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	 β	 =	 regression coefficient

	 E	 =	 residual vector

	 E	 =	 residual matrix

	 n	 =	 number of samples

	P and C	 =	 loadings (PLS)

	 PT	 =	 loading matrix

	 T	 =	 score matrix

	 Wa	 =	 partial least squares weighting

	 Wi	 =	 weighting term for ith data point

	 x	 =	 represents any variable

	 X	 =	 original signal/independent variable vector

	 X	 =	 independent variable matrix

	 Xnor	 =	 normalized value of X

	 XS	 =	 smoothed signal
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Introduction

Novel sensing technologies and data processing play a very important role in 
most scenarios across the wide varieties of biosystems engineering applica-
tions, such as environmental control and monitoring, food processing and safety 
control, agricultural machinery design and its automation, and biomass and 
bioenergy production, particularly in the big data era. For instance, to achieve 
automatic, non-destructive grading of agricultural products according to their 
physical and chemical properties, raw data from different types of sensors 
should be acquired and carefully processed to accurately describe the samples 
so that the products can be classified into different categories correctly (Gowen 
et al., 2007; Feng et al., 2013; O’Donnell et al., 2014; Baietto and Wilson, 2015; 
Park and Lu, 2016). For the environmental control of greenhouses, temperature, 
humidity, and the concentration of particular gases should be determined by 
processing the raw data acquired from thermistors, hydrometers, and electronic 
noses or optical sensors (Bai et al., 2018). Successful use of measurements relies 
heavily on data processing that converts the raw data into meaningful informa-
tion for easier interpretation and understanding the targets of interest.

The purpose of data processing is to turn raw data into useful information 
that can help understand the nature of objects or a process. To make this whole 
procedure successful, particular attention should be paid to ensure the quality 
of raw data. However, the raw data obtained from biological systems are always 
affected by environmental factors and the status of samples. For example, the 
optical profiles of meat are vulnerable to temperature variation, light condi-
tions, breeds, age and sex of animals, type of feeds, and geographical origins, 
among other factors. To ensure the best quality of raw data, data pretreatment 
is essential.

In this chapter, data pretreatment methods, including smoothing, derivatives, 
and normalization, are introduced. With good quality data, a modeling process 
correlating the raw data with features of the object or process of interest can 
be developed. This can be realized by employing different modeling methods. 
After validation, the established model can then be used for real applications.

Outcomes
After reading this chapter, you should be able to:

•	 Describe the principles of various data processing methods

•	 Determine appropriate data processing methods for model development

•	 Evaluate the performance of established models

•	 List examples of the application of data processing
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Concepts
Data Pretreatment

Data Smoothing
To understand the features of biological objects, different sensors or instruments 
can be employed to acquire signals representing their properties. For example, a 
near-infrared (NIR) spectrometer is used to collect the optical properties across 
different wavelengths, called the spectrum, of a food or agricultural product. 
However, during signal (i.e., spectrum) acquisition, random noise will inevitably 
be introduced, which can deteriorate signal quality. For example, short-term 
fluctuations may be present in signals, which may be due to environmental 
effects, such as the dark current response and readout noise of the instrument. 
Dark current is composed of electrons produced by thermal energy variations, 
and readout noise refers to information derived from imperfect operation of 
electronic devices. Neither of them contribute to the understanding of the 
objects under investigation. In order to decrease such effects, data smoothing is 
usually applied. Some popular data smoothing methods include moving average 
(MV) and S-G (Savitzky and Golay) smoothing.

The idea of moving average is to apply “sliding windows” to smooth out random 
noises at each segment of the signal by calculating the average value in the seg-
ment so that the random noise in the whole signal can be reduced. Given a win-
dow with an even number of data points at a certain position, the average value 
of the original data within the window is calculated and used as the smoothed 
new value for the central point position. This procedure is repeated until reaching 
the end of the original signal. For the data points at the two edges of the signal 
that cannot be covered by a complete window, one can still assume the window 
is applied but only calculate the average of the data available in the window. The 
width of window is a key factor that should be determined carefully. It is not 
always true that the signal-to-noise ratio increases with window width since a 
too-large window will tend to smooth out useful signal as well. Moreover, since 
the average value is calculated for each window, all data points in the window 
are considered as equal contributors for the signal; this will sometimes result 
in signal distortion. To avoid this problem, S-G smoothing can be introduced.

