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I. INTRODUCTICN

l.1 A Problem in Nonparametric Statistics

In current statistical research considerable attention is
devoted to so-called nonparametric methods. Whenever there is a lack of
information concefning the form of underlying distributions and there is
the indication that assumptions of normality cannot be met, one must employ
special kinds of techniques, Such techniques are known as nonparametric
methods since they are not concerned with testing or estimating the para-
meters of distribution functions of given types. These methods are also
called distiibution—free methods because they do not require a knowledge
of how the underlying random variables are distributed. The only assump-
tion needed for most of these methods is that the distribution functions
be continuous, a few of them requiring, furthermore, that low-crder
moments exist.,

A statistical test that requires no assumption about the form
of underlying distributions can hardly be expected to be as efficient as
one requiring such assumption. To compensate for this loss in efficiency,
nonparametric methods have the advantage of complete generality in applica-
tion. Other noteworthy advantages of nonparametric methods of statistics
are (1) computational ease and (ii) that they sometimes apply.to data
available only in ordinal form.

The development of nonparametric methods of statistics has been
very rapid during the last decade, touching almost every phase of statis-
tical activity. A common problem in practical statistics which has been

attacked by nonparametric methods is that of deciding whether several sam=



o

ples should be regarded as coming from the same population.

References [ 1 ] through [ 5 ] of the biblography present some
of the more general treatments of this problem. The purpose of tﬁis
thesis is to consider an extension of the above problem to the case of
2 k=-variate populationsy particularly, two bivariate populations.

The first approach to the generalized problem is made by means
of discriminant analysis and it is discussed in Chapter 4. Here the rank-
ed sample points are projected onto a vector giving maximum discrimination
between the two samples and the sample points are then reranked along this
vector. The problem is thus reduced to a one-dimensional situation, but
this approach is not a fruitful one since, as will be shown, the standard
one-dimensional nonparametric tests cannot be used,

An alternative approach, discussed in Chapters 2 and 3, is based
on the (Euclidean or more general) distance between the centroids of the
ranked samples. Several methods are suggested for constructing approximate

tests of significance on the basis of such a distance.



~6=

2. A BIVARIATE RANK=SUM TEST

2.1 Introduction

There are many problems of statistical inference in which one
is unable to assume the functional form of population distributions. Many
of these problems are such that the strongest assumption which can reason-
ably be made is continuity of the cumulative distribution functions of the
populations. Problems of this type, in which the distribution functions
are arbitrary within a broad class, come within the framework of nonpara=
metric statistics as defined in Chapter 1.

The following problem belongs to the above class and it was
originally suggested to the author by Doctor Frank Wilcoxon. Let m and

T, be two bivariate populations having unknown cumulative distribution
functions Fj(x),xp) and Fp{x;sx5)s respectively. Assume that F} and Fp

are continuous, and identical except possibly in location parameter. It
is desired to test the null hypothesis

Hot Fy(x)a%5) = Folx)9x5) (2.1.1)
against the alternative hypotﬁesis that the population distribution
functions have different means and it cannot be assumed that the variables
Xy and X, are statistically independent.

For example, it may be desired to compare two methods of prepar-
ing steel on the basis of compressive strength and elasticity, two tegching
methods on the basis of grades obtained in two subjects by two groups of
students, or two nationality groups on the basis of two specific skull

measurements. If, in situations like these, it is unreasonsble to assume
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normality for the underlying distributions, one may resort to ranking
techniques, ignoring the exact values of the measurements obtained.

In this chapter a bivariate rank-sum test is constructed to test
the nonparametric statistical hypothesis (2.1.1) against the specified al-
ternative hypothesis. The main value of such a bivariate rank-sum test is,
as is characteristic of all nonparametric tests, that it is free from the
assumption that the cumulative distribution functions of the populations
have specific functional fcrms. Another deantage which is often important,
is that nonparametric tests, based on ranking techniques, frequently pro-
vide computational ease not found in the corresponding parametric methods.

2.2 Basic Considerations

Suppose there are ny pairs of observations (xll’le)' e s ey
(xlnl.xan) from population m; and ny pairs of observations (xln1+l’x2nl+1)’
« « «s (xyysXoy) from population my, where N ='n1+ Nye The xp3(i=1y4,N)
are arranged in order of magnitude and ranked, the largest being assigned
rank 1 and the smallest assigned rank Ne. In a similar manner, ranks are as=
signed to the observations xp; (i=l,. « «,N). It is assumed that in either
case, there are no ties in ranks.

Let uj; and up; denote the ranks assigned to x;; and xp; if these
observations belong to population m, and let ujj and uéi denote the ranks
of these same observations if they belong to population 7y« It follows that

ni N N(N+1)

z Ui + Z u), = —— (i=1,2) (20201)
kel K kenjel <2
vhere N(hel) is the sum of the first N integers.

2



I1f the N = n+ ny

pairs of ranks are plotted on a plane, it is

likely that the nj points from population m} and the ny points from popu-

lation My will be interspersed forming a circular or elliptical pattern

under the assumption that Fj(x;sxp) and Fa(x)sxp) are identical. Under

the alternative hypothesis,

it is likely that there will be a segregation

of the points into two groups. The Sf -statistic that will be proposed in

the next section to me,sure

Euclidean distance between the centroids of the two samples.

the extent of this segregation, is based on the

Under the

null hypothesis, Sf can be expected to be shaller than under the alterna-

tive hypothesis.

2.3 The S% -Statistic

Using the Fuclidean distance between the centroids of the ranks

belonging to 7 and My, the

$$ = (Uy-uy)2 +
where,
-1 M
u; = "11 2 Uy
k=1
To
in Chapter 3, let
R, = 2
= u
I
T T,
= u
J Jk

statistic sf is defined as3

(Gg‘aé)z (2.301)
o' = ol g "1 =1,2) (2.3.2)
WyE o Y WV E D o

k=n1+1

simplify the notation in the more general case to be considered

(3=1,2) (2.3.3)
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It follows from equation (2.2.1) that

2

The right-hand side of equation (2.3.1) may then be rewritten ass

2 -2 -1n _n=lg N(H+1 - 2

N [nlnz] g[n1 R,=n% (-—LE—-l——— Rl)]
_ (2.3.5)
+[nIle-n‘él(..?.‘20_‘“...1.) -Rz)]z}

and after perfcrming some algebraic opsrations,the formula for the S%—

statistic reduces to

2
2_ - n1(N+1).2
Slz ne [“1"2] 25 [Ri' __lé___lg (2.3.6)

i=1

2.4 The First Two Moments of 8?4

To construct a sampling distribution for the Sf statistic, the
following conditional randomizztion procedure will be used. Keeping the
ranks paired as given in the sample, ny pairs are selected at random (with
equal probabilities) from among the N = n, + n, pairs and assigned to popu-
lation )3 the remaining ny pairs are assigned to population 5. Since this
is a conditional randomization, no attempt will be made to obtain explicit
results for the exact sampling distribution of the Sf-statistic. The first
two moments will be derived and althcugh higher moments could be obtained
with identical techniques, their derivation wculd involve a prohibitive
amount of algebraic complications.

To obtain the expectation of Sf, the following preliminary results
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are required:

ny (D i=1,2) 2.4,2
By = ORD G=12) (2.4.2)
2
p(rz) = i) [MGm+l) + 2] (2.4.3)
: 12
The derivation of (2.4.3) is given in Appendix A.
Now’ 5
E(s?) = ¥ [nyn,]™? % E[R,- Elﬁgiiljz (2.4.4)
. i=

and after substituting the results of (2.4.2) and (2.4.3) this becomess

N2(N+1)
6.’!1"2

B(s?) = (2.4.5)

In the special case where n; = ny = ny the expectation of Sf reduces to

E(S§) = g (2n+1) (2.4.6)

To obtain the variance of Si. it will be necessary to evaluate'

E(sf) and substitute the result together with (2.4.5) into

» °§f = E(s}) - [E(s})]2 | . (2.4.7)
Using the expressions obtained in Appendix A, it can be shown that the

formula for the variance of Sf can be written in the form

o2 = a +
2 ay1hyy + A
{00 THAL TNy fag Ay (2.4.8)

2
+aghan v oagyfn



where

= NE(we1) [10(25n,~29)
00 90n§n3(u-1) (N=2) (N=3)

(]

+

HO(=50nf + 113n;- 63)

N*(25n3-168n%+ 286n,-75)

+

+ N3(84n3-442n%+ 359n)-25)
+ N2(221n3-588nT+ 121n)+ 14)

: 3
+ n(294n3 192nf—14n1) + 96n}]

203 (4+1)* [ (ny=ny)? =np? (ny-1)=n3(ng-1)]

Ay = ~
11 = nind(e1) (%2) (N=3)

_ 2n3(n+1) (4n1n2-nl(n1+l)-nz(né+1)]

312 = a21 =
nfng(n-l) (*l2) (N-3)

2n® [(#=2) (H=3)-6(n)=1) (np=1)]

A =
nfnd(t-1) (N-2) (N-3)
aw3(ny-1) (np-1)
a =
11311 33
N
Ajp = Z ug upg
i=]1
N
AMa= Z Uy ug
=1
N 2
Ay = 2 upy Uy
=1
N
F 2
App= 2 upy upy

(2.4.9)

(2.4.10)

(2.4.11)

(2.4.12)

(2.4.13)

(2.40.14)

(2.4.15)

(2.4.16)

(2.4.17)
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It should be noted that the variance of S% dependé on the
actual matching of the uj's and the ujp's only in so far as it depends
on the parameters‘all, Al2y Ap) and Apa. Also it should be recalled
that the expression obtained in (2.4.8) is the variance of the theo-
retical sampling distribution of S% under the conditional randomi-
zation described above.

