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I• INTRODUCTICN 

1.1 A Problem in Nonparametric Statistics 

In current statistical research considerable attention is 

devoted to so-called nonparametric methods. Whenever there is a lack of 

information concerning the form of underlying distributions and there is 

the indication that assumptions of normality cannot be met, one must employ 

special kinds of techniques. Such techniques are known as nonparametric 

methods since they are not concerned with testing or estimating the para-

meters of distribution functions of given type~. These methods are also 

called distribution-free methods because they do not require a knowledge 

of how the underlying random variables are distributed. The only assump-

tion needed for most of these methods is th~t the distribution functions 

be continuous, a few of them requiring, furthermore, that low-order 

moments exist. 

A statistical test that requires no assumption about the form 

of underlying distributions can hardly be expected to be as efficient as 

one requiring such assumption. To compensate for this loss in efficiency, 

nonparametric methods have the advantage of complete generality in applica-

tion. other noteworthy advantages of nonparametric methods of statistics 

are (i) computational ease and (ii) that they sometimes apply to data 

avaHable C\nly in ordinal form. 

The development of nonparametric methods of statistics has been 

very rapid during the last decade, touching almost every phase of statis-

tical activity. A co:i;mon problem in practical statistics which has been 

attacked by nonparametric methods is that of deciding whether several sam-



-5-

ples should be regarded as coming from the same population. 

References ( 1) through [ 5] of the biblography present some 

of the more general treatments of this problem. The purpose of this 

thesis is to consider an extension of the above problem to the case of 

2 k-variate populations, particularly, two bivariate populations. 

The first approach to the generalized problem is made by means 

of discriminant analysis and it is discussed in Chapter 4. Here the rank-

ed sample points are projected onto a vector giving maximum discrimination 

between the two samples and the sample points are then reranked along this 

vector. The problem is thus reduced to a one-dimensional situation, but 

this approach is not a fruitful one since, as will be shown, the standard 

one-dimensional nonparametric tests cannot be used. 

An alternative approach, discussed in Chapters 2 and 3, is based 

on the (Euclidean or more general) distance between the centroids of the 

ranked samples. Several methods are suggested for constructing approximate 

tests of significance on the basis of such a distance. 
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2. A BIVARIATE RANK-SW,~ TEST 

2.1 Introduction 

There are many problems of statistical inference in which one 

is unable to assume the functional form of population distributions. Many 

of these problems are such that the strongest assumption which can reason-

ably be made is continuity of the cumulative distribution functions of the 

populations. Problems of this type, in which the distribution functions 

are arbitrary within a broad class, come within the framework of nonpara-

metric statistics !S defined in Chapter l. 

The following problem belongs to the above class and it was 

originally suggested to the author by Doctor Frank Wilcoxon. Let rr1 and 

rr2 be two bivariate populations having unknown cumulative distribution 

functions F1(x1,x2) and F2{x1,x2), respectively. Assume that F1 and F2 

are continuous, and identical except possibly in location parameter. It 

is desired to test the null hypothesis 

H0 : F1{x1 ,x2 ) = F2 {x1 ,x 2 ) {2.1.1) 

against the alternJtive hypothesis th3t the population distribution 

functions have different means and it cannot be assumed that the variables 

x1 and x2 are statistically independent. 

For example, it may be desired to compare two methods of prepar-

ing steel on the bnsis of compressive strength and elasticity, two te~ching 

methods on the basis of grades obtained in two subjects by two groups of 

students, or two nationality groups on the basis of two specific skull 

measurements. If, in situations like these, it is unreasonable to assume 
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normality for the Underlying distributions, one may resort to ranking 

techniques, ignoring the exact values of the measurements obtained. 

In this chapter a bivariate rank-sum test is constructed to test 

the nonparametric statistical hypothesis (2.1.1) against the specified al-

ternative hypothesis. The main value of such a bivariate rank-sum test is, 

as is characteristic of all nonparametric tests, that it is free from the 

assumption that the cumulative distribution functions of the populations 

have specific functional forms. Another ~dvantage which is often important, 

is that nonparametric tests, based on ranking techniques, frequently pro-

vide computational ease not found in the corresponding parametric methods. 

2.2 B~sic Considerations 

Suppose there are n1 pairs of observations (x11 ,x21 ), ••• , 

(x1n1,x2n1) from population rr1 and n2 pairs of observations (x1n1+1,x2n1+1>, 
••• , (x1N,x2N) from population rr2 , where N = n1+ n2 • The x1i(i=l,.,N) 

are arranged in order of magnitude and ranked, the largest being assigned 

rank land the smallest assigned rank N. In a similar manner, ranks are as-

signed to the observations X2i (i=l, ••• ,N). It is assumed that in either 

case, there are no ties in ranks. 

Let u1i and u2i denote the ranks assigned to x11 and x2i if these 

observations belong to population rr1, and let u{i and u21 denote the ranks 

of these same observations if they belong to population rr2 • It follows that 

where 

n1 N N(N+l) 
Z 0 ik + Z uik = 2 

k=l k=n1+1 
(i=l,2) 

N(N+l) 
2 

is the sum of the first N integers. 



If the N = n1+ n2 pairs of ranks are plotted on a plane, it is 

likely that the n1 points from population 1r1 and the n2 points from popu-

lation 1r2 will be interspersed forming a circular or elliptical pattern 

under the assumption that F1(x1,x2) and F2(x 1,x2) are identical. Under 

th9 alternative hypothesis, it is likely that there will he a segregation 

of the points into two groups, The sy -statistic that will be proposad in 

the next section to meAsure the extent of this s~gregation, is based on the 

Euclidean distance between the centroids of the two samples. Under tho 

null hypothesis, sf can be expected to ba smaller than under the alterna-

tive hypothesis. 

2,3 The Sf -Statistic 

Using the Euclidean distance between the centroids of the ranks 

belonging to 1r1 and 1r2 , the statistic sf is defined asa 

where, 

S2_ 
1 - cu1-ui>2 + cu2-; 2)2 

u = n-1 ~l u u' = n-1 ~ u' (i = 1,2) i l ik i 2 lk k=l k:n 1+1 

(2.3.1) 

(2.3.2) 

To simplify the notation in the more general case to be considered 

in Chapter 3, let 

R = ~l 
j ~ ujk 

k=l 

(j=l,2) (2.3.3) 
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It follows from equation (2.2.1) that 

n + n' = N(N•l) 
j j 2 

U=1,2) (2.3.4) 

The right-hand side of equation (2.3.1) may then be re~Titten as1 

(2.3.5) 

+[n-lR -n-1( N(N+l) -R )]2} 1 2 2 2 2 

and after performing so;ne algf'braic operations,the formula for the Sf-

statistic reduces to 

2.4 2 The First Two Moments of s1 . 

(2.3.6) 

To construct a sampling distribution for the sf statistic, the 

following conditional randomization procedure will be used. Keeping the 

ranks paired as given in the sample, n1 pairs are selected at random (with 

equal probabilities) from among the N = n1 + n2 pairs and assigned to popu-

lation 1r1, the remaining n2 pairs are assigned to population rr2• Since this 

is a conditional randomization, no attempt will be made to obtain explicit 

results for the exact sampling distribution of the sf-statistic. The first 

two moments will be derived and although higher moments could be obtained 

with identical techniques, their derivation wculd involve a prohibitive 

amount of algebraic complications. 

To obtain the expectation of sy, the following preliminary results 
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are required: 

E{uik) = N+l {i=l ,2) -2 
(2.4.1) 

E(Ri) n1 (N+l) (i=l,2) = 
2 

(2.4.2) 

E(R!) = n1(~+1) [N(3n1+1) + 2n1] 
l. 12 

(2.4.3) 

The derivation of (2.4.3) is ·given in Appendix A. 

Now, 

and after substituting the results of (2.4.2) and (2.4.3) this becomesa 

E(Sf) = N2(N+l) 
6n1n2 

In the special case where n1 = n2 = n, the expectation of sf reduces to 

E(Sf) = ; {2n+l) (2.4.6) 

To obtain the ~ariance of sf, it will be necessary to evaluate 

E(Sf) and sub3titute tho result together with (2.4.5) into 

. (2.4.7) 

Using the expressions obtained in Appendix A, it can be sho·1,n that the 

formula for the variance of sf can be written in the form 

a2 
$ 2 = aoo + a11A11 + a A + l 12 12 a21 A21 (2.4.8) 

2 
+ a2z'22 + a11•11A11 



where 
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+ N5(-50nf ... 113n1- 65) 

+ N4(25nI-168n!+ 286n1-75) 

+ N3 (84nI-442nf+ 369n1-25) 

+ N2(22lnr-588ny+ 12ln 1+ 14) 

3 . 2N (N+l) [ 4n1n.,-n 1(n 1+1 )-n..,(n2+1 )] 
a12 = a?l = ~ ~ 

... n3n3(N-l) {~r-2) (N-3) 
1 2 

2n3 [(N-2) (N-3)-6{n1-l) (n_rl)] 

nfn~(lv-1) (N-2) (N-3) 

N 
A11 ~ ~ u11 u21 

i=l 

(2.4.11) 

(2.4.12) 

{2.4.13) 

(2.4.14) 

(2.4.15) 

(2.4.16) 

(2.4.17) 



-12-

It should be noted thlt the variance of sy depends on the 

actual matching of the u1's and the u2's only in so far as it depends 

on the parameters A11• A12, A21 and A22• Also it should be recalled 

that the expression obtained in (2.4.8) is the variance of the theo-

retical sampling distribution of sy under the conditional randomi-

zation described above. 

