshold SIR0, its power is momentarily increased and a channel

with less interference is searched to serve that call (intracell handoff). If no channel is found,

the higher power level is maintained, increasing the overall interference level and forcing

other co-channel mobiles to increase their power as well. If the SIR at any time drops below

a threshold SIRD (SIRD < SIR0), for 3 seconds, the call is dropped. The performance of

this combined DCA and power control technique was compared with the performance of a

FCA scheme, using cluster size N = 7, combined with the same power control technique.

The analysis was carried out by simulating a service area consisting of 64 cells. The imbal-

ance of load was simulated by uniformly distributing a percentage (15% and 30%) of the

aggregate incoming traffic in a strip crossing several cells. The rest of the incoming traffic

was uniformly distributed over the whole service area. Simulation results have shown that

this DCA algorithm outperforms FCA in terms of blocking probability. Table 6.2 shows the

blocking probability for both FCA and DCA techniques at load imbalances of 15% and 30%.

The better performance achieved by DCA is explained by the fact that the blocking

probability in the system using FCA is dominated by the heavily loaded cells, which have

a hard limited number of channels. On the other hand, there is no hard limit on the

number of channels that can be used in a cell in a DCA scheme. Therefore, the blocking

probability of the system using DCA is dominated by the blocking probability of the cells

surrounding the heavily loaded cells. Another important result is that the difference between

the blocking probabilities of the two schemes increases as the load imbalance increases (from
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15% to 30%), showing that DCA schemes reallocate resource in order to accommodate traffic

imbalance. Simulations have also shown that the average mobile transmission power in the

system employing DCA is higher than in the system using FCA. The higher power in DCA

is due to the fact that the effects of high-load cells is spread over surrounding cells, while

in FCA the effects are confined to the high-load cells. A consequence of the high average

transmission power in DCA is a high handoff request rate. It was suggested that the use of

a more appropriate power control technique could control this high handoff request rate.

6.4.2 Power Control and Adaptive Antennas

It is well known that base station adaptive antennas are able to control the co-channel

interference level by placing nulls in the directions of the interference sources and high gain

towards the desired signal, as shown in Chapter 2.

On the other hand, as we have already seen, the SIR can be maximized by controlling

the transmission power. As an example, the interference balancing technique, proposed by

Zander [47, 55] and discussed in Chapter 5, can be used for this purpose.

Rashid-Farrokhi et al. [75] combined Zander’s power control technique with base station

adaptive antennas in the forward link of a CDMA system, showing promising results in

terms of capacity improvement. The algorithm is distributed and uses only local interference

information. The algorithm consists of two basic steps, repeated in an iterative mode: first,

the radiation pattern or, equivalently, the weight vectors of the adaptive antenna array at the

base stations are computed such that the SIRs are minimized. Using the computed radiation

patterns of the antenna arrays, the base station transmission power levels are updated using

the Distributed Balancing Algorithm (DBA). The performance of this combined technique

was evaluated by simulation in a CDMA system with 36 base stations and cluster size

N = 1. The propagation channel model included only path loss, with path loss exponent

n = 4. The minimum acceptable signal-to-interference-plus-noise ratio (SINR) was −14

dB. The capacity of the system was defined as the maximum number of users that achieve

SINR ≥ −14 dB. Table 6.3 shows the system capacity for different configurations. We see

that the use of 4-element arrays at the base stations increases system capacity in 200% (three

times) compared to the configuration with omnidirectional base station antennas. However,

we note that power control leads to a capacity improvement even greater.
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Table 6.3: Capacity of a CDMA system in terms of number of users for different system
configurations.

System Number of users

fixed power & omnidirectional antennas 30
fixed power & adaptive antennas (4-element array) 90
power control & omnidirectional antennas 660
power control & adaptive antennas (4-element array) 2800

θ23= angular separation between mobiles 2 and 3
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Figure 6.7: SDMA approach: channels are reused within the cell.

6.4.3 DCA and Adaptive Antennas in SDMA systems

Adaptive antennas at the base station have been studied as a technique to increase cov-

erage range and improve capacity. Coverage range is increased by steering high antenna

gains towards the desired mobiles. Capacity improvement can be achieved by two different

approaches. In the first approach, base station adaptive antennas are used to reduce the

co-channel interference by steering nulls towards the co-channel mobile stations. The re-

sulting co-channel interference reduction allows cluster size reduction, improving the system

capacity. An example of this approach was extensive studied in Chapter 4. In the second

approach, base station adaptive antennas are used to allow channel reuse within the cell, by

filtering out co-channel users in the spatial domain. Systems employing the second approach

are usually referred to as Spatial Division Multiple Access (SDMA) systems and an example

is depicted in Figure 6.7. High gain beams are steered towards the mobiles and, depending

on some factors, channels can be reused within the cell, as is discussed subsequently.

In the SDMA approach, the capacity improvement depends on the ability of the system
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to allocate the same channel to several in-cell users. Three major factors determine this

ability [76]:

(1) channel propagation parameters,

(2) antenna parameters - beamwidth and side lobe level,

(3) spatial distribution of the user.

These factors will determine whether a channel can be shared among in-cell users. In the

following we discuss two basic requirements that must be met by two in-cell users so that

they can share the same channel.

The first requirement that must be met is that the angular separation ϕ between the co-

channel mobiles must be larger than a minimum threshold ϕmin, which can be derived from

the propagation channel model used and the antenna parameters. This basic requirement is

imposed in order to guarantee that a signal from a co-channel in-cell user does not lie within

the beam steered towards another co-channel user.

In order to derive ϕmin, we need to assume a propagation channel model. It is usually

assumed in wireless communications that a signal transmitted by a mobile station arrives

at the base station antenna through reflections from large objects, diffraction of the electro-

magnetic waves around objects, and signal scattering. It is also assumed that the scatterers

surrounding the mobile station are about the same height, or are higher than, the mobile.

Considering a macrocell environment, the base station is typically deployed higher than the

surrounding scatterers. Therefore, the received signals at the base station antenna result

mainly from the scattering process in the vicinity of the mobile station, as shown in Fig-

ure 6.8 [6], and the angle of arrival (AOA) of the signals impinging upon the base station

antenna are distributed over an angular spread α. On the other hand, in the microcell en-

vironment, some scatterers may be as high as the base station antennas, implying that the

angular spread α of the AOA of the received signals at the base station is larger than in

the microcell case. Several models for the distribution of the AOA have been proposed and

an extensive literature search can be found in [6]. In this chapter we will adopt the model

where the scatterers are assumed to be uniformly distributed over a circle of radius R. If the

T-R distance is d, the angular spread α seen by a base station receiver is:

α = 2 sin−1
(
R

d

)
. (6.10)
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Figure 6.9: Minimum angular separation ϕmin.

The angular spread α is, therefore, a channel propagation parameter that should be taken

into account when deciding whether a channel can be shared between two in-cell mobiles.

Figure 6.9 depicts a typical situation, from which the minimum angular separation ϕmin can

be derived. Let us assume that the beam steered toward the mobile MS1 has a beamwidth

of β degrees. We assume that signals impinging upon the base station antenna outside the

beamwidth β will be sufficiently attenuated by the antenna. We will show later that there

is a limit on this attenuation, which will result in the second requirement. If the angular

spread of the mobile station is α < β, we see in Figure 6.9 (a) that the minimum angular

separation ϕmin is equal to α/2 + β/2. On the other hand, if the angular spread α is larger

than the beamwidth β, the minimum angular separation will be determined only by the

angular spread, as shown in Figure 6.9 (b) and is equal to α. Therefore, in general, the
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minimum angular separation between two in-cell co-channel users is [76]:

ϕmin =
α

2
+

min(α, β)

2
. (6.11)

It was assumed above that if an in-cell co-channel user is not within the main lobe of the

radiation pattern, its signal will be sufficiently attenuated by the antenna. However, due to

the array limitations, there is a limit on the attenuation of the in-cell co-channel signals. For

example, the side lobe level (SLL) and the depth of nulls of the radiation pattern depend on

the number of elements in the array. If an in-cell co-channel mobile is too close to the serving

base station, the side lobe level or the depth of the null steered toward that co-channel user

may be insufficient to guarantee a required SIR0. Therefore, there is a limit, denoted by

dmin, on how close to the base station an in-cell co-channel user can be. On the other hand, if

the desired user is too far from its serving base station, the antenna gain may be insufficient

to guarantee the required SIR0 and an upper limit, denoted by dmax, should be imposed on

the distance between an user and its base station. As we will see, the ratio of dmin and dmax

consists the second requirement that must be met by potential in-cell users. The limits dmin

and dmax can be alleviated by using a power control technique.

Consider two in-cell co-channel users as shown in Figure 6.10. Assume that a beam is

steered toward the mobile MS1 (desired user) and the mobile MS2 (interfering mobile) is not

within that beam. In order to determine the received power levels S and I from the desired

and interfering mobiles, respectively, we will assume a channel model that consists of path

loss only, with path loss exponent γ. S and I are, therefore, given by:

S = PD K G d−γD , (6.12)



Chapter 6 - Resource Allocation in Cellular Communication Systems 122

I = PI K G r d−γI , (6.13)

where PD and PI are the transmitter power levels and dD and dI are the T-R distances. The

maximum gain within the main beam is G (actual value, not dB), while the side lobe level

is r (r < 1), which, for simplicity, is assumed to be constant. The constant K comprises all

terms of the channel that do not change in this derivation. Let us suppose that the minimum

acceptable signal-to-interference ratio is SIR0. Therefore, we want:

S

I
≥ SIR0. (6.14)

As discussed above, for a given propagation channel and array antenna, there will be an

upper limit for dD (dmax) and lower limit for dI (dmin), such that the threshold SIR0 can be

achieved. Following the approach used by Gerlich in [76], these limits can be determined by

substituting expressions (6.12) and (6.13) into (6.14):

S

I
=

PD d−γmax
PI r d

−γ
min

=
PD
r PI

(
dmin
dmax

)γ
≥ SIR0, (6.15)

Finally, the lower limit on the ratio dmin/dmax is:

dmin
dmax

≥
(
r PI SIR0

PD

)1/γ

. (6.16)

As an example, assume that the PD = PI with no power control, γ = 3.0, SIR0 = 10 and

the side lobe level of the array is SLL = −23 dB (r = 0.005). Using expression (6.16), we

find that:
dmin
dmax

≥ 0.37 or dmin ≥ 0.37 dmax. (6.17)

This means that, in order to guarantee S/I ≥ 10 dB, the minimum T-R distance of an

interfering co-channel user is 37% of the T-R distance of the user where the SIR is measured,

as depicted in Figure 6.11.

On the other hand, if the array side lobe level is increased to SLL = −7 dB (r = 0.2),

we find that the minimum T-R distance dmin is larger than the maximum T-R distance dmax

(dmin ≥ 1.26 dmax) and, therefore, the system is not feasible.

Expressions (6.11) and (6.16) represent the two basic requirements that must be met by

two in-cell users so that they can share the same channel. Summarizing:

• the angular separation ϕ between two in-cell co-channel users must be:

ϕ ≥ α

2
+

min(α, β)

2
, (6.18)
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Figure 6.11: T-R distances to guarantee SIR ≥ SIR0.

• the ratio of the minimum and maximum T-R distances of in-cell co-channel users must

be:
dmin
dmax

≥
(
r PI SIR0

PD

)1/γ

. (6.19)

Several studies have been carried out on channel allocation strategies for SDMA systems.

In [77] three strategies for allocating channels to incoming calls are proposed. An incoming

call can be either a new call or a call requesting a channel reassignment. A channel reassign-

ment is requested when the angular separation between two co-channel mobiles drops below

a threshold. In the simplest algorithm, denoted here by A1, the channel is selected ran-

domly among the channels that satisfy the requirement for the minimum angular separation

among co-channel users. This criteria is sufficient in a scenario where the mobiles are static.

However, future channel reassignments due to mobile movement are not taken into account

when the channel is selected using algorithm A1. In this context, channel reassignments

may not be completely avoided, but we can try to maximize the time interval between two

subsequent channel reassignments. In the second algorithm, A2, the channel to be assigned

to the incoming call is chosen such that the angular separation among the co-channel users

is maximized. This criteria will increase the time interval between two subsequent channel

reassignments. However, A2 does not exploit information about the topology of the service

area and mobile movement. A third algorithm, A3, is then proposed, where the topology of

the area and movement of the mobiles are taken into account. According to A3, two mo-

biles on the same road, but moving in opposite directions, would not be assigned the same

channel, since a channel reassignment is likely to be necessary. All three algorithms require
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the measurement of the direction of arrival (DOA) associated with each mobile. In addi-

tion, algorithm A3 requires the estimation of the direction of movement of the mobiles. The

performance of all three algorithm is analyzed by simulation, using three different scenarios,

representing a rural area, an urban area and a residential area. The simulation results show

that the use of mobile spatial distribution information when assigning channels improves the

performance in terms of capacity or assignment success rate, at the expense of complexity.

Therefore, the best performance is achieved by A3, followed by A2 and A1.

In the DCA algorithms proposed in [77], the channel assignment is based on the as-

sumption that two users separated by a minimum angle and sharing the same channel have

their SIRs above a threshold SIR0. In [78], Chen et al proposed an algorithm for channel

allocation using adaptive antennas assuming a more realistic situation. Actual base station

antenna arrays with M elements are simulated, which attempt to null out in-cell cochannel

users. The DCA algorithm used in [78] is based on reuse partitioning, using a predefined se-

quence of channels to search for a channel to be assigned to a new call or a handoff request.

All the base stations search for channels using the same predefined sequence of channels.

When a new call arrives or a handoff is requested, the serving base station assigns the chan-

nel that meets the following requirements: (a) no more than M−1 in-cell users can be using

that channel; (b) the SIR at the new mobile is above a threshold SIR0. The first requirement

is based on the assumption that a M-element array can steer up to M − 1 nulls. Therefore,

assuming that the positions of the in-cell users are known by the base station, a null can

be steered towards each in-cell co-channel user. However, it is not guaranteed that all nulls

will have the desired attenuation and that the SIR at the new mobile will be higher than

the threshold SIR0. In order to guarantee the minimum acceptable SIR at the new user,

requirement (b) must be satisfied. Channels already in use in the cell are candidate channels

to serve an incoming call. In doing so, channel reuse within the cell is allowed, reducing

the average reuse distance and increasing the capacity of the system. The performance of

the proposed technique was analyzed by simulation using a 3-element array in a cellular

systems with 37 cells. It was observed a capacity improvement of 170% over a system using

omnidirectional antennas at the base stations and reuse partitioning for channel allocation.

In the studies presented in [77] and [78], the channel allocation schemes rely on some

technique to estimate the angles of arrival and departure (AOA and AOD) of the signals

associated with the co-channel users. Therefore, the performance of the allocation technique

and, consequently, the overall system capacity, will be dependent on the accuracy of the
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technique used for estimating AOAs and AODs. In order to avoid the use of any technique

for directly estimating AOA and AOD, Ohgane et al proposed a channel allocation technique

combined with adaptive array for SDMA based on the spatial correlation coefficient [79]. The

spatial correlation coefficient ρ between two signals impinging upon an array is defined as the

inner product of the array response vectors associated with each signal [80]. The absolute

value of ρ (|ρ| ≤ 1) is a measure of the angular separation of the mobiles. In [79], it is shown

that, for two mobiles transmitting in the same channel, the signal-to-interference ratio (SIR)

and, consequently, the bit error rate (BER) of the array output signal corresponding to each

mobile depend on the spatial correlation coefficient. Based on the relationship between BER

and the spatial correlation, a maximum value of ρ, denoted by ρM , such that two mobiles

can share the same channel is derived. The proposed channel allocation technique uses a

2-element linear array and channels are allowed to be shared between two in-cell mobiles.

According to the proposed technique, when a new call arrives, the serving base station

attempts to allocate a channel that is not in use in the cell. If no idle channel is available,

channels in use in one in-cell call are then examined. The serving base station selects the

first channel found in which the spatial correlation between the ongoing call and the new

call is less than ρM . The performance of such channel allocation technique was analyzed by

simulating a system with one cell and 10 channels. Results show that the resulting blocking

probability corresponds to the blocking probability of a system using 18 channels and no

channel reuse allowed within the cell. Therefore, the proposed channel allocation technique

was almost successful in allocating every channel to two in-cell mobiles.