In the special case where ny = n,=n, the constants 35

in (2.4.8) become

_ 16(2n+1) (50n3+432%+20n+7)

2.4.18

oo 45n(2n=3) ¢ )

ay, = _=16(2n+1)2 (2.4.19)

n(2n=1) (2n«3)

16(2n+1)

a = = (2‘4020)

12 21 n?(2n~1) (2n-3)
-16

322 = > (2.4021)
n“(2n~1) (2n=3)

311’11 = 16(“-1) (2.4.22)

n3(2n=1) (2n=3)

To facilitate the determination of the variance of S%, the cone
stants a s 3114 aj,9 app and ajy,)) have been calculated for all values
of nj and ny up to n; and ny equal to 20. These values may be found in
Appendix B.

2,5 An_agpproximate Test of Significance
To perform an exact test of hypothesis (2.1.1) against the al-
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ternative hypothesis (2.1.2) on the basis of the Sf-statistic, it would
be niecessary to obtain the theoretical sampling distribution of S?. Such
a distribution could be derived either by obtaining explicit expressions
for the probabilities involved or by enumerating all possible cases,
Neither of these two approaches secem to be feasible, the first being com=-
plicated by the conditional randomization and the second being impractical
since even for n; and ny as small as 10 it would be necessary to enumsrate
(%8) = 184,756 cases.

Workers in the field cf nonparametric statistics have encountered
considerable difficulties in their attempts of obtaining explicit expres-
sions for sampling distributions cf their sfatistics. Results are scarce

and unwieldy even in the case of ordinary unrestricted randomization and

2

no attempt will be made to treat the exact sampling distribution of S1

in a theoretical fashion.

Statisticians frequently approximate sampling distributions of
pertinent statistics, at least for large samples, with normal distributions,
justifying this either on theoretical grounds or with emperical means. The
advantage of this procedure is that knowledgzs of the mean and variance of
the actual sampling distribution of the statistics is sufficient to per-
form tests of significance.

To see whether a normal curve would provide a satisfactory ap=
proximation to the sampling distribution of Sf, ohe could evaluate the
third and fourth moments of this statistic (under the previously discussed
conditional randomization) and check wheother Gy and a, are reasonably close

to 0 and 3, respectively. Since the determination of these moments would



-14~-

involve an enormous agmount of algebra, it was decided to use other
means, obtaining one sampling distribution by complete enumeration and
another by emperical means.
Example 1

In this example the exact sampling distribution of S% will be
obtained by enumeration for the special case where n} = n2 = 5 and where

the u {s and up's are paired in the following fashion.

In this arrangement the correlation between the u;'s and uy's is p = -0.,50
and this dependence will be preserved in the conditional randomization in
which 5 of the above pairs will be assigned at random (with equal proba=
bilities) to population m and the remaining pairs assigned to population
Ts,

Since there are (%O) = 252 ways in which 5 of the pairs can be
assigned to pupulation m, the exact sampling distribution of Sf is obtaine
ed in this example by actually enumerating these cases and calculating the
corresponding values of Sf. The result 1s shown, grouped, in the histo-

gram of Figure 1.
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Figure 1. Distribution of S% for ny= n= 5.

It is apparent from Figure 1 that, for M= ny= 5 and the given
matching, the sampling distribution of sf is highly skewed and it would
hardly secem reasonable to approximate it with a normal curve. In order
to investigate whether the sampling distribution of Sf might be closer
to a normal curve when n; and n, are larger than 5, a second example was
worked out.

Example 2

In this example the sampling distribution of Si will be in-

vestigated for nj= ny= 10 with the following matching of the ul's and

al?
258



ull 11 12 13 14 15 16 17 18 19 20

u| 9 8 18 6 15 20 10 16 17 15
In this arrangement the correlation between the ul’s and u2's is
p = 0.63 and this dependence will be preserved in the conditional
randomization in which iO of the above pairs will be assigned at
random (with equal probabilities) to population m énd the remain-
ing pairs assigned to population w5,

‘Since there are (%8) = 184,756 cases to be enumerated, it
was decided to use a Monte Carlo method instead of a complete enumera=
tion. One hundred random samples ylelded the values of S% shown in

the distribution of Figure 2.

frequency
70
60

50

40

30

20

10

0

|
e 20 30 40 50 60 70 8O 90

Figure 2. Distribution of Sf for nj = ny = 10
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It is clear from Figure 2 that in this second example the
sampling distribution of sf is again highly skewed and that a normal
curve approximation would be quite unreasonable.

It was suggested that it might, perhaps, be fruitful to ad-
just Sf (multiplying by a constant) so that its range of values will
be limited to the interval from O to 1 and then approximate its sampl=
ing distribution with a Beta=distribution. The difficulty posed by
this approach is that the maximum value of Sf, by which one would have
to divide, depends on the matching of the uj's and us's and, hence,
cannot be given in 3 general form. Of course, the maximum value of S%
could be found in any given example, but this would generally entail
an enormous amount of work. It is for this reason that the Beta-ap-
proximation will not be used.

g Since Sf is by definition limited to positive real values, it
would perhaps seem reasonable to approximate its sampling distribution
with a2 gamma distribution whose parameters could be obtained by equating

2
suitable expressions involving these parameters with E(Sg) and %2, 1In

view of the facﬁ that this procedure would 2ntail considerable computa=-
tions and that, furthermore, tables of gamma distributions are not
readily available to most research workers, it will be suggested to use
a special kind of gamma distribution, namely, the X 2 distribution. A
heuristic justification for the use of such an approximation lies in the
fact that S% is the sum of two squares which, individually, are linear
functions of rank sums.

2
In order to approximate the sampling distribution of S, with a
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2 _
X distribution, it will be necessary to adjust Sf, namely, to multiply

it by a constant k, such that the variance of kS? equals twice the ex=
pectation of kS . Since the variance of ksf is kzogf and the expecta-
tion of ksf is kE(Sf), the above condition yields
kzozz
51
5= = 2 (2.5.1)
kE(ST)
or
2E(S
( f) (2.5.2)
g2,

Since the number of degrees of freedom of a Xz distribution equals its
expectation, it will be proposed to approximate the sampling distribution

of the mocified statistic

2
RE(S |

ksf = F(51) Sf (2.5.3)
UL

S1

by mesns of a X2 distribution having

2 [e(s)1?

oz,
31

(2.5.4)

2
kE(Sl) =

degrees of freedom. In order to use a Xz table in testing the original
hypothesis (2.1.1) against the specified alternative hypothesis, one can

elther be ccnservative and use the smallest .nt -~er greater than or equal to

2 [r(s§)1?
for the number of degrees of freedom, or interpolate

023
51

linearly for fractional degrees of freedom [ 9 ].
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2
In example 1, n= ny= 5 and, therefore, from (2.4.6), E(S;) =

.2 (2n+l) = 7_%.. Using the matching of the u,'s and the u,'s of this
3

example, it can be shown that

All = 261, A21 = 1605, A _ = 1717, A,

12 = 10033

2

Since the tables of appendix B yleld

&y
i

0o = 830.496 -.112

412

all - —6.146 322 = -00010

1]

substitution into (2.4.8) gives 0;2 43,1. According to the approxi-

1
mation discussed above,

2
2 2E(Sy)
kS] = 17 -Sf = 0.34S§

qéf
is treated as if it had a X2 distribution with

2
2 [ E(s])]?
= 2449 degrees of freedom.

2
OS:

Using the smallest integer greater than or equal to 2.49, namely 3, the

X2 table yields, for a level of significance of 0.05, a critical value

of x’.05 = 7.81. Hence, if the approximation were good, 5 per cent of

the values of O.34Sf should exceed 7.8l or, in other words, 5 per cent

2
of the values of S]1 should exceed Z;El = 22.97.
0.34
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In the actual enumeration of the 252 cases it was found that 14 exceed
22.97 or 5.6 per cent. This implies that in Example 1 the X2 criterion
outlined above provides a very close approximation for a 0.05 test of
significance.