In the special case where n1 = n2 : n, the constants aij 

in (2.4.8) become 

= 16(2n+l) (50n3+43n2+20n+7} 
aoo 45n(2n-3) 

{2.4.18) 

-16(2n+l)2 a 11 :::: ...__ _______ ......,. __ 

n(2n-l) (2n-3) 
(2.4.19) 

16(2n+l) 
n2(2n-l) (2n-3) 

(2.4.20) 

-16 (2.4.21) 

16(n-l) a 11,11 = -----y~--
n3 (2n-l} (2n-3) 

(2.4.22) 

To facilitate the determination of the variance of sf, the con-

stants a00 , all• a12, a22 and a11 , 11 have been calculated for all values 

of n1 and n2. up to n1 and n2 equal to 20. These values may be found in 

Appendix B. 

2.5 An approxim3te Test of Significance 

To perform an exact test of hypothesis (2.1.l) against the al-
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ternative hypothP.sis (2.1.2) on the b3 sis of the $~-statistic, it would 

be necessary to obtain the theoretical sampling distribution of sf. Such 

a distribution could be derived either by obtaining explicit expressions 

for the probabilities involved or by cn~~erating all possible cases. 

Neither of these tw~ dpproaches ueem to be feasible, the first being com-

plicated by the conditional randomization and the second being impractical 

since even for n1 and n2 as s~all as 10 it would be necessary to enumerate 

<f8) = 184,756 CaSPSe 

Workers in the field of nor1parametric statistics have encountered 

considerable difficulties in their attempts of obtaining explicit exprcs-

&ions for sampling distributions of their statistics. Results are scarce 

and unwieldy even in the case of ordinary unrestricted :::ando:.1ization and 

no attempt will be r:1.1de to treat the exact sar.ipling distribution of sf 
in a theoretical fashion. 

Statisticians frequently approximate sampling distributions of 

pertinent statistics, at least for large samples, with normal distributions, 

justifying this either on theoretical grounds or with emperical means. The 

advantage of this procedure is that knowledge of the mean and variance of 

the actual sampling distribution of the statistics is sufficient to per-

form tests of significance. 

To see whether a normal cui-ve v;ould provide a satisfactory ap-

proximation to the sampling distribution of sf, one could evaluate the 

third and fourth moments of this statistic (under the previously discussed 

conditional randomization) and check whether a3 and a4 are re~sonably close 

to O and 3, respectively. Since the determinati~n of thes& moments would 
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involve an enormous amount of algebra, it was decided to use other 

means, obtaining one sampling distribution by complete enumeration and 

another by emperical means. 

Example 1 

In this example the exact sampling distribution of sf will be 

obtained by enumeration for the special case where n1 = n2 = 5 and where 

the u {sand u2's are paired in the following fashion. 

Ul 1 2 3 4 5 6 7 8 9 10 

8 3 10 7 6 5 4 9 l 2 

In this arrangement the correlation between the u1's and u2 •s is p = -0.50 

and this dependence will be preserved in the conditional randomization in 

which 5 of the above pairs will be assigned at random (with equal proba• 

bilities) to population 1r1 and the remaining pairs assigned to population 

Since there are (AO)= 252 ways in which 5 of the pairs can be 

assigned to pupulation 1r1, the exact sampling distribution of sf is obtain-

ed in this example by actually enumerating these cases and calculating the 
2 corresponding values of s1• The result is shown, grouped, in the histo-

gram of Figure 1. 
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3 6 9 12 24 

Figure l. Distribution of sf for n1= n;z= 5. 

It is apparent from Figure 1 that, for n1= n~ 5 and the given 

matching, the sampling distribution of sf is highly skewed and it would 

hardly seem reasonable to approximate it with a normal curve. In order 
2 

to investigate whether the sampling distribution of S1 might be closer 

to a normal curve when n1 and n2 are larger than 5, a second example was 

worked out. 

Example 2 
2 In this example the sampling distribution of s1 will be in-

vestigated for n1= n2= 10 with the following matching of the u1•s and 

u 'sa 2 
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Ul 1 2 3 , 4 5 6 7 8 9 10 

u2 2 11 1 12 4 14 5 7 3 13 

"1 I 11 12 13 14 15 16 17 18 19 20 

9 8 18 6 19 20 10 16 17 15 u2 

In this arrangement the correlation between the u1•s and u2 •s is 

p = 0.63 and this dependence will be preserved in the conditional 

randomization in which 10 of the above pairs will be assigned at 

random (with equal probabilities) to population rr1 and the remain-

ing pairs assigned to population rr2 • 

Since there are (18) = 184,756 cases to be enumerated, it 

was decided to use a Monte Carlo method instead of a complete enumera-

tion. One hundred random samples yielded the values of sf shown in 

the distribution of Figure 2. 

frequency 

70 

60 

50 

40 

30 

20 

10 

t,---, 

0 --,,,...--:2~J~~:--~~~--,,~--i:,~~'l'I:-~ 

Figure 2. Distribution of Sf for n1 = n2 = 10 
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It is clear from Fi~ure 2 that in this second example the 

sampling distribution of sf is again hiqhly skewed and that a normal 

curve approximation would be quite unreasonable. 

It was suggested that it might, perhaps, be fruitful to ad-

just sf (multiplying by a constant) so that its range of values will 

be limited to the interval from Oto 1 and then approximate its sampl-

ing distribution with a Beta-distribution. The difficulty posed by 

2 this approach is that the maximum value of S1, by which one would have 

to divide, depends on the matching of the u1's and u2's and, hence, 

cannot be given in a general form. Of course, the maximum value of SI 
could be found in any given example, but this would generally entail 

an enormous amount of work. It is for this reason that the Beta-ap-o 

proximation will not be used. 
2 

Since s1 is by definition limited to positive real values, it 

would perhaps seem reasonable to approximate its sampling distribution 

with a garn.~a distribution whose parameters could be obtained by equating 
2 a2 2 suitable expressions involving these parameters with E(S1) and S1. In 

view of the fact that this procedure would ~ntail considerable computa-

tions and that, furthermore, tables of gamma distributions are not 

readily available to most research workers, it will be suggested to use 

a special kind of gamma distribution, namely, the X 2 distribution. A 

heuristic justification for the use of such an approximation lies in the 

fact that sf is the sum of two squares which, individually, are linear 

functions of rank sums. 
2 In order to approximate the sampling distribution of s1 with a 
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a · 2 
X distribution, it will be necessary to adjust s1, namely, to multiply 

it by a constant k, such that the variance of kSf equals twice the ex-

pectation of kS. Since the variance of kSi is k20;f and the expecta-

tion of ksf is kE(Si), the above condition yields 

or 

k.20'.2 
52 

l 

kE(Sf) 
= 2 

2E(Sf) 
k = o2 

sf 

(2.5.1) 

(2.5.2) 

.a Since the number of degrees of freedom of a X distribution equals its 

expectation, it will be proposed to approximate the sampling distribution 

of the modified statistic 
2 2E(Sf) 2 

kS1 = s1 
022 
S1 

by me,,ns of a X 2 distribution having 

2 2 [E(Sf ))2 
kE(S 1 ) = ----

022 
51 

degrees of freedom. In order to use a 

(2.5.3) 

(2.5.4) 

a X table in t~sting the original 

hypothesis (2.1.1) against the specified alternative hypothesis, one can 

either be conservative and use the smalles .. "'"flt. ~er greater than or equal to 

2 [r.(SI)]a 

0~2 
l 

for the number of degrees of freedom, or interpolate 

linearly for fractional degrees of freedom [ 9 ]. 
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2 In example 1, n1= n2= 5 and, therefore, from (2.4.6), E(S1} = 

_..a_(2n+l) = 7-1.... U3ing the ~atching of the u1•s and the u2•s of this 
3 3 

example, it can be shown that 

Since the tables of appendix B yield 

a00 = 830.496 

a11, 11 = 0.008 

substitution into (2.4.8) give~ 

mation discu~sed above, 

a2 = sf 43.1. According to the approxi-

is treated as if it had a X2 distribution with 

2 [ E(Si)] 2 
= 2.49 degrees of freedom. 