Instead of using a simple average in the moving average process, Savitzky 
and Golay (1964) proposed assigning weights to different data in the window. 
Given an original signal X, the smoothed signal XS can be obtained as:
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where 2r + 1 is window width and Wi is the weight for the ith data point in the win-
dow. W is obtained by fitting the data points in the window to a polynomial form 
following the least squares principle to minimize the errors between the original 
signal X and the smoothed signal XS and calculating the central points of the 
window from the polynomial. In applying S-G smoothing, the smoothing points 
and order of polynomials should be decided first. Once the two parameters are 
determined, the weight coefficients can then be applied to the data points in 
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the window to calculate the value of the central point using  
equation 1.

Figure  1 shows the smoothing effect by applying S-G 
smoothing to a spectrum of beef sample (Figure 1b-d). It is 
clearly shown that after S-G smoothing, the random noise in 
the original signal (Figure 1a) is greatly suppressed when the 
window width is 3 (Figure 1b). An even better result is achieved 
when the window width increases to 5 and 7, where the curve 
becomes smoother (Figure 1d) and the short fluctuations are 
barely seen.

Derivatives
Derivatives are methods for recovering useful information from 
data while removing slow change of signals (or low frequency 
signals) that could be useless in determining the properties 
of biological samples. For example, for a spectrum defined 
as a function y = f(x), the first and second derivatives can be 
calculated as:
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From equations 2 and 3, it can be understood that the offset 
(e.g., constant shift of signals) of the signal can be eliminated 
after first derivative processing, while both offset and slope in 

the original signal can be excluded after second derivative processing. Specifi-
cally, for the first derivative, the constant values (corresponding to the offset) can 
be eliminated due to the difference operation in the numerator of equation 2. 
After the first derivative, the spectral curve with the same slope can be converted 
to a new offset and this can be further eliminated by a second derivative. Since 
offset variations and slope information always indicate environmental effects 
on the signal and irrelevant factors that are closely correlated with indepen-
dent variables, application of derivative methods will help reduce such noises. 
Moreover, processing signals with derivatives offer an efficient approach to 
enhance the resolution of signals by uncovering more peaks, particularly in 
spectral analysis.

For biological samples with complicated chemical components, the spectra 
are normally the combination of different absorbance peaks arising from these 
components. Such superimposed peaks, however, can be well separated in 
second derivative spectra. Nevertheless, it should be noted that the signal-to-
noise ratio of the signal will deteriorate with the increase of derivative orders 
since the noise is also enhanced substantially, particularly for the higher order 
derivatives, though high order derivatives are sometimes found to be use-
ful in understanding the detailed properties of the objects. To avoid noise 

Figure 1. S-G smoothing of a spectral signal. 
(a) The original spectrum; (b),(c) and (d) are S-G 
smoothing results under window widths (Win) of 3, 
5, and 7, respectively.
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enhancement, a S-G derivative can be introduced 
where signal derivatives are attained by comput-
ing the derivatives of the polynomial. Specifically, 
the data points in a sliding window are fitted 
to a polynomial of a certain order following the 
procedure of S-G smoothing. Within the window, 
derivatives of the fitted polynomial are then cal-
culated to produce new weights for the central 
point. When the sliding window reaches the end 
of the signal, derivatives of the current signal are 
then attained.

Figure 2 shows absorbance and derivative spec-
tra of bacterial suspensions (Feng et al., 2015). It is 
demonstrated that after S-G derivative operation 
with 5 smoothing points and polynomial order  
of 2, the constant offset and linear baseline shift 
in the original spectrum (Figure 2a) are effec-
tively removed in the first (Figure 2b) and sec-
ond (Figure 2c) derivative spectra, respectively. 
Particularly, the second derivative technique is  
also a useful tool to separate overlapped peaks 
where a peak at ~1450 nm is resolved into two 
peaks at 1412 and 1462 nm.

