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A Machine Learning Approach to Predict Gene Regulatory Networks in

Seed Development in Arabidopsis Using Time Series Gene Expression Data

Ying Ni

(ABSTRACT)

Gene regulatory networks (GRNs) provide a natural representation of relationships between

regulators and target genes. Though inferring GRN is a challenging task, many methods,

including unsupervised and supervised approaches, have been developed in the literature.

However, most of these methods target non-context-specific GRNs. Because the regula-

tory relationships consistently reprogram under different tissues or biological processes, non-

context-specific GRNs may not fit some specific conditions. In addition, a detailed investiga-

tion of the prediction results has remained elusive. In this study, I propose to use a machine

learning approach to predict GRNs that occur in developmental stage-specific networks and

to show how it improves our understanding of the GRN in seed development.

I developed a Beacon GRN inference tool to predict a GRN in seed development in Ara-

bidopsis based on a support vector machine (SVM) local model. Using the time series gene

expression levels in seed development and prior known regulatory relationships, I evaluated

and predicted the GRN at this specific biological process. The prediction results show that

one gene may be controlled by multiple regulators. The targets that are strongly positively

correlated with their regulators are mostly expressed at the beginning of seed development.

The direct targets were detected when I found a match between the promoter regions of

the targets and the regulator’s binding sequence. Our prediction provides a novel testable

hypotheses of a GRN in seed development in Arabidopsis, and the Beacon GRN inference

tool provides a valuable model system for context-specific GRN inference.



A Machine Learning Approach to Predict Gene Regulatory Networks in

Seed Development in Arabidopsis Using Time Series Gene Expression Data

Ying Ni

(GENERAL AUDIENCE ABSTRACT)

Deoxyribonucleic acid, DNA, is well known genetic material that stores the information

necessary for most living organisms. A segment of DNA encodes a gene. Generally, gene

expression process is composed by DNA transcription and translation and this process is well

regulated by the organisms. In this thesis, I particularly focus on the regulatory relationships

in transcription step. The gene expression in different plants and different biological process

is controlled by different regulatory mechanisms. To make the study specific, I present my

work based on Arabidopsis in seed development. In a regulatory relationship, the gene that

regulates another gene is known as regulator, and the other gene is called target gene. The

target gene, in turn, can regulate many other genes. As a result, the regulators and their

targets form a complex network. Reveal the structure of the regulatory network will help

the researchers get better understanding of how the regulators work as a network and the

complexity of the interdependencies among genes, and in this thesis, I use computational

approaches to elucidate the topology.

There are four key regulators involved in Arabidopsis seed development, they are ABI3,

FUS3, LEC1 and LEC2. The computational tool I developed, called Beacon inference tool,

is a machine learning approach makes use of support vector machines (SVMs) that can infer

the potential targets of the four regulators. This method predicted 1064, 2569 and 3836

targets for ABI3, FUS3 and LEC1, respectively. Among these targets, I searched for the

ones that have their expression levels strongly positively correlated with their regulators.

Because we assume that the expression of regulator influences the expression of targets, so I

have more confidence of these positive correlations. Further, as it is known that the regulator



binds to the upstream sequence of the gene to regulate the expression level, therefore, if the

upstream sequence of the target gene matches the binding site of the regulator, this target

is classified as direct target. As a result, 24 out of 65 and 173 out of 1759 are direct targets

among the positive correlations for ABI3 and FUS3, respectively.
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CIS-BP Catalog of inferred sequence binding preferences.

CLR Context likelihood of relatedness algorithm.

DAP Days after pollination.

DNA Deoxyribonucleic acid.

FIMO Find individual motif occurrences.

FPKM Fragments per kilobase of transcript per million mapped reads.

FUS3 FUSCA3.

GENIE Gene network inference with ensemble of trees.

GRN Gene regulatory network.
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LARS Least angle regression.

LEC1 LEAFY COTYLEDON1.

LEC2 LEAFY COTYLEDON2.

MI Mutual information.

MRMR Minimum redundancy maximum relevance.
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MRNET Maximum relevance minimum redundancy.

RN Relevance network.

RNA Ribonucleic acid.

RNA-seq RNA sequencing.

SBGN Systems Biology Graphical Notation.

SIRENE Supervised inference of regulatory networks.

SVM Support vector machine.

TF Transcription factor.

TIGRESS Trustful inference of gene regulation using stability selection.

WGCNA Weighted correlation network analysis.
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Chapter 1

INTRODUCTION

Elucidating and understanding the topology of gene regulatory networks (GRNs) is fun-

damental to understand how transcription factors (TFs) regulate gene expression and the

complexity of interdependencies among genes. The structure of a network can, in theory,

be investigated through experiments by using chromatin immunoprecipitation with DNA

microarray (ChIP-chip), ChIP-sequencing [57] or protein-binding microarrays [8]. However,

wet-lab experiments are technically challenging, financially demanding, and time consum-

ing [60]. Because genes are expressed at certain levels and under certain conditions, the

expression profiles are the outcome of the regulation from the GRN. Therefore, many com-

putational methods have been proposed to infer GRNs using gene expression levels. With

the advent of high-throughput transcriptome analysis, such as microarray and RNA sequenc-

ing (RNA-seq), the computational inference of a regulatory network on a genome scale has

been made feasible. Moreover, inference through computational methods is convenient, the

results can be easily reproduced, and there are various ways to validate [68, 58]. From a

computational view, such biological networks can be depicted as directed graphs, where TFs

and genes are nodes and interactions or regulations are edges.
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Several approaches have been proposed to discover gene interactions. Most earlier works fo-

cused on unsupervised approaches, such as weighted correlation network analysis (WGCNA)

[37], the context likelihood of relatedness algorithm (CLR) [18], and trustful inference of

gene regulation using stability selection (TIGRESS) [26]. Because these methods predict

a network exclusively from expression data, they have an advantage when gene regulation

information is limited. However, with the identification of large numbers of TF-target inter-

actions, their failure to utilize these prior known interactions limits the prediction accuracy.

The most recent and largest comparison made by [44] compared 17 unsupervised methods

with the supervised method support vector machine (SVM) in three different experimental

conditions using both simulated and experimental data sets and found that the supervised

method performed best except in knockout experiments. Similar results have been published

by [53]. They compared supervised inference of regulatory networks (SIRENE) with CLR,

the algorithm for the reconstruction of accurate cellular networks (SIRENE), relevance net-

works (RN), and a Bayesian network on an Escherichia coli benchmark data set by [18] and

concluded that the supervised method significantly outperformed unsupervised methods. A

more recent publication [23] compared the performance of four kernel functions based on

SVM with CLR on simulated E. coli microarray data sets, and they concluded that not

only experimental conditions, but also network size, played an important role in inference

accuracy. SVM with Gaussian kernel inferred small networks (<200 nodes) with the highest

prediction accuracy, but, with a larger number of nodes (∼500), CLR outperformed all other

methods.

The methods cited above are “non-targeted” [1] or condition-independent approaches, be-

cause they provide an overall network structure across many conditions. The drawback of

these methods, as reviewed by [70], is that the interactions that occur under specific condi-

tions or biological processes are easily missed. One way to solve this problem is to use the

data from experiments that are relevant to the biological question [70]. Here, I focus on the

GRNs in the model plant Arabidopsis thaliana that occur during specific stages of in seed

development.

2
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Seed development is an important process in the life cycle of flowering plants and can be

divided into three major stages [4, 47]. First is embryogenesis, where the basic body plan of

a plant is established. Second is maturation, where storage compounds are synthesized and

accumulated. Third is the acquisition of desiccation tolerance and dormancy. Seed devel-

opment is a tightly controlled complex process regulated by a variety of endogenous factors

including plant growth regulators and ambient conditions such as light, temperature, and

water availability. In Arabidopsis, genetic studies have identified some key regulators that

globally regulate distinct aspects of seed development [32]. The LEC1/AFL (LAFL) TF net-

work is composed of TFs including B3 domain TFs ABSCISIC ACID (ABA)-INSENSITIVE3

(ABI3), FUSCA3 (FUS3), and LEAFY COTYLEDON2 (LEC2, AFL), and two LEC1-type

HAP3 family CCAAT-binding factors, LEC1 and LEC1-LIKE [31]. The TFs in the LAFL

network, together with many overlapping and unique downstream targets, constitute a com-

plex transcriptional regulatory network that regulates seed development [49]. Previous efforts

to infer the GRN in Arabidopsis seeds, such as the seed specific network associated with dor-

mancy or germination established by [3] used the WGCNA algorithm and 138 samples from

mature imbibed Arabidopsis seeds, already made progress on understanding the gene inter-

actions in seeds. However, in seed development, the downstream targets of the well-known

core TFs of the LAFL TF network and the TFs regulate them are still poorly understood.