Using the smallest integer greater than or equal to 2.49, namely 3, tho 

x2 table yields, for a level of significance of 0.05, a critical value 

of x~ = 7.81. Hence, if the approximation were good, 5 per cent of .05 
U:e values of 0.34SI should exceed 7 .81 or, in other words, 5 per cent 

2 of the values of Sl should exceed 7.81 = 22.07. 
0.34 
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In the actual enumeration of the 252 cases it was found that 14 exceed 

22.97 or 5.6 per cent. This implies that in Exa~ple 1 the X2 criterion 

outlined above provides a very close approximation for a 0.05 test of 

significance. 
2 In example 2, n1= n2= 10 and, therefore, from {2.4.6) E(S1) = 

2 {2n+l) = 14. 3 On the basis of the matching of the u1•s and the 

u2 •s of this example, it can be shown that 

All= 2626 A12 = 45032 

A21 = 40528 A22 = 602,874 

Since the t.1bles of Appendix D yield 

a00 = 2394.03294 a12 = 45032 

a11,11 = 0.000446 

2 substitution into (2.4.8) gives 052 = 323.2. Hence, the sampling 
l 

distribution of 

kS~: 2(14) 
323.2 

will be approximated with a X2 distribution having 2(14] 2 = 1.21 
323.2 

degrees of freedom. Using the smallest integer greater than or equal 
2 to 1.21, namely 2, the X tables yield, for a level of significance of 

0.05, a critical value of X !05 = 5.99. Hence, if the approximation were 
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good, 5 per cent of the values of 0.0866S~ shuuld exceed 5.99 or, in 

other words, 5 per cent of the valuas of S~ should exceed 5.99 = 69.17. 
0.0866 

In the experimental sampling distribution obtained in this example, 4 of 
2 the 100 values of s1 or 4 per cent exceeded 69.17. In view of the fact 

that this experimental distribution was based only on 100 samples, the 

results are not conclusive, but they certainly provide further support 

for the X2 approximation of the sampling distribution. {Had the inter-

polated X2-value been used in this example, the percentage of values 

exceeding the critical value would have been 8 per cent.) 

2.6 An Asvmptotic Result 

The purpose of this section is to evalu<1te the number of degrees 

of freedo:n given by (2.5.4) when n = n1 = n2 becomes large and when the 

dependence between the u1•s and u2's is such that 

A11 = 2 .,. o(!.) 
7 n 

l 
A22 = ~ + 0(-) 

- -; n 
n5 

(2.6.1) 

{2.6.2) 

(2.6.3) 

(2.6.4) 

These four equations correspond to the case when there is a very weak 

correlation between the u1•s and u2 •s, in fact, they were obtained by 
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substituting 2nE(uI)E(u~) for Ars and then letting n become large. 

Using (2.4.6), it follows immediately that when n ~ecomes 

infinite, the approaches ....i... Also, using (2.4.18), 
n 3 

E(S~) 

(2.4.19), (2.4.20), (2.4.21) end (2.4.22) together with the above con-

ditions on the Ars• it can be shown that 

aoo , l 
~ = ..ls?Q + o(_) 

n 9 n 

a11A11 1 
2 = -32 + 0(-) 

n n 

8 1~12 = a21A21 = 64 + o(.L) 
n2 -n2 3n n2 

0(1 ) 
~ 

Substituting all these values into (2.4.8) yields in the limit 

oa sf Um ---= n2 
16 
9 

and the formula for the n~~ber of degrees of freedom becomes 

2 [E(S 2 )] 2 
2 (E(S2 ))2 4 :l..: 2(3) 2 

lim l , = Um o = n~oo aa n~oo a.z. 16 52 S1 ~ 1 
~ 

(2.6.7} 

(2.6 .a) 

(2.6.11) 
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In the special case discussed above, (2.6.5), {2.6.6) and 

(2.6.9} equal ~. -32 and 16, respectively, in the limit, while 
9 

(2.6.7) and (2.6.8) go to zero. This implies here that among the Ars• 
2 the variance of S1 will depend mainly on A11• This parameter is 

functionally related to the correlation coefficient of the u1•s and 

u2 •s and one can write 

p = 6A11- 3n(2n+l) 2 

n(2n+ 1) (2n-l) 

It follows that (2.6.1) is equivalent to 

l 
p = 0(-) n 

(2.6.12) 

or, in other words, that the above argument applies only when the cor-

relation between the u1•s and u2•s is very weak. 
2 2.7 A Rank An3loque of Wald•s Modified T -Statist~ 

The type of problem treated in this chapter can, in the para-
a metric case, be handled by the Hotelling T -statistic provided• of course• 

that the assumption of normality and equal variance-covarianca mJtrices 

can be met. 
2 To construct an analogue to the T -statistic one could use ranks 

instead of the act~al observations, obtaining ~n alternative to the Sf-
statistic suggested in this chapter. For reasons of simplicity, Wald•s 

[ 8 ] modification of r'2 namely, 

(2.7.1) 



will be used, where 

- -1 N 
X'i = N z xik 

k=l 
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(2.7.2) 

(2.7.3) 

(2.7.4) 

a a and it has b·.,en shown that T' is a monotonic function of T • Analogous 

to (2.7.1), one can now use ranks and write 

where, 

Putting, 

2 2 2 
S2 = Z }: A-ij ('tr. -up (ii .-u !) 

j=l 1:1 1 J J 

N 
c - N z (u .ij )2 = N2 {N+l} 
22 - (N-1 )n1 n2 k=l · 2k 2 12n n 

1 2 

N 
cl2 = N I: (u1k-U1) (u2k-U2) 

(N-l)n 1n2 k=l 

:;:: 

2 N(N+l} 
2 

(2.7.5) 

(2.7.6) 

(2.7.7) 

(2.7.8) 

(2.7.9) 

(2.1.10) 
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equation (2. 7 .9) can b? written 

Now, 

1 

-12Bu 
~;(N2-l) 

and omitting the multiplicative constant, let 

1 
-12911 

lJ(N2-l) 

1 

-12811 
N(~2-l} 

l 

(2.7.U) 

(2. 7 .12) 

(2.7.13} 

Using this matrix instend of A , one can now define a third statistic 

2 2 2 J.. .. - - -S3= .E ~ ~,..ij(u -u•} (uj-uj•) 
j=l i=l i i 

(2.7.14) 

so that 

(2.7.15) 

It should be noted that if in (2.7.14) the cross-product term is omitted, 
2 the formula reduces to that of s1 • 

The ncan and vaTiance of S~ may be found by the use of methods 

like those employed in Appendix A. The results are 

(N+ l (N-1 )2n n 
l 2 

(2.7.16) 
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and 

(2.7.17) 

where A11,A12, A21 and A22 are the parameters defined in (2.4.14), 

(2.4,15), (2.4,16) and (2.4,17), B11 is defined in (2.7.10), and the 

coefficients b00 , b11• b12• b22, and b11,11 are functions of n1, n2 and 

B11• Explicitly, 

+ 

4 
576Bn + 

2 2 
8H Bu 

2 2 a 2 + nl (nl-1 )N(N+l) [9nl (N+l) -6nl (N+l) (2N+l) + (2N+l) ] 

36(N-l) 

+ n1(n 1-l)(n 1-2)N(N+l) 2 (3N+2) [(2N+l)-3n 1(N+l)] 
36(N-2) 

+ nl (ni-1 )(n 1-2 )(n 1-3 )N(N+l )2 (9N2 (N+l )2-4(2N+l )_(3N2+N-l)) J 
l44(N-l )(r~2}{t~3) 

48r I 1 
N(N2-l) 

+ n1(n1-l)(n 1-2)(n 1-3)N2(N+l)2 

24(N-3) 

+ nf(N+l) 3[N(l3ni-1Bn1+6) + (5nf-2n 1-4)] l 
16 ·J 

{2.7.18) 
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and 

bu = tau (2.7.19) 

(2.7.20) 

(2.7.21) 

bu ,11 = tau ,11 (2.7.22) 

where, 

(2.7.23) 

Although the sj-statistic may provide a slight advantage over 
2 

the sf-statistic from the viewpoint of power, the SI-statistic has the 

very definite advantage that its first two moments are much easier to 
2 find. It is for this reason that the Si-statistic and the X z approxi-

mation are suggested as a criterion for testing hypothesis (2.1.1) 

against the alternative (2.1.2). In view of the results of Section 2.6. 

it is of interest to note that it has been shown that the distribution 
2 2 of T' 2 • for which S2 and S3 are rank analogues, i~ asymptotically~ 2 

with 2 degrees of freedom. 



-28-

3. MUi.TIVARIATE AND MULTI-POPULt\TIO~J EXTENSIONS 

3.1 Introduction 
2 In this chapter the method of Section 2.3, the s1-statistic, 

will be generalized first to the multivariate case for two populations. 

This problem is considered in Section 3.2, where a statistic, sf(k,2) 
2 is defined analogous to s1, as the square of the Euclid~an distance in 

the k-dimensional rank space. 

In Section 3.3, the method of Section 2.3 is extended to the 

case where there are p bivariate populations. The test 5tatistic pro-. 

posed here, sf(2,p), is the sum of the squares of the Euclidean distances 

. between all pairs of centroids in the bivariate rank space. The exten-

sion top k-variate populations is discussed briefly in Section 3.4. 

