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(.ABSTRACT) 

Starting in September 1984, the Telesign project is an 

extensive and complex project proposed and undertaken by Dr. 

Nadler at Virginia Tech. The emphasis of this project is to 

enable the members of the deaf community to communicate vis-

ually using sign language or lip reading over the telephone 

network. 

The Image Processing Board (!PB) is the 'Brain' of the 

whole system. The !PB processes a given frame of an image 

to transmit only selected data. It uses the pseudo-laplacian 

operator, invented by Dr. Nadler, for edge detection. Ac-

cording to a recent survey of various edge detection algo-

rithms by D.E.Pearson, [l], the pseudo-laplacian operator is 

the most efficient one and it produces the most natural 

pictures. 

The whole !PB hosts about one hundred LSI/VLSI chips ac-

cording to the present hardware description. In the case of 

such a big system, hardware simulation becomes mandatory in 

order to ensure reliability of the design and to anticipate 



any kind of logic or timing errors in the design. This thesis 

describes the modifications to the original design to make 

it reconfigurable with proper initialization and the Hardware 

Simulation of the IPB, using General Simulation Program 

(GSP), including some comments on the simulators available 

at Virginia Tech and in particular a critique of the simula-

tor used here. Many improvements to the simulator are sug-

gested. Precautions to be taken while preparing the lay-out 

and wiring of the IPB, suggestions to simplify the design at 

some points at the cost of a few more chips, and lastly the 

instructions to run the models to get the required results, 

are outlined in this thesis. 
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1.0 INTRODUCTION. 

The purpose of this section is to introduce not only the 

IPB and GSP but also the overall Telesign project as such. 

Figure 1 on page 2 shows the overall system as it is going 

to be installed in Gallaudet College, Washington D.C. This 

section also explains the need for simulation, outlines the 

simulator used and gives an overview of the IPB structure. 

1. 1 THE TELESIGN PROJECT 

Telesign is designed to offer a means of visual communi-

cation over a 56 or 64 kb/sec data network. The purpose is 

to supply a means of visual telecommunication among the mem-

bers of the deaf community using sign language or lip read-

ing. The system consists of an edge detector, followed by 

digital compression coding to meet the channel requirements. 

Psychometric experiments have shown the need for 25 

frames/sec with a minimum definition of 128 x 128 points [2]. 

The telesign project consists of six different subsystems, 

inter-related in one way or the other. There are six graduate 

students working on each subsystem under the guidance of Dr. 

Nadler. 

Introduction. 1 
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1. Software Simulation of the NAD 1 operator The edge-

detection by NAD operator was first written in PASCAL and 

was verified by Dr. Nadler. NAD was then transfered to 

GIPSY (General Image Processing SYstem} on VAX 11/785, 

for convenience. The actual images are processed by this 

operator and are used as a reference while validating the 

Hardware Design of the IPB. 

2. Hardware Simulation of IPB Taking the input/output 

data from the GIPSY program for each module, the IPB was 

simulated module-by-module. 

3. Camera and Data Acquisition System A video camera is 

being built, which will create an image of 256 x 256 

pixels. 

4. Video Processing Board (VPB} The VPB transfers the 

data from the camera to the IPB through Link board, and 

from IPB output displays on the monitor of the other 

station. It also displays actual image and the processed 

image from both the stations on a central monitor. 

5. Link Board Link transfers initialization sequence from 

VAX 11/785 to the IPB, links IPB and VAX 11/785 during 

1 The pseudo-laplacian edge detector with blackfill. 
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debugging of the hardware and it also links all the 

boards to each other to monitor the data transfer. 

6. Smoothing of the Images: 

before displaying. 

At the output of the system, 

Figure 2 on page 5 shows .. the interconnections of all these 

boards in the system. 

1.2 WHY SIMULATE ? 

The purpose of this section is to discuss a topic which 

is of crucial importance to all those engaged in designing 

hardware of big systems, for example image processors, robot 

controllers, microcomputers etc. Objective tests are used 

in verification and validation which help the modeller to 

determine that the model works; and it also contributes to 

the additional subjective factors which come into play when 

a third party is to be convinced [3]. 

Consider first the objective criteria for establishing the 

credibility of a model. Figure 3 on page 6 depicts a simple 

representation of the modelling process. 

A conceptual model of the real system is produced by mak-

ing assumptions about variables and system parameters. The 

conceptual model is converted to a computer model by pro-

gramming, punching, and program entry. 

Introduction. 4 
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The process of establishing that the conceptual model 

truly represents the real system is validation, and the cor-

relation of the computer model and the conceptual model is 

verification. Verification is concerned with the elimination 

of programming and punching errors and the reduction of nu-

merical approximation errors to an acceptable level. Ver-

ification, in short, establishes that the specified equations 

are solved correctly within the computer model. Validation 

is a much more fundamental process which asks whether the 

equations are the right ones and whether the basic assump-

tions of the conceptual model are justified. In practice it 

is usual to test the outputs of the verified computer model 

(and hence conceptual model) with the real system as shown 

in the figure. 

Thoroughly execu.ted verification and validation proce-

dures ought to go a long way toward establishing the credi-

bility of a computer model, and will usually be sufficient 

to convince any modeller, however sceptical. 

1.3 GENERAL SIMULATION PROGRAM [GSP] 

The simulator used for this complicated architecture has 

been developed in Virginia Tech by Dr. J. R. Armstrong. This 

program provides functional simulation capability as well as 

the ability to simulate chip interface timing. Chip modeling 

utilizes chip input/output specifications and timing dia-

Introduction. 7 



grams. Construction and coding of the model is a process very 

much akin to assembly language programming. [5]. 

GSP is a program suitable for the simulation of LSI/VLSI 

devices as it allows for a manageable amount of detail in 

model descriptions and it is claimed that it can simulate 

with an efficiency that is adequate for system validation 

activities. 

Until now all the extensive work done on GSP has been more 

under fault modeling and fault simulation. The program was 

developed keeping this in mind. So, some people dealing with 

hardware simulation may not find (or have not found) this 

simulator particularly suitable for their application. There 

are certain constraints or restrictions of GSP. And some of 

those people have designed their simulators to suit their 

requirements, rather than circumventing those constraints of 

GSP. As a result the simulators they have designed are suit-

able for them and may not be suitable for others. In other 

words, it is very difficult to build a Universal Simulator. 

On the other hand, taking into consideration the complexity, 

the number of chips involved, size of each module in IPB de-

sign and the time factor, one would rather circumvent the 

constraints of GSP than writing a new simulator. After all 

the main purpose of this work is to simulate the IPB design 

to validate it. The purpose is not to design the most effi-

cient simulator and then simulate IPB design as an illus-

tration. 
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This is the first attempt made to simulate an image proc-

essing hardware using GSP. This is an ideal illustration of 

how an engineer can utilize the tools available to get what 

i_s desired. Also, it emphasises the need for simulation of 

hardware design. 

The GSP models described in The GSP User's Guide [ 5] and 

in [6], are of a single chip each. These models exactly de-

fine the I/O pins, behaviour of the chip and timing. While 

simulating !PB this is not always true. At times a group of 

chips is treated as a single chip, with input pins of the 

chips at the top of the model as input pins to the module and 

similarly output pins of the chips at the end of model as 

output pins of the module. But the behaviour of each chip in 

that module is perfectly defined, although it may be trans-

parent to the user. 

1.4 THE IPB ARCHITECTURE. 

The IPB architecture is pipelined byte-sliced. Each byte 

is a pixel given to IPB by the Video Camera output buff er. 

In order to have consistent structure, each pixel (a byte) 

is processed at every stage in the pipeline in 8 clock cy-

cles. Thus, 8 clock cycles make one pixel time. A pipeline 

is divided into five different 'tubes' or modules. During the 

first pixel time, the first module operates on the first 

pixel, hands over the processed byte to the next module, and 

Introduction. 9 



so on. The five modules are: Find_Di ffs, Sum_Diffs, 

Eval_Diffs, Filters, and Set Rel T. Figure 4 on page 11 shows 

the interconnections between these modules. 

The process of edge-detection and black-filling are ac-

complished by a series of interconnected functional uni ts 

[7]. The modules can be described in brief as follows: 

1. Find Diffs Compute the differences between graytones 

according to the vector directions supported in the 

laplacian mask, and then threshold those differences 

against TDIFF 2, flagging those differences above the 

threshold. 

2. Sum_Diffs :- Generate all of the laplacian vectors from 

the supplied mask input and count the numbers of black 

and white edge elements, respectively. 

3. Eval Diffs :- Determine the black and white edge discon-

tinuities in the input image using Tl, T2, T3. See foot-

note2. 

4. Filters :- Remove isolated black and white points using 

the neighborhood connectivity criterion. 

2 These are thresholds, see section 4.1. 
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5. Set_Rel_T :- Blackfill selected regions between the black 

edges of the image, using the white edge image and TBF, 

see footnote 2 • 

The detailed description of each module is given in [4]. 

The pipelined architecture facilitates module-by-module 

simulation and validation of the design. 
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2.0 A CRITIQUE OF VARIOUS SIMULATORS. 

Selection of a suitable simulator for the simulation of 

the IPB was one of the major decisions of this work. Mainly 

three different types of simulators were reviewed. Various 

aspects of all these simulators were considered, some of the 

drawbacks of the simulators were thought over and the possi-

bility of overcoming those drawbacks was considered. The main 

criterion for the selection of the simulator was the critical 

timing specifications. It was desired that the simulator 

should specify the state of the board at every clock cycle. 

The maximum clock frequency being 32 MHz, minimum clock pe-

riod becomes approximately 31. 7 ns. Thus, the simulator 

should be able give an output at every 32 ns. The second 

criterion for the selection of a simulator was its 

practicability for simulation of about 90 LSI/VLSI chips. The 

other criteria were simplicity of output interpretation, 

simplicity of the language, avai labi li ty of literature and 

expertise on the simulator, etc. 

The simulators under consideration were the ones which 

were readily available 

TILADS, SPLICE and GSP. 

at Virginia Tech, namely, ISPS, 

There were some drawbacks of each 

simulator. (These drawbacks mentioned here are only from the 

point of view of this thesis work, they may not be 

generalised.) It is not claimed that the selected simulator 

A Critique of Various Simulators. 13 



is totally flawless, but only that the selected simulator has 

certain advantages over the other from this work's point of 

view. Some suggestions regarding improvements in the selected 

simulator are listed in Section 5.1. 

2.1 ISPS. 

First it was intended that ISPS (Instruction Set Processor 

Specifications) be used. So, the literature on ISPS was made 

available for review. ISPS was criticised a few years ago by 

four scholars and the criticism was presented as a paper in 

the 4th International Symposium on Computer Hardware Lan-

guages [ 8]. A part of that paper will be reproduced here, 

with some comments. 

11 I SPS was invented with the intent of using it for many 

applications of machine description languages. These appli-

cations include description of the behavior of arbitrary 

register-transfer level circuits: image processors, display 

processors, video terminals etc. Description of the physical 

hardware itself, however, has not been one of the goals of 

ISPS and attempts to apply ISPS in this manner have resulted 

in a set of pathological examples which illustrate the inad-

equacies of ISPS for this purpose. 11 Simulation of IPB is 

definitely categorised as hardware simulation. Thus it was 

found that ISPS was not practicable for this use. Further 

discussion will justify the rejection of ISPS for this work. 

A Critique of Various Simulators. 14 



11 Our criticisms of the language could fall into several 

categories: semantics, syntax, and support software. Each 

of these in itself is important. We will emphasize, however, 

issues dealing with semantics because without these the other 

issues are moot points. 

11 From the point of view of ISPS as an instruction set 

representation, the chief weaknesses are: 1) The lack of ab-

stractions to cover certain operations common in hardware 

systems, and 2) The need for a constrained structure to the 

description. The latter problem can be remedied through the 

use of qualifiers identifying sections of the description 

(the computations, the processor state, the instruction in-

terpretation, etc.); this structure is explicitly not desir-

able in ISPS for general digital system design. On the other 

hand the former problem, concerning abstract operations, is 

shared by general system designers as well. For example: 

"No operator exists for transfering a block of memory 

into another block, or extracting a field from a variable 

position in register. As a consequence, it is necessary 

to describe such instructions indirectly, with loop or 

shifts and masking. The detection of the higher level 

functions expressed in terms of these more involved de-

scriptions is difficult for both software and hardware 

synthesis programs. There are some hardware structures 

which are now considered to be hardware primitives. These 

A Critique of Various Simulators. 15 



include FIFO buffers and LIFO stacks, associative memo-

ries, and large AND-OR arrays of logic (PALs). De-

scriptions of these functions in I SPS produce lengthy 

code; many I/O operations such as code conversion and 

buffering require these structures. 

" Real time processing .applications with interrupt proce-

dures that service peripher~l (asynchronous) devices,require 

synchronisation between the producer of data, say the main 

program, and the consumer of the data, say the device. Cat-

astrophic effects can occur if the proper mutual exclusions 

and signalling conventions are not used to maintain data in-

tegrity." 

This means that ISPS cannot describe real time processing 

and operating systems. This is the biggest drawback of ISPS 

for the intended use. But, realtime simulation with details 

down to every 32 ns was one of the main objectives of this 

work. Hence, ISPS could not be used for the IPB hardware 

simulation. From this discussion it is obvious that rather 

than spending time in discovering ways to circumvent all 

these major flaws in ISPS, it was better to consider another 

simulator. 

A Critique of Various Simulators. 16 



2.2 SPLICE AND TILADS. 

Another simulator under consideration was SPLICE. This 

simulator is used quite extensively in VLSI design simulation 

these days in industries. It was used extensively at Virginia 

Tech by the author of this thesis for studying an effect of 

three phase clocking system on VLSI chips, according to the 

ideas put forward by Dr. Nadler [9]. Although SPLICE is good 

for simulating the realtime behavior of a system, it is a 

GATE Level as well as CIRCUIT Level simulator. Since, a CHIP 

Level or FUNCTIONAL Level simulator was necessary, SPLICE was 

not chosen. 

There were some other simulators s~ch as TILADS (Texas 

Instruments Logic And Design Simulator). There are two ver-

sions of this particular simulator: Internal and External 

(to Texas Instruments, obviously!) At Texas Instruments the 

internal version of TILADS is extensively used. The version 

available at Virginia Tech was External version. The 

Internal version of TILADS is much more sophisticated than 

the external version. Both versions could simulate in real 

time. They have no restriction on the number of modules they 

can handle and can transfer one memory bank to another and 

so on. But lack of simplicity of language was a disadvantage 

of this simulator. So, TILADS was rejected for this use. 

A Critique of Various Simulators. 17 



2.3 GSP 

As mentioned earlier, the main criterion for selection of 

a simulator was the critical timing specifications. Out of 

all the simulators considered, it was found that only GSP is 

capable of giving the details about the state of the board 

at every clock cycle. GSP.can go as deep as one unit of time, 

e.g. ps or ns. Once the unit of time is fixed, it is necessary 

to specify all timing in that unit itself. Since the minimum 

clock pulse is approximately 32 ns, if the unit is fixed to 

ns, GSP can give the state of board at every ns if and when 

desired. 'State of board' is given by indicating the state 

of each input/output pin, contents of index registers and/or 

contents of desired registers. Hence with respect to this 

criterion GSP was the ideal simulator. 

The second criterion was the practicability of the simu-

lator for such a massive simulation. GSP can link as many as 

16 modules at a time. Each module can consist of any number 

of chip-models. A chip-model need not model a single chip, 

it may model a group of chips by merging the individual 

chip-models. In fact that is the methodology adapted for this 

simulation. It is explained in detail in the next chapter. 

Then came the question of availability of literature and 

expertise. Since GSP was developed at Virginia Tech itself, 

there was absolutely no difficulty in obtaining the required 

literature. It will be very clear later how with the help of 

A Critique of Various Simulators. 18 



an expert in GSP a major problem was solved very fast. Al-

though, most of the work in progress at Virginia Tech using 

GSP falls under the category of fault modeling and fault 

simulation, the knowledge of the structure of GSP and its 

applications was the best help one could ever get. Secondly, 

as will be explained in the next section, the simulation 

language of GSP is very much akin to any other assembly level 

language. That was an added advantage of GSP. 

Taking into consideration all these points, the selection 

of GSP for this large scale simulation is quite justified. 

And with that GSP has become the first simulator to simulate 

a pipelined, byte-sliced, microprogram-contolled image proc-

essing hardware design. 

2.4 GSP: THE SIMULATION LANGUAGE. 

The functional chip models were prepared using GSP (Gen-

eral Simulation Program) [5,6,10]. GSP is a general purpose, 

two-valued (1,0) simulation language, developed at Virginia 

Tech specifically to perform the simulation of VLSI devices 

at chip level [10]. Its most useful application is the mod-

eling and simulation of complicated VLSI circuits and micro-

processors. The language has been used extensively for 

modeling functional-level faults in simple and complex VLSI 

devices. It also has the capability to model such interface 

A Critique of Various Simulators. 19 



timing specification as setup time, hold time and minimum 

pulse width. 

Modeling in GSP is done in an assembly language with spe-

cial instructions for hardware description. The GSP manual, 

[S], contains a detailed explanation on the instruction set 

and the utilisation of each instruction. 

Figure 5 on page 21 . shows the GSP simulation system 

structure. Each module description file is assembled to ob-

tain a microcode file. The microcode files are merged to-

gether with the states into the LINK file. The DATA file has 

the information on module interconnections, initializations 

and inputs. The simulator reads the data file at the begin-

ning of simulation and executes the microcode during simu-

lation, generating the outputs. 

2.4. 1 METHODS OF FUNCTIONAL MODELING 

The modeling process involves 

1. Detailed examination of manufacturer's specifications, 

2. Generation of the model flow-chart, 

3. Coding of the model, and 

·4. Model checkout to verify the correctness of the model. 

A Critique of Various Simulators. 20 
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The functional-level models can be prepared in different 

ways. Two general methods for modeling digital devices at 

the functional-level are shown below : 

FUNCTIONAL LEVEL MODELING 
I 

LOOK-UP TABLE MODEL MICRO-OPERATION MODEL 

2.4. 1. 1 Look-up Table Model 

In this method, the functional unit is represented in the 

form of a truthtable (combinational logic) or a state table 

(sequential logic). The discussion here pertains to combi-

national logic. In order to access a particular value in the 

truth-table, the inputs to the functional unit are decoded 

to point to the location containing that value in the 

'Look-up Table' . Figure 6 on page 24 shows the hypothetical 

similarity between the actual function and its look-up table 

model. As evident, this is a very simple approach to model-

ing. Several such truth-tables for the different functions 

are put together to form the model for the whole device. 

Also, the functional units that are repeatedly used in the 
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device can be made into subroutines and 'called' whenever 

needed, during the data flow of the device. 

In GSP, the decoding constructs are used to perform this 

operation. The example in Figure 7 on page 25 describes the 

'look-up table' model for an And-Or-Invert function of three 

inputs, F(xl,x2,x3) = (xlx2 + x2x3 + x3xl)'. As can be seen 

from the figure, the number of bi ts of the input register 

that are to be decoded, are moved into one of the index reg-

isters (index register 1, in the example). The index register 

is used as the pointer to the locations of a table (table AOI, 

in the example), and the value contained in the location 

pointed to by the contents of the index register is then 

moved out to the destination (pin OUT) after a delay of 40 

ns. (DELl). 

2.4. 1.2 Micro-operation Model 

In this approach, the functional unit is defined as a se-

quence of model micro-operations, using the constructs of the 

modeling language. The functional model can be viewed as a 

nodal graph with two kinds of edges interconnecting the 

nodes. Each node is a set of model micro-operations and con-

trol and data get passed from one node to another along the 

edges. The dashed lines in Figure 8 on page 26 indicate con-

trol transfer while the solid lines indicate the passage of 

variables from one node to another. 
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AND-OR-INVERT (AOI) 

; registers for the model 
I 

REG(3) OLDX 

; pins for the module Xl,X2,X3 1,2,3 AOI 4 
I 

PIN X1X3(1,3),0UT(4) 
I 

; delays for the module 
I 

EVW DEL1(40) 

I 

module description 

BNE X1X3,0LDX,PRO 
EXR 

PRO: MOV X1X3,0LDX 
IDX OLDX(0),3,1 

MOV(DELl) AOI@l,OUT 

EXR 

START PROCEDURE IF DATA 
IS CHANGED 

STORE FOR NEXT CHECK 
STARTING WITH OTH BIT, 
MOVE 3 BITS INTO INDEX REG.1 
MOV THE CONTENTS OF LOCATION 
POINTED BY INDEX REG.l TO 
THE OUTPUT, AOI, AFTER DELl. 