DCA schemes combined with fixed base station narrowbeam antennas in a SDMA sce-

nario were studied in [81]. Each base station is located in the center of the cell and equipped

with a 24-beam switched beam antenna. Each beam has a beamwidth of 15 degrees. When

a new call or a handoff request arrives, the beam that provides the best communication link

between the serving base station and the mobile is selected. Perfect knowledge about the

mobiles positions is assumed. Once a beam is selected, the base station searches for a channel

following some DCA strategy. Two DCA schemes are tested. In the first scheme, called Even

Channel Load Algorithm (ECL), each base station creates a list with all channels available

for the system, with channels ordered in a descending order of channel usage in that base

station. Channel usage of a given channel is defined here as the number of calls assigned to

that channel. When a call arrives, the serving base station searches for a channel, using its

list, and selects the first channel in which both the forward and reverse links SIR are above a
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threshold SIR0. In the second scheme, called Concentrated Channel Load Algorithm (CCL),

the list created by each base station orders the channels in an ascending order of channel

usage. The selected channel in CCL is the first one in which both the forward and reverse

links SIR are above the threshold. The ECL algorithm aims to uniformly distribute the calls

over all channels, while the CCL algorithm attempts to minimize the number of channels

required to serve all calls. Note that, in both algorithms, all channels available for the system

are searched, since channel reuse within the cell is allowed. The performance of both DCA

schemes is analyzed by simulation and compared with a reference system using FCA, cluster

size N = 7 and tri-sectorized cells. Power control based on constant received power is used

in the reverse link. Both uniform and non-uniform distribution of users are analyzed, in

order to evaluate the degradation of the SDMA scheme due to the distribution of the users.

Assuming that 100 channels are available for the entire system and an uniform distribution

of users, simulation results showed that both DCA algorithms provided capacity gains of

77 times, with respect to the capacity of the reference system. The capacity gains dropped

to 35 times the capacity of the reference system, for the ECL algorithm, and 40 times, for

the CCL algorithm, when the distribution of users was non-uniform. Even though mobility

was not simulated, the simulation results presented in [81] show the potential capacity gain

achieved by combining adaptive antennas and DCA techniques.

6.5 Conclusion

We have presented in this chapter a discussion on resource allocation in cellular systems.

Channel and transmitter power allocation strategies were presented, along with an extensive

literature review. Also, the use of base station adaptive antennas is discussed in the context

of resource allocation.

Traditionally, we consider the frequency spectrum to be the resource which must be

optimally allocated in a cellular system, wih a goal of high capacity while maintaining an

adequate link quality. However, we have seen that transmitter power must be considered

as another resource to be appropriately allocated in order to increase system capacity. Al-

though we can also consider the serving base station (the base station that should be linked

to a mobile to serve a call) as a third resource to be allocated, we leave this issue for fu-

ture discussion. From the discussion presented here and the results from recent work, it is

clear that good results can be obtained when channel and power allocation techniques are
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combined.

The use of base station adaptive antennas is a very efficient way for controlling the co-

channel interference and, consequently, increasing the system capacity. Therefore, it is also

clear that the combination of adaptive antennas with power and channel allocation can result

in capacity and link quality improvement, as some recent works have already shown.

The discussion and the literature review presented in this chapter will substantiate the

proposal for the future work.



Chapter 7

Simulation of Cellular Networks

7.1 Introduction

In the remaining chapters of this dissertation, we analyze the performance of the combined

application of channel allocation algorithms, adaptive antennas and power control in macro-

cell cellular communication. The analysis presented in Chapters 8 through 10 relies on the

simulation approach, which includes user mobility and call processing. The simulation ap-

proach is required in this analysis since analytical models for the interrelationship among

the parameters involved in the resource allocation processes are very difficult to be found.

In the present chapter, we describe the main features of the simulation program devel-

oped for this analysis. Several different scenarios are studied in Chapters 8 through 10 and

particular features of cellular systems used in each scenario are described in the respective

chapter.

7.2 Cellular Network

7.2.1 Toroidal Universe of Cells

An important issue when simulating a cellular network is the size of the network in terms

of number of cells. The simulated network must be large enough to replicate the behavior

of a real cellular system regarding especially the co-cochannel interference. The average

level of interference must be uniform over all cells. When a finite bounded area is used to

simulate the coverage area of a cellular network, the average interference measured at center

128
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Figure 7.1: Coverage area simulated using the toroidal universe approach.

cells is higher than at cells close to the boundaries of the coverage area. Different levels

of interference may affect the simulation results. A technique for minimizing the effects of

different levels of average interference is to simulate a coverage area with a larger number

of cells, but collect the performance parameters only at central cells. This solution is not

efficient, since all the cells must be simulated anyway, but only central cells are effectively

used. Additionally, large number of cells means long simulation time, which, of course, is

not desired.

Another technique for simulating cellular networks is based on the toroidal universe of

cell [58]. In this technique, the borders of the simulated coverage area are connected to each

other in such way to form a toroidal, as shown in Figure 7.1. By using the toroidal universe

approach, we artificially replicate the original coverage area around itself, as shown in Figure

7.2. As a result, a mobile M located at any point of the original coverage area “sees” all

the cells (of the original coverage area) as if the mobile was located at the central area of

the original coverage area (see Figure 7.2). Another characteristic of the toroidal universe of

cells is that mobiles leaving the coverage area reappear in the other side of the coverage area,

as shown in Figure 7.3 . Therefore, calls are not lost because mobiles “left” the coverage

area.

Note that, even when the toroidal universe technique is employed, the number of simu-

lated cells must be sufficiently large in order to guarantee an appropriate representation of
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Figure 7.3: In the toroidal universe, a mobile leaving the coverage area reappears in the
other side.
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Table 7.1: Number of cells in the network for each cluster size N .

Cluster size Number of cells
N in the network

1 80
3 90
4 80
7 84

a real cellular network in terms of co-channel interference. In the analysis presented in this

dissertation, a network with around 80 hexagonal cells with radius R = 3000 m (see Figure

7.2) is simulated. The exact number of cells in the system depends on the cluster size N

employed, as shown Table 7.1. The different numbers of cells in the network is due to the

fact that, the original coverage area has to have an integer number of clusters. Base stations

are located at the center of each cell.

7.2.2 Mobility Models

The mobility model used in the simulations is based on the random walk approach. Mobiles

move at speed v in segments of straight lines in the direction δ with respect to a given

reference. The location of each mobile is updated every Tloc = 1 second. A change in the

direction of movement occurs every Tdir = 10 seconds. The new direction δt is a random

variable that follows a cosine-shaped distribution function with mean value equal to the

current direction of movement δt−1 (see Figure 7.4):

fδ(δt) =


 Kδ cos(δt − δt−1) for δt−1 − π ≤ δt ≤ δt−1 + π

0 otherwise,
(7.1)

where Kδ is used to obtain
∫−∞
−∞ fδ(δ)dδ = 1.

The speed v is kept constant over the entire duration of the call and is assigned to the

mobile at the beginning of the call. The value of v depends on the class of users that the

mobile belongs. Two classes of users are simulated: Pedestrians and vehicular:

• Pedestrian: the speed v is a random variable that follows a cosine-shaped probability

density function, as in Figure 7.4, over the interval from 0 to 5 km/h;
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Figure 7.4: Distribuiton function of the direction of movement δ.

Table 7.2: User profiles used in the simulation.

Profile Composition

Hybrid I 80% pedestrian + 20% vehicular
Hybrid II 20% pedestrian + 80% vehicular

• Vehicular: the speed v is a random variable that follows a cosine-shaped probability

density function over the interval from 0 to 60 km/h;

These two classes of users are combined to create two user profiles regarding user mo-

bility, as shown in Table 7.2. Hybrid I is a predominantly pedestrian, while Hybrid II is

predominantly vehicular.

7.3 Logical Layer

The simulated cellular network employs orthogonal multiple access technique, that is, differ-

ent traffic channels do not interfere with each other1. Therefore, it is supposed that a mobile

using channel CHi experiences interference (downlink) only from base stations using channel

CHi. Examples of orthogonal multiple access techniques are Time Division Multiple Access

(TDMA) and Frequency Division Multiple Access (FDMA) [1] In TDMA systems, a traffic

channel is defined as a time-slot, while in FDMA systems a traffic channel is a RF (radio

frequency) channel.

1In system employing orthogonal multiple access, different channels may interfere with each other due to
adjacent channel interference. However, careful RF filtering and channel assignment can minimize adjacent
channel interference [1]
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The entire coverage area is allocated NC pairs (downlink and uplink) of orthogonal traffic

channels. If fixed channel allocation (FCA) is employed, the entire set of NC pairs of channels

is allocated to each cluster and, therefore, each cell is allocatedNC/N pairs of channels, where

N is the cluster size.

If dynamic channel allocation (DCA) is used, all NC pairs of channels are available

for each cell. We suppose that in both FCA and DCA cases, base stations have enough

radio equipment to use any channel. Therefore, calls are not blocked due to lack of radio

equipment.

Each base station is allocated a different pair of control channels (uplink and downlink)

and mobiles are able to tune to any control channel. Control channels are used to initiate

a call. Also, mobiles periodically listen to control channels of all base stations in order to

check whether a intercell handoff (see Section 7.5) is required or not. Control channels are

always transmitted using omnidirectional antennas and at fixed transmitter power. During

a call, traffic channels may be used to transmit control information between base station

and mobile. For example, during intercell and intracell (channel reassignment) handoff

processing, control information is exchanged between base station and mobile through the

traffic channel currently allocated to the call.

7.4 Physical Layer

7.4.1 Propagation Channel Model

In the simulation analysis presented in this dissertation, we assume the macrocell propagation

environment, as discussed in Chapter 2. The propagation channel model consists of distance-

dependent path loss and log-normal shadowing with standard deviation σ dB. The local mean

power PR received at a given location from a single transmitter is [1]

PR =
PT GT GR L

dγ
, (7.2)

where PT is the transmitter power in watt, d is the transmitter-receiver separation distance

and L is a log-normal random variable that models the shadowing fading. The terms GT

and GR are the receiver and transmitter antenna gains in linear scale, in the direction of

propagation. Depending on the link analyzed (uplink or downlink), GT and GR can be either

base station antenna gain or mobile antenna gain. We assume that mobiles are equipped
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with omnidirectional antennas (antenna gain is equal to 0 dB). Base station antennas are

described subsequently. When PR is expressed in decibel units, we have:

PR,dB = PT,dB +GT,dB +GR,dB − 10γ log10 d+ χ (dB), (7.3)

where the variables are the same as in (7.2), but in decibel units. Note that, now the term

χ = 10 log10 L is a Gaussian random variable with zero mean and standard deviation σ dB.

The local mean power of the composition of signals received from several transmitters is

assumed to be the sum of the individual local mean powers. For example, the local mean

power of the total interference received at a given location is [1]

IT =
NI∑
i=1

PT,i GT,i GR,i Li
dγi

, (7.4)

where PT,i is the transmitter power of the i-th interfering transmitter, GT,i is the transmitter

antenna gains towards the receiver, GR,i is the receiver antenna gain in the direction of

propagation, and di is the transmitter-receiver separation distance for the i-th interfering

transmitter. The term Li models the log-normal shadowing fading with respect to the i-th

interfering transmitter.

The channel allocation and power control algorithms analyzed in this dissertation are

based on measurements of signal-to-interference-plus-noise ratio (SINR) Γ

Γ =
S

IT +N0
, (7.5)

where S is the local mean power of the desired received signal, IT is the local mean power

of the total interference, and N0 is the thermal noise power at the receiver. We assume

that the exact values of Γ are available at base stations and mobiles, being computed in the

simulation by using expressions (7.2) and (7.4). Methods for estimating Γ are discussed in

Appendix B. The thermal noise N0 is adjusted such that the signal-to-noise ratio at the cell

boundary is 40 dB, in order to guarantee that the performance and capacity of the system

are limited by interference, and not by thermal noise.

The transmitter power levels can be either fixed or controlled. Several power control

algorithms are discussed in chapter 5. The algorithm analyzed in the simulations is based on

the Autonomous SINR Balancing Power Control technique (see Section 5.4), that attempts

to balance the SINR of all links transmitting on the same channel. The power levels are

updated every TPC = 0.25 seconds using:

P
(k)
T,i = ΓT

P
(k−1)
T,i

Γ
(k−1)
i

, (7.6)
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where P
(k−1)
T,i and Γ

(k−1)
i are the transmitter power and SINR of the i-th link at instant

t = kTPC , and ΓT is the target SINR. Practical implementation issues of this power control

technique are discussed in Chapter 8.

Note that the propagation channel model adopted in the simulations includes only line-

of-sight propagation. Strictly speaking, since we will analyze the performance of adaptive

base station antennas, some sort of spatial information about the propagation channel would

be required. However, it is well known that, in macrocell propagation environment, the angle

spread of the angle of arrival of multipath components at the base station is small [6] (angle

spread = 2o ∼ 6o), which, combined with the relatively broad beamwidth of the adaptive

antenna to be used in the simulation analysis (45o and 60o), causes negligible effects on the

performance of the cellular system.

A spatial propagation channel model is, in fact, used in Chapter 10, when we analyze the

performance of SDMA systems. The spatial channel model used is described in that chapter.

Distance Correlated Shadowing

Shadowing fading is caused by obstruction of signal due to large objects, like buildings, hills,

etc, which implies that the shadowing fading term χ in (7.3) observed at locations close to

each other present some level of correlation. Therefore, the model used to generate χ must

include some form of spatial correlation. In this work, we use the method for generating

samples of correlated shadowing fading presented in [82], which will be described here with

the help of Figure 7.5. The coverage area is divided into square grids and the intersections of

the grid are denoted grid points. Each grid point is associated with a sample of uncorrelated

shadowing fading with respect to a reference point. For example, the samples of shadowing

fading at grid points I, II, III and IV are χI , χII , χIII and χIV , respectively. The grid points

in the simulation correspond to the locations, in the real system, where samples of shadowing

fading are uncorrelated with each other. The smallest distance between two grid points is

called decorrelation distance ddec. The shadowing fading at locations between grid points

are, therefore, correlated with the shadowing fading samples associated with the closest grid

points. For example, in the Figure 7.5, the shadowing fading at location P, denoted by χP ,

is correlated with the shadowing fading samples χI , χII , χIII and χIV . The value of χP can

be computed by interpolation. In this dissertation, linear interpolation is used, and χP is

given by:

χP = [χI (1−X) + χII X] (1− Y ) + [χIII (1−X) + χIV X] Y, (7.7)
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Figure 7.5: Model for computing samples of shadowing fading correlated with distance.

where X and Y are the distances in the x-axis and y-axis directions between location P

and grid point I. Distances X and Y are normalized by the decorrelation distance ddec. It is

shown in [83] that the samples of shadowing computed by interpolation have smaller standard

deviation than the standard deviation of the samples at the grid points. In order to correct

the value of the standard deviation, the samples of correlated shadowing are corrected using

the expression

χ′
P =

χP√
(1− 2X + 2X2)(1− 2Y + 2Y 2)

. (7.8)

Note that, for each reference point, a set of samples of uncorrelated shadowing fading

associated with grid points is required. Reference points are the base station locations, while

locations where we are interested in computing the correlated shadowing, like location P in

Figure 7.5, are the mobile station locations. Therefore, each base station has its own set

of samples of uncorrelated shadowing fading. For urban environments, ddec is in the order

of tens of meters [58]. In this dissertation, we use ddec = 50 m. Also, following common

practice, we assume that shadowing fading on the uplink and downlink are identical [58].

Figure 7.6 shows the autocorrelation function computed from samples generated by the

method just described with ddec = 50 m and shadowing standard deviation σ = 8 dB. And

for illustration purpose, Figure 7.7 shows an example of samples of shadowing with respect

to an arbitrary base station for ddec = 50 m and shadowing standard deviation σ = 8 dB.
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7.4.2 Base Stations Antennas

Base stations can be equipped with omnidirectional antennas, adaptive antennas or sector

antennas, depending on the case studied.

For the case of adaptive antennas, the radiation pattern of the antennas are simulated

using the stepped function, described as (see Figure 7.8):

G(φ)dB =


 0 for − BW/2 ≤ φ− φ0 ≤ BW/2

SLL otherwise,
(7.9)

where G(φ)dB is the antenna gain in decibel units in the direction φ, BW is the beamwidth

and SLL is the average side lobe level in dB. The angle φ0 is the direction towards the

desired mobile. Several values of BW and SLL are used in the simulation. It is supposed

that base stations are able to perfectly track the location of mobiles connected to them, such

that the main beam of the radiation pattern is always steered towards the desired mobile. It

is also supposed that base stations are able to form one beam for each desired mobile, with

no limitation on the number of beams. This model for radiation pattern has been used in

other similar studies [85, 86], with the advantage that the results of the system performance

analysis will not be dependent on a particular beamforming algorithm or array geometry.

For the case of sector antennas, we use the same model described in (7.9), for BW = 120o

(three sectors per cell) and SLL = −12 dB. This value of SLL is based on radiation patterns

of commercially available antennas.

Uplink and downlink radiation patterns are assumed to be identical in all cases studied.