3.2 The sf(k 12) - Statistic 

Suppose there are n1 k-tuplets of observations Cx11,x2i.t••,xk1) 
• • 

1:1,2, ••• , and n1, from population 1r1, and n2 k-tuplets of observations 

furthermore, that the N values x1i are ranked jointly, receiving ranks 

that are written symbolically as u and u' depending on whether they be-

long to population ~l or 1r2• The observations x21 , x3i,•••• and xki 

are ranked in a similar fashion and, in general, uji stands for the rank 

of an observation on the jth variable if it belongs to population ~1, 

while uji stands for the rank of an observation on the jth variable if 

· it belongs to population ~2• 



-29-

Using the means uj and uj as defined in (2.3.2), the Euclidean 

distance between (U1,rr2, ••• ,uk) and (ui,u2, ... ,uJ) is 
k 

si (k,2) = ~ (uj-uJ)' 
j:l 

(3.2.1) 

Using (2.3.3), this squared distance can be rewritten in the form 

analogous to (2.3.6). 

_n_1_( N_+_l ) )2 
2 

(3.2.2) 

The derivation of the first two moments of sf{k,2) is es-

sentially the same, though scmewhat more tedious, as the derivation of 
2 these moments for S1• 

It can easily be shown that 

(3.2.3) 

and that for the special case where n1=n~n, this formula reduces to 

E [sf(k,2)] = ~ (2n+l) 
2 The variance of s1(k,2) is of the form 

a;f (k;2) =Coo+ c11[A11,12 + A11,13 + •• +A11,{k-l)k] 

+ C12[A12,12 + Al2,13 + ••• +Al2,(k-l)k] 

(3.2.5) 



where, 

c00 = kN4(N+lt [N3(sn 1-2) + N2 (-10n~ + 9n -2) 
240n3n • l l 2 
· 3 2 3 

+ N(5n1- 14n1 + 2n1) + 7n1] 

+ k(k-l)N 4(N+l )2 •• [N5(19n1-22) 
144(N-l) (N-2) (N-3)nin~ 

+ N4 (-38nf + 74"J,-36) + N3(19nf-104nf+ 163n1-18) 

3 ~ 3 2 3 
+ N2 (52n1- 254nf ":'" 108n1 + 4)+ 4N(l27n1-ison 1-4n 1)+90n] 

- k 2N'1(n+l)2 

144n2n2 
l 2 

and ell• C12• c22 and c11 , 11 are• respectively, the came as a11, a12• 

a22 and a11,11 as defined in (2.4.10), {2.4.11), (2.4.12) and {2.4.13). 

The parameters All ,ij, A12,ij, A2l ,ij are aa defirn,~d in (2.4.14) through 

{2.4.17) with the second pair of subscripts referring t,·; the variables. 

For example, 
N 

A11 12 = L u11u21 
' i=l 

{3.2.7) 

N 
All 13 = l: u11u31 

• i=l 
(3.2.8) 

N 2 
A12,23 = l: u21u31 

. i=l 
(3.2.9) 

. 
In the special case where n1 = n2 = n, the coefficients c11, 

c12, c22 and c11,11 of {3.2.6) are the same as in {2.4.19) through 

(2.4.22) and c00 reduces to the followings 
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c = k(2n+l) (10n2-n-4) _ k2 (2n+l) 2 
00 15n 9 

+ k(k-1) (2n+l) 2 (38n2 + 21n + 4} 
9n(2n-3) 

(3,2.10) 

Similar to Section 2.1, the hypothesis to be tested is 

F1Cx1,x2••••,xk); F2(x1,x2,•••,xk) 

and the alternative hypothesis is 

F1{x1,x2,••••xk) i F2(x1,x21•••,xk) 

where F1 and F2 are continuous distribution functions, identical except 

possibly in location parameters. It is suggested that an approximate 

test of the hypothesis be performed by approximating the sampling dis-o 

tribution of S~(k,2) with a X2 distribution with the number of degrees 

of freedom being the smallest integer greater than 2[E5~(k,2)] 2 
• 

When the pairwise dependence between the Ui'S and Uj'S is weak 

and the parameters are as defined in (2.6,1) through (2.6,4) 1 it follows 
E[S21(k,2)] · that when n = n1 = n2 becomes large, approaches ~ • 

n 3 

Also, the coefficients c11, c12, c22 and c11, 11 become equal to the 

expressions given in (2.6.6) through (2.6.9) and (3.2.10) becomes 

Substituting these Values into (3,2,5) yields in the limit 

' 0St (k 12) 
Um 
n~ro = .J!L 

9 

(3.2.11) 

(3.2.12) 
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and the formula for the number of degrees of freedom becomes 

2 2 2 2 

Um 2[ES1 (k,2)] Um 2 cr[s1 ~k .2}]] 
= n-co 0 2 2 (k,2} n-H':D 02 

s1 sf (k,2) 

na 
2(2k) 2 

= 3 =k (3.2.13) 
8k 
9 

Consider p bivariate populations rr1, 1r2,.~.1Tp having unknown 

distribution functions that are ass~~ed tQ be identical except possibly 

in location parameters. Suppose there are n1 pairs of observatio~s 

Cx1n1+1•X2n1+1), ••• ,(x1nl+n 2•x2nl+n2) from populations TT2 , etc., and np 

p irs of obser;rations (x1n1 +n2+ •• +np-l +1,x1n1+n2+ ••• +np-l +l )·, .. •, 

th3t the N values x11 are ranked jointly, receiving ranks that are written 

symoclically as u<fJ, u<fJ, ... , u<if dep~nding on whether they belong to 

po~ulation 1r1, TT~••••• or TT. Similarly, the ranks for the observations "' p 

x2i are u~f? u<~{,••••u~f) depending on whether they belong to population 
. ' 

1T1,11'2••••• or 11'p• 

The test statistic proposed here, sf(2,p), is the sum of 

squares of the Euclidean distances betwee:·, all pairs of centroids in the 
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bivariate rank space. Using the means u1r) and u~r) as defined in 

(2.3.2), the Euclidean distances between the pair. (up? ull)), 
(-u(2 ) -u(2 )) (-u(p) ~tJ(p)) is 

1 ' 2 ,.... l ' 2 

. p s-1 2 ( ) ( ) s2 (2,p) = Z Z Z (u r -u s )2 
1 s=2 r=l i=l 

(3.3.l) 

and by using (2.3.3), it follow& that 

(3.3.2) 

The derivation of the first two moments of sf(2,p) is es-

sentially the same, though more cowplicated, as the darivation of these 
2 moments for S1• 

Using the results of Appendix A, it can be shown that 

p s-1 
Z L 

s-2 ~=l 

n+n r s (3.3.3) 

and in the special case where n=n1=n2= ••• =np• this formula reduces to 

2 p2 (p-l)(np+l) 
E[S1(2,p)] = --- 6---

(3.3.4) 

The derivation of the variance of sfc2,p) is similar to that of sf 
given in (2.4.8), but it will not be given here. 

2 
3.4 ~1,k 1p)-~tatistic 

The test statistic, S~(k,p), proposed here is a direct general-
2 2 2 

ization of the statistics, S1; S1(k,2) and S1(2,p) discussed in previous 

sections. It is the sum of squares of the Euclidean distances between 
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all pairs of centroids in the k-dimensional rank space. It can be 

written as 

2(k ) e s;l ~(-ui(r)_-ui(s))a Sl ,P = ~ " ~ 
S:2 r:l i=l 

(3.4.l) 

and using (2.3.3), it follows that 

(3.4.2) 

The first two moments of this statistic could be derived by 

employing the methods of Appendix A. However, due to extensive alge-

braic complications, the variance of S~(k,p) will not be given here. 

It can be shown that 

2 p s-1 
E[S1(k,p)] = k~(N+ll }:; i:: 

12 s=2 r=l 

E[Sf(k,p)] = kpa(p-l)(np+l) 
12 

(3.4.3) 

(3.4.4) 

The general case has not been investigated in any extensive detail. 
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4. DISCRIMINANT ANALYSIS OF RA~!KED OBSrRVATIONS 

4.1 Introduction 

When multivariate mensurements have been obtained on two or 

more populations, it is often of interest to consider certain linear 

functions of these measurements in order to discriminate between the 

populations. The main objective of linear discriminant analysis is 

to find a particula- li~P.~r fur~tion 

(4.1.1) 

w ich provides optim~~ discrimination in the sense that the quantity 
_ _ 2 n1 

G = (z 1 - z2 )2/ ~ L (z 1j.zi)a (4.1.2) 
i=l j=l 

is maximized with respect to the IS• Here xpij is the p th observation on 

the jth variable in the ih i population, and 

- - - (4.1.3) 2 i = Ai xli + "- 2 x2i + • • • +t,. k xki 

In the treatment of this theory it is generally assumed that 

the variates have multivariate normal distributions with equal disper-

sion matrices. Some general discussions of discriminant analysis may 

be found in references [ 10] through [ 18 ]. 

