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(ABSTRACT)

A computer program that symbolically generates and evaluates all Feynman diagrams required for

scattering amplitude for exclusive processes is tested, corrected, extended, and brought to opera-

tional status. The sensitivity of perturbative QCD predictions for the nucleon form factors,

xy -• pp, and yy -• pi, to the theoretical uncertainties of the nucleon wave function and the form

of the running coupling constant is investigated. A new prediction for the cross section for

yy -• A+ *Ä+ * with sum·rule wave functions is presented. As a product of the development of the

computer program, the quark amplitudes for meson-baryon scattering are obtained. Integrations

of the quark amplitudes over wave functions are canied out by cutting otf singularities. The nu-

merical reliability of the integration and its sensitivity to the cut·oü"s and the choice of wave func-

tion are investigated.
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Chapter I

Introduction

The deep inelastic electron-proton scattering [l] has exposed the internal structure of the proton.

Once seemingly "elementary" particles, (proton, neutron, for example) were evidently no longer

elementary anymore. Instead, they must consist of more fundamental constituents. The parton

model [2] was then proposed, which introduced point·like, free particles — partons - as the con-

stituents of hadrons. On the other hand, experiments showed that hadrons were grouped in

multiplets, each of which could be characterized by a distinct quantum flavor. The quark model

[3] successfully constructed the hadron family, which consists of mesons and baryons, by correctly

yielding the multiplets of hadrons and their quantum numbers: electric charge, spin, baryon num-

ber, etc.. 'I‘he diversity of the hadron family was then organized by quarks of several different

"f1avors" and three "colors".

Flavor is a quantum number that dißerentiates quark species. It is generally accepted that there

are six tlavors grouped in three generations, namely, u (up) and d (down); c (charm) and s (strange);

b (bottom) and t (top), where the t quark has not been found experimentally. To form a proton,
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for example, two u quarks and one d quark are needed, and, by exchanging u and d quarks, a

neutron is formed. .

Color is the charge of the strong interaction just as the electric charge is the charge of the

electromagnetic interaction, except that there are three different types ofcolor charges; namely, red,

green, and blue. While the naming of the colors is purely artificial and conventional, the number ‘

of the colors is physical and gives the degrees of freedom of the interaction. Just as the photon is

the mediator of the electromagnetic interaction, the gluon is the mediator of the strong interaction.

One of the differenoes is that, to mediate strong interactions among three different types of color

charges, 3* - l = 8 types of gluons are needed. Quantum chromodynamics (QCD) is the theory

that describes the interaction among quarks and gluons and is generally believed to be the best

available theory of the strong interaction.

QCD, similar to the extremely successful quantum eletrodynamics (QED), is a gauge field theory.

In the theory of gauge fields the first principle is me local symmetry of the physical system. A

symmetry is said to be local if the system is invariant under a group of transformations that are

dependent on space-time, and it is said to be global if the transformation is independent of space-

time. ’There are space-time symmetries and internal isotopic symmetries. The Lorentz group is an

example of global symmetry of space-time. Physical systems should be invariant under Lorentz

transformations as required by the principle of special relativity. For intemal symmetries, the in-
‘

variance under a global U(l) transformation represents, for example, charge conservation. Both

space-time symmetry and isotopic symmetry can be local. Local space-time symmetry yielded

general relativity, about a half century before the isotopic symmetries were made local and yielded

the theory of gauge üelds. A globally invariant system is generally not invariant under a certain

group of local transformations. To obtain local invariance additional compensating fields have to

be introduced. These fields play the role of interacting fields in the theory and are called gauge

fields. It should be emphasized that the gauge fields or the interactions are not assumptions inserted
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into the theory; instead, they are the natural results of and required by the symmetry principle.

Given the symmetry group under which the transformations of system are required to be invariant,

gauging the theory then gives the the interactions.

What is then the symmetry group for colors? In order to transform a three~component color state,

a 3 >< 3 matrix is required. This leads naturally to the SU(3) group which has a triplet contravariant

representation that describes a unitary triplet of particles and a triplet covariant representation that

describes a unitary triplet ofanti-particles. lt should not be any surprise that QCD is just the gauge

theory obtained from localizing the SU(3) symmetry. SU(3) is a non·Abelian group because its

3* — 1 = 8 generators (they are 3 >< 3 matrices known as Gell·Mann matrices) do not commute.

One of the signilicant features of non-Abelian groups is that the associated gauge theory is

asymptotically free. This is to say, that the effective color charge decreases to zero when the dis-

tance goes to zero. ·

Asymptotic freedom was first discovered by Gross and Wilczek [4] and Politzer [5]. Its derivation

from the renormalization group can be found elsewhere in the literature [6]. A field theory usually

contains divergences when one or more loops in the Feynman diagrams are encountered. In order

to remove the divergences, the theory has to be renormalized. Clearly, a theory is useful only if it

is renormalizable. QCD is a such theory. The effective charge, or the coupling constant §*, satisfies

the equation (see, for example, ref. 6)

(1-1)

where Q* = —q* and q is the momentum transfer, which is also frequently referred to as the

transverse momentum and denoted by p,; g is the renormalized coupling constant and [1* is the

subtraction scale whereby the theory is normalized. Following the renormalization group

equations, the function B can be calculated perturbatively:
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2 s

161: (161: ) (L2)

Bo =

Mwherenl is the number of Ilavors. It should be pointed out here that a negative ß(g) is a charac-

teristic of the non-Abelian group and is true for the leading term as long as fl, < $5% < 17. Keeping

only the leading term of ß(g), Eq. (1.1) leads to

-2 2
-82

8 (Q ) = (1-3)
1 + %z2 r. .

161:

The plus sign in the denominator reflects the negativity of ß(g) and ensures that ?(z -• GO) —• 0, i.e.,

asymptotic freedom. With this discovery, the perturbative method is then permitted for large Q'.

Introducing a new parameter A defined by

M = ¤2=¤1>l·'(16¤2/ßo8°)|• s um

Eq. (1.3) can then be rewritten as

2
2'<Q'> = @77- 06)

ßo 111(Q /^ )

Because of the Q'-dependence, it is commonly referred to as the running coupling constant. Fur-

thermore,

-2 22 „ 8 (Q )
( ¤„(Q ) r ···————4„ (1-6)

is very often referred to, in place ofE, as the running coupling constant. Also it should be noticed

that A absorbs both p and g and becomes the only free parameter of the theory.
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Perturbative QCD was first applied to inclusive processes such as deep inelastic electron-proton

scattering and hadron production from e*e' annihilation. The theory gave very good agreement

with experiments on scaling violation [7], and the ratio R of the total cross section of hadronic

production and the cross section of u*|.1‘ production [8]. Only aüer the discovery of asymptotic

freedom, was it realized that a very much wider range of hadronic processes are at least partially

calculable by perturbative QCD at short distances or large momentum transfer. Among them are

exclusive processes of hadronic magnetic form factors, large angle scattering, strong and

electromagnetic decays of heavy quarkonia, etc., Unlike the inclusive case where the momenta of

the final particles are not measured, the asymptotic behavior of the exclusive hadronic processes is

govemed not only by the short distance perturbative physics, but also by the large distance non-

perturbative physics. Experimentally observed hadrons are always color singlets and on the mass

shell. The physics underlying the color confinement and the formation of hadrons is non-

perturbative since the hadronic size is large compared to the strong interaction range. Therefore,

in order to completely predict an exclusive hadronic process, and not just some features such as

· energy dependence of it, assessments of both the perturbative hard process part and the non-

perturbative fragmentation and formation of hadrons are required.

In chapter 2 the procedure of factorization is reviewed. As indicated above, the amplitude of an

exclusive hadronic process generally depends on both hard scattering and soft hadron fragrnentation

and formation. The factorization procedure separates the sofi part from the hard part into a factor

which can be identified as the quark momentum distribution amplitude or the hadronic wave
l function and leaves the hard part in a factor called the hard scattering amplitude. The result that

emerges from this procedure gives a very simple picture for exclusive processes and makes the cal-

culation possible to any order of the coupling constant. For example, the magnetic form factor of

the proton GL is then a product of three factors [9]: the wave function rp of the incident proton, the

hard·scattering amplitude TH for the three quark state scattered by a virtual photon into the final

state and the wave function for the final proton qu'. It can be written as
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GM(Q2) = dgxdgv <P·(V, Ö) TH(x,y,Q) <P(x, Ö), _ (1-7)

where d,x = dx,dx,dx, 5(1 — x, -x, —x,) and Ö, = min(x,Q).

To the leading order of a,(Q‘) the hard-scattering amplitude T„ is the sum ofall Born diagrams, i.e.,

tree diagrams with the incident and outgoing protons replaced by three free quarks. One of the

characteristic ofexclusive processes is that the number of diagrams grows factorially as the number

of quark lines increases, even at the lowest order. For a relatively simple case yy -• BB-, there are

already ~ 1000 diagrams involved in predicting the unpolarized cross section. It has been practi-

cally impossible to calculate processes that are more complicated. As part of this research a

computer program has been developed which is specialized to generate and evaluate all the Born

diagrams for any given process that involves quarks, gluons, and photons. Chapter 3 discusses the

development and the applications of the computer program.

Gauge invariance plays a vital role in developing the computer program because, for an amplitude

involving a large number of diagrams, it is the most effective means to check the correctness of the _

calculation. In chapter 4 the theory of gauge fields is reviewed and the Feynman rules for QCD

are rederived with the focus on gauge invariance. The implementation of the gauge invariance
i

testing of the computer program is also presented.

Perturbative QCD can only be used to calculate the quark scattering amplitudes. To obtain the

physical hadron scattering amplitudes these quark scattering amplitudes must be integrated over the

wave functions of the hadrons. Although the asymptotic forms of the meson and baryon wave

functions are determined by perturbative QCD, and in the case of pion, the normalization of its

n asymptotic wave function is determined by its decay constant, at momentum scales relevant for
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feasible experiments, both meson and baryon wave functions are determined by non-perturbative

physics. Attempts to determine these wave functions from lattice QCD are in their infancy, and,

at present, QCD sum rules provide the best determination of these wave functions. The sum rule

technique [10] permits determination of a few low moments of the wave functions in terms of

non-perturbative quantities such as quark and gluon condensates, which have been fixed in previous

applications of the sum rule technique to such problems as the hadron masses and widths. Since

only a small number of moments are determined, some further ansatz must be made to fix the wave

function. The simplest choice, truncating the wave function as a polynomial of sufiiciently low

degree that is completely determined by the known moments, yields quite reasonable order·of·

magnitude predictions for the nucleon magnetic form factors and the branching ratio of V -» pp.

Exploring systematically and quantitatively the sensitivity of the predictions to this assumption is

another part of this research. The cross sections for yy —» A* *Ä* * is predicted with sum·rule de-

rived wave functions [ll]. Attempts were also made to improve the wave functions. Chapter 5

discusses this part of the research.

Due to the large number of diagrams, the only exclusive processes for which the quark amplitudes

have been calculated to one-loop accuracy are the pion form factor and yy -• TI+7I°. Since proc-

esses involving baryons have many more diagrams contributing to the quark scattering amplitude

for a given number of loops, for baryons only Born approximations are available. For a long time

even this Born approximation was calculated only for relatively simple cases of, e.g., the magnetic

form factors, V
-•pi, yy -• BB, and Compton scattering. As a consequence, the dependence of the

baryon predictions on Am is unknown, and one does not know a priori what value of the strong

coupling should be used at a particular value of the energy and momentum transfer. As still another

part of this research, the AOG, dependence is studied through the running coupling constant. The

sensitivity of the predictions to the choices of running coupling constant is also quantitatively

studied and the "best" choice is obtained by a simultaneous fit to the data of the nucleon magnetic

form factor and V
—• pf. This study is presented in Chapter 6.
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In Chapter 7, the calculations of the meson-baryon (MB) scattering amplitudes are presented.

Singulaxities of the quark amplitudes are regulated by cut·oil’s and integrations are cauied out.

The sensitivity of the predictions to the cut-off, to the choice of wave functions is studied and the

comparison with experiment is discussed. Finally a summary is given in chapter 8 for what has

been done and what still needs to be done.
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Chapter II r

Factorization

Factorization plays an essential role in perturbative QCD. Although asymptotic freedom princi-

pally grants the applicability of the perturbative QCD at short distances, the actual calculation for

exclusive hadronic processes is made possible and valid only after the hard scattering part is factored

out. Consider the example of the pion form factor: A highly virtual photon comes in and is con-
I

verted into a pair of qii pairs moving in opposite directions. In the vicinity of the point where the

quarks are produced, the quarks are also of high virtuality. They then lose their virtuality by ex-

changing gluons and finally evolve into pions. As depicted in Figure l on page 10 many gluons

can be exchanged between both qä pairs. There is no a priori way to tell which gluons are hard

(those with high virtuality) and which are soft. Therefore, a theoretical method must be developed

that systematically separates the perturbative part and the non-perturbative part to any order of the

coupling constant g*. In the inclusive case the Wilson’s method of operator expansion gives a rig-

orous proof [12] that the factorization is valid. In the exclusive case there are various approaches

to the question of validity of factorization in the literature. One of the common strategies is to
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Figure l. The Meson Form Factor
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calculate the exclusive processes perturbatively and then show that the non·perturbative part can

be factored out and absorbed into the hadronic wave functions [9]. Another approach is to use

operator expansion and renormalization equations [7,13]. There is a third type of approach which

has features of the first two [14, 15].

In the following factorization will be discussed by using the third approach. Before proceeding,

some discussion on the operator expansion is necessary.

2.1 Operator Expansion

The method of operator expansion was first introduced into particle physics by Wilson [16]. lt was

successfully used in deep inelastic scattering [12] and other fields. In deep inelastic scattering the

fundamental amplitude is -

W,. 2; [daß <pu„<a>J„<0>u=·>- (2.0
W spm

Defining the following variables:

pq —q°
" " 7*

““"
"

=thenin the proton rest frame,

p =· (7,0,0,0) ma q qi ),

where q is the momentum transfer and M is the proton mass. The product that appears in the

exponential of Eq. (2.1) is then
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qE%'v(Eo · E3) — MxE;-

In the deep inelastic region, (i.e., v —• OO, —q1 —• OO and x remains fmite) the factor exp(iqQ) is

rapidly oscillating, so that the significant contribution to the integral of Eq. (2.1) comes only when

Es — E; = 0%). (2.2)

in other words, in the vicinity of the light·cone.

Following Wilson, the product of currents, J„(x)J,,(y), can be expanded as a series of products of

local operators in the vicinity of the light·cone:

J(x)J(y)¤’§cf.(~ä)&„„.E,.;...:,„0F·”“···*‘-(R). (2.2)

where Q = x - y and R = %(x + y). The superscript idenotes the type ofthe operator which can

be fermion or gluon, singular or non-singular. The operators O}•1~·•^« are of deiinite spin rz and the

functions C; are coeflicient functions of the expansion. In this scheme twist·two operators jvc

dominant contributions, where twist is a quantity that equals dimension minus spin. Contributions

from high twist operators are suppressed by powers of Q1 relative to the twist two operators.

For inclusive processes the operator expansion separates the non·perturbative matrix elements of

local operators from the perturbative coefiicient functions, and assures that the factorization is valid

to all orders of the coupling constant g1. The Q1 dependence of the coeüicient functions can then
‘

be found by using renormalization group equations.
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The operator expansion method can also be used in exclusive processes such as hadron form fac·

tors. In this case the amplitude to be calculated is <p|J„|p’ > .· In a simplilied form, where the spin

of the operators are not explicitly given, the current has the following expansion:

·/(0) = lW(0)‘v(0)l + s2fd=id—'«rlV¤vl|0 > C1 < OIIVWI
+ sajdzidzzdzalü/Gllo > Gi < OIIWI (2-4)

C3Themeson form factor, as shown in Figure l on page IO, can be written as

<pIJ,.Ip’ > = j'¤"z1d°a <pI{W„(x) ¤xi>(fsj';d¤„G„(¤))wß(»r)}„I0

>whereT",‘y{, is the amplitude of the virtual photon transforming into two qä pairs, w is the quark

field and G is the gluon field. It can be immediately veriiied that Eq. (2.5) is the second term in

the expansion series of Eq. (2.4).

lt should be pointed out that Eq. (2.4) shows the method to obtain the corresponding operator

expansion for a certain process. As to how operator expansion leads to factorization for hadron

form factors, the next section will demonstrate in full detail.
i

2.2 Verzjication

Factorization can be made more explicit by taking 1:* as an example and calculate Eq. (2.5). The

twist·two local operator that dominants the 1:* form factor is y„y,(Üy„y,u). Substituting it for the

quark field operators Vw in Eq. (2.5), the matrix element takes the form:
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-
_ U - _

Old ¤xr><¢gj)v,,v5¤I¤ > }- (Z6)

By Fourier transformation and some algebra it reduces to

< 0I<?(a) ¤xp(fsj)v„vs¤(zi)I¤(p) >
„. . . (2-7)
=¤p„j¢=i¢x;ö(1 ·· xi — xi) wl ·¤i(Zw) · ¤¤i(zu>)I<v„(xi,2)-

With Eq. (2.6-7) and using the Born approximation for 7%;,, Eq. (2.5) is then reduced to the

leading term:

<·=*<pw w>¤==*<p> > -· io + pv j‘¢ <y>[—‘?—"— — oo. <2.8>
"

Q2
" o " -*2}*2 *1}*2 "

with d,x = dx,dx,ö(l — x, — x,). The factorization is now manifest. The question is then to

prove the validness of the approximation to any order of a,.

As was pointed out earlier and depicted in Figure 1 on page 10 in the vicinity of the point where

the virtual photon and the pion interact, the qä pair has little to do with the final (or initial) pion.

The qii components continue to interact with each other by exchanging gluons and finally evolves

to the final (or initial) pion when its virtuality is decreased from Q2 to p.2. This process.can be al-

ways described by loop corrections of perturbation theory. But the interesting point is whether or

not it can be absorbed in the pion wave function and described by the dependence of the wave

function on the normalization point‘ pfm ~ Q2.

The answer to the last question, i.e. the question of factorization, is that it is true in perturbative

QCD and can be generally proved. What will be demonstrated here however, is an agreement on

2 The normalization point p' is the cut-olfof the integration over internal mementa in the matrix element.
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accounting for the evolution of the qii pair between direct perturbative loop corrections and ab-

sorbing it in the pion wave function, i.e., factorization. lf the agreement is achieved at the one loop

and two-loop levels, it is strong evidence that the factorization is generally true, and, at least, it is

verified up to the two-loop level. This method was used by the authors in the first papers on this

approach to the proofof factorization for meson form factors [14].

The claim of factorization, in the case of meson form factor, is

e e

—·Altersome rearrangement:

€=xl—x2• €u=%• ed=%• ·

and also notice that <p,(§) = ¢p,( - §) due to the pion’s negative G-parity, Eq. (2.9) yields M

Q2F„(Q°) ~ ¤.<Q“>1„<Q’>§<Q’>.
1„<Q“> = jil%?<v„<§„Q°)- (2-10a)

Here <p,,(x,Q*) is the pion wave function renormalized at the point p§,,,,, ~ Q*. Taking Q* = pi the

Born approximation of Eq. (2.l0a) is obtained

'·where<p,(§) = <p,,(E„Q‘)|Q; _ M;. In order to make the dependence of the wave function on the nor-

malization point explicit and to compare with the direct loop diagram calculation, the wave func-

tion should be expanded into a series of matrix elements of multiplicatively renormalizable local

operators 0,,. The dependence of the wave function on the normalization point is determined by

the renormalization group equations:
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=
_ ur(Q) da< 0,, > Q: < 0,, > pa expli —-ma)y,,(a)].