Here, I propose to use the condition-specific concept to investigate the transcriptional regu-

lation that occurs during seed development using the expression data of the genes expressed

at this particular stage, aiming to reveal the regulations during this biological process.

For the inference algorithm, I developed a Beacon GRN inference tool that uses the super-

vised method SVM as good results have been produced by SVM in both previous studies and

our experiments. In the context of supervised methods, global or pairwise approaches and

local approaches are two main categories that have been used in the literature to transform

the network inference problem to a classification problem [80]. Global or pairwise approaches

consider each pair of genes as a single object, and the classification is performed on these

objects [5, 44]. Therefore, the feature vector has to be constructed to define the gene pairs.

3
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Instead of focusing on gene pairs, local approaches divide the inference problem into sev-

eral smaller classification problems. Each sub-classification problem corresponds to a TF of

interest, aiming to infer all the target genes that are connected to this TF [23, 53]. The

combination of small networks forms the complete network. I used these two concepts to

estimate a global model for all gene pairs and local models for each TF and its target genes

in the seed development data set. I evaluate the prediction accuracy of the SVM using two

widely used kernel functions in comparison to an unsupervised method, trying to find out a

suitable method for inferring the regulatory network with respect to seed development. As a

supervised method, SVM requires a list of known regulation relationships between TFs and

targets as a training set, which is then used to predict unknown connections. For the TFs,

I considered ABI3, FUS3, LEC2 and LEC1, as they are at the core of the LAFL regulatory

network as described previously [31]. On the other hand, many previous studies have been

dedicated to developing suitable and accurate approaches for predicting, but most of them

lack adequate investigation and explanation of the prediction results. Thus, analyzing the

predicted network is another key part of our work. I clustered the target expression profiles

to analyze co-expressed genes, scanned promoter regions of the targets to search for the ones

that contain the binding motifs of the relevant TFs, and studied the functional categories

that were enriched in each cluster, all of which gives more meaningful insight into how the

TFs regulate Arabidopsis seed development.

Systems Biology Graphical Notation (SBGN) provides a standard for the visual represen-

tation of biological processes and networks [39]. It incorporates some easily recognizable

glyphs, and can incorporate structural, dynamic information, and thereby has the ability to

represent a broad range of biological networks. Here I used the SBGN scheme to present the

proposed GRN in seed development in Arabidopsis, and it is drawn by the Beacon editor.

The thesis is structured as follows. Chapter 2 describes some preliminary knowledge, in-

cluding basic biological and computational concepts used in this research. Chapter 3 gives

a brief summary of the signal transduction pathway and formulates the actual problem in a

4
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computational way. In Chapter 4, previous related studies are reviewed and their advantages

and disadvantages are discussed. Chapter 5 discusses the data that are used in this research.

Chapter 6 is the methodology used to solve the problem raised in Chapter 3. Chapter 7

shows the results and a discussion of the results. Chapter 8 concludes this study.

5



Chapter 2

PRELIMINARIES

2.1 Biological Concepts

Deoxyribonucleic acid, known as DNA, is the genetic material that stores the information

necessary for synthesis, functioning, and development of most living organisms. The building

blocks of DNA are nucleic acids. A double helix structure is formed with two polynucleotide

chains twisting around each other. Each nucleotide comprises one of the four nitrogenous

bases, adenine (A), guanine (G), cytosine (C), or thymine (T), along with a deoxyribose and

a phosphate group. It is the specific sequences of the nucleobases that support the DNA’s

ability to store genetic information. Ribonucleic acid (RNA) is also assembled as a linear

chain of nucleotides, but it is more often found as a single stranded molecule. The sugar

components of a nucleotide in RNA are ribose, and one nitrogenous base is uracil (U) instead

of thymine [72].

A gene is a unit of heredity that is encoded by a segment of DNA and produces a functional

product. The functional product of a gene is a protein or a functional RNA. The process

of synthesizing proteins is called translation. There are two major steps to access the DNA

6
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sequence of a gene and to produce the corresponding protein. First is transcription. The

DNA sequence within a gene is copied to messenger RNA (mRNA). In eukaryotes, the initial

product of transcription is pre-mRNA. Pre-mRNA consists of exons and introns, and mature

mRNA is formed after introns are spliced out. Second, mRNA is translated into the amino

acid sequence of a polypeptide, and then the polypeptide is assembled into a protein (Figure

2.1) [11].

Figure 2.1: Gene expression at the molecular level.

The transcription step plays a crucial role in regulating gene expression. Transcription factors

are also known as regulators. They are proteins that can bind to a specific sequence of DNA

7
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to control transcription, either positively or negatively. Transcription factors alone or with

other proteins as a complex perform functions of promoting or inhibiting transcription [11].

Genes are expressed at specific times and in specific amounts under different conditions,

under the regulation from a wide range of mechanisms [11]. In this work, I obtained and

analyzed an Arabidopsis thaliana gene expression dataset from developing seeds, trying to

infer what genes are regulated by some certain regulators.

Signal transduction pathways are a type of regulatory network that contains a collection

of regulators and their targets. The nodes in the network are the genes or transcripts and

the edges are interactions. Interactions between nodes are important in controlling gene

expression levels and therefore controlling cell functions.

2.2 Computational Terms and Concepts

2.2.1 Types of Graphs

A directed graph is a set of vertices V that are connected by edges and the edges are

directed from one vertex to another. The graph is often depicted as G = (V,E) where

E ⊆ {(u, v)|u, v ∈ V } [2].

A weighted graph G = (V,E) is a directed graph that has numeric values (weights) assigned

to its edges through a weight function W : E → R.

8
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2.2.2 Euclidean Distance

Euclidean distance [17] is the common distance between two multidimensional points. Given

two n-dimension points x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), the Euclidean distance

(d) between x and y is defined as:

d(x,y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2.

Euclidean distance is computed in clustering target genes (Section 6.5).

9



Chapter 3

PROBLEM DEFINITION

3.1 Background

A signal transduction pathway is a network of interacting cellular components that mediate

the sensing and processing of external signals, such as drought, flooding, heat, cold, ozone,

and salt. These pathways coordinate gene expression, enzyme activity, or ion-channel activity

by detecting, amplifying, and integrating diverse external stimuli. There are generally four

phases for transduction pathways as described below [71] (Figure 3.1).

First, environmental stimuli are transferred to the interior of the cell through the membrane.

Some of the signaling molecules diffuse through the membrane and some others transfer

information across membrane via membrane-associated receptor protein. Such receptors

contain both intracellular and extracellular domains, and the extracellular binding site can

specifically recognize the signaling molecule [7].

Second, a received signal is amplified and transduced. The signal information can activate

enzymes or membrane channels to produce many small molecules called second messengers.

10
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Figure 3.1: Schematic description of signal transduction pathways in plants.

Figure adapted from Shinozaki and Dennis [71].

11
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The increased number of second messengers, therefore, is able to significantly amplify even

a tiny environmental signal [7].

Third, protein phosphorylation mediates the signal. Second messengers can activate protein

kinases to phosphorylate proteins, hence transducing concentration changes in second mes-

sengers to protein structure changes. Protein changes can affect cell function and lead to

gene activation or repression [7].

Fourth, the signal is terminated. The signaling process is terminated once the information

has been transduced to affect other cellular processes [7].

Responses and accommodations to environmental stress are at the heart of many plant

activities, and signal transduction pathways are keys to understanding the dynamic logic of

those responses. As a result, the elucidation of signal transduction pathways is a big task

for many researchers. Though more and more biological and computational approaches are

available to study the pathways, the full details of most stress signaling pathway are still not

clear. In this thesis, I propose to make use of existing signaling networks in seed development

in Arabidopsis thaliana to infer potential regulations.