Note that, since shadowing fading is also assumed to identical on both links, the uplink and

downlink path gains
Gup
T Gup

R Lup

dγ
and

Gdown
T Gdown

R Ldown

dγ
(7.10)

are consequently identical.
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7.5 Simulation of Channel Management

7.5.1 Events in the Simulation

The simulation process consists of three main events: Call Arrival, Call Departure, and

Sampling the Status of the System. These three events are controlled in the simulation

program using the Event Scheduling Technique [87]. An event is a change in the state of the

system. For example, when a call arrives at the system and a channel is assigned to that

call, this assignment will change the interference level experience by ongoing co-channel calls.

Events are previously scheduled in time, and the next event to occur is the most imminent

one. Call arrivals and call departures may occur at any time, while the system status is

sampled at periodic time intervals TS, as shown in Figure 7.9.

Call arrivals and call departures are random processes. The interval τ between two

consecutive call arrivals follows an exponential distribution:

pτ (τ) = λ e−λτ , (7.11)

where λ is the average number of call arrivals per unit time (calls per unit time). The

duration s of the calls is also random variable following exponential distribution:

ps(s) = µ e−µs, (7.12)

where 1/µ = H is the average call duration (units of time).
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The offered traffic A, in Erlangs, generated by a population of users is defined as

A = λ H. (7.13)

Assuming that (i) blocked calls are cleared, (ii) call arrivals are memoryless, (iii) the

number of users is infinite, the probability PB that a call is blocked is given by the Erlang

B formula as [1]

PB =
AC/C!
C∑
k=0

Ak/k!
(7.14)

In this dissertation, we assume that the average call duration H is 100 seconds, and we

adjust λ in order to obtain a desired offered traffic A per cell. For example, if there are 80

base stations in the system and a traffic of 40 Erlangs per cell is desired, the average number

of call arrivals at the entire system per unit time is

40 Erlangs per cell× 80 cells = λ×H ⇒ λ = 32 call arrivals per second. (7.15)

In order to study the steady state performance of the simulated system, we should start

collecting date after the number of active users exceeds 90% of the steady state value, which

is given by [84]

Nusers,ss = ηNcellsNch (7.16)

where η is the loading factor of the system, defined in Chapter 4, Ncells is the number of

cells in the system and Nch is the number of channels per cell. In our simulations, we start

collecting data after discarding the first 3 × Nusers,ss calls and collected the data in three

independent simulation runs, with Nusers,ss calls each.

Next, we describe the steps performed when each event occurs.

7.5.2 Call Arrival Processing

When a call arrives at the system, the mobile originating the call selects the serving base

station by measuring the power of the signals received from each base station on the control

channels, and selecting the base station with the strongest signal. Note that, the serving base

station is not always the closest base station, due to shadowing fading. Control channel is

used to determine the serving base station since it is not power controlled and is transmitted

using omnidirectional antennas.
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Next, the serving base station, together with the mobile station, selects a channel to be

allocated to the new call, using the appropriate channel allocation algorithm. The channel

allocation algorithms analyzed in this dissertation are described in Chapters 8 - 10, when

the respective simulation results are presented. All channel allocation algorithms require

the estimation of SINR on candidate channels. As already mentioned, in this dissertation

we assume that exact SINRs are available at base stations and mobiles. The computation

of SINR in the simulation is based on the propagation channel model described in Section

7.4.1 and antenna radiation patterns described in Section 7.4.2.

Common to all channel allocation algorithms analyzed in Chapters 8 - 10 is the fact that

the admission of calls to the system is controlled in order to maintain the link quality above

a minimum acceptable level. A call is admitted only if it is possible to find a channel that

meets the condition Γ > Γadm,new on both links. This call admission control may be explicit,

as in fixed channel allocation, or implicit, as in dynamic channel allocation. Call admission

control is discussed in Section 8.3.1.

If no channel at the serving base station satisfies the requirements imposed by the channel

allocation algorithm in use, the call is blocked. Note that, when channel allocation fails at

the serving base station, no attempt is made to set up a link through another base station

(for example, the one with the second strongest control channel signal).

After processing a call arrival, the next call arrival is scheduled, independently whether

the call arrival just processed was blocked or admitted. If the call is admitted to the system,

its departure time is scheduled

7.5.3 Call Departure Processing

At the end of a call, the assigned channel is released and returned to the pool of idle channels

of the serving base station.

7.5.4 Sampling the Status of the System

The purpose of sampling the system status is to check whether one of the following actions

is requested by any ongoing call:

• Intercell handoff (or simply ‘handoff’): if there is a base station with stronger control

channel signal received at the mobile than the signal from the serving base station,

an intercell handoff is required. In order to avoid the so called “ping-pong effect”
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(consecutive handoffs between two base stations), the signal from the candidate base

station must be HHO dB above the signal from the serving base station. Handoffs are

mainly caused by user mobility, but may be also caused by propagation effects, such as

shadowing fading. Handoff is necessary to allow users to move throughout the entire

coverage area, without having their calls dropped.

In the analysis presented in the subsequent chapters, the performance of this intercell

handoff algorithm (measured by, for example, the number of intercell handoffs per call)

is not taken into consideration when analyzing the performance of the cellular system.

• Channel reassignment (or intracell handoff): when the link quality, measured in terms

of signal to interference plus noise ratio on the assigned channel (both links) drops

below a threshold Γth,re, channel reassignment is requested. Note that, in this case,

the serving base station is still the best base station. Low link quality (or high co-

channel interference level) can be caused by:

– admission of a call on the same channel (new call, intercell or intracell handed off

calls);

– in systems employing base station adaptive antennas, user mobility may lead to

situations where the serving base station antenna is no longer able to reduce the

interference from a particular co-channel mobile on the reverse link. The same

situation may occur on the forward link.

– propagation effects: even though the serving base station is still the best base

station, its signal on either link may suffer from strong shadowing fading at a

particular location;

Channel reassignments are important to keep the link quality and, therefore, the service

quality above a given minimum acceptable level.

Call admission control is also used to readmit intercell and intracell handoff calls. A

call is readmitted only if it is possible to find a channel that meets the condition

Γ > Γadm,re on both links. However, readmission of an ongoing call is preferred to the

admission of a new call. Handoff call is an ongoing call in need of a new channel due to

the poor link quality on its assigned channel. If the readmission of a handoff call is not

completed, the call may be dropped. And, from users’ point of view, call dropping is

more annoying than new call blocking. Therefore, the (re)admission threshold Γadm,re
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is set smaller than the admission threshold Γadm,new for new calls. Also, by setting

Γadm,re < Γadm,new, the disturbance caused by admission of new calls on ongoing co-

channel calls is reduced.

Steps performed during sampling

At every sampling event t = k TS, where TS is the sampling interval, the following steps are

performed for each mobile:

1. The received power level of the control channel of all base stations are measured at

the mobile. If the signal from the current serving base station is not the strongest

one, an intercell handoff to the base station with the strongest signal (candidate BS)

is requested. As mentioned before, a handoff is request only if the signal from the

strongest base station is HHO dB above the signal from the serving BS.

If the candidate BS does not have any idle channel, the uplink and downlink SINR

on the currently allocated channels are measured. If SINR on either link is below the

threshold Γmin for more than Tdrop consecutive seconds (that is, it is not possible to

complete handofff during Tdrop consecutive seconds) the call is dropped.

2. If intercell handoff is not required, the uplink and downlink SINRs on the current

channels are measured by the serving base station and mobile, respectively.

If SINR on either link is below the threshold Γth,re, channel reassignment is requested.

Then, the serving base station, together with the mobile, tries to assign a new channel

to that call, using the same algorithm used to allocate channels to new calls. If no

channel is found, the current channel remains allocated to the call. However, if SINR

on either link is below the threshold SIRmin for more than Tdrop consecutive seconds,

the call is dropped.

In our implementation, the sampling interval is set to TS = 1 second and the threshold

values used in each algorithm are described in Chapters 8, 9 and 10, when the results are

presented. Table 7.3 lists the common simulation parameters used in those chapters.

7.6 Conclusion

In this chapter we presented details of the cellular network simulated in the subsequent chap-

ters. The models used in the physical layer, such as propagation channel model, shadowing
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Table 7.3: Simulation parameters.

Parameter Value

Number of base stations around 80
Cell radius R 3000 m
SNR at cell boundary 40 dB
Path loss exponent γ 3.5
Shadowing standard deviation σ 8 dB
Decorrelation Distance dde 50 m
Handoff hysteresis HHO 4 dB
Sampling interval TS 1 second
Power control update interval TPC 0.25 seconds
Time interval before call is
dropped due to low SINR Tdrop 5.0 seconds
Mean call holding time H 100 seconds

fading generator, antenna radiation pattern model, user mobility, were described. Also,

models used in the logical layer and details of the call processing were presented. The simu-

lation structure described in this chapter is used in all analyses presented in the subsequent

chapters, except for some particular details, which are presented in the respective chapter.



Chapter 8

Capacity Improvement Using

Adaptive Antennas and Reduced

Cluster Size

8.1 Introduction

In this chapter we analyze the performance of a cellular system using fixed channel allocation

(FCA) and base station adaptive antennas. In system using FCA, capacity improvement is

achieved by reducing cluster size, which increases the number of channels allocated to each

cell. However, when cluster size is reduced, link quality degrades due to higher co-channel

interference levels. In this chapter, we use adaptive antennas at the base stations to mitigate

the increased interference. The analysis is carried out using simulation of a cellular network,

as described in Chapter 7. Several aspects of the cellular system are analyzed, including

carried traffic, outage probability, number of channel reassignment requests. We also analyze

the capacity gain and performance improvement when uplink and downlink power control

is used. Simulation results show that the use of power control allows less complex adaptive

antennas to be used to achieve a given capacity improvement.

We start this chapter by discussing how the performance analysis will be carried out.

Next, we present the simulation results for fixed transmitter power and controlled transmitter

power.

145
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8.2 Reference System

In cellular systems employing fixed channel allocation, the carried traffic per cell is hard

limited by the number of channels allocated to each cell, which, in turn, depends on the

number of channels available for the entire system and the cluster size used in the system.

However, in some situations, co-channel interference may be too high such that capacity

becomes limited by interference, as discussed in Chapter 4. Therefore, when we reduce

the cluster size from, say, N = 7 to N = 4, aiming to increase system capacity, and use

some technique for controlling the increased co-channel interference, the expected (desired)

results are twofold: (1) We expect the performance, in terms of outage probability, dropping

probability, number of channel reassignment requests, of the system using reduced cluster size

to be similar to the performance of the system with larger cluster size (reference system); (2)

We also expect the system using reduced cluster size to use the available channels efficiently.

In other words, we expect system capacity to be limited by blocking probability. The analysis

presented in this chapter will focus on these two aspects above. Next, we define the reference

system of our analysis.

The reference system employs the commonly used cluster size N = 7, with sectorized cells

with three sectors of 120o. The cellular network consists of 84 cells (12 clusters) with cell

radius 3000 m. The number of duplex traffic channels available for the entire cellular network

is NC = 400 channels, such that each sector is allocated 19 channels. Fixed transmitter

power is assumed, with base stations (BSs) transmitting at PBS = 10W and mobiles (MSs)

transmitting at PMS = 0.6W . In this chapter, we use user profile Hybrid I (see Table 7.2),

which is predominantly pedestrian. The channel management used in the reference system

follows the same strategy used in similar studies described in [74, 91]. When a call arrives

at the system, the originating MS determines the serving BS by selecting the BS with the

strongest control channel signal. The serving BS then passes to the mobile a list of idle

channels with uplink signal-to-interference-plus-noise ratio (SINR) Γ larger than Γadm,new,

assuming that the mobile transmits at power level PMS. The mobile finally selects the first

channel found, among the channels on the list, that satisfies Γ > Γadm,new on the downlink.

Note that this channel management requires that MS and BS measure SINR on traffic

channels. Appendix B describes how SINR can be measured. The channel management

used in the reference systems also allows channel reassignment when SINR on either link

drops below threshold Γth,re, as discussed in Chapter 7. Table 8.1 shows the threshold values

used in the reference system, which are usually employed in similar studies [74, 91].
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Table 8.1: Thresholds used in the reference cellular system: Cluster size N = 7, 3 sectors
per cell.

Parameter Value

Admission SINR for new calls (Γadm,new) 19 dB
Admission SINR for reassigned calls (Γadm,re) 17 dB
Threshold SINR for channel reassignment (Γth,re) 15 dB
Threshold SINR for call dropping (Γdrop) 14 dB

Figure 8.1 (a) shows the blocking and dropping probability for the reference system.

Note that the blocking probability is slightly higher than the probability computed using

the Erlang B formula (for 19 channels per sector). The reason is that some calls are blocked

due to lack of channel with enough link quality.

Blocking and dropping probabilities are important performance parameters from users’

point of view. However, other performance parameters are also important from system

perspective. For example, the outage probability, defined as the probability that SINR is

below a given threshold Γ0, is a measure of the quality of the communication link. The

threshold Γ0 is the minimum acceptable level of SINR for reliable system operation. In the

analysis presented in this chapter, we assume Γ0 = 17 dB, which is the commonly accepted

value in systems based on IS-136 [51]. Since the uplink and downlink outage probabilities

may be different, we here refer to “outage probability” of the system as the largest one

between the uplink and downlink outage probabilities:

Outage Probability = max
(
Pr{Γup < Γ0}, P r{Γdown < Γ0}

)
. (8.1)

The outage probability depends on the traffic load, which, in turn, determines the block-

ing probability of the system. Let us assume a target blocking probability 2%, which cor-

responds to a traffic load of 35.5 Erlangs per cell in the reference system. The simulated

outage probability at this traffic load in the reference system is 2.4%.

Another important performance parameter from system perspective is the number of

channel reassignment requests per call. The number of reassignment requests depends on the

carried traffic, blocking and dropping probabilities, user mobility, among other parameters.

Figure 8.1 (b) shows the channel reassignment request rate (requests per call) and completed

reassignments per call for our reference system. Note that not all channel reassignment

requests result in completed channel reassignment, due to lack of idle channels or acceptable
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Figure 8.1: Reference system: (a) Blocking and dropping probabilities, and (b) channel
reassignment rate for FCA, cluster size N = 7, 3-sector cells and 19 channels per cell.

channels to be assigned. A channel reassignment that is not completed may result in call

dropping. From the users perspective, the percentage of completed channel reassignments

is more important than the number of requested channel reassignments. However, from the

system perspective, the number of channel reassignment requests per call is probably more

important, since it represents the load on control channels. Throughout this dissertation, we

will use the channel reassignment request rate, rather than completed channel reassignment

rate, as a performance parameter.

Table 8.2 summarizes the performance of the cellular system using cluster size N = 7

and 3-sector, at a blocking probability of 2%.

Next, we present a preliminary discussion on the performance of systems using reduced

cluster size.

8.3 Preliminary Discussion

Before analyzing the performance of systems using adaptive antennas, let us first analyze

some effects of reducing cluster size from N = 7 to, say, N = 4. Let us initially suppose that
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Table 8.2: Performance of a cellular system using cluster size N = 7 and 3-sector, at a
blocking probability of 2%

Blocking probability 2%

Carried traffic load 35.5 Erlangs per cell
Dropping probability 0.33 %
Outage probability at Γ0 = 17 dB 2.4%
Channel reassignment request per call 0.51
Channel reassignment rate per call 0.39

Table 8.3: Blocking probability composition for cluster size N = 4 with sectorized antennas
at 70 Erlangs per cell.

Cause Blocking

No idle channel 0.44 %
High interference 3.53 %
Overall 3.97 %

the base stations are still equipped with sectorized antennas (3 sectors), such that NC = 100

channels are allocated to each cell, or 33 per sector. Therefore, using the Erlang B formula,

we would expect a carried traffic of 73.9 Erlangs per cell at a blocking probability of 2%.

On the other hand, since co-channel cells are closer to each other, co-channel interference

for cluster size N = 4 is much higher than for cluster size N = 7. The higher interference

will prevent idle channels from having acceptable link quality. As a direct consequence,

blocking probability will be dominated by blocking due to low link quality of idle channels.

For example, Table 8.3 shows how the overall blocking probability is composed for cluster

size N = 4 with sectorized antennas. Therefore, it is clear that capacity in a cellular system

using cluster size N = 4 and sectorized cells is limited by interference. Another consequence

of high interference is the larger number of channel reassignment requests, which increases

the control traffic load of the system.

Base station adaptive antennas were shown in Chapter 4 to be an effective technique

for reducing co-channel interference. However, we also showed in Chapter 4 that a call

admission control technique must be combined with base station adaptive antennas in order

to guarantee the desired outage probability. In this dissertation, we use a simple admission

control also used in reference system. However, when adaptive antennas are used, admission
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Figure 8.2: Typical situation where CH1 cannot be allocated to mobile MS0, even though
channel CH1 is idle at BS0.

control and channel reassignment are even more important, as discussed subsequently.

