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Chapter 4 -- Numerical Methods

4.1  Overview

The numerical solution of the state vector equation is described in this chapter.  The equa-

tion is a two-point boundary value problem in its simplest form, and becomes a multi-point BVP

in its more general configuration.  The equation may be linear or nonlinear, depending on the

strain-displacement relations chosen.  There are at least two ways to solve the problem: th

Method” as presented in Cohen (1974), or using a shooting technique [Ascher, et. al. (

Keller (1968), Kant and Ramesh (1981), Stoer and Bulirsch (1991), Kalnins (1964)].

The field method has the advantages of being numerically stable and relatively fas

pared to other solution procedures but is difficult to implement because it requires specia

ment of kinematic boundary conditions.  The method is based upon a transformation (a 

transformation; see Ascher, et. al. (1988), pp. 164-170, Jordan and Shelley (1966)) of th

point BVP into two separate initial value problems to be integrated in succession.  The g

shooting technique is slower than the field method because numeric instability must be h

by segmentation of the solution region (i.e., multiple shooting), but is adaptable to the solution 

nonlinear problems, and makes no distinction between kinematic and static variables.

There are any number of possible implementations of the multiple shooting method

have chosen to use the so-called stabilized marching method, as presented by Ascher, Matthe

and Russell (1988).  This choice was made based on the ability of the stabilized marchin

nique to guarantee stability of the solution procedure -- other methods might not be able to

such a guarantee; those methods seem to require more user judgement in the selection of 

points.

In addition to an exposition of the stabilized marching technique, the current chapte

tains an explanation of cubic spline interpolation.  The cubic spline is used in the current a

in order to model the geometry of the meridian.  It is felt that use of a spline function, where

entire meridian is described by the position of just a few points, makes the resulting analys

easier to use than it would otherwise be.  If the geometry were to be described exactly, the

subroutine would need to be written for analysis of each new meridian shape.  Furthermore
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spline functions have been used  successfully for structural shape optimization (Hinton, Rao and

Sienz (1992), Hinton and Rao (1993), Weck and Steinke (1983-4)).  Incorporation of the cubic

spline here thus sets the code up for possible future use within an optimization program.

4.2  The stabilized marching method

4.2.1  Shooting for a linear, two-point boundary value problem

For the sake of exposition, assume that a two-point BVP with variable coefficients may be

written in the form 

(4.1)

where y is an n-vector, s is the independent variable, A(s) is the (n-by-n) coefficient matrix, P(s) is

an n-vector of loading terms, Ba is (p-by-n), Bb is ((n-p)-by-n), βa is a p-vector and βb is a (n-p)-

vector. That is, there are p conditions prescribed at the initial end, and (n-p) conditions prescribed

at the final end, for the nth order system.  The form of equation (4.1) is the same as that of equa-

tions (3.11) and (3.9), under the assumption of separated boundary conditions.  Other boundary

conditions are possible of course, and such situations are also solvable by shooting, but the solu-

tion procedure is made a bit more numerically challenging.  Separated BC’s frequently occu

are the usual case for shell problems.  More information on handling non-separated BC’s m

found in Keller (1968) and Ascher, et. al. (1988). 

The essence of a shooting procedure is that it solves a linear two-point boundary

problem by direct numerical integration as if it were an initial value problem.  This is easily 

-- many good integration routines exist -- once the initial values are properly chosen.  Th

lies in proper choice of initial conditions (IC’s).  The IC vectors must be chosen in such a w

to satisfy exactly the known boundary conditions on the initial edge, without imposing unn

sary restrictions on the values of the unprescribed dependent variables.

The shooting procedure will involve a superposition of a single inhomogeneous so

with a number (n-p) of homogeneous solutions:

sd
dy

A s( )y s( ) P s( )+= a s b< <

Bay a( ) βa= Bby b( ) βb=
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where y(s) is the vector of dependent variables, s represents the independent variable, Y(s) is a (n-

by-(n-p)) matrix whose columns are homogeneous solution vectors, ξ is a (n-p)-vector of super-

position constants, and v(x) is the (n-by-1) particular solution vector.  The homogeneous and par-

ticular equations will thus be given by 

(4.3)

Then with the boundary conditions at the initial edge defined as in  (4.1), the use of equation (4.2)

yields 

, (4.4)

which may be satisfied by taking either

(4.5)

or

(4.6)

The choice of initial conditions given by equation (4.5) leads to standard shooting as used by, for

example, Kalnins (1964).  The stabilized marching method of Ascher, et. al. (1988) begins with

BC’s as in equation (4.6).  We will here utilize (4.6).