' (2.11)

On the base of the Gegenbauer polynomials, C,}/'(§), eigenfunctions of the evolution equation, the

expansion is

N<v„(€•Q2) = «·..,<¤>,_.~;,1$."’<Q“>c.i"<:>.(2-12)where

<p„,, = %(l - §') is the wave function in the asymptotic limit. The coe11icientsj§,'*1 are the

comesponding matrix elements__of the local operators 0,,. The dependence ofj§,")(Q*) on Q' is given

by

(2-13)

**+1 ¤ (11)=C1-.i—.g.—._.·}-EL], ,1 g=l]ni.._._S" ri (rr + 1)(¤ + 2) 1=2 J
an

ßo ¤.(Q) ·

Substituting Eq. (2.12,13) into Eq. (2.10) yields:

1f’”<Q’>
= ängou + < —1>">1$."’<»“>=xp< --,.0. (2-14)

where the superscript OE indicates Operator Expansion. Expanding exp{ -6,,:} into a power series

in a,:

E":) MP) L
-11 4" Bo 112 -1 Ken #2

+andcollecting all iirst order terms into jPB, and all second order terms into @*1, Eq (2.14) yields:

[°E(Q2) „ [B°*’¤
1- E + L (216)l l

zu

‘
2

••• y •
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with

/1°E=C1=[¤¤o1¤(1··>=o)”‘+(1·¤¤o)1¤xo"··%] (2-17)

and

;°”=
C21n2(l - )" 1+ 0 4-) . (2.18)’ F ’°°

mu — x„>

This oompletes the calculation to the order of af relative to the Born approximation by expanding

the wave function.

For the direct loop calculation, it has been shown [17] that diagrams contributing terms of

cz, 1n*Q*, a§1n‘Q* and a§1n°Q' cancel in a sum. The remaining a, ln Q2 and aß ln*Q' terms are cal-

< culated in the following form:

a 2 a 2 21 (2-19)

Summing over all contributing one-loop diagrams (see Table. 2.1 of reference [18]), one obtains

<¤ — ==„>1¤«„" — %] + <»=„ -·y„>}
(2.20)

L B. .. L+ 21: 8 C^ 8 'V1 ‘

The number of two-loop diagrams is very large so that only the result is quoted here

A=C21nl- ”‘+ln(1— )-‘21+01-). (2.21)2 1=[ ( xo) Yo ] mu _ xo)

Rearranging Eq. (2.19) in the form
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¤ <Q2> 2 2S
2 u u

where "loop” indicates loop calculation and ~

xyl°°P .2:. = 1- ELIIPQ. °°P( )+l. Älngi 2f*°°P( ) (223)l pg Zn pg l xl) 2 zu p2 2 x0 1 '

one obtains

1i°°2<¤=„> = ¢F[¤„1¤u — x„>" + u — ¤=„>1¤¤=„" — ä-].

which agrees with Eq. (2.17), and

90p = C2 1¤2 1
__ 'l I O 1

which coincides with Eq. (2.18). Recognizing that I, = I]‘°“"I', the factorization is, therefore, veri-

iied to the two·loop level.

Another observation that can be made is that the Q2 -dependence of scattering reactions can now

be traoed to the hard scattering amplitude. It is also obvious now that the contributions of non-

valence quarks and gluons are negligible. To tum each constituent of the initial hadron into the

direction of the final hadron at least one gluon and one propagator of the constituent are required

by the Feynman rule. This gives rise to a factor a,/Q2 . For high p, scatterlng Q2 —• GO so that they

do not contribute.

Although the factorization statement Eq. (2.9) is only for the case of the meson form factor, it has

been shown [7,9] that it is valid for other exclusive p, processes as well. Beyond the leading order

both quark scattering amplitude T„ and hadronic wave function tp can be calculated to any order
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ofthe coupling constant a, and Eq. (2.9) holds. Therefore, factorization is indeed valid to any order

of a,. ·

Factoriution
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Chapter III a

Calculatin the Quark Scattering Amplitude

At large momentum transfer the quark scattering amplitudes of an exclusive hadronic process are

calculable in perturbative QCD. They are distinguished by the topology and chiralities of the

quarks. Figure 2 on page 2l shows a. few examples. The total quark scattering amplitudc is a sum

of fundamental ones. A set of fundamental quark scattering amplitudes is chosen is such a way that

any one in the set can not be obtained from another one in the same set by space rotation, charge

conjugation, parity invariance or any other symmetry-transformation. Since QCD does not differ-

entiate between quark flavors, for a given hadronic scattering process and a given hadron multiplet,

the set of the fundamental quark scattering amplitudes constitutes a basis for the scattering ampli-
(

tudes of the multiplet; i.e., the total quark scattering amplitudc of any hadron in the multiplet can

be expressed as a linear combination of the fundamental ones.
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Figure 2. Examples of Quark Scattering Amplitudesz The amplitudes are distinguished by quark
chiralities and topology. (a) yy —• BE with spin-} baryon; (b) yy -> BE with spin-%·
baryon; (c) MB -» MB with all quarks going straight through; (d) MB -• MB with one
quark exchange.

Calculating the Quark Scattering Amplitude 2l



In the perturbative calculation the lowest·order diagram for meson·baryon (MB) scattering isaj.Thus,

a minimum of four gluons is required to connect live quark lines. To fmd each of the fun-

damental amplitudes of O(af), 2,915 diagrams need to be evaluated. For nucleon-nucleon scatter-

ing, for which the fundamental quark scattering amplitudes contain six quark lines connected by

five gluons, the number of lowest order (O(a,‘)) diagrams increases to 58,149 for each of the fun-

damental amplitudes. To predict the measurable cross sections for nucleon-nucleon scattering, lit-

erally one million diagrams must be taken into account. As the number of the diagrarns becomes

enormously large the complexity of individual diagrams increases rapidly as well. Such calculation

is clearly not practical with traditional techniques, not even with the help of algebraic computer

programs like MACSYMA, SMP, REDUCE, etc.. For such a large number of diagrams, not only

the evaluation of the Feynman diagrams but also the generation of them should be computerized.

A computer program specialized in generating and evaluating all required Feynman diagrams of the

lowest order for exclusive hadronic scatterings has been written by Farrar [19]. It was debugged,

modified, extended, and brought to operational status for many applications as part of this research.

The rest of this chapter presents the development of the computer program, which will be referred

to as DIAG hereafter.
U

3.1 The Original DIAG

Generating and evaluating Feynman diagrams are symbolic and algebraic operations. Traditional

scientific computer programming languages, such as FORTRAN which is widely used in numerical

calculations are not suitable for symbolic manipulations. On the other hand, symbolic and func-

tional programming languages like LISP and PROLOG are designed for symbolic applications, but

they are all lack high computing speed. DIAG is written in the C programming language which is
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much more convenient for symbolic manipulation than FORTRAN and is much faster than LISP

and the like. „

The input to DIAG is a specification of a certain process, described in terms of chiralities and

topology of the quarks and extemal gauge bosons if there are any. DIAG operates in the frame in
T

which the momenta p ofthe hadrons all have the same magnitude. The center-of·mass (c.m.) frame

for any two particles in and two particles out is a such frame, and so is the Breit frame* for hadronic

form factors. DIAG assumes zero quark mass and evaluates in the Feynman gauge. The output

is an analytic expression of the quark scattering amplitude coded as a function in the C language

and can be called by other computer programs for, say, numerical integration. The quark scattering

amplitude is a function of the scattering angle and momentum fractions of each external quark.

Consequently, the C-function of the amplitude takes c, s, x„, x,,... as arguments where c and s are

cosine and sine of the half scattering angle and the x,’s are momentum fractions.

DIAG is constituted by several modules. Module main reads input, module gen generates Feynman

diagrams, module mom fixes internal momentum in terms of external momenta, module new eval-

uates Feynman diagams and writes results to output, module color computes color factors, mod-

ules u and unew contain various utility functions.

The first key function of DIAG is to generate all possible Feynman diagrams once and only once.

It is done by a carefully devised algorithm that generates diagrams in a consistent order. The second

one is to compute color factors of diagrams. Cvitanovic’s graphic rules [20] for computing color

factors is implemented. Finally the last task is to evaluate spin factors of diagrams, i.e., fermion

string consisting of propagators, vertices, and spinors, which are QED Feynman diagrams by

2 ln the Breit frame the ineident virtual photon and hadron eollide head-on and the outgoing hadron moves
baekward with the same magnitude of momentum as the incident one.
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themselves. The old technique for calculating spin factors was to square an amplitude, which is a

sum of diagrams, so that a product of spinors is converted to- a trace. This method requires eval-

uating n* terms and, therefore, is not suitable for a large number of diagrams. A new technique [19]

has been developed for computing the spin algebra. The essentials elements are sketched below:

IntheWeylbasis,the4 >< 4Diracmatrioescanbewrittenas

1 0 0 1 __ 0 — 6
-115-

-
vo= „ and v= _, - · (3-1)

0 -1 1 O . cr 0

The two·oomponent spinors ut and ·y-matrioes Y, can then be defined by

1*+ 0 ’Yp+

M =· and 11,, = „ (3-2)
u,. yu- 0

so that the subscript + and - acquire the meaning of + and - chirality. Introducing the basis

- spinors —

0 1
|0> = , and |l> = , (3.3)

1 0

the 2 >< 2 y-matrices can then be given in terms of the basis spinors

ui = (l|0> <0| + |1> <1|l-
*

l|0> <1| + l1> <0|l„
. - 3.4=1=¤[I0><1|—I1><0|l- +l|0><0I·l1><1Il)- ( )

Other matrices ¢, and ii are easy to obtain by using Eq. (3.4). Detining another two spinors by

— sin 9/2 cos 9/2
|2> = , and |3> = , (3.5)

cos 9/2 sin 9/2
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and denoting the four scattering directions by the digits 0 to 3 as illustrated in Figure 3 on page 26

all the quantities relevant to computing Feynman diagrams can be expressed in terms of the four

spinors as follows:

¤o+ = ~/2El1>„ ¤i+ = ~/2EI0>„ ¤;+ = s/2EI3>„ ¤3+ = ~/2EI2>„ (36,1,
uo- = «/2E|0>, u,- = — «/2E|1>,u2- = ~/2E|2>, us- = — «/2E|3>,

ßo+=/*1—=2Ell><l|• ßo—=ß1+=2El0><0|• (36,))
/*1+ =ß3— = 2E|3> <3|• ßz- =ß;+ = 2EI2> <2|»

2 #2 =- ?~/;I0><1|„ #2 = It/?11><o1.
(3.6c)

#2 #2 = ¤=~/?¤o><u.

The inner product of spinors are

<0|2> = cos 0/2, < l|2> = — sin0/2,
<0|3> = sin0/2, <1|3> = cos 0/2, V (3.7)
<0|1> = <2|3> == 0.

The calculation of spin factors starts from the final spinor uf, goes up though the fermion line,

collects all propagators p and vertices 7,,, and finally ends at the initial spinor u,. In the Weyl rep-

resentation the product string of u, ß, and 7,, has a two·component form with altemating + and

—. It canbe generally expressedas

if it contains an even (odd) number of 7-matrices.
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Figure 3. Scattering Directions: in c.m. frame incident particles come in from directions (0) and (1),
and scattered into directions (2) and (3) with a c.m. scattering angle 6.
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Contractions of y-matrices with opposite chiralities can be performed by the identity

)u = Iglu + ägökz = 25116;:;- (39)

If the contracting ‘y·matrices are of the same chirality, but attached on different fermion lines, one

of them may be charge conjugated as

1~}iv‘§;>..»-v‘;·«„i1T = ’·7I.v*;‘--¢·„;v‘2 Zu. (310) ·

where ii , E io,u;. Contraction can then be performed in the usual way by using Eq. (3.9).

The ease of utilizing this method is now obvious. Contractions are straightforward to carry out and

the rest of the calculation is nothing more than performing inner product for spinors. Furthexmore,

this technique is most suitable for computer·progra.m implementation because of its simplicity and

explicitness. The efiiciency of DIAG is largely attributable to this.

DIAG is a complicated program that does complicate calculations. Because of the complexity, the

calculation is difficult to be made error-free. Means for checking the correctness of the calculation

must be provided. Checking the gauge invariance of the amplitude is a powerful method of such.
(
It is coneeivable that the amplitude will not be gauge invariant if there is a factor of 2 missing

somewhere and/or a sig is missing. DIAG was provided with U(l) and SU(3) gauge invariance

checking capability for processes involving external gauge bosons. The gauge_ group is U(l) if the

gauge boson is a photon and is SU(3) is the gauge boson is a gluon. To check the gauge invariance

the polarization vector of a specified gauge boson 6,, is replaced by its 4-momentum vector k,,, and

the resulting amplitude should be identically zero. This can be easily seen in the U(l) case. Con-

sider a plane wave for the photon, A,,(x) = s,,e"** . The Lorentz gauge ö,,A,, = 0 in this case re-

duces to k,,s,, = 0. However, one can still make A,, -• A,, — ö,,X and leave everything unchanged

as long as X satisfies the Klein·Gordon equation ö*X = 0. In the plane wave case, it is equivalent
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to the transformation 6,, -• 6,, + |3k,,. Therefore, gauge invariance requires that any amplitude

should be vanish if 6,, is replaced by k,, . .

The first test that DIAG met was checking its correctness in generating diagrams. DIAG performed

well. It rm through quark amplitudes ofMB and BB scattering. It took only about one CPU hour

on a VAX·l1/780 [19] for generating one quark scattering amplitude for BB —• BB. The generated

diagrams were extensively checked and no missing nor duplicating diagrams were found.

DIAG was then used to recalculate the quark scattering amplitudes for yy —• BB-, which were first

calculated by mother computer program [21]. In order to obtain numerical results that cm be

compared with either experiment or a previous calculation, the output amplitude file must be

compilcd. Unfortunately, it was too long to be compiled by the C-compiler on the VAX and some

other computers available at Rutgers university [22]. DIAG was then modified to code the output
i

into the FORTRAN language and avoided the compilation difliculty. When the numerieal results

were obtained, they were found to be_ in disagreement with the previous calculation. Gauge invar-

iance checking by replacing one of the incident photon’s ¢ with its k also showed that the amplitude

was not vmishing. It was concluded then that the calculation of DIAG was wrong since the am-

plitude it generated failed to reproduce the previous results and was not gauge invarimt.

3.2 Debugging DIAG

'I'he C version of DIAG was chosen to be worked with because of a) the possible bugs contained

in the modified parts for the FORTRAN version can be eliminated, b) it is more convenient to
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work with only one language, and c) the compilation difficulty encountered on the Rutgers VAX

may not exist on the VPI&SU VAX and it is always possible to divided the amplitude function into

several smaller functions and compile them separately. A simple case yy —» MM- was selected with

which to begin. It was, indeed, the simplest case of DIAG concem, with only twenty diagrams for

each quark scattering amplitude of a given chirality configuration and only one topology of quarks

as shown in Figure 4 on page 30.

. The amplitude file produced by DIAG was hard to read. As one may expect, computer programs

do things in an exactly programmed order. For example, in the evaluation of spin factors of

Feynman diagrams, k for quark propagators is expressed as a linear combination of extemal quark

momenta. The product of two or more quark propagators will expand to many terms. DIAG left

the evaluation at this step. Beyond it, common factors may be extracted, similar terms can be

combined, relations like c* + s* = 1, x,, + x, = l, and x, + x, = l can be substituted, and, best
i

ofall, the same factors appearing in both numerator and denominator can be cancelled. These will

vastly simplify the amplitude function. As a consequence, it is much easier to read, requires much

less disk space and much less computer time to compile, and increases the execution speed and

accuracy of numerical calculations. A symbolic simplifier was developed for DIAG, which will be

described in detail in section 3.4.

l A computer program as large as and as complicated as DIAG inevitably contains bugs. A distinct

difficulty of debugging DIAG is that the correctness of the amplitude function is diüicult to check

because of the large number of diagrams involved. DIAG is aimed at scattering processes that are

effectively impossible to be calculated by hand, so that it is effectively impossible to be completely

checked by hand as well. Even when an amplitude function produced by DIAG is known to be

incorrect, it is still difficult to locate the diagrams that cause the problem.
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+Figure4. Fundamental Amplitudes of Phot0g_AnnihiIation to Meson Pairs: Two fundamental quark
scawering amplitudes for yy -• MM for (a) spin-0 mesons and (b) spin-1 mesons.
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The strategy of checking for the correctness of the outcome of DIAG consists of three good

methods. The first one is to start the checking from the simplest scattering case and moving up step

by step. In general, functional parts of DIAG involved in lower-level scattering cases will be in-

volved in higher-level cases, but it is not true vice versa. For example, 77
-• M./7 involves the

simplest manipulation, e.g., spinor inner product, contraction, charge conjugation, etc.. One level

up, the process 77
—• BB requires all the above and in addition, a spinor can be charge conjugated

more than once. The three-gluon vertices already exist at this level, but they do not contxibute

because the color factor for these diagrams vanishes. For MM —• MM, not only diagrams with

single three-gluon vertices, but also diagrams containing double three·gluon vertices and four-gluon

vertices contribute. Beyond that, diagrams involving triple three·gluon vertices and single three-

gluon plus single four·gluon vertex are encountered in MB —• MB. Finally in the BB -» BB case,

diagrams with quadruple three-gluon vertices, double four~gluon vertices, and a mix of three- and

four~gluon vertices are involved. By working with DIAG step by step efforts can be coucentrated

in the program sections that are functioning in the current step but not before.

The second error·checking method of the strategy is to selectively check diagrams by hand. This

is always the most reliable way to check but is also the most limited. With the part of the

strategy, however, it is sufiice to do most of the hand checking for the diagrams that possess the —

new features of the step.

The last error·checking method is to utilize gauge invariance and the various symmetries of a given

process. For example, in the MM -• MM case some quark scattering amplitudes can be obtained

from others by exchanging rand: where z = (p'l -pl)*, and.: = (pl +pl)* where plandp, are

momenta of the incident particles in the c.m. frame and p'l and p', are momenta of the outgoing

particles. DIAG is equipped with U(1) and SU(3) gauge invariance checking capabilities for ex-

temal gauge bosons. It may be the most powerful method, although not conclusive. But for

photonless scattering reactions, this type of gauge invariance checking does not apply. In order to
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bring the powerful checking tool to reactions with no external gauge bosons another type of SU(3)

gauge invariance testing was built into DIAG. In an arbitrary covariant gauge, the gluon

propagator takes the form (g,„ — Q-ki?)/k' instead of gw,/k' where Q is referred to as the gauge

parameter. The amplitude can then be expressed as a polynomial in Q, with the highest order equal

to the maximum number of gluon propagators that can be contained in a diagram. Gauge invari-

ance requires that all terms vanish as a sum order by order in Q except the zeroth order. This de-

velopment is described in chapter 4.