3.2 Problem Definition

Let Y be a set with q genes Y = {y1, y2, . . . , yq}, and let T be a set of n time points

T = {1, 2, . . . , n}. Let G = (V,E) be a directed graph, where V ⊆ Y . The expression value

for gene yi at time j is uij and the gene expression matrix is U = (uij), where i ∈ {1, 2, . . . , q}

and j ∈ T . In general, gene expression values uij ∈ R and are ≥ 0.

I start with a given time series gene data set of q genes as gene expression matrix U = (uij),

and a directed graph G = (V,E), where regulator yr ∈ V and target gene yt ∈ V and

12
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(yr, yt) ∈ E. Our goal is to predict new edges (yr, v) ∈ E ′ and (yr, v) 6∈ E, where v ∈ V , to

form a new directed graph G′ = (V,E ′).

13



Chapter 4

LITERATURE REVIEW

Many computational approaches have been developed in the literature from gene expression

data to infer regulatory networks. Since the gene expression level is the consequence of

regulation, this class of methods is known as the reverse engineering approach [28]. These

methods can be classified into two major categories, supervised and unsupervised, according

to the classification type.

4.1 Unsupervised Learning Methods

Unsupervised inference methods usually compute a score for the interaction between a pair

of genes, based on analysis of their gene expression data.

Correlation-based

Some early models are based on correlation coefficients between expression patterns of all

pairs of genes and the pairs with correlated expression profiles are indicative of regulatory

interactions. The most commonly used correlation measures are Pearson and Spearman cor-

14
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relations [12]. Later modifications include WGCNA (Weighted correlation network analysis)

[37] that amplifies high correlation coefficients by raising the correlation coefficients to the

power of β (β ≥ 1).

Mutual information-based

Approaches based on mutual information (MI) can capture both linear and non-linear cor-

relations. The basic idea of these approaches is to compute MI values for all pairs of genes

using their expression levels and to infer the regulatory interactions when MI is larger than

a given threshold [12]. The network is constructed based on this threshold by including the

inferred interactions and a score as the weight of each interaction [36]. Various modifications

have been proposed to compute the scores. The ARACNE (Algorithm for the Reconstruc-

tion of Accurate Cellular Networks) algorithm [46, 65] filters out the weakest interaction

from triplets of genes. The CLR (Contxt Likelihood or Relatedness Network) algorithm

[18] modifies the MI score based on the backgroud distribution of all MI scores (See Sec-

tion 6.3 for more details). MRNET (Maximum Relevance Minimum Redundancy) [50, 51]

infers a network of interactions between genes using MI and a feature selection algorithm

minimum-redundancy-maximum-relevance (MRMR). Finally, C3NET (conservative causal

core) iterates through every gene and considers one edge per gene such that the MI value

between this gene and its neighbor is maximal.

Regression-based

The basic assumption of regression based methods is that the putative regulators of a target

gene are the ones that are the most informative to predict the expression level of the target

gene. The importance of the putative regulators are ranked through regression coefficients.

TIGRESS (trustful inference of gene regulation using stability selection) [26] uses the least

angle regression (LARS) approach [76] combined with stability selection [48] to assess the

significance of candidate regulators. GENIE (gene network inference with ensemble of trees)

[29] infers gene network by using a tree-based regression method. It splits the problem of

predicting a regulatory network between p genes into p sub-regression problems. In each
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of the regression problems, the tree-based method random forest [10] or extra trees [22] is

used to predict the expression level of one of the genes from the expression levels of all the

other genes. A recent improvement of GENIE is iRafNet (integrative random forest for gene

regulatory network inference) [61], which allows information from heterogeneous data to be

jointly considered for gene network inference.

4.2 Supervised Learning Methods

In contrast to unsupervised learning, supervised methods exploit some supervised algorithms

to classify the unknown gene pairs based on knowledge of part of the network. Global or

pairwise and local approaches are two main methods that have been stated in the literature

to transform the network inference problem to classification problems [80].

Global or pairwise approaches

A global or pairwise approach considers each pair of genes as a single object, and the classifi-

cation is performed on these objects [75]. Therefore, the feature vector has to be constructed

to define the gene pairs. A simple way to achieve this is to concatenate or add the features

from each of the nodes in the pair [14, 56]. Some more complex combination approaches,

such as computing outer product of two gene expression profiles [44], have also been pro-

posed. In addition to constructing feature vectors, many classification mathods have been

investigated too, including support vector machines (SVMs) [23], logistic regression [45], and

tree-based methods [69].

Local approaches

Instead of being interested in gene pairs, local approaches divide the inference problem to

several smaller classification problems. Each small classification problem is corresponding

to a gene or regulator of interest, aiming to infer all the target genes that are connected

to this gene. In principle, any classification method can be used to train each of the small
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classification problems, but many recent publications focus on SVM in this context [23, 68,

80].

Except for the methods mentioned above, the network inference problem can also be solved

by using the network itself or the network in combination with classification algorithms. For

instance, Cheng et al. [15] exploit network topology to derive a similarity measure between

nodes and infer new relations using this similarity, and Turki and Wang [79] include network

topology features in the supervised learning approach to improve network inference.

4.3 Discussion

The advantage of unsupervised methods is that they can be applied when prior knowledge on

gene interaction is limited because new interactions in the network are predicted exclusively

from gene expression data. Faith et al. [18] compiled an Escherichia coli benchmark data

set and found CLR was the top performing method in recovering known interactions when

compared with ARACNE, Bayesian networks [21], and linear regression networks. In this

work, I consider this state-of-art unsupervised learning method on our Arabidopsis data

set. However, the unsupervised methods do not take advantage of known interactions that

may improve the prediction accuracy. Numerous papers have been published to discuss

and compare the performance of unsupervised and supervised algorithms. The most recent

and largest comparison has been conducted by Maetschke et al. [44]. They compared

the prediction accuracy of 17 unsupervised methods and one supervised method on both

simulated and experimental data sets. Another comprehensive comparison has been done by

Madhamshettiwar et al. [43], in which they compared eight unsupervised and one supervised

method on 38 simulated data sets. Both of the works show that the methods performed

differently on different data sets, but the supervised method was found to be the best across

all the experiments. Evaluations from some other earlier studies are in agreement with
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these results. For example, Mordelet and Vert [53] compared supervised learning method

SVM with CLR, ARACNE, relevance networks, and a Bayesian network on the Escherichia

coli benchmark data set, and Cerulo et al. [13] made a comparison between SVM, CLR,

and ARACNE on the Escherichia coli benchmark data set and simulated data set. All their

results indicate that the supervised method outperforms unsupervised approaches. As better

performance has been reported for supervised methods in all these publications, in this thesis

I focus on a supervised learning algorithm.

In the context of supervised learning, the inference approaches that exploit only a part of

the network structure does not fit my problem. With only three star sub-networks as prior

knowledge, the network topological features are limited. The local model, in my case, is

more suitable because I am only interested in predicting the target genes for three particular

regulators. I train the local model for each regulator based on its expression profile and the

genes it regulates. The most widely used algorithm in local supvervised learning model is

SVM [68]. The SVM technique is popular due to its robust performance in classification and

ability to tolerate noise [6]. For example, one of the most recent papers by Schrynemackers

et al. [69] proposed a tree-based ensemble method and compared its performance with SVM.

The comparison was also done by using the Escherichia coli benchmark data set, and the

result showed that their new method performed very close to, but slightly worse than, SVM.
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DATA MODEL

5.1 Prior Knowledge

It is known that seed development is regulated by many transcription factors and these

transcription factors are part of networks that control downstream target genes. In this

study, we picked LEAFY COTYLEDON1 and 2 (LEC1 and LEC2), FUSCA3 (FUS3) and

ABSCISIC ACID INSENSITIVE3 (ABI3), as they are known to be major regulators of seed

development in Arabidopsis thaliana [25, 66, 81]. LEC1, which contains a CCAAT-BOX

BINDING FACTOR, is required and predominantly expressed during embryo development

and seed maturation [41]. In contrast, transcription factors LEC2, FUS3, and ABI3 are more

related, since they each contain a DNA-binding B3 domain, and they play critical roles in

seed maturation [73].