The BC’s (4.6) may be satisfied by use of QR factorization of the transpose of the 

condition coefficient matrix, Ba
T.  The method is detailed by Ascher, et. al., but is repeated h

Dimensionally, Ba
T is (n-by-p);  using QR factorization, it may be decomposed into a produc

an orthogonal matrix H (n-by-n) and a (n-by-p) matrix R which is block upper triangular:

y s( ) Y s( )ξ v s( )+=

sd
dY

A s( )Y s( )=

sd
dv

A s( )v s( ) P s( )+=

BaY a( )ξ Bav a( )+ βa=

BaY a( ) I=

ξ βa=

v a( ) 0=

BaY a( ) 0=

Bav a( ) βa=
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  , (4.7)

where r is (p-by-p) lower triangular and the zero matrix is ((n-p)-by-p).  Now, H is viewed as a

concatenation of  two matrices, set side by side: , where  is of dimension (n-by-p)

and  is (n-by-(n-p)).  We thus get from (4.6), (4.7)

,

which is satisfied by 

(4.8)

We also get from (4.6), (4.7)

,

which is satisfied by

(4.9)

With the initial condition vectors found by equations (4.8) and (4.9), we may now proceed

to integrate the initial value problems found by inserting the IC vectors into the equation (4.1).

The integration limits will be from a to b.  This will entail a single nonhomogeneous integration

with IC

  

and (n-p) homogeneous integrations with the columns of Y(a) as IC vectors.  The integration pro-

cess yields the particular solution vector v(b), and the homogeneous solution matrix Y(b).

At the end of the integrations, we must find the superposition constant vector ξ.  This is

Ba
T

HR=

HH
T

H
T
H I= =

R
r

T

0
=

H H H,[ ]=

)

H

)

H

r 0,[ ]
H

T

H
T

Y a( ) 0=

)

Y a( ) H=

r 0,[ ]
H

T

H
T

v a( ) βa=

)

v a( ) H r
1– βa=

)

y a( ) v a( )=
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(4.2), we get

or

(4.10)

Following the above detailed procedure, we have found all of the necessary bits, a

now find the values of y at the two shooting points by use of equation (4.2).

4.2.2  Multiple shooting for linear boundary value problems

It often happens that the solution to an ordinary differential equation has terms whic

unchecked, grow rapidly as the independent variable is increased.  In such a case, any at

numerically integrate the equation over a large region quickly results in a loss of accuracy

loss of accuracy occurs as the growing modes quickly overflow the memory register or lead

necessity of taking small differences between large terms, thus overwhelming the more “s

modes.  Such a problem does not occur when the BVP is solved exactly, because conside

the boundary conditions leads to the logical conclusion that the coefficients of rapidly gro

terms must vanish.  For shooting, the problem is handled by the technique of multiple shooting.

The multiple shooting technique works in much the same way as the standard sh

method; the difference is that in multiple shooting the region of solution, , is partiti

into a number of smaller regions or segments, over each of which the standard shooting te

is applied.  The partitioning , when followed by a rescaling of integrated solutions, pro

excessive growth of the “unstable” modes.  The final solution is then found by enforcing c

conditions of transition at the common shooting points between segments.  These transitio

ditions may allow for a good deal of flexibility in the problem: for example, they might reflec

presence of discontinuities in the dependent variable vector (e.g., concentrated loading) o

constituent functions which make up the coefficient matrix A(s) of equation (4.1).

There are two subclasses of the multiple shooting technique.  If all of the segments 

Bby b( ) βb=

Bb Y b( )ξ v b( )+[ ] βb=

ξ BbY b( )[ ] 1– βb Bbv b( )–[ ]=

a s b< <
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handled independently, then the integrations on all segments may be done simultaneously.  This

leads to the technique of parallel shooting.  If the segments must be handled in succession, then

the technique proceeds segment-by-segment, according to the value of the independent variable.

Such techniques are termed marching techniques.  The choice of whether to use parallel shooting

or a marching technique depends in part upon whether there will be any discontinuities in the

region of solution; for the current work, a marching technique has been chosen in order to accom-

modate possible geometric and load discontinuities.