;LOCATIONS 0 1 2 3 4 5 6 7 
I 

AOI : BYT #l,#l,#l,#0,#l,#0,#0,#0 
I 

END 

Figure 7. "Look-up Table" model 
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The functional unit is not described in terms of the in-

puts and the truth table as in the previous case; instead, 

modeling language constructs are used to manipulate the data 

and obtain the resultant output. The example in Figure 9 on 

page 28 describes the 'micro-operation' model for an And-Or-

Invert function of three inputs, similar to the one in 

Figure 7 on page 25. In GSP, modeling constructs such as AND, 

OR, and NOT are used in a sequence of micro-operations which 

yield the final output. 
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AND-OR-INVERT (AOI) 

; registers 
REG(l) OLDX1,0LDX2,0LDX3 
REG(l) AND12,AND23,AND31 
REG(l) ORBUF 
; pins 
PIN Xl(l),X2(2),X3(3),0UT(4) 
; delays 
EVW DEL1(40) 

I 

description 

BNE Xl,OLDXl,PROC 
BNE X2,0LDX2,PROC 
BNE X3,0LDX3,PROC 
EXR 

PROC: MOV Xl,OLDXl 
MOV X2,0LDX2 
MOV X3,0LDX3 

BRANCH IF VALUE CHANGED. 

FOR COMPARISON ON NEXT 
SIGNAL CHANGE OF Xl, X2, X3. 

AND Xl,X2,AND12 (AND12) = (Xl) * (X2) 
AND X2,X3,AND23 
AND X3,Xl,AND31 
OR AND12,AND23,0RBUF 
OR AND31,0RBUF,ORBUF DESTINATION =ORBUF ITSELF 
MOV(DELl) ORBUF, OUT 
EXR 

END 

Figure 9. "Micro Operation" model 
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3.0 THE STRUCTURE OF IPB. 

3.1 PIPELINE ARCHITECTURE. 

Computer architects have long resorted to a series of de-

sign techniques that are classified under the general term 

of 'concurrent operation', where at any instant the hardware 

is simultaneously processing more than one basic operation. 

Within this general category are two well-recognised tech-

niques, parallelism and pipelining. High performance is at-

tained by having all structures execute simultaneously on 

different parts of the problem to be solved. 

Pipelining generally takes the approach of splitting the 

function to be performed into subfunctions and allocating 

separate hardware to each subfunction, termed a stage or a 

module or a "tube". The pipeline has separate logic for each 

of the subfunctions, with staging latches positioned between 

each set of logic to hold the output of the stage for proc-

essing by the next stage. Every operation follows the same 

path through the stages. Further, the time required by each 

stage to do its subfunction is about equal, and the transi-

tions from stage to stage are rigidly controlled by an ex-

ternal timing source [11]. 

Pipelines are classified both according to their capabil-

ities and according to how they are actually used. A 
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unifunction pipeline is one that is capable of only one basic 

kind of function evaluation. The pipeline performs the same 

operations on every set of inputs given to it with no vari-

ations. A multi function pipeline is one that is capable of 

several different kinds of function evaluations. Thus in ad-

dition to the data inputs, there is some kind of control in-

put directing the pipeline's activity. The pipeline of IPB 

can be classified as multifunction. 

The subfunctions of the main function of the pipeline have 

following properties: 

1. Evaluation of the basic function is equivalent to some 

sequential evaluation of the subfunctions. 

2. The inputs for one subfunction come totally from the 

outputs of previous subfunctions in the evaluation se-

quence. (This is not true in the case of pipelines with 

feedback.) 

3. Other than the exchange of inputs and outputs, there are 

no inter-relationships between the subfunctions. 

4. Hardware may be developed to execute each subfunction. 
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5. The times required for these hardware uni ts to perform 

their individual evaluations are usually approximately 

equal. 

There are a few precautions to be taken, before a pipeline 

is constructed. A major concern is the delay introduced by 

wiring, including the wiring between individual components 

in a board, and between boards (particularly through connec-

tors). These delays are due to the limited propagation speed 

of electrical signals in the wiring and cannot be avoided. 

Intercomponent wiring delays approximately match the logic 

delays. Special care can be taken as to what logic is placed 

on what boards. The system can be split up by partitioning 

logic components onto boards or modules. There is one board 

for each stage. Consequently, the time for each stage must 

include an interboard delay. Al though proper placement of 

boards can minimize this delay, and proper selection of wire 

lengths equalises the effects, in general the clock pulse 

rate must be slower than the intrinsic logic would otherwise 

allow. 

It is felt necessary at this point to explain parallelism 

because, although IPB is essentially a pipeline, it is partly 

parallel also. 

Parallelism is to allow similar processing of different data 

to occur simultaneously or to allow different hardware to 

handle distinctly different parts of the problem. Both 
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parallelism and pipelining have the same origins and are hard 

to separate in practice. Both techniques attempt to increase 

the performance of some function by increasing the number of 

simultaneously operating hardware modules. For a conven-

tionally designed module to do some generic function, either 

technique can be used to drive a new design, running up to N 

times faster. A mixture of the two techniques results in an 

overlapped or a systolic design. As will be explained later 

in this chapter, the architecture of the IPB can be correctly 

described as "overlapped" or systolic. 

3.2 MANAGEMENT BY MICROPROGRAMMING. 

Microprogramming is too vast a topic to be covered in a 

page or two. Actually, the microprogram of IPB is so clear 

and neatly arranged that the theoretical explanation of 

microprogramming may become more complicated than the micro-

program itself. The essential theoretical aspects will be 

covered in this section. 

The most explicit definition of microprogramming is given 

by Daly, [ 12], "Microprogramming is a technique for designing 

and implementing the control function of a data processing 

system as a sequence of control signals, to interpret fixed 

or dynamically changeable data processing functions. These 

control signals, organized on a word basis and stored in a 

fixed or dynamically changeable control memory, represent the 
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states of the signals which control the flow of information 

between the executing functions and the orderly transition 

between these signal states." 

Microprogramming puts the control functions into a regular 

structure, isolating them from the data flow. An appropriate 

design flexibilty can be retained, if 'a functional perspec-

tive' is assumed to be the essence of microprogramming. Thus, 

microprogramming is a design philosophy and organizational 

method not limited by the implementation technology. It is 

the process of producing microprograms. A microprogram is a 

stored-program that explicitly and directly controls the ma-

jor logic devices of a digital system. It is a substitute for 

a sequential-logic control network. At this point one should 

be able to distinguish between programming and microprogram-

ming. There are two significant differences between the two: 

parallelism, a microinstruction can potentially cause many 

parallel events to occur; and a higher degree of asynchronous 

operations. 

There are some substitutes for a microprogram control: 

random-logic, sequential-logic and hardwired control, i.e. 

one can design a logic circuit to perform the same function. 

If there are a few control signals to be generated, then 

probably microprogramming will be more costly and/or slower 

[13). The advantages of micrprogramming for the designs such 

as the IPB are as follows: 
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1. A more orderly and uniform way of design. 

2. Ease of change. 

3. Cheaper for large systems. 

4. More suited to LSI/VLSI environment. 

5. Better diagnostic capability. 

6. Higher system reliabilty. 

The basis of bit-sliced (or byte-sliced) logic is the 

microprogramming. In fact bit-slice logic was designed with 

microprogrammed control in mind. From the design of !PB and 

its microprogram one should be able to see how Byte-slice 

logic and Microprogram blend so well! 

3.3 PIPELINED, BYTE-SLICED, MICROPROGRAMMED IPB. 

The design of !PB is a unique combination of pipeline, 

byte-sliced architecture with microprogrammed control. Actu-

ally, if one carefully observes the design of the !PB, one 

Will come to know that it has some properties of a parallel 

architecture also. So, it can be said that the !PB has an 

Overlapped architecture. As a general rule, special charac-
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teristics increase the complexity of the design. That is the 

case with IPB also. One point is noteworthy; although we un-

derstand some complex designs, sometimes we are not able to 

explain it to othere (especially to a layman) so well. It is 

said that a good scientist is rarely a good teacher. He can 

invent or develop incredible things, but may not be able to 

convey the idea to others properly. Similarly, from the 

technical background created until now, it appears very easy 

to explain the design of the IPB, but it is a very difficult 

task. And if it is so difficult to explain it to an intel-

ligent reader, it is more difficult to explain it to a 'dumb' 

computer through a restricted language. 

That was a rather philosophical image of the task of ex-

plaining the design of IPB and its simulation. It is felt 

essential at this point that an explanation be given about 

the edge detection algorithm used by the IPB - "pseudo-

laplacian" or "NAD" operator. 

3.3.1 PSEUDO-LAPLACIAN OPERATOR. 

This edge detection algorithm has been tested thoroughly 

in software at INRIA, Rocquencourt, France. It was originally 

written in PASCAL by Dr. Nadler (14). Consider the config-

uration of arrows in Figure 10 on page 37. Each of these ar-

rows joins two pixels and represents the difference between 

the video intensities at the head and the foot of the arrow. 
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Each difference is compared in absolute value to a certain 

threshold Tl, and if it is superior to that value, the 'sign' 

of the difference is retained. The positive and negative 

signs are then counted separately. The edge decision is taken 

if the following conditions are satisfied: 

C( +) > Tl 

or 

C(+) > T2 and C(+) - C(-) > T3 

where C(+) and C(-) are the counts of positive and negative 

signs, respectively; and Tl, T2 and T3 are the thresholds. 

A configuration of differences with central symmetry sig-

nifies that only second-order finite differences appear. The 

sum of these differences thus corresponds to a finite-

difference approximation to the laplacian. By the same token, 

we have a configuration with central symmetry of first-order 

finite differences. The difference C( +) - C(-) consists in 

summing the unit differnces obtained in the preceding step, 

and comparing the difference in counts to T3; the condition 

C(+) C(-) > T3 is analogous to thresholding in the 

laplacian. 

Blackfill is a technique incorporated with the pseudo-

laplacian operator to fill the space between two edges with 

maximum black. Based on blackfill, 'grayfill' and 'colorfill' 

are also suggested by Dr. Nadler for future enhancements in 

the system. 
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In the following sections each of the modules of hardware 

implementation of the pseudo-laplacian operator with 

blackfill (i.e. the design of the IPB) is explained, giving 

details of the simulation methodology and errors found in and 

by verification and validation processes. For more detailed 

description of each of the modules including operations tak-

ing place at every clock cycle, the microprogram etc.; please 

refer to [4]. 

3.4 FIND DIFFS. 

Find_Diffs basically means find differences. There are two 

major subfunctions implemented in this module: 

• 

• 

Storage of digital video in one of three memory banks and 

permutation of memory banks as each row is completed; 

Computation of the elementary differences required to 

decide black and white edge points. 

The computations are executed in microprogrammable byte-slice 

pipelined processors (Am 29501) in such a way that the carry 

outputs give the required data directly, inasmuch as they 

correspond to the sign bit in 2's complement arithmetic. The 

differences are between the pixels shown by arrows in 

Figure 12 on page 41. In this figure, x0 is the pixel at 
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reference and XS is the pixel which is the newest data given 

to this module. XW is the pixel on West of x0 , XS is the pixel 

on South of x0 , XSW is on the South-West and XSE is on South-

East of x0 . Thus, for a pixel x0 there are four types of 

differences XW' XS' XSW and XSE" There are two bits given 

for each difference, one bit indicating if x0 is on white 

side and second bit indicating if it is on black side, with 

respect to the pixel in that direction. These four directions 

are called the compass directions for the pixel in reference. 

The input to this module is the video data and output of 

this module is a byte called BW set (Black and White set). 

The 8 bits in BW set are as shown in Figure 11 on page 40. 

Before actual simulation was begun, a few fairly simple 

chip-models were developed and tested. One model of just 

three latches and three memory banks was developed and the 

input to this model was given to see if latching, writing 

into and reading from the memory is proper or not. A test 

pattern of a checkerboard of 9 squares with each square of 

10 x 10 pixels, was supplied by a GIPSY expert. When only the 

first three rows of this pattern were given to the model, 

after a certain number of inputs, the simulation used to 

crash giving a message: "Time queue too long." Then the 

problem was given to a GSP expert. It was found that GSP is 

capable of handling only 100 events in the time queue. So he 

changed all those local variables into global variables and 

made GSP capable of handling 2000 events. If in future this 
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length of time queue needs to be changed, one can do it re-

ferring to the list of variables given in Appendix F. 

Then the behavior of each chip was carefully studied. 

[15, 16, 17, 18]. There are all together about ten types of 

chips, and the total number of chips is 23. But that does not 

mean that there are 23 or 10 modules in the simulation. As 

explained earlier, some chips are merged into a single module 

and then the modules are linked. Find Diffs was simulated 

with three modules: 

1. DMA: DMA address generator with two latches, 

2. MEM: 3 video input latches and three memory banks. 

3. NAD: The main computing part of Find-Diffs. 

Figure 13 on page 43 shows how this arrangement is done. 

The microprogramming control unit was merged with all the 

three modules according to the need of microprogram to con-

trol the chip-models. 

In this simulation it was found that it was possible to 

split the design (of Find_diffs) into three parts, because 

the intermediate results were known. But it is not always 

possible to do so as will be seen in the simulation of the 

next module. The first two models were run and after a little 

bit of verification the design containing DMA address gener-
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ator and latches, and video input latches and memory banks 

was validated. In the verification of the third module, which 

simulates the preprocessors and latches the following obser-

vations were made: 

• 

• 

It is necessary to know the behaviour of a chip in de-

tail, before it is simulated; knowing just the behaviour 

used in the design is not enough. From this experience 

it is highly recommended that the chip used in design be 

simulated separately and then included in the simulation. 

It is necessary to test the simulation of the chip for 

different types of data, before it is declared complete 

and before it is included in the main simulation program. 

In the validation, after successful verification of the 

last module, it was found that there were errors in the de-

sign. Signed-arithmetic was expected from an ALU with 

unsigned-arithmetic. So, various combinations of l's comple-

ment and 2's complement arithinetic were tried on the model, 

until the exact desired output was obtained from the present 

design. The necessary changes were made and then after the 

final simulation run the design was validated. 
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3.5 SUM DIFFS. 

Sum_diffs means Sum Differences. This module executes 

three functions: 

1. Storage and permutation of rows. 

2. Fetching the compass bits required to compute the B sum 

(Black sum) and W sum (White sum) for each pixel. 

3. Counting those bits to give final B sum and W sum. 

This module counts the elementary differences relating to a 

given pixel to obtain B_sum and W_sum corresponding to the 

elementary differences indicative of black or white deci-

sions. The four compass directions (West, South-West, South-

East and South) are stored in four scratchpad memories, 

consisting of 2 64-bit RAM files, so that all four directions 

corresponding to the reference pixel can be accessed in one 

clock cycle. One register file is for 'Read' and the other 

for 'Write' in one clock cycle. (This is done to avoid using 

two-port memory. ) The address sequence for these reads and 

writes is stored in PROM. However, the address cycle does not 

repeat after 32 cycles (PROM length) but rather the repe-

tition period is 16 major cycles ('pixel cycles') of 8 clock 

cycles, i.e., 128. minor cycles. The input to this module is 
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a byte corresponding to each pixel of image, from Find_Diffs: 

BW set. The output of this module is 5 bits of each B sum and 

W sum. 

As explained earlier, it was not possible to know the 

intermediate results and data. So, it was necessary to sim-

ulate this whole design of nine different types of chips 

numbering 42, in one single model. This module is so compli-

cated that rigorous verification was necessary. The amount 

of work put in for verification cannot be easily explained 

in words. The very fact that during the simulation of this 

module CPU time worth $4000 was spent, shows that just an 

understanding of the design and the simulator does not help. 

The interfacing between the two is a very important factor. 

In case of such complicated and long simulations the follow-

ing points should be noted: 

1. 'Never take anything for granted!' It was experienced 

2. 

that if you take a very small thing for granted, it plays 

a monstrous role in spoiling the output. And then it is 

very difficult to trace back the cause of that error. 

If such a thing happens, it is always advisable to check 

each and every signal in the simulation at evry clock. 

I 1 I I Never trust your eyes a one. In GSP when an ouput is 

observed at a level 1 or above, it gives the state of 150 

pins and some registers, at every time in the time queue. 

The Structure of IPB. 46 



If only a few pins are used the other pins are at O al-

ways. If checking the results is done while the screen 

is scrolling, the factor of human error becomes very 

high. If level 0 is used,_ the information is so much less 

that it becomes diffcult to debug the program. It is ad-

visable to store the output in a file and then check it 

line by line. 

3. There are some rules of GSP. If those rules are not sat-

isfied, the results it gives are haphazard. It is always 

better to check at the beginning if all the rules of the 

simulator are satisfied or not. 

This module is the most complex of all and it needs about 

7 rows of image data to get any valid output. So, simulation 

of it was rather a cumbersome process. And it was found that 

all the errors were in understanding of the module and mod-

eling it. This complex design was the most perfect one too. 

3.6 EVAL DIFFS. 

This is a relatively small module. It evaluates the B sum 

and W_sum and generates the current bits of Binary_Row (BR) 

and White Bits (WB). It carries out the various comparisons 

to thresholds and generates the required bi ts as functions 
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of those comparisons. The bits are obtained as logical func-

tions of the carry from an Am29501 (Microprogrammable ALU). 

The inputs to this module are the three thresholds tl, t2, 

t3 stored during initialization in the Am29501 internal 

pipeline, and the current values of W_sum, B_sum from the 

output of Sum_diffs. The results of comparisons are obtained 

at the Cout pin and stored in a shift register. When all the 

comparisons have been effected the results are evaluated by 

logic functions associated with the two PAL functions, BR and 

WB. 

Simulation of this module was very easy. There was very 

little time spent on verification and validation. But it was 

in the simulation of this module that a major timing error 

in the next module, i.e., Filters, was found, which will be 

explained in detail in the next section. From the simulation 

of this module it was found that there were two chips used 

that were not necessary and the PAL function was too complex. 

So, a simple design was suggested with a smaller PAL. 

Figure 14 on page 49 shows the old design and the old PAL 

function, while Figure 15 on page 50 shows the new design 

with the PAL function. From the figures and the PAL function 

it is clear that the design is very simple now. This is one 

of the advantages of simulation. 
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This module executes the algorithm for eliminating iso-

lated points and 1-bi t-wide streaks, by the Boolean opera-

tion: 

e' := (a + c) * (b + d) * e 

where the variables correspond to the bits found by 

Eva! diffs in the positions as shown below: 

a 

b e d 

c 

There are three filters: 

Input(From) Output(To) 

Binary_Row (Eval_Diffs) := Binary_In (Set_Rel_T) 

White_Bit (Eval_Diffs) := White In (Set_Rel_T) 

Binary_In (Set-Rel_T) := Binary_Out (Output Buffer) 

These three sequential machines are implemented by three 

pairs of flipflops in a registered PAL. The states of the 

sequential machines are frozen when the inputs are not 

available. It must be clear now that for the last filtering 

function, the input has to come from the output of the next 

module, Set_Rel_T, so that function is delayed by a pixel 

cycle time. 

This module previously contained about 17 chips of 6 dif-

ferent types. The period of this module was not one pixel 
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cycle 3 , but 8 pixel cycles. This was the only module with a 

different period. For an efficient pipeline each stage should 

have approximately the same period to get significant 

throughput. And also that the timing could not be adjusted 

properly. There was one control signal from the microprogram 

of this module which was also used in the previous one, 

Eval Diffs. Now, to get a proper input from Eval Diffs at the 

right time, the control signal should be adjusted properly. 

But it was found from the simulation that if the timing for 

one module is adjusted properly, that for the other would be 

out of phase with it. This is an unusual case in a pipline. 

A lot of experiments were done to get the correct timing for 

both the modules. All of them drew a conclusion that the de-

sign is not right. That was the biggest achievement of this 

simulation. This Mega-bug-was detected and the exact error 

was pointed out. Had there been no simulation, this error 

would have grown to a monstrous size and a lot more time would 

have been required to fix it. 

The module was then redesigned, with a lot less chips than 

before. Now the design has only ~ chips of ~ different types 

and the period is now one pixel cycle. The control signals 

are reduced tremendously, there were about 30 control signals 

in the previous design whereas there are only 4 control 

signals now. 

3 One pixel cycle equals 8 clock cycles. 

The Structure of IPB. 52 



After the new design was ready it was very easy to simu-

late it. But then it was necessary to simulate the previous 

module again. Both the modules were simulated and tested for 

timing adjustment thoroughly. There was no difficulty in 

verifying the model and then validating the design. 

3.8 SET REL T. - -

This stands for Set Relative Threshold. This is the module 

added to incorporate the blackfill with the pseudo-laplacian 

edge detector. This module does process_gray and 

process_black, generating a bit stream into the output filter 

as well as the next value of avg_black. 

The pri.ncipal features of this module are the selection 

of microprogram page by the two bits, Binary_In and White_In, 

and the manner of executing the conditional correction in the 

recursive computation of avg_black. The inputs to this mod-

ule are: Binary_In and White In from Filters, and Gray_val 

from Find Diffs. 

In the simulation of this module the right time of 

Gray_val coming from Find_Diffs was a point of contention. 