8.3.1 The Importance of Call Admission Control and Channel Re-

assignment

When adaptive antennas are employed at base stations, it is well known that the average

co-channel interference experienced by a given mobile (or base station) reduces. Let us

consider a typical situation when a call arrives at a system using adaptive antennas. As

already noted, regardless of the type of base station antenna used, it not guaranteed that

all idle channels at the serving base station will experience low interference. Propagation

effects, variation of traffic, location of mobiles may lead to unfavorable situations regarding

interference on a specific channel. When adaptive antennas are used, these negative effects

may be emphasized, which increase the importance of call admission control and channel

reassignment.

For example, suppose that a given mobile MS0 originates a new call at base station

BS0, and that channel CH1 is idle at that base station. In principle, channel CH1 might be

allocated to the new call. Let us also suppose that channel CH1 is in use at the neighbor

base station BS1, and (unluckily) its main beam is steered towards mobile MS0, as depicted

in Figure 8.2. Therefore, it is very unlikely that channel CH1 will be allocated to mobile

MS0. The situation depicted in Figure 8.2 can happen during a call, due to user mobility. In

that case, a channel reassignment would be required and performed as described in Chapter

7.
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Table 8.4: Thresholds used in the cellular systems using adaptive antennas.

Parameter Value

Admission SINR for new calls (Γadm,new) 21 dB
Admission SINR for reassigned calls (Γadm,re) 19 dB
Threshold SINR for channel reassignment (Γth,re) 17 dB
Threshold SINR for call dropping (Γdrop) 14 dB
Threshold SINR for computing outage probability (Γ0) 17 dB

The thresholds Γadm,new, Γadm,re, Γth,re and Γdrop affect the performance of the system. In

this chapter, the thresholds used in the systems using adaptive antennas were selected such

that the performance, in terms of link quality, is similar to the performance of the reference

system. The reason to use this approach is that, the primarily result from the analysis

presented in this chapter is how efficiently different adaptive antennas, combined with other

techniques, mitigate co-channel interference such that interference does not limit capacity.

Therefore, comparison will be primarily made among the systems using adaptive antennas.

Table 8.4 shows the threshold values used in the systems using adaptive antennas.

We analyze in this chapter the performance of cellular systems employing cluster sizes

N = 3 and N = 4 and adaptive antennas with beamwidth BW = 45o and a range of

side lobe levels: SLL = −12 dB, −18 dB and −40 dB. The side lobe level is a measure of

the capability of the antenna to mitigate undesired signals impinging on the antenna. This

capability may be limited by the number of array elements or by the use of low performance

beamforming algorithms. Since, we are not interested in the performance of a cellular system

when a particular antenna array and beamforming technique are employed, we represent the

capability of adaptive antennas to mitigate co-channel interference by simulating different

side lobe levels.

Next we present the simulation results, considering first a system with fixed transmitter

power, and later the case with power control on both links.

8.4 Fixed Transmitter Power

Figures 8.3 and 8.4 show the blocking and dropping probabilities when adaptive antennas

are used with cluster sizes 3 and 4, and without power control. As expected, as the side

lobe level decreases, the blocking and dropping probabilities decrease. Low side lobe level
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Figure 8.3: Blocking and dropping probabilities for cluster size N = 3, BW = 45o and
several values of side lobe level.

reduces the overall co-channel interference in the system, such that more channesl from the

pool of idle channels will meet the admission threshold Γadm,new.

We also plotted in Figures 8.3 and 8.4 the blocking probabilities given by the Erlang B

formula for cluster size N = 3 (133 channels per cell) and cluster size N = 4 (100 channels

per cell), which correspond to the maximum carried traffic for each cluster size. Note that,

the blocking probability computed using the Erlang B formula considers only blocked calls

due to lack of channels (the effects of interference are not taken into account). We see that,

even with a side lobe level of −40 dB and BW = 45o, the maximum carried traffic for both

cluster sizes is not achieved. We discuss this result later in this section.

Assuming that the target blocking probability of the cellular system is 2%, we present in

Tables 8.5 and 8.6 the maximum carried traffic, dropping probability, channel reassignment

request rate and outage probability at Γ0 = 17 dB, for cluster sizes N = 3 and 4. These

tables give the performance of each configuration at their “operating point”. We can see

the effects of reducing the side lobe level: Interference reduction is transformed into higher

carried traffic as more channels will meet the condition Γ > Γadm,new upon call arrival. Note

that, as side lobe level decreases, the number of channel reassignment requests decreases,
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Figure 8.4: Blocking and dropping probabilities for cluster size N = 4, BW = 45o and
several values of side lobe level.

Table 8.5: System performance at blocking probability 2% for cluster size N = 3 and several
values of side lobe level (133 channels per cell).

SLL Carried Traffic Dropping Prob. Reassign. Requests Outage Prob.
(dB) Erlangs/cell (%) per call (%)

-12 79 0.18 2.0 2.0
-18 103 0.10 1.7 1.7
-40 112 0.07 1.4 1.3

N = 7, 3-sectors 35.5 0.33 0.51 2.4
Erl B, 133 ch 120.1 - - -
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Table 8.6: System performance at blocking probability 2% for cluster size N = 4 and several
values of side lobe level (100 channels per cell).

SLL Carried Traffic Dropping Prob. Reassign. Requests Outage Prob.
(dB) Erlangs/cell (%) per call (%)

-12 68 0.18 1.7 1.6
-18 82 0.12 1.3 1.2
-40 84 0.03 1.0 0.8

N = 7, 3-sectors 35.5 0.33 0.51 2.4
Erl B, 100 ch 87.9 - - -

even though traffic increases. One would expect that number to increase, since there are more

users sharing the same channel (higher traffic). However, the admission control mechanism

prevents channels with low link quality from being allocated to a call.

For comparison purpose, we replicate in Tables 8.5 and 8.6 the results for the reference

system. We see that the number of reassignment requests increases with adaptive antennas

and reduced cluster size, which can be explained by the combined effect between user mobility

and spatial filtering, as discussed in Section 8.3.1. The higher number of reassignments can

be considered the price to be paid for the higher carried traffic.

Let us now analyze how efficiently each configuration (cluster size/antenna parameters)

uses all the installed capacity, in terms of carried traffic. The maximum carried traffic is

given by the Erlang B formula. Figure 8.5 shows the percentage of the maximum carried

traffic per cell, at blocking probability 2%, that is carried per cell, for different cluster sizes

and side lobe levels. It is clear in Figure 8.5 that, even with a side lobe level of −40 dB,

capacity is still limited by co-channel interference. The reason is that a beamwidth of 45o is

broad enough to illuminate a large area of co-channel cells. Another reason is related to the

random characteristics of mobile locations and propagation effects.

8.5 Controlled Transmitter Power

As discussed in Chapter 5, power control can be used to increase capacity in cellular systems,

as it optimizes the usage of the resource “transmitter power”. By optimizing the transmitter

power, the overall co-channel interference measured on a particular channel is reduced. We

are here interested in analyzing the benefits of combining adaptive antennas with power
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Figure 8.5: Percentage of the maximum carried traffic, at blocking probability 2%, for dif-
ferent configurations, for BW = 45o.

control in systems using FCA. The additional co-channel interference reduction provided by

power control may allow the use of a less complex adaptive antenna (for example, broader

beamwidth or smaller side lobe level reduction) to achieve a given performance or system

capacity.

In this section, we will consider the SINR Balancing Power Control technique, that

attempts to balance the SINR of all links transmitting on the same channel, as described

in Chapter 5. The power update for the i-th link is given by:

P
(k)
T,i = ΓT

P
(k−1)
T,i

Γ
(k−1)
i

, (8.2)

where P
(k−1)
T,i and Γ

(k−1)
i are the transmitter power and SINR at instant k. The target

SINR, ΓT , must be higher than the minimum acceptable SINR, which in our simulation

is set to Γ0 = 17 dB. However, excessively high ΓT decreases carried traffic, as it happens

without power control. On the other hand, as discussed in [58], some protection margin

above Γ0 is desirable in mobility conditions. Due to variations of propagation path losses

caused by mobility, SINR fluctuates, Now, if we set ΓT = Γ0, link quality will degrade due

to user mobility. Therefore, in the analysis presented in this chapter, we set ΓT = 21 dB.
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Practical implementation of this technique involves some issues to be analyzed here.

First, the application of expression (8.2) implies that an accurate estimate of the current

SINR is available. In the analysis presented in this dissertation, as already pointed out, we

assume that the exact SINRs on both links are available.

A second issue that needs to be analyzed regards how the power level of the transmitter

is adjusted. Ideally, the power level adjustment is continuous, that is, P
(k)
T,i can assume any

value. However, in practical situations, the transmitter power levels are discretized and can

assume only certain values. On top of that, we may be limit to adjust the power levels in a

step-by-step fashion. For example, if the transmitter power level can only assume the values

0 dBm, −3 dBm, −6 dBm and −9 dBm, the power of the transmitter cannot jump from 0

dBm to −6 dBm. Another important issue regards the fact that, due to practical reasons,

the output power level of a transmitter is upper and lower limited. Before analyzing the

performance of a cellular system using power control and adaptive antennas, let us analyze

the effects of discretization described above on the performance of power control.

8.5.1 Effects of Discretization of Power Control

Consider the case where the base stations of the cellular system are equipped with adaptive

antennas with beamwidth BW = 45o and side lobe level SLL = −6 dB. We chose a larger

side lobe level than the one used in the previous analysis, so that the power control tech-

nique faces an unfavorable situation regarding interference. We are going to analyze three

implementation approaches for adjusting the power level in the SINR Balancing power

control:

• Continuous Power Control: transmitter power level PT,i can assume any value, but is

limited to Pmin ≤ PT,i ≤ Pmax,

• Discrete Power Control: the power levels are discretized and the difference between two

consecutive values is ∆P ; also, the maximum and minimum power levels are limited to

Pmax and Pmin, respectively,

• Step-by-step Power Control: the power levels are discretized and the difference be-

tween two consecutive values is ∆P , as in the previous case, but the transmitter power

increment or decrement at each iteration is limited to ∆P .

Table 8.7 presents the power control parameters used in the simulation. The approaches
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Table 8.7: Power Control Parameter used in the simulation for both links.

Downlink Uplink

Pmax 10 dBW −2.2 dBW
Pmin −20 dBW −32.2 dBW
∆P 3 dB 3 dB
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Figure 8.6: Performance of different implementation approaches of power control for cluster
size N = 4, BW = 45o and SLL = −6 dB: (a) blocking probability; (b) CDF of downlink
SINR at 80 Erlang per cell.

for adjusting the transmitter power described above and the parameters in Table 8.7 are

often found in practice [92, 93].

Figure 8.6 shows the blocking probability and the cumulative distribution function (CDF)

of the downlink SINR for all three approaches of power control. We see that discretization

of the transmitter power causes little degradation, if any, on the performance of the system.

Even though the variance of SINR is higher for the discrete and step-by-step approaches,

the outage probability at Γ0 = 17 dB of all three approaches are about the same. The

channel reassignment request rates for each approach are found to be about the same.
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Figure 8.7: Cumulative distribution function of the uplink SINR with and without power
control for N = 4, BW = 45o, SLL = −40 dB and carried traffic 80 Erlangs/cell.

We conclude that the effects of discretization for ∆P = 3 dB is very small, as also noted

in [90]. In the rest of this dissertation, we will use the continuous approach.

8.5.2 Perfomance of Cellular System using Power Control and

Adaptive Antennas

Before analyzing the effects of power control on the performance of cellular systems, let us

see how power control changes the distribution of SINR. Figure 8.7 shows for illustration

purpose the cumulative distribution function of the uplink SINR with and without power

control for the case N = 4, BW = 45o and SLL = −40 dB. We see that without power

control, most of the links (around 98%) have SINR higher than Γ0 = 17 dB. High SINR

means that excessive and unnecessary transmitter power, that only adds to the co-channel

interference in the system. On the other hand, when power control is used, most of the links

(around 80%) have SINR around ΓT = 21 dB, which reduces the interference level in the

system.

Figures 8.8 and 8.9 show the blocking and dropping probabilities for cluster sizes N = 3

and 4, with power control. The curves of blocking probability vs. carried traffic per cell are

closer to the Erlang B curve with power control, indicating that the resources of the cellular

system are more efficiently used. In other words, capacity is becoming limited by blocking

probability, instead of by interference. A comparison between the performance of systems
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Figure 8.8: Blocking and dropping probabilities for cluster size N = 3, BW = 45o, with
power control and several values of side lobe level.
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Figure 8.9: Blocking and dropping probabilities for cluster size N = 4, BW = 45o, with
power control and and several values of side lobe level.
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Table 8.8: System performance at blocking probability 2% for cluster size N = 3, with power
control and several values of side lobe level (133 channels per cell).

SLL Carried Traffic Dropping Prob. Reassign. Requests Outage Prob.
(dB) Erlangs/cell (%) per call (%)

-12 112 0.10 3.10 3.5
-18 118 0.01 1.02 2.2
-40 118 0.01 0.49 2.2

Erlang B 120.1 - - -

Table 8.9: System performance at blocking probability 2% for cluster size N = 4, with power
control and several values of side lobe level (100 channels per cell).

SLL Carried Traffic Dropping Prob. Reassign. Requests Outage Prob.
(dB) Erlangs/cell (%) per call (%)

-12 86 0.01 1.21 2.5
-18 86 0.01 0.40 1.5
-40 86 0.01 0.21 1.5

Erlang B 87.9 - - -

with and without power control is presented later in this chapter. First, let us determine the

operating point of each configuration when power control is used. Tables 8.8 and 8.9 show the

carried traffic per cell, dropping probability, number of reassignment requests per call and

outage probability at Γ0 = 17 dB, when each configuration using power control experiences

a blocking probability of 2%. A quick analysis of the carried traffic shown in these tables

confirms that the capacity of a cellular system using power control and base station adaptive

antennas approaches the maximum capacity carried by the set of channels allocated to each

cell (given by the Erlang B formula), or, in other words, co-channel interference is more

effectively controlled when power control is used. Figure 8.10 shows the percentage of the

maximum carried traffic per cell, at blocking 2%, achieved by using different side lobe levels

and cluster sizes with power control. As before, the maximum carried traffic is computed

using the Erlang B formula.

Next, we compare the performance with and without power control in order to evaluate

the importance of power control.
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Figure 8.10: Percentage of the maximum carried traffic, at blocking 2%, achieved for different
side lobe levels and cluster sizes, with power control and BW = 45o.

8.6 Comparison Between the Performances with and

without Power Control

The benefits of using power control can be observed by comparing Figures 8.5 and 8.10. For

example, for beamwidth 45o and side lobe level SLL = −12 dB, the use of power control

increases the carried traffic from 66% to 92% of the maximum capacity. The difference

between these two percentages decreases as side lobe level decreases, since the adaptive

antenna will play a more important role in the reduction of co-channel interference.

As briefly mentioned before, as co-channel interference is efficiently controlled by using

adaptive antennas and power control, system capacity becomes limited by blocking due to

lack of idle channels. To corroborate that statement, Table 8.10 shows the probabilities that

a call is blocked due to high interference and due to lack of idle channels, for the case of

cluster size N = 4, beamwidth BW = 45o and side lobe level SLL = −12 dB. The results for

controlled transmitter power and fixed transmitter power cases are shown. For the specific

configuration shown in Table 8.10, co-channel interference is the cause of almost all blocked

calls when power control is not used. On the other hand, if power control is used, this
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Table 8.10: Blocking probabilities due to lack of channel and high interference for cluster
size N = 4, BW = 45o and SLL = −12 dB. The respective percentages of overall blocking
probability are indicated in parentheses.

without power control with power control

Blocking due to lack of channels (%) 0.015 (0.01%) 2.74 (85.4%)
Blocking due to high interference (%) 11.53 (99.9%) 0.47 (14.6%)
Overall blocking probability (%) 11.55 (100%) 3.21 (100%)

Table 8.11: Capacity improvement, at blocking probability 2%, achieved by using power
control with respect to the case without power control.

Capacity improvement
SLL(dB) N = 3 N = 4

−12 39.2% 26.5%
−18 14.6% 4.9%
−40 5.3% 2.4%

percentage drops to 14.6%.

Let us now turn our attention to the practical benefits of using power control. Comparing

the carried traffic per cell at a blocking probability of 2% given in Tables 8.5, 8.6, 8.8 and

8.9, we can estimate the capacity improvement achieved by using power control and adaptive

antennas with respect to the case without power control. Table 8.11 summarizes the results.