= N 10 and, therefore, from (2.4.6) E(??) =

_;_ (2n+1) = 14. On the basis of the matching of the u

In example 2, n

.
1 s and the

u2's of this example, it can be shown that

All = 2626 A12 = 45032

Az1 = 40528 A22 = 602,874
Since the tgbles of Appendix R yleld

350 = 2394,03294 8y, = 45032

a1 = =2.184520 355 = =0.000495

311’11 = 0.000446

substitution into (2.4.8) gives ng = 323.2. Hence, the sampling

distribution of

2
ksy = 2U4) o2 - 00866 2
323.2

‘ 2
will be approximated with a X2 distribution having 2[14]" = 1.21
323.2

degrees of freedom. Using the smallest integer greater than or equal
to 1.21, namely 2, the X? tables yield, for a level of significance of

0.05, a critical value of X fos = 5,99, Hence, if the approximation were



good, 5 per cent of the values of 0.086685 should exceed 5.99 or,y in

other words, 5 per cent of the values of Sf should exceed 999 _ 69.17.
0.0866

In the experimental sampling distribution obtained in this example, 4 of

the 100 values of S? or 4 per cent exceeded 69.17. In view of the fact

that this experimental distribution was based only on 100 samples, the

results are not cenclusive, but they certainly provide further supporf

for the X2 approximation of the sampling distribution. (Had the inter=

polated X 2-value been used in this example, the percentage of values

exceeding the critical value would have been 8 per cent.)

2.6 An Asymptotic Result

The purpose of this section is to evaluate the number of degrees
of freedom given by (2.5.4) when n = np = ny becomes large and when the

dependence between the u;'s and up's is such that

“'g‘n n
Ay, = 8.4 ofd) (2.6.2)
12 e
‘;Z" 3 n
Ay = .g... N o(%) (2.6.3)
4
n
A 32 !
22 = 2%.* 0(;) (2.5.4)
5
n

These four equations correspond to the case when there is a very weak

correlation between the ul's and uz's, in fact, they were obtained by
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substituting 2nE(u§)E(ug) for Ayg and then letting n become large.
Using (2.4.6), it follows immediately that when n becomes

infinite, the E(S ) approaches .g. . Also, using (2.4.18),
(2.4.19), (2.4. 20), (2.4.21) and (2.4.22) together with the above con=

ditions on the A,qy 1t can be shown that

a

L2 . 160 , oL (2.645)
n< 9 (H)
a1t 1 :
_——— = =32 + O(..) (20600)
nz n
2122 o 2t . 65 . ol (2.647)
3 n2 n n2
axA2 128 1
—— e ==f&2 o+ 0 (2.6 18)
n2 9n (;5)
2
3 A .
11.;1 11 _ 164 o(%) . (2.649)
n

0.2

S
e _1__ 16 (2.6.10)
n—o n? 9

and the formula for the number of degrees of freedom becomes

' 2
2 [E(s))]? 4
2 [6(s%)] 2 EEDE e
S § | n _ (2.6.11)
n— o 02, n —00 g2, 16
—

n
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In the special case discussed above, {2.6.5), (2.6.5) and

(2.6.9) equal ng.. -32 and 156, respectively, in the limit, while

(Re6.7) and (2.5.8) go to zero. This implies here that among the ALgo
2

the variance of Si will depend mainly on All' This parameter is

functionally related to the correlation coefficient of the ul's and

uz's and one can write

6A.1 1= 31’!(20*1 )2

©
1}

(2.6.12)
n(2n+1) (2n=1)
It follows that (2.6.1) is equivalent to
1
P = o(;) (2.6.13)

ory in other words, that the above argument applies only when the core

relation between the u;'s and uy's is very weak.

2.7 A Rank Analooue of Wald's Modified T =Statistic

The type of problem treated in this chapter can, in the para=-
métric casey be handled by the Hotelling Tz-statistic provided, of course,
that the assumption of normality and equal variance-covariance matrices
can be met.

To construct an analogue to the Tzostatistic one could use ranks
instead of the actual observations, obtaining an alternative to the Sf-
statistic suggested in this chapter. For reasons of simplicity, Wald's

[ 8 ] modification of T? namely,

2 2 2
T' =3 Z q' (X3~ X3) (x5=x%) (2.7.1)
1 401 % R M 373
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will be used, where

” i ” = o “ - (2.7.2)
i3 = - N g (X5p=X3 ) (xs0-X.) (1 2 (2.7
- ik=X3) (xg=X. j=1 .
(n-l)nyn, kel ik=X3/ (Xg=X5) (153=1,2) 3)
- -1 N
= El Xk (2.7.4)

and it has buen shown that T'2 is a monotonic function of Tz. Analogous

to (2.7.1), one can now use ranks and write

2

2 2 2
S, = X 2 Ngs(u.-u!) (u.-ul
2 i 4! ) (u.=ul) (2.7.59)
j=1 1=1 J\H=Yy 3795
where,
”Kij ” = cij -1 (207.6)
N 2 2
€11 = m__ﬂr_. z (ulk-Ul) = N (N+1) (2.7.7)
1 nln2 k=1 12n1n2
N N T )3 = NA(Ne1)
Nel)nin, k=1 v 12n1n2
N -
Clo= 8~ T (u-U1) (uzx-02)
=N [A,- _n0w1)? (2.7.9)
11
(N-1)n.n 2
12
Putting.
2
By = Ay- N(N+1) (2.7.10)
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equation (2.7.9) can h2 written

(J—l)nlnz
Now,
-12B4,
-1 20,2 112 1
A=cto__N(N-1) N(N*-1) (2.7.12)
Nz(Nz-l)z—IMBfl -1281, 1
N(NZ=1)

and omitting the multiplicative constant, let

~128;
1 : ll)
¥* H{N2=1 2.7
A -128), ( 13)
N{N=1) 1

Using this matrix instzad of ) s One can now define a third statistic

2 2
2 sk - - ol
S.= Z ZNy,(u,«u') (u-u') (2.7.14)
R = SR T N R
so that
2
5% = NA(MR-1)% - 144my; G2 (2.7.15)
w2 (12-1)2

It should be noted that if in (2.7.14) the cross-product term is omitted,
’ 2
the formula reduces to that of S1 .
The mean and variance of Sg may be found by the use of methods

like those employed in Appendix A. The results are

£(s?) = NANHL) _ 243f) (2.7.16)
37 Ténpn, (w1 (8-1)%n
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and

g2 _
= boo +b

52 + b, A

11711 * Pighia * Pojhy

2
* byAss by 1A (2.7.17)

where AII’AIZ! A21 and A22 are the parameters defined in (2.4.14),

(2.4.15), (2.4.16) and (2.4.17), B); is defined in (2.7.10), and the
coefficlents bygs b1y byoe bpas and byy 11 are functions of n3y Ny and

B Explicitly,

1n'
4 2.2
576By4 + 8N B11

00 = 390 *
oo (N+1)(N—l)4niné ~ (W=T)*n{n%

R 3
ST6E | ) { n1(N+1)3[2N-n1(3N+5)]
NH(N-I)! 43

+ ny(n=0)N(e1)*[9nT (Ne1) m6n) (141) (2041) + (2041)]
35(N-1)

+ nl(nl-l)(nlfz)N(N+1)2(3N+2) [(2u+41)=3n; (N+1)]
36(N=2)

i nl(nl-l)(nl-z)(nlus)u(m+1)2[9N2(N+1)2-4(2N+1)(3N2+N-1)]}

144(N-1)(N=2)(N=3)
- 4BF]] nl(nl-l)m(n+1)2[N(3n:-4n1+2) + nl(anlgé)]
N(Nz-l) B(N-l)

+ ny(n=1)(n=2)N(N+1)°[4-n, (3142)]

. nl(nl-l)(nloz)(n1~3)N2(N+1)’
24(N=3)

. 23(N+1)3[N(13n{-18n1+6) + (5ni-2n1-4)].} (2.7.18)
16
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and
byl = tay
bya = b= tay,
Do = tap,
P11,11 =ty
where}

t=1+ 2883%1
N (N-1)?

(2.7.19)

(2.7.20)

(2.7.21)

(2.7.22)

(2.7.23)

Although the S§-statistic may provide a slight advantage over

2
the S2-statistic from the viewpoint of power, the Sl=statistic has the

1

very definite advantage that its first two moments are much easler to

find., It is for this reason that the S%-statistic and the X 2 approxi-

mation are suggested as a criterion for testing hypothesis (2.1.1)

against the alternative (2.1.2).

In view of the results of Section 2.6,

it is of interest to note that it has been shown that the distribution

2
of T'2, for which Sg and S3 are rank analogues, is asymptotically X 2

with 2 degrees of freedom.



3. MULTIVARIATE AND MULTI=-POPULATICN EXTENSIONS

3.1 Introduction

2
In this chapter the method of Section 2.3, the S;-statistic,

will be generalized first to the multivariate case for two populations.
This problem is considered in Section 3.2, where a statistic, Sf(k,z)

is defined analogous to Sf, as the square of the Fuclidean distance in
2
the k-dimensional rank space. (Note that S;(2,2) = Sf).