When a certain amplitude is concluded to be wrong either because of its failure to reproduee the

published results or its violation of gauge invariance, locating the bugs requires considerable effort.

For cases as simple as yy -• MM-, the best way to locate bugs is to do hand calculations diagram

by diagram until the bug is discovered. For cases as complicated as yy —• BB and up it is only

practical to apply hand checking to a small selection ofdiagrams which represent new characteristics

of the process. A better way to locate bugs utilizes gauge invariance checking. The amplitude

produced in gauge testing mode should be identically zero. The cancellation of diagrams usually

takes place within a small group of several diagrams. By checking cancellation group by group the

nbug can be located when cancellation fails to occur. This method, however, is also impractical

without the assistance of the computer. For the case ofMB —• MB, the amplitude for gauge testing

can occupy one megabytes (one million characters) of disk space even after simplitication. Two

computer programs were developed to perform the cancellation task. The first one goes through

the amplitude file and performs pair cancellation automatically. An amplitude file of one MBytes

can be reduced to about 300 KBytes alier pair cancellation. The second one then performs group

cancellation with some human assistance. This method also enables the verification of the analyt-

ical zero of the gauge testing amplitude.

Some relatively simple hadronic scattering processes have been calculated in the literature. Among

them are, yy —• M17 [23], yy —• BB [21], meson form factors [15] and baryon form factors [9,24].

Calculating the Quarlt Scattering Amplitude 32



For the yy -• MM case, DIAG did not reproduce the published results. With the simpliiied am-

plitude and by direct hand checking a missing sign was found —in the inner product of a certain pair

of spinors. For the yy -• B1? case, DIAG did not agree with the previous calculation either. By

the methods described above another missing sign was located when a spinor was charge conjugated

twice. The simplilied amplitude file for yy —• BE is about 15 KBytes in size. The VAX C compiler

on the VPI&SU VAX compiled it tlawlessly. It also compiled the unsimpliiied amplitude lile,

which is 100 KBytes in size, with no diiiiculties. After correcting the bugs, both cases agreed with

the previous calculations and both were gauge invariant under U(l) for extemal photons and SU(3)

for gluon propagators.

The MM -• MM scattering is the least cornplicated process that involves three· and four-gluon

vertices and has not be calculated before. Some of the diagrams are shown in Figure 5 on page

34. Furthermore, the functional parts of DIAG that are responsible for three· and four~gluon vertex

evaluation hadnot been checked nor tested after DIAG was originally written. There were some

apparent errors in the code. After correcting these errors, gauge invariance testing showed.that the

amplitude was not gauge invariant. Because of a mistake that was rnade in both the program

coding and the hand calculation the bug was not discovered, though a considerable portion of the

diagrams were checked. However, it must be related to the three-gluon vertex because the ampli-

tudes not containing three-gluon vertices are indeed SU(3) gauge invariant. Finally, it was observed

by the cancellation method that adding a factor 2 to diagrams containing double three-gluon

vertices would satisfy gauge invariance. An unwanted factor
ä

was then found.

The diagrams for MM -• MM can contain at most tive gluon propagators; Figure 5 on page 34

gives such an example. Therefore, in an arbitrary covariant gauge, the amplitude is a polynomial

in Q of order five. For the reason which will be made clear in chapter 4, only the linear term of Q

is nontrivial. Thus, gauge invariance is verified to the first order in Q for MM —• MM.
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Figure 5. Multi-Gluon Vertica in Meson·Meson Scattering: Both three- and four-gluon vertices
contribute in MM -• MM. (a) double three-gluon vertex; (b) single four-gluon vertex; (c)
single three—gluon vertioes.
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There are only two fundamental quark scattering amplitudes for the scalar MM as shown in

Figure 6(a). All the others can be obtained from symmetry considerations. Figure 6(b) illustrates

a nontrivial example in which t and s are exchanged and the straight through case is transformed

to the double annihilation case. It is achieved by making the following transfomiationsz

=“··%= ¤“··*·%= ·%=
S S S (3.11)

u—•u; t—•.r=--j; .r—•t=—s><s2; .

and renaming x„‘.!x, and x,:..°x, , where c and s are cosine and sine of the half scattering angle.

On the other hand, the double annihilation case can be directly calculated. The agreement between

the transformation and the direct calculation is another indication that the calculation is correct.

The correctness of MM -• MM is then supported by gauge invariance, tz: symmetry, and many

hand evaluations of the diagrams. There were no compilation problems at this stage either.

Although MB —• MB scattering involves only one more quark line than MM —» MM scattering, the

complexity for MB ·-• MB increases from several ten's to one hundred times as much as for

MM —• MM. The size of amplitude files becomes very large and much more computer time and

disk space are required to work with them. For the purpose of perforrning cancellation, the

simplifier expresses each term in a single line in the amplitude file. A term is equivalent to a dia-

gram if the diagram has no multi-gluon vertices. A multi-gluon-vertex diagram, on the other hand,

will expand to several terms. In the case of MB —• MB some of the lines of the amplitude file get

so long that they exceed the size of the memory buffer of all the system editors. As a result,

whenever an operation on the amplitude file is needed, a program must be developed to serve the

purpose. For instance, in order to compile the amplitude file it must first be cut into several pieces,

since the size of it exceeds the limit that the compiler can accept, and next, all the lines that are

longer than the system buffer must be wrapped.
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Figure 6. Fundamental Amplitude: of Meson·Meson Scattering: (a) Fundamental quark scattering
amplitudes for scalar MM scattering; (b) transformation from straight-through case todouble-annihilation case.
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As depicted in Figure 7 on page 38, MB -» MB has lifteen fundamental quark scattering amp1i·

tudes. Numerical verilication showed that the amplitude A, was gauge invariant but amplitudes

A, and A, were not. It is puzzling because DIAG works in exactly the same way for all quark

topologies. By using the cancellation method the bug was located in the triple·gluon vertex eval-

uation. It was then discovered that all diagrams containing triple three·gluon vertices do not con-

tribute to A,. In contrast to MM —• MM, the Ef term for MB —• MB is also nontrivial in addition

to the linear term in the § gauge. Therefore, gauge invariance is verilied to the second order in §.

The correctness of diagram generating was again checked for diagrams involving more than one

multi-gluon vertex, since they are the most confusing diagrams in the generating process. The

correctness was conlirmed.
V

Debugging DIAG and its applications do not end here. For the most complicated hadronic re-

action BB —• BB, more multi-gluon vertices will get involved, especially the diagrams containing

double four-gluon vertices. This is still a new territory for DIAG. Another new territory for DIAG

is reactions with extemal gluballs and the SU(3) gauge invariance testing associated with it. Both

of the applications are very interesting both experimentally and theoretically, but they will not be

part of the research presented here.
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Figure 7. Fundamental Amplitude: of Mes0n·Bary0n Scattering: spin-0 meson and spin-+ baryon
scatterring has 15 fundamental quark scattering amplitudes. '
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3.3 Extendiug DIA G to Virtual Photons

Many hadronic scattering processes involve virtual photons. Among them the magnetic form factor

ofhadrons is the simplest example. With the power of DIAG it is both economical and important

to extend the program to cover the class of reactions involving virtual photons. As a side bcnefit,

DIAG calculates two more reactions, meson and baryon form factors, that can be checked against

previous calculations.

With the we1l·built frame of DIAG it is not diliicult to make the extension, at least, for form factors.

Hadronic form factors can be best studied in the Breit frame. Figure 8 on page 40 illustrates the

process in this frame. As far as DIAG is concerned the only difference between a virtual photon

and a real one is their polarization vector 6. The polarization vector must satisfy the transverse

condition

k*‘g„
= 0 (3.12)

and the normalization

n
6;6“

= -1 , (3.13)

where
k“

is the 4~momentum vector of the virtual photon. Since in the Breit frame, the initial and

final momentum of the hadron is _

pl = (1,0,0, -1), and pf= (1,0,0,1),
1

by momentum conservation, the momentum of the virtual photon is

k = (0,0,0,2). (3.14)
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Figure 8. Hadrou Form Factor in Breit Frame
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Three independent 6 can be chosen that satisfy both Eq. (3.12) and Eq. (3.13). Two of them are

transverse and are the same as for the real photon. The third—one is longitudinal which only exists

if the spin-l particle is massive. It can be written as

i — 1 -Eu ="""°(1,0,0,0)•By

using Eq. (3.4) the expression in the Weyl base can be obtained .

¢"* =
'Ypi€H

= <0I + Il><2

The rules of DIAG for the dot product of two 4·momentum vectors are based on the assumption

that p' = 0 holds for both of the 4·vectors. Clearly, the 4·momentum vector of the virtual photon

violates the assumption so that it can not be used to fix the momenta of propagators. In fact, the

momentum of the virtual photon can be determined by momentum conservation, k = p, — p, , as

in the form factor case. Therefore, the internal momenta can be completely determined.without

knowing the momentum of the virtual photon. The new scheme was incorporated into the mo-

mentum tixing part of the program.

It should be noted that the virtual photon is only allowed in the direction ‘0’. A general extension

to allow it in all four scattering directions is possible, but one incident direction for it is suflicient

for general single virtual·photon processes. For the incident virtual photon, the transverse

polarization vectors of it are independent of the form of its 4·momentum vector. The longitudinal

polarization vector, on the other hand, is dependent on its 4·momentum vector. Generalizing to

suit any form of the momentum vector is somewhat dillicult. For the current DIAG it is a safe

practice to allow only transversely polarized virtual photon and always designate it in the direction
‘0’.
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3.4 The Simplüier 4

The simplifier was developed at the very beginning of debugging DIAG. The immediate purpose

then was to make the amplitude file directly readable. As development of DIAG progressed, the

simplifier became more and more important and soon evolved to be an absolute necessity. It is

difiicult to imagine now how far DIAG could go without the simplifier, for it not only greatly re-

duces the usage of computing resources and increases computing speed, but also enables various

automatic manipulations to be performed on the amplitude file, the most important among which

is automatic cancellation.

The simplifier was first developed as a separate program that took the amplitude file produced by

DIAG and made a simplified version out of it. This scheme was aceeptable as long as the ampli-

tude files were relatively small but became awkward when the MB -• MB case was being tested.

The simplifier was then built into DIAG and thus eliminated the huge intermediate amplitude file.

The simplifier was developed with no intention for general purpose usage; instead, it was tailored

to the output of DIAG and the algebraic expressions of the C language. Before developing the

simplifier the general purpose algebraic manipulation programs SMP and muMATH were tested.

Their algebraic simplifying capability were so low that the possibility of employing them was in·

stantly excluded. The only choice lefi was to write a customized algebraic simplifier.

Figure 9 on page 43 displaces a small section from the amplitude file of yy -» BB before simplifi-

cation. It is immediately noticed that there are many redundant minus sims and parentheses in the

amplitude. The ürst step of simplification is obviously to eliminate all these symbols along with
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/* l */ t= l;:= 0;:+ = (-xO)*1*c23/ =:;
:= 0;:+ = (-x0)*1*c2;:+ = (·x0)*1*s2;:+ =1*1;t/=:; .
:= 0;:-= (-x2)*7:3;:- = (-x2)*x5;t/ = :;
:= 0;:- = (·x2)*x5;t/ = r;
:= 0;:- = (-xl)*x4;t/ = r;
d= t;t= 96/1;:= 0;:+ = (-1)*x3*(-x2);t* = r;
:= 0;:- = (-l)*x4*(-1)*(-x2)*x5;t* = :;
:= 0;:+ = (-x0)*c*(·l)*l*s*(-1)*(-x0)*s*1*1*s*(-xl);
:+ = (-x0)*c*l*1*1*l*s*(-x1);t* = :;
t* = d;a- = t*q0*q0;
/* 13 */ t= 1;:= 0;:- = (·x0)*x4;:+ = (-x0)*1*c2;:- = (-x1)*x4;
:+ = (-x1)*l*c2;:- = x4* I *s2; „
tl = m
:= 0;:-= (-:2)*:3::- = (·x2)*x5¢/ = r;
:= 0;:- = (·x2)*x5¤/ = r:‘
:= 0;:- == (-x1)*x4;:+ = (-x1)*1*c2;:- = x4*1*s2;t/ = :;
:= 0;:+ = (-x1)*1*c2;t/= :;
d=m= 96/1::= 0;:+ = (·1)*x3*(·x2)¤*=¤
r= 0;:+ = (-l)*x4*(-1)*(-x0)*s*1*c*(-1)*(·x2)*x5;
:3- = (-l)*x4*(-l)*(-x1)*s*1*c*(·1)*(-:2)*1:5;:+ = x4*s*l*l*c*(-l)*(-x2)*x5;

:= 0;:+ = (-x0)*c*1*l*c*(-x1);t*= r;
t*= d;a-=t*q1*q0;
/* 172 */ t= l;:= 0;:-= x3*l*s2;t/= :;
:= 0;:- = (-x0)*1:3;:+ =(-x0)*1*c2;:- = x3*1*s2;t/ = :;

h :=0;:+ =(-x1)*1*s2;t/=:;
:= 0;:-= (-x2)*x4;:- = (-x2)*x5;t/ = r;
:= 0;:- = (-x2)*x5;t/ = :;
d = t;t= 96/l;:= 0;:- = x3*c*1*s*(- l)*x3*(-l)*(-x2)*x5;t*= :;
:= 0;:-= (·x1)*s*1*l*s*(-x0);t* = r;
:= 0;:+ = (·l)*(-x2)*x4;¢* =¤
t*= d;a- =t*q0*q1;
/* 203 */ t= l;:= 0;:+ = (-x0)*1*c2;t/ =:;
:= 0;:- = (-x0)*x3;:+ = (-x0)* 1 *c2;:· = x3*1*s2;t/ = :;
r= 0;:- = (-1:0)*:3;:+ = (-x0)* 1 *c2;r~ = (-x1)*x3;:+ = (·x1)*1*c2;:- = x3* 1 *s2;
tl=:;
:= 0;:- = (-x2)*x5;:+ = (·x2)*1*s2;:- = :5*1 *c2;t/ = :;
:=0;:-=x5*l*c2;t/=:;
d = t;t = 96/l;:= 0;:+ = (-l)*x3*(-1)*(-x0)*k5*s*(-1)*1*c*x5;
:+ =(·l)*x3*(-1)*(-xl)*x5*s*(-1)*1*c*x5;:+ = x3*s*l*s*x5*s*(-l)*l*c*x5;
:-= (·l)*x3*(-l)*(-x0)*s*1*(-1)*1*c*x5;:-= (·1)*x3*(-1)*(·xl)*s*l*(·1)*1*c*x5;
:-= x3*s*l*l*(-1)*l*c*x5;
tü sr;

:= 0;:+ = (·x1)*c* l *1*c*(-x0);t* = :;
:= 0;:+ = (-l)*(-x2)*x4;t* = :;
t*=d;a- = t*q0*q2;

Figure 9. Amplitude File before Simplificationz A section of the amplitude file for yy -• BB which
contains 4 diagrams.
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all the blank spaces. The squeezed expressions are then stored into a linked data object term by

term and, also, similar terms are combined. A list, that is a sum of terms in the binary represen-

tation, is formed. It is the primary object of the simpliüer.

One of the diiiiculties of algebraic simplitication is that it does not follow any ordered rules. There

are usually many ways to simplify an algebraic expression and in general they do not reach the same

simpliiication results. In order to avoid getting into a major battle in the algebraic computation

field, yet still to have a good simplifier to serve DIAG, the major simplification method utilized by

the simplifier is substitution of known identities in addition to extraction of common factors and

combination of similar terms. By observing the unsimpliiied expressions it is also clear that most

of them can be satisfatorily simplified by substitution. Different scattering processes generally have

a different set of identities; the only common one is c' + s' = 1. Others are momentum fraction

relations. For example,

' are the other two identities for yy -• BB; For MB -» MB the identities are

xo+xl+x2=x3+x4=xs+x6+x7=x8+x9= l.

These identities are primary identities because they are not derived from any others. For a yven

set of the primary identities which is selected automatically by the simplifier, a set of secondary

identities is generated by joining two primary ones with all possible combinations. The identity

c2+s2—xo—xl—x2=0

is an example of thesecondary ones for yy -• BB. Usually a single substitution is sufiicient to make

the simpliiication, but occasionally more than one substitution are required to achieve the desired

simplification. The simplifier is capable ofmultiple substitutions provided that the length ofthe list

shall not increase at each one of the substitutions. In some very rare cases substitution of identities
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that are a product of two primary ones is desired. However, incorporating this type of substitution

increases the complexity and reduces the speed of the simplifier much more than the improvement

it achieves in simpliücation.

Figure 10 on page 46 shows the simplified correspondent of Figure 9 on page 43. The effect of the

simplifier is apparent. Table l on page 47 lists comparisons ofvarious aspects of the amplitude file

before and after simplification for yy -• BB.

Similar to DIAG itself, the simpliüer must also be tested and debugged step by step along with

DIAG. The correctness of the simplifier was tested and ensured by numerically computing both

simplified and unsimplified amplitude functions and verifying the agreement. For relatively simple

cases it can be performed for the whole amplitude file. For cases as complicated as MB —• MB the

numerical checking is performed by randomly selecting a group of diagrams and verifying the sim-

plification for this group. The random selective checking is also completely computerized. °

In addition to the majorextensions and modifications as to those of virtual photon, gauge invari-

anee testing, and simplification, DIAG has also undergone numerous minor modifications. Some °

of them were made for the convenience of debugging the program while others were made for im-

proving the eüiciency of the program and of the later numerical integration. In summary, DIAG

became progressively faster despite that many new features were added. However, as an expense,

it became more complicated to use because of the increasing new features and therefore the in-

creasing options to chose when running the program.
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/* 1 */a = a-96*q0*q0/c*s*x3*(s2*x0- 1)/(x0-1)/(x4·1);
/* 13 */a = a + 96*q0*q1*c*s*x0*x2*x3*x4/(c2*x2+ c2"'x4«c2-x2*x4)/(x4-1)
/(c2*xl + s2*x4·xl *x4);
/ * 172 */a = a+ 96*q0*ql *c/s*x0*x3*x4/(c2*x0+ s2*x3-x0*x3)/(x3·1);
/* 203 */a = a-96*q0*q2/c*s*x1*x2*x3*x4*(c2*x5-x2*x5+ x2)
/(c2*x0+ s2*x3-x0*x3)/(c2*x2 + c2*x3·c2·x2*x3)/(c2*x5+ s2*x2-x2*x5);

Figure l0. Amplitude File eher Simplilication
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Table 1. Comparison of Amplitudes before and aller Simplification

TY
—• BE before after

Size of sourse 53 KByte 12 KByte
Size of object 18 KByte 6 KByte

Compilation time 146 s 25 s

The amplitude file is for yy -• BE for spin half baryons. Both of the photons in this case are
right handed. The relatively small object size before simplification is largely due to the high
optimization capability of the VAX C compiler.
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Chapter IV .