But then after a careful observation and computation it was 

resolved. When the correct offset was known it was not too 

difficult to get the model running. The model was verified 

and the design was validated after a few error corrections 

in the PAL functions. 
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After all this rigorous verification and validation proc-

ess, a reference is ready for actual hardware debugging. The 

models are so easy to run that anyone can just see the in-

structions and run the models. In the documentation of these 

models all the details such as Inputs, Outputs, Variables 

etc. are given. After this exhausting exercise of simulation 

the next task was to .modify the design to make it 

reconfigurable and to define all the initialization sequences 

for all the modules. These two topics are covered in the next 

chapter. 
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4.0 THE DESIGN MODIFICATIONS 

If work done for this thesis is represented by a "black 

box", the input to this black box was the design of IPB for 

one set of parameters and GSP; the output from that black box 

is a perfect design of IPB for different sets of parameters 

ready for wiring. 

The purpose of this thesis is twofold: 

1. To simulate the design of IPB to get the errors in the 

design corrected, so as to have a reference for hardware 

debugging. 

2. To add to the design features a capability of reconfig-

uration, which includes design for making reconfiguration 

and the definition of initializations according to the 

configuration. 

The first purpose has already been discussed in detail in 

the previous chapters. The following sections describe how 

the design was made reconfigurable. There are some very im-

portant points one should always pay attention to, when a 

design has to be modified: 
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1. If the system is not designed by the person who is modi-

fying it, that person should make sure he understands the 

original design perfectly. 

2. While modifying the design, features of the original 

system should not be lost. 

3. After designing the modification, it is essential to en-

sure that the modification and the original design blend 

well. 

4. All possible effects on all the parts of the design due 

to the modification should be considered. It was experi-

enced many times during this work, that a lot of time and 

effort may be spent unnecessarily if all the effects are 

not considered. 

4.1 THE RECONFIGURABLE IPB. 

The parameters that can be changed by the user of Telesign 

are as follows: 

1. Spatial definition: 256 X 256 pixels or 128 X 128 pixels. 

This parameter has been tested for 256 X 256, 128 X 128 

and 85 x 85 non-interlaced by a software engineer. It 

seems reasonable to use 256 X 256 or 128 X 128. 
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2. Temporal definition: Between 25 images/sec. to 12.5 

images/sec. 

3. Use of interlace: This will give an intermediate defi-

nition, 2 X 128 X 256 at double frame rate. This should 

give half the bit rate of a full 256 X 256, and may sat-

isfy the temporal requirement. 

4. The size of the pseudo-laplacian window (3 X 3, 5 X 5, 7 

X 7) and the number of components used within that win-

dow. Studies have shown that there are only three combi-

nations of window size and number of components, worth 

considering: 7 X 7 with 32 components, 7 X 7 with 20 

components and 5 X 5 with 8 components. 

5. Some thresholds: 

• TDIFF ·- The minimum difference in thresholds be-

tween neighborhood pixels in the image that qualifies 

as an edge element. 

• Tl :- The minimum number of edge elements associated 

with a given pixel required to independently deter-

mine whether the edge elements constitute the black 

or white side of an edge discontinuity. 
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• 

• 

• 

T2 :- The minimum number of edge elements associated 

with a given pixel that guarantees the decision of 

black and/or white to be made regardless of white or 

black edge elements, respectively. 

T3 : - The minimum difference between the number of 

black and white edge elements required to assign a 

black and/or white label to a given pixel. 

TBF : - The minimum difference required between the 

running graytone average of "black" pixels and the 

actual graytone of a given pixel to enable the pixel 

to be blackfilled. 

There are other parameters also, but these are fixed after a 

deep study. Those parameters are as follows: 

1. Use of subsampling after processing or no subsampling. 

It is found that subsampling gives much better results. 

2. Use of blackfill or not. After discussion with some fu-

ture users of Telesign, it was felt that they would feel 

comfortable if blackfill is included. So, blackfill will 

be in the system, and it need not be optional. 
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Let us now see how the design was made capable of handling 

changes in all these parameters. 

The first three parameters, spatial definition, temporal de-

finition and use of interlace, depend upon the data and clock 

given to !PB by VPB 4 • Since IPB operates at every clock cy-

cle, it was decided to change the clock to !PB rather than 

changing the data-rate. This can be achieved in two ways: 

1. Keeping the clock to !PB at the same frequency all the 

time and incorporating some logic on !PB to change the 

clock frequency according to the choice of these parame-

ters. A simple logic design to achieve this is given in 

the last section of this chapter. 

2. Providing IPB with a clock already adjusted to accomodate 

these parameters. This appears to be the best way. The 

parameter which decides the size of pseudo-laplacian 

window and the number of components used within that 

window, has to be accommodated by !PB itself. 

Figure 16 on page 60 shows the three combinations which 

produce considerably good results. 

After a deep study it was found that out of five modules 

of the design, only sum-Diffs is affected by this parameter. 

4 Video Processing Board, see section 1.1. 
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In Sum-Diffs the addressing sequence for the reads and writes 

of the scratch pad memories changes with the change in this 

parameter. The sequence of writes may remain constant, but 

that of reads changes, because the number of writes can be 

for 32 vectors, but number of reads are 32, 20 or 8. So, after 

some investigation the new addressing sequences were found. 

Figure 17 on page 62 gives the scratch-pad addressing se-

quence f o_r 7 X 7 window with 32 vectors. Figure 18 on page 

63 gives the scratch-pad addressing sequence for 7 X 7 window 

with 20 vectors. Figure 19 on page 64 gives the scratch-pad 

addressing sequence for 5 X 5 window with 8 vectors. These 

addressing sequences were put in, and the output of Sum-

Diffs, for the same input data, was checked and verified with 

that from the GIPSY program. After a few error corrections 

in data entry, the design was validated. These addressing 

sequences will be stored in a bigger PROM (or 3 PROMs), and 

two bi ts will select the proper addressing sequence. If a 

bigger PROM is used these two bits will be additional address 

bits to that PROM, if three smaller PROMs are used three bits 

would be required to select the proper PROM chip. The default 

will always be 7 X 7 with 20 vectors. All the thresholds are 

the part of initialization of the modules. The initialization 

sequences are defined and detailed in the next section. 
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I I 
I B/WSP ( W) B/WSP (SE) B/WSP < s > I B/WSP (SW) I -----1---------- ----------- ----------1------------1 p T I Rl R2 Rl R2 Rl R2 I Rl R2 

-----1---------- ----------- ----------!-----------
0 0 5 0 8 0 8 I 0 5 

I 
1 5 1 9 1 6 1 I 6 1 

I 
2 2 8 2 11 2 12 I 2 8 

0 3 6 2 12 2 9 2 9 2 

4 x 1 x 4 7 x x 13 

5 2 x 5 x 10 x 14 x 

6 4 1 4 4 4 10 4 14 

7 4 3 5 3 7 3 14 3 

- - - - - - - - - - - - - - - -

0 3 8· 3 11 3 11 3 8 

1 8 4 12 4 9 4 9 4 

2 5 11 5 14 5 15 5 11 

1 3 9 5 15 5 12 5 12 5 

4 x 4 x 7 10 x x 0 

5 5 x 8 x 13 x 1 x 

6 7 4 7 7 7 13 7 0 

7 7 6 8 6 10 6 1 6 

Figure 17. Addressing Sequence for 7 x 7 window with 32 
vectors 
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I I I I 
I B/WSP (W) I B/WSP (SE)I B/WS~ (S)I B/WSP (SW) 

----- ---------- -----------------1----------1------ I I 
p T I Rl R2 I Rl R2 I Rl R2 I Rl R2 
----- ---------- ----------- ---------- -----------

0 0 xx 0 8 0 8 0 5 

1 5 1 xx 1 6 1 6 1 

2 2 8 2 11 2 12 2 8 

0 3 6 2 12 2 xx 2 xx 2 

4 x xx x xx xx x x 13 

5 2 x 5 x 10 x xx x 
6 4 1 4 xx 4 10 4 xx 

7 4 3 5 3 7 3 14 3 

- - - - - - - I - - - - - - - - -
0 3 xx 3 11 3 11 3 8 

1 8 4 xx 4 9 4 9 4 

2 5 11 5 14 5 15 5 11 

1 3 9 5 15 5 12 5 xx 5 

4 x xx x xx xx x x 0 

5 5 x 8 x xx x xx x 

6 7 4 7 xx 7 13 7 xx 

7 7 6 8 6 10 6 1 6 

Figure 18. Addressing Sequence for 7 x 7 window with 20 
vectors 
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I I 
I B/WSP ( w) B/WSP (SE) B/WSP < s > I B/WSP (SW) I -----1---------- ----------- ----------1------------1 

p T I Rl R2 Rl R2 Rl R2 I Rl R2 
----- ---------- ----------- ----------1-----------

0 0 xx 0 8 0 8 I 0 xx 
I 

1 xx 1 xx 1 xx 1 I xx 1 
I 

2 2 8 2 xx 2 xx I 2 8 

0 3 xx 2 xx 2 xx 2 xx 2 

4 x xx x xx xx x x xx 
5 xx x 5 x xx x xx x 
6 4 1 4 xx 4 10 4 xx 

7 xx 3 xx 3 xx 3 14 3 

- - - - - - - - - - - - - - - - - -

0 3 xx 3 11 3 11 3 xx 

1 xx 4 xx 4 xx 4 xx 4 

2 5 11 5 xx 5 xx 5 11 

1 3 xx 5 xx 5 12 5 xx 5 

4 x xx x xx xx x x xx 

5 xx x 8 x xx x xx x 

6 7 4 7 xx 7 13 7 xx 

7 xx 6 xx 6 xx 6 1 6 

Figure 19. Addressing Sequence for 5 x 5 window with 8 
vectors 
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4.2 THE INITIALIZATION SEQUENCES 

In the original hardware description of !PB, at the end 

of each module the initialization requirements are specified. 

Taking that as a reference and studying the control signals 

for all the initializations the initialization sequences are 

defined for each module. Some of these initializations have 

been simulated in the respective modules and are validated. 

The latches used in the design are special chips: Am29818. 

In brief, they have a serial shadow register (SSR) and writ-

able control store (WCS) pipeline register [15]. The latches 

are connected by their SID/SOD pins to form a "serpent" 

within each module. These serpents are used during hardware 

debugging and in some of the modules they are also used for 

initialization . So, the initialization data can be given to 

the respective latch serially, and data from each module can 

be read serially during debug mode. 

There will be 11 signals from the Link board to !PB for 

initialization. Those 11 signals are: 

1. The data required for initialization of different chips. 

Since sometimes a serpent of latches is used to load the 

data to the chips for initialization, the data line gives 

a number of zeros along with the valid data required. All 

the required bytes of data are defined for each module. 

There are three data lines. 

The Design Modifications 65 



2. The signals to control the chips that need to be ini-

tialized. These signals go into a control latch. And at 

the end of each sequence this latch is output enabled. 

There are three such lines from the Link, one for the 

control latch and the microprogram output latch in 

Find Diffs and one each for the other two control 

latches. 

3. Four control signals to control the four control latches. 

There are three extra latches for this purpose and one 

latch from microprogram output latches of Find Diffs is 

used for output enabling the latches carrying the data 

needed for initialization of Find Diffs. 

4. A clock signal for the serial clock of the latches. 

The initialization is achieved with a principle similar 

to the "Domino Principle." First the initialization data come 

from the link and creep through the serpent. The control data 

then fill the control latch. When that is finished, Link 

qi ves the data to control the Control Latche' s MODE to 

transfer SSR to pipeline register, and to its output enable 

(OE). Then the control data control the chips to be 

ini tialsed with the initialization data standing at their 

data lines. And thus the chips are initialized. There are 

some chips that do not need any data for initialization; in 
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that case more control data come to the control latches and 

those chips are initialized. The following sub-sections de-

scribe initialization of each module. 

4.2.1 INITIALIZATION OF FIND DIFFS. 

The following steps are required for this initialization: 

1. Clear Work-Zone SRAMS. CLR' of these SRAM' s is 0 for 

clearing and 1 for normal operation. So, CLR' of WZO,WZl 

& WZ2 = 0 1 1 1 ....... . 

2. Store row-size+ 255 in DMA Address Generator's regis-

ters, HI byte in Word-Counter (WC) and LO byte in 

Address-Counter (AC). There can be two values of row-

size, 255 or 127. For 256 x 256 ·image row-size is 255, 

so FFFF needs to be stored in the DMA, FF in WC and FF 

in AC. For 128 x 128 image row-size is 127, so 7F is 

stored in AC and FF in WC. The control sequence for this 

initialization is: 

I2 

1 

1 

Il 

0 

1 

IO 

1 

0 
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3. Set DMA mode to 0. The control registers CRO, CRl, CR2 

of the chip (Am2940) should have a 4 (i.e. O, o, 1 re-

spectively). The control sequence is: 

I2 

0 

Il 

0 

IO 

0 

DO - 07 

04 

4. Load TDIFF into the register A3 of both the Am 2950l's. 

The control sequence is: 

Il2 

0 

Ill 

0 

MIO - MI7 (MSP) 

TD I FF 

5. Clear Work-Zone Counters WZCO, WZCl, WZC2. And shift a 1 

to WZCO. For clearing the counters CLR' of WZCO, WZCl & 

WZC2 = 0 1 1 1 . . . . . For shifting 1 to WZCO PRESET' 

of WZCO = 0 1 1 1 ..... But, PRESET' of WZCl, WZC2 is 

always at 1. 

6. Clear WCI and BCI. This is done by a giving 0 1 1 1 .... 

to CLR' of these flip-flops. 

7. After the end of each row: 

• Clear the microprogram address counter ( SN74AS163), 

and 

• Rotate the ring counter WZC. 
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This is done cleverly by the end of line (EOL) signal 

from the Link board. 

Thus, taking into consideration all the control sequences 

and the latches involved, the connections are as shown in 

Figure 20 on page 70 and the initialization sequence is as 

follows: 

Data-bytes: 0 0 0 0 0 0 0 04 0 0 0 0 0 0 255 

Control-bytes: 0 0 0 0 0 0224 5 120 0 0 0 0 0224 125 

Data-bytes: 0 0 0 0 0 0 0 255/127 6 0 ·O 0 0 0 0 

Control-bytes: 0 0 0 0 0 0224 123 239 247 255 159 255 

4.2.2 INITIALIZATION OF SUM DIFFS 

Although this is the most complex module of all, there are 

very control sequences, and except for one row-initialization 

which is done by EOL' signal, all the other signals are taken 

from the control latch used in Find Diffs initialization. 

There are no data-bytes required here. There are following 

initializations to done: 

1. Clear B/W_Set SRAM's: CLR' SRAM's = 0 1 1 1 ..... 

5 

6 

This control byte is for OE' of latches holding data. 

This is to account for the row-size of 256 or 128. 
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2. Clear microprogram address counter: CLR' UPAC = o 1 1 1 

3. Set scratch-pad address counter to 1: The controls for 

this are: 

so 
1 

1 

Sl 

0 

1 

A B C D E F G H 

1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

4. Set scratch-pad address counter to 1 after each row: The 

same sequence as above applies. So, to incorporate both 

the session and row initialization a combinational logic 

is designed, where the functions are as follows: 

Sl = (CLR') * (EOL') and A= (Sl)' 

5. Clear microprogram address counter after each row: This 

is done by an EOL' (INV(End-of-line)) signal. 

6. Clear BC, WC, SDCO and SDC1 7 : BC and WC are cleared by a 

CLR' signal and SDCO and SDCl are cleared automatically 

due to the PAL function [4]. 

7 These are flip-flops storing intermediate values. 
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4.2.3 INITIALIZATION OF EVAL DIFFS 

This initialization consists of storing the three thresh-

olds into the three registers of Am 29501 8 • In order to have 

a concise control sequence the thresholds are stored in the 

following sequence: 

1. t3 -- > Al of the Am 29501. 

2. t2 --> Bl of the Am 29501. 

3. Al --> A2. 

4. tl --> Al of the Am 29501. 

The control sequence is as follows: 

!7 !8 !9 !10 !13 !14 MODE DIO - DI7 

1 0 1 1 1 1 1 t3 

1 1 1 1 1 0 1 t2 

1 1 0 1 1 1 1 xx 

1 0 1 1 1 1 1 tl 

The sequence expected from the link board is as follows: 

Data-bytes: t3 t2 xx tl 

Control-bytes: 125 95 123 125 

8 This is a microprogrammable preprocessor. 
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4.2.4 INITIALSIATION OF FILTERS 

The only signal needed here is a clear signal for 

clearing SRAM and the shift register. This signal is 

taken from Find Diffs control seg\:lence. 

4.2.5 INITIALIZATION OF SET REL T - -

This initialization is similar o that of Find_Diffs, 

which involves initialization of the DMA address gener-

ator. The steps required are: 

1. Load row-size + 4 + 255 to DMA for Gray-Val FIFO. 

2. Set DMA mode to 0. 

3. Clear all the latches and micrprogram address 

counter with a CLR' signal from the first control 

latch in Find Diffs. 

The DMA initialization sequence is as follows: 

Data-bytes: 0 0 04 0 0 03 0 0 0/128 6 

Control-bytes: O 0 08 0 0 13 0 0 11 
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4.3 FUTURE DESIGN ALTERATIONS 

The present design of the !PB is not the only possi-

ble way to design this board. Just as there can be many 

ways to program one operation in software, there can be 

many ways to implement hardware of a particular design. 

Some anticipated design alterations are mentioned here 

in brief: 

1. The first module of the IPB design (Find Diffs) 

contains three memory banks of 8k x 8 each. But for 

the operation of Find_Diffs only two of them are 

necessary; the third memory bank stores the pixels 

for giving it to the last module ( Set_Rel_T) as 

Gray Val. The Gray Val FIFO in Set Rel T stores one - -
row and four pixels previous to the one in refer-

ence. If the Gray_Val FIFO in Set_Rel_T is made a 

little bigger so as to store two rows and four 

pixels previous to the one presently in reference, 

there will be no need for the third memory bank in 

Find Diffs. 

2. There are two microprogrammable preprocessors (Am 

29501' s) in this module. If the number of compar-

isons is reduced, only one Am 29501 would carry out 
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the same computations at a slower rate. This needs 

to be investigated. 

3. In the module Sum_Diffs, a set of black and white 

bi ts corresponding to each direction for a pixel 

(BW Set) is stored in one of the four 8k x 8 memory 

banks (according to whichever is enabled for the 

present row). Then the set is read from the memory 

and is split up into individual directional bits and 

stored in a 2-bi t scratch-pad memory. Instead of 

assembling these bi ts and then disassembling them 

again, i{ the memory banks of Bk x 1 are used to 

store each bit and then if the bi ts are read from 

those memories as needed, a lot of wiring and big 

chips would be saved. But, of course the design de-

tails and the addressing sequence should be worked 

out carefully. 
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5.0 CONCLUSION 

Al though this is a conclusion of the topic of this 

thesis, it is not a conclusion of the responsibilities 

of the author nor is it the completion of the Telesign 

project. A detail description of the work still to be 

done on the subsystems of the Telsign project is beyond 

the scope of this thesis. This work will be declared 

finished only when the deaf people will start communi-

cating using this system. 

One of the major things to be done in the very near 

future is to construct a command procedure on VAX 11/785 

which will extract essential information from the output 

files of the simulation runs and compare it with that 

of the GIPSY program. This will automate the validation 

process and it wi 11 ensure reliability too. There are 

some command procedures present already on VAX 11/785, 

which produce input command files to the different mod-

ules from the input given by the GIPSY program. So, very 

soon the whole validation process will be totally man-

aged by the computer and it will be much more reliable. 

This is going to be of a great help while debugging the 

hardware. The output from the actual hardware can be 

stored in a file which the computer will compare with 
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that of the simulation cycle-by-cycle and find out where 

the outputs are not matching. 

The accomplishments of this work include, mainly, the 

first successful interface between the first chip-level 

simulator and the first microprogrammed reconfigurable 

image processing board. From a survey of the literature 

on logic simulators and from the discussion with some 

of the experts in this field, it was concluded that this 

is the first attempt to simulate such a huge and complex 

hardware system using GSP. Just as in the general case 

of pioneers, a lot of difficult situations and deadlocks 

were faced. Almost all the precautions to avoid such 

difficulties in future and solutions to those kind of 

difficulties from the experience of this work are given 

in the previous chapters. Secondly, the design of the 

IPB was completed with an added feature of 

reconfigurability. The board is being laid out using the 

HP CAD/CAM system. 

From the suggestions to improve GSP, given in the 

next section, it will be clear that had all these fea-

tures already been in GSP, the work would have been 

easier and the results would have been more effective. 
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5.1 SUGGESTIONS TO IMPROVE GSP 

The improvements suggested here are in the same order 

as the topics are covered in GSP User's Guide. [S]. 