Previous studies have been carried out to identify the genes regulated by LEC1, LEC2,

FUS3, and ABI3. Lists of target genes have been obtained from Junker et al. [34] for LEC1,

from Braybrook et al. [9] for LEC2, from Wang and Perry [82] for FUS3, and from Mönke

et al. [52] for ABI3. Information including experimental design and number of target genes
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are summarized in Table 5.1

Table 5.1: Number of target genes of LEC1, LEC2, FUS3, and ABI3, number of samples,

techniques and tissues used in experiments.

Datasets
Number of

Samples

Number of

Target Genes
Techniques Tissues

LEC1 16 356 ChIP-chip Two-week old seedlings

LEC2 8 14 Microarray 8-day old seedlings

FUS3 1 1218 ChIP-chip
Embryonic culture express-

ing FUS3

ABI3 40 98 ChIP-chip Two-week old seedlings

Different experimental techniques were used for identifying target genes reported in these

publications. DNA microarrays are often used to detect and measure expression levels of

genes [78]. Two key concepts are applied in the DNA microarray technique. First is com-

plementary DNA (cDNA), which is a double-stranded DNA synthesized from single strand

mRNA. Second is hybridization. Hybridization is the phenomenon that single strand DNA

molecules anneal to cDNA with sequence complementarity. A DNA microarray is an orderly

arrangement of tens to hundreds of thousands of DNA fragments (probes) of known sequence

immobilized to a solid surface (array), such as a small glass, plastic, or nylon membrane [40].

It provides a platform for the probes to hybridize to a cDNA sample (target). After hybridiza-

tion, radioactive or fluorescent labeled cDNAs are detected and quantified. The intensity

of the radioactive or fluorescent signals reveals the level of cDNAs in the samples under

study. To discover the target genes for LEC1 [34], LEC2 [9], FUS3 [82], and ABI3 [52], only

Braybrook et al. [9] made use of microarray data. Since LEC2 activity can be induced by

treating Arabidopsis containing the 35S:LEC2-GR chimeric gene with the steroid-hormone
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analogue dexamethasone (Dex), they isolated RNA from 35S:LEC2-GR seedlings that were

treated with Dex for either 1 or 4 hours (1-h or 4-h Dex). Microarray analysis was conducted

and the RNAs present in only 1-h Dex or only 4-h Dex or in both treatments were reported

as being induced by LEC2. Because only 14 target genes were reported in this data set,

no statistically significant result can be inferred from such a small number of relations, so I

eliminated the use of this data set as prior knowledge for training.

On the other hand, the ChIP-chip technique utilizes a combination of chromatin immunopre-

cipitation (ChIP) and whole-genome DNA microarrays (chip) and is often used to investigate

interactions between proteins and DNA [30, 63]. ChIP is one of the techniques that inves-

tigates protein-DNA interactions. Transient protein-DNA interactions in living cells can be

captured using crosslinking agents. By using specific antibodies to a putative DNA binding

protein, a protein-DNA complex is immunoprecipitated. Reversing the cross-linking of the

complex allows the DNA to be separated from the proteins. The DNA microarray technique

is then used to identify the separated DNA fragments that interact with the protein. ChIP-

on-chip allows for high resolution of genome-wide maps and can determine binding DNAs.

However, the binding DNAs are not necessarily true downstream genes of a transcription

factor because the association may be due to a pure physical interaction other than gene

regulation.

In addition to the four major regulators, phytohormone abscisic acid (ABA), a ubiquitous

plant hormone, plays an important role in development processes such as seed dormancy,

germination, and embryo maturation. In seed development, ABA not only regulates mat-

uration, dormancy, and germination but also mediates responses to abiotic stresses such as

drought, cold, and salinity [16, 67]. As was reviewed in Finkelstein [20], ABA and regulatory

elements interact to control the seed maturation and germination processes (Figure 5.1).

For example, LEC1 promotes expression of LEC2 and FUS3, which are active in promoting

expression of ABI3, ABI4, and ABI5, which in turn regulates the ABA response [33, 74].

Interactions shown in Figure 5.1 were taken as part of the prior knowledge.
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Figure 5.1: Interactions among some of the hormonal and developmental signals and regu-

latory elements controlling seed maturation. Arrows represent positive regulation and red

bars indicate repression.

Figure drawn by Beacon editor and it is adapted from Finkelstein. [16].
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5.2 Experimental Data

In this thesis, expression data from the model organism Arabidopsis thaliana in seed develop-

ment has been analyzed to infer possible gene networks. Two data sets, genes, differentially

expressed genes, and differentially expressed transcripts in time course data, were provided

by Dr. Eva Collakova and Dr. Ruth Grene, professors at Virginia Tech. Further details

of the experiments can be found in [67]. In their work, high-throughput RNA sequencing

(RNA-Seq) experiments were conducted on developing Arabidopsis seeds and the Tuxedo

Suite [77] was used for RNA-Seq data analysis. Each expression data set can be divided

into a gene/transcript name data set and a time course gene expression data set. The gene

expression data is already normalized to fragments per kilobase of transcript per million

mapped read (FPKM) values.

5.2.1 Data Set 1 (Gene Time Course Data)

This data set contains the expression levels of all detectable known transcripts in the devel-

oping embryo of Arabidopsis thaliana. The gene name data set contains six fields described

as follows. First, gene id is the unique identifier of the gene, and it is assigned by Tuxedo

Suite [77]. Second, gene name is the gene annotation in TAIR10. Third, AGI index is the

gene identifier as per the Arabidopsis thaliana initiative. Fourth, tss id is the transcription

start site of the gene. Fifth, locus id shows the specific location of the gene located on the

chromosome. Sixth, the description field briefly describes the gene function (Table 5.2).

Table 5.3 shows an example of time course gene expression data, and it is related to Table

5.2 via unique gene identifier gene id. The expression matrix only contains transcripts whose

expressions were detectable at one or more time points throughout the time course of embryo

development. There are 23866 genes contained in this data set, and 7 time points are available

for each gene: day 7, day 8, day 10, day 12, day 13, day 15 and day 17.
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5.2.2 Data Set 2 (Differentially Expressed Gene Time Course Data)

Limma analysis [64] was done on Data Set 1 in this thesis, and genes that are differentially

expressed at least at one time point with respect to its following time point are recorded in

Data Set 2. Information about Limma differential analysis is described in Section 5.1. The

columns in Data Set 2 are the same as in Data Set 1. The 7376 entries in this data set

represented 7376 genes that are differentially expressed in seed development.
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Chapter 6

METHODOLOGY

Many computational methods have been developed to infer gene networks, using both un-

supervised and supervised approaches. In this thesis, methods from these two categories

were applied, and the results were compared. Unsupervised learning does not require any

labeled data, while supervised methods exploit labeled training data to find the optimal

model parameters. The following sections describe my methodology of evaluating classifiers

and inference methods in detail.

6.1 Data Analysis

The expression of all transcripts data set was directly obtained from Dr. Eva Collakova and

Dr. Ruth Grene. This data set contains 53,989 entries. Gene level FPKM values can be

calculated by adding up the expression values from all the transcripts detected for each gene.

This is the gene data set presented in Tables 5.2 and 5.3.
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Limma analysis [64] was then applied to find differentially expressed genes as [67] did for

finding differential expressed transcripts between wild type and val1 mutant embryos. In-

stead of using FPKM values, Limma requires raw counts as input data, and the raw counts

are the number of reads overlapping a given gene. This data set was also obtained from Dr.

Eva Collakova and Dr. Ruth Grene. In the Limma pipeline, the VOOM package [38] was

first used to normalize the counts. Empirical Bayes, moderated t-statistics, and their asso-

ciated p-values were then used to assess the significance of the observed expression changes

between one time point with respect to its following time point. Genes with adjusted p-value

< 0.05 were declared to be differentially expressed. The differentially expressed genes belong

to the data set presented in Section 5.2.2.

6.2 ROC and AUC

To evaluate the performance of the inference algorithm, I drew receiver operator character-

istic (ROC) curves and computed the area under the receiver operator characteristic curve

(AUC) as has been used by much previous work [27, 35, 53, 55]. ROC curves show the

true positive rates over the full range of false positive rates at different thresholds, and AUC

quantifies the quality of the classifier. The AUC value represents the probability that the

classifier ranks a randomly chosen positive instance higher than a randomly chosen negative

instance. AUC is a portion of a unit square and hence its value will always be between 0

and 1. An AUC above 0.5 is expected for a realistic classifier since it should perform better

than random guessing, while an AUC of 1 indicates perfect performance [19].