We can see that the importance of power control decreases as cluster size increases or side

lobe level decreases. The reason is that, by increasing cluster size or decreasing side lobe level,

co-channel interference reduces, reducing the need for an additional co-channel interference

control technique, such as power control.

Another way to analyze the capacity improvement when power control is combined with

adaptive antennas is to estimate the reduction of the complexity of the antenna (in terms

of beamwidth and side lobe level) allowed by the use of power control. In our case, we will

define the complexity of the adaptive antennas in terms of the average side lobe level. Large

side lobe level reduction requires a large number of array elements and more sophisticate

beamforming algorithms. Using again the results from Tables 8.5, 8.6, 8.8 and 8.9, we

conclude that, for example, for cluster size N = 3, the carried traffic achieved with side lobe

level SLL = −40 dB without power control is also achieved with a side lobe level slightly
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Figure 8.11: Number of channel reassignment requests at blocking probability 2%, for dif-
ferent cluster sizes and side lobe levels.

higher than −18 dB. In other words, since the side lobe level depends on the number of

elements in the array antenna, fewer arrays elements are required in the antenna if power

control is used.

We have seen so far the benefits of using power control. However, it should be noted that

the use of power control may increase the number of channel reassignment requests per call,

as the price to be paid for the capacity improvement achieved. The effects of power control

on the number of channel reassignment requests depends on the importance of power control

in the process of reducing capacity. Figure 8.11 compares the numbers of reassignment

requests for different side lobe levels at blocking probability 2% (from Tables 8.8 and 8.9).

When power control effectively increases capacity, as for cluster size N = 3 and SLL = −12

dB, the use of power control also increases the number of channel reassignment. In this case,

even with power control, capacity is still limited by interference. Even though more channels

are available for assignment, a new call admitted to the system disturbs several ongoing calls

on the same channel. Therefore, capacity improvement is at the expense of more channel

reassignment requests.

On the other hand, in the cases where interference is already small without power con-

trol, and capacity is mainly limited by blocking (for example, for cluster size N = 4), the

use of power control does not significantly increase capacity, but does reduce even further

interference, reducing the number of channel reassignment.
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We have seen in this section how base station adaptive antennas and power control

can improve capacity in cellular systems using fixed channel allocation. The importance of

power control in this combined technique depends on how much interference is still limiting

capacity, after adaptive antennas is employed. The capacity of the systems analyzed in this

chapter is hard limited by the number of channels allocated to each cell. Therefore, after

certain point, reduction of co-channel interference does not improve capacity. In the next

chapter, we analyze the situation when all channels available for entire the system can be

used in any cell.

8.7 Conclusion

In this chapter, we analyzed the performance of a cellular network employing base station

adaptive antennas and reduced cluster size. The effects of adaptive antennas on the capacity

and system performance were analyzed by using several different configurations of adaptive

antennas, with different average side lobe levels. The maximum capacity available per cell

(carried traffic) in systems using fixed channel allocation is hard limited by the number of

channels allocated to each cell. However, when the cluster size is small and no appropriate

interference control technique is employed, carried traffic is mainly limited by interference,

and not by blocking probability, indicating that the cellular system is not efficient regarding

the use of the available resources.

Simulation results presented in this chapter showed that, adaptive antennas do improve

capacity by reducing interference. However, simulation results also showed that, for fixed

transmitter power, small side lobe levels (high complexity antennas) may be required in

order to achieve the maximum capacity available. For example, for beamwidth BW = 45o

and cluster size N = 3, a side lobe level of −40 dB is required to achieve 93% of the available

capacity (given by Erlang B formula).

When transmitter power control on both links is used, the additional interference reduc-

tion provided by power control may be enough to allow that all channels allocated to each

cell be efficiently used (i.e. maximum capacity is achieved), even with adaptive antennas

with large side lobe level (low complexity). Using the example of BW = 45o with cluster

size N = 3, simulation results showed that, with power control, a side lobe level of −12 dB is

enough to achieve 93% of the available capacity. However, the higher capacity achieved with

power control, in this case, is at the expense of a larger number of channel reassignment
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requests. If, on the other hand, a smaller side lobe level is used, power control not only

increases capacity, but also reduces the number of channel reassignment requests.



Chapter 9

Capacity Improvement by Combining

DCA and Adaptive Antennas

9.1 Introduction

Dynamic channel allocation algorithms have been vastly studied in cellular communication

systems, as shown in the literature review presented in Chapter 6. In the present chapter, we

analyze the benefits of combining adaptive antennas, dynamic channel allocation and power

control. When dynamic channel allocation is used, any channel available for the entire

system can be used by any base station. Clearly, some technique must be employed for

selecting the appropriate channel to be allocated to a given call. We will focus our attention

on dynamic channel allocation algorithms based on interference, namely Least Interference

Algorithm (LIA) and Autonomous Reuse Partitioning (ARP). The performance of channel

allocation algorithms based on interference depends on the level of interference experienced

by the channels. By combining channel allocation with interference reduction techniques,

such as adaptive antennas and power control, one expects to improve the performance of

such algorithms. Dynamic channel allocation algorithms transform the reduced interference

into higher carried traffic. This chapter aims to analyze how efficiently LIA and ARP convert

the reduction of interference, provided by adaptive antennas and power control, into higher

carried traffic and higher system performance.

We start this chapter by describing LIA and ARP algorithms and specific details of the

simulated system used in this chapter. Subsequently, we present the simulation results for

fixed and controlled transmitter power.

166
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9.2 Dynamic Channel Allocation Algorithms

9.2.1 Least Interference Algorithm

The Least Interference Algorithm (LIA) assigns the least interfered channel, among the idle

channels at the base station [88]. When a mobile originates a new call and requests a channel,

the serving base station (the one with the strongest control channel signal received at the

originating mobile) compiles a list with idle channels that meets the condition Γup > Γadm,new,

where Γup is the uplink SINR. The list is then sent to the mobile, that selects the channel

with the highest downlink SINR (Γdown), among those channels that meet the condition

Γdown > Γadm,new. If no channel is found, the call is blocked. The same approach is used

for intercell handoff calls and channel reassignment, but using threshold Γadm,re, instead of

Γadm,new.

LIA maximizes the distance between base stations reusing the same channel, reducing the

spectral efficiency of the system, and, consequently, the maximum carried traffic. However,

since channels with low interference are allocated to incoming calls, ongoing co-channel

calls suffer from small disturbance caused by incoming calls, resulting in a small channel

reassignment request rate and outage probability.

9.2.2 Autonomous Reuse Partitioning Algorithm

Autonomous Reuse Partitioning (ARP), is based on sensing (measuring SINR) channels

following an order that is common throughout all cells [89]. The first channel that presents

interference levels below a given threshold on both links is assigned. When a call arrives

at the system, the serving base station compiles a list with idle channels that satisfy the

condition Γup > Γadm,new and sends that list to the mobile. The mobile then measures the

downlink SINR on the channels on the list, following a common order used by all mobiles,

and selects the first channel found that meets the condition Γdown > Γadm,new. The same

approach is used for handoff calls and channel reassignment, but using threshold Γadm,re,

instead of Γadm,new. A consequence of this allocation strategy is that channels sensed first

are reused more often in the system and, therefore, experience larger interference. Since

the level of interference on those channels is high, only mobiles with strong desired signals

can use those channels. Mobiles with strong signals usually are those close to their serving

base stations. On the other hand, channels that are sensed later are used fewer times in the
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Table 9.1: Thresholds used in the simulated system.

Parameter Value

Admission SINR for new calls (Γadm,new) 21 dB
Admission SINR for reassigned calls (Γadm,re) 19 dB
Threshold SINR for channel reassignment (Γre) 17 dB
Threshold SINR for call dropping (Γdrop) 14 dB

system and experience smaller interference, being allocated to mobiles with weak signals,

which, usually, are located far from their serving base stations.

Therefore, ARP algorithm creates concentric rings (partitions) whiten the cell, such that

channels allocated to mobiles located in the inner rings have smaller reuse distance than

channels allocated to mobiles located in the outer rings. Therefore the name reuse partition-

ing, which is is achieved autonomously.

Channel Allocation and Admission Control

The admission control discussed in Chapter 8 is also implemented in this chapter. As already

discussed, the threshold values Γadm,new and Γadm,re are adjusted such that the readmission

of handed off calls and completion of channel reassignments are preferred to the admission

of new calls. The thresholds used in this chapters are presented in Table 9.1 and follow the

values used in chapter 8 for adaptive antennas. chapter. The effects of the values of the

thresholds on the system performance are discussed later in this chapter.

9.3 Simulated System

The cellular network simulated follows the specifications described in Chapter 7. The number

of cells in the systems is 80, and NC = 400 pairs of channels are available for the entire

systems. It is supposed that all base stations have enough radio equipment to use any

channel. The adaptive antennas have beamwidth BW = 45o and a range of side lobe level:

SLL = −12 dB, −18 dB and −40 dB. As before, we assume that base stations are able to

perfectly track their mobiles, such that the main beam of the adaptive antennas are steered

towards the desired mobiles. In this chapter, we use user profile Hybrid I (see Table 7.2),

which is predominantly pedestrian.
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Figure 9.1: Blocking and dropping probabilities for algorithm LIA, BW = 45o, without
power control, and for several values of side lobe level.

In the subsequent sections, we analyze the performance of the simulated cellular network

when dynamic channel allocation is combined with base station adaptive antennas with fixed

and controlled transmitter power.

9.4 Fixed Transmitter Power

Consider a cellular system with fixed transmitter power and employing dynamic channel

allocation (LIA or ARP). We are interested in the capacity improvement achieved by com-

bining the algorithms LIA and ARP with adaptive antennas, with respect to the capacity

achieved with omnidirectional antennas.

Figures 9.1 and 9.2 show the blocking and dropping probabilities of the cellular system

using dynamic channel allocation algorithms LIA or ARP. The results for both omnidirec-

tional and adaptive antennas are shown in the same figures for comparison. As expected,

the use of adaptive antennas results in carried traffic increase, due to interference reduction.

Let us assume again that the target blocking probability is 2%, and determine the carried
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Figure 9.2: Blocking probability for algorithm ARP, BW = 45o, without power control, and
for several values of side lobe level.

traffic and other performance parameters at the target blocking. Tables 9.2 and 9.3 present

the carried traffic per cell, along with dropping probability, number of channel reassignment

requests per call and outage probability at Γ0 = 17 dB for both allocation algorithms and

different antenna side lobe levels.

Capacity improvement with respect to the omnidirectional antenna case

We compute the capacity gain in terms of carried traffic at blocking 2%, for each antenna

configuration, with respect to the omnidirectional case, using

Capacity gain (%) = 100×
(
AAA − Aomni

Aomni

)
, (9.1)

where Aomni and AAA are the carried traffic loads at blocking 2% with omnidirectional and

adaptive antennas, respectively. The results for several side lobe level values, for both LIA

and ARP are presented in Figure 9.3. We see that, for moderate co-channel interference

reduction, that is, for SLL = −12 dB and −18 dB, both LIA and ARP transform the

interference reduction into higher carried traffic with about the same efficiency. However,
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Table 9.2: System performance at blocking probability 2% for algorithm LIA, without power
control and several values of side lobe level.

SLL Carried Traffic Dropping Prob. Reassign. Requests Outage Prob.
(dB) Erlangs/cell (%) per call (%)

Omni 23.7 0.24 1.06 1.0
-12 60.3 0.23 1.02 1.0
-18 92.9 0.24 1.09 1.1
-40 189.0 0.26 1.35 1.2

Erlang B 385.9 - - -

Table 9.3: System performance at blocking probability 2% for algorithm ARP, without power
control and several values of side lobe level.

SLL Carried Traffic Dropping Prob. Reassign. Requests Outage Prob.
(dB) Erlangs/cell (%) per call (%)

Omni 42.3 0.09 3.11 2.78
-12 114.8 0.16 2.98 2.7
-18 174.2 0.16 3.01 2.6
-40 266.7 0.18 2.70 2.1

Erlang B 385.9 - - -
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Figure 9.3: Capacity gain in terms of carried traffic at PB = 2% for LIA and ARP and
several side lobe level values. The gain is computed with respect to the omnidirectional
antenna case.

for large reduction in the interference (SLL = −40 dB), LIA uses the interference reduction

more efficiently than ARP.

The way both algorithms transform interference reduction into more carried traffic can

be explained as follows. As we have seen, LIA selects the channel experiencing the lowest

interference level. This policy tends to increase the reuse distance. With omnidirectional

antennas, the isolation between co-channel base stations is provided by path loss attenuation

only. Therefore, the minimum reuse distance, and, consequently, the capacity, is determined

by the propagation environment1 (path loss attenuation). When an additional isolation

between co-channel cells is provided by using adaptive antennas, channels can be reused

more often throughout the system (smaller reuse distance), increasing the carried traffic per

cell.

ARP algorithm, on the other hand, is based on creating zones within the cell, where

channels used in different zones have different reuse distances. In order to understand how the

rings are created, consider a hypothetical “ideal” reuse partitioning, where all users using the

same channel have the same path loss to their serving base stations [58]. Therefore, mobiles

1The admission thresholds also affect system capacity, as discussed in Section 9.5.
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located at distance, say, d0 from their serving base stations are ideally assigned the same

channel (ignoring shadowing and Rayleigh fading). The smaller d0, the smaller the reuse

distance, since the signals from the mobiles are stronger. This arrangement autonomously

creates rings within each cell, and each ring has its own reuse distance. Inner rings have

smaller reuse distances than outer rings . In systems using omnidirectional antennas, the

reuse distances depend on the propagation environment, since propagation losses are the

only means to isolate co-channel cells. When additional interference isolation is provided

by using adaptive antennas, the reuse distances of all rings shorten, increasing capacity.

However, after a given value of interference reduction (or side lobe level), the reuse distances

cannot be reduced further, limiting the capacity improvement.

It should be noted that, without power control, ARP still provides higher capacity than

LIA for all values of SLL tested, as shown in Tables 9.2 and 9.3. The reason is that the

structured reuse pattern created by ARP uses the channels more efficiently throughout the

system. Therefore, systems using LIA have “more room” for improvement (in terms of

carried traffic), than systems using ARP.

From Tables 9.2 and 9.3, we see that for both algorithms the use of adaptive anten-

nas does not change significantly the number of channel reassignment requests per call and

outage probability. It should be emphasized that Tables 9.2 and 9.3 give the performance pa-

rameters at the “operating points” of each configuration, that is, when blocking probability

is 2%. Therefore, the values of dropping probability, channel reassignment rate and outage

probability for each configuration (algorithm and side lobe level) are measured at different

traffic loads. The reason for comparing different configurations at their corresponding oper-

ating points, as already discussed, is that those are the points at which each configuration is

supposed to operate. For example, a cellular system using omnidirectional antennas and LIA

algorithm can carry a traffic of 23.7 Erlangs per cell at a blocking probability of 2%. When

adaptive antennas with BW = 45o and SLL = −12 dB are used at the base stations, the

system can carry 60.3 Erlangs per cell at blocking 2%, and we expect to operate the system

at this level of traffic load, and not at 23.7 Erlangs per cell, in order to increase profits.

Next, we analyze the effects of power control on the performance of both allocation

algorithms combined with adaptive antennas.
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Figure 9.4: Blocking probability for algorithm LIA, BW = 45o, with power control and
several values of side lobe level.

9.5 Controlled Transmitter Power

We use the SINR balancing power control technique, describe in Section 5.4, with continuous

power adjustment and parameters described in Table 8.7. The target SINR is set to ΓT = 21

dB. Figures 9.4 and 9.5 show the blocking and dropping probabilities of LIA and ARP

combined with adaptive antennas and power control. The power control technique employed

is SINR balancing (see Section 5.4) with continuous power level adjustment and ΓT = 21

dB. The benefits of using power control, regarding the maximum carried traffic, can be

observed in Figures Figures 9.4 and 9.5, by noting that the curves of blocking probability

moved towards the Erlang B curve. Tables 9.4 and 9.5 summarize the performance of each

antenna configuration and channel allocation algorithm at blocking probability 2%.

Before analyzing the capacity improvement achieved by using power control, let us an-

alyze another important effect of the use of power control. Comparing the performance of

systems using fixed and controlled transmitter power, we see that power control increases

the number of channel reassignment requests per call, not only in systems using adaptive

antennas, but also in systems using omnidirectional antennas. The increase in the number
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Figure 9.5: Blocking probability for algorithm ARP, BW = 45o, with power control and
several values of side lobe level.

Table 9.4: System performance at blocking probability 2% for algorithm LIA, with power
control and several values of side lobe level.

SLL Carried Traffic Dropping Prob. Reassign. Requests Outage Prob.
(dB) Erlangs/cell (%) per call (%)

Omni 62.8 0.90 17.2 20.3
-12 151.8 0.38 4.6 5.1
-18 226.8 0.21 2.8 3.1
-40 363.8 0.07 2.3 4.2

Erlang B 385.9 - - -
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Table 9.5: System performance at blocking probability 2% for algorithm ARP, with power
control and several values of side lobe level.