The purpose of this chapter is to present an alternative ap-

proach to the proU ~m considered in Chapters 2 and 3. It is proposed 

that the original measurements are first ranked as in Chapter 3,namely, 

that the values obtained for the different populations are ranked jointly 

for each individual variable. The method of discriminant analysis is 

then applied to these ranks and the resulting z's are reranked. 
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In Sectio; s 4.2 and 4.3 methods are derived for simplifying 

the calculations of the "'A.'s when dealing with ranked data. In Section 

4.4 it will be investigated whether it is reasonable to apply a Mann-

Whitney U-test (or a linear function thereof) to the rankings obtained 

for the Z's. 

4.2 The Bivariate case 

Using the same notation as before, let u11 and u21 denote 

the ranks assigned to x1i and x21 if these observations belong to 

population 1r1, and let uii and u2i denote the ranks of these same 

observations if they belong to population rr2 • 

If the sample points in the two-dimensional rank space are 

projected onto a vector giving maximum discrimination in the sense of 

maximizing (4.1.1) and reranking along this vector, the problem is 

reduced to the analysis of one-dimensional ranks. The purpose of this 

section is to obtain simplified formulas for the components of the 

vector providing optimum discrimination. 

As shown in [ 18 ], the maximization of (4.1.1) gives rise 

to the following equationsa 

where 

""-15 ll + ""-25 12 = cd1 

""-l s21 + ""-2522 = cd2 

(4.2.1) 

(4.2.2) 

(4.2.3) 
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di = u1-u! . l 
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(4.2.4) 

(4.2.5) 

Recalling th 1 t the sum a~d sum of squares of the first N 

integers are N(N+l) and tI(H+l ){2:J+l} , respectively, the above ex-
2 6 

pressions can be rewritten as 

and 

N 
slj = z u u - li (u u• + u u') 

k=l ik jk 2 1 1 2 2 

d - 2- N+l 1 - ui- - 2 

(4.2.6) 

(4.2.8) 

Substituting these values into equations (4.2.1) and solvlng simultane-

ously for i\.1 andi'..2, one obtains, after simplification, 

i\. oe d [ 2a - N ( N+ l ) a] - d [ 2 ~ u u - N ( N+ 1 ) a] 
l 1 2 2 k~l lk 2k 2 

(4.2.10) 

wher, a denotes the sum of squares of the first N integers. 
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The desired vector thus has direction numbers whose ratio is 

n .a 
4 L µlku2k - N(N+l) 

[ k-1 ] 
4a - N(N+l)2 {4.2.11) = n 

4 }: u1k1,12k - N(N+1)2 
[ k=l ] 

4a - N(N+l)2 

To simplify this further, it can be shown that the expression within 

the brackets of (4.2.11) is the rank corrrlation coefficient, r'. 

Therefore, the ratio of the direction numbers of the vector is 

A.2 _ dz-r'd1 (4.2.12) 
~ - d1-r•d 2 

This result was previously obtained by Dr. Frank Wilcoxon as communi-

cated to the author in personal correspondence. 

4.3 The Multivariate 'F.xtension 

In this section the method of Section 4.2 is generalized to 

the k-variate case for two populations. Simplified formulas are obtain-

ed for the components of a vector in the k-dimensional rank space, which 

provides optimum discrimination between the two populations. 

The equations to be considered in the multi variate case are 

A.l 6 11 +t,. 2Sl2 +. • .+ A. k6 lk = cdl 

A.l 621 + A.2622 +. • .+ A. k62k = cd2 

A. lSkl +A. 25k2 + ••• + A.kSkk = cdk (4,3.l) 

Solving these equations for the A.t and substituting the results 
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shown in (4~2.6), (4.2.7) and (4.2.8), it can be shown that 

k 
1'. i oe. z cijdij 

j=l 
(4.3.2) 

where llc1jll is the matrix of cofactors of llr{j II , the matrix of rank 

correlation coefficients 

4.4 The ~ilcoxon Method 

The original purpose for reranking the data after they have 

been projected on a vector providing maximum discrimination was to per-

form a test of the null hypothesis that the samples came from popula-

tions with identical distribution functions against the alternative that 

there may be differences in means. 

In the bivariate two population case, tr. Frank Wilcoxon 

suggests that this test be based on the rank sum obtained along the 

vector for either population. He proposes to calculate the expectation 
n1 (N+l) and variance of this rank sum by means of the formulas and 

2 

, the usual expressions for the mean and varianc~ of rank 

sums. Then he proposes to use a normal curve ;pproximation to the ois-

tr ibution of the rar1k sums or a X 2 approximation to the square of the 

difference between the observed and the expected ~ank sum divided by 

the variance. 

It is felt that this test of significance might be reasonable 

if the direction of the vector were chosen at random, but not if the 
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vector provides optimum discrimination. Clearly, the vector is chosen 

to maximize, among other things, the square of the distance between the 

means and hence it would hardly seem reasonable to use the expectaticn 

and variance for ordinary rank sums. 

To investigate the reasonableness of the above method suggested 
I 

by Wilcoxon, the exact disttibution of the rank sum was obtained by com-

plete enumeration in the special bivariate two population case, where 

Table VI. 

Probabilities of the Rank Sum for Population ir 1 

Rank Sum for Probability 
Population 1r1 

3 .347 
4 .097 
5 .111 
6 .097 
7 .347 

It is of interest to note the U-shape of this distribution 

caused by the fact that the ranked data are projected on a vecto~ provid-

ing optimum discrimination, thus giving ranks 3 and 7 very high proba-

bilities. The variance of the above distribution is 2.96 which is much 

larger than 1.67, the value obtained by substituting n1 = n2 = 2 into 

the variance formula given above. 

This illustration supports the contention that it is quite un-

reasonable to apply the test suggested by Wilcoxon to data that have been 

reranked along a vector providing optimum discrimination. 
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v • sun.':AR v 

5.1 Summarx 

The problem consicered in this dissertation deals with two 

bivariate populations 7T'1 and 7T'2 having unknown distribution functions 

F1(x 1 ,x2 ) and F2(x1,x2 ) that are continuous and identical except pos-

sibly in location parameters. It is desired to test the null hypothesis 

against the altern,tive hypothesis that the pcpulcition distribution 

functions have different means and it cannot be assumed that the 

variables x1 and x2 are statistically independent. 
2 

A test statistic, S1 , based on the Euclidean distance between 

the centroids of the ranks belonging to bivariate samples from 7T'1 and 

7T'2 is proposed to test the above hypothesis. The first two moments of 

Sf are derived under a conditional randomization procedure which retains 

the rank pairs as given in the sample. 

The exact sampling distribution of sy is unknown. However, 

it is shown in examples that. the distribution of a constant multiple 

of E(S1) divided by the variance of sy cant at least in these instances, 

be approximated with a 2 distribution with the number of degrees of 
2 2 02 freedom equal to 2[F(S 1)] divided by Sf. Tables which facilitate 

the calculation of o:f are given in Appendix B. 



As an extension, a statistic, sr(k,2), is proposed for the 

multivariate two-population case, and its first two moments are 

derived. Further, statistics are proposed for the bivariate p-

population case and .for the multivariate p-population case. Tha 

first moments are given in each case. 

An alternative approach to the solution of the above problem 

is considered in Chapter 4. In this chapter discriminant analysis is 

employed to obtain a vector which provides optimum discrimination. 

It is shown that this method is not a fruitful one for the construc-

tion of tests of significance pertaining to the original null 

hypothesis. 
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A.l Derivation of the Expectation of sf 
The expectation of sf urdor the conditional randomization 

of Section 2.4 can be written: 

2N2 ~l 2 n1 nf(N+l) 2] 
= _ [r( l: u1k) - n1 (~1+1 )r( ~ u1k) + -- 4--

n2n2 k=l k=l 1 2 

(A~l.l) 

where F(u) is the average of the first N integers, E(u2 ) is the average of 

the squares of the first N integers, and E(uu•) is the average of the pro-

ducts formed by all possible pairs of integers selected (without replace-

ment) from the first 1~ integers. 