1. The time queue length: This is the most significant 

part of simulation. The user should be able to de-

cide the length of the time queue. The default 

length may be kept small. If the user wants to use 

it for a large number of events, either he should 

be introduced to the simulator's structure so that 

the user could go into the simulator and change the 

queue length or there should be a provision to fix 

it to any value, the user needs, from outside. The 

problems faced due to the fixed small queue length 

are mentioned earlier. Also, the variables in the 

simulator that need to be changed, to change the 

queue length, are given in Appendix F. 

2. The level (L) command in the Command File determines 

how much information is presented while the simula-

tor is running. As given in [S], Level 0 displays 

only those pins which are connected to the front 

panel if they change state. This information is in 

hexadecimal form, while in Level 1 or above 150 pins 

are di splayed, with the binary values. (The pins 
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that are not at all used in the source file are al-

ways at 0.) There is no intermediate level which 

will display the pins connected to the front panel 

at the time the user wants to observe the data in 

decimal form. It is not practical to observe those 

pins in level 1 or above, because of the size of the 

output. 

3. The input data can be given through a command file 

in decimal form only. The output can be in 

hexadecimal (level 0) or in decimal form (level 1 

or above). This is rather unconventional. The user 

should be able to decide the form of input as well 

as the output at any level. 

4. The output is displayed on the screen, even if the 

user wants to store the output in a file only. This 

reduces the speed of simulation, which in turn re-

duces the efficiency of the simulator. 

5. The user decides whether an output file is to be 

created or not. After the simulation is finished 

the user is asked if the output file is to be ere-

ated or not. Even if the simulator is not asked to 

create an output, it creates an output file. This 
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9 

becomes very irritating when the user has had enough 

simulation! 

6. While the simulator is running and the output is 

being displayed on screen, if the user realizes that 

he has made some error there is no way to halt the 

simualtor. On VAX 11/785 [CNTRL] Y can stop the 

simulation. 

created: 

But then three temporary files are 

DATAAUTO.TMP, GSPTMPLOG.TMP and 

GSPTMPREG. TMP. The GSPTMPLOG. TMP file which con-

tains the part of the simulation is added to the 

output file when the simulation is run completely 

the next time. It is very confusing when the user 

opens the output file. There should be a provision 

for the user to decide whether the part of the pre-

vious simulation run be included in the output file 

or not. 

(There is a solution to this problem when the simu-

lation is done on VAX 11/785. The following series 

of commands will erase the unwanted part of the 

previous simulation run: 

$ 9 CLOSE LOGFILE 

$CLOSE REGFILE 

$DELETE *.TMP;* 

This is the prompt on VAX 11/785. 
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This might be a problem only with VAX computers, 

where different versions of one file are created.) 

7. The maximum length of a register is 8 bits. So, the 

maximum number which can be handled without any ma-

nipulation is 255. The registers should be of vari-

able length from.a bits to 32 bits. 

8. Since the maximum length of an index register is 

also 8, only 256 memory locations can be addressed 

through one index register. The maximum size of the 

memory should be at least 8 kilobytes. 

9. There are instructions such as increment (INC), ro-

tate right (ROR), shift right (SHR). While simulat-

ing big hardware systems the counterparts of these 

instructions, i.e. decrement, rotate left and shift 

left, are also necessary. Similarly, the branch in-

structions, branch if equal (BEQ) and branch if not 

equal (BNE), should also have other forms - branch 

if greater than and branch if less than. 

10. Branch to a program label is a similar operation to 

jump to a subroutine (JSR). This is the only in-

struction to call a subroutine. There should also 

be instructions to call a subroutine on some condi-
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tions, jump to a subroutine if equal or not equal 

and greater than or less than. 

11. In the command file, when a bunch of pins from one 

module is connected to a bunch of pins from another 

module, each pin connection has to be mentioned. 

There should be a provision to connect a bunch of 

pins to another in one command. 

12. This simulator does not recognize special control 

characters such as TAB. It only recognizes spaces. 

It should be easy to incorporate the control char-

acters in its list of characters. 

13. It recognizes only upper case letters. It should 

also recognize lower case letters. 
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APPENDIX A. THE SOURCE CODE OF THE MODULE FIND DIFFS 

As explained earlier there are three parts of this 

source code, DMA, MEM and NAD. Source codes for these 

parts are included in this section. There is also an 

example of the output file of the DMA Address Generator 

model. 

A.1 OMA.SOR 

;--DMA ADDRESS GENERATION FOR MEMORY BANKS. 

;PURPOSE 

THIS MODULE SIMULATES A BUNCH OF CHIPS FROM THE FIRST 

MODULE OF THE IPB DEISIGN: FIND DIFFS. 

THE CHIPS INCLUDED IN THIS MODULE ARE 

AM2940 

AM29818 

;ENTRY POINT 

DMA ADDRESS GENERATOR. 

TWO ADDRESS LATCHES. 

GSPASM DMA -- TO ASSEMBLE THE SOURCE FILE. 
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GSPSIM DMA -- TO START LINKING AND THEN SIMULATING. 

THIS IS AN INTERACTIVE PROCEDURE. 

;DATA FORMAT 

INPUT 

OUTPUT 

AS GIVEN IN COMMAND FILE - DECIMAL. 

HEXADECIMAL. 

;LIMITATIONS 

RUNS FOR THE TIME SPECIFIED BY THE CLOCK INPUT. 

;REMARKS 

THIS IS JUST AN EXAMPLE OF HOW THE ADDRESSES ARE 

GENERATED, THEY MAY NOT BE THE ACTUAL ADDRESSES NEEDED. 

;PRECAUTIONS 

EVERY TIME THE SOURCE FILE IS CHANGED AND ASSEMBLED, IT IS 

NECESSARY TO DELETE THE PREVIOUS LINK AND LOG FILES. 
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·******************** I *************************************** 

;REGISTERS 2940. 

REG(8) COLRG I ROWRG . 

REG(l) OLCLl,OLCL2,BEG,LOERG 

;REGISTERS 29818. 

REG(8) SHAD1,PPLN1,SHAD2,PPLN2 

2940 PINS. 

PIN ROCLK(l),ROWC0(2),COCLK(3),COLAD(4,ll),ROWAD(l2,l9) 

PIN AG0(20),CLK2(21),COLC0(22),DONE(23) 

;29818 PINS. 

PIN LOE1(24),CLK1(25),I8181(26,33),SDI1(34) 

PIN SD01(35),D8181(36,43),MODE1(44) 

PIN LOE2(45),CLK11(46),I8182(47,54),SDI2(55) 
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PIN SD02(56),D8182(57,64),MODE2(65) 

PIN DUMMY( 151) 

EVW W30(30),W80(80),W64(64),W224(224) 

BNE CLK2,0LCL2,ADGN1 

START EXR 

ADGNl 

ADGN2 

ROD EC 

OUTP 

MOV 

BNE 

BEQ 

MOV 

MOV 

MOV 

BEQ 

SUB 

CLK2,0t.CL2 

#l,OLCL2,START 

#l,BEG,ADGN2 

#29,ROWRG 

#29,COLRG 

#1, BEG 

COLRG,RODEC 

COLRG,BEG,COLRG 

BRU OUTP 

SUB 

MOV 

ROWRG,BEG,ROWRG 

#29,COLRG 

MOV(W80) ROWRG,ROWAD 

STORE THE CLOCK VALUE 

RESTART IF LOW GOING CLOCK 

IS THIS THE FIRST CYCLE ? 

COLUMN-SIZE 

ROW-SIZE 

FLAG THE FIRST CYCLE 

IS A ROW FINISHED ? 

IF NOT DECRMENT COLUMN 

IF YES DECREMENT ROW 

RESET COLUMN REG 

; OUTPUT AFTER 80 NS 
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MOV(W80) COLRG,COLAD 

BRU START 

END 

A.2 EXAMPLE OF AN OUTPUT FILE: OMA.LOG 

;--LOG TO SHOW A COMMAND FILE AND AN OUTPUT FILE. 

;PURPOSE 

THIS IS A LOG FILE FOR THE MODEL OF THE DMA AND 

TWO LATCHES. IT SHOWS THE COMMAND FILE WITH 

INITIALIZATIONS, INTERCONNECTIONS AND INPUTS. 

IT ALSO SHOWS THE OUTPUT AS IT APPEARS ON THE SCREEN. 

;ENTRY POINT 

GSPASM DMA 

GSPSIM DMA AND THEN THE INTERACTIVE PROCEDURE 

STARTS THE SIMULATION. 

;******************************************************** 

NOW STARTS THE INTERACTIVE PROCEDURE OF STARTING THE 
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SIMULATION, AS IT IS SEEN.ON THE SCREEN. 

GSPSIM: GSPLNK file is DMA. 

Enter object file names, one per line. Terminate loop 

with a carriage return. 

Enter name of OBJfile: DMA 

Are you satisfied with loading?(Y/N} default Yes: 

Enter command input file (default DMA}: 

Enter output device for console log(Print,Term,Disk}: 

Enter name for log file (default DMA}: 

GSPSIM running 

·* * * * * * * * * * * * * * * * * * * * * * I 

MONI: THIS IS THE "MONITOR" PROMPT; "F" ENTERED 

;COLAO ROWAD HERE STARTS READING THE COMMAND FILE 

y 

#MOD= 1 Ll= 275 L2= 55 LL= 238 LE= 152 LC= 0 

T 2100 

N 1 21 

LINE IS NOW ASYNC. 

N 1 24 25 

LINE IS NOW ASYNC. 

;MAXIMUM TIME FOR THIS SIMULATION 

;AS GIVEN IN COMMAND FILE. 

;AN INPUT PIN DECLARED ASYNC. 
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N 1 34 

LINE IS NOW ASYNC. 

N 1 44 

LINE IS NOW ASYNC. 

N 1 55 

LINE IS NOW ASYNC. 

N 1 65 . ; 

LINE IS NOW ASYNC. 

A LIST OF INTERCONNECTIONS 

c 1,22 1,1 PIN 22 FROM MODULE #1 IS CONNECTED 

TO PIN #1 FROM MODULE #1 

c 1,4 0,1 THESE ARE THE OUTPUT PINS 

c 1,5 0,2 CONNECTED TO THE FRONT PANEL 

c 1,6 0,3 IN LEVEL 0 THESE PINS WILL BE 

c 1,7 0,4 DISPLAYED IF THEY CHANGE STATES 

c 1,8 0,5 

c 1,9 0,6 

c 1,10 0,7 

c 1,11 0,8 

c 1,12 0,17 

c 1,13 0,18 

c 1,14 0,19 

c 1,15 0,20 

c 1,16 0,21 
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c 1,17 0,22 

c 1,18 0,23 

c 1,19 0,24 

PIN 21 IS THE CLOCK INPUT PIN 

A 1 21 40 1 ADD TO MODULE #1 

AT 40 NS A 11 1 11 

A 1 21 168 0 ADD TO MODULE #1 

A 1 21 296 1 AT 168 NS A "O" 

A 1 21 424 0 

A 1 21 552 1 

A 1 21 680 0 

A 1 21 808 1 

A 1 21 936 0 

A 1 21 1064 1 

A 1 21 1192 0 

A 1 21 1320 1 

A 1 21 1448 0 

A 1 21 1576 1 

A 1 21 1704 0 

A 1 21 1832 1 

A 1 21 1960 0 

A 1 21 2088 1 

PIN 21 

PIN 21 
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L 1 0 

x 
X= 1 

MON!: 

MON!: 

OUTPUT LEVEL OF MODULE #1 IS "O" 

MON!: SIMULATION STARTED 

SIMULATION TIME = 0 

;COLAO 

00 

ROWAO 

00 

SIMULATION TIME = 120 

--------------------------
;COLAO 

lD 

ROWAO 

10 
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SIMULATION TIME = 376 

;COLAO 

lC 

ROWAO 

lD 

SIMULATION TIME = 632 

--------------------------
;COLAO 

lB 

ROWAO 

lD 

SIMULATION TIME = 888 

--------------------------
;COLAO ROWAO 

lA lD 
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SIMULATION TIME = 1144 

--------------------------
;COLAO 

19 

ROWAO 

lD 

SIMULATION TIME = 1400 

;COLAO 

18 

ROWAO 

lD 

SIMULATION TIME = 1656 

--------------------------
;COLAO ROWAO 

17 lD 

SIMULATION TIME = 1912 

--------------------------
;COLAO 

16 

ROWAO 

lD 
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MON!: SIMULATION ENDED 

MON!: 

DO YOU WANT TO NOTE THE RESULT OF 

THIS SIMULATION SESSION ?(Y~N) 

DEFAULT YES). 

zzzzzz 

A.3 MEM.SOR 

;--MEMORY MEMORY BANKS WITH THE VIDEO LATCHES 

;PURPOSE 

THIS MODULE SIMULATES THE THREE MEMORY CHIPS AND THE 

THREE VIDEO LATCHES FROM THE FIRST MODULE OF THE !PB 

DESIGN: FIND-DIFFS. THE CHIPS INCLUDED IN THIS MODULE: 

TC5564P(L)-10 SK X 8 STATIC RAM. 

AM29818 SSR DIAGNOSTIC/WCS 

PIPELINE REGISTER, VIDEO INPUT LATCHES. 

;ENTRY POINT 
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GSPASM MEM 

GSPSIM MEM 

;DATA FORMAT 

INPUT 

OUTPUT 

DATA FROM THE COMMAND 

FILE IN DECIMAL. 

SIGNALS ON THE OUTPUT 

PINS IN BINARY. 

;LIMITATIONS 

SIMULATES UPTO THE TIME GIVEN 

IN COMMAND FILE BY II T ##### II 

;REMARKS 

THIS IS DEVELOPED TO ILLUSTRATE THE READING FROM 

AND WRITING INTO THE MEMORY FROM THE VIDEO 

LATCHES. THE DATA MAY NOT BE NECESSARILY THE ACTUAL 

OF THE SIMULATION. ANY DESIRED DATA CAN BE OBSERVED 

ON THREE SETS OF 8 PINS: OUTl, OUT2 AND OUT3. 

IF THE DESIRED REGISTER IS REGl ADD THE FOLLOWING 

INSTRUCTION IN THIS FILE WHEREVER DESIRED. 

MOV(DELAY) REGl,OUT* 

DELAY IS THE DESIRED DELAY, IF OMITTED DELAY IS 0 NS. 
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OUT* MEANS OUTl, OUT2 OR OUT3. 

**************************************************************** 

REG(8) 

REG(8) 

REG(l) 

PIN 

PIN 

PIN 

VIDR1,VIDR2,VIDR3,VIDR 

MACT 

RWRG,VLE1R,VLE2R,VLE3R,BEG 

VIDAT(l,8),0UT1(9,16),0UT2(17,24),0UT3(25,32) 

CLVD(33),VLE1(34),VLE2(35),VLE3(36),RW(37) 

DUMMY( 151) 

EVW ROTIME(7680) 

START: BNE VLEl,VLElR,BEGIN 

BNE VLE2,VLE2R,BEGIN 

BNE VLE3,VLE3R,BEGIN 

EXC 

BEGIN: MOV VLEl,VLElR 

MOV VLE2,VLE2R 

MOV VLE3,VLE3R 

MOV #1,BEG 

MOV RW,RWRG 

BEGIN IF ANY OF THE LATCHES 

IS ENABLED 

STORE THE NEW VALUES 
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BEQ #1,RWRG,READ 

WRITE: BEQ #1,RWRG,READ 

MOV VIDAT,VIDR 

!DX MACT(0),8,1 

BEQ #1,VLElR,WXO 

BEQ #l,VLE2R,WXSE 

BEQ #l,VLE3R,WXS 

BRU START 

wxo MOV #0,VLEl 

MOV #0,VLElR 

MOV(ROTIME) #1,VLE2 

MOV VIDR,MEMl@l 

BRU START 

START READING IF RW = 1 

START WRITING IF RW = 0 

CONFIRM THE RW SIGNAL 

LATCH THE VIDEO DATA 

WRITE INTO THE RESPECTIVE 

MEMORY BANK 

WRITE INTO THE FIRST MEMORY BANK 

; RESET THE LATCH ENABLE 

WRITE INTO THE SECOND MEMORY BANK 

WXSE MOV #O,VLE2 

MOV(ROTIME) #l,VLE3 

MOV VIDR,MEM2@1 

BRU START 

wxs MOV VIDR,MEM3@1 

MOV #O,VLE3 

MOV(ROTIME) #1,VLEl 

BRU START 

WRITE INTO THE THIRD MEMORY BANK 
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READ: BEQ #0,RWRG,WRITE RECHECK FOR RW SIGNAL 

FIVE 

RXO 

RXSE 

RXS 

INC MACT,MACT 

IDX 

BEQ 

MACT(0),8,2 

#1,VLElR,RXO READ FROM THE RESPECTIVE 

BEQ #l,VLE2R,RXSE MEMORY BANKS 

BEQ #l,VLE3R,RXS 

BRU START 

MOV 

; READ FROM THE FIRST MEMORY BANK 

MEM1@2,VIDR1 

MOV #0,VLEl 

MOV #0,VLElR 

MOV(ROTIME) #l,VLE2 

BRU START 

MOV 

; READ FROM THE SECOND MEMORY BANK 

MEM2@2,VIDR2 

MOV #O,VLE2 

MOV #O,VLE2R 

MOV(ROTIME) #l,VLE3 

BRU START 
· READ FROM THE THIRD MEMORY BANK 
I 

MOV MEM3@2,VIDR3 

MOV #O,VLE3 

MOV #O,VLE3R 

MOV(ROTIME) #1,VLEl 
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"(0"( SJJ1G pu13 a1npow aq.r. JO apo~ a~1nos aq.r. ·v x1puaddv 

0# '0# '0# '0# 'O# 'O# 'O# '0# .r..xa 

0# '0# '0# 'O# '0# 'O# '0# '0# .r..xa 

0# '0# '0# 'O# 'O# 'O# '0# '0# .r..xa 

o# 'o# 'o# 'o# 'o# 'o# 'o# 'o# .r..xa 

o# 'o# 'o# 'o# 'o# 'o# 'o# 'o# .r..xa 

0# '0# '0# 'O# '0# '0# 'O# '0# .r..xa 

o# 'o# 'o# 'o# 'o# 'o# 'o# 'o# .r..xa 

o# 'o# 'o# 'o# 'o# 'o# 'o# 'o# .r..xa 

0# '0# '0# '0# '0# 'O# '0# '0# .r..xa 

0# '0# '0# '0# '0# '0# '0# '0# .r..xa 

0# '0# '0# '0# '0# '0# '0# '0# .r..xa 

o# 'o# 'o# 'o# 'o# 'o# 'o# 'o# .r..xa 

o# 'o# 'o# 'o# 'o# 'o# 'o# 'o# .r..xa 

o# 'o# 'o# 'o# 'o# 'o# 'o# 'o# .r..xa 

o# 'o# 'o# 'o# 'o# 'o# 'o# 'o# .r..xa 

o# 'o# 'o# 'o# 'o# 'o# 'o# 'o# .r..xa 

o# 'o# 'o# 'o# 'o# 'o# 'o# 'o# .r..xa 

o# 'o# 'o# 'o# 'o# 'o# 'o# 'o# .r..xa 

o# 'o# 'o# 'o# 'o# 'o# 'o# 'o# .r..xa 
0# I 0# I 0# I 0# I 0# Io#· I 0# I 0# .r..xa 
o# 'o# 'o# 'o# 'o# 'o# 'o# 'o# .r..xa 
o# 'o# 'o# 'o# 'o# 'o# 'o# 'o# .r..xa = TW:3:W 

"H~V8 S:3:.LXS 9SZ 30 S8~av.r. X~OW:3:W :3::3:~H.L~ 

.r.-av.r.s n-aa 



BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

MEM2 BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 
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BYT tt=O I tt=O I tt=O I tt=O I #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, tt=O I #0, #0, #0, #0 

BYT #0, #0, #0, #0, tt=O I #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0 I .#0 / #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, tt=O I #0, #0, #0 

BYT #0, #0, tt=O I #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT tt=O I #0, #0, #0, #0, #0, #0, #0 

BYT #0, tt=O I #0, #0, #0, #0, #0, #0 

BYT tt=O I #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

MEM3 BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 
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BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0 I . #0 I #0, #0 

BYT #0, #0, #0 I. #0 I #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0 I #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 
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BYT #0, #0, #0, #0, #0, #0, #0, #0 

END 

A.4 NAO.SOR 

;--NAD SIMULATION OF PREPROCESSORS GENRATING B/W_SET. 

;PURPOSE 

THIS IS A SOURCE CODE OF A MOULE THAT SIMULATES THE 

TWO PREPROCESSORS AND A FEW FLIP-FLOPS. 

THIS IS BASICALLY THE COMPUTING UNIT OF FIND DIFFS. 