In Section 3.3, the method of Saction 2.3 is extended to the
case where there‘are p bivariate populations. The test statistic pro=-.
posed here, sf(z.p), is the sum of the squares of the Euclidean distances
.between all pairs of centroids in tihe bivariate rank space. The exten=
sion to p k=variate populations is discussed briefly in Section 3.4,

3.2 The S5(ks2) = Statistic

Suppose there are np ketuplets of observations (xli,xng.,xki)’
i=1,25¢4¢y and Ny from population Tys and ny k=tuplets of observations
(x339%219eee9xki)s 1=n)+1,000y Ny+n=N, from population wp. Suppose,
furthermore, that the N values X34 are ranked jointly, receiving ranks

trat are written symbolically as u and u' depending on whether they be-

long to population My OT The The observations X059 X3qseees and Xy
are ranked in a similar fashion and, in general, ujg stands for the rank
of an observation on the jtP variable if it belongs to population Tys

while USi stands for the rank of an observation on the jth variable if

it belongs to population 7,.
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Using the means 53 and G} as defined in (2.3.2), the Euclidean

3
distance between (Gl’ﬁz’...,ak) and (Ei’ﬁé”."ﬁj) is
2 "k
1 521 3

Using (2.3.3), this squared distance can be rewritten in the form

k

M2 3=1
analogous to (2.3.6).

The derivation of the first two moments of S?(k,Z) is es=

sentially the same, though scmewhst more tedious, as the derivation of

these moments for S%.

It can easily be shown that

2 o2 -

E [Sy(k,2)] = ki (Nl (3.2.3)
1 12n;n
1"2

and that for the special case where nj=na=n, this formula reduces to

E [$5(k,2)] = 5 (20+1) (3.2.4)

The variance of Sf(k;z) is of the form

2
%2 (k;2) = S0 * c11lA11,12 * A1,z *eetAry, (ko1 K]

+

c1alA12,12 * A12,13 *eee*Ara (ke1)k]

+

c21(A2) ;12 * A21,13 *eee*Poy (ka1 )]

+

2 2 2
c11,110A%1,12 * AT1,13 *oe oA, (ke1)k]

, (32.5)
* ©22[A22,12 *+ A2p,13 *++e*A2n (ko1 )k]
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where,

4 2
Coo = kN §N+1z [83(5n,=2) + N?(~10n7 + 9n =2)
240n1n2 1 } 1

<

N(5ni- 14n? + 2n;) + 7n3]

+

k (k=1 (0ve1)? [N°(19n,22)
144(N=1) (N=2) (M=3)n3n;

+

N4(-38n§ + 74n=36) + N3(19n§-1o4n§+ 163n,~18)

+

> 2 3
N2(52n3- 254n% + 108n; + 4)+ IN(127n}=-180n;=4n, }+90n")

k2N4(n+1)?

2.2
144n)my (3.2,6)

and €1, ¢y5, Cap and ¢y ;) are, respectively, the came as a)}s ajoe
322 and a)) 1) as defined in (2.4.10), (2.4.11), (2.4.12) and (2.4.13).
The parameters Ay) i5y A)p 149 Ay 44 are as definzd in (2.4.14) through

(2.4.17) with the second pair of subscripts referring t- the variables.

For example,

N .
N
All 13 = 2 ujju3sg (3.2.8)
i=1
N 2
Ay2,23 = 123 upju3y (3.2.9)

In the special case where n = “2 = n, the.coefficients C11

€159 €5y and 11,11 of (3.2.6) are the same as in (2.4.19) through

(2.4.22) and Coo reduces to the following;



¢ = k(2n+1) (10n%-n-4) . k3(2n+1)?
00
15n 9

+ k(k=1) (2n+1)3(38n% + 21n + 4) (3.2.10)
9n(2n=3)

Similar to Section 2.1, the hypothesis to be tested is
Fl(xl.xz,...,xk) = Fz(xl,xz,...,xk)
and the alternative hypothesis is
Fy(xpaXgseeosX) £ Fo(x1sX29e009Xk)
where F) and F, are continuous distribution functions, identlcal except
possibly in location parameters. It is suggested that an approximate
test of the hypothesis be performed by approximating the sampling dise
tribution of Sf(k,2) with 2 X2 distribution with the number of degrees

~ 2
of freedom being the smallest integer greater than 2{531(k92)}z

02,
S; (k,2)

“hen the palrwise dependence between the uj's and uj's is weak

and the parameters are as defined in (2.6.1) through (2.6.4), it follows

2 .
that when n = n} = ny becomes large, E[sl(k’z)] approaches _2k
n 3

Also, the coefficients €112 €129 C2n and °11,11 become equal to the

expressions given in (2.6.6) through (2.6.9) and (3.2.10) becomes

So0 _ 72k2-64k + o(L) | (3.2.11)
n? S n

Substituting these values into (3.2.5) yields in the limit
2
o
Si (ks2)
8k

lim _ 3.2.12
nso  n* g ( )



and the formula for the number of degrees of freedom becomes

- 2
< 2 E[s1(k42)]42
um  2ES1(ks2)] _ i 2 [El81a2) ]y
n—co c? n-o 02
s (ks2) st (ks2)
—
2(2k)*
=3 =k (3.2.13)
8k
9

2 .
3.3 The Sl(z,p)-statlstic

Conslder p bivariate populations wy, ng,.;;nb having unknown
distribution functions that are assumed tq be identical except possibly

in location parameters. Suppose there are nj pairs of observations

(xll’x21)""’(xln1'x2nf from population i, Ny pairs cf observations

(x1n1+1!x2n1+1)""’(xlnl*n29x2n1*n2) from populations my, etc., and ny

p irs of observations (xln1+n2+..+np_1*19x1n1+n2+...+n #1)veees

p-1

(xlN’XZN) from population nb,'where N:nl*n2+..+np. Suppose, furtherinore,

that the N values x;; are ranked jointly, receiving ranks that are written

1
symbclically as u(lza U(fz..... u(gz depending on whether they belong to

population Ty ey or m,. Similarly, the ranks for the observations

(p)

(1)
Xpq are Usyy “(gzs...,uzi depending on whether they belong to population

1T1,7T2,..., or Wpo

The test statistic proposed here, Sf(Z,p), is the sum of

squares of the Euclidean distances betwee: all pairs of centroids in the
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(r)

bivariate rank space. Using the means Gl and ;ér) as defined in
(2.3.,2), the Euclidean distances between the pair (Eglz Gél)),
@2),5820,..., @R Py s
. p s=1 2 .
R(2p)= T £ 2 @ ale)y (3.3.1)

s=2 r=1 i=i

and by using (2.3.3), it follows that

p e=1 2 (r) (s)
s2(2,p)= 2 Z 2 —L_[nRr ‘=np 7} (3.3.2)
s=2 r=l i=1 n:ng

The derivation of the first two moments of S%(Z,p) is ese=

sentidlly thé same, though more complicated, as the derivation of these

moments for Si.

Using the results of Appendix A, it can be shown that

p s-1 n+n
E[sf(z,p)) = Mlel) 3 3z s
6 s=2 r=1 Nyng

(3.3.3)

and in the‘special case where n=nl=n2=...=np. this formula reduces to

p?(p-1)(np+1) (3.3.4)
6

E{sf(zap)] =,

The derivation of the variance of sf(z.p) is similar to that of Si

given in (2.4.8), but it will not be given here,
5 _
3.4 The S)‘k,g)ystatistic

The test statistic, Sf(k,p), proposed here is a direct general-
2 2 2
ization of the statistics, S1; S1(k,2) and S1(2,p) discussed in previous

sections. It is the sum of squares of the Euclidean distances between
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all pairs of centroids in the k-dimensional rank space. It can be
written as
s=1 k

s2(kyp) = R R (3.4.1)
s=2 r=1 i=]

and using (2.3,3), it follows that
P s=1 k
S2(kp)= Z 2 £ L [ng{Plnalsly (3.4.2)
p=2 r=1 i=1 n2n2
rs
The first two moments of this statistic could be derived by
employing the methods of Appendix A. However, due to extensive alge=-

braic complications, the variance of Sf(k.p) will not be given here.

It can be shown that

E[Sf(k,p)] M 2 2 e AT (3.4.3)

s=2 r=1 NrNg

and in the special case where n=n1=n2-...~np, this formula reduces to

E[s3(ksp)] = "pz(‘"i)(“"*” (3.4.4)
2

The general case has not been investigated in any extensive detail.
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4, DISCRIMINANT ANALYSIS OF RAMKED GBSTRVATIONS

4,1 Introduction

When multivariate me,surements have been obtained on two or
more populations, it is often of interest to consider certain linear
functions of these messurements in order to discriminate between the
populations. The main objective of linear discriminant analysis is
to find a particula. limear function

235 = N oxpg3 * Mo Xogg b e e e PN Xy (4.1.1)
w ich provides optimum discrimination in the sense that the quantity

n

i
2 (Z -2: )3 (401-2)
2,V i)

2
o= -2V 2

is maximized with respect to the 's. Here Xpi 3 is the p
h

th observation on

the j*h variable in the 1'" population, and

;; =M ;li * N, ;21 MCIRICI ;ki (4.1.3)

In the treatment of this theory it is genmerally assumed that
the variates have multivariate normal distributions with equal disper=-
sion matrices. Some general discussions of discriminant.analysis may
be found in references [ 10 ] through [ 18 ].