Normalization
The purpose of data normalization is to equal-
ize the magnitude of sample signals so that all 
variables for a sample can be treated equally 
for further analysis. For example, the surface 
temperature of pigs and environmental factors 
(temperature, humidity, and air velocity) can be 
combined to detect the rectal temperature of 
sows. Since the values for pig surface tempera-
ture can be around 39°C while the air velocity 
is mostly below 2 m/s, if these values are used 
directly for further data analysis, the surface tem-
perature will intrinsically play a more dominant 
role than air velocity does simply due to its larger 
values. This may lead to biased interpretation 
of the importance of variables. Data normaliza-
tion is also helpful when signals from different 
sensors are combined as variables (i.e., data 
fusion) to characterize biological samples that 
are complex in composition and easily affected 
by environmental conditions. However, since 
data normalization removes the average as well 
as the standard deviation of the sample variables, 

Figure 2. NIR derivative spectra of bacterial suspensions.  
(a): original spectrum; (b): First derivative spectrum; (c) second 
derivative spectrum.
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it might give confusing information about the samples if variabilities of variables 
in different units are important in characterizing sample properties.

Standard normal variate (SNV), or standardization, is one of the most popular 
methods used to normalize sample data (Dhanoa et al., 1994). Given a sample 
data X, the normalized Xnor can be obtained as:

	 nor
- mean( )
SD( )

X XX
X

� 	 (4)

where mean(X) and SD(X) are the mean and standard deviation of X, respectively.
After SNV transformation, a new signal with a mean value of 0 and unit standard 

deviation is produced. Therefore, SNV is useful in eliminating dimensional variance 
among variables since all variables are compared at the same level. In addition, as 
shown in figure 3, SNV is capable of correcting the scattering effect of samples 
due to physical structure of samples during light-matter interactions (Feng and 
Sun, 2013). Specifically, the large variations in visible NIR (vis-NIR) spectra of beef 
samples (Figure 3a) are substantially suppressed as shown in Figure 3b.

Modeling Methods

The purpose of modeling in data processing is 
mainly to establish the relationship between 
independent variables and dependent variables. 
Independent variables are defined as stand-alone 
factors that can be used to determine the values 
of other variables. Since the values of other vari-
ables depend on the independent variables, they 
are called dependent variables. For example, if size, 
weight, and color are used to classify apples into 
different grades, the variables of size, weight, and 
color are the independent variables and the grade 
of apples is the dependent variable. The depen-
dent variables are calculated based on measured 
independent variables. During model develop-
ment, if only one independent variable is used, the 
resultant model is a univariate model, while two or 
more independent variables are involved in mul-
tivariate models. If dependent variables are used 
during model calibration or training, the meth-
ods applied in model development are termed 
supervised. Otherwise, an unsupervised method 
is employed. The dataset used for model develop-
ment is called the calibration set (or training set) 
and a new dataset where the model is applied for 
validation is the validation set (or prediction set).

The developed models can be used for different 
purposes. Basically, if the model is used to predict 
a discrete class (categorical), it is a classification 

Figure 3. SNV processing of vis-NIR spectra of beef samples 
adulterated with chicken meat. (a) Original spectra; (b) SNV 
processed spectra.
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model; and if it aims to predict a continuous quantity, it is a regression model. 
For instance, if spectra of samples are used to identify the geographical origins 
of beef, the spectra (optical properties at different wavelengths) are the inde-
pendent variables and the geographical origins are the dependent variables. 
The established multivariate model describing the relationship between spectra 
and geographical origins is a classification model. In a classification model, the 
dependent variables are dummy variables (or labels) where different arbitrary 
numbers are used to represent different classes but with no physical meaning. 
On the other hand, if spectra of samples are used to determine the water con-
tent of beef, the developed model is then a regression model. The dependent 
variables are meaningful numbers indicating the actual water content. Simply, a 
classification model tries to answer the question of “What is it?” and a regression 
model tries to determine “How much is there?” There is a wide range of methods 
for regression or classification models. Some are described below.

Linear Regression
Linear regression is an analytical method that explores the linear relationship 
between independent variables (X) and dependent variables (Y). Simple linear 
regression is used to establish the simplest model that can be used to illustrate 
the relationship between one independent variable X and one dependent vari-
able Y. The model can be described as:

	 0 1 � �� � �Y X E	 (5)

where X is the independent variable; Y is the dependent variable; 0� , 1� , are the 
regression coefficients; and E is the residual vector.

Simple linear regression is used when only one independent variable is to 
be correlated with the dependent variable. In the model, the two important 
coefficients, 0�  and 1� , can be determined by finding the best fit line through 
the scatter curve between X and Y via the least squares method. The best fit 
line requires minimization of errors between the real Y and the predicted ˆ Y . 
Since the errors could be either positive or negative, it is more appropriate to 
use the sum of squared errors. Based on this, 0�  and 1�  can be calculated as:
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where X  and Y  are mean values of X and Y, respectively, and n is the number 
of samples.