The first step in the process of multiple shooting is the partitioning of the region of inte-

gration into a number (N) of segments, whose endpoints are denoted by si, i=1,2,...,N+1:

(4.11)

Note that, strictly speaking, the a priori partitioning of equation (4.11) is only necessary for paral-

lel shooting. For marching techniques, it is possible to set the shooting points si on an as-you-go

basis.  For instance, Ascher, et al suggest dynamically setting shooting points based upon the

growth of unstable modes as indicated by the degree of distinctness between the (initially

orthonormal) homogeneous solution vectors; Stoer and Bulirsch  recommend setting shooting

points by comparison of the integrated solutions on each segment to a predefined comparison

function. Regardless of whether the shooting points are predetermined or chosen dynamically, we

will have on the ith segment the ODE

(4.12)

In addition to equation (4.12), the problem is defined by the initial and final end conditions

(4.13)

and the transition conditions

(4.14)

In equation (4.14), the term Ki represents a connectivity matrix for the dependent variable vector,

a s1 s2 … sN 1+< < < b= =

sd

dyi
A s( )yi s( ) P s( )+= si s si 1+< <

Bay1 a( ) βa=

BbyN b( ) βb=

Kiyi si 1+( ) yi 1+ si 1+( ) ∆i 1+–=
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and the term ∆i+1 is a discontinuity vector.  For example, full continuity is described by Ki = I, and

the matrix ∆i+1 = 0.  It may be noted that as a consequence of the segmentation, the two-point

BVP has been transformed into a multi-point BVP, with internal boundary conditions defined by

equation (4.14). 

Superposition is assumed to apply on all segments, so that we have

, (4.15)

leading to the homogeneous and particular equations

(4.16)

The process continues by the selection of IC’s on the first segment.  These IC’s m

chosen just as they were in section (4.2.1), i.e., using equations (4.8), (4.9).  Hereafter, the

ular initial condition vector on the ith segment will be denoted by αi, and the matrix of initial con-

dition vectors for homogeneous integrations will be known as Fi.  That is, we take ,

and .  By equations (4.7), (4.8), (4.9), we get

(4.17)

We now may input the initial conditions F1 and α1 into equation (4.16), and integrate to get Y1(s2)

and v1(s2).

For all segments following the first, the initial condition vectors must be chosen b

upon the integrated solutions on the previous segment, taking into account the presence

known discontinuities.  In the stabilized marching method, the choice of new IC’s is made 

upon a reorthogonalization of the homogeneous solutions of the previous segment.  

yi s( ) Yi s( )ξi vi s( )+= si s si 1+≤ ≤

sd

dYi
A s( )Yi s( )=

sd

dvi
A s( )vi s( ) P s( )+=

si s si 1+< <

Fi Yi si( )=

αi vi si( )=

Ba
T

H H,[ ] r
T

0
=

F1 H=

α1 H r
1– βa=

)
)
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Reorthogonalization of the homogeneous solution matrix provides for stabilization of the

method, giving rise to the name “stabilized marching.”  Stabilization occurs as a result o

effects: first, by rendering the IC vectors normal, any large modes are forced to take on reas

values prior to integration.  This first effect is not unique to the stabilized marching method;

key aspect of all marching techniques.  The second stabilization effect has to do with the e

calculation of the superposition constants, ξi.  More will be said on this later.

A (n-by-(n-p)) column-orthonormal matrix Gi+1 and a ((n-p)-by-(n-p)) upper triangular

matrix Γi are defined by the equation

(4.18)

These new matrices may be found using a combination of singular value decomposition 

and QR factorization.  The process goes as follows:  by SVD,

, (4.19)

in which Ui is (n-by-(n-p)) and column-orthonormal, Σi is ((n-p)-by-(n-p)) diagonal, and Vi is ((n-

p)-by-(n-p)) and orthogonal.  QR factorization next yields

, (4.20)

where Qi is ((n-p)-by-(n-p)) orthogonal and Ri is ((n-p)-by-(n-p)) upper triangular.  We then ge

the form of (4.18) from (4.19), (4.20) by taking

(4.21)

The equation (4.18) is now used in (4.15), the result substituted into (4.14) and some rea

ment is performed to get

(4.22)

Next, using (4.15), (4.18) and (4.22) in (4.14) and rearranging, we get

KiYi si 1+( ) Gi 1+ Γi=

KiYi si 1+( ) UiΣiVi=

ΣiVi( ) QiRi=

Gi 1+ UiQi=

Γi Ri=

ξi Γi
1–
Gi 1+

T
Fi 1+ ξi 1+ αi 1+ ∆i 1+ Kivi si 1+( )––+[ ]=
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(4.23)

=

In view of the column-orthonormality of Gi+1, i.e., , we may take 

, (4.24)

which will then ensure that satisfaction of the conditions of transition will not depend upon the

calculated value of ξi+1.  This leaves the equation

Clearly, one solution to this latest equation is given by , but again

considering the column-orthonormality of Gi+1, we may more generally take

(4.25)

where r is any non-negative integer.  It may be noted that if Ki = I, ∆i+1 = 0, we have the situation

of continuity of the dependent variable vector at a shooting point.  If, additionally, the integer r is

set equal to one, then we obtain the initial condition vector suggested by Ascher, et al, and by

Keller (1968).  We have arrived at the choice for αι+1 based only upon consideration of connec-

tivity, but it is pointed out by Keller (for the simpler case where there are no geometric or load

discontinuities) that the formulation of equation (4.25) with  yields a particular solution IC

vector which is mutually orthogonal to the homogeneous IC vectors.  This orthogonality property

is retained in the generalization presented here, for .  The initial conditions (4.24) and (4.25)

thus represent a generalization of the initial conditions of the given references to situations where

the dependent variable is non-continuous at a shooting point.