An unsupervised method does not require any parameter optimization. For supervised meth-

ods, on the other hand, 3-fold cross validation was applied and parameters were optimized

on the training data only (See Section 6.4.3).
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6.3 Unsupervised Learning - CLR Algorithm

The CLR (Context Likelihood of Relatedness) method is a widely used unsupervised learning

method for gene network inference, which was first introduced by Faith et al. [18]. In this

work, the CLR method was implemented according to the publication and was called with

its default parameters.

CLR extends the relevance network method [12] and makes use of mutual information (MI)

values. MI between two discrete random variables Xi and Xj is defined as

I(Xi, Xj) =
∑
xi∈Xi

∑
xj∈Xj

p(xi, xj) log
p(xi, xj)

p(xi)p(xj)
,

where p(xi) and p(xj) are marginal probabilities, and p(xi, xj) is the joint probability distri-

bution of Xi and Xj.

CLR calculates the MI values between all gene pairs and produces an MI matrix M, where

Mij is the MI value between gene i and gene j. The background MI distribution is then

taken into account to estimate the interaction between genes i and j. The background

distribution consists of two sets of MI values: all the MI values for gene i, Mik, k = 1, . . . , n,

and all the MI values for gene j, Mkj, k = 1, . . . , n. The CLR technique assumes that

the interactions with MI that deviate most from the background distribution are the most

probable interactions. Thus, a maximum z-score is computed for each gene i as

zi = max
j

(0,
Mij − µi

σi
),

where µi and σi are the mean value and standard deviation, respectively, of the MI values

Mik. The final form of the CLR likelihood estimation between gene pair i and j is
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wij =
√
z2i + z2j .

Putative regulator-gene interactions are then ranked by decreasing wij.

6.4 Supervised Learning - SVM Algorithm

A variety of different supervised machine learning approaches are available, but I limited

my inference to support vector machines (SVMs), as good results have been produced using

this method in previous studies [44, 53]. I used the Python implementation of SVM called

sklearn.svm, published by Pedregosa et al. [59].

6.4.1 Feature Vector

An SVM algorithm operates on column feature vectors. Various ways can be used to con-

struct the feature vector. In this thesis, I compared the performance of two of them. Let

t be the target gene, r be the regulator, i = 1, . . . , k be the time point, and e(ti) and e(ri)

be the expression levels of genes t and r at time point i, respectively; feature vector of the

gene pair (r, t) is defined as x. The first way of constructing x is to directly concatenate

the expression data of regulator and target: x = (e(r1), . . . , e(rk), e(t1), . . . , e(tk))
T . This

belongs to global approach because each gene pair is treated as a single object and only one

SVM is used to train and predict. The second way is x = (log e(t2)
e(t1)

, . . . , log e(tk)
e(tk−1)

)T , which

belongs to the local approach because each regulator is treated as a separate SVM.
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6.4.2 Kernel Function

The kernel function is a fundamental component for an SVM algorithm. Given r as the

regulator and n target genes t1, . . . , tn, the gene pairs (r, t1), (r, t2), . . . , (r, tn) belong to two

classes +1 and -1. Class +1 means gene r regulates gene t; class -1, in contrast, means gene

r does not regulate gene t. The basic idea is to construct a hyperplane to separate these

two classes, and the optimal hyperplane maximizes the distance of the closest point to the

hyperplane. Let xi, li, and xj, li denote the feature vectors and labels of gene pairs (r, ti)

and (r, tj), respectively, and the kernel function between xi and xj is k(xi,xj). The SVM is

trained through maximizing a constrained, quadratic optimization problem over Lagrange

multipliers α:

max
α

L(α) =
n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjliljk(xi,xj)

subject to


∑n

i=1 αili = 0

0 ≤ αi ≤ C for ∀i.

C is the complexity parameter that needs to be tuned for optimal prediction performance.

With a very high value of C, the training mistakes have very high cost. In here, I chose

C = 1000 to train all SVMs. This choice was also used by SIRENE [53].

The prediction makes use of the optimized αi. Let x′j denote the feature vector of a new

gene pair (r, tj), the kernel function between xi and x′j is k(xi,x
′
j). An SVM estimates a

scoring function for any new gene pair (r, tj) of the form:
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f(x′j) =
n∑
i=1

αik(xi,x
′
j).

In this way, the scoring function f(x′j) classifies gene pairs from unknown classes in the test

set (Figure 6.1).

Figure 6.1: Two dimensional representation of SVM using maximum margin with support

vectors to classify genes.

To find out the SVM kernel with the best performance, I did experiments to evaluate the

following two kernel functions. Though there are many kernel functions available, these

two are mostly used in gene network inference and have proved to perform well in previous

studies [13, 44, 53].
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1. Linear Kernel

The linear kernel is the simplest kernel function for an SVM. The linear kernel is defined

as the dot product of two vectors x and x′ with addition of c constant:

k(x,x′) = xTx′ + c.

2. Gaussian Kernel

The gaussian kernel is a radial basis kernel function or RBF kernel defined by

k(x,x′) = exp (−γ||x− x′||2),

where γ = 1
2σ2 and σ > 0. σ is a parameter that controls the width of the Gaussian. If

σ is underestimated, the kernel becomes more local and forms greater curvature of the

decision surface, which makes the radius of the area of influence of the support vectors

too small so that it only includes the support vector itself. If overestimated, the model

behaves similarly to the linear model, resulting in a failure to capture the shape of the

data. In this thesis, I used the default choice γ = 1
number of features

.

6.4.3 Cross Validation

As a supervised learning method, SVM needs both positive and negative examples in the

training sets. Positive examples are known relationships between well-studied regulators

and their targets as described in Section 5.1. However, there is little information about a

regulator not regulating some certain target genes. In this thesis, I assigned regulator-target

gene pairs not reported in the prior knowledge to negative examples. All genes known to be

regulated by this regulator form a set of positive examples, and the same number of genes

were randomly chosen from the remaining genes to form the set of negative examples. A
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3-fold cross validation is done by randomly splitting the positive and negative example sets

into three parts, training the SVM on two of the subsets, and evaluating the prediction on

the third subset. This process was repeated three times, testing successively on each subset.

The prediction quality is averaged over all three iterations.

6.4.4 Ranking

The output of an SVM prediction is a label l = +1 or l = −1 in my case. However, except for

knowing which class the gene belongs to, we sometimes are also interested in the degree of

certainty about the classifier. Platt Scaling [62] can transform SVM predictions to posterior

probabilities by passing them through a sigmoid. The output of SVM is f(y) as described

in Section 6.4.2, Platt scaling passes f(y) through a sigmoid to get calibrated probabilities:

P (l = 1|f) =
1

1 + exp(Af +B)
,

where the parameters A and B are fitted using maximum likelihood estimation from a fitting

training set (fi, li).

Platt scaling has been shown to be effective for SVMs [54], and the implementation of SVM

I used in this thesis incorporated Platt scaling to output probabilities [59].

6.5 Clustering

To analyze target genes and visualize their expression patterns, I grouped these genes by

similar expression profiles using the k-means clustering algorithm [42], as implemented in
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Python [59]. It is a partition-based clustering method that can automatically partition a

data set into k groups. Given a predetermined number k, and a set of gene expressions

{x1,x2, ...,xn}, where each gene expression is a k-dimensional vector, the goal is to minimize

the objective function

E =
k∑
i=1

∑
x∈Si

|x− µi|2,

where µi is the centroid of cluster Si. Thus, E is to minimize the sum of squared distances

(euclidean distance) of gene expressions from their cluster centers. It proceeds by randomly

choosing k cluster centers and then iteratively updating them as follows:

1. Each gene is assigned to its closest cluster center.

2. Each cluster center is updated to the mean of its constituent genes.

The algorithm converges when there is no further change in assignment of genes to clusters.