SLL Carried Traffic Dropping Prob. Reassign. Requests Outage Prob.
(dB) Erlangs/cell (%) per call (%)

Omni 65.6 0.63 10.9 15.3
-12 162.6 0.18 5.2 5.2
-18 244.0 0.08 4.0 3.9
-40 354.5 0.06 4.7 5.4

Erlang B 385.9 - - -

of channel reassignments is due to the fact that, when power control is combined with dy-

namic channel allocation algorithms, calls are more densely packed (small reuse distances

are possible due to reduced interference level) [74]. As a consequence, when a call arrives

at the system and is allocated a channel, ongoing calls using that channel will suffer from

stronger disturbance caused by the admission of that new call. And that disturbance may

lead to channel reassignment requests. The disturbance depends on how densely packed the

calls using the channel are.

It should be emphasized that the admission SINR thresholds (Γadm,new and Γadm,re) also

play an important role in the context of combining power control with dynamic channel

allocation. High levels of admission SINR prevent some channels from being allocated,

due to their poor link quality. However, when high levels of admission thresholds are used,

the admission of a new call causes little disturbance on ongoing calls, reducing the number

of channel reassignment requests. As a negative side effect of high admission SINR, few

channels will meet the condition Γ > Γadm, and carried traffic will decrease.

Therefore, the threshold values Γadm,re and Γadm,new (and consequently the target ΓT )

are critical, since they control the trade off between capacity and number of channel reas-

signment requests. The values used in this chapter (see Table 9.1) are appropriated when

adaptive antennas are used, since the increase in the number of channel reassignment re-

quests caused by power control is not so drastic, as shown in Table 9.6. However, for the

case of omnidirectional antennas, these values of threshold cause a severe increase in the

number of channel reassignment requests when power control is used. To illustrate how the

thresholds affect the performance of the system, additional simulation results show that for

Γadm,new = 23 dB, Γadm,re = 21 dB and ΓT = 23 dB, the number of channel reassignment
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Table 9.6: Number of channel reassignment requests per call at blocking probability 2%.

Without Power control With Power control
LIA ARP LIA ARP

OMNI 1.06 3.10 17.2 10.9
SLL = −12 dB 1.02 2.98 4.60 5.17
SLL = −18 dB 1.09 3.01 2.80 4.04
SLL = −40 dB 1.35 3.11 2.27 4.70

requests drops to 4.4 per call for ARP with omnidirectional antennas and power control.

However, as a negative effect, capacity also drops, from 65.6 to 53 Erlangs per cell. The

following comparison analysis between systems using omnidirectional antennas and adaptive

antennas is carried out under the assumption that all systems use the same threshold val-

ues. In doing so, we can evaluate the effects of the use of adaptive antennas not only on

carried traffic, but also on other performance parameters, such as the number of channel

reassignment requests.

Capacity improvement with respect to the omnidirectional antenna case

The capacity gains achieved by each configuration of adaptive antennas, with respect to the

omnidirectional case, at blocking probability 2%, are shown in Figure 9.6. A comparison

between Figure 9.6 and Figure 9.3 reveals that the capacity gains achieved by using a par-

ticular adaptive antenna configuration, with or without power control, with respect to the

omnidirectional case, are about the same. The reason is that systems using omnidirectional

antennas also benefits from the use of power control.

Capacity improvement with respect to the fixed transmitter power case

A quick comparison of the values of carried traffic for fixed and controlled transmitter power

shows the importance of power control in high capacity systems. As already point out, by

balancing the SINR of all links sharing the same channel, we make room for other links

to use that channel. However, the capacity gain achieved by using power control depends

on the technique used for allocating channels. The capacity gains achieved by using power
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Figure 9.6: Capacity gain in terms of carried traffic at PB = 2% for LIA and ARP and
several side lobe level values. The gain is computed with respect to the omnidirectional
antenna case.

control with different antenna configurations and allocation techniques are computed as:

Capacity gain due to power control (%) = 100×
(
APC −Afixed power

Afixed power

)
, (9.2)

where Afixed power and APC are the traffic loads carried at blocking 2% for fixed and con-

trolled transmitter power, respectively. Using expression (9.2), the resulting capacity gains

for each antenna configuration and channel allocation algorithm are shown in Figure 9.7.

The results show that LIA uses more efficiently the interference reduction achieved by using

power control. The reason is that, with power control, the transmitter power levels are ad-

justed according to the interference level on the channel, altering (decreasing) the correlation

between received power and transmitter-to-receiver (T-R) separation distance. The corre-

lation between received power and T-R separation distance is a key factor in the operation

of ARP, since the algorithm creates concentric rings within the cells. When this correlation

is weaken due to the use of power control, the process of creating rings with distinct reuse

distances degenerates, reducing the advantage of using power control. Note that, with power

control, the carried traffic loads for both allocation algorithms are close to each other, for

all side lobe levels considered.
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Figure 9.7: Capacity gain in terms of carried traffic at PB = 2% achieved by using power
control, with respect to fixed power case.

An interesting result from Figure 9.7 is that capacity gain achieved by using power

control decreases as side lobe level descreases. The reason is that, with low side lobe level,

interference is already low, and the use of power control does not add much to the process

of reducing interference. And, as results have shown, capacity improvement is proportional

to the reduction of interference.

Another important result is that, with large side lobe level reduction, both algorithms

combined with power control are able to use almost all channels within every cell.

9.6 Conclusion

We analyzed in this chapter the performance of cellular systems using adaptive antennas, dy-

namic channel allocation and power control. The role of adaptive antennas and power control

is to reduce co-channel interference, allowing channels to be reused more often throughout

the entire system. Dynamic channel allocation algorithms attempt to organize the channel

reuse.
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Two allocation algorithms, LIA and ARP, with different allocation strategy were ana-

lyzed. While ARP attempts to create a structured channel reuse pattern, LIA allocates

channels trying to minimize co-channel interference.

For fixed transmitter power, LIA and ARP transform the reduced co-channel interference

provided by the use of adaptive antennas into higher carried traffic with similar efficiency.

However, ARP provides a higher carried traffic per cell than LIA, due to the structured reuse

pattern created by ARP. Simulation results also showed that, even with small side lobe level,

neither algorithm was able to use all channels within every cell.

For the case of controlled transmitter power combined with adaptive antennas and dy-

namic channel allocation, results showed that LIA uses more efficiently the additional inter-

ference reduction achieved by using power control. Due to the fact that transmitter power

is now controlled, ARP is not able to create an efficient channel reuse pattern. With small

side lobe level, both algorithms were able to use almost all channels within every cell.



Chapter 10

Spatial Division Multiple Access

10.1 Introduction

As discussed in Chapter 2, the spatial filtering capability of adaptive antennas can be used to

allow several users to share the same channel within the same cell, using the so called Spatial

Division Multiple Access Technique (SDMA). It is well known that the channel allocation

strategy used in SDMA systems plays an important role in the performance of such systems.

In this chapter, we analyze the performance of SDMA cellular systems using several different

channel allocation algorithms in different scenarios regarding user mobility. Also, just as done

in the previous chapters for non-SDMA systems (where channel reuse within the cells is not

allowed), we also analyze the performance of the cellular system with fixed and controlled

transmitter power.

10.2 Allocation Algorithms

The use of an appropriate channel allocation strategy is of fundamental importance in SDMA

systems, in order to efficiently exploit the potential capacity improvement provided by spatial

filtering. Several studies have been carried out to analyze the potential capacity improvement

achieved by using SDMA systems [94, 95, 96, 97, 98]. In this chapter, we present the analysis

of some representative allocation algorithms for SDMA systems. Some of the algorithms

analyzed are specially designed for SDMA systems, while others do not explicitly exploit the

SDMA mechanism.

Four channel allocation algorithms are analyzed: Concentrated Channel Load Algorithm

181
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(CCL), Equal Channel Load Algorithm (ECL), Autonomous Reuse Partitioning Algorithm

(ARP), and Least Interference Algorithm (LIA). CCL and ECL represent two basic ap-

proaches for assigning channels in SDMA systems, since they explicitly exploit the fact that

channels can be reused within cells. On the other hand, ARP and LIA do not make any

explicit attempt to reuse channels within cells. These four algorithms are described in the

following.

10.2.1 Concentrated Channel Load Algorithm (CCL)

CCL attempts to maximize the usage of channels within cells, while maintaining the quality

of service (in terms of SINR) above a given minimum level [95]. When a call arrives at

the system (new call, intracell or intercell handed off calls), the algorithm allocates the

channel with the largest number of in-cell co-channel users at that moment at the serving

base station. The allocated channel, however, needs to meet the condition Γ > Γadm,new on

both uplink and downlink. This approach is sometimes called first duplicate [94]. Since

the algorithm tries to reuse channels within cells as much as possible, one may expect high

level of co-channel interference, and, consequently, a large number of channel reassignment

requests.

10.2.2 Equal Channel Load Algorithm (ECL)

With ECL, the serving base station allocates the channel least used within the cell, among

all channels satisfying the condition Γ > Γadm,new on both links [95]. This allocation strat-

egy attempts to uniformly distribute the traffic in the cell among all channels. Since this

algorithm tries to use all idle channels before reusing a channel within the cell, we expect a

low level of interference. ECL algorithm is sometimes called Duplicate at Last [94].

10.2.3 Autonomous Partitioning Reuse Algorithm (ARP)

ARP algorithm has already been analyzed in Chapter 9, but for non-SDMA systems. For

SDMA systems, ARP still senses the channels in a common sequence to all cells, and allocates

the first channel that satisfies the condition Γ > Γadm on both links. Differently from the

ARP algorithm used in Chapter 9 for non-SDMA systems, in SDMA systems all channels

are sensed, including busy channels. As in non-SDMA systems, ARP in SDMA systems
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tries to create a structured reuse pattern, by creating concentric rings within the cells, with

different reuse distances.

10.2.4 Least Interfered Algorithm (LIA)

LIA selects the channel with the least interference among the channels that meet the condi-

tion Γ > Γadm,new on both links. LIA was also analyzed in non-SDMA systems in Chapter

9. In its SDMA version, all channels are sensed, including busy channels. LIA tends to

select idle channels before selecting a channel already in use in the cell. Since LIA attempts

to minimize the interference on all channels, the resultant number of channel assignment

requests is expected to be low.

As in the previous chapters, the same allocation strategy is used for new calls, handoff

calls or channel reassignment, except that, for handoff calls and channel reassignment, the

admission threshold is Γadm,re.

10.2.5 General Comments and Implementation Issues

Simulation results, to be presented in this chapter, show that not all idle channels at a given

cell have SINR higher than the SINR of channels already being used within that cell. The

location of mobile, propagation conditions and the effects of spatial filtering may lead to the

situation where a channel already in use within the cell is preferred to an idle channel. This

situation occurs with all four algorithms studied in this chapter.

All algorithms in this chapter require the estimation of SINR on both links. As in the

previous chapters, we will assume that the exact values of SINR on both links are available.

We summarize in the following the basic operations to allocate a channel, which are common

to all algorithms:

1. When a call arrives at the system (new, intracell or intercell handed off calls), the

serving base station compiles a list of all channels (busy and idle) that satisfy the

condition Γup > Γadm,new (or Γadm,re), where Γup is the uplink SINR; the list is sent

to the mobile;

2. The mobile then measures the downlink Γdown on the channels on the list and, using

the particular approach of each algorithm, selects a channel that meets the condition

Γdown > Γadm,new (or Γadm,re).
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Table 10.1: User profiles used in the simulation.

Profile Composition

Hybrid I 80% pedestrian + 20% vehicular
Hybrid II 20% pedestrian + 80% vehicular

Table 10.2: Thresholds used in the simulation of SDMA system.

Parameter Value

Admission SINR for new calls (Γadm,new) 21 dB
Admission SINR for reassigned calls (Γadm,re) 19 dB
Threshold SINR for channel reassignment (Γth,re) 14 dB
Threshold SINR for call dropping (Γdrop) 12 dB

3. If no channel meets both conditions Γdown > Γadm,new and Γup > Γadm,new (or Γadm,re),

the call is blocked, for the case of a new call. For the case of handoff calls or channel

reassignment, the next steps follow the procedure described in Chapter 7.

10.3 Simulated System

The simulated system follows the specifications described in Chapter 7, except for some

differences discussed in this section.

• All base stations are equipped with adaptive antennas with beamwidth 45o and side

lobe level −30 dB. The base stations are supposed to perfectly track their mobiles.

• The performance of SDMA systems are known to be very sensitive to user mobility.

Therefore, the allocation algorithms will be analyzed using two different user profiles

regarding mobility, as described in Table 10.1. Hybrid I is predominantly pedestrian,

while Hybrid II is predominantly vehicular.

• The number of traffic channels available for the entire system is only 63 in order to

reduce the simulation time.

• Table 10.2 shows the threshold values used in the simulated system. Note that the

thresholds for reassignment trigger Γth,re and call dropping Γdrop are lower than the
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Figure 10.1: Illustration of the Geometrically Based Single Bounce Circular Model.

corresponding values used in the simulation of non-SDMA systems in Chapters 9 and

8. The use of lower values actually increases the level of interference in the system

(mobiles with low quality calls are allowed to stay connected to the system longer).

The higher interference level, in turn, creates more adverse conditions of operation for

the algorithms, emphasizing the performance differences between the algorithms.

• The propagation channel model used includes distance-dependent path loss, log-normal

shadowing, as in Chapter 9. Additionally, transmission through multipath components

is modeled, in order to include some sort of spatial information in the propagation

model. The Macrocell Geometrically Based Single Bounce Circular Model, discussed

in Chapter 2 is used to generate the multipath components and their angles of arrival,

as shown in Figure 10.1 The radius of scatterers Rc usually ranges from 30 to 200 m

[6], and in this simulation is set to Rc = 100 m. Two multipath components plus

the line-of-sight component are simulated. All components have the same path loss

and shadowing fading. It is assumed that multipath components arrive at the receiver

antenna with no time delay with respect to the line-of-sight component. In real systems,

multipath components would arrive with different time delays, leading to small scale

fading. In this simulation study, we do not intend to analyze the effects of small scale

fading on the performance of the allocation algorithms. The spatial channel model

is used here only to take into consideration the dispersion of angle of arrival of the

multipath components. The uplink and downlink channel models are assumed to be

identical.

The line-of-sight and multipath components are generated as follows:

– Every time a mobile moves to a new location, two scatterers are placed within
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Figure 10.2: Blocking probability for LIA (solid curves) and ARP (dotted curves) with
different base station antennas and operation modes, and without power control. User
profile: Hybrid I.

the scatterer circle centered at the mobile location. The location of the scatterers

follows an uniform distribution over the circle area.

– The angles of arrival and departure of the multipath components, with respect to

the line-of-sight component, are computed using the geometry of the model.

All the other features of the simulated system are identical to those presented in Chapter

7. In the subsequent sections we analyze the performance of all four algorithms.

10.4 Fixed Transmitter Power

In this section, we consider a SDMA system with fixed transmitter power. Let us first

compare the performance of LIA and ARP in different situations regarding how spatial

filtering is employed. Figure 10.2 shows the blocking probabilities for LIA and ARP for (i)

omnidirectional base station antennas, (ii) adaptive base station antennas, in non-SDMA

mode and (iii) adaptive base station antennas, in SDMA mode. The capacity improvement

achieved by using LIA or ARP algorithms with base station adaptive antenna, with respect
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Figure 10.3: Blocking probability for different allocation algorithms and without power
control in SDMA mode. User profile: Hybrid I.

to the case with omnidirectional antenna, is evident in this figure and has been analyzed in

Chapter 9. The interesting result from this figure is that LIA does not use efficiently the

permission to reuse channels within cells. A small capacity improvement is achieved only at

high blocking probabilities, when the base stations start reusing channels within cells.

On the other hand, ARP seems to effectively use the permission to reuse channel within

cells, resulting in a carried traffic gain of 20% at blocking probability 2%, with respect to

the non-SDMA mode.

Figure 10.3 shows the blocking probabilities for LIA, ARP, ECL and CCL algorithms in

SDMA mode. In order to compare the performance of each algorithm, let us assume that

the target blocking probability is 2%. Table 10.3 shows the carried traffic per cell, dropping

probability, channel reassignment request rate and outage probability (at Γ0 = 17 dB), at

blocking probability 2%, for all algorithms, including no SDMA cases.