Testing Gauge Invariance

In the eourse of checking gauge invariance for MM scattering, because of some subtle mistakes, the
4

scattering amplitude was found not to be gauge invariant. Extensive checking of the computer

generated amplitude against hand calculation did not reveal any discrepancy, while the same cal-

culation for the proton magnetic form factor and photon annihilation to hadron-antihadron pairs

did satisfy gauge invariance. The following questions were then raised: first, is the gauge invariance

theory formulated correctly for amplitudes involving three- and four-gluon vertices; and second, are

the Feynman rules correct, especially for three- and four-gluon vertioes. Most of the text books

and review articles tend to restrict themselves to be very brief on these topics and still, all use dif-

ferent conventions for the Feynman rules. It is also not uneommon that the Feynman rules of

some of them contain errors. Although it is unlikely that one may actually find anything wrong

with the theory, it is very important at least to acquire a strong confidence in the theory and to

make certain that the Feynman rules that DIAG implements are definitely correct.
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The anwers to these questions are rooted no where but in the formulation of the theory. In the

following sections of this chapter gauge theories are redeveloped with emphases on QCD and gauge

invaxiance. For references see, for example, Abers and Lee [25], Cheng and Li [26], and Chaichian

and Nelipa [27]. The implementation of gauge invariance testing is presented in the last section of

this chapter.

Gauge theories are most conveniently forrnulated in the Feynman path integral formalism (FPI).

To avoid making the lengthy derivation even longer, the FPI formalism for transition amplitudes

is accepted without question. Furthermore, h = c = 1 is assumed throughout this chapter. The

transition amplitude in FPI formalism is:

Id (¢)Ild (4-1)

where q, and p, are the canonical coordinates and momenta; I(t',t’) is the action of the system de-

- pending on p,_..., p„_ q,..., q„. ·

In quantum mechanics, transitions always take place from a state at t = — 00 to a state at

t = + 00. In the limit of t' -» - 00,t" -» + 00, the path integral Eq. (4.1) describes vacuum-to-

vacuum transition. Therefore, as an example, for the free fermion Dirac fields for which the

Lagrangian density is defined by

1-Ax) = iTv'(x)v„ö„v(x) — M V(x)~v(¤¤). (4-2)

· the transition amplitude is

S = ]'I;lldw7(x)lld~v(x)l =¤¤1>li]'d¤1-)(¤=)l- (4-3)
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4.1 Field with Constraints

One of the advantages of the path integral formalism is that it works in the canonical Hamiltonian

context and leads to quantization of the fields. As will be seen later, a gauge field is a field with

constraints and the gauge fixing will be naturally introduced in solving the constrained field prob·

lem. As for now, a Hamiltonian system with constraints shall be solved and one can easily identify

that the entire procedure is purely classical.

The system has n degrees of freedom described by the canonical coordinates q, and momenta p,.

The Hamiltonian of the system is H(p,, q,). Let m constraints be imposed on the system, which can

be described by ·

<p,(p,, q,) = 0, a = 1,2,...,m. (4.4)

Therefore, the variables p, and q, are not all independent. The most straightforward way to solve

this problem is to eliminate the dependent variables by solving the constraint equations (4.4).

However, this approach may not be easy and some times is even impossible. The aim here is to

‘ develop an expression in the form of a path integral which incorporates the constraints in a more

convenient way.

By the means of the Lagrange multipliers 1,, the system is then described by the Hamiltonian

M
H'(pl•ql) = H(pl•ql) ql)· (4*5)

For an arbitrary function f(p,, q,) the equation ofmotion is
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. M

flplv ql) = + a§lÄ·a{(Pa•/-}• (4-6)

where the curly braces denote the Poisson brackets:

'* 6 ög 6g ög
= Z

—-; — . 4.{fg}
t=1(öP1 öqe Ö4: ÖP1 ( 7)

The eonstraints are clearly independent of time, and they lead to the consistency conditions

.
”

M•v„<m» 40 =· {Hm.} + b§l>~6{<m„¢„} = 0- (4-8)

where taking ep, = 0 alter evaluating the Poisson brackets is understood.

If both of the Poisson brackets are zero the consistency conditions are then said to be satisüed

which is also to say that there are no more constraints imposed on the system. The case in which

{H, <p,} * 0 While {<p„ tp,} ¢ 0 shall not be discussed because of its irrelevance here. The last case,

also the most important, is that {H, <p,} = <l>,„ and {<p,, cp,} = 0 . The consistency condition re-

quires that

¢l4(pl• ql) =

ovwhichalso means that more constraints should be imposed on the system. Following Dirac, the

constraints given by Eq. (4.4) are referred to as the primary constraints and the constraints given

by Eq. (4.9) are the secoradary constraints. It is also clear that the secondary constraints can not
u

be redueed to the primary ones.
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The secondary constraints <l>,, are on the equal footing with the primary ones so that it should

satisfy the consistency conditions similar to Eq. (4.8). It may yield additional secondary constraints

{H, <l>,,} = <l>,, = 0.

Assuming that Eq. (4.4) includes all the constraints, both primary and secondary, both Poisson

brackets in Eq. (4.8), the consistency condition, vanish. All the coeflicients A, are leü arbitrary.

The equation of motion for a dynamic variable f(p,, q,) described by Eq. (4.6) is not unique due the

arbitrariness of the A,. However, all of them should be physically equivalent, because the physics

is only dependent on the set of variables p, and q, and is independent of the choice of A.,. The set

of values off(p,, q,) corresponding to all possible coeflicients A, is called an orbit. Since all the

points on the orbit describe the same physical state, it should be suüice to consider only one of

them. 'I'he point can be chosen by imposing another m conditions,

Xb(P1· 41) “" 0• , (*10)

which is unique for a given set ofA, to the system. Eq. (4.10) is referred to as subsidiary conditions.

As will be shown, it corresponds choosing a gauge when the system is a gauge field. The consist-

ency conditions for the subsidiary conditions

_ M
Xb = {Hvxb} 0 (4·11)

uniquely determine A, since

det I{<p,,,X,,}I ¢ 0, a = b = 1,2, ,m. (4.12)

Now a canonical transformation from p, and q, to P, and Q, can be made. Because the subsidiary

conditions can be chosen in such a way that {X,, X,} = 0, one can chose P, = X, for i = 1,2, ,m

and let Q, (i = 1,2, ,m) be their conjugate coordinates. The remaining canonical variables are

define as
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P, = p', and Q, = q'), i= m + l, ,n (4.13)

where the variables p', and q', span a 2(rt — m) dimensional subspace I"'. It should be noted that

they are also independent variables of the system as if the eonstraints of Eq. (4.4) had been solved.

According to Eq. (4.1) the transition amplitude in the 2(r1 - m) dimensional subspace I"', after

eliminating the dependent variables, can be expressed as

{dp' lid 'l . " „ - „ „ ”
S 1/1)- (4-14)

Recalling that the goal is to avoid solving the constraints equations, Eq. (4.14) should be trans·

formed back to the 211-space I". To achieve this, the following steps shall be fo11owed:

1) Rewrite Eq. (4.14) equivalently into the form

1 d 1 dP 1 d 1S
__

In ldß’1( )ll 4'1( )l H { 11()l{ Q1(
)l1,127* 11=1 27*

m n (4.15)P11Qkk=l l=m+1

2) Change the variables Q, to q>,; then 5 functions transform as

I'1ö(Q« Q«(.¤'4')) =' <1¢¢ ä l"Iö(<P )- (4-16)a
’ ’

äQa a C

The determinant is the Jaoobian of the transformation, which can also be identified through

öw öw{Xm ¢c}p,q = {Xm göaqöi (4*17)
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3) Make canonical transformation from P, and Q, to p, and q,; Li0uvi11e's theorem ensures that

[dP,][dQ,] = [dp,|[dq,] . Making use of the generating function.F(p,q) for which

dF = ¥p,dq, + §Q,dP, + (H' - H)dt, (4.18)

the following relation is obtained

(äjpg, — H)dt = —H)dt + d(F — %P,Q,), (4.19)
I

where the fact that the function F(p,q) does not explicitly depend on r, and thus H' = H, has been

used. Integrating Eq. (4.19) over t from t' to t' leaves the last term of Eq. (4.19) as a constant.

Since this expression appears in an exponential, it merely contributes a constant factor. Since the

amplitude is not normalized, any constant factors can be dropped.

4) Substituting Eq. (4.19) along with Eqs. (4.16-17) and P, = X, into Eq. (4.15), the desired ex-

pression is obtained:

ld 01144 0} . .S “’ _lI3E_S(Xa)S(‘Pc) du l{Xa· ‘P¢}l ¢!P {l_lI:Id¢[§P:<11 ‘ H(P1•44)]}· (4-20)

'This path integml expression absorbs the constraints into the integrand as 5 functions and thus

avoids solving the constraints equations. It is then readily to be applied to the gauge field.

4.2 The Yang-Mills Field
I I

Eq. (4.20) is a general expression for fields of both Abelian and non-Abelian groups, but only the

non-Abelian color gauge field is of interest here. The Yang-Mill’s field will be taken as an example
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to rederive the theory. From the historical view, this is what gives birth to the non-Abelian field

theory; and, for the present case, the field theory for SU(2) and SU(3) are formally identical.

The symmetry described by the SU(2) group is commonly referred to as isospin. The isospin in-

dices shall be denoted by superscript Latin letters, the Lorentz indices by subscript Greek letters

and the 3·space (E,) indices by subscript Latin letters. Summation over repeated indioes is under-

stood.

The field tensor is defined as

4*, = 6,4* - 8,.4: +
g6”"44,

(4.21)

where Alf are the fields. The Lagrangian takes the form

1, = - %1=j,1¤j, = — %(6„.4§ — 6,4*)* (4.22)

in the second order formalism and

1, -
— -ä[6„,4§ — ä,A: + gs”"4.4{, — %1;',‘,]1¤f, (4.23)

in the first order formalism. Using the first order formalism, one can rewrite Eq. (4.23) in the

th1ee·dimensional form

L = Lfd? — H<L{‘.4f>. (424)

where

H<Lf.«I‘> = %[(Ei°)2 + wI‘>*]. Ef = Fin- ==¤d Bf =
—§¤”‘L77-

The terms with full divergence and explicit dependence on A, and E, have been omitted because

they vanish either by the oonstraints or by the subsidiary conditions that will be chosen.

Testing Gauge lnvariance 55



It is clear that H(E}",A[') is the Hamiltonian and E[‘(x) and A{‘(x) are canonically conjugate momenta

and coordinates. The primary constraints are obviously

1; = 1;(pl(x) - E0(x) = 0, (4.25)

which leads to the secondary constraints by

«>’;<¤¤> E <jd’xH<EI‘.AI‘>.E'6<»>1 = ö1EI‘<¤=>—
;='“"‘AIE1‘ = 0- (4-26)

The secondary oonstraints satisfy the following consistency conditions

{<0§(x). <0$(x)} = 80”"'<0&"(x)ö(x · .0) md
{jd’xH<E{‘.ß}‘>.«¤$<y>1 = 0.

so that there are no more secondary constraints on the field.

The subsidiary conditions can now be chosen to be associated with the constraints. It is also said
' to choose a gauge. For the convenience of the derivation, the Coulomb gauge ö,Af(x) = 0 is cho-

sen to be associated with <p§(x) = 0 and A; with E; = O . It is straightforward to calculate the fol-

lowing Poisson brackets with respect to the canonical variables E; and Af:

{;';.;ä> E 1@1A{‘<¤=>. 0.A!<y>} = 0 md
1; 1 .. 1; klm 1 1 kl 1;; (4*27){<P2• X2} = {aß; (x) ' 88 A1(¤)E1m(>¢)• Ö1A1(V)} = M (A1 )ö(x · .v)•

where

Mu(A{") = 6,6,6"' + g;'”"‘A;"a,. (4.28)

The analysis for the other set of constraints and subsidiary conditions is even simpler. By using the

fact that E; and S; are canonically conjugate variables, one obtains
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i {xi. xi} E {Ai‘<¤«>.4i<x>} = 0 md 44 29)<«·i‘. xi} E {Ei‘<x>„4i<y}} = 6"'6<x — y}. S

It should be noted that 8*' is a unit matrix and its determinant is 1. It should also be noted that

det |{<p';, xi}| is calculated as a product ofdet |{q>'{, x{}| and det |{<p§, x§}|. The reason is that the two

sets of constraints and subsidiary conditions are independent to each other so that the matrix
{<pi‘,

xi} is a direct product of two submatrices for the two sets, respectively.

With the knowledge acquired from Eq. (4.24·29), the path integral over the canonical variables, in

place of Eq. (4.20), can be written for the Yang~Mi1l's field as

S dä><
ö<Ai‘<x}}ö<Ei‘<x}}ö<@,Af<¤=}>ö<@.E„"<==} + x¤"""Ai<x>E{"<x}} <"·“°)

>< ¤=¤p{i5d¤=[E!‘Ai‘ + Eid. — H<Ef.Af. Ei‘.Ai‘>]}.

This expression can be further simplilied. It is easy to identify that the expression in the exponential

is the Lagrangian and can be replaced with the second order formalism Eq. (4.22). By carrying out
1 the integration over E4'}, which again yields a constant factor that can singled out, the path integral

over all the fields A,';(x) is finally obtained:

S dä |Mk'(Ai”)| ¢XP[ijd¤l«(x)]· (4-31)

’I'he Coulomb gauge has been chosen in developing the path integral Eq. (4.31) for the Yang-Mi11’s

üeld because it is the most convenient one to use for deriving the theory. However, the Coulomb '

gauge is not invaxiant under the Lorentz transformation, so that the path integral Eq. (4.31) is not

relativistically invariant as well. For deriving Feynman rules and performing calculations, the

relativistically invariant Lorentz gauge is the most convenient one to use. To accomplish this, the
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Coulomb gauge shall be transformed to the Lorentz gauge in the path integral Eq. (4.31). The

transition procedure is known as the Faddeev—Popov method.

A fimctional AXA;) shall be introduced by

L (4-32)

where X is any gauge condition, and the integration runs over the entire gauge group, of which g

is an element. The Jocabian of a gauge transformation is unity because of the fact that the gauge

group under consideration is a unitary group (SU(2) for the Yang·Mil1’s field). Meanwhile, the

transformation of variables from A;• to
A;•’

in the 5 function yields the same unit Jacobian.

Therefore,

lds(x)l = ldg’(x)l md ö(x(A,'f"(x))) = ö(x(A,'f"(x)))- (4-33)

Eq. (4.33) also implies that both [dg] and 5(X) are gauge invariant, so that the functional Axis gauge

invariant as well. For the Coulomb gauge Eq. (4.32) takes the form

Ac(A,l‘)_[l'I[ds(x)ö(ö4Al°(x))l = L (4-34)

The point is to show the equivalenee of the functional AC(A;) and det |M"'(A;")| so that the gauge

factors in Eq. (4.31) correspond to Eq. (4.34), which in turn is a special case of Eq. (4.32). This '

will enable replacing the gauge factors in Eq. (4.31) with any desired gauge by virtue of Eq. (4.32).

The integral in Eq. (4.34) shall be calculated first. Beéause of the condition ö,A{'(x) = 0 and the 5

function in the integrand, there is no contributions come from the gauge group except from the

vicinity ofg(x) = 1. In this vicinity the following expansions are valid
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U(g) = 1 — lguktk, dg = duk,,.2 6.. . „ ° "‘·"’>
Af'g(x) = A, (x) + gs u(x)A["(x) + ölc (x),

and

ö,Af'g(x) = gsu"°A{"ö,uI + ä,ö,uk = MkI(A{")ul. (4.36)

Substituting Eq. (4.35,36) into the integral one obtains

j’I'Ilds(¤=)lö(öiA]"(¤¤)) = j'I'Ild¤'Ü(¤=)lö(M') = l'I Ilkl
"‘

= (d=¢ IM"'(A{")I)"
‘-

(4-37)
~ x,k x,l¢ xJ¢

The fact that the product of eigenvalues of a matrix equals the determinant of the matrix has been

used in the last step of Eq. (4.37). Thus it is proved that

<4,f>¤,,„; -, = «1=¢¤M"’(«1r'>u.

'and, indeed, the path integral with the Coulomb gauge, Eq. (4.31), is a special case of Eq. (4.32)

~ with x = ö,A,. Next, inserting the generalized Lorentz gauge in the form of Eq. (4.32),

4.(A,i‘)j1}¢14g(x>1S<6„4,i‘(x) — «"(»=>) = 1. (4-SS)
X

into Eq. (4.31), Keeping in mind that all the gauge factors are gauge invariant, the integration

_[[dg] can be switched from Lorentz gauge factors to Coulomb gauge factors and the latter can be

extracted out by virtue of Eq. (4.34). The result is: ·

S‘

Calculating the functional A,(A,’;) is similar to that of the functional Ac(A,'{); one finds:

AAA:) = det |M„|,
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It should be noted that M, is independent of a,,(x). Therefore, Eq. (4.39) can be integrated over

a„(x) by inserting a constant factor: .

=¤p {·i%jl¤k(x)l2dx}-

This leads to the desired path integral in the generalized Lorentz gauge, which is also called the '

a-gauge:

s = jg(d,4,‘f(x)} an (M,) exp{ -1jdx[}LF,'f,1=§,, + %(ö„A§)2:|}. (4.40)

Some comments on the factor M, are desirable. The determinant of M, can be expressed as a path

integral over anti·commuting scalar fields and their interaction with the gauge fields. Upon some

choice of gauges, though, there appear no such fields. The fields are commonly referred to as the

Faddeev·Popov ghosts. They shall not be discussed in any detail here because they do not enter

the calculation unless loops are encountered.

4.3 Green’s Functions and S-matrix Element

What has been developed in the previous sections is the path integzal formulation of the vacuum-

to·vacuum transition amplitude. In practice, the S-matrix is what needs to be calculated. A matrix
( element of the S-matrix describes the txansition amplitude of a system for which particles are free

in both and final states. To calculate the S·matrix it is convenient to use a Green’s function.

Roughly, a Green’s function describes the internal structure of the transition amplitude, that is, the

S-matrix element. It will be shown later that the propagators and vertices are associated with

Green’s functions.
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In this section, the path integral expression for Green’s functions and the S·matrix are derived.

Since path integrals are not generally analytically calculable, the method of perturbative expansion

is employed to calculate the Green’s function and the matrix element of the S·mat1ix.

A Green’s function can be formulated as a path integral. Since the construction ofthe path integral

was skipped for the vacuum·to-vacuum transition amplitude of Eq. (4.1), it should also be skipped

for the Green’s function. Nevertheless, it is instructive to compare Eq. (4.1) with

5
4 41=· jI}ld¢(x)l¢1(x1)¢;(xz) -¢„(x„) ¤x1> {i_[d¤=L(¤=)}- ( ‘ )

The generating functional W(J) for a Green’s function can be defined as

WU) =x1> (4-42)

where an auxiliary current J,(x) is introduced for each field cp,(x). The Green’s function can then

be obtained by taking derivatives with respect to the cuxrents and then setting the currents to zero:

6 = -‘ "i——i—...i——w 1 ,,„ „ , . 4.43)(xr -x„) ( ¤) wi (xl) öJ2(x2) öjnun) (J) J, 1,, 6 (

The Green’s function defined above contains both connected and disconnected diagrams. However,

only connected ones are of interest. To accomplish this, another generating function Z(J) shall be

introduced and defined by

Z(J) = - iln W(J). (4.44)

By differentiating both sides of the above equation with respect to J directly, it is straightforward

to see that the quantity

l
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Tsäzum, ,„ =„ (4-45)

is the connected Green’s function as the subscript c denotes.