;ENTRY POINT 

GSPASM NAD AND THEN GSPSIM NAD 

;DATA FORMAT 

INPUT DECIMAL DATA OF THE PIXELS 

FROM MEMORY OUTPUT 

LATCHES THROUGH THE COMMAND FILE. 

OUTPUT : BINARY DATA ON OUTPUT PINS: 
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B/W_SET ON PIN NUMBERS 25 THROUGH 32. 

;************************************************** 

THIS IS FOR THE TWO 29501 ' S. 

REGISTERS : 

REG(l) CAR1,CAR2,ALCLR,BEG,CARW,CARB 

REG(4) CNTR 

REG(S) MSPR,MSPR1,AREG,BREG,A21C,B21C,A32C,B32C,MSPRC 

;REGISTERS FOR AM29501 

FOR WHITE DIFFS COMPUTATIONS 

REG(S) All,A21,A31,Bll,B21,B31,AREG,A21C,B21C,B31C 

;REGISTERS FOR AM 29501 

FOR BLACK DIFFS COMPUTATIONS 

REG(S) A21,A22,A32,B21,B22,B32,BREG,A22C,B22C,A32C,B32C 

PIN MSP(l,8),TDIFF(9,16),A(l7),WHITE(l8),BLACK(l9) 

PIN OUT(20,23),JUST(24),WB(25),WW(26),SWB(27),SWW(28) 
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PIN 

PIN 

PIN 

SB(29),SW(30),SEB(31),SEW(32),IN(33,40) 

OUT1(41,48),0UT2(49,56),0UT3(~7,64) 

ALCL(lSl) ; THIS IS A SELF-CALL PIN 

EVW WS(S),W32(32),W64(64),W96(96) 

START: BNE ALCL,ALCLR,BEGIN 

EXR 

BEGIN ON CLOCK CHANGE 

BEGIN: MOV ALCL,ALCLR 

BNE #1,ALCLR,START RESTART IF CLOCK LO GOING 

MOV #0,ALCL 

MOV #0,ALCLR 

MOV(W32) #1,ALCL SCHDULE NEXT CALL AFTER 32NS 

MOV #1,BEG 

MOV TDIFF,A31 

MOV TDIFF ,A32 

MOV MSP,MSPRl 

!DX CNTR(0),4,1 

BRU ALUBR@l 

STORE THRESHOLD TDIFF IN A3 

OF BOTH THE AM 29501'5 

FOR THE 8 CLOCK CYCLES 

ALUBR: BYT 99, 100, 200, 300, 400, 500, 600, 700 

99: NOP THE FIRST CLOCK CYCLE TO 

INC CNTR,CNTR 
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EXR 

100 MOV MSPRl,MSPR 

COM A32,A32C 

ADD MSPR,A32C,B32 

MOV C,CARB 

COM CARB,CARB 

ADD MSPR1,A31,B31 

MOV C,CARW 

COM B31,B31C 

MOV CARW,WHITE 

MOV CARB,BLACK 

INC CNTR,CNTR 

EXR 

200: NOP 

300: 

FORCl: 

BOUTl: 

INC CNTR,CNTR 

EXR 

COM A22,A22C 

ADD B32,A22C,BREG 

BEQ #1,CARB,FORCl 

MOV C,CAR2 

BRU BOUTl 

MOV #O,CAR2 

NOP 

EXIT AND RESTART 

STORE THE DATA ON MSP 

THIS rs FOR 

MSP - A3 = B3 (l'S COMPL.) 

STORE THE CARRY 

COMPLEMENT THE CARRY 

MSP + A3 = B3 

STORE THE CARRY 

FOR FUTURE USE 

OBSERVE WHITE CARRY 

OBSERVE BLACK CARRY 

B3 - A22 = DUMMY REG. 

rs PREVIOUS CARRY O? 

IF NOT STORE THIS CARRY 

IF YES INHIBIT CARRY 
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ADD 

BEQ 

MOV 

B31C,A21,AREG 

#1, CARW I INHBl 

C,CARl 

BRU COUTl 

INHBl: MOV 

COUTl: MOV 

MOV 

#0,CARl 

CARl,WHITE 

CAR2,BLACK 

MOV(W96) CARl,WW 

MOV(W96) CAR2,WB 

400: 

FORC2: 

BOUT2: 

Appendix A. 

INC 

EXR 

MOV 

MOV 

MOV 

MOV 

MOV 

MOV 

COM 

ADD 

BEQ 

MOV 

BRU 

MOV 

NOP 

ADD 

The 

CNTR,CNTR 

All,A21 

Al2,A22 

MSPR,All 

MSPR,Al2 

B21,0UT1 

B22,0UT2 

B22,B22C 

B32,B22C,BREG 

#l,CARB,FORC2 

C,CAR2 

BOUT2 

#O,CAR2 

B31C,B21,AREG 

Source Code of The 

- B3 + A2 

IS PREVIOUS CARRY l? 

IF NOT STORE THIS CARRY 

IF YES INHIBIT THIS CARRY 

WHITE BIT OF WEST SIDE 

AND BLCK BIT OF WEST SIDE 

PUT THEM TO THE BW SET LATCH 

SHIFT Al TO A2 

;. MOV MSP TO Al 

B3 - B2 = DUMMY REG. 

INHIBIT CARRY SIMILAR 

TO THE LAST ONE 

; - B3 + B2 = DUMMY REG. 
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BEQ #1, CARW I INHB2 

MOV C,CARl 

BRU COUT2 

INHB2: MOV #0,CARl 

COUT2: MOV CARl,WHITE 

MOV CAR2,BLACK 

MOV(W64) CARl,SWW WHITE BIT OF SOUTH-WEST 

MOV(W64) CAR2,SWB BLACK BIT OF SOUTH-WEST 

INC CNTR,CNTR 

EXR 

i 

500 MOV MSPRl,MSPR i STORE MSP 

COM MSPR,MSPRC 

ADD B32,MSPRC,BREG B3 - MSP = DUMMY REG. 

BEQ #l,CARB,FORC3 

MOV C,CAR2 

BRU BOUT3 

FORC3: MOV #O,CAR2 

BOUT3: NOP 

ADD B31C,MSPR,AREG - B3 + MSP = DUMMY REG. 

BEQ #1, CARW I INHB3 

MOV C,CARl 

BRU COUT3 

INHB3: MOV #0,CARl 

COUT3: MOV CARl,WHITE 

MOV CAR2,BLACK 
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600 

MOV(W32) CARl,SW 

MOV(W32) CAR2,SB 

INC CNTR,CNTR 

EXR 

MOV 

MOV 

MOV 

Bll,B21 

Bl2,B22 

MSPRl,Bll 

MOV MSPR1,Bl2 

MOV MSPRl,MSPR 

COM MSPR,MSPRC 

SHIFT Bl TO B2 

MOV MSP TO Bl 

ADD MSPRC,B32,BREG - MSP + B3 = DUMMY REG. 

BEQ #l,CARB,FORC4 

MOV 

BRU 

FORC4: MOV 

BOUT4: NOP 

C,CAR2 

BOUT4 

#0,CAR2 

ADD B31C,MSPR,AREG - B3 + MSP = DUMMY REG. 

BEQ #l,CARW,INHB4 

MOV 

BRU 

INHB4: MOV 

COUT4: MOV 

MOV 

MOV 

MOV 

C,CARl 

COUT4 

#0,CARl 

CARl,WHITE 

CAR2,BLACK 

CARl,SEW 

CAR2,SEB 

WHITE BIT OF SOUTH-EAST 

BLACK BIT OF SOUTH-EAST 
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INC CNTR,CNTR 

EXR 

700 MOV #0,CNTR 

MOV #0,WW CLEAR ALL FLIP-FLOPS 

MOV #0,WB 

MOV #0,SWW 

MOV #0,SWB 

MOV #0,SW 

MOV #0,SB 

MOV #0,SEW 

MOV #0,SEB 

MOV #0,WHITE 

MOV #0,BLACK 

MOV #0,CARW 

MOV #0,CARB 

EXR 

END 
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APPENDIX B. SDF32.SOR 

[Source Code for the model of Sum_Diffs] 

;--SDF SIMULATION OF THE WHOLE SUM DIIFS MODULE. 

;PURPOSE 

THIS IS A SOURCE CODE OF THE MODULE THAT SIMULATES 

THE WHOLE SUM DIFFS. THIS VERSION IS FOR WINDOW SIZE 

7 X 7 WITH 32 VECTORS. THE OTHERS VERSIONS FOR 

7 X 7 X 20 AND 5 X 5 X 8 ARE IN THE DIRECTORY 

USl: [DEO.GSP] ON VAX 11/785 AS SDF20.SOR AND 

SDFS.SOR THE COMMAND FILE FOR ALL THE THREE VERSIONS 

IS SDF.GCM. 

ENTRY POINT 

GSPASM SDF32 AND THEN GSPSIM SDF32. 

DATA FORMAT 

INPUT DECIMAL DATA FROM FIND_DIFFS 

THROUGH SDF.GCM 

OUTPUT : BINARY DATA ON THE OUTPUT PINS: 
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B_SUM 

W_SUM 

PIN # 9 TO 16 

PIN # 17 TO 25 

;******************************************* 

THIS MODULE HAS FOUR MAIN MEMORY CHIPS, 

8 SCRATCH PAD MEMORY CHIPS, ABOUT 15 

LATCHES, TWO PREPROCESSORS AND SO ON. 

IF MORE OUTPUTS ARE TO BE OBSERVED, 

OUTl AND OUT2 ARE KEPT FOR THAT USE. 

THE ROW-SIZE CAN BE VARIED BY GIVING 

THE REQUIRED DATA ON 

PIN # 43, THROUGH THE COMMAND FILE. 

;**************************************************** 

REG(8) 

REG(8) 

REG(8) 

REG(8) 

REG(8) 

REG(8) 

REG(8) 

BWSR1,BWSR2,BWSR3,BWSR4,BWSR,MACT1 

MACT,ROSIZ,BWDUM,ROW,SPLNU,WSLO,BSLO 

CONl,CON2,CON3,CON4,CON5,CON6,BWSTl,BWST2,SPL 

ADW1,ADW2,ADSE1,ADSE2,ADS1,ADS2,ADSW1,ADSW2 

REG1,REG2,REG3,REG4,CNTRG,CON7 

SAVE1,SAVE2,SAVE3,SAVE4,DUPL1,DUPL2,DUPL3,DUPL4 

BSUMR,WSUMR,BSUML,WSUML 
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REG(7) SPADR 

REG(S) UPAD1,UPAD2,UPAD3 

REG(3) EK3,D03,TIN3,CHAR3,PACH3,CHHE3,SAT3 

REG(3) PER,UPAD,ROWNO 

REG(l) EKl,DOl,TINl,CHARl,PACHl,CHHEl,SATl 

REG(l) RWRG,SLE1R,SLE2R,SLE3R,SLE4R,BEG,DUMRG,INRG 

REG(l) BC,WC,SDBl,SDWl,DI,FDUP 

PIN BWSET(l,8),BSUM0(9,16),WSUMO(l7,24),0UT3(25,32) 

PIN OUT4(33,40),RW(41),CLBW(42),ROWSZ(43,50) 

PIN CNTR(Sl,54) 

PIN DUMMY(151),SLE1(152),SLE2(153) 

PIN SLE3(154),SLE4(155) 

EVW W2(2),Wl6(16),W32(32),W64(64),W96(96) 

EVW W240(240),W254(254),W255(255),W256(256) 

START: BNE DUMMY,DUMRG,BEGIN 

EXC 

BEGIN IF SELF-CALLED 

BEGIN: MOV DUMMY,DUMRG 

BEQ DUMRG,START GO BACK IF LO GOING EDGE 

MOV #1,EKl INITIALIZE SOME REGISTERS 

MOV #l,EK3 FOR COMPARISONS 

MOV #2,D03 
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MOV #3,TIN3 

MOV #4,CHAR3 

MOV #5,PACH3 

MOV #6,CHHE3 

MOV #7,SAT3 

MOV #0,DUMMY 

MOV #0,DUMRG 

BEQ !NRG, !NIT 

MOV(W32) #1,DUMMY 

BRU RE GOP 

!NIT : MOV(W256) #1,DUMMY 

REGOP: NOP 

MOV BWSET,BWDUM 

MOV ROWSZ,ROSIZ 

WRITE: NOP 

MOV SLEl,SLElR 

MOV SLE2,SLE2R 

MOV SLE3,SLE3R 

MOV SLE4,SLE4R 

BNE INRG,NOTIN 

BEQ EKl I SLElR, !NO 

BEQ EKl I SLE2R, INl 

BEQ EKl I SLE3R, IN2 

BEQ EKl I SLE4R I IN3 

Appendix B. SDF32.SOR 

CLOCK PERIOD IS 32 NS 

FOR REGULAR OPERATION 

; IT IS 256 NS FOR 

INITIALIZING MEMORY BANKS 

INPUT ROW SIZE 

THIS IS DONE FOR ONE FORM 

OF IMPLEMENTING A MICROPROG. 

THIS IS FOR ANOTHER FORM 

OF IMPLEMENTING A MICROPROG. 
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!NO 

BRU START 

MOV BWDUM,BWSR 

!DX MACT(0),5,1 

MOV #1, CNTR 

BNE INRG,NOTIN 

MOV 

MOV 

BWSR,MEMl@l 

#0,SLEl 

MOV(W254) #1,SLEl 

MACT,MACT 

OUTPUT A REFERENCE NUMBER 

STORE FIRST ROW OF BW SET 

IN FIRST MEMORY BANK 

SCHEDULE NEXT ENABLE 

NEXT ADDRESS INC 

BNE 

OTPTO : MOV 

ROSIZ,MACT,START START IF ROW NOT OVER 

#0,MACT ; IF ROW OVER: RESET ADDRESS 

MOV(W255) #0,SLEl DISABLE FIRST LATCH AND MEM. 

MOV(W254) #l,SLE2 ENABLE SECOND LATCH AND MEM. 

BRU START 

INl: MOV BWDUM,BWSR 

!DX MACT(0),5,1 

MOV #2,CNTR 

BNE INRG,NOTIN 

MOV BWSR,MEM2@1 WRITE BW_SET IN SECOND MEM. 

MOV #O,SLE2 THE ABOVE PROCESS CONTINUES 

MOV(W254) #l,SLE2 

INC 

BNE 

OTPTl: MOV 

MACT,MACT 

ROSIZ,MACT,START 

#0,MACT 
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IN2: 

MOV(W255) #0,SLE2 

MOV(W254) #l,SLE3 

BRU START 

MOV BWDUM,BWSR 

IDX MACT(0),5,1 

MOV #3,CNTR 

BNE INRG,NOTIN 

MOV BWSR,MEM3@1 

MOV #0,SLE3 

MOV(W254) #l,SLE3 

INC 

BNE 

OTPT2: MOV 

MACT,MACT 

ROSIZ,MACT,START 

#0,MACT 

IN3: 

MOV(W255) #O,SLE3 

MOV(W254) #l,SLE4 

BRU START 

MOV BWDUM,BWSR 

BNE #1, SLE4R, START 

IDX MACT(0),5,1 

MOV #4,CNTR 

BNE INRG,NOTIN 

MOV BWSR,MEM4@1 

MOV #0,SLEl 

MOV #O,SLE2 
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MOV #0,SLE3 

MOV #0,SLE4 

MOV #0,SLElR 

MOV #0,SLE2R 

MOV #0,SLE3R 

MOV #0,SLE4R 

MOV(W254) #l,SLE4 

INC MACT,MACT 

BNE ROSIZ,MACT,START NOW IF ROW OVER 

OVER: MOV(W255) #O,SLE4 ; INITIALIZE FOR NORMAL 

MOV(W254) #1,SLEl ; OPERATION 

MOV #1, !NRG 

MOV #0,SPADR 

MOV #0,PER 

MOV #0,ROWNO 

MOV #0,MACT 

MOV #192,CONl MASKS FOR MASKING OUT 

MOV #3,CON2 UNWANTED BITS FROM A BYTE 

MOV #12,CON3 

MOV #48,CON4 

MOV #15,CONS 

MOV #240,CON6 

BRU START 
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NOT IN IDX MACT(0),8,1 

; IDX UPAD(O) I 5, 7 THIS IS ONE WAY OF 

;MOV SDUP@7,UPAD1 IMPLEMENTING A MICROPROG. 

; IDX UPADl(0),1,7 

;MOV(W32) @7,SLEl 

; IDX UPADl(l),1,8 

;MOV(W32) @8,SLE2 

; IDX UPAD1(2),l,7 

;MOV(W32) @7,SLE3 

; IDX UPAD1(3),l,8 

;MOV(W32) @8,SLE4 

IDX PER(0),3,2 

IDX SPADR(0),7,3 

BRU TBL@2 

THE 8 CLOCK CYCLES 

TBL : BYT 0, 1, 2, 3, 4, 5, 6, 7 

1 NOP 

BEQ SDBl,BLACK ADJUST STH BIT OF 

BIS #4,BSUML B SUM AND W_SUM 

BLACK BEQ SDWl,WHITE 

BIS #4,WSUML 

WHITE NOP 
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RSTO 

RS Tl 

RST2 

RST3 

MOV 

BEQ 

BEQ 

BEQ 

BEQ 

MOV 

MOV 

MOV 

BRU 

MOV 

MOV 

#1,DI 

ROWNO,RSTO 

EK3,ROWNO,RST1 

D03,ROWNO,RST2 

TIN3,ROWNO,RST3 

BWSR,DUPLl 

BWSR,MEMl@l 

BWSRl,SAVEl 

WSETO 

BWSR,DUPL2 

BWSR,MEM2@1 

MOV BWSR2,SAVE2 

BRU WSETl 

MOV BWSR,DUPL3 

MOV BWSR,MEM3@1 

MOV BWSR3,SAVE3 

BRU WSET2 

MOV BWSR,DUPL4 

MOV BWSR,MEM4@1 

MOV BWSR4,SAVE4 

BRU WSET3 
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A SIGNAL FROM FIND DIFFS 

THIS IS ANOTHER WAY OF 

i IMPLEMENTING MICROPROG. 

SAVE THE BW SET BYTE 

WRITE INTO THE FRIST MEMORY 

WRITE INTO SECOND MEMORY 
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;BEQ #1,SLElR,WSETO 

;BEQ #1,SLE2R,WSET1 

;BEQ #l,SLE3R,WSET2 

;BEQ #l,SLE4R,WSET3 

ZERO: NOP 

MOV #1,FDUP 

!DX SPLNU(0),8,6 ACCORDING TO CONTENTS OF 

MOV CNTR1@6,CON7; SCRATCH PAD OUTPUT LATCH 

MOV(W32) CON7,CNTRG GET THE COUNTER DATA 

MOV BWSR3,0UT3 

MOV BWSR4,0UT4 

MOV BSUML,BSUMO 

MOV WSUML,WSUMO 

MOV #0,BSUML INITIALIZE LATCHES 

MOV #0,WSUML 

MOV #0,BSLO 

MOV #0,WSLO 

MOV #0,BC 

MOV #0,WC 

MOV #0,SDBl 

MOV #0,SDWl 

JSR SUMO FOR SUMMING UP W AND B BITS 

MOV #2,PER 
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BRU START 

WSETO: NOP 

MOV SAVEl,BWSTl ; PASS BW_SET FROM FIRST LATCH 

JSR WRRD ; TO WRITE IN Rl AND READ FROM R2 

BEQ EK3,PER,ZERO GO BACK TO RESPECTIVE ORIGIN 

BEQ TIN3,PER,TWO 

BEQ SAT3,PER,SIX 

BRU START 

WSETl: NOP 

MOV SAVE2,BWST1 ! 
OUTPUT ENABLE SECOND LATCH 

JSR WRRD 

BEQ EK3,PER,ZERO 

BEQ TIN3,PER,TWO 

BEQ SAT3,PER,SIX 

BRU START 

WSET2: NOP 

MOV SAVE3,BWST1 OUTPUT ENABLE THIRD LATCH 

JSR WRRD 

BEQ EK3,PER,ZERO 

BEQ TIN3,PER,TWO 
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BEQ SAT3,PER,SIX 

BRU START 

I . 