When SDMA is used with ARP and LIA, the capacity gain with respect to the respec-

tive cases with omnidirectional antennas is about 7 times for both algorithms. However, as

already noted, LIA and ARP in SDMA mode do not provide considerable capacity improve-

ment with respect to the capacity for non-SDMA mode. Still, ARP in SDMA mode achieves



Chapter 10 - Spatial Division Multiple Access 188

Table 10.3: System performance at blocking probability 2% for several allocation algorithms
and without power control; outage probability computed at Γ0 = 17 dB.

Allocation Carried Traffic Dropping Prob. Reassign. Requests Outage Prob.
Algorithm Erlangs/cell (%) per call (%)

LIA, Omni 2.9 0.14 0.37 1.8
ARP, Omni 5.1 0.22 1.15 5.4
LIA, No SDMA 20.6 0.24 0.49 2.7
ARP, No SDMA 30.6 0.18 1.07 5.8
LIA, SDMA 21.0 0.28 0.47 2.3
ARP, SDMA 36.7 0.20 1.27 6.5
ECL, SDMA 31.6 0.23 1.10 4.8
CCL, SDMA 25.8 0.50 1.75 9.1

the highest carried traffic among all algorithms.

Surprisingly, CCL provides the second lowest carried traffic per cell among the algorithms

in SDMA systems, despite the fact that CCL attempts to maximize the reuse of channels

within the cells. This result can be explained by analyzing the distribution of channel usage

(or load) among all channels for each algorithm. Figure 10.4 plots the distribution of the

average number of users on the same channel within the cell, at traffic 40 Erlangs per cell.

The left end of axis x corresponds to the most used channels, while the right end corresponds

to the least used channels. Note the axis x of the plot in Figure 10.4 does not correspond to

channel index. The most used channels at different base stations may be different from each

other. Note, from Figure 10.4, that each base station uses only portion of the set of available

channels. For example, base stations in the system using CCL algorithm use only half of the

available channels (approximately 30 channels, out of 63). Comparing the curves for CCL

and ECL algorithms, we see that, in fact, CCL algorithm reuses channels more often within

cells than ECL. However, CCL uses fewer channels than ECL. The reason is that, when a

channel is reused several times within a given cell, the interference on that channel becomes

excessively high, preventing the surrounding cells from using that particular channel due

to high interference. As a consequence, several idle channels at base stations cannot be

allocated to any call, and calls are blocked even when there are idle channels at the serving

base station. To illustrate the situation just described, Figure 10.5 shows a snapshot of

channel usage at two neighboring base stations at a traffic of 40 Erlangs per cell. We see

that some channels are reused as many as six times within one cell and not used at all in
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Figure 10.5: Number of users on each channel for algorithm CCL: traffic load of 40 Erlangs
per cell, without power control: 80% of pedestrians and 20% of vehicles.
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Figure 10.6: Number of users on each channel for algorithm ECL: traffic load of 40 Erlangs
per cell, without power control: 80% of pedestrians and 20% of vehicles.

the other cell.

For comparison purpose, Figure 10.6 shows the channel usage at two base stations for

ECL algorithm and traffic 40 Erlangs per cell. At the particular moment shown in Figure

10.6, no channel is reused within the cells, which emphasizes the strategy of ECL, which is

“duplicate last.”

It should be noted that unavailability of channels, even though idle, due to high inter-

ference also occurs in non-SDMA systems, using dynamic channel allocation. In fact, high

interference on some channels is what limits capacity in systems employing dynamic channel

allocation. Not all channels can be used by a particular base station, due to high interference

level. In SDMA systems, if channel allocation is not appropriated performed, this situation

is more pronounced due to the fact that a channel can be reused several times within cells.

Note from Figure 10.4 that, when ARP is used, base stations reuse some channels as many

as three times within the cells, while with CCL, some channels are reused up to 4.5 times.

However, the maximum carried traffic with ARP is higher than that when CCL is used. The

reason for the performance difference between ARP and CCL is that, as already noticed in

Chapter 9, ARP creates a structured channel reuse pattern among the cells, reducing the

overall interference level. On the other hand, CCL algorithm just selects the most used

channels, which, in fact, increases the level of interference on those channels. This strategy
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causes CCL to have a poor performance in all aspects: high channel reassignment request

rate, outage probability and dropping probability. Therefore, in SDMA environment, the

allocation strategy used in ARP is more convenient than that used in CCL.

Figure 10.4 also explains the low performance of LIA algorithm in SDMA systems. Few

channels are reused within cells, since LIA tries to minimize interference on all channels.

The results and analysis presented above show that allocation algorithms for SDMA

systems must use appropriately the information about the interference level on the channels.

The results of CCL algorithm emphasizes that the lack of structured channel reuse pattern

leads to inefficient algorithms and poor performance.

Versions of the algorithms CCL and ECL, called first duplicate (FD) and duplicate at

last (DL), respectively, have been analyzed in [94] using a theoretical approach in a simple

scenario. FD algorithm attempts to allocate channels that are already in use within the

cell. If it is not possible to reuse any channel, an idle channel is allocated. DL algorithm

tries to allocate an idle channel before reusing a channel already in use. Expressions for

blocking probability for both algorithms are derived in [94] for the case of two channels. A

key element in the expressions is the probability PS that a channel can be reused within the

cell. When FD and DL are compared assuming the same probability PS, the system using

FD algorithm carries higher traffic than the system using DL algorithm, as shown in [94].

However, the probability PS is a function of the interference level on the channels, and PS for

FD algorithm tends to be lower than for DL algorithm. Therefore, the FD algorithm should

be compared to DL algorithm assuming a lower PS for the former. When the appropriate

values of PS are used for each algorithm, it is expected, based on the analysis presented here,

that DL algorithm outperforms FD algorithm.

Performance degradation due to user mobility

Let us now analyze the degradation of the performance of the algorithms LIA, ARP, CCL

and ECL due to user mobility. Table 10.4 shows the carried traffic at blocking probability

2% for user profiles Hybrid I (20% vehicular) and Hybrid II (80% vehicular), for LIA, ARP,

CCL and ECL. The carried traffic degradation due to higher user mobility level is less than

11%, as shown in Table 10.4.

However, strong effects of user mobility are observed on other performance parameters.

A fair analysis of the effects of mobility on the performance is carried out by assuming the

same traffic load for both user profiles. Table 10.5 shows the blocking probability (PB),
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Table 10.4: Carried traffic per cell and traffic degradation for each algorithm without power
control, at blocking probability 2%, under different user profiles and without power control:
Hybrid I - 20% vehicular; Hybrid II - 80% vehicular.

Carried traffic per cell (Erl/cell)
Algorithm Hybrid I Hybrid II Degradation (%)
LIA 21.0 20.8 1.0
ARP 36.7 32.7 10.9
ECL 31.6 28.9 8.5
CCL 25.8 24.0 7.0

Table 10.5: Comparison of system performance under two user profiles: PB = blocking
probability, PD = dropping probability, Rre = channel reassignment request rate and Pout =
outage probability at Γ0 = 17 dB - without power control.

User Profile
Hybrid I Hybrid II

Algorithm Traffic PB PD Rre Pout PB PD Rre Pout
Erl/cell (%) (%) (%) (%) (%) (%)

LIA 21.0 2.00 0.28 0.47 2.3 2.10 0.28 1.45 4.3
ARP 36.7 2.00 0.20 1.27 6.5 4.92 1.07 4.18 12.0
ECL 31.6 2.00 0.23 1.10 4.8 2.82 0.70 3.39 9.3
CCL 25.8 2.00 0.50 1.75 9.1 3.45 0.75 4.23 13.1

dropping probability (PD), channel reassignment request rate (Rre) and outage probability

at Γ0 = 17 dB (Pout) for all algorithms under different user profiles, but the same traffic load.

The traffic load used for each algorithm is the one that results in 2% of blocking probability

for user profile Hybrid I (predominantly pedestrian). Of particular interest in this table is

the effect of mobility on the number of channel reassignment requests. Figure 10.7 shows

the increase in the number of reassignments in percentage due to higher mobility level (from

user profile Hybrid I to Hybrid II). Channel reassignments are requested whenever SINR

on either uplink or downlink drops below threshold Γth,re. When SDMA is used, low SINR

can be caused by interference from other cells, like in non-SDMA systems, and, additionally,

by in-cell interference. In-cell interference is generated through two mechanisms. In order

to understand them, suppose that two mobiles A and B are sharing the same channel, as

depicted in Figure 10.8. The first mechanism that causes SINR degradation occurs when the
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Figure 10.7: Performance degradation due to mobility: increase in the channel reassignment
request rate when 80% of users are vehicular (profile Hybrid I) with respect to the case when
only 20% of users are vehicular (profile Hybrid I) - no power control.
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Figure 10.8: Two in-cell users sharing the same channel.
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mobiles get too close to each other (small angular separation ϕ), such that the antenna beams

“collide” and spatial filtering is no longer possible. The second mechanism regards the T-R

separation distances dA and dB. If the ratio dA/dB is too large or too small, the attenuation

provided by the side lobe of the antenna will not be enough to guarantee the desired SINR.

Ideally, in fixed transmitted power systems, the ratio dA/dB of all in-cell mobiles sharing

the same channel should be close to one. These two mechanisms are discussed in Chapter

6. Therefore, all in all, in SDMA systems there are three mechanisms that cause channel

reassignment: (i) interference from other cells, (ii) beam collision and (iii) too large or too

small ratio dA/dB. Note that, even though CLL is the less sensitive algorithm to mobility, its

channel reassignment rates are the highest ones for both users profiles. The reason is that,

by maximizing the channel reuse within the cell, the effects of mechanisms (ii) and (iii) are

emphasized.

Table 10.5 also shows that outage probability follows the same trend observed in the

channel reassignment rate, that is, there is a considerable increase in the interference level

as the mobility level increases.

At this point we can analyze the overall performance of the algorithms using Table 10.3.

Among all four algorithms, ARP is the one that provides the highest carried traffic for

both user profiles, while LIA provides the smallest carried traffic. When we compare the

reassignment rate, we see that there is a strong correlation between carried traffic and channel

reassignment request rate and outage probability: High carried traffic is at the expense of

a large number of channel reassignments in order to keep the link quality at a acceptable

level. The reason is that high capacity is achieved by packing closer calls, that is, reusing

channels more often, which increases interference level and reassignment requests. However,

as the results for CCL algorithm show, high interference does not mean that high capacity

has been achieved.

10.5 Controlled Transmitter Power

Let us now add power control in the system and analyze which algorithm benefits most from

the interference reduction provided by power control. We use the SINR balancing power

control technique, describe in Section 5.4, with continuous power adjustment and parameters

described in Table 8.7. The target SINR is set to ΓT = 21 dB.

Just as done for the case of no power control, let us compare the performance of LIA and
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Figure 10.9: Blocking probability for LIA (solid curves) and ARP (dotted curves) with dif-
ferent base station antennas and operation modes, with power control. User profile: Hybrid
I.

ARP with power control for different scenarios, regarding how spatial filtering is employed.

Figure 10.9 shows the blocking probabilities for LIA and ARP with power control for (i)

omnidirectional base station antennas, (ii) adaptive base station antennas, in non-SDMA

mode and (iii) adaptive base station antennas in SDMA mode. The population of users

consists of 80% of pedestrians

Unlike for the fixed transmitter power case, LIA does use the permission to reuse channels

within cells when transmitter power is controlled. With power control, co-channel interfer-

ence is reduced, allowing more channels to be reused among cells and, additionally, several

channels are reused within cells.

Figure 10.10 shows the blocking probabilities for LIA, ARP, ECL and CCL algorithms in

SDMA mode. As done before, we present in Table 10.6 the performance of all algorithms at

blocking probability 2%. A comparison between the blocking probabilities with and without

power control (see Figure 10.3) clearly shows the capacity improvement achieved by using

power control. Even though ARP still provides the highest carried traffic, other algorithms

use the interference reduction provided by the use of power control more efficiently than
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Figure 10.10: Blocking probability for different allocation algorithms and with power control
in SDMA mode. User profile: Hybrid I.

Table 10.6: System performance at blocking probability 2% for several allocation strategies
and with power control and user profile Hybrid I; outage probability computed at Γ = 17
dB.

Allocation Carried Traffic Dropping Prob. Reassign. Requests Outage Prob.
Algorithm Erlangs/cell (%) per call (%)

LIA, Omni 7.30 0.21 3.30 10.0
ARP, Omni 8.20 0.24 3.80 11.5
LIA, No SDMA 44.7 0.06 0.80 3.1
ARP, No SDMA 45.3 0.07 1.35 5.8
LIA, SDMA 52.2 0.12 0.88 3.5
ARP, SDMA 56.9 0.10 1.54 6.7
ECL, SDMA 49.4 0.17 1.36 5.4
CCL, SDMA 41.5 0.25 1.24 5.0
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Figure 10.11: Capacity improvement by using power control for user profile Hybrid I: (a)
carried traffic per cell at blocking probability 2%, (b) capacity gain due to the use of power
control.

ARP. Figure 10.11 (a) shows the carried traffic for each algorithm with and without power

control, at PB = 2%, while Figure 10.11 (b) shows the carried traffic improvement achieved

by using power control, with respect to the case without power control. We see that LIA is

the algorithm that uses the benefits of power control more efficiently.

The higher capacity achieved with power control is due to two distinct mechanisms: (1)

power control leads to smaller reuse distance, as observed in non-SDMA systems in Chapters

8 and 9, and (2) power control allows more in-cell users to share the same channel. The

effects of these two mechanisms can observed in Figure 10.12, which shows the distribution

of the average number of users on the same channel at a traffic load of 60 Erlangs per cell

and with power control. Comparing this figure with the corresponding figure for the case

of without power control (Figure 10.4), we see that, for ARP, LIA and ECL, power control

increases the number of channels effectively used in the cells. In addition, again for ARP,

LIA and ECL, power control allows more channels to be reused within the cells. On the other

hand, power control affects the performance of CCL differently. With power control, CLL

reuses more channels within the cells, compared to the case without power control. However,

fewer channels are used by each cell, due to the increased level of interference caused by the
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Figure 10.12: Distribution of the average number of users on the same channel at traffic load
of 60 Erlangs per cell, for several allocation strategies, with power control and user profile
Hybrid I.

large number of users sharing the same channel.

As a negative effect, the use of power control tends to increase the number of channel

reassignment requests per call and outage probability. This side effect of power control was

discussed in Chapter 9. With power control, calls are packed closer, decreasing the reuse

distance. Therefore, any disturbance due to mobility, call arrival and propagation effects,

can degrade the link quality, which may lead to channel reassignments.

Let us now analyze the effects of mobility on the performance when power control is used.

Table 10.7 compares the carried traffic at 2% of blocking probability for the case with power

control for both user profiles. As we have observed for the case of without power control,

mobility causes little degradation on the carried traffic.

However, the “immunity” of carried traffic to mobility is at the expense of strong negative

effects on other performance parameters. As we have done for the case of no power control,

let us compare the performance of all algorithms for both user profiles, when the algorithms

operate at the same traffic level. Table 8.8 shows the blocking probability (PB), dropping

probability (PD), channel reassignment request rate (Rre) and outage probability at Γ0 = 17

dB (Pout) for all algorithms. The traffic load used for each algorithm is the one that results in

a blocking probability of 2% for user profile Hybrid I (predominantly pedestrian). Comparing
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Table 10.7: Carried traffic per cell and traffic degradation for each algorithm with power
control, at blocking probability 2%, under different user profiles and without power control:
Hybrid I - 20% vehicular; Hybrid II - 80% vehicular.

Carried traffic per cell (Erl/cell)
Algorithm Hybrid I Hybrid II Degradation (%)
LIA 52.2 50.8 2.7
ARP 56.9 55.7 2.1
ECL 49.4 46.9 5.1
CCL 41.5 40.4 2.7

Table 10.8: Comparison of system performance with power control under two user profiles:
PB = blocking probability, PD = dropping probability, Rre = channel reassignment request
and Pout = outage probability at Γ0 = 17 dB.

User Profile
Hybrid I Hybrid II

Alg Traffic PB PD Rre Pout PB PD Rre Pout
Erl/cell (%) (%) (%) (%) (%) (%)

LIA 52.2 2.0 0.12 0.9 3.5 2.7 0.33 3.0 4.3
ARP 56.9 2.0 0.10 1.5 6.7 2.5 0.11 4.8 12.0
ECL 49.4 2.0 0.17 1.4 5.4 3.0 0.27 4.1 9.3
CCL 40.5 2.0 0.25 1.2 5.0 2.3 0.23 3.4 13.1
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the values in Table 8.8 for different user profiles, we see that, although blocking and dropping

probability are not seriously affected by a higher level of mobility, the number of channel

reassignment requests increases considerably. The reason why higher level of user mobility

leads to more channel reassignment requests was explained before, for the case of without

power control.

10.6 Conclusion

We have analyzed in this chapter the performance of several algorithms in SDMA systems.