The purpose of this chapter is to present an alternative ap-
proach to the protlem considered in Chapters 2 and 3. It is proposed
that the original measureﬁents are first ranked as in Chapter 3,namely,
that the values obtained for the different populations are ranked jointly

for each individual variable. The method of discriminant analysis is

then applied to these ranks and the resulting z's are reranked.
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In Sections 4.2 and 4.3 methods are derived for simplifying
the calculations of the A's when dealing with ranked data. 1In Section
4.4‘it will be investigated whether it 1s reasonable to apply a Mann-
Whitney U-test (or a linear function thereof) to the rankings obtained
for the 2°'s.

4,2 The Bivariate Case

Using the same notation as before, let u;; and u,; denote
the ranks assigned to X14 and Xoy if these observations belong to
population my, and let uii and uéi denote the ranks of these same
observations if they belong to population Tae

If the sample points in the two=dimensional rank space are
projected onto a vector giving maximum discrimination in the sense of
maximizing (4.1.1) and reranking along this vector, the ﬁroblem is
reduced to the analysis of one-dimensional ranks. The purpose of this
section is to obtain simplifigd formulas for the components of the
vector providing optimum discrimination.

As shown in [ 18 ], the maximization of (4.1.1) gives rise
to the following equationss

N1Sy; * Npsyp = cdy (4.2.1)

NSy *Masyy = cdp
where

Sy = 2 (u1k 1)2 2 (uik i)2 (4.2.2)

1]

n n
Si3 kfl("ik°ui)(“jk“"j) + k§1 (uik-ui)(us-u') (4.2.3)

3
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di - ;1.;' (4.2.4)
énd 2
oo an™i% (4.2.5)
= =53
L 2% andd
i=1 3=1 1 jij
3 2
2 o
121 3=1 M1 My iy

Recalling th;yt the sum and sum of squares of the first N

integers are N(N+1) and N(H+1)(24+1) , respectively, the above ex=
2 6

pressions can be rewritten as

o= N(1)(2u+1) N (02 + @' .
sy = 2 -3 (ui + uiﬂ (4.2.6)
N N(GGo'+a0
= h u - - (1 ¢ ¢ 4.207
1375 Yt T2 T (4.2.7)

and

= oF. N+l
df = 20~ = (4.2.8)

Substituting these values into equations (4.2.1) and solving simultane=

ously for hl and?uz, one obtains, after simplification,

H N B 2
hoyocdyfre - Eiﬂ%ll 1=z B2 Mt s BERCEK)

N
2

wher' a denotes the sum of squares of the first N integers.
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The desired vector thus has direction numbers whose ratio is

n 2
4 Zlulkuzxc - N(N+1)

]

da - N{n+1)2 (4.2.11)

dy - dp [

A 1 n
4 2 u
[ k=1

- 2
1Y = N(N+1)

4a - N(1+1)3

d) - dp

To simplify this further, it can be shown that the expression within
the brackets of (4.2.11) is the rank corrrlation coefficient, r'.

Therefore, the ratio of the direction numbers of the vector is

A '
h2 =d?*fl (4.2.12)

This result was previously obtained by Dr. Frank Wilcoxon as communi-
cated to the author in personal corresponderice.

4,3 The Multivariate Fxtension

In this section the method of Section 4.2 is generalized to
the k-varijate case for two populations. Simplified formulas are obtain-
ed for the components of a vector in the k-dimensional rank space, which
provides optimum discrimination between the two populations.

The equations to be considered in the multivariate case are

MS11 *hgS1a teeet Mgy = cd)

"'7\' ] Feoat 7‘ok

Mi8ap *Mosa, 8o = Cdp

klskl +\ 23k2 +eoet kkskk = Cdk (4.301)

Solving these equations for the Ay and substituting the results



shoun in (4.2.6), (4.2.7) and (4.2.8), it can be shown that

k
Ny S jz;cijdij (4.3.2)

wherellcij" is the matrix of cofactors of “r{jl s the matrix of rank

correlation coefficients

N
) - 2
6 kgl(uik ujk)

1 - (4.3.3)

L -

F1g 7 N(N2-1)
4.4 The Wilcoxon Method

The original purpose for reranking the data after they have
been projected on a vector providing maximum discrimination was to per-
form a test of the null hypothesis that the samples came from popula-
tions with identical distribution functions against the alternative that
there may be differences in means,

In the bivariate two population case, LCr. Frank Wilcoxon
suggests that this test be based on the rank sum obtained along the

vector for either population. H2 proposes to calculate the expectation

\ nl(N"’l)
and variance of this rank sum by means of the formulas ... and
2
nlhz(N"‘l.) .
0 s the usual expressions for the mean and variance of rank

sums. Then he proposes tc use a normal curve gpproximation to the cis=-
tribution of the rark sums or a X2 approximation to the square of the
difference between the observed and the expected rank sum divided by
the variance.

It is felt that this test of significance might be reasonable

if the direction of the vector were chosen at random, but not if the
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vector provides optimum discrimination. Clearly, the vector is chosen
to maximize, among other things, the squarc cf the distance between the
means and hence it would hardly seem reasonable to use the expectaticn
and variance for ordinary rank sums.

To investigate the reasonableness of the above method suggested
b; Wilcoxon, the exact disttibution of the rank sum was obtained by com-
plete enumeration in the special bivariate two population case, where
ny=ny= 2,

’ Table VI. |
Probabilities of the Rank Sum for Population m

Rank Sum for
Population m Probability
3 «347
4 097
5 «111
5 097
7 ' 347

It is of interest to note the U=shape ¢f this distribution
caused by the fact that the ranked data are projected on a vector provid-
ing optimum discrimination, thus giving ranks 3 and 7 very high proba-
bilities. The variance of the abuve distribution is 2.96 which is much
larger than 1.67, the value obtained by substituting n; = ny = 2 into
the variance formula given above.

This illustration supports the contention that it is quite un-
reasongble to apply the test suggested by Wilcoxon to data that have been

reranked along a vector providing optimum discrimination,



V. SU"MARY

5.1 Summary
The problem consicered in this dissertation deals with two

bivariate populations m; and m, having unknown distribution functions
Fl(xl,xz) and Fz(xl,xz) that are continuous and identical except pos-
sibly in location parameters. It is desired to test the null hypothesis
Hyt Fl(xl,xz) = Fz(xl,xz)
against the altern,tive hypothesis that the pcpulation distributicn
functions have different means and it cannot be assumed that the
variables x; and x, are statistically independent.
A test étatistic, Sf » based on the Euclidean distance between
the centroids of the ranks belonging to bivariate samples from m; and
Ty is proposed to test the above hypothesis. The first two moments of

S% are derived uncer a conditional randomization procedure which retains

the rank palrs as given in the sample.

The exact sampling distribution of s? is unknown. However,
it is shown in examples that the distribution of a constant multiple
6f E(Sf) divided by the variéncevof 5% can, at least in these instances,
be approximated with a 2 gjstribution with the number of degrees of
freedom equal to 2[E(Sf)]z divided by ogf « Tables which facilitate

the calculation of ng are given in Appendix B.
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As an extension, a statistic, Sf(k,z), is proposed for the
multivariate two-population case, and its first two moments are
derived. .Further. statistics are proposed for the bivariate p-
population case and for the multivariate p-populétion case. The
first moments are given in each case. |

An alterhative approach to the solution of the above problem
is considered in Chapter 4. In this chapter discriminant analysis is
employed to obtain a vector which provides optimum discrimination.