WSET3: NOP 

MOV SAVE4,BWST1 OUTPUT ENABLE FORTH LATCH 

JSR WRRD 

BEQ EK3,PER,ZERO 

BEQ TIN3,PER,TWO 

BEQ SAT3,PER,SIX 

BRU START 

2 MOV BWSRl,SAVEl SAVE CONTENTS OF ALL LATCHES 

MOV BWSR2,SAVE2 

MOV BWSR3,SAVE3 

MOV BWSR4,SAVE4 

MOV #0,DI 

BEQ ROWNO,RSET3 

BEQ EK3,ROWNO,RSET0 

BEQ 003,ROWNO,RSETl 

BEQ TIN3,ROWNO,RSET2 

;BEQ #1,SLElR,RSETO 
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;BEQ 

;BEQ 

;BEQ 

ONE 

RSETO: 

#l,SLE2R,RSET1 

#1,SLE3R,RSET2 

#l,SLE4R,RSET3 

NOP 

MOV #0,DI 

MOV #1,FDUP 

IDX SPLNU(0),8,6 

MOV CNTR0@6,CON7 

MOV(W32) CON7,CNTRG 

JSR SUMO 

INC UPAD,UPAD 

MOV #3, PER 

BRU START 

NOP 

MOV 

JSR 

BEQ 

BEQ 

BEQ 

BEQ 

BEQ 

SAVE1,BWST2; OUTPUT ENABLE FIRST LATCH 

RDWR ; READ FROM Rl AND WRITE IN R2 

D03,PER,ONE; GO BACK TO RESPECTIVE ORIGINS 

CHAR3,PER,THRI 

PACH3,PER , FOUR 

CHHE3,PER,FIVE 

PER , SEVEN 
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BRU START 

RSETl NOP 

MOV SAVE2,BWST2; OUTPUT ENABLE SECOND LATCH 

JSR RDWR 

BEQ D03,PER,ONE 

BEQ CHAR3,PER,.THRI 

BEQ PACH3,PER,FOUR 

BEQ CHHE3,PER,FIVE 

BEQ PER, SEVEN 

BRU START 

RSET2 NOP 

MOV SAVE3,BWST2 OUTPUT ENABLE THIRD LATCH 

JSR RDWR 

BEQ D03,PER,ONE 

BEQ CHAR3,PER,THRI 

BEQ PACH3,PER,FOUR 

BEQ CHHE3,PER1FIVE 

BEQ PER, SEVEN 

BRU START 

RSET3 NOP 
MOV SAVE4,BWST2 OUTPUT ENABLE FORTH LATCH 
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3 

ENDRO: 

WSTO 

JSR 

BEQ 

BEQ 

BEQ 

BEQ 

BEQ 

BRU 

NOP 

MOV 

INC 

BNE 

MOV 

NOP 

NOP 

BEQ 

BEQ 

BEQ 

BEQ 

MOV 

MOV 

RDWR 

D03,PER,ONE 

CHAR3,PER,THRI 

PACH3,PER,FOUR 

CHHE3,PER,FIVE 

PER, SEVEN 

START 

#0,DI 

MACT,MACT 

ROSIZ,MACT,ENDRO 

#0,MACT 

ROWNO,WSTO 

EK3,ROWNO,WST1 

D03,ROWNO,WST2 

TIN3,ROWNO,WST3 

BWSR,BWSRl 

BWSRl,SAVEl 

OUTPUT ENABLE FIRST LATCH 

SAVE ITS CONTENTS 
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BRU WSETO PASS IT FOR WRITE IN Rl 

WSTl MOV BWSR,BWSR2 SAME WITH SECOND LATCH 

MOV BWSR2,SAVE2 

BRU WSETl 

WST2 MOV BWSR,BWSR3 SAME WITH THIRD LATCH 

MOV BWSR3,SAVE3 

BRU WSET2 

WST3 MOV BWSR,BWSR4 SAME WITH FORTH LATCH 

MOV BWSR4,SAVE4 

BRU WSET3 

;BEQ #1,SLElR,WSETO 

;BEQ #l,SLE2R,WSET1 

;BEQ #l,SLE3R,WSET2 

;BEQ #l,SLE4R,WSET3 

TWO NOP 

MOV #0,DI 

MOV #1, FDUP 

!DX SPLNU(0),8,6; GET COUNTER DATA ACCORDING TO 

MOV CNTR0@6,CON7 S-P LATCH CONTENTS 

MOV(W32) CON7,CNTRG 

JSR SUMO ; SUM UP W AND B BITS 
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NOP 

MOV BWSR3,0UT3 

MOV BWSR4,0UT4 

INC UPAD,UPAD 

MOV #4,PER 

BRU START 

4 NOP 

MOV #0,DI 

NOP 

MOV DUPLl,SAVEl RECALL THE SAVED DATA 

MOV DUPL2,SAVE2 

MOV DUPL3,SAVE3 

MOV DUPL4,SAVE4 

BEQ ROWNO,RSETO 

BEQ EK3,ROWNO,RSET1 

BEQ D03,ROWNO,RSET2 

BEQ TIN3,ROWNO,RSET3 

;BEQ #1,SLElR,RSETO 

;BEQ #l,SLE2R,RSET1 

;BEQ #l,SLE3R,RSET2 
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;BEQ #l,SLE4R,RSET3 

THRI NOP 

MOV #0,DI 

MOV #1,FDUP 

IDX SPLNU(0),8,6 GET THE COUNTER DATA 

MOV CNTR0@6,CON7 

MOV(W32) CON7,CNTRG 

JSR SUMO SUM UP W AND B BITS 

INC UPAD,UPAD 

MOV #5,PER 

BRU START 

5 NOP 

MOV #0,DI 

MOV BWSR3,0UT3 

MOV BWSR4,0UT4 

FOUR MOV #1,RW 

MOV #1,FDUP 

JSR WRRD ; WRITE IN Rl AND READ FROM R2 

IDX SPLNU(0),8,6 ; PROPER COUNTER DATA 

MOV CNTR0@6,CON7 

MOV(W32) CON7,CNTRG 

JSR SUMO SUM UP W AND B BITS 
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INC UPAD,UPAD 

MOV #6,PER 

BRU START 

6 NOP 

MOV #1,DI 

FIVE NOP 

MOV #1, FDUP 

JSR RDWR 

IDX SPLNU(0),8,6 

MOV CNTR1@6,CON7 

MOV(W32) CON7,CNTRG 

JSR SUMO 

INC UPAD,UPAD 

MOV #7,PER 

BRU START 

7 NOP 

MOV MEMl@l,BWSRl 

MOV MEM2@1,BWSR2 

MOV MEM3@1,BWSR3 

MOV MEM4@1,BWSR4 

MOV #1,BEG 

MOV #1,DI 

MOV BWSRl,SAVEl 

MOV BWSR2,SAVE2 

Appendix B. SDF32.SOR 

READ FROM Rl, WRITE IN R2 

GET PROPER COUNTER DATA 

OUTPUT ENABLE MEMORY BANKS 

LATCH THE NEXT BW SETS 

SAVE CONCTENTS OF ALL 

THE FOUR LATCHES 
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MOV BWSR3,SAVE3 

MOV BWSR4,SAVE4 

BEQ ROWNO,WSET2 

BEQ EK3,ROWNO,WSET3 

BEQ D03,ROWN0,WSETO 

BEQ TIN3,ROWN0,WSET1 

;BEQ #1,SLElR,WSETO 

;BEQ #1,SLE2R,WSET1 

;BEQ #1,SLE3R,WSET2 

;BEQ #l,SLE4R,WSET3 

SIX NOP 

MOV #0,FDUP 

IDX 

MOV 

SPLNU(0),8,6 

CNTR1@6,CON7 

MOV(W32) CON7,CNTRG 

GET THE PROPER DATA FROM 

THE COUNTER 

JSR SUMO ; SEND IT FOR SUMMING UP W AND B 

MOV #0,PER 

INC UPAD,UPAD 

INC ROW,ROW ; ONE PIXEL FINISHED 

BNE ROSIZ,ROW,START; IS THE ROW OVER? 

FINAL 

MOV 

INC 

#0,ROW 

ROWNO,ROWNO 

MOV ROWNO,UPAD 

MOV #0,SPADR 

Appendix B. SDF32.SOR 

IF NOT START AGAIN 

IF YES, START THE NEXT ROW 
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0 

;BEQ 

;BEQ 

;BEQ 

;BEQ 

SEVEN 

BRU START 

MOV BWDUM,BWSR 

MOV #1,DI 

MOV BWSRl,SAVEl 

MOV BWSR2,SAVE2 

MOV BWSR3,SAVE3 

MOV BWSR4,SAVE4 

BEQ ROWNO,RSETl 

BEQ EK3,ROWNO,RSET2 

BEQ D03,ROWNO,RSET3 

BEQ TIN3,ROWNO,RSETO 

#1,SLElR,RSETO 

#l,SLE2R,RSET1 

#l,SLE3R,RSET2 

#l,SLE4R,RSET3 

MOV #1,FDUP 

!DX SPLNU(0),8,6 

MOV CNTR1@6,CON7 

MOV(W32) CON7,CNTRG 

JSR SUMO 
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NOP 

MOV #1,PER 

INC UPAD,UPAD 

BRU START 

SUBROUTINE 'WRRD' FOR WRITE IN Rl AND READ FROM R2. 

WRRD: AND CONl,BWSTl,REGl 

AND CON2,BWST1,REG2 

AND CON3,BWST1,REG3 

AND CON4,BWST1,REG4 

MOV #0,RW 

MOV #0,SPL 

MASK OFF 6 BITS KEEPING 

2 BITS THAT ARE REQUIRED 

FOR EACH DIRECTION OUT OF 

S, SW, SE AND W 

CLEAR S-P LATCH 

MOV(W32) WR1@3,ADW1 LATCH ADDRESS FOR WRl 

!DX ADWl(0),8,4 

BEQ PACH3,PER,RDWR2 ; SKIP WRITE IN WRl IF TS 

MOV REG1,SPW1@4 OTHERWISE WRITE IN WRl 

RDWR2: NOP 

MOV(W32) 

!DX 

WR2@3,ADW2 

ADW2 ( 0 ) I 8 I 5 

Appendix B. SDF32.SOR 

LATCH ADDRESS FOR WR2 
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MOV SPW2@S,SPL READ FROM WR2 INTO S-P LATCH 

MOV(W32) SER1@3,ADSE1; LATCH ADDRESS FOR SERl 

!DX ADSEl(0),8,4 

BEQ PACH3,PER,RDSE2 ; SKIP WRITE IN SERl IF TS 

MOV REG2,SPSE1@4 ; OTHERWISE WRITE IN SERl 

RDSE2 NOP 

MOV(W32) SER2@3,ADSE2; LATCH ADDRESS FOR SER2 

!DX ADSE2(0),8,7 

MOV 

OR 

SPSE2@7,REG2 

REG2,SPL,SPL 

MOV(W32) SR1@3,ADS1 

!DX ADSl(0),8,4 

READ FROM SER2 INTO REG2 

; PUT W AND SE BITS AT 

; PROPER PLACES IN S- LATCH 

LATCH ADDRESS FOR SRl 

BEQ 

MOV 

PACH3,PER,NOSR2 

REG3,SPS1@4 

; SKIP BOTH OPER. IF TS 

OTHERWISE WRITE IN SRl 

MOV(W32) SR2@3,ADS2 ADDRESS FOR SR2 

!DX ADS2(0),8,S 

MOV SPS2@S,REG3 READ FROM SR2 

REG3,SPL,SPL PUT S BITS WITH W AND SE BITS 
OR 

BRU NORM 

.NOSR2 NOP 
IF TS, READ FROM SRl ONLY 
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MOV SPS1@4,REG3 

OR REG3,SPL,SPL 

NORM NOP 

MOV(W32) SWR1@3,ADSW1; SAME OPERATIONS 

!DX ADSWl(0),8,4 FOR SW 

BEQ PACH3,PER,RDSW2 

MOV REG4,SPSW1@4 

RDSW2 NOP 

RE Tl 

MOV(W32) SWR2@3,ADSW2 

!DX ADSW2(0),8,5 

MOV SPSW2@5,REG4 

OR REG4,SPL,SPL 

MOV(W32) SPL,SPLNU 

INC SPADR,SPADR 

RTS RETURN FROM SUBROUTINE 

SUBROUTINE 'RDWR' FOR READ IN Rl AND WRITE FROM R2. 

THIS SUBROUTINE IS EXACTLY SIMILAR i 

TO THE PREVIOUS ONE, EXCEPT THAT 

IT IS FOR WRITING IN R2 AND READING FROM Rl 

RDWR : AND CON1,BWST2,REG1 
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AND CON2,BWST2,REG2 

AND CON3,BWST2,REG3 

AND CON4,BWST2,REG4 

MOV #0,SPL 

MOV #1,RW 

MOV(W32) WR2@3,ADW2 

IDX ADW2(0),8,4 

BEQ CHHE3,PER,NOW2 

MOV REG1,SPW2@4 

NOW2 NOP 

MOV(W32) WR1@3,ADW1 

IDX ADWl(0),8,5 

MOV SPWl@S,SPL 

MOV(W32) SER2@3,ADSE2 

IDX ADSE2(0),8,8 

NOW BEQ CHHE3,PER,NOSE2 

MOV REG2,SPSE2@8 

NOSE2 NOP 

MOV(W32) SER1@3,ADSE1 

IDX ADSEl(0),8,5 

MOV SPSE1@5,REG2 
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OR REG2,SPL,SPL 

MOV(W32) SR2@3,ADS2 

IDX ADS2(0),8,4 

NOSE BEQ CHHE3,PER,NOR2 

MOV REG3,SPS2@4 

NOR2 NOP 

MOV(W32) SR1@3,ADS1 

IDX ADSl(0),8,5 

MOV SPS1@5,REG3 

OR REG3,SPL,SPL 

MOV(W32) SWR2@3,ADSW2 

IDX ADSW2(0),8,4 

BEQ CHHE3,PER,NOSW 

MOV REG4,SPSW2@4 

NOSW NOP 

MOV(W32) SWR1@3,ADSW1 

IDX ADSWl(0),8,5 

MOV SPSW1@5,REG4 

OR REG4,SPL,SPL 

MOV(W32) SPL,SPLNU 

INC SPADR,SPADR 

RET2 RTS 
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i SUBROUTINE 'SUM' FOR GETIING B/W SUMS . 

SUMO NOP 

AND CNTRG,CONS,BSUMR MASK OFF UNWANTED 4 BITS 

ADD BSUMR,BSUML,BSLO ADD B BITS WITH PREVIOUS 

;WHERE: 

MOV C,BC LATCH THE CARRY 

MOV(W32) BSLO,BSUML 

AND CNTRG,CON6,WSUMR 

; OUTPUT ENABLE LATCH 

; AT THE NEXT CLOCK 

SAME OPERATIONS 

MOV #0,@7 

SHR WSUMR 

SHR WSUMR 

SHR WSUMR 

SHR WSUMR 

INDEX REG #7 HAS TO BE CLEARED 

FOR SHR OPERATION 

THESE FOUR SHIFTS GET THE 

W BITS TO LSB POSITIONS 

ADD WSUML,WSUMR,WSLO 

MOV C,WC LATCH CARRY 

MOV(W32) WSLO,WSUML 

AND SDBl,FDUP,SDBl THE STH BIT OF B SUM: 

OR BC,SDBl,SDBl ( SDBl) ( FDUP) + (BC) 

AND SDWl,FDUP,SDWl SIMILARLY SDWl IS: 

OR WC,SDWl,SDWl (SDWl)(FDUP) + (WC) 

= SINGLE BIT OUTPUTS OF THIS FUNCTION 
I • SDBl/SDWl 

BC/WC =CARRY'S FROM BAND W ADD OPERATIONS 

Appendix B. SDF32.SOR 
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FDUP = SIGNAL FROM FIND_DIFFS 

;RETURN FROM SUBROUTINE 

RTS 

FOUR MEMORY TABLES OF 256 BYTES EACH. 

MEMl BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 
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BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0·, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

MEM2 BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 
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BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0 / #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

MEM3 BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #O; #0, #0, #0 

BYT #0 / #0, #0, #0, #0, #0, #0, #0 
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BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 
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BYT #0, #0, #0, #0, #0, #0, #0, #0 

MEM4 BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 
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BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

i A PART OF SUM_DIFFS MICROPROGRAM 

SDUP : BYT #1, #8, #1, #1, #0, #0, #4, #2; 

;BYT #0, #0, #0, #0, #0, #0, #0, #1 

;BYT #0, #0, #0, #0, #0, #0, #1, #0 

;BYT #0, #1, #0, #0, #0, #0, #0, #0 

SRl BYT #0, #06, #02, #09, #07, #10, #04, #07 

BYT #03, #09, #05, #12, #10, #13, #07 I #10 

BYT #06, #12, #08, #15, #13, #0, #10, #13 

BYT #09, #15, #11, #02, #0, #03, #13, #0 

BYT #12, #02, #14, #05, #03, #06, #0, #03 

BYT #15, #05, #01, #08, #06, #09, #03, #06 

BYT #02, #08, #04, #11, #09, #12, #06, #09 

BYT #05, #11, #07, #14, #12, #15, #09, #12 

BYT #08, #14, #10, #01, #15, #02, #12, #15 

BYT #11, #01, #13, #04, #02, #05, #15, #02 

BYT #14, #04, #0, #07, #05, #08, #02, #05 
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BYT #01, #07 I #03, #10, #08, #11, #05, #08 

BYT #04, #10, #06, #13, #11, #14, #08, #11 

BYT #07, #13, #09, #0, #14, #01, #11, #14 

BYT #10, #0, #12, #03, #01, #04, #14, #01 

BYT #13, #03, #15, #06, #04, #07 I #01, #04 

SR2 BYT #08, #01, #12, #02, #0, #0, #10, #03 

BYT #11, #04, #15, #05, #0, #0, #13, #06 

BYT #14, #07, #02, #08, #0, #0, #0, #09 

BYT #01, #10, #05, #11, #0, #0, #03, #12 

BYT #04, #13, #08, #14, #0, #0, #06, #15 

BYT #07 I #0, #11, #01, #0, #0, #09, #02 

BYT #10, #03, #14, #04, #0, #0, #12, #05 

BYT #13, #06, #01, #07, #0, #0, #15, #08 

BYT #0, #09, #04, #10, #0, #0, #02, #11 

BYT #03, #12, #07, #13, #0, #0, #05, #14 

BYT #06, #15, #10, #0, #0, #0, #08, #01 

BYT #09, #02, #13, #03, #0, #0, #11, #04 

BYT #12, #05, #0, #06, #0, #0, #14, #07 

BYT #15, #08, #03, #09, #0, #0, #01, #10 

BYT #02, #11, #06, #12, #0, #0, #04, #13 

BYT #05, #14, #09, #15, #0, #0, #07, #0 

WRl BYT #0, #05, #02, #06, #0, #02, #04, #04 

BYT #03, #08, #05, #09, #0, #05, #07, #07 
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BYT #06, #11, #08, #12, #0, #08, #10, #10 

BYT #09, #14, #11, #15, #0, #11, #13, #13 

BYT #12, #01, #14, #02, #0, #14, #0, #0 

BYT #15, #04, #01, #05, #0, #01, #03, #03 

BYT #02, #07 I #04, #08, #0, #04, #06, #06 

BYT #05, #10, #07, #11, #0, #07, #09, #09 

BYT #08, #13, #10, #14, #0, #10, #12, #12 

BYT #11, #0, #13, #01, #0, #13, #15, #15 

BYT #14, #03, #0, #04, #0, #0, #02, #02 

BYT #01, #06, #03, #07, #0, #03, #05, #05 

BYT #04, #09, #06, #10, #0, #06, #08, #08 

BYT #07, #12, #09, #13, #0, #09, #11, #11 

BYT #10, #15, #12, #0, #0, #12, #14, #14 

BYT #13, #02, #15, #03, #0, #15, #01, #01 

WR2 BYT #05, #01, #08, #02, #01, #0, #01, #03 

BYT #08, #04, #11, #05, #04, #0, #04, #06 

BYT #11, #07, #14, #08, #07 / #0, #07, #09 

BYT #14, #10, #01, #11, #10, #0, #10, #12 

BYT #01, #13, #04, #14, #13, #0, #13, #15 

BYT #04, #0, #07, #01, #0, #0, #0, #02 

BYT #07, #03, #10, #04, #03, #0, #03, #05 

BYT #10, #06, #13, #07, #06, #0, #06, #08 

BYT #13, #09, #0, #10, #09, #0, #09, #11 

BYT #0, #12, #3, #13, #12, #0, #12, #14 

BYT #03, #15, #06, #0, #15, #0, #15, #01 
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BYT #06, #02, #09, #03, #02, #0, #02, #04 

BYT #09, #OS, #12, #06, #OS, #0, #OS, #07 

BYT #12, #08, #lS, #09, #08, #0, #08, #10 

BYT #lS, #11, #02, #12, #11, #0, #11, #13 

BYT #02, #14, #OS, #lS, #14, #0, #14, #00 

SERl BYT #0, #09, #02, #12, #0, #OS, #04, #OS 

BYT #03, #12, #OS, #lS, #0, #08, #07, #08 

BYT #06, #lS, #08, #02, #0, #11, #10, #11 

BYT #09, #02, #11, #OS, #0, #14, #13, #14 

BYT #12, #OS, #14, #08, #0, #01, #0, #01 

BYT #lS, #08, #01, #11, #0, #04, #03, #04 

BYT #02, #11, #04, #14, #0, #07, #06, #07 

BYT #OS, #14, #07, #01, #0, #10, #09, #10 

BYT #08, #01, #10, #04, #0, #13, #12, #13 

BYT #11, #04, #13, #07 / #0, #0, #lS, #0 

BYT #14, #07, #0, #10, #0, #03, #02, #03 

BYT #01, #10, #03, #13, #0, #06, #OS, #06 

BYT #04, #13, #06, #0, #0, #09, #08, #09 

BYT #07 / #0, #09, #03, #0, #12, #11, #12 

BYT #10, #03, #12, #06, #0, #lS, #14, #lS 

BYT #13, #06, #15, #09, #0, #02, #01, #02 

SER2 BYT #08, #01, #11, #02, #04, #0, #04, #03 

BYT #11, #04, #14, #OS, #07 / #0, #07, #06 

BYT #14, #07, #01, #08, #10, #0, #10, #09 
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BYT #01, #10, #04, #11, #13, #0, #13, #12 