Multiple linear regression (MLR) is a linear analysis method for regression in 
which the corresponding model is established between multiple independent 
variables and one dependent variable (Ganesh, 2010):

	 0
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where jX  is the jth independent variable; Y is the dependent variable; 0 �  is the 
intercept; 1� , 2� , . . . , n�  are regression coefficients, and E is the residual matrix.

Although MLR tends to give better results compared with simple linear 
regression since more variables are utilized, MLR is only suitable for situations 
where the number of variables is less than the number of samples. If the number 
of variables exceeds the number of samples, equation 8 will be underdetermined 
and infinite solutions can be produced to minimize residuals. Therefore, multiple 
linear regression is generally employed based on important feature variables 
(such as important wavelengths in spectral analysis) instead of all variables, if 
the number of variables is larger than that of samples.

Similar to simple linear regression, the determination of regression coef-
ficients also relies on the minimization of prediction residuals (i.e., the sum of 
squared residuals between true Y values and predicted ˆ Y ). Specific procedures 
can be found elsewhere (Friedman et al., 2001).

Principal Component Analysis (PCA)
Due to the complicated nature of biological samples, data acquired to character-
ize samples usually involve many variables. For example, spectral responses at 
hundreds to thousands of wavelengths may be used to characterize the physi-
cal and chemical components of samples. Such great dimensionality inevitably 
brings difficulties in data interpretation. With the original multivariate data, 
each independent variable or variable combinations can be used to draw one-, 
two-, or three-dimensional plots to understand the distribution of samples. 
However, this process requires a huge workload and is unrealistic if more than 
three variables are involved.

Principal component analysis (PCA) is a powerful tool to compress data and 
provides a much more efficient way for visualizing data structure. The idea of 
PCA is to find a set of new variables that are uncorrelated with each other and 
attach the most data information onto the first few variables (Hotelling, 1933). 
Initially, PCA tries to find the best coordinate that can represent the most data 
variations in the original data and record it as PC1. Other PCs are subsequently 
extracted to cover the greatest variations of the remaining data. The established 
PCA model can be expressed as:

	 T    � �X TP E	 (9)

where X is the independent variable matrix, T is the score matrix, PT is the load-
ing matrix, and E is the residual matrix. The score matrix can be used to visualize 
the relationship between samples and the loadings can be used to express the 
relations between variables.

After PCA, the data can be represented by a few PCs (usually less than 10). 
These PCs are sorted according to their contribution to the explanation of data 
variance. Specifically, an accumulated contribution rate, defined as explained 
variance from the first few PCs over the total variance of the data, is usually 
employed to evaluate how many new variables (PCs) should be used to repre-
sent the data. Nevertheless, by applying PCA, the number of variables required 
for characterizing data variance is substantially reduced. After projecting the 
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original data into the new PC spaces, data structure can be easily seen, if it 
exists.

Partial Least Squares Regression (PLSR)
As illustrated above, MLR requires that the number of samples be more than 
the number of variables. However, biological data normally contain far more 
variables than samples, and some of these variables may be correlated with 
each other, providing redundant information. To cope with this dilemma, partial 
least squares regression (PLSR) can be used to reduce the number of variables in 
the original data while retaining the majority of its information and eliminating 
redundant variations (Mevik et al., 2011). In PLSR, both X and Y are projected to 
new spaces. In such spaces, the multidimensional direction of X is determined 
to best account for the most variance of multidimensional direction of Y. In 
other words, PLSR decomposes both predictors X and dependent variable Y 
into combinations of new variables (scores) by ensuring the maximum correla-
tion between X and Y (Geladi and Kowalski, 1986). Specifically, the score T of X 
is correlated with Y by using the following formulas:

	 *� � � � � �aY XB E XW C E TC E	 (10)

	 * T( )�a a aW W P W -1	 (11)

where B is the regression coefficients for the PLSR model established; E is the 
residual matrix; Wa represents the PLS weights; a is the desired number of 
new variables adopted; P and C are loadings for X and Y, respectively. The new 
variables adopted are usually termed as latent variables (LVs) since they are not 
the observed independent variables but inferred from them.