It is shown that this method is not a fruitful one for the construc-
tion of tests of significance pertaining to the original null

hypothesis,
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APPENDIX A

A.1 Derivation of the Expectation of Sf

The expectation of Sf urder the conditional randomizztion

of Section 2,4 can be written:

5 2 n, (N+1 ny ny(N+l) 2
E(Sl) = -%—'2- F[( Z ulk - ‘—;-2———;2* (Z U2k - ‘——];5-‘-'—') }
nlnz =1 k=1
2N2 n np(N+l) o
= " E[( Z ulk - ) ) ]
n1n2 k=1
N2 N ' n n#(n+1)?
= - [P Sug)® = np(el)n( Tup) ¢ )
nin; k=1 =1
_ 2 2
2 - ny(N+1)
= 283 [nyE(u)+ny(n)=1)E(uu® =n, (N+1)2(u)+ 2]
n2n?
12 .
(A.l1.1)

wheré E(u) is the average of the first N integers, E(ui) is the average of
the squares of the first N integers, and E(uu') is the average of the pro-
ducts formed by all possible pairs of integers selected (withcut replace-
ment) from the first ¥ integers,

Using the well-krown fact that the sum and the sum of squares
of the first N integers are -ﬁigil) and _Hiﬂiéliaﬂtl) » respectively,
it follows that

= N+l .l.
£(u) L (A.1.2)

and

F(u?) = _iﬁil%igﬂil) (A.1.3)
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To evaluate E(uu'), note that

(142+.,410)% = Niﬂ*llé2ﬂ+ll + N(i1)E(uu*)

and it follows that

E(uu') = {eL)(3u+2) (A.1.4)

12
Substituting (A.1.2), (A.143) and (A.1le4) into (A.l.1) gives, after

simplification,

E(s?) = 12 (Ne1) (As1.5)

6n1n2

A.2 Derivytion of the Variance of S%

To obtain the variance of Si it will be necessary to evaluate
E(Si) under the conditional randomizztion of Section 2.4 and substitute
the result together with (A.1.5) into (2.4.7). Using (2,3,6), the ex-
pectation of Sf can be written:

4 n, ry (N+1)

4 N 2 1('3*1) 2
E(S;) = E_Z_Z [(Zu R S +(z‘lu )%]2
4 n n, (N+1)
2N re o<l 1 2
= Fi( 2%y~ ......_._..__._...) }2
g FLL 2 e ——
12 <
n n (N+1) ; n n, (N+1)
+ B[( Zlup - L2 Sugm )7 (A.2.1)
k=1 2 k=1 2

and after simplification this reduced tos
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Al
E(2) = 2 nyE(u®)edn, (n)=1)E(u’u?)
nn
12 ‘
+ anl(nl-l)E(uR(u')z) + 6n1(n1-1)(n1-2)5(u2u’u")

+ nl(nl-l)(n1-2)(nl-3)E(uu'u"u"')-2n§(N+1)E(u3)

- - + LIPS 1)z )2
6n;(n1 1)(N+1)E(u?u’) nl(n1 1)4u’(v )?)
-ZnZ(nI-l)(nl-R)(N¢l)E(uu'u")+?n?(N+l)3E(u3)

+ 203{n =1)(1+1)2E(uwu') - nf(ﬁ+1)3E(U)

. n?(H+l)4

+ ni(N+1)ZE(uv)+nf(n1-l)(N+1)2E(uv')

-ni M+1)E(uzv}wnz(u+1)E(uv2)~n§(nl-l)(N+1)E(uzv')
=n§(ny=1)(N+1)E{u'v?)=2nf(n}=1)(n+1)E(uu’v)
-2n§(n1-1)(N+1)§(uvv')-n;(nl-l)(nloz)(ﬂ+l)E(uu’v")
-nf&nl-l)(nl~2)(n+l)E(uv'v")+nIE(u292)

+ ny(ny=1)(n;=2;E(uutv’* )3 )+2n; (n)=1)E(u3vv')

+ nl(n1~l)(n1-2)E(u2v'v")+2n1(n1-1)5(uvu’v')

+ 4ni(n1-1)(nl-2)E(uvu'v") + 2nl(n1-l)E(uu'v3)

+ nl(nl-l)(n1-2)(n1-3)E(uu'v"v'") (A.2.2)
where E(u), F(u?), and F(uu') are as defined in Section A.l., Also
E(ui) s the average of the i‘h power of the first N integers, E(u2u')
" is the average of the products u?u' formed by all possible pairs of

integers, u and u', seledted (without replacement) from the first N

integers, and E(uu'u'') is the average of the products uu'u'' formed
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by all possible triplets of integers u, u’ and u'', selected (without
replacement) from the first N integers, Quantities such as E(uz(u')z),
E(u3u'), E(uu'u''u'''), etc., are defined in a similar fashion.

Expectations involving both u's and v's are defined as follows:
E(uv) is the average of all products uv preserving the matching of the
conditional randomization and selecting u from the first N integers.
Expectations involving primed variables, for example, E(uv') stand for
the average of all products_uv', where u and v' are selected individually
from anong the first N integers, but v' is not the particular v that is
matched with u. Similarly, E(u2v'v'') is the average of all products
u2v'v'', where u 1is selected from the first N integers, v' and v'' are
a pair.of distinct integers selected without replacement from the first

N integers, and neither v' nor v'' is the particular v that is paired

with the given u in the matching of the conditional randqmization. All
other expectations are defined in an identical manner.

Using the results given in (A.1.2), (A.1.3) and (A.l.4) along

with the fact that the sums of the cubes and the fourth power of the

first N integers are _ﬂiigilli and N(N+1)(2N+1)(3N2+3N-1), respective=
30

ly, it follows that

E(ud) = N.Lg:.'u‘ C (Re2.3)
and .
E(u?) = (N#1)(2N+1) (3N %3N~1) (A.2.4)
30

In order to evaluate E(u?u') and E(uu'u'') consider the follow=



ing equations:

(1234224, ,+N3 ) (1+2+ . o+N)=NE(u3 )+N(N=1)E(uu")

(1424, ,#N)3=NE(u® )+3N(N=1)E(u?u® J+N(N=1 ) (N=2)E(uu'u"")
These can be rewritten in the following forms |

NE(N+1)2I2N+1) = NE(u3) + N(N=1)F(uZu®) (A.2.5)
6

.and
3 3
E.igill = NE(u3) + 3n(N-1)E(u2u’)

+ N(N~l)(N=2)E(uuu**) (Ae2.6)

Substituting (A.2.3) and solving simultaneously, these equations yield

E(u®u') = ﬂigzlli | (Ae2.7)
and
E(uutu't) = B :+1 T (A.2.8)

Similarly, the equations

| (13423, can®) (14240 #N) = NEQu¥)+N(N-1)E(u3u?)
| and ' ‘
(102¢103+ .04 (N=1)oN)(12+..+N2) = N(N-1)E(uu*)

+ N(N=1 )(N=2 E(uzu'u")
2
after substituting (A.2.4), can be solved simultaneously to yield

3 2
E(udu?) = (N+1)(1?§O+2LN =4) (A.2.9)

and

E(ueutu't) = {21)(30M°+35N3-11N12) (A.2.10)
350
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' Substituting (A.2.4), KA.2.9) and (A.2,10) into
(124224, ,+12) = NE(u®)+N(N=1)E(u?(u*)?)
and
(1+2+.0+0)% = RE(u)ran(n-1)E(uu?)
+ 3N(N=1)E(u2(u*')?)+6N(N=1)(N=2)E(u?u'u'')
+ N(Nel)(N=2)(N=3)E(uu'u'‘u''')

and solving simultanebusly gives

E(u2(u*)?) = (N+1)(20+1)(2N-1)(5N+6) (A.2.11)
180
and
E(uututtuttt) = (N+1)(15§3+15N2-10N~8) (Ae2.12)
20

Expectations involving both u's and v's are expressed in terms
of the parameters Ajy, Aj2y A and Apy as defined by (2.4.14), (2.4.15),

(2.4.16) and (2.4.17). For examples

A

E(uv) = _él (A.2.13)
A

Eutv) = 2L (A.2.14)
A2

E(uv2) = -~ (A.2.15)
Ao

E(uavz) = "N'— (A.2.16)

To evaluate E(uv'), note that

(142+.0#N) (14244 .+N) = Aj +N(N=1)E(uv"')



and it follows that

E(uv) = MN#1)® - Ay
4(N=1) N(N=1)

To evaluate E(uvv'), the following equation is employed:
(1424, +N)A) = Ajo+ N(N=1)E(uvv')
It follows that

vy = (MDA A
Bluw') = =) N1

Similarly, the equation
(13+23+,,+Nf)(1+2+,,+n) = Alz*N(N-l)E(u'va)

dgives

E(u'v3) = N(N*l)z(ZNtl_)__; Ajo
12(N=-1)  N(N-1)

(A.2.17)

(A.2.18)

(A.2.19)

and the following expectations are obtained in an identical manners

(1) (2041)  Agy

E(uav') = —en) (1) (4.2.20)
E(uu'v) = (N+1)Ay A21 (A.2.21)
T o2(N-1) T ON(N~1) =
Fuuryerys NOPLEN2)  QRLAY 2y
24(N-2) (N—-).)(N—Z)' N(N=1)(N=2) (A.2.22)
E(uyryrr) = SORLEN2) - (WA 2h12

Zanez) " TED(e2) | RED(R2)

(A.2.23)
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2 vran N(N+1)3(2N+1)? Asp A.2.24
E(u(v')2) = 36(N=1) Y] €1 ( )
w2y = (LA, A2,
E(uu'v*®) TSI S (A.2,25)
Vioenyzy _ NORL) H21)(3N02) (1A,
Euut(v**)") 72(N-2) T N=1)(R=2)
27
22
REL0E2) (A.2.26)
E(utw') = (HLA2 - Ay (A.2.27)
2(N=1) N(N~1)
E(uiviv') = N(N+1)2(2n+1)(3N+2) (N+1)Ao,
) - 72(N=2) = RD)(2)
o P (A.2.28)
N(N=1)(N=2)
2
E(uvu'v') = Al1-Aa2 (Ae2.29)
N(N-1)
N(NeLPA,, A;I
E(uvu'v'?) = D)D) - e (2) (A.2.30)
(N+1)A12 . 2A22
(N=1)(N=2) N(N=1)(N=2)
4 4
Sypt 0,0 00 - l N (PJ+1) 2 + 2
E{uu'v''v''') = T E27(E3) e NT(N+1)°A
+ 2N(N+1)(A12+A21) (A.2.31)

Substituting the above results into (2.4.7) and simplifying, it follows

that the variance of S% equals the expression given in (2.4.8).