BYT #04, #13, #07, #14, #0, #0, #0, #15 

BYT #07, #0, #10, #01, #03, #0, #03, #02 

BYT #10, #03, #13, #04, #06, #0, #06, #05 

BYT #13, #06, #0, #07 I #09, #0, #09, #08 

BYT #0, #09, #03, #10, #12, #0, #12, #11 

BYT #03, #12, #06, #13, #15, #0, #15, #14 

BYT #06, #15, #09, #0, #02, #0, #02, #01 

BYT #09, #02, #12, #03, #05, #0, #05, #04 

BYT #12, #05, #15, #06, #08, #0, #08, #07 

BYT #15, #08, #02, #09, #11, #0, #11, #10 

BYT #02, #11, #05, #12, #14, #0, #14, #13 

BYT #05, #14, #08, #15, #01, #0, #01, #0 

SWRl BYT #0, #06, #02, #09, #0, #14, #04, #14 

BYT #03, #09, #05, #12, #0, #01, #07, #01 

BYT #06, #12, #08, #15, #0, #04, #10, #04 

BYT #09, #15, #11, #02, #0, #07, #13, #07 

BYT #12, #02, #14, #05, #0, #10, #0, #10 

BYT #15, #05, #01, #08, #0, #13, #03, #13 

BYT #02, #08, #04, #ll, #0, #0, #06, #0 

BYT #05, #11, #07 I #14, #0, #03, #09, #03 

BYT #08, #14, #10, #01, #0, #06, #12, #06 

BYT #11, #01, #13, #04, #0, #09, #15, #09 

BYT #14, #04, #0, #07 I #0, #12, #02, #12 

BYT #01, #07 I #03, #10, #0, #15, #05, #15 
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BYT #04, #10, #06, #13, #0, #02, #08, #02 

BYT #07, #13, #09, #0, #0, #05, #11, #05 

BYT #10, #0, #12, #03, #0, #08, #14, #08 

BYT #13, #03, #15, #06, #0, #11, #01, #11 

SWR2 BYT #05, #01, #08, #02, #13, #0, #13, #03 

BYT #08, #04, #11, #05, #0, #0, #0, #06 

BYT #11, #07, #14, #08, #03, #0, #03, #09 

BYT #14, #10, #01, #11, #06, #0, #06, #12 

BYT #01, #13, #04, #14, #09, #0, #09, #15 

BYT #04, #0, #07, #01, #12, #0, #12, #02 

BYT #07, #03, #10, #04, #15, #0, #15, #05 

BYT #10, #06, #13, #07, #02, #0, #02, #08 

BYT #13, #09, #0, #10, #05, #0, #05, #11 

BYT #0, #12, #03, #13, #08, #0, #08, #14 

BYT #03, #15, #06, #0, #11, #0, #11, #01 

BYT #06, #02, #09, #03, #14, #0, #14, #04 

BYT #09, #05, #12, #06, #01, #0, #01, #07 

BYT #12, #08, #15, #09, #04, #0, #04, #10 

BYT #15, #11, #02, #12, #07 f #0, #07 I #13 

BYT #02, #14, #05, #15, #10, #0, #10, #0 

SPSEl BYT #0, #0, #0, #0, #0, #0, #0, #0 
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SPSE2 

SPSl 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

SPS2 BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

SPSWl BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

SPSW2 BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

SPWl BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

SPW2 

CNTRO 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #0, #0, #0, #0, #0, #0, #0, #0 

BYT #00, #01, #16, #17, #01, #02, #17, #18 

BYT #16, #17, #32, #33, #17, #18, #33, #34 
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BYT #01, #02, #17, #18, #02, #03, #18, #19 

BYT #17, #18, #33, #34, #18, #19, #34, #3S 

BYT #16, #17, #32, #33, #17, #18, #33, #34 

BYT #32, #33, #48, #49, #33, #34, #49, #SO 

BYT #17, #18, #33, #34, #18, #19, #34, #3S 

BYT #33, #34, #49, #SO, #34, #3S, #SO, #Sl 

BYT #01, #02, #17, #18, #02, #03, #18, #19 

BYT #17, #18, #33, #34, #18, #19, #34, #3S 

BYT #02, #03, #18, #19, #03, #04, #19, #20 

BYT #18, #19, #34, #3S, #19, #20, #3S, #36 

BYT #17, #18, #33, #34, #18, #19, #34, #3S 

BYT #33, #34, #49, #SO, #34, #3S, #SO, #Sl 

BYT #18, #19, #34, #3S, #19, #20, #3S, #36 

BYT #34, #3S, #SO, #Sl, #3S, #36, #Sl, #S2 

BYT #16, #17, #32, #33, #17, #18, #33, #34 

BYT #32, #33, #48, #49, #33, #34, #49, #SO 

BYT #17, #18, #33, #34, #18, #19, #34, #3S 

BYT #33, #34, #49, #SO, #34, #3S, #SO, #Sl 

BYT #32, #33, #48, #49, #33, #34, #49, #SO 

BYT #48, #49, #64, #6S, #49, #SO, #6S, #66 

BYT #33, #34, #49, #SO, #34, #3S, #SO, #Sl 

BYT #49, #SO, #6S, #66, #SO, #Sl, #66, #67 

BYT #17, #18, #33, #34, #18, #19, #34, #35 

BYT #33, #34, #49, #50, #34, #35, #50, #51 

BYT #18, #19, #34, #3S, #19, #20, #35, #36 

BYT #34, #35, #SO, #51, #35, #36, #51, #S2 
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BYT #33, #34, #49, #50, #34, #35, #50, #51 

BYT #49, #50, #65, #66, #50, #51, #66, #67 

BYT #34, #35, #50, #51, #35, #36, #51, #52 

BYT #50, #51, #66, #67, #51, #52, #67, #68 

CNTRl BYT #00, #16, #01, #17, #16, #32, #17, #33 

BYT #01, #17, #02, #18, #17, #33, #18, #34 

BYT #16, #32, #17, #33, #32, #48, #33, #49 

BYT #17, #33, #18, #34, #33, #49, #34, #50 

BYT #01, #17, #02, #18, #17, #33, #18, #34 

BYT #02, #18, #03, #19, #18, #34, #19, #35 

BYT #17, #33, #18, #34, #33, #49, #34, #50 

BYT #18, #34, #19, #35, #34, #50, #35, #51 

BYT #16, #32, #17, #33, #32, #48, #33, #49 

BYT #17, #33, #18, #34, #33, #49, #34, #50 

BYT #32, #48, #33, #49, #48, #64, #49 I #65 

BYT #33, #49, #34, #50, #49, #65, #50, #66 

BYT #17, #33, #18, #34, #33, #49, #34, #50 

BYT #18, #34, #19, #35, #34, #50, #35, #51 

BYT #33, #49, #34, #50, #49 I #65, #50, #66 

BYT #34, #50, #35, #51, #50, #66, #51, #67 

BYT #01, #17, #02, #18, #17, #33, #18, #34 

BYT #02, #18, #03, #19, #18, #34, #19, #35 

BYT #17, #33, #18, #34, #33, #49, #34, #50 

BYT #18, #34, #19, #35, #34, #50, #35, #51 

BYT #02, #18, #03, #19, #18, #34, #19, #35 
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BYT #03, #19, #04, #20, #19, #35, #20, #36 

BYT #18, #34, #19, #35, #34, #50, #35, #51 

BYT #19, #35, #20, #36, #35, #51, #36, #52 

BYT #17, #33, #18, #34, #33, #49, #34, #50 

BYT #18, #34, #19, #35, #34, #50, #35, #51 

BYT #33, #49, #34, #50, #49, #65, #50, #66 

BYT #34, #50, #35, #51, #50, #66, #51, #67 

BYT #18, #34, #191 #35, #34, #SO, #35, #51 

BYT #19, #35, #20, #36, #35, #51, #36, #52 

BYT #34, #50, #35, #51, #50, #66, #51, #67 

BYT #35, #51, #36, #52, #51, #67, #52, #68 

END 
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APPENDIX C. EDFl.SOR 

[Source Code for the model of Eval_Diffs] 

;--EDF SIMULAION OF THE MODULE EVAL DIFFS 

;PURPOSE 

THIS IS A SOURCE CODE FOR THE 

MODEL OF THE WHOLE EVAL DIFFS 

MODULE. IT HAS A PREPROCESSOR, 

A LATCH AND A PAL. 

;ENTRY POINT 

GSPASM EDFl AND THEN GSPSIM EDFl. 

;DATA FORMAT 

INPUT 2 BYTES FROM SUM_DIFFS, 

B SUM AND w_sUM, IN DECIMAL 

FORM THROUGH A COMMAND 

FILE EDFl.GCM. 

OUTPUT BIN_ROW AND WHITE_BIT, 

ONE BIT EACH. IT IS IN BINARY 
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FORM ON PIN #49 AND PIN #50. 

;REMARKS 

IF ANY OTHER DATA IS TO BE OBSERVED, 

THREE GROUPS OF PINS ARE 

KEPT FOR THAT USE, OUTl,. OUT2 AND OUT3. 

***************************************************************** 

REG(8) Al,A2,A3,Bl,B2,B3,B2C,B3C,MSPR,MSPRC,LSPR 

REG(8) LSPRC,TOR,ROSIZ,PIX 

REG(3) PER 

REG(l) QG,QF,QE,QD,QC,QB,QA,BEG,T7,T7C 

REG(l) QGC,QFC,QEC,QDC,QCC,QBC,QAC 

REG(l) INT1,INT2,INT3,INT4,INTS,DUMRG,BR,WB 

PIN MSP(l,8),LSP(9,16),ROWSZ(l7,24),Tl(25,32) 

PIN T2(33,40),T3(41,48),BR0(49),WB0(50) 

PIN OUT1(51,58),0UT2(59),0UT3(60) 

PIN DUMMY(lSl) 

EVW W2(2),W32(32) 
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BNE 

START: EXR 

BEGIN: MOV 

BEQ 

MOV 

MOV 

MOV(W32) 

MOV 

MOV 

MOV 

MOV 

MOV 

NOTIN: IDX 

IDX 

IDX 

DUMMY,DUMRG,BEGIN BEGIN WHEN CLOCK CHANGES 

DUMMY,DUMRG 

DUMRG,START; GO BACK IF CLOCK LO GOING 

#0,DUMMY 

#0,DUMRG 

#1,DUMMY SCHEDULE THE NEXT CLOCK CHANGE 

Tl,Al INITIALIZE THE PREPROCESSOR BY 

T2,Bl STORING THE THRESHOLDS IN 

T3,A2 PROPER REGISTERS 

ROWSZ,ROSIZ; STORE THE ROW-SIZE IN A REG. 

#1,BEG 

PER( 0) I 3, 1 

PIX(0),8,2 TO OBSERVE THE PIXEL NUMBER 

PIX(0),8,4 TO OBSRVE THE ROW NUMBER 

BRU TBL@l 

TBL: BYT 100,101,102,103,104,105,l06,l07; THE CLOCK CYCLES 

100 MOV MSP,MSPR B SUM FROM SUM DIFFS 

MOV LSP,LSPR W SUM FROM SUM DIFFS 

MOV MSPR,A3 STORE THESE VALUES 

MOV LSPR,B2 

COM MSPR,MSPRC 

MOV #0,C 
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101 

102 

103 

ADD 

MOV 

COM 

MOV 

BRU 

ADD 

MOV 

COM 

MOV 

BRU 

COM 

MOV 

ADD 

MOV 

COM 

MOV 

BRU 

COM 

MOV 

ADD 

MOV 

COM 

MOV 

Appendix C. 

Bl,MSPRC,TOR 

C,QG 

QG,QGC 

#1,PER 

START 

Al,MSPRC,TOR 

C,QF 

QF,QFC 

#2,PER 

START 

B2,B2C 

#0,C 

A3,B2C,B3 

C,QE 

QE,QEC 

#3,PER 

START 

B3,B3C 

#0,C 

A2,B3C,TOR 

C,QD 

QD,QDC 

#4,PER 

EDFl. SOR 

i Bl - MSP = DUMMY REG. 

STORE THE CARRY 

; Al - MSP = DUMMY REG. 

STORE THE CARRY 

CLEAR CARRY FOR PRECAUTION 

A3 - B2 = B3 

STORE THE CARRY 

A2 - B3 = DUMMY REG. 

STORE BTHE CARRY 
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BRU START 

104 ADD Bl,B2C,TOR Bl - B2 = DUMMY REG. 

MOV C,QC STORE THE CARRY 

COM QC,QCC 

MOV #5,PER 

BRU START 

105 ADD 

MOV 

COM 

MOV 

BRU 

Al,B2C,TOR Al - B2 = DUMMY REG. 

106 

107 

ADD 

MOV 

COM 

MOV 

BRU 

MOV 

COM 

C,QB 

QB,QBC 

#6,PER 

START 

A2,B3,TOR 

C,QA 

QA,QAC 

#7,PER 

START 

#l,T7 

T7,T7C 

STORE THE CARRY 

A2 + B3 = DUMMY REG. 

STORE THE CARRY 

A SIGNAL FROM FIND DIFFS 

;THE PAL FUNCTION IMPLEMENTATION: 

AND QGC,T7,INT1 

AND QFC,QDC,INT2 

AND INT2 I T7 I INT3 I> BR= (QG' )(T7) + 
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END 

AND 

OR 

OR 

AND 

AND 

AND 

AND 

OR 

OR 

MOV 

MOV 

MOV(W2) 

MOV(W2) 

MOV 

INC 

BNE 

MOV 

BRU 

BR,T7C,INT4 (QF' )(QD' )(T7)+ 

INT1,INT3,INTS (BR)(T7') 

INT4,INT5,BR / 

QCC,T7,INT1 i -
QBC,QAC,INT2 

INT2,T7,INT3 I> WB = (QC I ) ( T7) + 
WB,T7C,INT4 (QB I ) (QA I ) ( T7) + 

INTl I INT3 I INTS (WB) ( T7 I ) 

INT4,INT5,WB I 

BR, BRO 

WB,WBO 

#0,BRO 

#0,WBO 

#0,PER 

PIX, PIX ; ONE PIXEL OVER 

ROSIZ,PIX,START; IS THE ROW OVER? 

#0,PIX i IF YES START NEW ROW 

START 
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APPENDIX D. FIL Tl.SOR 

[Source Code for the model of Filter Module.] 

;--FILTER SIMULAION OF THE THREE FILTERS AS ONE MODEL. 

;PURPOSE 

;THIS IS A SOURCE CODE FOR THE 

;MODULE FILTERS. THERE ARE THREE 

;FILTERS IN THIS MODULE. THE INPUT 

;DATA IS MANIPULATED BY A 

;SHIFT REGISTER AND GIVEN TO THE 

;PAL WITH THE INTERMEDIATE 

;VALUES STORED IN ITS FLIP-FLOPS. 

;ENTRY POINT 

;GSPASM FILTl AND THEN GSPSIM FILTl 

;DATA FORMAT 

; INPUT INPUT TO THE FIRST FILTER 

IS BIN-ROW FROM EVAL_DIFFS. 

THAT TO THE SECOND FILTER 

Appendix D. FILTl.SOR 
161 



;OUTPUT 

i 

IS WHITE_BITS FROM 

EVAL_DIFFS AND THE THIRD 

FILTER GETS ITS INPUT 
I 

(BIN_ROW)' FROM SET REL T - . 
ALL THESE INPUTS ARE IN 

DECIMAL FORM GIVEN THROUGH 

THE COMMAND FILE. 

THE OUTPUTS FROM THE FIRST 

TWO FILTERS, BIN_IN AND 

WHITE_IN, ARE GIVEN TO 

SET_REL_T. AND THE THIRD 

FILTER GIVES THE OUTPUT 

OF THE WHOLE IPB. THESE 

OUTPUTS CAN BE OBSERVED 

IN BINARY FORM ON PIN #'S 

5, 6 AND 7, RESPECTIVELY. 

;***************************************************** 

REG(8) 

REG(3) 

REG(l) 

REG(l) 

REG(l) 

REG(l) 

FSR,VECl,MASKl,ROSIZ,MACT,PIX 

PER 

BRR,WBR,BRN,BRN1,BRN2,WBN,WBN1,WBN2 

BWF,BWFC,BRNC,BRN1C,BRN2C,WBNC,WBN1C,WBN2C 

BOF,BOFC,BOl,BOO,WI,WO,Wl,BI,BO,Bl 

WODUM,WlDUM,BODUM,BlDUM 
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REG(l) BICN,BICN1,BICN2,BICNC,BICN1C,BICN2C,BICR 

REG(l) INT1,INT2,INT3,INT4,INTS,INT6,INT7,INT8,INT9 

REG(l) INT10,INT11,INT12,INT13,INT14,INT15,INT16,INT17 

REG(l) INT18,INT19,INT20,INT21,INT22,INT23,INT24,INT25 

REG(l) DUMRG 

PIN BR(l),WB(2),ROWSZ(3,10),BIC(ll) 

PIN BIN(l2),WIN(13),BOUT(l4),0UT1(15),0UT2(16) 

PIN OUT3(16,23) 

PIN DUMMY(lSl) 

EVW W32(32),W2(2) 

BNE DUMMY,DUMRG,BEGIN; BEGIN ON CLOCK CHANGE 

START: EXR 

BEGIN: MOV DUMMY,DUMRG 

BEQ DUMRG I START RESATRT IF CLOCK LO GOING 

MOV #0,DUMMY 

MOV #0,DUMRG 

MOV(W32) #1,DUMMY SCHEDULE THE NEXT CLOCK CHANGE 

MOV ROWSZ,ROSIZ STORE THE ROWSIZE 

#219,MASKl TO MASK OFF UNWANTED BITS 
MOV 

IDX PIX(0),8,8 TO KEEP TRACK OF PIXEL NUMBER 

IDX MACT(0),8,2 
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!DX PER(0),3,1 

BRU TBL@l 

TBL: BYT 100,101,102,103,104,105,l06,l07 CLOCK CYCLES 

100 MOV FSR,SRAM@2 FSR IS THE FILT. SHIFT REG. 

MOV BI ,BOUT OUTPUT OF THE WHOLE SYSTEM 

MOV(W2) #0,BOUT 

101 INC PER, PER 

BRU START 

102 INC MACT,MACT 

INC PER, PER 

BNE ROSIZ,MACT,START 

MOV #0,MACT 

BRU START 

103 INC PER, PER 

BRU START 

104 INC PER, PER 

MOV BIC,BICR ACCEPT INPUT FROM SET_REL_T 

BRU START 

sRAM@2,VEC1 GET OLD DATA IN DUMMY REG. 
105 MOV 

MASKl,VECl,VECl · MASK OFF UNWANTED BITS 
AND 

I 
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MOV BR, BRR STORE INPUT FROM EVAL DIFFS 

MOV WB,WBR 

BEQ BRR,NOBR BR TAKES 6TH BIT OF FSR 

BIS #5,VECl 

BRU YESBR 

NOBR: BIR #5,VECl 

YESBR: NOP 

BEQ WBR,NOWB WB TAKES 3RD BIT OF FSR 

BIS #2,VECl 

BRU YESWB 

NOWB: BIR #2,VECl 

YESWB: NOP 

MOV VECl,FSR 

INC PER, PER 

BRU START 

106 !DX FSR(7),l,3 GET THE INDIVIDUAL BITS 

MOV @3,BICNl 

!DX FSR(6),l,4 

MOV @4,BICN2 

!DX FSR(5),l,5 

MOV @5,BRN 

!DX FSR(4),l,6 

MOV @6,BRNl 

!DX FSR(3),l,3 

MOV @3,BRN2 
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IDX FSR(2),l,3 
MOV @3,WBN 

IDX FSR(l),1,3 

MOV @3,WBNl 

IDX FSR(0),1,3 

MOV @3,WBN2 

MOV #0,BWF A SIGNAL FROM FIND_DIFFS 
COM BWF,BWFC 

MOV #1,BOF ANOTHER SIGNAL FROM FIND_DIFFS 
COM BOF,BOFC 

COM BRN,BRNC 

COM BRNl,BRNlC 

COM BRN2,BRN2C 

COM WBN,WBNC 

COM WBNl,WBNlC 

COM WBN2,WBN2C 

THE INTERMEDIATE VALUES STORED IN FLIP-FLOPS OF 

THE PAL CHIP ARE IMPLEMENTED. 