The most important parameter in PLS regression is the determination of 
the number of LVs. Based on the PLSR models 
established with different LVs, a method named 
leave-one-out cross validation is commonly uti-
lized to validate the models. That is, for the model 
with a certain number of LVs, one sample from 
the data set is left out with the remaining samples 
used to build a new model. The new model is then 
applied to the sample that is left out for predic-
tion. This procedure is repeated until every sam-
ple has been left out once. Finally, every sample 
would have two values, i.e., the true value and 
the predicted value. These two types of values 
can then be used to calculate root mean squared 
errors (RMSEs; equation 13 in the Model Evalua-
tion section below) for different numbers of LVs. 
Usually, the optimal number of LVs is determined 
either at the minimum value of RMSEs or the one 
after which the RMSEs are not significantly dif-
ferent from the minimum RMSE. In Figure 4 for 

Figure 4. Plot of root mean squared error (RMSE) as a function 
of number of latent variables (LVs) for a PLSR model. The minimum 
RMSE is attained when 11 latent variables are used. However, using 
6 LVs, as indicated by the red arrow, is better in terms of model 
simplicity.
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instance, using 6 latent variables would produce a very similar RMSE value to 
the minimum RMSE that is attained with 11 LVs; therefore, 6 latent variables 
would be more suitable for simpler model development.

In addition to the methods introduced above, many more algorithms are avail-
able for model development. With the fast growth of computer science and 
information technologies, modern machine learning methods, including artificial 
neural networks, deep learning, decision trees, and support vector machines, are 
widely used in biosystems engineering (LeCun et al., 2015; Maione and Barbosa, 
2019; Pham et al., 2019, Zhao et al., 2019).

The model development methods described above can be used for both 
regression and classification problems. For regression, the final outputs are 
the results produced when the independent variables are input into the estab-
lished models. For classification, a further operation is required to attain the 
final numbers for categorical representation. Normally, a rounding operation is 
adopted. For instance, a direct output of 1.1 from the model tends to be rounded 
down to 1 as the final result, which can be a label for a certain class. After such 
modification, the name of the regression method can be changed from PLSR to 
partial least squares discriminant analysis (PLS-DA), as an example. However, 
these numbers do not have actual physical meanings, and therefore they are 
often termed dummy variables.

Since a model can be established using different modeling methods, some 
of which are outlined above, the decision on which type of method to use is 
task-specific. If the objective is to achieve stable model with high precision, 
the one that can lead to the best model performance should be employed. 
However, if the main concern is simplicity and easy interpretation based on 
feasible application, a linear method will often be the best choice. In cases when 
a linear model fails to depict the correlation between X and Y, nonlinear models 
established by applying artificial neural networks or support vector machines 
could then be applied.

Model Evaluation

The full process of model development includes the calibration, validation, 
and evaluation of models. Model calibration tries to employ different modeling 
methods to the training data to find the best parameters for representation of 
samples. For example, if PLSR is applied to NIR spectral data to quantify beef 
adulteration with pork, the important parameters including the number of LVs  
and regression coefficients are determined so that when the spectra are inputted 
to the model, the predicted percentage of adulteration levels can be calculated. 
It is clear that this process simply works on the training data itself and the 
resultant model can best explain the data of the particular samples. However, 
since the modeling process is data specific, good model performance some-
times can be due to the modeling of noise and such models will fail to function 
with new, independent data. This problem is known as over-fitting and should 
be always avoided during modeling. Therefore, it is of crucial importance to 
validate the performance of the models using independent data, i.e., data that 
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are not included in the calibration set and that are totally unknown to the 
established model.

Model validation is a process to verify whether similar model performance 
can be attained to that of calibration. There are basically two ways to conduct 
model validation. One is to use cross-validation, if there are not enough samples 
available. Cross-validation is implemented based on the training set and often a 
leave-one-out approach is taken (Klanke and Ritter, 2006). During leave-one-out 
cross-validation, one sample is left out from the calibration set and a calibration 
model is developed based on the remaining data. The left-out sample is then 
inputted to the developed model based on the other samples. This procedure 
terminates when all samples have been left out once. Finally, all samples will be 
predicted for comparison with the measured values. However, this method should 
be used with caution since it may lead to over-optimistic evaluation or model 
overfitting. Another approach, called external validation, is to introduce an inde-
pendent prediction set that is not included in the calibration set and apply the 
model to the new, independent dataset. External validation is always preferred  
for model evaluation. Nevertheless, it is recommended to apply both cross-
validation and external validation methods to evaluate the performance of mod-
els. This is particularly important in biosystems engineering because biological 
samples are very complex and their properties can change with time and environ-
ment. For meat samples, the chemical components of meat vary due to species, 
geographical origins, breeding patterns, and even different body portions of the 
same type of animal. The packaging atmosphere and temperature also have great 
influence on the quality variations of meat. Ideally, with a good and stable model, 
the results from cross-validation and external validation should be similar.