It is convenient to introduce a generating functional l"(<b) which generates the vertex Green’s

functions. Since the Feynman rule for vertices can also be deduced from the Green’s function

generated by Z(J) and the S·matrix element, as will be shown later, only the the expressions of the

functional and the Green’s function are quoted here:

l“(¢«) = Z(-h) *j°d>¢J;(x)¢1(x)- (4-46)

where

öZ(.l)
<I> x) = —-—. (4.47)Ä öJ«(¤=)

The rn-point vertex Green’s function is then obtained through

8<l>,ö<l>jThe

functional l"(<D) can be expanded in terms of the number of loops. The leading order gives

only tree diagrams and is referred to as the tree approximation. Again, without derivation, the tree

approximation functional is given by

I‘„.„(<l>) = I(<l>)
A

(4.49)

where I(<b) is the classical action.
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Before getting to the S·matrix, the functional W(J) shall be further transformed to a more con-

venient form for calculating the Green’s functions, and thus, deducing the Feynman rules. First,

by separating the Lagrangian of interacting fields from the Lagrangian of the free fields,

L(x) = L„(x) + L,(x), the functional W(J) can be rewritten as

WU) = fl;Ild<v1.(x)l ¤x1>li_[dxLo(x)l ¤xp {i_\'dxiL)(x) + <v),(x)J1„(x)l}- (4-50)

The last factor in the above equation can then be written as

‘ au. -‘ 8 , , -'—-ä-— · du , 4.51rrxplrj )( rwdx) riß r öjnß )l ¤xp(¤j wk) h ( )

for the obvious reason that the Lagrangian L, is a function of the fields (p,. In a compact form Eq.

(4.50) is rewritten as

WU) = =x1>lij°dx/-1(-i%)ljl'Ild<v1.l¤=r1>{rjdxll-6 + <mJ1.l}- (4-52)
k X

The integral in the above equation containing the free Lagrangian L,,(x) can be written in another

form:

jd-xl«(x) =· %jdxdy<m(x)K„(x — .v)My)- (4-53)

where K,,(x - y) is the differential operator determined by the free Lagrangian l.,,(x). Substituting

Eq. (4.53) into Eq. (4.52) and making a further change of variables, _

Mx) = <¤';(x) ·· {KJ
‘(x — y)J)(y)d.v- (4-54)

the following path integral is obtained:

‘ _ 2 (4.55)
= Cexp[%jdxdy-/;(x)K,[

‘(x — .v)J;(.Y)]·
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u
where

, C = j°I;I[d<v1;(x)l ¤x1>[%jdxdy<v’p(x>K„(x — y>¤>y0·)]-

Dropping the constant factor C and substituting Eq. (4.55) into Eq. (4.52), the desired form of

W(J) is finally achieved:

_ . . 5
‘

-W(J) — exp[1j°dxL,(-iää-)] exp[é-j°dxdyJ,(x)K0 ‘(x - y)J4(y)]. (4.56)

The generating functional for the S·matrix element can now be constructed with the functional

W(J) of Eq. (4.56):
i

Sw?.) = =xp[i5dppL,<-pl>]öjklf)
(4.57)

>< exp[·ij”dx«p2(x).Ik(x) ·- é—IdxdyJ,(x)KJ
‘(x — y)Jj(y)]l J4 , , _,_ ,0.

The matrix element, for example, for m free particles scattering into n Bee final particles can

be obtained by

S „ = pp, m——§——«p ,m—§—-p, lp, ml"‘
" " Splm ' öpäm "" S«p?„m ’"+‘

S«p?..+.m (4 54)8 8 ‘

" <Pp„+z0' <P;,p„+„(P$(<Pil)|,,•; , ,0-

In Eq. (4.57) and (4.58), <p2(x) are arbitrary functions and served as extemal free points to which

the external free fields can be attached. The external free fields are denoted as <p,_,,(x) for initial Bee

fields and <p,_,(x) for final Bee fields.

By far, various G1een’s functions and the S·matrix element have been derived in the exact path

integral form. In order to calculate them, perturbation theory shall be applied. The perturbative

expansion is obtained by expanding the interacting term exp[i_[dxL,(x)] in the path integral

Testing Gauge lnvuiance 64



® JI

exp[i~[dxL,(x)] = j‘dx„L,(x,)L,(x2)_... L, L,(x„). (4.59)

All the Green’s functions, as well as the S~matrix elements, can then be calculated order by order.

Outlined below are such calculations for QCD to the leading order.

4.4 Feynman Rules for QCD

To each order of the perturbative expansion there exists a set of Green’s functions such that any

member in the set can not be decomposed into a product combination of two or more members

of the set and any Green’s function which is not in the set can be decomposed into a product

combination oftwo or more members of the set. This set is commonly referred to as the Feynman

rules of the same order.

Deriving Feynman rules is a very tedious and lengthy procedure. Although it is the utmost goal

of this study, the detailed derivation will not be shown. However, some cautions will be pointed

out for the derivation.

The QCD La.grangian is given by

L = — + W°(i·yvDp —m)•yb , (4.60)

where
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Fg, = ö„A§ — 6,,4:: + g;‘/"A,{A} and
(4 61)Du =

öpThecolor indices are denoted by superscript Latin letters and the Lorentz indices by subscript

Greek letters. A" are the gluon fields, v' are the quark fields,
A/‘

are the Gell·Mann matrices,
/’/*

isII

the structure constant of the SU(3) group, and g is the coupling constant.

By imposing the generalized Lorentz gauge condition and omitting all the terms containing the

_ ghost field, the free Lagrangian and the interacting Lagrangian can be written, respectively, as

1,0 and
(4 62)L, =· — g/"‘<¤,.4£)A{.Aé‘ — —,§e°1”*1‘"‘"4{.4£‘A,Z'A:‘ +

§w‘«,.A,i‘(L">“°«·°-

The generating functional W(.l), according to Eq. (4.56),‘is

wu,£.¥1‘“. n°) = R ¤x1> {ijdxdyl-§/,Ä(x)(Kf,’„(x — .v))°‘!(,(.v) + F“(¤<)/<Z,L(x — y)n°l}. (4-63)

l
where -

R = exp {ijdxL)(·i-—L-, -1%)). (4.64)
61,{(x) ön (x) ön (x)

Following Eq. (4.59) R can be expanded into a power series:

R - 1 +1_[,1x1.,(-1J-,...)+ %jdxjdy1,,(-1-2-, )1,,(-1—‘?-, ...) + (4.65)611.1:) 5-/f,(x) ww)

where the fields in L,(x) are substituted according to

Af —» -1;]%, V" -• -1%, and
1,,‘ -» -1%. (4.66)
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The propagator of the free quark and gluon fields are found through

i=—Z„(J,’f.
= — (<""(x

*1*)-ll.
(4-67)ö11"(x>ö1160·) •* ' '°

and

—T%—Z„(J,f. )1,· ,„ = — K,’ß(x — y)" . (4-68) ‘

respectively. Here Z„(.I) = Z(J)|,_I-„. Thc gluon propagator (K,';{,)", the only gauge dependent

Feynman rule, can be calculated now. As is stated in Eq. (4.53) the gluon propagator is determined

by the form of the free Lagrangian which, for the gluon fields, is

L°(x) = - -1-(ä„A§ — 4,.4]*)* - J-(4„.4§)’. (4.69)4 201

Integrating by parts gives

]‘¢x1„,(x) = %_[dx.4„’§[g„„,a“ — (1 - -g)a„4,,].4§. — (4.70)

According to Eq. (4.53) one can identify immediately that

1qf'(x - 9) -
5*1804 — )·)[g

4’ — (1 — J-)4 4] (471)V pv a p V ° '

In momentum space Eq. (4.71) becomes:

(1 (4.726)

Upon direct verification one Ends that

I{:£(k)_l = é-[ —g„„ + (1 — a)kvkv ] 6"' (4.72b)

is the inverse of Eq. (4.72a). Finally, in the a-gauge, the gluon propagator is abtained:
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-
62 _

- Ö1): dk kv 11¢(x —y)
= ———————[ „—(1_— . (4.73)‘wä<¤=)w„<)) ’

° Ä(2¤)°‘Ä kk g“ ° 4* °

The quark-gluon vertex, the three·gluon Vertex, and the four·gluon vertex are determincd to the

leading order as follows:

11‘k"" , = i———§i——iI“ Ak, = , , 4.74„ (x.y 2) 6 ( )

1rk';"( ) = i———I“ (Ak ...)| = = , (4.75)
"

Ä xy': 8A:(x)5A£(y)öA;Q"(z) "°° "
A

°

and

ar”(,"" , , = ‘—l9:-——-1* Ak, .. , , 4.76„ )„„(x0'=¤) 1 MlmM50,)SA{(2)öA„,(u)
6„( ,. )IA 6 ( )

_ I! P

where

12,.. = 5d==L<A,{‘<x). v°(¤=). 7‘<x)) (4.77)

as given in Eq. (4.49). .

In momentum space these Feynman rules are derived as .

(4 · 2),,s,a + (r — 4)„s)„vl» (479)
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TÜTP = iszl/"”'/"”'<s„„si„ ·· gpkgvp)

+/’”'/'""<g,„g„i — g...g.,>
”

<4.8o>
+ 1‘l”Ü'l””"(z„«8ip

_
gppgvÄ)l

In the multi-gluon-vertex cases all indices circulate counter·clockwise and ar·e associated in order.

For example, k, u, and p are the color index, Lorentz index and the momentum of one gluon as

in Eq. (4.79). Furthermore, all momenta are out of the vertices.

In order to define the Feynman rules a convention needs to be chosen. There are several con-

ventions for deiining Feynman rules. For example, one can change the coupling constant

g —• —g without changing the physics. Furthermore, each propagator and vertex is normally as-

sociated with a factor (i) or (·i) so that collectively a diagram consistint ofpropagators and vertices

would have the correct sign and the phase (i). There are various ways to assign these factors to

propagators and vertices. The convention used here is to assign a factor (·i) to each propagator and

a factor (i) to each vertex, as is shown in deriving the gluon propagator and vertices in Eq. (4.73-76).

This convention is veriüed by directly evaluating the S-matrix element containing a certain diagram

by using Eq. (4.58), and the overall factor agrees with what should be obtained from calculating the

same diagrarn by using the Feynman rules.

lt is noteworthy to point out that directly calculating the matrix element containing a certain dia-

gram is much more complicated than using the Feynman rules. In order to get a complete diagram

the calculation has to be done at higher order while the Feynman rules are only elements of a dia-

gram so that its calculation can be done at the lowest order.
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4.5 Implementation of Gauge Invariance Testing

As mentioned earlier, DIAG can check gauge invariance by replacing the polarization 4-vector 6,,

of a specified external gauge boson with its momentum 4-vector This checking scheme, obvi-

ously, can not apply to processes that do not involve extemal gauge bosons. For such a class of

processes the most convenient method to check for gauge invariance is to calculate an amplitude

under an arbitrary covariant gauge and verify that the result of the calculation is gauge-invariant.

In an arbitrary covariant gauge characterized by the gauge parameter E = 1 —
T1-, as demonstrated

in the previous section, the only gauge-dependent Feynman rule is that for the gluon propagator.

The amplitude in the §-gauge, as diseussed before, is a polynomial in §. Gauge invariance is

equivalent to §·indepex1dence here and, therefore, coefiicients of any non-zero order of § vanish

identically. To incorperate this scheme into DIAG the most suitable and general approach is to

calculate the amplitude-coeflicient for a specified order of § by replacing a specified number (equal

to the specified order of F,) ofg,„,’s with k,,k,/k*’s. This replacement and calculation must be allowed

for any order of E.
I

·

Unlike gauge invariance testing performed on external gauge bosons where the replacement
i

k,, -• 6,, takes place for and only for a specified external boson, the replacement k,,k,,/k* -• g,,,, for

that testing performed on internal gluons takes place a certain number of times for each diagram

with all possible combinations. Taking MB -• MB as an example and assuming that the amplitude

of E is in question, for simple diagrams that do not contain multi-gluon vertices there are four

internal gluons for each diagram. In order to collect all E terms two of the four gluons’ g,,, should

be replaced by k,,k,,/k* and the diagram must be calculated for all possible C2 = 6 double replace-

ments. For diagrams with triple three-gluon vertices in which seven internal gluons are involved,

each diagram has CV = 21 possible double replacernents.
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The implementation of this scheme is very sophisticated and complicated, especially when more

then one three-gluon vertex is involved. Since DIAG was designed for calculations under Feynman

gauge, the spin-factor evaluation part of it must be redesigned and rewritten. The program must

be capable of:

• generating all possible combinations of the replacement k„k,/k' —» g„, for gluon propagators

once and only once for a given order of E,

•
remembering and identifying the gluons having the replacement in effect and applying different

computing rules accordingly,

• tracking a gluon "tree' if two or more multi·gluon vertices are present since, in that case, the

computing rule for a certain gluon propagator is depcndent on its neighbouring multi-gluon

vertices.

This type of gauge invariance checking was expected to be a very powerful one since, still taking

MB —• MB for example, the vanishing of the amplitude-coefficients can be checked order by order

up to
§’.

lt was later discovered that high·order amplitude coefficients are trivially zero. lt can be

easily seen as followsz

Suppose that a quark line is attached by one and only one gluon propagator; then the momentum

of the gluon can be assigned as k, — k, where k, is the momentum of the incident quark and k, is

that of the outgoing quark. Ifthe gauge replacement is in effect for this gluon, the quark line then

evaluates to a factor u1‘,(k,)(k, — ¢,)u,(k,) = 0 because of the fact that ku(k) = 0. For the

MM —• MM case at most one gluon can attach both of its ends to quark lines that also have other

gluons attached on them. Therefore only single gauge replacement yields a non·trivial amplitude.
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For the MB -• MB case the amplitude of E is also non-trivial, and finally for BB —• BB only the

amplitudes for the first three orders of li are non-trivial. .

It should be noticed that the trivially vanishing amplitudes are not results ofgauge invariance, which

always reveals itself as cancellations in a sum of diagrams. In the MM -• MM case, for example,

a diagram with a four-gluon vertex does not contribute in gauge invariance testing so that the testing

can not discover any mistake within the calculation for the four-gluon vertex. Fortunately there is

only one with a four-gluon vertex for MM ·—• MM. Caution must be taken, though, should

a similar situation arise in other scattering reactions. Although the trivial amplitudes ofhigher order

§ make the gauge invariance checking less complete and powerful than it was expected, it is still the

best available method to ensure the correctness of DIAG’s calculation.
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Chapter V .

Hadron Wavefunctions

Factorization separates the non-perturbative part of a scattering reaction from the perturbative part

and absorbs it into hadronic wave functions. In the asymptotic limit Q* —• ¤0, the form ofhadron

wave functions is purely perturbative and is independent of its Q'-evolutionary history [10] and,

therefore, is universal for baryons or mesons. It can also be easily derived [18] for baryons that

<p„,(x) ~ x,x,x, where x,, 1:,, and x, are momentum fractions of the valance quarks. At the scale

of momentum transfer that is experimentally accessible, however, the asymptotic form resembles

little the true hadron wave functions. Although the Q'-dependence ofhadron wave functions is also

determined by perturbative QCD, the wave functions themselves are determined by non- _

perturbative QCD. _

QCD sum rules provide a very promising approach to determine these wave functions. With the

sum-rule derived wave functions QCD calculations for the nucleon magnetic form factors and for

the branching ratio of br(v —• pß/br(xy —~ c*e‘) [10] give good agreement with experiments. On
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the other hand, the perturbative QCD calculation for vv
-

pi is about an order of magnitude

smaller than the experimentally measured cross section at WW ~ 2.5GeV, even when the sum-rule

derived wave functions are used [21]. Although such a barely above threshold center-of-mass energy

may be too low to justify the application of perturbative QCD, it is interesting and important to

get an assessment of the accuracy of the wave functions and the sensitivity of perturbative QCD

predictions to variations in the wave functions.

5.1 Sum-Rule Derived Wave Functions

The wave function for the proton, for instance, is the amplitude for finding the three·quark valence

state in which the momentum partition of the three quarks is (x,p, x,p, xap) where p is the longi·

tudinal momentum of the proton and x, + x, + x, = 1. The transverse momentum of the quarks

in the proton state can be neglected in the leading twist approximation since they are very small

relative to the momentum transfer Q' and, hence, the longitudinal momentum p of the proton.

As mentioned earlier at momentum scales relevant for experiments (Q' = 15 ~ 20 GeV for the

nucleon magnetic form factors) the proton wave function differs significantly from its asymptotic

form q>,„ ~ x,x,x,. This is mainly due to the extremely slow evolution of the wave function with

Q' when Q' is large. The dependence on Qz of the wave function can be determined by the evo-

lution equation [9]

2 6 ¤;(Q2) 1Q §<v(x„Q) == —;-gfodu V(x.v) ¢(v„Q)„ (5-1)

in the leading order, where V can be evaluated from a single·gluon-exchange kemel. Following

reference [9] the general solution of the evolution equation takes the form
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_ ¤¤ ¤.<Q’) ’·
(¤(x.Q) —fN <¤„,(x) § C,. € P,.(x), _ (5-2)'··° ¤,(u )

where j}, is the decay constant, ¢p,„(x) ~ x,x,x, is the asymptotic wave function, P,,(x) are Appel

polynomials (eigensolutions of the evolution equation), 7,, are associated anomalous dimensions

and C,, are coefiicients to be determined, which contain all non·perturbative information of the

wave function.

The moments of the wave timction,

<x;'¤„;'=x;'=>p, =· ]‘;a,xx;'¤x;'=x;'=«p(x, ,12), (ss)

can be studied by QCD sum rules. At present only p = rz, + rt, + rz, S 2 moments have been

deteimined so that further approximation must be made to Eq. (5.2). Since there are six inde-

pendent p S 2 moments, all the coellicients C,, can be uniquely determined if only the first six

terms of Eq. (5.2) are kept. Further setting Q' = p.* ~ lGeV* at which the moments are evaluated,

Eq (5.2) is redueed to

s<v(x, sz') = <v„,,(¤¤)§ C,. P,.(x)- ( (54)

'I'he determination of the six C,, by the sixp S 2 moments is then straightforward linear algebra.