Following completion of the integration steps over all of the N segments, the shooting pro-

cedure is completed by solution for the superposition constants.  This last step is done by first

enforcing the final-end BC .  The final segment superposition constants are found

from this BC by using the superposition equation (4.15) and rearranging to get (c.f. equation

I Gi 1+ Gi 1+
T

–( ) Fi 1+ ξi 1+[ ] I Gi 1+ Gi 1+
T

–( )αi 1++

I Gi 1+ Gi 1+
T

–( ) Kivi si 1+( ) ∆i 1++[ ]

Gi 1+
T

Gi 1+ I=

Fi 1+ Gi 1+=

I Gi 1+ Gi 1+
T

–( )αi 1+ I Gi t+ Gi 1+
T

–( ) Kivi si 1+( ) ∆i 1++[ ]=

αi 1+ Kivi si 1+( ) ∆i 1++[ ]=

αi 1+ I Gi 1+ Gi 1+
T

–( )
r

Kivi si 1+( ) ∆i 1++[ ]=

r 1=

r 0>

Bby b( ) βb=
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(4.26)

After solution of equation (4.26), all of the other superposition constants are found by use of

equations (4.15), (4.18), (4.24), (4.25) in (4.15) to get

(4.27)

It was stated earlier that there was an additional stabilization feature due to the reorthogo-

nalization procedure.  This additional feature may be seen by looking at equation (4.27):  because

the matrix Γi is upper triangular, the inversion of Γi is not really necessary.  Instead, a simple

backsubstitution procedure may be used.  As a result, the effects of growth of unstable modes are

not felt when solving for the superposition constants.  That is, the reorthogonalization improves

the conditioning of the equations to be solved for the superposition constants.  Ascher, et al argue

that it is quite often in this step that other multiple shooting methods fail.

The stabilized marching method for multiple shooting thus proceeds as follows:

• Partition the region of solution according to equation (4.11).

• Choose initial segment IC’s by use of equations (4.18).

• Integrate equation (4.16) over the first segment to get Y1(s2) and v1(s2).

• For segments number 2 through N, choose new segment IC’s according to equatio

(4.18), (4.24), (4.25).  Integrate from  to .

• Repeat the last step until the final end is reached, i.e., until .

• Solve for the final segment superposition constants, by equation (4.26).

• Use the recursion relation (4.27) to find the superposition constants for all seg

preceding the last.

ξN BbYN b( )[ ] 1– βb vN b( )–[ ]=

ξi Γi
1– ξi 1+ Gi 1+

T
Kivi si 1+( ) ∆i 1++( )–[ ]=

s si= s si 1+=

s sN 1+ b= =
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• Superpose the homogeneous and particular solutions on all segments and at al

ing points by use of equation (4.15).

4.3  Cubic spline interpolation

Fig. 4.1  Spline Coordinates

Suppose that the location of a curve in two-dimensional space is to be described b

coordinates, say  as shown in Fig. 4.1, and suppose also that a number  

crete pairs, ,  are known to exist on the curve.  We refer to these

crete points as “knots” (or “nodes” or “support points”) of the curve.  If the functional form

 is not known then it will be necessary to interpolate , if values of R are desired at posi-

tions between the knots.

Many techniques exist for performance of numerical interpolation; most rely upon th

of polynomial expressions.  It is possible, for example, to write a single polynomial whose

passes through all of the knots.  Unfortunately, if the number of knots is large, then the p

mial will have a high order and will thus be prone to exhibit much oscillatory behavior.  A

alternative, we may interpolate using a piecewise polynomial expression, in which each p

valid only over a single subinterval .  The piecewise polynomial function is known

spline function, and we will refer to the polynomial over a single subinterval as a spline po

mial.  That is, the spline function consists of a set of N spline polynomials.  The order of the splin

polynomials may be taken to be of a low order, depending upon the required continuity; the

function is thus less likely to exhibit unwanted oscillatory behavior.  Here we will describ

η R η( ),( ) N 1+( )

ηi Ri ηi( ),( ) i 0 1 … N, , ,=

R η( ) R η( )

ηi ηi 1+,[ ]

η
R(η)
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cubic spline, in which all of the spline polynomials are of third order;  the derivation is like that of

Stoer and Bulirsch (1991), pp. 97-101.