THOSE INTERMEDIATE FUNCTIONS ARE: 

BO= [BR(N-l)][BR(N)'J[BR(N-2)' ][BWF'] + 

[BO] [BR(N-1)] [BWF'] + [Bl] [BR(N-1)] [BWF'] + 

[BO] [ BWF] 
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Bl= [BR(N-l)][BR(N-2)][BWF'] + [BR(N-l)][BR(N)][BWF'] + 

[Bl] [BWF] 

WO = [ WB ( N-1) l [ WB ( N) I 1 [ WB ( N-2 ) I l [ BWF I l + 

[WO] [WB(N-1)] [BWF'] + [Wl] [WB(N-1)] [BWF'] + 

[WO] [ BWF] 

Wl = [WB(N-1)] [WB(N-2)] [BWF'] + [WB(N-1)] [WB(N)] [BWF'] + 

[ Wl] [ BWF] 

AND BRNl I BWFC I INTl 

AND INTl I BRN2 I INT2 

AND INTl I BRN I INT3 

AND Bl I BWF I INT4 

OR INT2 I INT3 I INTS 

OR INT4,INTS,Bl 

MOV{W32) Bl,BlDUM 

AND BRNC,BRN2C,INT6 

AND INT6 I INTl I INT7 

AND INTl I BO I INTS 

AND BRNl I BWFC I I NT9 

AND Bl I INT9 I INTlO 

AND BO,BWF,INTll 

OR INT7 I INTS, INT12 

OR INT11,INT10,INT13 

OR INT12,INT13,BO 
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MOV(W32) 

AND 

AND 

AND 

AND 

OR 

OR 

MOV(W32) 

AND 

AND 

AND 

AND 

AND 

AND 

OR 

OR 

OR 

MOV(W32) 

JSR 

MOV 

MOV 

BO,BODUM 

WBNl,BWFC,INTl 

INTl I WBN2 I INT2 

INT1,WBN,INT3 

Wl I BWF I INT4 

INT2 I INT3 I INTS 

INT4,INTS,Wl 

Wl,WlDUM 

WBNC,WBN2C,INT6 

INT6, INTl, INT7 

INT1,WO,INT8 

WBN1,BWFC,INT9 

Wl I INT9 I INTlO 

WO,BWF,INTll 

INT7 I INT~ I INT12 

INT11,INT10,INT13 

INT12,INT13,WO 

WO,WODUM 

PALBI THE PAL FUNCTION FOR BI AND WI 

BI,BIN 

WI I WIN 

OUTPUT BIN TO SET REL T 

OUTPUT WIN TO SET REL T 
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107 

NOBIC: 

BOFLT: 

Appendix 

MOV(W2) 

MOV(W2) 

INC 

BRU 

MOV 

SHR 

BEQ 

BIS 

BRU 

BIR 

NOP 

!DX 

MOV 

!DX 

MOV 

!DX 

MOV 

!DX 

MOV 

!DX 

MOV 

!DX 

MOV 

!DX 

#0,BIN 

#0,WIN 

PER, PER 

START 

#0, PER. 

FSR ; SHIFT FSR FOR GETTING NEW BIC 

BICR,NOBIC; NEW BIC TAKES 7TH BIT OF FSR 

#7,FSR 

BO FLT 

#7,FSR 

FSR(7),1,3 NOW GET THE INDIVIDUAL BITS 

@3,BICN 

FSR(6),l,4 

@4,BICNl 

FSR(S),1,5 

@5,BICN2 

FSR(4),l,6 

@6,BRN 

FSR(3),l,3 

@3,BRNl 

FSR(2),l,3 

@3,BRN2 

FSR(l),1,3 
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MOV @3,WBN 

IDX FSR(0},1,3 

MOV @3,WBNl 

MOV #1,BWF A SIGNAL FROM 
COM BWF,BWFC 

MOV #0,BOF ANOTHER SIGNAL 
COM BOF,BOFC 

COM BICN,BICNC 

COM BICNl,BICNlC 

COM BICN2,BICN2C 

COM BRN,BRNC 

COM BRNl,BRNlC 

COM BRN2,BRN2C 

THERE ARE TWO MORE INTERMEDIATE FUNCTIONS. 

THOSE ARE BOO AND BOl. 

BOO= [BIC(N-l}][BIC(N}'][BIC(N-2}' ][BOF'] + 

;[BOO][BIC(N-l}][BOF'] + [BOl][BIC(N-l}][BOF'] + 

; [BOO] [ BOF] 

; BOl = [BIC(N-l}][BIC(N-2}][BOF'] + 

; [BIC(N-1}] [BIC(N)] [BOF'] + [BOl] [BOF] 

AND BICNl,BICNC,INTl 

AND BICN2C,BOFC,INT2 

AND INT2,INT1,INT3 
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AND BICN1,BOFC,INT4 
AND BOO I INT4 I INTS 
AND BOl, INT4, INT6 
AND B00,BOF,INT7 
OR INT3 I INTS I INTS 
OR INT6 I INT7 I INT9 
OR INT8,INT9,BOO 

AND BICNl,BOFC,INTl 

AND BICN2, INTl I INT2 

AND BICN, INTl I INT3 

AND BOl, BOF I INT4 

OR INT2 I INT3 I INTS 

OR INT4,INT5,B01 

JSR PALBI 

INC PIX,PIX ; ONE PIXEL OVER 

BNE ROSIZ,PIX,START ; IS ROW OVER? 

MOV #0,PIX ; IF ROW OVER START NEW ROW 

BRU START 

;THE PAL FUNCION IS IMPLEMENTED IN THIS SUBROUTINE. 

;THE FUNCTION IS: 

BI= [Bl][BR(N-l)][BWF'] + 
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;AND 

[Bl][BO][BWF'] + [BOl][BIC(N-l)][BOF'] + 

[BOl] [BOO] [BOF' J 

WI= [Wl][WB(N-l)][BWF'] + [Wl][WO][BWF'] 

PALBI: NOP 

AND Bl I INTl I INT14 

AND Bl I BO I INT15 

AND INTS,BWFC,INT16 

AND B01,BICN1,INT17 

AND INT17,BOFC,INT18 

AND BOl, BOO I INTl 9 

AND INT19,BOFC,INT20 

OR INT14,INT16,INT21 

OR INT18,INT20,INT22 

OR INT21,INT22,BI 

AND Wl, WBNl I INT14 

AND BWFC,INT14,INT15 

AND Wl,WO,INT16 

AND INT16,BWFC,INT17 

OR INT15, INTl 7 I WI 
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RTS 

THIS IS THE SRAM OF FILTERS. 

IT HAS 256 BYTES, .ONLY FOR CONVENIENCE. 

SRAM BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 
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BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

END 
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APPENDIX E. SETl.SOR 

[Source Code for the model of Set_Rel_T] 

;--SET SIMULATION OF THE WHOLE SET_REL_T MODULE 

;PURPOSE 

THIS IS A SOURCE CODE FOR THE MODEL OF THE WHOLE 

SET REL T MODULE. IT HAS A PREPROCESSOR, 

TWO MEMORY BANKS, FOUR LATCHES, A PAL AND SO ON. 

THE IMPORTANT ASPECT OF IT IS SELECTING A SET 

OF MICROOPERATIONS ACCORDING TO THE BIN AND WIN 

FUNCTIONS. THIS COMPARISON IS DONE IN 

EVERY CYCLE TO AVOID REPITITION OF 

THE CODE AND TO SPEED UP THE 

SIMULATION. THE VALUES OF BIN AND 

WIN ARE COMPUTED FOR THE 8 CLOCK CYCLES. 

;ENTRY POINT 

GSPASM SETl AND THEN GSPSIM SETl. 

;DATA FORMAT 

; INPUT: 
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THERE ARE THREE TYPES OF INPUT DATA: 

GRAY VAL = GRAY VALUE OF CORRESPONDING PIXEL FROM 

FIND_DIFFS. 

BIN IN AND WHITE_IN FROM FILTERS. 

TBF = THRESHOLD VALUE, GIVEN DURING INTIALIZATION. 

INIT= #127, GIVEN DURING ROW INTIALIZATION TO RC. 

;OUTPUT : 

THE ONLY BIT GIVEN BY THIS MODULE APPEARS AS BIC ON 

PIN # 27 IN DECIMAL FORM. 

;***************************************************** 

REG(8) 

REG(8) 

REG(8) 

REG(3) 

REG(l) 

REG(l) 

REG(l) 

REG(l) 

PIN 

PIN 

PIN 

Al,A2,A3,Bl,B2,B3,MIOR,MIR,DIOR,RA,RB,RC 

A2B2,PIX 

GVIL,KOR,Kl2R,DUM1,DMA,GVDMA,ROSIZ 

UPAC,PER 
BININ,WININ,WINR,BINR,BIC,CSR,QA,QB,QC 

CINR1,CINR2,DUMRG,BEG,WINC,QBC,QAC,QCC 

INT1,INT2,INT3,INT4,INTS,INT6,INT7,INT8 

INT9,INT10,INT11,INT12,INT13,INT14,INT15 

GRAY(l,8),TBF(9,16),ROWSZ(l7,24) 

BIN(25),WIN(26),BINC(27),BINR0(28) 

WINR0(29),0UT1(30),0UT2(31),0UT3(32) 
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PIN 

PIN 

EVW 

BNE 

START: EXR 

BEGIN: MOV 

BEQ 

MOV 

MOV 

OUT4(33,40),0UTS(41,45),INIT(46,53) 

DUMMY( 151) 

Wl92(192),W64(64),W32(32),W2(2) 

DUMMY,DUMRG,BEGIN BEGIN ON CLOCK CHANGE 

DUMMY,DUMRG START AGAIN IF 

DUMRG,START CLOCK LO GOING 

#0,DUMMY 

#0,DUMRG SCHEDULE THE NEXT 

MOV(W32) #1,DUMMY CLOCK CHANGE 

i 

BNE BEG,NOTIN INTIALIZE BEFORE STARTING 

MOV TBF,A3 STORE THRESHOLD IN A3 

MOV INIT,RC STORE #127 IN RC 

MOV ROWSZ,ROSIZ STORE THE ROW-SIZE 

MOV #1,BEG 

NOT IN: NOP 

IDX PER(0),3,1 

IDX DMA( 0) I 8, 2 

IDX GVDMA(0),8,3 

IDX UPAC(0),1,4 THE SET_REL_T MICROPROG. 
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TBL 

100: 

MOV 

COM 

IDX 

MOV 

COM 

IDX 

MOV 

COM 

IDX 

BRU 

BYT 

MOV 

MOV 

BEQ 

MOV 

MOV 

MOV 

BRU 

BilTO: MOV 

MOV 

BIR 

Appendix E. 

@4,QA ADDRESS COUNTER OUTPUT IS 
QA,QAC USED IN THE PAL FUNCTION 
UPAC(l),1,4 TO RESTORE THE VALUES 
@4,QB 

QB,QBC 

UPAC(2),l,4 

@4,QC 

QC,QCC 

UPAC(0),3,5 

TBL@l ; THE CLOCK CYLCES 

100,101,102,103,104,105,106,107 

GRAY,GVIL ACCEPT INPUT FROM FIND DIFFS 

GVIL,GVFIF@3 ; AND STORE IN THE FIFO 

#1,BINR,BilTO ALL THE COMPARISONS WITH BIN 

AND WIN ARE DONE TO 

SELECT PROPER MICROOP. SET 

A2,MIOR ; (A2) --> MIO 

MIOR,RA ;MIO --> RA .. LATCH A. 

RA,SRAM@2 ;RA --> SRAM 

FINTO 

Bl,MIOR ; (Bl) --> MIO 

MIOR,RC ;MIO --> RC 

#7,RC i THE LAST BIT OF RC IS "O" 
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MOV MIOR,RB ;MIO --> RB 

BEQ CSR,NOCO i LAST BIT OF RB IS CARRY 
BIS #7,RB 

BRU co 
NOCO BIR #7,RB 

co : MOV RB,SRAM@2 RB --> SRAM 

FINTO: INC PER, PER 

INC UPAC,UPAC !NCR. MICROPROG. ADD. CNTR. 

BRU START 

101 BEQ BINR,NOBI BRANCH ACCORDING TO BIN 

MOV RC, DIOR RC --> DIO 

MOV DIOR, Al DIO --> Al 

NOB! INC PER, PER 

INC UPAC,UPAC 

BRU START 

102 INC DMA,DMA 

BNE ROSIZ,DMA,GVINC 

MOV O,DMA 

NOP 

GVINC: NOP 

INC GVDMA,GVDMA 

BNE ROSIZ,GVDMA,PERIN 

MOV #0,GVDMA 

MOV #127,RC 
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NOP 

PERIN: NOP 

INC PER, PER 

INC UPAC,UPAC 

BRU START 

103 COM WINR,WINC 

AND CSR,WINC,INTl \ 

AND INTl I QCC, INT2 

AND BIC,QC,INT3 I> BIC = (cs) ( w I I ) (QC I ) 

AND BINR,QCC,INT4 + ( B I ) ( QC I ) • 

OR INT2 I INT3 I INTS + ( BIC) (QC) 

OR INT4,INTS,BIC I 

MOV BIC,BINC OUTPUT OF THE MODULE 

MOV BINR,BINRO CHECK THE VALUE OF BINR 

MOV WINR,WINRO 

; 

104 INC PER, PER 

INC UPAC,UPAC 

BRU START 

105 MOV SRAM@2,KOR READ SRAM INTO A DUMMY REG. 

ROR KOR DIVIDE BY TWO 

MOV C,CINRl STROE CARRY FOR ADDING 

ADD CINRl,KOR,MIR i SO, K0/2 + CIN --> MI 

ROR A2 SIMILARLY FOR Al I.E. [Kl] 
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MOV C,CINR2 

ADD CINR2,A2,Kl2R [Kl]/2 + CIN 
ADD Kl2R,MIR,A2 MI + [Kl]/2 + CIN --> A2 
MOV GVFIF@3,DIOR READ GRAY VAL FIFO INTO DIO 
MOV DIOR, Bl STORE THAT GRAY VAL IN Bl 
INC PER, PER 

INC UPAC,UPAC 

BRU START 

106 SHR A2,A2B2 DIVIDE A2 BY 2 

MOV A2B2,MIOR [A2]/2 --> MIO 

MOV MIOR,RC MIO --> RC 

BIR #7,RC THE LAST BIT OF RC IS "O" 

ADD Bl,A3,B2 Bl + A3 --> B2 

MOV C,CSR STORE THE CARRY 

INC PER, PER 

INC UPAC,UPAC 

JSR PAL PAL FUNCTION IS A SUBROUTINE 

BRU START 

107 MOV BIN,BININ STORE BIN AND WIN GIVEN 

MOV WIN,WININ BY THE PAL FUNCTION IN 

PREVIOUS PIXEL CYCLE 

MOV RC, DIOR RC --> DIO 

MOV DIOR, Al DIO --> Al 

BEQ BINR,BIO BRANCH IF BIN IS ZERO 
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MOV Bl,MIOR Bl --> MIO 
BRU OVER 

BIO BEQ WINR,WIO BRANCH IF WIN IS ZERO 
MOV A2,MIOR MOVE A2 TO RA VIA MIO 
MOV MIOR,RA 

BRU OVER 

WIO MOV A2,MIOR MOVE A2 TO RA VIA MIO 
MOV MIOR,RA 

SUB A2,B2,DUM1 A2 - B2 
MOV C,CSR LATCH THE CARRY 

OVER INC PER, PER 

INC UPAC,UPAC 

INC PIX, PIX ; ONE PIXEL OVER 

BNE ROSIZ,PIX,START ; IS THE ROW OVER? 

MOV #0,UPAC ROW !NIT. IF ROW IS 

MOV #127,RC OVER 

BRU START 

THE PAL FUNCTION TO COMPUTE BIN AND WIN IS 

IMPLEMENTED AS A SUBROUTINE. 

THE PAL FUNCTION IS: 

BINR = (BININ) (QA) (QB) (QC) + (BI) (QA I) + 

( BI ) ( QB I ) + (BI ) ( QC I ) 

WINR = (WININ)(QA)(QB)(QC) + (WI)(QA') + 

(WI)(QB') + (WI)(QC') 
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ACCORDING TO THESE VALUES THE MICROOPERATIONS ARE 

CARRIED OUT. THERE ARE THREE TYPES OF DIFFERENT 

MICROOPERATIONS: FOR BIN = 1 WITH WIN 0 OR 1, 

FOR BIN = 0 AND WIN = O; AND FOR BIN = 0 AND 

WIN = 1. THESE ARE DECIDED FROM THE COMPARISONS 

IN EVER CYCLE, BUT THE VALUES ARE SAME FOR ALL THE 

8 CLOCK CYCLES IN A PIXEL CYCLE. 

PAL NOP 

MOV BIN,BININ 

MOV WIN,WININ 

MOV BININ, INl 

MOV WININ, IN2 

MOV QAC, IN3 

MOV QB, IN4 

MOV QC, INS 

AND WININ,QAC,INTl 

AND QB,QC, INT2 

AND INTl I INT2 I INT3 

AND WINR,QAC,INT4 

AND WINR,QBC,INTS 

AND WINR,QCC,INT6 

OR INT3 I INT4 I INT? 

OR INTS I INT6 I INT8 

OR INT7 I INTB I INT9 
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MOV(W64) INT9,WINR 

AND BININ,QAC,INTl 

AND QB,QC,INT2 

AND INTl I INT2 I INT3 

AND BINR,QAC,INT4 

AND BINR,QBC,INT5 

AND BINR,QCC,INT6 

OR INT3, INT4, INT7 

OR INT5 I INT6 I INTS 

OR INT7 I INTS, INT9 

MOV(W64) INT9,BINR 

RTS 

THIS IS THE SRAM TO STORE KO. 

IT IS INTIALIZED TO MAX-BLACK (255) . 

SRAM BYT #255,#255,#255,#255,#255,#255,#255,#255 

BYT #255,#255,#255,#255,#255,#255,#255,#255 

BYT #255,#255,#255,#255,#255,#255,#255,#255 

BYT #255,#255,#255,#255,#255,#255,#255,#255 

BYT #255,#255,#255,#255,#255,#255,#255,#255 

BYT #255,#255,#255,#255,#255,#255,#255,#255 

BYT #255,#255,#255,#255,#255,#255,#255,#255 
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BYT 

BYT 

BYT 

BYT 

BYT 

BYT 

BYT 

BYT 

BYT 

BYT 

BYT 

BYT 

BYT 

BYT 

BYT 

BYT 

BYT 

BYT 

BYT 

BYT 

BYT 

BYT 

BYT 

BYT 

BYT 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,.#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 

#255,#255,#255,#255,#255,#255,#255,#255 
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THIS IS THE RAM TO STORE GRAY-VAL. 

GVFIF: BYT #0;#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 
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BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

BYT #0,#0,#0,#0,#0,#0,#0,#0 

END 
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APPENDIX F. LIST OF PARAMETERS TO CHANGE QUEUE LENGTH 

This chapter lists the parameters to be changed in 

GSPSIM.FOR, the FORTRAN program of the simulator. The present 

values of these parameters are also given at the end. The 

square brackets ([ ]} give the line numbers of the occurences 

of those parameters. 

1. COMMON/QUEUE/QPINS(*},QTIME(*},QVALU(*},QLINK(*},QMOD(*) 

.......... [86,973,1153,1226,1277,2776] 

2. LABEL ( *} .· . . . . . . . . IN COMMON STATEMENTS 

DATA LABEL/ I [1030] 

3. CODE1(*},CODE2(*} ...... [1028,1029 AND IN COMMON] 

4. QLINK (**} 

[86,973,1153,1226,1259,1277,1571,2776] 

5. QMOD ( **} ....... [87,974,1154,1227,1278,2777] 

6. DATA BOTTOM I I [988] 

DATA QPINS/ I [990] 

DATA QT I ME/ I (991] 

DATA QVALU/ I [992] 

Li.st of Parameters To Change Queue Length 
Appendix F. 
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DATA 

DATA 

QLINK/ 

QMOD/ I 

I [993] 

[994] 

7. A global variable "MXQSIZ" has been declared to specify 

the maximum Queue size. 

statements . 

Initialize it in BLOCK DATA 

. . ..... [1253, 1565] 

8. BOTTOM= ...... [1262, 1574] 

9. MXQSIZ ..... [86]. 

PRESENT VALUES 

QPINS(*),QTIME(*) ..... 200. 

LABEL(*) 3000. 

CODEl(*) 5000 . 

CODE2(*) . . . . . 10000. 

Li.st of Parameters To Change Queue Length 
Appendix F. 
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