To illustrate how the moments could be calculated the familiar example of the r:·meson should be

taken. Following Chemyak and Zhitnitsky [18] the leading twist matrix element of the 1:·meson is

determined by:
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(0) >
•" _ ‘_, i

(5-5)

where

ß} -0 |— -0 -0

0 - 0 — 0, 0 = 6 — igA“(A.°/2),

and § = xl - xl is the relative momentum fraction. At large Q*( zi ~ I/Q' -—» 0) the left side of

Eq. (5.5) can be evaluated to the form:

(5.6)

where D„ are some constants. Expanding the exponential in the right side of Eq. (5.5) yields

· . -n + l .n + 1i(=p)ß„j'i l«·t;="""¢„<c> = f„>l}7(zp>"+ ‘5§
[dä <"«»„<c> = /„>l;&T<zp>"*‘ < c" >. 6-0

By relating Eq. (5.6) and (5.7) through Eq. (5.5) it can be found easily that

D„ = ij; <§" > . (5.8)

The matrix elements of Eq. (5.6) can be calculated with the assistance ofthe QCD sum rules so that

the moments can be determined. A

To construct the proton wave function of the leading twist, for example, the following three·local

operator matrix elent [10] should be deüned:

(5 9)
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where, as before, Latin letters denote color indices and Greek letters denote Lorentz indices, |p>

is the proton state with momentum p, C is the charge conjugation matrix, N is the proton spinor

and u and d are quark fields. The general proton state (spin up) takes the form:

1 m 1 m 1 m 6"""w+ > = [v1(x)I~+ ¤+d'i > + wr(x)I¤+¤-di (5-10)

where
‘+

' denotes spin-up and
‘— ’

denotes spin·down. ln terms of Lorentz indices
‘
+' and

‘— ’

correspond to 0 and 3 respectively. Transforming the quark fields in Eq. (5.9) into momentum

space and substituting Eq. (5.10) into Eq. (5.9) yields

fnxv (x) ·
— ———- T(x)„‘

2./ 24
fu V(x) · A(x)

xy (x) = ——————-———-, (5.11)2 2«/ 24 2
fw V(x) + A(x)xy (x) == ——=-———————,3 2x/24 2

where T(x), V(x), and A(x) are momentum·space representations of their counterparts in Eq. (5.9).

'l°heprotonstatecanthenbegivenintermsof71 V, and.4 as

lmn I
2,/24 „/6 (5 2)

X > + >

+Thetwo u-quark symmetry requires

T(l,2,3) =- T(2,1,3), V(1,2,3) = V(2,1,3), and A(1,2,3) = —A(2,1,3), (5.13)

and the fact that the isospin of the proton equals
%

leads to

2T(1,2,3) = rp (1,3,2) + ep (2,3,1), andN N (5.14)
<pN(l,2,3) = V(1,2,3) — A(1,2,3) ,
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where the arguments 1,2,3 rizpresent x,, x,, and x,. respectively. Therefore, there is only one in-

dependent wave function for the proton. For definiteness <p„ shall be chosen to be the independent

one.

For the wave functions given above two sources of uncertainty are studied. First, the moments

calculated by QCD sum rules have associated errors. How do the errors manifest themselves in

wave functions and how do they affect the perturbative QCD predictions is a question to be an-

swered. Second, the model wave function contains only quadratic terms and thus accounts only

for p S 2 moments. The contributions from p 2 3 moments are totally unknown and uncon-

trolled. ls there any clue that one can get some control on these uncertainties is another question

to explore. Two simple reactions, xy -•pi and the nucleon magnetic form factor GZ', are chosen

for this analysis because 1) they are simple and easy to calculate and 2) measurements are available

for the momentum scale that justifies a perturbative QCD calculation.

In the rest of the analysis, if not otherwise specified, all calculations for xy —• pi and GZ are nor-

malized to the rneasurements. They are calculated in the form

2
[(%m,)‘é] = o.0oss46ev°,

brw —· ¢ ¢ )Q‘6;,
-

l.l7GeV4, md 6;, = - äcg,

where the corresponding data are also given. 77-•pp' is calculated as 9% in the unit of

pb • GeV‘°. If not otherwise specified its value is given at cos 0 = 0.4 which is an approximation

of the average of the cross section over the " wide angle " region cos = 0.0 -• 0.6 .
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5.2 Uncertainties ofSum-Rule Derived Moments

Knowing the moments of the nucleon wave functions, the asymptotic form to which the wave

functions will evolve in the limit of Q'
—• GO and the overall normalization ]°;d,x <p„(x,Q*) = l, one

can construct a model wave function in the form of Eq. (5.4) that possesses all these properties.

Chemyak and Zhitnitsky (CZ) [10] first did the sum·rule calculation and proposed a model wave

function. King and Sachrajda (KS) [28] redid the calculation and found some changes to CZ’s

original calculation. The KS moments and wave function is used in this analysis. Within errors

these moments agree with those now obtained by CZ [29]. Table 2 on page 80 lists these moments

and their errors.

Forp S 2 there are ten moments out ofwhich six moments are independent because of the relation

x, + x, + x, = 1. The overall normalization factor, physically the decay constant, j}., is determined

by setting <000> to 1 where <n,n,n,> is an abbreviated notation for moment <x{°‘xQ°2x§°’>.

For the analysis ofuncertainties the errors ofindependent moments are assumed to be independent,

also. Noting that < 000 > must be chosen as one of the independent moments, since it is the only

p = 0 moment and also that it has no error, there are üve independent errors contributing to the

uneertainty. To avoid overestimating the uncertainty five independent moments with the least error

_ ranges are chosen, and the error ranges of two of them are reduced by half to ensure that the re-

maining four dependent moments are within their error ranges when they are determined by the six

independent ones.

Since the five errors are assumed to be independent, each of them will introduce an independent

error for the wave function. The wave function, with the uncertainty, can be written as
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Table 2. Moments ol' the Nucleon Wave Functions

CZ (original) KS CZ (new)

n,n,n, sum rules model sumrules model sum mles model

000 1 1 1 1 1 1
”

100 0.60-0.75 0.63 0.49-0.59 0.55 0.54-0.62 0.579
010 0.09-0.16 ‘ 0.15 0.18-0.21 0.21 0.18-0.20 0.192
001 0.18-0.24 0.22 0.22-0.26 0.24 0.20-0.25 0.229
200 0.25-0.40 0.40 0.27-0.37 ‘ 0.35 0.32-0.42 0.369
020 0.03-0.08 0.03 0.08-0.09 0.09 0.065-0.088 0.068
002 0.08-0.12 0.08 0.10-0.12 0.12 0.09-0.12 0.089
110 0.07-0.12 0.11 0.08-0.10 0.10 0.08-0.10 0.097
101 0.09-0.14 0.12 0.09-0.11 0.10 0.09-0.11 0.113
01 1 — 0.03-0.03 0.03 unreliable 0.02 — 0.03-0.03 0.027

Three calculations are listed. The sum rule column gives the ranges of moments determined_
by sum rules and the model column gives the values chosen for constmcting the model wave
fimctions.
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<¤(x) = <1>N(x) =1= <P1(x)=*= Mx) ¤= <1>:(x) i mx) =b <Ps(x)
i

= 20.16::} + 15.12::} + 22.68::} + 8.4::, + 5.04::, — 11.76

:1: } -1.26::} — 3.78(::} + ::}) - 2.52::, + 2.1}
i [2.52(x} - ::}) — 1.68(::, - ::2)} (5.15)
:1: [2.52::} — 7.66::} — 12.6.::} -— 11.76::, - 3.36x} + 7.56]
:1: [8.82::} + 3.78(x} — ::}) — 9.24::, — 5.88::2 + 3.78]
s: } -7.56(x} — ::}) + 6.88(::, —::,)}

The moments of the live wave function errors, the central part of the wave function (KS), and the

sum·ru1e calculation are presented in Table 3 on page 82. The errors of the moments < 001 > ,

<020>, <002> , < ll0> , and < 101 > are chosen to be independent and the error ranges of

<00l > and < ll0> are reduced by half.

The efects of the uncertainties on perturbative QCD predictions are calculated for 1}: -• pi and the

magnetic form factor of the proton. The result can be represented as a matrix whose elements are

M}; dw (5-16)

where ep, = <p„. The results are presented in Table 4 on page 84 and Table 5 on page 85 with the

symmetric part leü blank and normalized to l with respect to the measurements. The total error

s is defined by

sz == Z M},
l+j>0

and is about 4% for V
-•pi and 40%
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‘
Table 3. Moments of KS Wave Function and Its Error Wave Functions

n1"/1.1 sum rules $N $1 $2 $1 $4 $s

000 1 1 0 0 0 0 0
100 0.49-0.59 0.55 — .02 0.01 — .02 0.01 0.01
010 0.18-0.21 0.21 0.01 -.01 0.02 -.01 — .01
001 0.22-0.26 0.24 0.01 0.00 0.00 0.00 0.00
200 0.27-0.37 0.35 - .02 0.01 - .02 0.02 0.00
020 0.08-0.09 0.09 0.00 — .01 0.00 0.00 0.00
002 0.10-0.12 0.12 0.00 0.00 - .02 0.00 0.00
110 0.08-0.10 0.10 0.00 0.00 0.00 — .01 0.00
101 0.10-0.11 0.10 0.00 0.00 0.00 0.00 0.01
011 unreliable 0.02 0.01 0.00 0.02 0.00 - .01
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As can be seen from Table 3 on page 82, the uncertainty is still somewhat overestimated because,

when the contributions from all live error terms to a certain moment are combined it will be big

enough to exceed the error range of the moment. Nevertheless, it gives a reasonable upper bound

of the uncertainties.

5.3 Uncertainties from High Moments

Unlike the uncertainties of the p S 2 moments which are well understood and under control, the

uncertainties due to p 2 3 moments are totally unknown. Since the sum·ru1e calculation is very

diüicult, it is not anticipated that the p 2 3 moments will be calculated soon. What can be done

in the absence of high sum-rule moments then? Firstly, the sensitivity of perturbative QCD pred—

ictions to the contributions of high moments, p = 3 in particular, can be studied. Secondly, one

can impose some constraints based on physically reasonable guesses for the high moments; and
[ finally, the contributions of the high moments can be parametrized to fit the existing data. In any

case the cubic Appel polynomials must be derived for these analyses.

There are ten p = 3 moments of which four are independent. Correspondingly, there are four

orthogonal cubic Appel polynomials. A general method of deriving Appel polynomials has been

given in reference [9] but only quadratic Appel polynomials have been derived. Deiining Ä (x,Q)
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Table 4. Uncertainties for the Branching Ratio of V Decay

wh (Pu W1 (pl Wa ‘P• ‘Ps
<p„ 0.9389 0.0073 0.0002 0.0278 0.0077 0.0002
qa, 0.0001 0.0000 0.0002 0.0001 0.0000
<p, 0.0000 0.0000 0.0000 0.0000
cp, 0.0010 0.0002 0.0000
qu, 0.0001 0.0000
(P; V6

~ 4.2% °
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Table 5. Uncertaintiea for the Proton Form Factor

wfn $11 $1 $1 $: $4 $s
<p„ 1.0683 — 0.1136 0.0442 -0.1787 0.1539 — 0.0838
ep, 0.0121 0.0046 0.0190 - 0.0163 0.0085
xp, 0.0018 -0.0074 0.0060 -0.0035
ep, 0.0299 — 0.0258 0.0138

ep,0.0219 — 0.0109(ps 0.0072
a ~ 40%
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by q>(x,Q) E x,x,x,?pü(x,Q) and § E 1nln%, the evolution equation for baryon wave functions

can be written as -

C
""

C (LQ), (5.17)

where

md,
2'Vc

and the potential V is given by

‘ ’,,~)
'

‘
"

kxz x,+:g Yz'x: (5.18)
== V(v,¤=).

where Ai;(y,Q) E ;(y,Q) - ;(x,Q) and 8% = 1(0) if the helicities of quark i and quark j are

antiparallel (parallel). Assuming that the eigenfunction of Eq. (5.17) takes on the form:
i

Q2 ··1,.
<v(¤=.Q) == <v„(¤=)¤ " = <v„(x) ln? ,

the §·dependent part can then be factored out, which leaves

x 7 )$ (x) = 6 j"d;,yV(x.v)$ (y)- (5-20)I 3 2 Bo n n 8 0 n

The eigenfunctions of Eq. (5.20) are referred to as Appel polynomials. Because of the fact that

V(x,y) is real and symmetric, V(x,y) = V(y,x), the eigenvalues 7,, are real and, therefore, it can be

easily shown that {$,,(x)} form a complete and orthogonal basis with weight w(x) = x,x,x,. Ex-

panding V in a polynomial basis {xrxg} by virtue of Eq. (5.18), one obtains:
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d;yV(x„y>y{"y$' _
Sha}? m+l 1 8},2; n+1

=;——(+2-3Zv+——(+2—3 L""'

° l•-•3

[lg! , m Vx; mw ($.21)

— Xxx x; 2 (-1)/"Z —+
I=l ,]*0 ° g — k=Z k mpg

where 8,,2,; = 1(0) for spin·%(%) baryons. Substituting Eq. (5.21) into Eq. (5.20) yields an

eigenvalue system:

C 2C(ggf- — vk)[x{"x§'] = —,;:l?5[x{x§]U„„„„· (5-22)

The anomalous dimension 7,, can be found readily

7,, =- (%C; - 2CB7L,,)/B0, (5.23)

where 1.,, are the eigenvalues of the matrix U determined by

ux = xx, x' = (1,x,,x,,x$, ...). (6.24)

For m + n S 3 and in the basis {m,n} E {xrxg} defined by

V
{0010 01201102 30 21 12 03} _

the matrix U for a spin·% baryon can bc calculated directly from Eq. (5.21): ·
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L L L L L L1 3 3 4 0 4 15 · 0 0 15
0 - .5. - L L L - L L 0 L - 2.

6 6 4 3 2 10 4 5
0 - L - L - L L L - L L 0 L

° ° 22 2 2 2 2 2
‘°

- L - .. L .. L - - L° ° ° 22 2 *2 2 2 2 2
° ° ° IV? ?‘? I ?‘?

(525)
0 0 0 L - L - Ä L - L L L ' °

12 3 12 2; g 3 I5
0 0 0 0 0 — —— — — — — —° 22 22 2 220 0 0 0 0 0 TS: — — g ä-
0 0 0 0 0 0 — — — — — — -—

20 3 12 10

The matrix can be decomposed into orthogonal subspaces characterized by degree M = m + rz and

of dimension M + l. For any given M = m + n the eigenvalue problem can be solved with only

the corresponding sub·matrix. Taking M = 1 as an example, the submatrix in question is

- L - L
6 6

- L - L
6 6

which has M + l = 2 eigenvalues. '

L Solving the eigenvalues for the M = 3 submatrix (4 >< 4) is quite straightforward, but to completely

determine the eigenvector involves the entire 10 >< 10 matrix. The results, i.e., the M = 3 Appel

polynomials, are listed in Table 6 on page 89 along with the M < 3 Appel polynomials.
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Table 6. Appel Polynomials of Degrees up to Three

"
"'Äm con ¢1u qu ¢m Cu Gu °3o 611 C12 Gu

0 - 1 1
2 ..1 3 1 1

2 1 2 -3 -3

3 2 -7 -7 6 4 6
7 - .. i i‘
2

‘ ‘
.2 .2

6 2.58 -0.119 0.715 0.715 -1.52 -1.89 -1.52 1 1.58 1.58 1

7 2.88 -0.447 2.68 2.68 - 3.48 - 13.7 - 3.48 1 11.4 11.4 1

8 3.70 0 0.394 -0.394 -1.18 0 1.18 1 - .0921 .0921 -1

9 2.58 0 0.497 -0.497 - 1.49 0 1.49 1 1.45 - 1.45 - 1
7

<v„ Ewa 2

l
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lf the p = 3 moments were known the nucleon wave function could be uniquely determined up to

cubic terms. 'One of the properties of Appel polynomials is-zero projection on lower moments.

For example, p S 2 moments of level-3 Appel polynomials (cubic) are all zero. Therefore, adding

high level polynomials to the model wave function will not affect its p S 2 moments. For the

analysis ofp = 3 moments the best model wave function to use is naturally

9
(5-26)

where q>N(x) is the quadratic (KS) wave function.

The quadratic wave function <p„(x) has finite p = 3 moments. If the coeilicients C, - C, are se-

lected such that p = 3 moments for <p,, vanish, it will result in a very huge correction to the wave

function and explode all predictions. A careful study of each independent p = 3 moment shows

that the perturbative QCD predictions cannot afford a 10% change in p = 3 moments. Table 7

on page 91 contains the results. lt is inevitably true that QCD predictions are very sensitive to

p = 3 moments. In contrast, they are quite insensitive to p S 2 moments as is shown in Section

5.2.

There is no forcible way to put any constraint on the p = 3 moments unless it comes from an es-

tablished theory or experiment. On general physical grounds, though, one expects that the true

wave ftmction should be smooth rather than burnpy. With this consideration, C, — C, can be

uniquely determined by maximizing the smoothness of tp,. Mathematically, it is equivalent to

minimizing the following expression:

!(C'6• G- Ga- C9) = j°;d;x|V<1>¤(x)|°· ($-27)

The following wave function
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Table 7. Sensitivity of Predictions to p • 3 Moments

M¤m¤¤¢ Mw -• pp) MGS.) MGZ.)

300 0.33 0.71 1.47
030 0.03 0.03 0.09
210 0.15 0.28 0.76
120 0.04 0.07 0.21

The percentage variation of perturbative QCD predictions due to 10% change ofp = 3 mo-
ments.

1
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= <p„y(x) {12.28 — 46.18xl - 44.8x3 + 65.52.xlx3 — l6.8x{x3(xl + x3)
l

+ 69.72x% — 19.6::; + 44.52::; — 2.sx§}
” (528)

is obtained when one minimizes Eq. (5.27).

Table 8 on page 93 presents the p = 3 moments for both q>N and (pm, and Table 9 on page 94

presents predictions of them. lt can be seen from Table 8 on page 93 that <p„ and <p„„ have nearly

the same p = 3 moments. Noting the sensitivity on p = 3 moments, the slight differences could

still be signiücant. Table 9 on page 94 shows that with rpm, and a, = 0.32 the predictions for

br(v -• pp')/br(w -• e*e') and
G:.

differ slightly from the predictions with <p„ and a, = 0.3. lt also

shows a 20% improvement in yy -• pi prediction.

The maximum-smoothness wave function rpm, could be an alternative to the quadratic wave func-

tion. It accounts for p = 3 moments in some way and contains all cubic terms. One must be

cautious, however, since it is only a fine version of the quadratic wave function because truncating

high order terms also implies smoothness. Furthermore, the maximum-smoothness is just a general

physical consideration. The smoothest wave function, though, is the asymptotic form x,x,x, in

which one only needs the first Appel polynomial P„(x) = I. The true wave function is obviously

not as smooth as q>„,. The p S 2 moments introduced asymmetry into the wave function. It is

intuitively helpful to determine at which level ofp the moments contribute most of the asymmetry

to the wave function. Supposing that only p S 1 moments are known, it is interesting to see what

p = 2 moments one can get from the same maximum·smoothness procedure. If the p = 2 mo-

ments obtained from the maximum-smoothness constraint agree well with that from sum-rule cal-
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Table 8. The p
·

3 moments of KS and lts Alternative Wave Functions

nlnknl ‘P1~1
‘Pm•

<Pm

300 2.33c — 1 2.32c· 1 2.33c — 1
030 5.73e- 2 5.77e- 2 6.8lc—2
003 8.13c—·2 8.l9c—2 8.S7c—2
210 5.93c- 2 5.99e — 2 6.09e · 2
201 5.73c··2 5.79::- 2 5.65c—2
120 3.00e — 2 2.96c — 2 2.36e — 2
102 3.20c·2 3.l5c—2 2.80e—2 ·
021 2.67c-3 2.79c-3 -1.71c - 3
012 6.67e — 3 6.63c-3 6.27c — 3
111 l.07c·2 1.06c··2 1.54c···2

l
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Table 9. Prediction: with KS and the Maximum-Smooth Wave Functions

wf¤\pr¤¤ ¤„ v —• pi G1. G2. vv -• pi
<p„ 0.30 0.94 1.07 0.88 0.545
¢p,„ 0.30 0.96 1.20 1.04 0.509 4
q>„„ 0.31 1.00 1.01 0.77 0.580

1
<p„„ 0.32 1.09 1.07 0.82 0.659

¥
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Table 10. The p =· 2 Moments of KS and Linear Wave Functions

ninzns ‘Pn <Pu„••« ‘Pmz

200 3.50e-1 3.05e-l 3.09e—·l
020 9.00e-2 5.04e — 2 5.18e- 2
002 1.20e- 1 7.29e- 2 7. l7e — 2
110 1.00e-l 1.19e-l 1.15e-l
101 1.00e-1 l.26e—1 1.25e-1
011 2.00e—2 4.l1e—2 4.29e-2

The linear wave function is obtained by truncating quadratic terms from <p„. om is determincd
by the maximum-smoothness procedure from the linear wave function.