Define

then we seek a function  which interpolates  and has the property

(4.28)

The second derivative of  with respect to η is known as the moment of S, and we

denote

Cubic spline polynomials provide continuity of the moments at the knots; we assume a linear

variation of  over each subinterval.  Thus,

(4.29)

where Ai, Bi are constants of integration.

Using (4.28) in (4.29), applied at , , Ai and Bi are found to be given by

(4.30)

The equations (4.30) may be used in the last of equations (4.29), allowing us to write

Y Ri{ }= i 0 1 … N, , ,=

hi 1+ ηi 1+ ηi–= i 0 1 … N 1–, , ,=

S Y η;[ ] R η( )

S Y ηi;[ ] Ri=

S Y η;[ ]

S″ Y ηi;[ ] Mi= i 0 1 … N, , ,=

S″ Y η;[ ]

S″ Y η;[ ] Mi

ηi 1+ η–( )
hi 1+

-------------------------- Mi 1+

η ηi–( )
hi 1+

-------------------+=

S′ Y η;[ ] Mi

ηi 1+ η–( )2

2hi 1+
-----------------------------– Mi 1+

η ηi–( )2

2hi 1+
---------------------- Ai+ +=

S Y η;[ ] Mi

ηi 1+ η–( )3

6hi 1+
----------------------------- Mi 1+

η ηi–( )3

6hi 1+
---------------------- Ai η ηi–( ) Bi+ + +=

ηi η ηi 1+≤ ≤

ηi ηi 1+

Ai

Ri 1+ Ri–

hi 1+
-----------------------

hi 1+

6
----------- Mi Mi 1+–( )+=

Bi Ri Mi

hi 1+
2

6
-----------–=
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(4.31)

with

which is valid on the interval , for 

The spline function is completely defined by (4.31) once the values of Mi are known, for

.  We thus have (N+1) unknowns to find.  We have already enforced the required

values of R at the knots, and we have asserted continuity of the moments at the interior knots.

This leaves only continuity of  to be evaluated.  Using (4.30) in (4.29), we get 

(4.32)

Continuity of  is applied by asserting single-valuedness of this term at the ith knot,

regardless of whether the knot is viewed as a part of the ith or (i+1)th subinterval,

.  Thus it may be seen that the following condition must be satisfied at all of

the (N-1) interior knots:

(4.33.a)

for .  We now have (N-1) equations for (N+1) unknowns; splining may be

completed only with the addition of two more conditions.  These conditions may be any two con-

ditions on  or  at the end knots.  For our purposes, we assume the slope  is

known at each end:

S Y η;[ ] αi βi η ηi–( ) γi η ηi–( )2 δi η ηi–( )3
+ + +=

αi Ri= βi

Ri 1+ Ri–

hi 1+
-----------------------

2Mi Mi 1++

6
-----------------------------hi 1+–=

γi
1
2
---Mi= δi

Mi 1+ Mi–

6hi 1+
--------------------------=

ηi 1– ηi,[ ] i 0 1 … N 1–, , ,=

i 0 1 … N, , ,=

S′ Y η;[ ]

S′ Y η;[ ] Mi

ηi 1+ η–( )2

2hi 1+
-----------------------------– Mi 1+

η ηi–( )2

2hi 1+
----------------------

Ri 1+ Ri–

hi 1+
-----------------------

hi 1+

6
----------- Mi 1+ Mi–( )–+ +=

S′ Y η;[ ]

i 1 2 … N 1–, , ,=

hi 1+

6
-----------Mi

hi 1+ hi 2++( )
3

----------------------------------Mi 1+

hi 2+

6
-----------Mi 2++ +

Ri 2+ Ri 1+–

hi 2+
------------------------------

Ri 1+ Ri–

hi 1+
-----------------------–=

i 0 1 … N 2–, , ,=

S′ Y η;[ ] S″ Y η;[ ] R′
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which yield

(4.33.b)

Spline interpolation is thus completed using the spline polynomials of (4.31), with values

of Mi given by solution of the linear algebraic system of (4.33.a), (4.33.b).

S′ Y η0;[ ] R′0=

S′ Y ηN;[ ] R′N=

h1

3
-----M0–

h1

6
-----M1– R′0

R1 R0–

h1
------------------–=

hN

6
------MN 1–

hN

3
------MN+ R′N

RN RN 1––

hN
--------------------------–=
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