Model evaluation is an indispensable part of model development, which aims 
to determine the best performance of a model as well as to verify its validity 
for future applications by calculating and comparing some statistics (Gauch 
et al., 2003). For regression problems, two common parameters, coefficient 
of determination (R2), and root mean squared error (RMSE), are calculated to 
express the performance of a model. They are defined as follows:
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where Yi,pre and Yi,meas, respectively, represent the predicted value and the mea-
sured value of targets for sample i; Y  is the mean target value for all samples. An 
R2 of 1 and RMSE of 0 for all data sets would indicate a “perfect” model. Thus, 
the goal is to have R2 as close to 1 as possible and RMSE close to 0. In addition, 
a stable model has similar R2 and RMSE values for calibration and validation. It 
should be noted that R, the square root of R2, or correlation coefficient, is also 
frequently used to express the linear relationship between the predicted and 
measured values. Moreover, since different data sets may be used during model 
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development, the above parameters can be modified in accordance. For example, 
R2

C, R2
CV and R2

P can be used to represent the coefficients of determination for 
calibration, cross-validation, and prediction, respectively. Root mean squared 
errors for calibration, cross-validation, and prediction are denoted as RMSEC, 
RMSECV, and RMSEP, respectively.

For classification problems, a model’s overall correct classification rate 
(OCCR) is an important index used to evaluate the classification performance:

	 Number of correctly classified samplesOCCR
Total number of samples

� 	 (14)

The number of correctly classified samples is determined by comparing the pre-
dicted classification with the known classification. To investigate the detailed 
classification performance, a confusion matrix can be utilized (Townsend, 1971). A 
confusion matrix for binary classifications is shown in Table 1. In the confusion 
matrix, true positive and true negative indicate samples that are predicted cor-
rectly. False positives and false negatives are encountered when what is not true 
is wrongly considered as true and vice versa. Based on the confusion matrix, 
parameters can be attained to evaluate the classification model, including the 
sensitivity, specificity, and prevalence, among others:

	
True positive

Sensitivity
 Condition positive

� �
�

	 (15)

	
True negative

Specificity
 Condition negative

� �
�

	 (16)

	
Condition positive

Prevalence
 Total population

� �
�

	 (17)

Applications
Beef Adulteration Detection

Food adulteration causes distrust in the food industry by leading to food waste 
due to food recall and loss of consumer trust. Therefore, it is crucial to use mod-
ern technologies to detect deliberate adulteration or accidental contamination. 
For example, a handheld spectrometer can be used to obtain spectra from beef 
samples. The raw spectra can be processed by the spectrometer to quantify the 
level, if any, of adulteration of each beef sample. To properly process the raw 
spectra, purposeful contamination experiments can be used to determine the 

Table 1. Confusion matrix for binary classification.

Condition Positive Condition Negative

Predicted Positive True positive (Power) False positive (Type I error)

Predicted Negative False negative (Type Il error) True negative
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appropriate pretreatment (or preprocessing) method(s) for the raw data. For 
example, figure 5a shows spectra corresponding to different adulteration levels. 
Adulteration concentration in such an experiment should range from 0% to 100% 
with 0% being pure fresh beef and 100% for pure spoiled beef. The experiment 
should include a calibration dataset to develop the predictive relationship from 
spectra and an independent dataset to test the validity of the prediction. The 
following process can be used to determine the best preprocessing method for 
quantification of beef adulteration.