Hadron Wavefunctions 95



culation, the p = 3 moments obtained this way may be more trustworthy. However, the

calculation does not show a good agreement, as presented in Table l0 on page 95.

QCD predictions with the quadratic wave function for xy -• pi and G1: agree well with experiment,

but not for 77
-• pp. ls it possible that the p = 3 moments are responsible for this? To explore

this possibility, the coefficients C, — C, for the level-3 Appel polynomials are parametrized to fit

xy -• pp, GZ', and 77
-•pi simultaneously. A 30% error has been attached to the amplitude not

to account the experimental error but for reflecting the uncertainties in the theoretical calculation.

For the cross sections of xy ·-> pi and TY
—• pp, this yields a 60% error. With the effective coupling

constants, 0.300, 0.306, 0.303 for xy —• pp, GZ', and 77
—• pi respectively, the best fit obtained

yields a xa of 4.9. The lit is presented in Table ll on page 97. The reason for using different

coupling constant a, will be discussed in the next chapter. The wave function giving the best fit is

rpm(x) = rp„y(x){ -1.70 - 76.65xl — 30.64::2 + 379.49x,x2

+ l48.81x? — 4.32,;; + 22.68::; — 810.47,;;,;, (5.29)
— 322.0lxlx§ -55.46::; + 69.87,;;}. _

The moments of rpm are given in Table 8 on page 93. Figure ll on page 98 shows the theoretical

predictions with the quadratic and the best·fit cubic wave functions for TY
-• pp. The data [30] is

virtually independent of the scattering angle. It is ~ 36 :*.: 12pb GeV‘° in the 2.0 < W„ < 2.4 GeV

range and is ~ 12 i 6pb Gev"' in the 2.4 < W„ < 2.8 GeV range. It should be noticed that al-

though the 7* value is reasonably good, 77
-• BE is the major contributor and its predicted value

is still below data.
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Table ll. Fitting Cubic Wave Function to Existing Data

Process 0., Experiment Theory

V
-• pp 0.300 0.00834 0.00630
GQ 0.306 - 0.585 - 0.457
6;, 0.306 1.17 1.52

yy -»pp 0.303 12 2 6 1.13

V
C, = 40.47 C, = -33.26 C, = -62.67 C, = 0

X2 = 4.9
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Figure ll. Predictions for Photon Annihiletion to Baryon Pairs: :6dc/dz in pb • GeVl0 for yy —• pf
using the quadratic (KS) wave funciiopjdashed line), using the best-Iitted cubic wave
fixnction (solid line), and for yy -• A A+ (dot-dashed) line.
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While the prediction for yy -• pi is below data, it is important and interesting to study the cross

sections for yy -• A+ "Ä-*4 and other hyperon pairs and the ratios of those cross sections to that

of the proton. When the prediction ofabsolute cross sections is not accurate enough to match data,

relative ratios of cross sections for a family of reactions can also provide important information of

the theory. Naively, the ratio of the cross sections of Yy —•
A**Ä** and yy —• pi is expected to

be —-—— 4
= 16. By using SU(6) symmetric wave functions the ratio is found tocharge of the proton

be as large as 50 [21]. With the sum-rule derived wave functions for the A’s [I 1]:

u u- >’ 4** 24 A + +
(5.30)2 M; > = ?%2?—1£*’*<:$§""(:=)¤¤+ ¤+¤+ >

where

;§*“> = (1.2 :1: 0.2) ¤ l0_4GeV2, ffm = 1.4 :< l0_2GeV2,
TA(x) = q:„„(::)[4.2(::§ + ::2) + 2.62::} — 6.72::,::2 + 0.4s::,(::, + ::2)] (5.31)

«»§*"<:¤> ~ ::..,0:) =· 120:,:2:,.

the ratio is found to be as small as 0.5 while experiment [31] gives an upper bound of 3. The result

is also shown in Figure ll on page 98. The dramatic difference between the SU(6) symmetric wave

. functions and the sum-rule derived wave functions for the ratio of o(y·y -» A**Ä**)/o(·yy -•pb

indicates some thing of interest but it is still necessary to have the rest of the yy —» BB reactions

be predicted with sum-rule wave functions before further conclusions can be drawn.

The analysis of the sensitivity of predictions to the nucleon wave function can be summarized as

follows: With the quadratic (CZ, KS) wave function and a reasonable choice of the coupling

constant, the predictions agree very well with the data on xy —·» pf and the nucleon form factors.

The same agreement can clearly still be achieved with a cubic wave function of the form of Eq.

(5.26) with four free parameters. The question is whether the agreement between the prediction
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and the data for 77
—• pi can be improved by using the cubic wave function, compared to the

quadratic wave function, while maintaining agreement withinerrors for xy —• pi and the form fac-

tors. The maximum prediction for 77
-•pi with a parametrized cubic wave function is found to

be about twice as large as the prediction with the quadratic wave function, but still below data.

Therefore:

•
The uncertainty in the perturbative QCD prediction for Y1 ··• pi, due to the uncertainty in the

nucleon wave function, is at the factor·of-two level. Determination of the next set ofmoments

would therefore be very useful. Since there is no known reason that TY -» pi is unusually

sensitive to the wave function, without better control of the wave functions, future perturbative

QCD predictions for the magnitudes of hadron scattering cross·sections can be trusted at no

better than the factor·of-four level, assuming that the contribution to the overall uncertainty

due to the wave function is comparable for each of the hadrons.

•
The uncertainty in the nucleon wave function is probably not enough to render the theoretical

predictions for 77
-•pi in agreement with the presently available data. However with the

best·fitted cubic wave function discussed above, the data are not so far from the prediction as

to warrant alarm, considering the proximity of the threshold. Improving the error bars on the'

differential cross section measurements, studying the energy dependence at fixed angle with

t ~ 2GeV‘, resolving the question of the possible importance of resonances, and making the

measurements available for all 77
-• BF reactions will be the crucial experimental contrib-

utions to the question of whether perturbative QCD predictions apply to TY
—• pi and, in

general, to TY
—• BE in these ranges of energy.
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Chapter VI

The Rrmning Coupling Constant

The of any interaction is described by a couplirxg constant. In QCD there am fermion-

gluon and g1uon·gluon interactions and an effective coupling constant § is associated with each

vertex for both of them. The QCD effective coupling constant has been discussed in the intro-

duction. Collectively the equations for LF are written again as followsz

= sß(§). gv = 0) = s. ¢ = 1¤(Q2/112).
a s

ß(g)=-gl-ßi.....-____ . (6.1)
° 161;* ‘(16«¤’)“ ‘

ß,,=-11-%-:% md 6, = 102-%:y

As depicted in Figure 12 on page 102 a fermion·gluon vertex as well as a gluon-gluon vertex can

have one or more loop corrections and they are associated with g, g°, and
g‘,

respectively. These
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Figure 12. Loop Corrections to Vertices
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corrections are described by the perturbation series of the function B of Eq. (6.1). To the first order

in g, B = 0, so that § = g and is Q*-independent. Working to the first and second loop corrections

and recalling the definition (1, = ?/47l, one obtains

a = and' ßo l¤(Q2/A2)
2 4u (6.2)

°·<Q l = **T#—*·#?·
ßo l¤(Q /^ ) + (ßo/ß1)l¤l¤(Q /^ ) .

respectively, and the scale parameter A is defined by

A' =
»“

¤¤pl — (l6¤2/ßos2)l· B 6 (6.3)

With the running coupling constant defined, one can work with perturbative QCD expansions to

all orders of it. It is instructive to distinguish the QCD prediction’s order of § and the order of

corrections contained in § itself. The coupling constant § is associated with a vertex; it can con-

strain one or more loop corrections of the vertex. The high order corrections for a QCD prediction
‘ are contributed by, e.g., the one loop correction to fermion or gluon propagator, or non·valence

"sea" quarks.

In perturbation theory an observable p can generally be written as

2 2 26 = 6‘„¤.(Q’)[¤ + (HQI)? + c,(Q’)% + (6.4)

The coeücients C,(Q') are dependent on the form of a, (renormalization scheme) and the scale of

Q. The calculation for an observable must be independent of the choices of the scheme and scale

if all perturbation orders are kept and this requirement uniquely defines the coefficients C]. For

finite·order analysis, on the other hand, the calculation is scheme- and sca1e·dependent. In fact,
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A one can set C,(Q‘) to any value simply by rescaling Q' or redeiining a, . Therefore, for a consistent

calculation both the scheme and the scale must be fixed. .

There are several schemes to choose from and the modified minimum subtraction [31]ß is chosen

in this study, which is characterized by

^Qc¤ = ^Ms·

As pointed out in the introduction the AOG, dependence ofthe predictions is unknown for exclusive

processes involving baryons. Because of the lack of loop calculations for these processes, it is not

yet possible to determine AOG,. On the other hand, there have been several calculations to deter-

mining AOG, from e*e' -• three-jets measurement [32]. It is interesting to see, in the absence of

a AOG-, directly detexmined from the baryon processes, what value ofAOG, gives the best predictions

to those well-studied reactions such as V
-• pf and the nucleon magnetic form factors, and if it

agrees with the determined from three·jets.

Before studying the AOG,-dependence the scale ambiguity must be solved. A procedure for fixing

the scale of Q has been suggested by Brodsky, Lepage, and Mackenzie [33]. The essence of the

procedure is to choose a scale Q' such that both Q' and CT are independent of the number of flavors

rt, . The perturbation expansion, Eq. (6.4), is then replaced by:

•2 2 ·2

II

Physically, it has an interpretation of absorbing quark vacuum polarization into Q". For exclusive
l

processes and the % scheme Brodsky et al found that Q' =
e"/‘Q

~ 0.43Q so that ·

¤.<Q’>
= ¤,«<=""Q“> ~ ¤.m¤-18Q’>. <6.6>
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where uam is the same one as given in Eq. (6.2). It should be warned that this method does not

apply to gluon-gluon vertices. -

Unlike QBD where the running coupling constant has an upper bound
1%

, the QCD running

coupling constant does not have an upper bound. Furthermore, the functional form ofthe running

coupling constant, Eq.(6.2), is only meaningful at large
Q‘.

When one integrates the scattering

amplitude over the quark momentum distribution amplitude, the momentum fraction of each

quark goes from 0 to [ and, thus, Q* for gluon propagators are not large at some points. Although

there are more elegant means to treat this problem and it is also a topic for future study, the sim-

plest way to treat this is to impose an eüective upper bound for the running coupling constant.

Therefore, where should the upper bound be is the question that must be answered before the

running coupling constant can be used for predictions.

In order to study these questions the running coupling constant is rewritten in a more suitable form:

¤„(Q“) =· #*1%--. (6-7¤)
Bo 1¤(Q /¤¤—¤)

or, including the next order eorrection to the vertex,

¤ (Q2) ·· (6-7b)S
Bo l¤(Q2/¢¤-¢) + (Bo/Br) 1¤ l¤(Q2/¢r~¢)

whena, S qora, = qotherwise. Here, c, = 1cA*/sandrcisthevalue thatiixesthe scalingam-

biguity and c, is the effective upper bound.
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Table 12. Predictions with different choices of the coupling eonstant

ci 61 iv —• pi Gx. ^(M¤V> kä/s

0.004 0.310 0.77 1.14 85 0.104
0.009 0.305 0.85 1.10 130 0.243
0.016 0.300 0.90 1.07 170 0.448
0.020 0.300 0.92 1.07 190 0.560
f.c.c. 0.300 0.94 1.07 — —

Four sets of {c,,q} are listed. The prediction with a fixed coupling constant (f‘.c.c.) is also listed
in the last line.
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QCD predictions for v
-• pi and GQ: are calculated with different set values of 6, and 6,. For

xy -• p_b',o., is fixed at 0.18 for gluons attached on the charm- quark [21]. Table 12 on page 106

presents several sets which give good agreement with data. Taking 1< ~ ~ 5.6 as advocated

in reference [33], c, = 0.02 corresponds to AS 190Mev at .r = l0Gev‘ , which agree very well with

A = 200Mev measured from three·jets experiment.

The running coupling constant is an approximation for loop corrections. lt has the advantage of

including some higher order effects in a very convenient way and provides a path for studying the

A-dependence of baryon processes. On the other hand, it creates integration problem so that an

artif'icial upper bond has to be imposed on it. Furthermore, it destroys the gauge invariance of the

amplitude because the amplitude is composed ofonly tree diagrams. The amplitude is indeed gauge

invariant with a fixed coupling constant. Attaching a running coupling constant is equivalent to

. partially including loop diagrams so that the amplitude can no longer be gauge invariant. Fortu-

nately, Table 12 on page 106 shows that fixing the coupling constant at its cut·off (upper bound)

yields equivalently good predictions. It indicates that the running coupling constant does not really

run at energies of s ~ 10GeV'. Therefore, the running coupling constant can be well replaced by

a fixed effective coupling constant.

Since the running coupling constant is a function of k' of the gluon propagator, the effective cou-

pling constant must be related to the average ofk* for a given process. The simplest way to estimate

the averaged k' is to set all momentum fractions of external quarks to é- or -ä if the quark is a

constituent of a meson or a baryon, respectively. The averaged ki can then be obtained since it is

always an expression in terms of the momentum üactions ofexternal quarks. With all the diagrams

evaluated for a given process, however, the averaged k* can be determined in a much more precise

fashion.
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The first method gives a simple averaged absolute value of k' for all gluon propagators of all dia-

grams. It first adds up lk'} for all gluons of each diagram, sums them over all diagrams, finds the

average by dividing by the total number of gluon propagators, and then integrates the average over

momentum fractions of extemal quarks. The average obtained this way is noted as . The

second method gives a weighted average of lk'} for all gluons. Suppose that an amplitude is given

bv

l'd;xd3y[<vo(x)<vo(y)Ao(x„y) + <m(x)<m(v)Ar(x„1¤) + ---]

and the weighted average is defined as

< lk2l> "' j-d3xd3y[‘p0(x)(p0(.V)k,30(xsy) + ‘Px(x)<P1(Y)kj1(x»}’) + (6-7)

where k}, is the averaged lk'} for all gluon propagators of the quark amplitude A,.

Table 13 on page 109 contains both weighted and unweighted lk'} and also the averages of both

k,„,„ and k„,„ of each diagram. Comparing the averaged lk'} with the onset of 0., listed in the last

column, kf/s, of Table 12 on page 106, it can be seen again that the averaged lk'} are well below

the onset of a, and it is confirmed that the running coupling constant does not run.

The fixed effective coupling constant for different processes and with different k' averaging regimes

are presented in Table 14 on page 110. It is set to 0.3 for xy —• pi to serve as a reference point since

the value of AQCD is assumed unknown. The coupling constants obtained from the unweighted

average, la, are used in the fit discussed in the last chapter. °
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Table 13. Averaged k' of Gluon Propagators

Proms s/G<=V' W/s < lk'! > ls lk„%.„.l/s < lkä„.„! > /s lkä.„.|/s < lkä..„| > /s

xy -• pp' 9.6 0.11 0.12 0.02 0.011 0.24 0.31
l

G: 10 0.095 0.064 0.041 0.018 0.15 0.11

77
-•pi 5.76 0.18 0.16 0.094 0.068 0.28 0.25

yy -» pi 4 0.18 0.16 0.094 0.068 0.28 0.25

and k§,„ for TY
-•pi are avcraged at cos = 0.4.
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Table 14. Fixed Effective Coupling Constant

¤.()

lk'! > I/<ä..„I < I/<ä.«„| > I/<§.„| < |k§.„.| > _

V
-• pf 9.6 0.300 0.300 0.300 0.300 0.300 0.300
GZ.

10 0.306 0.363 0.248 0.261 0.344 0.429
yy -• pp 5.76 0.303 0.322 0.233 0.220 0.336 0.383
yy -•pi 4 0.339 0.363 0.253 . 0.237 0.383 0.448
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To conclude this chapter, the running coupling constant is effectively fixed at s ~ 10GeV' for the

best choice of parameters c, = 0.02 and 6, = 0.3; the value of c, indicates AQCD = l90MeV. The

fixed effective coupling constants determined by the averaged |k*| gives a more tailored treatment

for the coupling strength process by process and also yields good agreement of the predictions with

the data on V —» pp' and the nucleon form factors. There remain some questions that must be

studied further, though. Table 14 on page 110 clearly shows that different averaging regime for

|k*| yields diüerent values of the effective a,. It is important to understand and determine which

one can best represent the actual physical situation. On the running coupling constant side, more

understanding must be acquired on the origin of the cut·ofl“ q and its dependence on s and Q'.

- When the running ooupling constant is attached to diagrams the meaningfulness of the functional
i

form of it, Eq. (6.2), and the treatment of it must be studied at low |k*| values. Only with the

understanding of all these questions can the running coupling constant really run and provide a

more reliable method for studying the Aoco-dependence of baryon processes.
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A Chapter VII

Meson-Baryon Wide-Angle Scattering

The development of the computer program DIAG has permitted perturbative QCD calculations

for quark scattering amplitudes for a wide range of exclusive reactions. To obtain cross sections for

any of these reactions, however, requires integration of the quark amplitudes over the wave func-

tions of the hadrons involved in the scattering. For any scattering process that involves four or

more quark lines the quark scattering amplitudes contain singularities. As depicted in Figure 13

on page 113, when the external momenta of both mesons are symmctrically configured, the mo-

mentum of the marked gluon vanishes and, therefore, causes the amplitude to be inlinit. For ex-

ample, the diagrarn is singular if all the external momenta have a fraction of This type of

singularities are identified as Lanshoff singularities.

Solving the integration problem by itself is theoretically interesting because the zero·momentum

propagator is a result of free quarks. lt, in turn, is a result of the fact that perturbative QCD does
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Figure 13. Lanshoif Singularity
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not enforce confinement [34]. To understand the theory underlying the treatment lof the

singularities requires much more theoretical e5ort and progress. Nevertheless, the integration can

be carried out by simply cutting 05 the propagator momenta and many important questions can

be studied even without such theoretical progress.