APPENDIX B

Table I. Values of ago
ng "2 3 4 5 6 7 2 9 10 11
3 498.8839 567.6438 678.2456 829.9152 1025.032 1258.825 1560.260 1920.040  2342.660
4 639.0484  730.7307 875.6935 1049.391 1262.237 1517.934 1820,835 2175.799
5 830.4965 955.1957 1112.661 1304.280 1532.370 1799.893  2110.281
6 1067.819 1212.079 1387.980 1733.558 1921.823  2120.368
7 1343.689  1506.868 - 1700.636 1926,232  2185.189
8 1657.515 1838.585 2050.027  2292.590
9 2007.651 2206.729  2435.773
10 | 2394.033  2611.016
11 2816.442
12
13
14
15
16
17
18
19
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Table I (continued)

—

n, .
ny < 12 13 14 15 16 17 18 19 20
3 2841.363 3419.065 4089.653 4860.509 5741.249 6741.954 7873.169 9145.912 10571.626
4  2588.112 3063.449 3608.,733  4227.574 5443,714 5720.226 6607.393 7598.486  8701.401
5 2467.161 2876.333  3338.210 3861.041 4448.561 5105.873 5838.306 ©651.403  7550.920
6  2440.563 2803,668 3212.958 3671.967 4184.412 4754.191 5350.210 6080.145  (849.077
7 2479,477 2811.383 3182.129 3%98.359 4057.694 4568.680 5130.267 5747.405  6423,392
8 2567.555 2876.5606  321.543 3504.615 4027.214  4494.435 50006223 5566.172  6177.107
9 2695.398 2986.681 3311.031 3470.073  4065.638  4499.691  4956.042 5491.890  6054.509
10 '2857,642 3134.424 3415.334 3750.402 4156.259 4565.365 5011.467 5496.401  6022.050
11 3051.277 3315.483 3009.506 3334.138 4290.421  4679.589 5103.030 5562.256  6058.883
12 3274.744 3527.395 3509.196 4120.398  4462.086 4834.779 5239.698 5678.069  6151.235
13 3768.851  4270.902  4543,242  4846.253 5179.816 5544.199 5939.933  6367.755
14 4298,702  4586.933  4903.963 5250,087 5700.567 6105.081  6543.190
15 4864.256 5170.263 5525.420 5868.513 6201.496  6584.522
16 5465.483 5789.339  6141.647 6522.722  6932.997
17 6102.359  6443.904 6813.876  7212.437
18 6774.867 7134,179  7521.820
19 7482.995  7860.071
20 8226,734

(%]



Table II. Values of aj;

20

n2 .

ny 3 4 5 6 7 8 9 10 11

3 =17,42222 =12,28025 =9.5G0343 «8,035714 «=7,0512456 «=6.393113 =5.934705 =5.608172 =5.366267
4 ~9,257143 -7.485268 =6.351002 -=5.675182 -5.185227 -4.838500 -4.587325 =4,402622
5 -6.146032 «<5.284563 -4,760989 -4.302042 -4,011488 -3.,797802 -3.638250
6 -4,552189 =4,050905 ~3.695762 =3.436892 =3,244014 =3,097979
7 -3.596404 -3.270873 -=3.031202 -=2.850809 =2,712712
8 «2.9604103 =2,736552 =2.5639563 =2.430725
9 =2.516776 «2.378330 =2.218869
10 -2.184520 =2,056031
11 -1.928458
12

13

14

15

16

17

18

19
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Table II (continued)
n2

ny 12 13 14 15 16 17 18 19 20

3 ~=5.189255 <5,058333 «4.902110 «4,892012 =4,844105 -=4.812367 -=4.794224 -4,7872483 -4,789549
4 =4,265798 =4,10443]1 «4,000154 «=4,036731 =3.,900975 «3,975450 =3.90638B206 =3,960116 -3.963862
5 =3.5180959 =3.427278 =3.358987 =3,308244 =3.271143 «=3,2458%92 «=3.,229447 =3,220630 =3.218153
6 =2.,986213 =2.912020 -=2.833882 -2,782047 =2.74451% =2.,71292]1 =2.69%462 =2.681739 =2.673653
T «2.605678 =2,522035 =2.,45639]1 «=2.404860 =2,364580 =2,33340]1 =2,300678 =2,202135 «2,279767
8 =2,320461 =2.244055 =2,178492 =2,126153 =2.,084363 =2.051112 =2,024862 «2.,004416 =1.,983833
9 =2.,198999 =2,034366 =1,965£860 71.915451 =1.872377 =1.837460 =1.800923]1 =1.785548 «1,768511
10 =1.945167 =1.872508 =1.806352 =1,752428 «=1,.708242 =1.,671951 =1.642131 =1.617678 =1.597722
11 =1.820930 =1.745094 «1.678451 <=1.623745 =1,578571 =1.541110 =1.,509974 =]1.484083 =1.462583
12 =1,725328 =1.643128 <«=1.575900 =1.520432 =1.,474351 =1.435868 «1.,403611 ~1.376515 -1.353740
13 =1.560401 -=1.492516 =1.436287 <1.389358 =~1.349955 =1,316716 -1.288587 «1.2064733
14 - =1,42391% «1.306921 =1.318762 «1.278933 =1.244815 «1.215777 <1.190987
15 «1.300153 «1.,260632 =1.219589 =1,184666 <«1.154011 -1.,129195
16 w]e211345 =1.100947 =1,133875 =1.103273 =1.076911
17 «1.127020 ~1.,090640 ~1.059345 -1.032299
1R -1.053583 -1.02163¢ -0.992956
19 «=0.959067 ~0.,960791
20 -0.931947
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Table III.Values of ajn

4]

npe 3 4 5 6 7 8 9 10 11

3 0.829630 0.423457 0.234057 0.133929 0.,075414 0,038513 0,013834 -0.002452 -0.016019
4 0.257143  0.162723  0.107359  0.072759 0.049858 0.033961 0.022487  0.013932
S 0.111746 0.078874 0.057157 0.042234 0,0315%87 0.023736 0.017783
6 0.058361 0,044032 0,033834. 0,025380 0.020783  0.016479
7 0.034251 0.027032 0,021525 0.017495  0.014277
8 - 0.021795 0.017770 0,014640  0.012170
9 0.014718 0,012299  0.010364
10 0.010402  0.008862
1 0.007622
12

13

14

15

16

17

18

19
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Table III (continued)

n
2

n 12 13 14 15 16 17 18 19 20

3 -0,025438 -0.032679 -0,038367 -0.,042918 -0,046617 =0.049666 -0.052210 -0.054355 =0,056182

4 0,007380 0.,002246 -0,001856 =0,005189 =-0,007936 -0,010567 =-0.012169 =0.013822 -0.015246

5 0.013160 0,009494 0,005535 0,004110 0.002094 0,000400 -0,001040 =-0,002276 =-0,003345
6 0.,013097 0.,010392 0,008190 0,006374 0.004856 0.003574 0.002479 0.001535 0.000716

7 0.011724 0.009663 0,007975 0,006575 0.005359 0,004400 0.003545 0.,002806 0.002163

8 0,010190 0,008580 0,007252 0.005145 0.005211 0.004415 0,003731 0.003139 0.002621

9 0,008796 0.,007511 0,006445 0,005552 0.004795 0.004148 0.003590 0.003105 0.002681
10 0.007601 0.006559 0.005689 0,004956 0,004391 0.003797 0,003334 0,002931 0.002577
11  0.006595 0,005739 0,005019 0.004409 0,003888 0.003439 0,003050 0.002817 0.002411
12 0.005751 0.005040 0.004438 - 0,003925 0.003485 0.,003104 0,002773 0.002483 0.002227
13 0.004445 0,003928 0,003503 0.003127 0.002801 0,002517 0.002267  0.002046
14 0.003507 0,003135 0.0C2812 0.002531 0.002285 0.002068 0.001876
15 0.002815 0.002535 0,0022%° 0,3502076 0.001888 0.001720
16 0.062234 0.0C208% 0,001893 0.001726 0.001578
17 0.001894 0,001728 0.001581 0.001450
18 0.001532 0.001451 0.001410
19 0.001335 0.001230
20 0.001137
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Table IV, Values of asy

np

n 3 4 5 6 7 8 9 10 11

3 -0.118519 -0.052932 -0.026006 =-0.013393 ~0.006856 -0,003209 -0.000337 0,000247  0,001068
4 «0.028571 =0.016272 =0,009760 -0.006063 -0.003835 -0.002426 -0.001499 -0.000871
5 -0.010159 =~0,006573 =0,004397 =0.003017 ~0.002106 =0.001484 ~0.001046
6 -0.004489 =0,003145 =0.002226 =-0.001649 =-0,001223 =0.000915
7 -0.002283 ~0,001690 =0.001272 -0.000972 -0.000751
8 -0.001282 -0.000987 -0,000771 =0.000608
9 -0.000775 -0.000615 =0,000493
10 ~0.000495 =0,000403
11 ~0.000331
12