Using.the well-krnwn fact that the sum a~d the sum of squares 

of the first N integers are 

it follows that 

and 

E(u) = .Jl!L 
2 

N(n+l) 
2 

(N-1-l ){2N+l) 
b 

and NCN+l H2r;+1) 6 , respect.ively, 

(A.1.2) 

{A.1.3) 
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To evaluate E(uu'), note that 

(1+2+ •• +N)2 ::: ~it~~+-ll(2N+l} + N(N-1 )E(uu•) 
6 

and it follows that 

E(uu') = .lN+l l{3H+2) 
12 

(A.1.4) 

Substituting (A.1.2), (A.1.3) ~nd (A.1.4) into (A.1.1) gives, after 

simplification, 

2 A.2 Derivation of the Variance of s1 

(A.1.5) 

2 To obtain the variance of s1 it will be necessary to evaluate 
4 E(S1) under the conditional randomization of Section 2.4 and substitute 

the result together with (A.1.5) into (2.4.7). Using (2.3.6)• the ex-
4 pectation of s1 can be written, 

(A.2.1) 

and after simplification this reduced toa 
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E(Sf) = ~ 
n n 

l 2 

+ 3n1(n1-l)E(ua(u•)z) + 6n1(n1-l)(n 1-2)E(uzu•u••) 

+ n1(n1-l)(n 1-2)(n 1-3)E(uu'u''u''')-2n~(N+l)E(u 3) 

-6n2(n -l)(H+l)E(u 2u'}+n (n -l}Eu 2(v•)2 ) 
l l l 1 

-2n2 (n -1 ){n -2)(N+l )E(uu •u•' )+2n3(N+l )2E(u2 ) 1 l l . l 

+ 2ny(n 1-l)(N+l)2E(uu') - ;1f{tJ+l)3E(u) 

n4(".!+1)4 3 3 · + 1 ~ + n1(N+l)2E(uv)+n1(n1-l)(N+1) 2E(uv') 

-n:(N+l )E(u2v ) ... ni(fl+l )E(uv2 )-ni(n 1-l)(N+l )E(u2v') 

-nf(n 1-l )(N+l }E(u 'v 2 )-2nf (n 1-1 )(N+l )E(uu 'v) 

-2ni(n 1-l )(N+l )r:(uvv' )-n~(n1-1 ){n1-2)(N+l )E(uu'v'') 

+ n1(n1-l)(n 1-2)E(uutv'') 2 )+2n1(n1-t)E(u 2vv') 

+ n1(n1-l)(n 1-2}E(u2v•v••)+2n1(n1-1)E(uvu'v') 

+ 4n1(n1-l)(n 1-2)E(uvu'v'') + 2n1(n1-l)E(uu'v 2 ) 

(A.2.2) 

where E(u), E(u2 ), and E(uu•) are as defined in Section A.l. Also 

E(u1) is the average of the 1th power of the first N integers, E(uzu•) 

is the average of the products u2u' formed by all possible pairs of 

integer_s, u and u' 1 seledted (without replacement) from the first H 

integers, and E(uu•u••) is the average of the products uu•u•• formed 
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by all possible triplets of integers u, u' and u'', selected (without 

replacement) from the first N integers. 2 2 Quantities such as E(u (u') ), 

E(u3u•), E(uu'u''u'''), etc., are defined in a similar fashion. 

Expectations involving both u's and v's are defined as follows, 

E(uv) is the average of all products uv preserving the matching of the 

conditional randomization and selecting u from the first N integers. 

Expectations involving primed variables, for example, E(uv') stand for 

the average of all products uv', where u and v' are selected individually 

from a~ong the first N integers, but v• is not the particular v that is 

matched with u. Similarly, E(u2v'v'') is the average of all products 

u2v•v••, where u is selected from the first N integers, v' and v'' are 

a pair of distinct integers selected without replacement from the first 

N integers, and neither v' nor v'' is the particular v that is paired 

with the given u in the matching of the conditional randomization. All 

other expectations are defined in an identical manner. 

Using the results given in (A.1.2), (A.1.3) and (A.1.4) along 

with the fact that the sums of the cubes and the fourth power of the 
N2(N+l)2 first N integers are~----------

ly, it follows that 

and 

E(u3) = N(N+i)2 

4 

4 
and N(N+l)(2N+l)(3N2+3N-l), respective-

30 

(A.2.3) 

{N+l)(2N+l)(3N.?.t.3N-l} 
30 

(A.2.4) 

In order to evalu~te E(u2u') and E(uu'u'') consider the follow-
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inq equations: 

(l 2+2 2+ •• +N2 ){1+2+ •• +N)=NE(u3 )+N(.N-1 )E{u2 u') 

( 1+2+ •• +N )3=NE{u3 )+3N(N-l )E(u2u' )+N(N-1 )(N-2 )E{uu' u' •) 

These can be rewritten in the following forms 

N2(N+l)2(2N+l) : NF.(u3 ) + N(N-l)f:(uZ'u') 
6 

and 
3 3 

N (N+l) = NE(u3) + 3N(N-l)E(u2u•) 
8 

+ N(N-l)(N-2)E(uu'u'') 

{:\.2.5) 

(A .2.6) 

Substituting (A.2.3) and solving simultaneously, these equations yield 

and 

E{u2u•): N(N+l)2 (A 2 7) 6 • • 

E(uu'u'') = N(N+l) a 
8 

(A.2.8) 

Similnrly, the equations 

and 

(13+23+ •• +N3)(1+2+.,+N) = NE{u4 )+N{N-l)E{u3u•) 

{1•2+1•3+ •• +(N-l)•N)(l 2+ •• +N2 ) = N(N-l)E(u3u•) 

+ N(N-l)(N-2} E(u2u'u'') 
2 

after substituting {A.2.4), can be solved simultaneously to yield 

(A.2.9) 

and 

(A.2.10) 



-48-

Substituting (A.2.4), (A.2.9} and (A.2.10) into 

(l 2+t+ •• -+-N2 ) = IJE(u4)-+-N~N-l )E(u 2 (u • )') 

and 

(1+2+ •• +N) 4 = N'E(u4 )+4N(N-l)E(u 3u•) 

+ 3N(N-l)E(u 2 (u•)2)+6N(N-l)(N-2)E(u 2u'u'') 

+ N(N-l)(tJ-2)(N-3)E(uu•u• •u•'') 

and solving simultaneously qives 

and 

E(u2(u' )2) : (N+l )(2N+l }(2N-l )(5N+6) 
180 

E(uu•uttu•") = (N+l Hl5N 3+15N2-10N-8) 
. 240 

(A.2.11) 

(A.2.12) 

Expectations involving both u's and v's are expressed in terms 

of the parameters A11, A12, A21 and A22 as defined by (2.4.14), (2.4.15), 

(2.4.16) and (2.4.17). For example, 

E(uv) -- A11 (A 2 13) • • tJ 

A E(uv') = ...!l.. (A.2.15) 
N 

To evaluate E(uv'), note that 

(1+2+ •• +N)(l+2+ •• +N) = A11+N(N-l}E(uv') 



and it follows that 

E(uv') = N(N+l)2 • 
4(N-l) 

-~-9-

Au 
N(N-1) 

To evaluate E(uvv'), the following equation is employed1 

(1+2+ •• +N)Au= A12+ N(N-1 )E(uw•) 

It follows that 

E(uw') = {N+l)A11 -
2(N-l) N(N-1) 

Similarly, the equation 

gives 

(12+2 2+ • .+N~ )( l +2+ ~ ~+N) = A12 +N( N-1 )E( u 'v 2 ) 

E(u'v2): N(N+l)2 (2N+l) • 
12(N-l) 

A12 
N(N-1) 

(A.2.17) 

(A.2.18) 

(A.2.19) 

and the following expectations are obtained in an identical manner, 
2 

E(u2v•) = N(N+l) (2N+l) 
12(N-l) 

(N+l)A11 A21 
E(uu'v) = 2{N-l) - N(N-1} 

E( , '')- N(N+l)2 (3N+2) 
UU V - -

24(N-2) 

N{N+l)2 {3N+2) 

A21 
N(N-1) 

(N+l )Au + ' 2A21 

(A.2.20) 

(A.2.21) 

(N-l)(N-2) N(N-l){N-2) (A.2.22) 

E(uv'v'') = ----...--24(N-2) 
(N+l )Au 

- {N-1 )(N-2) + 
2A12 

N(N-l)(N-2) 

(A.2.23) 
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N(N+l)2(2N+l)2 
E(u 2 (v' ):a)=------

36(N-l) - N(N-1) 

E( , 2) _ (N+l)A12 
UU V - -

2(N-l) 
A22 

~!(N-1) 

E(uu' (v', )2) = N(N+l) 2(2rJ+l )(3N+2) 
72(N-2) 

t. 

+ 
N(N-1 )(N-2) 

E(u2vv') = (N+l )A21 
2(N-l) 

E(u:av'v',) = N(N+l) 2 (2:~+1)(3N+2) .. 
72(N-2) 

+ 2A22 
N(N-1 )(N-2) 

E(uvu•v•) = 

(N+l)A12 
(N-1 )(N-2) 

(N+l )A2l 
{N-1 )(N-2) 

N(N+l)2All A;l 

E(uvu'v'') :: 4(N-l)(N-2) .. -N(-N--1-).,...(N-_2__,)_ 

(N+l)A 12 
(N-l)(N-2) 

l 

2A2?. 
+ 

N(N-l)(N-2) 

E(uu•v• 'v' '•) = 
N(N-1 )(N-2)(N-3) 

N2(N+l )2 (2N+l }(3N 2+N-l) + 2A2 6A 
.. 11- 22 

36 

(A.2.24) 

(A.2.25) 

(A.2.26) 

(A.2.27) 

(A.2.28) 

(A.2.29) 

(A.2.30) 

(A.2.31) 

Substituting the above results into (2.4.7) and simplifying, it follows 
2 that the variance of s1 equals the expression given in (2.4.8). 



n n.,2 ~ 1 . 
3 498.8839 
4 
5 

6 
7 
8 

9 
10 
11 

12 
13 
14 

15 
16 
17 

18 
19 
20 

4 5 

567.6438 678.2456 
639.0404 730.7307 

830.4965 

APPENDIX B 

Table I. Values of a 00 

6 

829.9152 
075.6935 
955.1957 

1067.819 

7 
1025.032 
1049.391 
1112.661 

1212.079 
1343.689 

R 

1258.825 
1262.237 
1304.280 

1387.980 
1506.868 
1657.515 

9 10 
-·· - ---

1560.260 1920.040 
1517.934 182().835 
1532.370 1799.893 

1733.558 1921.823 
1700.636 1926.232 
1838.585 2050.027 

2007.651 2206.729 
2394.033 

11 

2342.660 
2175.799 
2110.281 

2120.368 
2185.189 
2292.590 

2435.773 
2611.016 
2816.442 ' <JI .... 