6.6 Experimental Procedure

The workflow for the Beacon GRN inference tool contains five phases, namely, comparison,

prediction, clustering, searching for direct and indirect targets of regulators, and searching

for direct and indirect targets of secondary TFs; they are shown in Figure 6.2. The purpose

of the comparison phase is to generate the ROC curve using the supervised method with

global and local SVMs and the unsupervised method CLR (Figure 6.2A). To train the SVM,

two types of inputs are required. First is a list of gene names to be trained and tested and

their expression levels. Second is a list of positive examples and negative examples. With

the prepared lists, the problem is divided into three subproblems in the local model, and
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each subproblem is related to one of ABI3, FUS3, and LEC1. An SVM classifier is trained

for each regulator based on its known target genes and non-target genes. For the global

model, the three subproblems are combined to obtain one problem, where a global SVM

classifier is trained based on all known regulations and non-regulations. The list of testing

relationships can then be assigned into different classes according to the trained SVM. This

process is repeated for each kernel. Since the CLR algorithm does not require a training

data set, the final ROC curve is generated on all genes simultaneously. The approach with

the higher accuracy are used to predict new target genes of the regulators (Figure 6.2B).

The result of prediction is three networks with the center node of each being ABI3, FUS3,

or LEC1. The target genes controlled by single or multiple regulators are identified. The

following procedures are all based on individual networks. Pearson correlation is performed

to determine how the expression levels of the targets are correlated with the expression levels

of their corresponding regulator. A threshold of 0.6 is chosen to filter the strongly correlated

targets. The third phase is to group the known and predicted strongly positively correlated

target genes according to their expression patterns (Figure 6.2C). With co-expressed targets

in each regulator, the FIMO (Find Individual Motif Occurrences) algorithm was used to

search for the direct targets of each cluster (Figure 6.2D) [24]. Finally, in each cluster, sec-

ondary TFs and their binding motifs among the direct targets were identified, and FIMO was

run again on indirect targets in this cluster to identify the direct targets of these secondary

TFs (Figure 6.2E). As reviewed by [32], LEC1 influences ABI3, and ABI3 and FUS3 are

mutually regulated. Combining these relationships with our predicted three sub-networks, I

obtain the entire network as shown in Figure 6.3.
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Figure 6.2: Beacon GRN inference and validation workflow. Five phases: method comparison

(A), prediction (B), k-means clustering (C), identify the targets contain binding motifs (D),

and identify targets containing the downstream TF binding motifs (E). K-means clustering

is done by combining strongly correlated known and predicted targets.
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Figure 6.3: The proposed network. The diagram is drawn in Systems Biology Graphical No-

tation (SBGN) format using the Beacon editor [39]. LEC1, FUS3 and ABI3 represent three

master regulators, with ABI3 directly controlled by LEC1 and ABI3 and FUS3 mutually

regulated.
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RESULTS AND DISCUSSION

7.1 Results

7.1.1 Algorithm Evaluation and Comparison

In the following, I first evaluate the performance of the SVM before comparing CLR with

the best performing SVM model. Figure 7.1 shows the comparison between the prediction

accuracies measured by AUC for linear and RBF SVMs. Figures 7.1A through 7.1C are

the results of local models. Among all the three regulators, the SVM of ABI3 with AUC

approximately 0.9 performs the best. Figure 7.1D is the result of the global model. The

global model performs worse than ABI3 but is comparable with FUS3 and LEC1. To compare

the performance between the two kernels, they result in similar AUC values with the RBF

kernel somewhat better for all four cases. The reason why the global approach performs not

as well as the local approaches is due to its failure to capture the unique characteristics of

different regulators. Different regulators may have different regulation mechanisms, and thus

it is hard to learn all different features in one SVM. Furthermore, as summarized in Table
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7.1, FUS3 has 1045 known target genes, which is much greater than the known targets of the

other two. Hence, the majority of the positive examples consist of FUS3 regulations, while

FUS3 relations are the minority in the negative example set. The consequence is the SVM

may simply capture the feature of FUS3 regulation as positives and considers all features

different from FUS3 regulations as negatives. Since the local model is more meaningful and

powerful than the global model in our case, I focused our study on the local model with the

RBF kernel. The SVM local RBF model was then compared to the CLR algorithm, and

Figure 7.2 shows the ROC curves. The CLR prediction accuracy approaches 55%, which

performs much worse than the supervised method.

The evaluation of the methods indicate that a local SVM model with RBF kernel is the

most suitable method for predicting regulatory network among the three regulators using

the differentially expressed gene data in Arabidopsis seed development. I call this approach

the Beacon GRN inference tool.
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Figure 7.1: Comparison of performance between SVM local models and global model. ABI3,

FUS3 and LEC1 represent local models with each of them as a separate SVM. Global model

trains one SVM for all the TF-target pairs.
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Figure 7.2: Comparison of performance between SVM local models and CLR algorithm.

Table 7.1: Summary of the number of prior known regulations in Arabidopsis seed develop-

ment gene and differentially expressed gene data sets.

Regulator
Number of Target Genes

in the Gene Data Set

Number of Differentially

Expressed Target Genes

Number of Not

Differentially Expressed

Target Genes

LEC1 353 174 179

LEC2 14 14 0

FUS3 1045 508 537

ABI3 98 94 4
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7.1.2 Network Prediction

As described in Section 7.1, I treated ABI3, FUS3, and LEC1 as separate SVMs to predict

networks based on all the differentially expressed genes. The predicted networks were then

combined to make one network.

I used all 98, 1045, and 353 positive examples and the same number of negative examples as

the training sets for ABI3, FUS3 and LEC1, respectively. Overall statistics for the predictions

are presented in Table 7.2 and Figure 7.3. Table 7.2 lists these three regulators along with

the number of targets they regulate. Figure 7.3 presents the portion of unique and shared

target genes controlled by two or three of the regulators.

Table 7.2: A summary of the number of predicted and unique targets for each regulator.

Regulator Number of Predicted Targets Number of Unique Targets

ABI3 1064 275

FUS3 2569 862

LEC1 3836 1732
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Figure 7.3: A Venn diagram depicting the overlap between the predicted targets among the

three regulators.

7.1.3 Biological Validation

To further filter the prediction, I identified the targets whose expression levels are strongly

positively correlated with the expression level of their related regulator (Table 7.3). Approx-

imately half of the FUS3 and LEC1’s targets were discarded according to the correlation

coefficient threshold setting of 0.6. Only 47/1698 ABI3 targets were found strongly posi-

tively correlated, which is because ABI3 is not differentially expressed over the time course

but its potential targets are. Our analysis in the following is based on these strongly posi-

tively correlated targets.
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Table 7.3: A comparison of the total number of targets and the number of strongly positively

correlated targets of each regulator. Less than half of the ABI3 and LEC1’s targets are

strongly positively correlated, while more FUS3 targets are strongly correlated.

Regulator Total Number of Targets Strongly Positively Correlated Targets

ABI3 1698 47

FUS3 3076 1759

LEC1 4010 1789

The time course gene expression data covers three major stages in seed development: early

maturation (7 and 8 days after pollination (DAP)), middle maturation (10, 12 and 13 DAP),

and late maturation/early desiccation (15 and 17 DAP). Clustering all the targets (including

predicted and prior known targets) according to their expression profiles allows us to un-

derstand which of the targets are expressed at particular phases of seed development. Gene

expression was normalized to the 0 to 1 range before clustering through zi = xi−min(x)
max(x)−min(x) ,

where x = (x1, . . . , xn) and xi is the gene expression value at time point i. Three clusters are

presented for ABI3 and LEC1, and four clusters are presented for FUS3 (Figure 7.4). ABI3

and FUS3 have targets whose maximum expression occurred at early and middle maturation

stages but with different distributions. In contrast, in the case of LEC1, cluster 3 showed a

high expression levels at the early and late maturation stages. Furthermore, known targets

are distributed in each cluster, except for cluster 1 and cluster 3 of ABI3, where there is no

known target.
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Figure 7.4: K-means clusters of (A) ABI3, (B) FUS3, and (C) LEC1 target genes, and the

expression profiles for the three regulators (D). The results are organized by developmental

stage. Three stages of seed development are involved in the gene expression: early (7 and 8

DAP), middle (10, 12 and 13 DAP), and late (15 and 17 DAP). The color scale indicates the

gene expression level: red color represents high expression level, and blue color represents

low expression level. A horizontal line is in each cluster, above which are the prior known

targets and the remaining are predicted targets. The difference in expression profiles of the

regulators may lead to different expression patterns of the target genes.