13

14

15

16

17

18

19




Table IV (continued)

n
2

n 12 13 14 15 16 17 18 19 20
'3 0.001590 0.001922 0,002131 0,002259 0,002331 0.002365 0,002373 0.002363  0.002341
4 -0,000434 -0,000125 0,000098 0.000259 0.000378 0.000456 0.000529 0,000576  0,0005610
5 «0.000731 -0.000500 =0.000327 -0.000196 -0.000073 -0.000017 0.000043 0.000091  0.000129
6 -0.000689 «0,000520 =0.000390 -0,000290 -0.000211 -0.000149 -0.000099 -0.000059 -0.000027
7 -0.000586 <0.000460 =0,000363 «0,000286 =0.000225 =0.000176 =0.,000136 =0.000104 -0.000077
8 -0.000485 -0.000390 -0.000315 «0.000256 =0.000208 =0.000170 -0.000138 -0.000112 -0.000090
9 -0,000400 -0.000327 -0.000269 =0,000222 =-0.000184 =-0,000154 -0,000128 =0.000107 =0,000089
10 -0.000330 -0.000273 -0.000228 =0.000191 -0.000160 =0.000136 =0.000115 =0,000095 =0.000083
11 -0.000275 -0.000230 -0,000193 -0.,000163 =0.000139 -0,000119 -0.000104 =0.000087 =0.000075
12 =0.000230 -0.000194 -0,000164 -0,000140 =0.000120 =-0.000103 =-0.000091 -0.000078 ~0.000034
13 . -0.000165 =-0.000139 <0.000)21 =-0.000104 =0,000090 =-0.0C0079 =0,000069  -0.000060
14 -0.000121 -0.000104 -0.000091 =0.000079 =-0.000069 =-0.000061 =-0.000054
15 ~0.000091 =0.,000079 =0.000Go$ =-0,000061 =-0,000054 -0,000048
16 : -0.000070 -0.000061 <0.000054 -0.000048 -0.000043
17 -0.000054 =0.000048 -0.000043 ~0.000038
18 -0.000043 =0,000038 =0.000034
19 -0.000034 ~0,000031
20 ~0,000028




Table V. Values of aj; 1)

n2

n 3 4 5 6 7 8 o 10 11

3 0.079012 0.039699 0.023117 - 0.014881 0.010284 0.007489  0.005675 0.004438  0.003560
4 0.021429  0.013018 0.008611 0.006063 0.004474 0,003425 0.002698  0,002177
5 0.008127  0.005477 0.003908 0.002913 0,002246 0.0017860  0.001443
6 0.003741  0.002696  0.002024  0.001570  0,001250  0.001017
7 ~ 0.001957 0.001478 0,001152 0.0:0921 - 0.000751
8 0.001122  0.000878 0,000704  C.000576
9 0.000689  0.000553  0,000454
10 0.000446  0.000364
11 0.000301
12

13

14

15

16

17

18

19
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Table V (continued)

n .
2

n 12 13 14 15 16 17 18 19 20

3 0.002915 0,.,002428 0,002053 0,001757 0,001520 0,001328 0,001169 0,001038 0.000927
4 0.,001791 0.001497 0.9201270 0.001090 0.000945 0,000827 0.000722 0.000648 0.000579
5 0.001191 0,000999 0,000850 0.000731 0,000635 9O,000556 0,000491  0.000437 0.000391
6 0.,000843 0,000709 0,000604 0,000520 0,000452 0,000397 0,000351 0.,000313 0.000280
7 0,000624 0,000527 0,000449 0.000387 0,000337 0,000296 0.000252 0.,000234 0.,000210
g 0.000479 0.000404 0.000345 0.,000299 0.,000261 0,000557 0,000203 0,000181 0,000162
9 0.,000378 0.,000320 0,000274 0,000237 0,000207 0,000182 0,000161 0,000144 0.000120
10 0.000306 0.000259 0.,000222 0,000192 0.000168 0.000148 0,000131 0,000117 0.000105
11 0.0002%2 0.000214 0.000183 0.000159 0.020139 0.000122 0.000109 0.000057 0.000087
12 0.,000211 0,000179 0,000154 0,000133 0,000117 0.000103 0,000091 0.000082 0.000073
13 0.000152 0.,000131 0,000113 0,000099 0,000088 0,000078 0.,000070 0.000063
14 0.000112 0,000095 0,000085 0.000075 0.000067 0,000060 0.000054
15 0.000085 0,000074 0.000066 0.000058 0,000052 0.000047
16 0.000055 0,0000=<  (,000051  0,0000456 0.000041
17 0.000051 0.000045 0,000041 0.000037
18 0.000040 0,000036 0.000033
19 0.000032 0.000029
20 0.000026

=09~
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The problem considered in this dissertation is the followings
let 7} and 7, be two bivariate populations having unknown cumulative
distribution functions Fl(xl,xz) and Fz(xl,xg), respectively. Assume
that F1 and F, are continuous and identical except possibly in location

paraméters. It is desired to test the null hypothesis
HO‘ Fl(XIQX2) E Fz(xlyxz)
against the alternative
Hys Fl(xl,xz) c4 Fz(xl,xz)
It cannot be assumed that the variables x; and x5 are statistically
independent.
Suppose there are n; pairs of observations (xll’xZI)""’

(xlnl,xan) from population m; and n, pairs of observations (xln +19
x2n1+1)"°”(xlN’x2N) from population m, where N = n; + ny. The

X141 (1 = 1424.444N) are ranked according to magnitude, the largest be=-

ing assigned rank 1 and the smallest assigned rank Ne In a similar

manner, ranks are assigned to the observations X34 (1 = 1,2)00eyN)e It

is assumed that there are no ties in ranks.

Let u;; and 021 denote the ranks assigned to x;; and x,; if
these observatlions belong to population UL and let “ii and “éi denote

the ranks of these same observations if they belong to population m,.

Since the sum of the first N integers is _ﬂigil) y it follows that



n <
1 N .
3 uik + X uik - N Ngl
k=1 k:nl.,.l

If the N palrs of ranks are plotted on a plane, it is likely
that the nj points from populection T and the n, points from population
Ty will be interspersed forming a circular or elliptical pattern under
the assumption trat Fl(xl,xz) and Fz(xl,xz) are identical. Under the
alternative hypothesis, it is likely that there will be a segregation
of the points into two groups. A test statistic, Sf is constructed to

me,sure the extent of this segregation.

The sf-statistic proposed here, is based on the Euclidean

distance between the centroids of the ranks belonging to m; and m,,
in particular,
2_ (o ov)R T o0v)2
S= (8p=1)° + (upmu3)

where

-1 M Lo N
U’i = nl k_E_:luik ’ ui = n2 ki: uik
= M+l

The first two moments of Sf are derived under the following

conditional randomization procedures keeping the ranks pgired as given
in the sample, n; pairs are selected at random (with equal probabilities)
from among the N = n; + nj pairs and assigned to population 7 j the re-

maining ny pairs are assigned to population m,. It is shown that

6 n1n2



and

027 %0 T anAn * ks * anhy

2
Yaghor t At
N .
where A . = X uj,u,, are parameters depending on the sample, and the
rs kel 1k“2k

coefficients 3500 2119 19 A3p and all,il have b:en tabulated for values

of n) and ny up to 20,

The exact sampling distribution of Sf is unknown. However,

2
it is shown that the distribution of kE(SL{_ is approximately X? with
2
od
2,72
2[E(S1)]1°  degrees of freedom.
2
USf
A rank analogue of Wald's modification of Hotelling's T? is

given and the first two moments obtained. Also, a multivariate extension

is considered and a statistic, Sf(k,z), constructed. The expectation and

variance of Sf(k,z) are derived., A multi-population extension for the case
of bivariate populations is given and the expectation is derived for a
statistic, Sf(Z,p). A statistic, Sf(k,p) is constructed for the most
general case and its expectation is given.

An alternative approach to the problem, also investigated, is
by means of discriminant analysis. In this case simplified formulas are

given for the calculation of the components of a vector which provides



optimum discrimination. It is shown that this method is not a
fruitful one for the construction of tests of significance pertain-

ing to the original null hypothesis.
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