Two of the algorithms, namely ECL and CCL, explicitly attempt to benefit from the fact

that, in SDMA, channels can be reused within cells. While CCL tries to reuse channels

within cells as much as possible, ECL tries to uniform the load of traffic over all channels

available in the cell. The other two algorithms, LIA and ARP, are not particularly designed

for SDMA systems. LIA attempts to minimize the interference level on all channels, while

ARP tries to create a structured channel reuse pattern throughout the entire coverage area.

Simulation results have shown that, with fixed transmitter power, the strategy used in

LIA does not give good results in terms of carried traffic in SDMA systems. Channels already

in use will have higher interference level than idle channels, and channel reuse within the

cell will happen very seldom with LIA. When power control is used, the reduced interference

allows channels to be reused more often not only among cells, but also within cells.

On the other hand, ARP with fixed transmitter power seems to use the permission to

reuse channel within the cells. The channel reuse pattern, among the cells and within the

cells is organized in a such structured way that leads to the highest carried traffic among all

algorithms studied in this chapter.

Simulation results also showed that the strategy of maximizing the number of channels

that are reused within the cells does not lead to high capacity. It actually leads to high levels

of interference, which limits capacity.

We also analyzed the performance degradation due to user mobility. Results have shown

that, while carried traffic is not severely affected by higher level of user mobility, other perfor-

mance parameters, such as number of channel reassignment requests and outage probability,

are strongly affected.



Chapter 11

Summary and Future Work

This dissertation has presented an analysis of resource allocation algorithms combined with

adaptive antennas. In this chapter, we summarize the results and present some suggestions

for future related work.

11.1 Summary of Contributions and Conclusions

In Chapter 4, we analyzed the capacity improvement achieved by reducing cluster size and

controlling the increased co-channel interference by using narrowbeam antennas combined

with the fractional loading factor. Capacity gains as high as 477% with respect to the

reference system (cluster size N = 7, tri-sectorized cells) were observed, but at the expense

of large antenna side lobe level reduction and narrow beamwidth. The simulation results

show that, as expected, beamwidth and side lobe level play an important role in the capacity

gain. However, when the fractional loading factor was introduced, we showed that the

relationship between antenna parameters, the cluster size and the capacity gain may change

in a non-intuitive fashion. An important conclusion from the results is the importance of

the fractional loading factor. In most of the cases shown here, minimum acceptable system

performance was achieved because of the combined use of narrowbeam smart antennas and

fractional loading factor, allowing cluster size reduction. This means that low complexity

antennas can be used and still provide system capacity gain, while decreasing cluster size.

In Chapter 8, we also analyzed the capacity improvement achieved by reducing cluster

size and controlling the increased co-channel interference. In this chapter, however, user

mobility, handoff and channel reassignment were considered, and adaptive antennas were

201
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combined with power control. Simulation results showed that, for fixed transmitter power,

large side lobe level reduction (high complexity antennas) is required to achieve the maximum

capacity available (given by the number of channels allocated to each cell). For example,

for beamwidth BW = 45o and cluster size N = 3, a side lobe level of −40 dB is required

to achieve 93% of the maximum available capacity. However, when power control is used,

the additional interference reduction provided by power control may be enough to achieve

the maximum available capacity, even with small side lobe reduction (low complexity). For

example, for BW = 45o and N = 3, a side lobe level of −12 dB is enough to achieve 93% of

the available capacity. Simulation results also showed that the higher capacity achieved with

power control may be at the expense of a larger number of channel reassignment requests.

In Chapter 9, we analyzed the combined application of adaptive antennas, dynamic

channel allocation and power control in cellular systems. Two allocation algorithms were

analyzed, namely LIA and ARP. For fixed transmitter power, LIA and ARP transform

the reduced co-channel interference provided by the use of adaptive antennas into higher

carried traffic with similar efficiency. However, ARP provides a higher carried traffic per cell

than LIA, due to the structured reuse pattern created by ARP. When adaptive antennas,

dynamic channel allocation and power control are combined, results showed that LIA uses

more efficiently the additional interference reduction achieved by using power control. Due

to the fact that transmitter power is now controlled, ARP is not able to create an efficient

channel reuse pattern. With small side lobe level, both algorithm were able to reuse almost

all channels available for the entire system among all cells.

Finally, the performance of several allocation algorithms in SDMA systems were analyzed

in chapter 10. Two of the algorithms, ECL and CCL, explicitly attempt to benefit from the

fact that, in SDMA, channels can be reused within the cells. Algorithms ECL and CCL

are often analyzed for application in SDMA systems. The other two algorithms, LIA and

ARP, are not particularly designed for SDMA systems. However, ARP is the most efficient

algorithm among all algorithm studied, while CCL is the worst algorithm regarding not only

carried traffic, but the number of reassignment requests. Simulation results show that too

timid algorithms (LIA) or too aggressive algorithms (CCL) are not efficient in the SDMA

environment. Timid algorithms do not use the permission to reuse channels within the

cells, while aggressive algorithms overuse channels within the cells, increasing co-channel

interference.

The analysis presented in this dissertation showed not only the benefits of combining
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adaptive antennas, power control and dynamic channel allocation in terms of capacity im-

provement, but also the effects on other performance parameters. We showed that high ca-

pacity can be achieved by combining resource allocation techniques and adaptive antennas

while maintaining a minimum acceptable link quality, but at the expense of the degradation

of some other performance parameters (for example, a large number of channel reassignment

requests, which increases the load on the control channel). The well known trade-off between

capacity and link quality in cellular systems has now other components playing important

roles.

A new accuracy analysis of Schwartz & Yeh and Fenton-Wilkinson’s methods for comput-

ing the mean and standard deviation of the sum of lognormal random variables is presented

in Chapter 3. Unlike previous works, we compared the accuracy of both methods when the

mean values and standard deviations of the summands are different. We found that the accu-

racy of Fenton-Wilkinson’s method is more sensitive to the difference between the standard

deviations and means of the summands, than Schwartz & Yeh’s method.

11.2 Future Work

• Throughout this dissertation, the radiation pattern of adaptive antennas were simu-

lated using the average side lobe level and main beam with constant gain. Also, the

channel model did not included multipath propagation. The next step in this research

would be to analyze the performance of some representative beamforming techniques

in the context studied in this dissertation, and include spatial information in the prop-

agation channel model.

• In Chapters 8, 9 and 10, we simulated a cellular system with NC traffic channels in

circuit-switched mode. With the growing demand for data services, such as broadband

multimedia services, video conferencing, and Internet access, the analysis of the com-

bined application of adaptive antennas, power control and dynamic channel allocation

in packet-switched systems becomes very important.

• The simulated cellular system used in Chapter 8, 9 and 10 assumed that the exact

values of SINR required for channel allocation were available at both base station

and the mobile. When SINR is estimated using, for example, the techniques listed in

Appendix B, estimation errors may affect system performance.



Chapter 11 - Summary and Future Work 204

• The dynamic channel allocation algorithms studied in Chapter 10, for SDMA systems,

did not use any angle of arrival information in the process of allocating a channel. Angle

of arrival information and mobile’s direction of movement may be used to improve the

performance of allocation algorithms and reduce channel reassignment rate.

• The effects of non-uniform user distribution on the performance of cellular systems

using adaptive antennas, especially SDMA systems, must be investigated.

• In the work presented in Chapter 4, we implemented call admission control simply by

adjusting the number of active cells, according to the desired loading factor pch and

probability Pn of having n active cells. This implementation is valid in the context of

the work presented in Chapter 4, since a statistical analysis of the performance of a

cellular system is performed.

On the other hand, call admission control was implemented in the systems simulated

in Chapters 8, 9 and 10 by using admission threshold (Γadm,new and Γadm,re)

Another implementation of call admission control that can be analyzed is based on

hard limiting the number of channels that can be simultaneously in use within a cell.

If the number of channels in use at the serving base exceeds a given limit, calls are

blocked.
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Appendix A

Interference from Co-channel Tiers

Consider the forward link of a cellular systems with cluster size N , T tiers of co-channel

cells and cell radius R. Assuming hexagonal shapes for the cells, the i-th tier of co-channel

cells has 6i cells. A mobile station located at the cell boundary, as shown in Figure A.1,

experiences worst case co-channel interference. Assuming that all base stations are equipped

with omnidirectional antennas and transmit the same power P = 1, the total area mean

co-channel interference, IT , at a mobile located at the cell boundary is

IT =
1

dγ1,1
+ · · ·+ 1

dγ1,6︸ ︷︷ ︸
from the 1st tier

+
1

dγ2,1
+ · · ·+ 1

dγ2,12︸ ︷︷ ︸
from the 2nd tier

+ · · · 1

dγT,1
+ · · ·+ 1

dγT,6T︸ ︷︷ ︸
from the T -th tier

, (A.1)

where γ is the path loss exponent and di,k is the transmitter to receiver distance between

the k-th base station in the i-th tier, where k assumes the values k = 1, 2, · · · , 6i. Since the

base stations in the first tier are closer to the mobile at the cell boundary than the other

base stations, we use the exact distances d1,k in (A.1) for the base station in the first tier.

For more distant tiers, we approximate all distances between the base station in a given tier

i and the mobile as di,k = di = (di,max + di,min)/2, for all k, where di,max = i
√
(3N)R and

dmin = i 3NR/2 are the maximum and minimum distances, as shown in Figure A.1. Thus

di = i

(√
3 + 2

4

)√
3N R = i D (A.2)

Let I1 denote the total area mean co-channel interference received from the base stations

in the first tier:

I1 =
1

dγ1,1
+ · · ·+ 1

dγ1,6
, (A.3)
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k-th base station

Figure A.1: Co-channel cells in the forward link cellular system: di,k is the transmitter to
receiver distance between the k-th co-channel base station (k = 1, 2, · · · , 6i) in tier i, and
the mobile.

Also, let I2+ denote the total mean co-channel interference from tier 2, 3, · · ·, T, using the

approximation in (A.2)

I2+ =
12

(2 D)γ
+

18

(3 D)γ
+ · · ·+ 6T

(T D)γ

=
6

D
γ

(
T∑
t=1

1

tγ−1
− 1

)
. (A.4)

Thus

IT = I1 +
6

D
γ

(
T∑
t=1

1

tγ−1
− 1

)
. (A.5)

The fraction of total co-channel interference, IT , that corresponds to the interference

from the first tier is given by the ratio ε = I1/IT . Table A.1 presents the computed values

of ratio ε, for cluster sizes N = 1, 3, 4 and 7, and path loss exponents γ = 3, 4 and 5,

when T tends to infinite. Note that the sum in (A.5) does not converge when T tends to

infinite, for a path loss exponent of 2. This means that the fraction of total interference that

corresponds to the interference from the first tier goes to zero, when free space propagation

(γ = 2) is assumed. We see from Table A.1 that, for path exponent γ = 4, the area mean

interference from the first tier accounts for at least 82% of total interference. Denote SIRT

as SIR computed using the total interference IT , and denote SIR1 as SIR computed using

the interference from the first tier I1. Using dB units, we have:

SIR1 = 10 log
(
S

I1

)
= SIRT − 10 log (ε) , (A.6)
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Table A.1: Ratio of the interference (ε) from the base stations in the first tier (I1) to the
total interference (IT ), for cluster sizes N = 1, 3, 4 and 7, and path loss exponents γ = 3, 4
and 5.

ε = I1/IT (%)
γ N = 1 N = 3 N = 4 N = 7

3 72.0 62.3 60.4 58.4
4 92.4 85.8 84.0 82.0
5 98.0 94.7 93.5 92.1

where S = 1/Rγ is the desired area mean signal received at the mobile. Therefore, the error

caused by considering only the first tier when computing the area mean SIR is less than 1

dB (10 log 0.82 ≈ −0.9 dB), for path loss γ = 4 and cluster sizes N = 1, 3, 4 and 7.

Consider now that shadowing fading is taken into account in the computation of SIR, and

the mobile is uniformly distributed over the cell area. The forward link area averaged SIR

at the mobile is computed by simulation, assuming a cellular system with a large number

of tiers with omnidirectional base stations. We assume 15 tiers, which corresponds to 720

co-channel cells. Path loss γ = 4 and shadowing standard deviation σ = 6 dB are assumed.

Figure A.2(a) and (b) compare the probabilities P [SIR > SIR0] when all 15 tiers are

considered and when only the first tier is considered, for cluster size N = 1, 3, 4 and 7.

We see that the error induced by considering only the first tier is small. Assuming that we

are interested in a reliability of 95%, we computed the required values of SIR0 such that

P [SIR > SIR0] = 95%, for the cases with 15 tiers (denoted by SIR
(15)
0 ) and only one tier

(denoted by SIR
(1)
0 ). Figure A.2(c) shows that the difference ∆SIR0 = SIR

(1)
0 − SIR

(15)
0 is

smaller than 1.1 dB for cluster sizes N = 1, 3, 4 and 7. Using the same approach used for

the forward link, it can be shown that the results presented in this appendix are valid for

the reverse link.
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Figure A.2: Forward link P [SIR > SIR0] computed using 15 tiers and only the first tier,
with path loss exponent γ = 4, shadowing standard deviation σ = 6 dB and omnidirectional
base station antennas: (a) cluster sizes N = 1 and 4; (b) cluster sizes N = 3 and 7;

(c) Difference ∆SIR0 = SIR
(1)
0 − SIR

(15)
0 between the required values of SIR0 such that

P [SIR > SIR0] = 95%, for the cases with only one tier and all 15 tiers.



Appendix B

Signal-to-Interference Ratio

Measurement

Signal-to-interference-plus-noise ratio (SINR) is very often used as a measure of link quality

in channel allocation, channel reassignment, handoff and power control algorithms. Estima-

tion of SINR are, therefore, required in several different situations regarding the status of

the channel to be measured. For example, during allocation of a channel to a new call,

SINR must be estimated on channels that are not allocated to the mobile originating the

call. On the other hand, in order to check whether channel reassignment is needed or not,

SINR must be measured on the channel currently in use. Therefore, the situations where

SINR needs to be estimated can be grouped as follows:

• MS and BS are requested to measure SINR on their allocated channels,

• MS and BS are requested to measure SINR on channels different from their allocated

channels.

Even though in this dissertation we assume that the exact values of uplink and downlink

SINRs are available whenever they are needed, we briefly discuss in this appendix how

SINRs can be estimated in these two classes of situations.

MS and BS are requested to measure SINR on their allocated channels

In order to check whether channel reassignment is necessary or not, MS and BS need to

measure SINR on the channels currently allocated to them.

210
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Since BS and MS are connected to each other through traffic channels (downlink and

uplink), direct measurement of SINR is not possible. The reason is that, when the power

level on the traffic channel is measured, the BS (or MS) is actually measuring S+I+N , where

S the desired signal power, I is the total interference, and N is the thermal noise power.

For high values of SINR, we can approximate S ≈ S + I +N . However, this approximation

is not always appropriate, since the estimation of SINR is more important when SINR is

low (i.e. when channel reassignment is needed). Also, we still need to estimate I + N to

be able to compute SINR. In order to overcome this problem, several approaches have been

proposed:

• Signal processing on the received training sequence: This technique is appropriate for

TDMA systems. The frames of TDMA cellular systems, such as IS-54 and GSM,

contain known training sequences that can be used for SINR estimation [100, 101].

• Estimate SINR based on eye-opening and error rate measurements [102].

MS and BS are requested to measure SINR on channels different from their

allocated channels

This case occurs during channel allocation to new calls, when MS and BS are connected

with each other through control channel, and SINR must be measured on candidate traffic

channels. Another typical situation occurs during intercell or intracell handoffs, when now

BS and MS are connected through a traffic channel and SINR must be measured on other

traffic channels. The measurement of SINR on downlink and uplink can be performed as

follows:

• Downlink link: The MS measures the received power level of the total interference

I plus noise on each candidate channel, and reports the measurements to the BS

through the control channel or the currently allocated traffic channel. The desired

received power S from the serving BS must be indirectly estimated: the MS measures

the received power level on the control channel or currently allocated traffic channel,

and reports the result to the BS. Since the BS transmitter power is known at the BS,

the path loss between the BS and MS on the forward link can be estimated. Based

on the path loss, the desired received power at the MS on the traffic channels can

be estimated. Note that, when the measurement is made on the control channel, we

assume that the propagation channels on the traffic and control channels are similar.
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• Reverse link: The BS measures the received power level on each idle channel (total

interference I). Note that the desired MS is not transmitting on the traffic channel to be

measured and, therefore, the power level I measured by the base station corresponds to

interference plus noise. To estimate the desired signal S on a particular traffic channel,

the BS can measure the received power from the MS on the control channel or traffic

channel used by the MS. Again, assuming that the propagation channels on traffic and

control channels are similar, we can estimate the received power on any traffic channel

based on the measurement on a particular control channel.
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