To further evaluate the prediction results, I ran the FIMO algorithm to classify all the targets

into direct and indirect categories. The binding site study was limited to ABI3 and FUS3,

because LEC1 is not in the CIS-BP (Catalog of Inferred Sequence Binding Preferences)

database (Table 7.4) [84]. Secondary TFs were found among the direct targets in each
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cluster, and their binding motifs were also searched against the CIS-BP database. The

result is in cluster 3 of FUS3, secondary TF AT1G01260 has known binding motif, and 60

indirect targets contain the binding site of this TF in this cluster. According to our inference,

gene AT1G01260 is only controlled by FUS3.

We then compare our results with the interactions GeneMANIA [83] (http://www.genemania.org)

reports as another validation (Table 7.4). Only small portion of the interactions predicted by

Beacon tool are in the GeneMANIA database. This is because the prior known interactions

are from ChIP-Seq experiments, while GeneMania has curated several resources based on

co-expression, physical interactions, and genetic interactions.
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Table 7.4: The number of direct and indirect targets discovered by FIMO in each cluster.

LEC1 does not have known binding site in the CIS-BP database, so only ABI3 and FUS3

binding sites could be identified. For each regulator, the table shows the number of targets

that have the binding sites in known and predicted connections, respectively. The last row of

each regulator shows the number of targets exist both in our prediction and in GeneMANIA

(GM).

Regulator Targets Cluster 1 Cluster 2 Cluster 3 Cluster 4

ABI3

Direct in known 0 2 0 -

Indirect in known 0 0 0 -

Direct in predicted 2 2 18 -

Indirect in predicted 12 28 1 -

Overlap with GM 2 5 0 -

FUS3

Direct in known 9 16 15 4

Indirect in known 46 88 74 20

Direct in predicted 40 37 36 16

Indirect in predicted 427 485 325 121

Overlap with GM 3 7 8 4

LEC1 Overlap with GM 30 6 2 -
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7.2 Discussion

In this analysis, I have developed a Beacon GRN inference tool, a supervised machine learn-

ing method based on SVM local approach, to decipher the complex GRNs that occur in

Arabidopsis seed development from gene expression data and prior known regulatory re-

lationships. The SVM local approach with RBF kernel was chosen according to the per-

formance comparison with the SVM global approach and the unsupervised method CLR.

CLR does not take into account any known interactions and performs worse than supervised

methods. The SVM global approach makes the assumption that all the TFs regulate their

downstream targets in the same way, and it performs worse than the SVM local models. A

linear SVM kernel generates a linear hyperplane to separate positive and negative examples,

which is less flexible than the non-linear kernel RBF. I concluded that the SVM local ap-

proach with RBF is the most suitable method to infer GRN in seed development (Figure

7.1 and Figure 7.2). This selected method decomposes the problem of inferring a network

into three different subproblems, where the goal is to identify the targets of each of the three

regulators.

As with many inference models, there is a limitation based on the initial data set used to

make predictions. Our prediction accuracy can be definitely improved with experimentally

validated non-regulations and the addition of more known TF-target pairs. Furthermore,

the AUC was computed by assuming that the known interactions are accurate and do not

include undiscovered relationships.

In Figure 7.3 and Table 7.2, I present the prediction results and show targets controlled

by one or more regulators. There are 521 genes regulated by all three regulators, but more

shared targets are found between any two of the regulators, which suggests that the regulation

mechanism of these three regulators are different but still correlated. This result, in turn,

shows that the SVM global model does not fit for our problem. It is also important to note

that one TF controls so many targets, which greatly enlarges the regulatory network we
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already know and points to the importance of studying these relationships. Though actual

relationships remain to be verified by experiments, the TF-target predictions I generated

can be preliminary knowledge for the researchers who are interested in gene regulations in

Arabidopsis seed development. Moreover, our method of TF target prediction can be easily

expanded to infer regulatory network of other plants in other biological processes by replacing

the data source.
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CONCLUSIONS

GRNs are key to represent and understand biological activities and their elucidation is one

of the main challenges of the researchers. Doing experiments to reveal the network is hard.

However, gene expression data embeds much regulatory information. The work presented in

this thesis is related to the problem of supervised inference of GRNs using gene expression

levels. Many current studies focus on global GRNs, which may overlook the relationships in

specific biological process. I addressed this issue by using the gene expression data in specific

biological process, i.e., seed development in Arabidopsis. The method I developed in this

thesis is the Beacon GRN inference tool. It is a supervised machine learning method based

on SVM made use of the gene expression data and applied on a training sample of known

interacting and non-interacting pairs, to predict GRN in this specific biological process.

The main topic we addressed in this work is to predict the GRN in seed development in

Arabidopsis, and interpret the predicted network.

An in-depth and comprehensive examination and analysis of the Beacon GRN inference

tool is presented. All the evaluations of the supervised methods are based on 3-fold cross

validation. The positive examples are known interactions described in Section 5.1, and
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the negative examples were taken randomly from all the remaining pairs. The comparison

between the Beacon inference tool with many other methods, including unsupervised method

CLR, SVM with global model, SVM with linear kernel, indicates that the tool I developed is

superior to all other models in this context. The Beacon inference tool, in detail, is an SVM

local model that treats three major regulators, ABI3, FUS3, and LEC1, in seed development

separately. Using their own known interactions, the Beacon tool evaluated their performance

separately, and the ROC curves are given in Figure 7.2. The AUC of ABI3 is ∼0.92, FUS3

is ∼0.69, and LEC1 is ∼0.67.

In Section 7.1.2, the potential targets inferred from the Beacon inference tool among all the

differentially expressed genes are presented. Among 7376 genes differentially expressed in

seed development, 1064 of them are predicted as ABI3’s targets, 2569 are FUS3’s targets,

and 3836 are LEC1’s targets. There are also large overlaps between the predicted targets,

which suggests that many genes are regulated by multiple regulators. In total, 275, 862, and

1732 targets are uniquely regulated by ABI3, FUS3, and LEC1, respectively.

Interpretation of the predicted GRN was done by doing clustering and binding site analysis.

From Figure 7.4, I concluded that the targets that strongly positively correlated with their

regulators are expressed early in seed development. Binding site analysis shows 24/47 and

173/1759 of the targets have the binding site of ABI3 and FUS3, respectively.

One of the limitations of the Beacon GRN inference tool is its inability to predict regulatory

relationships with no prior known relations. The performance of the Beacon inference tool

is dependent upon the list of the known target genes, and therefore an incomplete list will

produce poor GRN prediction results. A possible future direction to address such challenge

to employ semi-supervised models to deal with the unlabeled data.

In spite of the limitations, the predicted network can be preliminary knowledge of the GRN in

seed development in Arabidopsis, and the Beacon GRN inference tool can be easily expanded
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to infer regulatory networks existing in other plants or other biological processes by replacing

the data source.

55



Bibliography

[1] K. Aoki, Y. Ogata, and D. Shibata, Approaches for extracting practical informa-

tion from gene co-expression networks in plant biology, Plant and Cell Physiology, 48

(2007), pp. 381–390.

[2] J. Bang-Jensen and G. Z. Gutin, Digraphs: Theory, Algorithms and Applications,

Springer Science & Business Media, 2008.

[3] G. W. Bassel, H. Lan, E. Glaab, D. J. Gibbs, T. Gerjets, N. Krasnogor,

A. J. Bonner, M. J. Holdsworth, and N. J. Provart, Genome-wide network

model capturing seed germination reveals coordinated regulation of plant cellular phase

transitions, Proceedings of the National Academy of Sciences, 108 (2011), pp. 9709–

9714.

[4] S. Baud, B. Dubreucq, M. Miquel, C. Rochat, and L. Lepiniec, Storage

reserve accumulation in Arabidopsis: Metabolic and developmental control of seed filling,

The Arabidopsis Book, 6 (2008), p. e0113.

[5] A. Ben-Hur and W. S. Noble, Kernel methods for predicting protein–protein inter-

actions, Bioinformatics, 21 (2005), pp. i38–i46.

[6] A. Ben-Hur and J. Weston, A user’s guide to support vector machines, Data Mining

Techniques for the Life Sciences, (2010), pp. 223–239.