The least complicated scattering reaction that has not been previously calculated and involves

_ Lanshoff singularities is meson·meson scattering. Although it is very simple and convenient to

work with, the information that can be obtained from studying it is far from adequate. For spin-0

mesons there are only two independent quark scattering amplitudes as depicted in Figure 6 on page

36 in Chapter 3. Before the singularities can be well treated, predictions for absolute cross sections

are not possible and only ratios can be calculated. For a set of two quark amplitudes only one ratio

exists. Experimentally, it is also difficult to reach very high energies for meson·meson scattering

and to extract ratios of the quark amplitudes. Meson-baryon scattering, on the other hand, has a

much richer set ofreactions and quark amplitudes. For example, there are sixty-six reactions of the

type {1:*, K*·°} + p —• {1:, K, 1},1]',<p} + {B,,B„,} [35]. Figure 7 on page 38 in Chapter 3 con-

tains these quark amplitudes. The cross sections of eleven reactions out of the sixty-six have been

measured at s = 20GeV’ and —t = 9GeV* and ratios of quark arnplitudes have been extracted [36]. ·

With this rich set ofquark amplitudes and measurements many interesting questions can be studied

concerning testing perturbative QCD.

Solving the integration problem is also practically difficult. For the meson-baryon scattering case

the integration is six dimensional with a huge integrand function for the amplitude formula. For

the presently accessible computing power it is practically impossible to reach high numerical pre-

cisions such as 10%. For instance, an integration with the four-point Gauss formula for each di-

mension takes twenty-five cpu minutes to complete on a VAX-1 1/780. Therefore, the first

important question is if the integrations are numerically reliable. It is conceivable that the ampli-
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q tudes are not smooth functions because they are singular although regulated. No physics can be

extracted from a such calculation unless the reliability is established.

The next important question to study is the sensitivity of the calculation to the cut-oH' values.

Without further and deeper theoretical understanding the physical cut~off cannot be obtained from

theory. However, it can be argued that the propagator cut·off should be related to the quark mass

or Supposing that AQCD is between 0.1 GeV ~ 0.3 GeV and the cut·off k; ~ AQCD, the

dimensionless cut·off, kj/s, should be in the range of 5 >< 10**
~ 5 >< 10*° for s = 20GeV*. By

using the scale-fixing argument advocated in reference [33] and discussed in Chapter 6,

k" ~ 0.18k*, so that kf/s is of 3 >< 10**
~ 3 >< 10**. This argument is, of course, far from ade-

quate to reveal the underlying physics, but it sets a cut·off reference for numerical integrations

which, in turn, if reliable, can yield important information on questions such as at which cut—otf

values the singular part of the amplitude dominates, at what cut·off values the singular and non-

singular parts are comparable, and when the ratios of amplitudes are relatively insensitive to the

cut-off values.

The sensitivity of physical predictions to the choices of hadronic wave functions has long been in-

teresting in perturbative QCD. As discussed in chapter 5 the theoretical predictions for the nucleon

form factor and photon annihilation to baryon-antibaryon pairs are very much dependent on the

choices of the wave functions. lt is certainly very interesting to see if the predictions for meson-

baryon scattering are wave function sensitive. Since different wave functions differ significantly

from each other, it is also interesting to see how the cut-off dependence of the predictions is altered

by using diüerent wave functions.

The flavor-spin state for an SU(6) symmetric wave function for the proton can be written as
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lp,. > = -47%-[Zlu,. u,.d.. > — lu,. d,. u- > - ld, u,. u.. > (7.1)

Projecting relevent quark amplitudes for a given process onto the SU(6) flavor-spin state Equation

(7.1), the scattering amplitudes can be obtained. For 1t+p —• 11:,p and 1:'p —• 1:'p the scattering

amplitudes are, respectivelyz

A„+P = %[6A0 + 60 + IA2 + 4A3 + 5AA + ZA, + IA, + ZA-, + ZA,] and
(7.2)

A4-P = T%*[6Ao + 60 + 5A2 + ZA, + IAA + 4.45 + IA, + 2A-, + ZA,].

A complete scattering amplitudes for all the sixty·six reactions can be found in reference [35]. The

sum·ru1e derived wave function for the proton is not SU(6) symmetric [10]; it can be written in the

form

lp,. > ~ T(x)|u,, u,. d,. > + B(x)lu,.d,u- > + C(x)ld, u,u- >. (7.3)

For the pions the surn·ru1e wave functions are _

I#=+ > ~ ¢„[Iv„l+ > + lvl- >] md
(7 4)

In-Projections of the quark scattering amplitudes A, — A, onto the wave function Equations (7.3,4)

for elastic 1:*p and 1:“p scatterings are presented in Table 15 on page 117. The scattering amplitude

is obtained by summing up the amplitudes of the corresponding column. The difference between

the su.m·ru1e scattering amplitudes and the SU(6) symmetric scattering amplitudes can be imme-

diately recognized.

Finally and most interesting is the question ofwhich topologies of the quark amplitudes contribute

dominantly and how the ratios of the quark amplitudes compare with experiment. As mentioned
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Table I5. Projection of Quark Amplitudes onto Sum·Rule Wave Functions

1r*p—» 1:*p 1r‘p—» 1:‘p

<.¤„¤*IA•|p•¤* > = ](T7' + BB + CC)¢„<v„A¤ldxl = <p„==‘|A¤Ip„ ¤‘ > ·

<p„ ¤*IA„Ip„¤* > = _l(77” + BB + CC'><v„<p„A„ldxl = <p„ ¤‘IA„Ip„
¤‘ >

<p„ ¤*IA„Ip„ v=* > = jBB<v.<v„A„ld>¤l <1>„ ¤‘IA„Ip„ ¤‘ > = j(TT + CC><p.<v.A„ld-rl
__ <p„==*IA;Ip•v¤* > = ITT¢„<v„A¤ld¤=l _ <p»¤*IA»Ip„¤' > = llßß + CC><v„<v„A;Idxl

<p„ ¤*|A•Ip„ ¤* > = _l(7'F + CC><v„<v.A•ld=¤l <p„ ¤‘IA•Ip„
¤‘ > = j°BB<u>„<p„A•Id¤¤l

<p„¤*IA„Ip„¤* > = j°(ßB + CC><¤.¢„A,ldxl <p„¤‘IA,Ip„v¤‘ > = _lTT<v„<v„A,ldxl
<p„ ¤*|A«Ip„ ¤* ¤‘ > = IGT + BB)<p„<v„A«ldxl
<p„==*IA«Ip„ ¤* > = IBT<p„<v.A1ldxl <p„ ¤‘IA1Ip„¤‘ > = j'TB<v„<p.A1ldrl
<p„¤*IA•Ip„ ¤* > = _lTB<v„q>.A•ld¤¤l <p• ¤‘IA•Ip„ ¤‘ > = IßT<v„¢„A„ldxl

Amp = }}<p„ ¤IA„Ip„ r¤>
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earlier, the cross sections of eleven meson-baryon scattering reactions have been measured at

.r = 20GeV*. As pointed out in reference [36], the cross section of 1:*p —> 1t*p is two and halftimes

as large as the cross section for r:'p -• r:‘p, and the cross section for 1t*p —• 1:*A* is large. Both

of the data disagree with the predictions based on the Massive Quark Model formulation [37]. It

is very interesting to see if perturbative QCD calculations can produce these observations. The

authors of reference [36] grouped the thirteen quark amplitudes into four groups: gluon exchange (

A, and A,), quark interchange (A, and A,), annihilation (A, and A,) and combinations of annihi-

lation and quark interchange (A,-,,). By using the symmetric SU(6) flavor·spin state for the baryon

and assuming A, ~ A, , A, ~ A,, A, ~ A,, and A, ~ A, ~ ~ A,,, it is concluded that only the

quark interchange and gluon exchange quark topologies are signilicant and the quark interchange

is three times as large as the gluon exchange.

The quark amplitude A, is integrated with a wide range of cut·oll' values. As shown in Table 16

on page 120 the integrated amplitude is inversely proportional to the cubic of the cut·off at small

cut-offs. Since most of the diagrams have three factors in the denominator, it is clear that the

singular dlagrams dominate the small cut·oll' region. While the cut·oü' increases the singular part

becomes comparable with the nonsingular part and the amplitude reverses sign. Since a the

dimensionless cut-olf should be 0.003 ~ 0.03 and a reasonable cut·olf will not let the singular part

. dominate and let the ratlos ofamplitudes be very sensitive to it, a range from 0.005 to 0.06 is chosen

for the dimensionless cut-off for integrating the quark amplitudes. Table 17 on page 121 presents

the numerical integrations of A, — A, with sum-rule wave functions for ßtp -• 1t*p at 90 degree in

the c.m. frame. Table 18 on page 122 contains the same integration with asymptotic wave func-

tions, and Table 19 on page 123 lists the integrations with equlpartition wave functions. A11 inte-

grations are evaluated by the Gauss formula with four points for each dimension. The numerical

reliability is checked by using the eight points per dimension Gauss formula for the same inte-

gratlons. Since an eight points per dimension integration takes eight and one~ha1f cpu hours on a

VAX 8600, only A, is integrated with sum-rule wave functions for cut-off 0.01, 0.03 and 0.05. The
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results are — 5.35 >< 103, 4.89 ><
10‘

, and 2.29 >< 103 respectively. Comparing them with their

counterparts in Table 17 on page 121, the discrepancy at cut·off equals 0.01 is huge and is 92%

and 40% for cut-off equals 0.03 and 0.05 respectively.

For the lower cut-off's the calculation can not be trusted. For the upper ones the numerical pre-

cision of 40% is not good enough for a more precise and detailed study but is still acceptable for

the preliminary analysis given here. The integration results clearly show that amplitude ratios are

less sensitive at large cut-off values. Although the underlying theory goveming the cut·off is not

clear, the calculations give a lower bound of ~ 0.02 for the dimensionless cut-off at s = 20GeV*.

The integrated amplitudes are also dependent on the choices of wave functions significantly. Both

sum·ru.le and asymptotic wave functions predict an unexpected considerable difference between A,

and A,. Unfortunately this inequality can not be resolved by experiment since for any meson-

baryonreactions they either both contribute or both do not. The equipartition wave function

predicts A, and A, dominanee and the asymptotic wave function predicts A, dominance. Although

the predictions with the asymptotic wave function accounts for the inequality of the 1:*p and 1¤'p .

cross section, it can not explain the the large cross section of 1r*p -• p*p and 1:*;: —• 1:*A* , which

do not eontain contributions from A, and A,. The predictions with sum-rule wave functions are

most rich in structure. The integration shows dominance of A, and A, for 1:*p and A, and A, for

1:'p. It also agrees with the measured 1:+p and 1:‘p inequality.

U
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Table 16. The Cut-off Spectrum of Al

cut-off < 1:p|A,|r:, p>

1.0e - 6 -1.38e + 18
1.0e — 5 -1.39e + 15
1.0c - 4 -1.45c + 12
1.0e — 3 -1.63e + 09
5.0e — 3 -1.18c + 07
7.0c - 3 -3.l0c + 06
9.0e — 3 -4.78e + 05
9.5e - 3 -1.46e + 05
9.8e ·- 3 1.07e + 04
l.0e — 2 1.05e + 05
5.0e - 2 V 3.55e + 04
7.5e — 2 2.00e + 04
1.0e — 1 9.62e + 03
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Table 17. Integrated Amplitude: with Sum-Rule Wave Functions

wboff <„i|A°|¤t > <r:*|A,|1:* > <1:+|A,|1:+ > <1:·|A0|1:· >
< A0 > < A0 > < A0 >

5e — 3 - 3.52e + 6 3.35 0.22 1.08
le - 2 5.84e+ 5 0.18 - 0.36 - 2.67
2e — 2 1.02e+ 6 0.86 -0.09 -0.86
3e - 2 5.84e+5 0.76 -0.12 -1.10
4e - 2 2.46e+5 0.51 -0.15 -1.30
5e - 2 1.37e+5 0.26 -0.18 -1.40
6e - 2 1.05e+5 0.23 -0.16 -1.20

<¤*|A¤|¤" > <¤°|A;|¤° > <¤*IA•|¤* > <¤‘IA.|¤“ > <¤*IA.|¤* >
<A0> <A0> ‘<A0> <A0> <A0>

0.23 0.11 7.73 0.57 — 0.38
-0.32 - 0.15 - 6.59 - 0.27
-0.10 — 0.05 0.19 0.07 0.20
-0.13 - 0.07 1.25 0.16 0.28
- 0.16 - 0.08 1.50 0.20 0.28
-0.18 - 0.08 1.61 0.21 0.26
-0.14 -0.06 1.25 0.17 0.22

<¤‘ IA.I¤‘ > < ¤* IA.I¤* > < ¤‘ IA.I¤‘ > < ¤*IA1I¤* > < ¤*IA.I¤* >
<A0> <A0> <A0> <A0> <A0>

-0.42 - 0.07 - 0.09 0.26 0.25
1.30 0.07 0.09 - 0.25 - 0.24
0.32 0.02 0.02 0.03 0.03
0.52 0.03 0.02 0.06 0.06 .
0.55 0.04 0.02 0.10 0.10
0.58 0.05 0.02 0.13 0.14
0.57 0.03 .004 0.13 0.14

'The tlavor·spin state |1r* > is actually |1c*p>; the notation p has been dropped for simplicity.
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Table 18. Integrated Amplitudes with Asymptotic Wave Functions

cut-off A„ A,/A0 A,/A, A,/A„

5e - 3 5.76e+ 5 - 2.07 - 0.21 -0.10
1e- 2 3.14e+5 0.03 -0.12 -0.11
2e - 2 . 1.00e+5 0.35 -0.16 -0.19
3c - 2 3.82e + 4 0.16 — 0.28 - 0.30
4e - 2 2.36c+ 4 0.14 - 0.29 - 0.30

‘ _ 5e - 2 1.75e+4 0.14 -0.31 -0.27
6c - 2 1.48e + 4 0.22 - 0.29 - 0.24

A./A1 A./A. A./Au A1/A. A./An

-0.65 — 1.30 - 0.06 -0.06 — 0.06
0.05 — 0.10 - 0.08 - 0.00‘ 0.00

- 0.23 0.16 -0.08 0.02 0.03
0.42 0.31 ' — 0.09 0.05 0.05
0.37 0.21 -0.12 0.05 0.05
0.27 0.13 - 0.14 0.05 0.05
0.19 0.07 — 0.15 0.05 0.06
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Table I9. Integrated Amplitudes with Equipartition Wave Functions

cut•oH° Al, A,/A0 A,/A„ A,/Au

5e - 3 -2.98E + 09 0.89 5e - 4 -0.03
· le - 2 -2.98E + 09 0.89 - le - 3 -0.03

2e - 2 -1.12E + 09 0.88 -0.09 -0.10
3e - 2 -3.59E + 08 0.87 -0.18 -0.17
4e - 2 -1.14E + 08 0.83 -0.16 -0.15
Se - 2 -4.38E -1- 07 0.80 -0.10 -0.10 -
6e - 2 -1.90E + 07 0.77 -0.03 -0.04

A4/Ao As/Ao A6/Au A1/A¤ A1/A0

-0.36 - 0.57 0.17 0.04 0.04

-0.36 -0.57 0.17 0.04 0.04

- 0.26 - 0.44 0.13 0.03 0.03

-0.13 - 0.29 0.08 0.02 0.02

-0.01 - 0.21 0.08 0.02 0.02
0.02 — 0.22 _ 0.12 0.04 0.04
0.04 -0.26 0.15 0.06 0.06
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Table 20. Ratio of Pion-Proton Scattering Amplitudes

cut-off Sum·ru1e Asymptotic Equipartition

Se ·· 3 0.50 1.05 1.04
le · 2 0.18 0.88 1.04
2e — 2 0.64 0.90 1.00
3e ·· 2 0.44 0.81 0.95
4e ·· 2 0.34 0.79 0.93

. 5e ·· 2 0.26 0.79 0.93
6e · 2 0.44 0.83 0.93

Ratios of Amp(1:*p -• n*p)/Amp(n'p —• 1:'p) evaluated with sum·rule, asymptotic and
equipartition wave functions.
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Since the ratios of the quark amplitudes extracted from the data in Reference [36] are based on the

SU(6) symmetric wave function and the assumption that A, ~ Al, A, ~ A,, A, ~ A,, and

A, ~ A-, ~ A,, it is not meaningful to compare them with the calculations now. It is very inter-

esting to see if sum·rule wave functions can predict the large cross section of1:*p -• 1:*A*. Besides,

the numerical precision of 40% can barely resolve the difference between the 1:*p and rp cross

sections. The calculations need to be improved in precision which can only be achieved with

supercomputing power. A final conclusion can be drawn after the meson-baryon scattering spec-

trum is fully and the numerical accuracy is improved.

Meson-Baryou Wide-Angle Scattering IIS



Chapter VIII

Conclusion

This dissertation involved the following: _

•
The computer program DIAG was extensively debugged and tested. Perturbative QCD cal-

culations for quark scattering amplitudes for a wide range of exclusive reactions can now be

done with the program. The meson·baryon scattering system is one of the most interesting

reactions. To make the amplitude file useful, i.e., compilable, integrable and manageable was

made possible with the assistance of the symbolic simplifier which was developed specifically

for DIAG. DIAG was also modified and extended to include virtual photons and to test for

gauge invariance within arbitrary covariant gauges. The correctness of the computer-generated

amplitudes was ensured by extensive hand checking, gauge invariance testing and various

symmetry testing.
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•
The sensitivity ofphysical predictions to the nucleon wave function was systematically studied.

The SU(6) symmetric wave functions were found to be generally not acceptable. The sum-rule

derived wave functions yielded good agreement with experiments on the nucleon form factors

and the branching ratio of
‘I'

decay. The uncertainties of the p S 2 moments were found to

be not significant but the undetermined p 2 3 moments yield a factor·of-two difference for the

cross section of yy -• BE. The cross section for yy -» A**Ä** was calculated with sum-rule

wave functions for A**. Calculating the full set of yy -• BE and making corresponding

measurements available will be an important test for perturbative QCD.

•
The running coupling constant was found to be effectively constant at the current accessible

energies and momentum transfer (z = l0GeV* ~ 20GeV*). The value for AQCD found from

this study is ~ 200 MeV. »

•
Quark scattering amplitudes for meson·meson scattering and meson-baryon scattering were

evaluated. Integrations of the meson-baryon amplitudes were carried out with a series of cut-

oß values. Three wave functions, sum·rule, asymptotic, and equipartition, were used for the

integrations. The numerical precision for four-point Gauss integration is marginal for large

cut-off’s but is unacoeptable for small cut•off's. The dimensionless cut·off, kf/s, was deter-

mined to be not smaller then 0.02. Both asymptotic and sum-rule wave functions yield

agreement with experiment on the inequality of the 1r*p and 1r‘p cross sections but the com-

putational error is large. While the SU(6) symmetric wave functions can not explain the ob-

served large A+ production, it will be interesting to see if it can be explained by sum-rule wave

functions in the future.

In order to be able to predict the absolute cross sections for meson-baryon scattering, the inte-

gration problem must be solved. Much theoretical eübrt is required before the treatment of the
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_ singularity can be understood. Meanwhile, the numerical precision for the integration must also

be improved and the full set of all meson-baryon scattering system should be analyzed. With the

numerous reactions in the set, many testings can be done for perturbative QCD and much impor-

tant information and understanding can be obtained from the study.
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