' 



Tabl~ I ~ontinued) 

---
nL2 12 13 14 ¥.:, 16 17 18 1 <j 20 

3 2841.363 3419.065 4089.653 4860.509 5741.249 6741.954 7873.169 9145.912 10571.626 
4 2588.112 3063.449 3608.733 4227.574 5443.714 5720.226 6607.393 7598.486 8701-.401 
5 2467.161 2876.333. 3338.210 3861.041 4448.561 5105.873 5838.306 6651.403 7550.9.20 

6 2440.563 2803.668 3212.958 3671.967 4184.412 4754.191 5350.210 6080.145 6849.077 
7 2479.477 2811;383 3182.129 3598.359 4057.694 4568.680 5130.267 5747.405 6423.392 
8 2567.555 2876.566 32'21.543 3604.615 4027.214 4494.435 5006.223 5566.172 6177.107 

9 2695.398 2986.681 331.I .031 3670.073 4065.638 4499.691 4956.642 5491.890 6054.509 
10 '2857.642 3134.424 3415.334 3750.402 4156.259 4565.365 5011.467 5496.401 6022.050 I 11 3051.277 3315.483 3609.506 3934.138 4290.421 4679.589 5103.030 5562.256 6058.883 L,1 r 
12 3274.744 3527.395 3609.196 4120.398 4462.006 4834.779 5239.698 5678.069 6151.235 
13 3768.851 4270.902 4543.242 4846.253 5179.816 5544.199 5939.933 6367.755 
14 4298.702 4586.933 4903.963 5250.087 5700.567 6106.081 6543.190 

15 4864.256 5170.263 5525.420 5868.513 6261.496 6684.522 
16 5465.483 5789.339 6141.647 6522.722 6932.997 
17 6102.359 6443.904 6813.876 7212.437 

18 0774.867 7134.179 7521.820 
19 7482.995 7860.071 
20 8226.734 



n2 
nl 3 4 5 

Table II. Values of a11 

6 7 8 9 10 

3 -17.42222 -12.28025 -9.596343 -8.035714 -7.051~46 -6.393113 -5.934705 -5.606172 
4 -9.257143 -7.4B5268 -6.391002 -5.675182 -5.185227 -4.838500 -4.587325 
5 -6.146032 ~5.284563 -4.760989 -4.302042 -4.011488 -3.797802 

6 
7 
8 

-4.552189 -4.050905 -3.695762 -3.436892 -3.244014 
-3.596404 -3.270873 -3.031202 -2.850809 

-2.964103 -2.736552 -2.563963 

11 

-5.366267 
-4.402622 
-3.638250 

-3.097979 
-2.712712 
-2.430725 

9 -2.516776 -2.378330 -2.218869 
10 
11 

12 
13 
14 

15 
16 
17 

18 
19 
20 

-2.184520 -2.056031 
-1.928458 

I 
U'I 

'f 



Table II (continued) 

n1n2 12 13 14 15 16 17 18 19 20 

3 -5.189255 -5.050333 -4.962110 -4.892612 -4.844105 -4.812367 -4.794224 -4.787248 -4.789549 
4 -4.265798 -4.164481 -4.090154 -4.036781 -3.999976 -3.976480 -3.963826 -3.960116 -3.963862 
5 -3.518059 -3.427278 -3.358987 -3.308244 -3.271143 -3.245852 -3.229447 -3.220630 -3.218153 

6 -2.9$6213 -2.912020 -2.833882 -2.783047 -2.744515 -2.712921 -2.695462 -2.681739 -2.673653 
7 -2.605678 -2.522035 -2.456391 -2.404860 -2.364580 -2.333401 -2.309678 -2.292135 -2.279767 
8 -2.326461 -2.244055 -2.178492. -2.126153 -2.084363 -2.051112 -2.024862 -2.004416 -1.988833 

9 -2.198999 -2.034366 -1.968860 -1.915451 -1.872377 -1.837460 -1.809231 -1.786548 -1.768511 
10 -1.945197 -1.872508 -1.806362 :..1.752428 -1.708242 -1.671951 -1.642131 -1.617678 -1.597722 I 

(Jl 

11 -1.826930 -1.745094 -1.678451 -1.623746 -1.578571 -1.541110 -1.509974 -1.484083 -1.462583 t 
12 -1.725328 -1.643128 -1.575900 -1.520432 -1.474351 -1.435868 -1.403611 -1.376515 -1.353740 
13 -1.560401 -1.492516 -1.436287 -1.389358 -1.349955 -1.316716 -l.288587 -1.264733 
14 -1.423915 -1.366921 -1.318762 -1.278933 -1.244815 -1.215777 -1.190987 

15 -1.309153 -1.260632 -1.219589 -1.184666 -1.154r,11 -1.129195 
16 -1.211346 -1.169547 -1.133875 -1.103273 -1.076911 
17 -1.127020 -1.090640 -1.059345 -1.032299 

lB -1.053583 -l.02163t -0.993956 
19 -0.989067 -0.960791 
20 -0.931947 



Table III.Velues of a12 

n1"2 3 4 5 6 7 8 9 10 11 

3 0.829630 0.423457 0.234057 0.133929 0.075414 0.038513 0.013834 -0.003452 -0.016019 
4 0.257143 0.162723 0.107359 0.072759 0.049858 0.033961 0.022487 0.013932 
5 0.111746 0.078874 0.057157 0.04.2234 0.031587 0.023736 0.017783 

6 o.058361 0.044032 0.033834. 0.025380 0.020783 0.016479 
7 0.034251 0.027032 0.021625 0.017495 0.014277 
8 0.021795 0.011110 0.014640 0.0l.2170 

9 0.014718 0.012299 0.010364 
10 0.010402 0.008862 t 

(JI 

11 0.007622 <f 
12 
13 
14 

15 
16 
17 

18 
19 
20 



Table III (continued) 

-
"2 

n1 12 13 14 15 16 17 18 19 20 
3 ... o.025438 -0.032679 -0.038367 -0.042918 -0.046617 -0.049666 -0.052210 -0.054355 -0.056182 
4 0.007380 0.002.246 -0.001856 -0.005189 -0.007936 -0.010567 -0.012169 -0.013822 -0.015246 
5 0.013160 0.009494 0.006535 0.004110 0.002094 0.000400 -0.001040 -0.002276 -0.003345 

6 0.013097 0.010392 0.008190 0.006374 0.004856 0.003574 0.002479 0.001535 0.000716 
7 0.011724 0.009663 0.007975 0.006575 0.005399 0.004400 0.003545 0.002806 0.002163 
8 0.010190 0.008580 0.007252 0.000145 0.005211 0.004415 0.003731 0.003139 0.002621 

9 0.008796 0.007511 0.00644S 0.005552 0.004795 0.004148 0.003590 0.003105 0.002681 I 
19 0.007601 0.006559 0.005689 0.004956 0.004391 0.003797 0.003334 0.002931 0.002577 (JI 

11 0.006595 o.005739 0.005019 0.004409 o.003aas 0.003439 0.003050 0.002817 0.002411 'i' 

12 0.005751 0.005040 0.004438 0.003925 0.003485 0.003104 0.002773 0.002483 0.002221 
13 0.004446 0.00392a 0.003503 0.003127 0.002801 0.002511 0.002267 0.002046 
14 0.003507 0.003135 0.002812 0.002531 0.002285 0.002068 0.001876 

15 0.002815 0.002536 0.0,:,2,;~:· O.C0?.07& o.oornss 0.001120 
16 0.0022;4 0.002081 0.001893 0.001726 0.001578 
17 0.001894 0.001728 0.001581 0.001450 

18 0.001582 0.001451 0.001410 
19 0.001335 0.001230 
20 O.OOU37 



"1 

3 
4 
5 

6 
7 
8 

9 
10 
11 

12 
13 
14 

15 
16 
17 

18 
19 
20 

n2 
3 

-0.118519 

4 5 

-0.052932 -0.026006 
-0.028571 -0.016272 

-0.010159 

Table IV. Values of a22 

6 7 8 9 10 

-0.013393 -0.006856 -0.003209 -0.000337 0.000.241 
-0.009760 -0.006063 -0.003835 -0.002426 -0.001499 
-0.006573 -0.004397 -0.003017 -0.002106 -0.001484 