[7] J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, WH Freeman, 2002.

56



Ying Ni Reference

[8] M. F. Berger and M. L. Bulyk, Universal protein-binding microarrays for the

comprehensive characterization of the DNA-binding specificities of transcription factors,

Nature Protocols, 4 (2009), pp. 393–411.

[9] S. A. Braybrook, S. L. Stone, S. Park, A. Q. Bui, B. H. Le, R. L. Fischer,

R. B. Goldberg, and J. J. Harada, Genes directly regulated by LEAFY COTYLE-

DON2 provide insight into the control of embryo maturation and somatic embryogenesis,

Proceedings of the National Academy of Sciences of the United States of America, 103

(2006), pp. 3468–3473.

[10] L. Breiman, Random forests, Machine Learning, 45 (2001), pp. 5–32.

[11] R. J. Brooker, Genetics: Analysis and Principles, Addison-Wesley, 1999.

[12] A. J. Butte and I. S. Kohane, Mutual information relevance networks: Func-

tional genomic clustering using pairwise entropy measurements, in Pac Symp Biocom-

put, vol. 5, Citeseer, 2000, pp. 418–429.

[13] L. Cerulo, C. Elkan, and M. Ceccarelli, Learning gene regulatory networks

from positive and unlabeled data, BMC Bioinformatics, 11 (2010), p. 16.

[14] X.-W. Chen and M. Liu, Prediction of protein–protein interactions using random

decision forest framework, Bioinformatics, 21 (2005), pp. 4394–4400.

[15] F. Cheng, C. Liu, J. Jiang, W. Lu, W. Li, G. Liu, W. Zhou, J. Huang, and

Y. Tang, Prediction of drug-target interactions and drug repositioning via network-

based inference, PLoS Computational Biology, 8 (2012), p. e1002503.

[16] S. R. Cutler, P. L. Rodriguez, R. R. Finkelstein, and S. R. Abrams, Abscisic

acid: Emergence of a core signaling network, Annual Reviews Plant Biology, 61 (2010),

pp. 651–679.

[17] M. Deza and E. Deza, Encyclopedia of Distances, Springer, 2014.

57



Ying Ni Reference

[18] J. J. Faith, B. Hayete, J. T. Thaden, I. Mogno, J. Wierzbowski,

G. Cottarel, S. Kasif, J. J. Collins, and T. S. Gardner, Large-scale map-

ping and validation of Escherichia coli transcriptional regulation from a compendium of

expression profiles, PLoS Biology, 5 (2007), p. e8.

[19] T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters, 27 (2006),

pp. 861–874.

[20] R. Finkelstein, Abscisic acid synthesis and response, The Arabidopsis Book, (2013),

p. e0166.

[21] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, Using Bayesian networks

to analyze expression data, Journal of Computational Biology, 7 (2000), pp. 601–620.

[22] P. Geurts, D. Ernst, and L. Wehenkel, Extremely randomized trees, Machine

Learning, 63 (2006), pp. 3–42.

[23] Z. Gillani, M. S. Akash, M. M. Rahaman, and M. Chen, CompareSVM: Su-

pervised, Support Vector Machine (SVM) inference of gene regularity networks, BMC

Bioinformatics, 15 (2014), p. 395.

[24] C. E. Grant, T. L. Bailey, and W. S. Noble, Fimo: Scanning for occurrences

of a given motif, Bioinformatics, 27 (2011), pp. 1017–1018.

[25] L. Gutierrez, O. Van Wuytswinkel, M. Castelain, and C. Bellini, Combined

networks regulating seed maturation, Trends in Plant Science, 12 (2007), pp. 294–300.

[26] A.-C. Haury, F. Mordelet, P. Vera-Licona, and J.-P. Vert, TIGRESS:

Trustful inference of gene regulation using stability selection, BMC Systems Biology,

6 (2012), p. 145.

[27] B. C. Haynes and M. R. Brent, Benchmarking regulatory network reconstruction

with GRENDEL, Bioinformatics, 25 (2009), pp. 801–807.

58



Ying Ni Reference

[28] B. He and K. Tan, Understanding transcriptional regulatory networks using compu-

tational models, Current Opinion in Genetics & Development, 37 (2016), pp. 101–108.

[29] A. Irrthum, L. Wehenkel, P. Geurts, et al., Inferring regulatory networks from

expression data using tree-based methods, PloS One, 5 (2010), p. e12776.

[30] V. R. Iyer, C. E. Horak, C. S. Scafe, D. Botstein, M. Snyder, and P. O.

Brown, Genomic binding sites of the yeast cell-cycle transcription factors SBF and

MBF, Nature, 409 (2001), pp. 533–538.

[31] H. Jia, D. R. McCarty, and M. Suzuki, Distinct roles of LAFL network genes in

promoting the embryonic seedling fate in the absence of VAL repression, Plant Physiol-

ogy, 163 (2013), pp. 1293–1305.

[32] H. Jia, M. Suzuki, and D. R. McCarty, Regulation of the seed to seedling devel-

opmental phase transition by the LAFL and VAL transcription factor networks, Wiley

Interdisciplinary Reviews: Developmental Biology, 3 (2014), pp. 135–145.

[33] A. Junker, A. Hartmann, F. Schreiber, and H. Bäumlein, An engineer’s view
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[36] A. Kraskov, H. Stögbauer, and P. Grassberger, Estimating mutual informa-

tion, Physical Review E, 69 (2004), p. 066138.

59



Ying Ni Reference

[37] P. Langfelder and S. Horvath, WGCNA: An R package for weighted correlation

network analysis, BMC Bioinformatics, 9 (2008), p. 559.

[38] C. W. Law, Y. Chen, W. Shi, and G. K. Smyth, VOOM: Precision weights unlock

linear model analysis tools for RNA-seq read counts, Genome Biology, 15 (2014), p. R29.

[39] N. Le Novere, M. Hucka, H. Mi, S. Moodie, F. Schreiber, A. Sorokin,

E. Demir, K. Wegner, M. I. Aladjem, S. M. Wimalaratne, et al., The

systems biology graphical notation, Nature Biotechnology, 27 (2009), pp. 735–741.

[40] D. J. Lockhart, H. Dong, M. C. Byrne, M. T. Follettie, M. V. Gallo,

M. S. Chee, M. Mittmann, C. Wang, M. Kobayashi, H. Horton, et al.,

Expression monitoring by hybridization to high-density oligonucleotide arrays, Nature

Biotechnology, 14 (1996), pp. 1675–1680.

[41] T. Lotan, M.-a. Ohto, K. M. Yee, M. A. West, R. Lo, R. W. Kwong,

K. Yamagishi, R. L. Fischer, R. B. Goldberg, and J. J. Harada, Arabidopsis

LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells,

Cell, 93 (1998), pp. 1195–1205.

[42] J. MacQueen et al., Some methods for classification and analysis of multivariate ob-

servations, in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics

and Probability, vol. 1, Oakland, CA, USA., 1967, pp. 281–297.

[43] P. B. Madhamshettiwar, S. R. Maetschke, M. J. Davis, A. Reverter, and

M. A. Ragan, Gene regulatory network inference: Evaluation and application to ovar-

ian cancer allows the prioritization of drug targets, Genome Medicine, 4 (2012), pp. 1–16.

[44] S. R. Maetschke, P. B. Madhamshettiwar, M. J. Davis, and M. A. Ra-

gan, Supervised, semi-supervised and unsupervised inference of gene regulatory net-

works, Briefings in Bioinformatics, (2014), p. bbt034.

60



Ying Ni Reference

[45] D. Marbach, S. Roy, F. Ay, P. E. Meyer, R. Candeias, T. Kahveci, C. A.

Bristow, and M. Kellis, Predictive regulatory models in Drosophila melanogaster by

integrative inference of transcriptional networks, Genome Research, 22 (2012), pp. 1334–

1349.

[46] A. A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. D.

Favera, and A. Califano, ARACNE: An algorithm for the reconstruction of gene

regulatory networks in a mammalian cellular context, BMC Bioinformatics, 7 (2006),

p. S7.

[47] D. W. Meinke, Molecular genetics of plant embryogenesis, Annual Review of Plant

Biology, 46 (1995), pp. 369–394.
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