-0.004489 -0.003145 -0.002226 -0.001649 -0.001223 
-0.002283 -0.001690 -0.001272 -0.000972 

-0.001282 -0.000987 -0.000771 

11 

t'J.001068. 
-0.000871 
-0.001046 

-0.000915 
-0.000751 
-0.000608 

-0.000775 -0.000615 -0.000493 
-0.000495 -0.000403 

-0.000331 

I 
(JI 

,i 



Table IV (continued) 

n2 
"1 12 13 14 15 16 17 18 19 20 

3 0.001590 0.001922 0.002131 0.002259 0.002331 0.002365 0.002373 0.002363 0.002341 
4 -0.000434 -0.000125 0.000098 0.000259 0.000378 0.000456 0.000529 0.000576 0.000610 
5 -0.000731 -0.000500 -0.000327 -0.000196 -0.000073 -0.000017 0.000043 0.000091 0.000129 

6 -0.000609 -0.000520 -0.000390 -0.000290 -0.000211 -0.000149 -0.000099 -0.000059 -0.0000.27 
7 -0.000586 -0.000460 -0.000363 -0.000286 -0.000225 -0.000176 -0.000136 -0.000104 -0.000077 
8 -0.000485 .0.000390 -0.000315 -0.000256 -0.000208 -0.000170 -0.000138 -0.000112 -0.000090 

9 -0.000400 -0~000327 -0.000269 -0.000222 -0.000184 -0.000154 -0.000128 -0.000101 -0.000089 • C)I 
10 -0.000330 -0.000273 -0.000228 -0.000191 -0.000160 -0.000136 -0.000115 -0.000098 -0.000083 ro 

I 
11 -0.000275 -0.000230 -0.000193 -0.000163 -0.000139 -0.000119 -0.000104 -0.000087 -0.000075 

12 -0.000230 -0.000194 -0.000164 -0.000140 -0.000120 -0.000103 -0.000091 -0.000078 -0.000034 
13 -0.000165 -0.000139 .;.o.OOOJ . .21 -0.000104 -0.000090 -0.000079 -0.000069 -0.000060 
14 -o.0·00121 -0.000104 -0.000091 -0.000079 -0.000069 -0.000061 -0.000054 -

15 -0.000091 -0.000079 -0.000009 -0.000061 -0.000054 -0.000048 
16 -0.000070 -0.000061 -0.000054 -0.000048 -0.000043 
17 -0.000054 -0.000048 -0.000043 -0.000038 

18 -0.000043 -0.000038 -0.000034 
19 .. 0.000034 -0.000031 
20 -0.000028 



n1 
n2 3 4 5 

3 0.079012 o.039699 0.023117 
4 0.021429 0.013018 
5 o.oos121 

6 
7 
8 

9 
10 
11 

12 
13 
14 

15 
16 
17 

18 
19 
20 

Table V. Values of all,11 

6 7 8 

0.014881 0.010284 0.007489 
0.008611 0.006063 0.004474 
0.005477 0.003908 0.002913 

0.003741 0.002696 0.002024 
0.001957 0.001478 

0.001122 

9 10 

0.005675 0.004438 
0.003425 0.002698 
0.002246 0.001780 

0.001570 0.001250 
0.001152 0.0:0921 
0.000878 0.000704 

0.000689 0.000553 
0.000446 

11 

0.003560 
0.002111 
0~001443 

0.001011 
· 0.000751 

C.000576 

0.000454 
0.000366 
0.000301 

I 
(JI 

'f 



Table V (continued) 

n2 
n1 12 13 14 15 16 17 18 19 20 

3 0.002915 0.002428 0.002053 0.001757 0.001520 0.001328 O.OOll69 0.001038 0.000927 
4 0.001791 0.001497 0.001270 0.001090 0.000945 o.ooos21 0.000729 0.000648 0.000579 
5 0.001191 0.000999 0.000850 0.000731 0.000635 0.000556 0.000491 0.000437 0.000391 

6 0.000843 0.000709 0.000604 0.000520 0.000452 0.000397 0.000351 0.000313 0.000280 
7 0.000624 0.000527 0.000449 0.000387 0.000337 0.000296 0.000262 0.000234 0.000:no 
8 0.000479 0.000404 0.000346 0.000299 0.000261 . 0.000557 0.000203 0.000181 0.000162 

9 0.000378 0.000320 0.000274 o.000237 0.000201 0.000182 0.000161 0.000144 0.000120 
10 0.000306 0.000259 0.000222 0.000192 0.000168 0.000148 0.000131 0.000111 0.000105 
11 0.000252 0.000214 0.000183 0.000159 0.0·)0139 0.000122 0.000109 0.000097 0.000087 I 

"' ~ 
12 0.000211 0.000179 0.000154 0.000133 0.000111 0.000103 0.000091 0.000082 0.000073 
13 0.000152 0.000131 0.000113 0.000099 o.ooooss 0.000078 0.000010 0.000063 
14 0.000112 0.000098 0.000085 0.000075 0.00006; 0.000060 0.000054 

15 0.000085 0.000074 0.000066 0.000058 0.000052 0.000047 
16 0.000065 o.oooor:..::-(l.0(:0051 0.000046 0.000041 
17 0.000051 0.000045 0.000041 0.000037 

18 0.000040 0.000036 0.000033 
19 0.000032 0.000029 
20 0.000026 
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The problem considered in this dissertation is the followings 

let 1r1 and 1r2 be two bivariate populations having unknown cumulative 

distribution functions F1(x1,x2 ) and F2(x1,x2 ), respectively. Assume 

that F1 and F2 are continuous and identical except possibly in location 

parameters. It is desired to test the null hypothesis 

against the alternative 

It cannot be assumed that the variables x1 and x2.are statistically 

independent. 

Suppose there are n1 pairs of observations (x11,x21), ••• , 

(x1~1,x2n1> from population 1T1 and n2 pairs of observations (x1n +l• 

X2n1+1), ••• ,(x1N•x2N) from population 1r2 , where N = n1 + n2• The 

x1i (i = 1,2, ••• ,N) are ranked according to magnitude, the largest be-

ing assigned rank 1 and the smallest assigned rank N. In a similar 

manner, ranks are assigned to the observations x21 (i = 1,2, ••• ,N). It 

is assumed that there are no ties in ranks. 

Let u11 and u2i denote the ranks assigned to x1i and x2i if 

these observations belong to population 1r1, and let uii and u2i denote 

the ranks of these same observations if they belong to population 1r2 • 

Since the sum of the first N integers is N(N+l) , it follows that 
2 



If the N pairs of ranks are plotted on a plane, it is likely 

that the n1 points from populotion rr1 and the n2 points from population 

1T2 will be interspersed forming a circular or elliptical Pattern under 

the assumption that F1(xl'x 2 ) and F2(xl'x 2 ) are identical. Under the 

alternative hypothesis, it is likely that there will be a segregation 
2 of the points into two groups. A test statistic, s1 is constructed to 

me~sure the extent of this segregation. 

The sf-statistic proposed here, is based on the Euclidean 

distance between the centroids of the ranks belonging to 1r1 and ?T2 , 

in particular, 

s~ <u1-ui>2 + Cu2-u2>2 
where 

N • -1 ~ • 
ui = n2 "uik 

k::nl+l 
• 

The first two moments of sf are derived under the following 

conditional randomization procedures keeping the ranks Pijired as given 

in the sample, n1 pairs are selected at random (with equal probabilities) 

from among the N = n1 + n2 pairs and assigned to population 1r1; the re-

maining n2 pairs are assigned to population 1r2• It is shown that 



and 

tt r s 
where·Ars = L ulku2k are parameters depending on the sample, and the 

k=l 

coefficients a00 • a11, a12 • a22 and a11, 11 have b,:en tabulated fo:r values 

· of n1 and n2 up to 20. 

The exact sampling distribution of S~ is unknown. However, 

it is sho•Nn that the distribution of kE(S~) • is approximately X 2 with 

2[E(Sf )] 2 

Ci~f 
degrees of freedom. 

o~f 

A rank af\alogue of ~ald's modification of Hotelling's T2 is 

given and the first two moments obtained. Also, a multivariate extension 

is considered and a statistic, sf(k,2), constructed. The exp~ctation and 

2 variance of s1(k,2) are derived. A multi-populatiun extension for the case 

of bivariate populations is given and the expectation is derived for a 
2 2 s.tatistic, s1(2,p). A statistic, s1(k,p) is constructed for the most 

general case and its expectation is given. 

An alternative approach to the problem, also investigated, is 

by means of discriminant analysis. In this case simplified formulas are 

given for the calculation of the components of a vector which provides 



optimum discrimination. It is shown that this method is not a 

fruitful one for the construction of tests of significance pertain-

ing to the original null hypothesis. 
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