The raw spectral data (figure 5a) have what is probably random noise with the 
signal, particularly at the lower wavelengths (400–500 nm). The reason for saying 
this is there are variations in spectral magnitude among the samples that do not 
change linearly with adulteration concentration. It is possible that these varia-
tions (noise in this application) are due to differences in chemical components of 
the samples, since spoiled meat is very different from fresh meat, so when the two 
are mixed in different proportions a clear signal should be visible. Noise might 

Figure 5. Preprocessing of beef spectra for adulterated beef: (a) raw spectra; (b) SNV preprocessed spectra; (c) and (d) 
spectra preprocessed with first and second derivatives.
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also be introduced due to small differences in the physical structure of samples 
causing variation of light scattering between the samples. Also note that there 
are only limited peaks and there is evident offset in the raw spectra. Therefore, 
different preprocessing methods including S-G smoothing, SNV, and the first 
and second derivatives can be applied to the raw spectra (figure 5) and their 
performance in terms of improving the detection of beef adulteration compared.

Table 2 shows the performance of different preprocessing methods together 
with PLSR in determining the adulteration concentration. All the preprocessing 
methods applied lead to better models with smaller RMSEs, although such 
improvement is not very much. The optimal model was attained by using SNV 
as the preprocessing method, which had coefficients of determination of 0.93, 
0.92, and 0.88 as well as RMSEs of 7.30%, 8.35%, and 7.90% for calibration, 
cross-validation, and prediction, respectively. Though second derivative spectra 
have contributed to better prediction precision (7.37%), the corresponding 
model yielded larger RMSEs for both calibration and cross-validation. Therefore, 
the best preprocessing method in this case is SNV. This preprocessing method 
can be embedded in a handheld spectrometer, where the raw spectra of adul-
terated beef samples acquired can be normalized by removing the average and 
then dividing by the standard deviation of the spectra. The prediction model 
can then be applied to the SNV-preprocessed data to estimate levels of beef 
adulteration and to provide insights into the authenticity of the beef product.

Bacterial Classification

Identification and classification of bacteria are important for food safety, for the 
design of processes such as thermal treatment, and to help identify the causes 
of illness when bacterial contamination has occurred. This example outlines 
how a classification system can be developed (Feng et al., 2015). A spectral 
matrix was derived by scanning a total of 196 bacterial suspensions of various 
concentrations using a near infrared spectrometer over two wavelength ranges, 
i.e., 400–1100 nm and 1100–2498 nm. A column vector that recorded the labels 
for each bacterium (i.e., its name or classification) was also constructed. This 
dataset were used to classify different bacteria including three Escherichia coli 

Table 2. Comparison of different data preprocessing methods combined with PLSR for predicting beef 
adulteration.

Methods RMSEC (%) RMSECV (%) RMSEP (%) R2C R2CV R2P LV

None 8.35 9.34 7.99 0.91 0.90 0.88 4

1st Derivative 8.05 8.78 7.92 0.92 0.91 0.88 3

2nd Derivative 7.92 10.03 7.37 0.92 0.88 0.90 4

SNV 7.30 8.35 7.90 0.93 0.92 0.88 4

S-G 7.78 8.90 7.91 0.93 0.91 0.88 5

C = calibration
CV = coefficient of variation
SEP = standard error of prediction
P = prediction
LV = latent variables
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strains and four Listeria innocua strains. Since the dataset con-
tained a large number (>1000) of variables, it was interesting 
to visualize the structure of the data to investigate potential 
sample clustering. By using appropriate modeling methods, 
it was possible to establish a model for classifying bacteria at 
species level.

PCA can be used to understand the structure of data. Since 
the scores of a PCA model can be used to elucidate the distri-
bution of samples, it is interesting to draw a score plot such 
as figure 6. The first two columns of the score matrix T are 
the scores for the first two PCs and is generated by using the 
first one as x-axis and the other as y-axis. The loading plots 
in figure 6 can be created by plotting the first two columns 
of the loading matrix PT versus variable names (wavelengths 
in this case), respectively.

The first and second PCs have covered 58.34% and 35.04% 
of the total variance of the spectral data set, leading to 93.38% 
of the information explained. Based on such information, it is 
demonstrated clearly that the two bacteria are well separated 
along the first PC though very few samples mixed together. By 
investigating loading 1, it is found that five main wavelengths 
including 1392, 1450, 1888, 1950, and 2230 nm are important 
variables that contribute to the separation of the two bacterial 
species. Also, it is interesting to find that two clusters appear 
within either of the two bacterial species and such separation 
can then be explained by the four major wavelengths indicated 
in loading 2 (figure 6c).

The next target is to establish a classification model in the 
400–1100 nm region for the classification of these bacterial 
species. To achieve this, PLS-DA was employed where the 
spectral data and the bacterial labels are used as indepen-
dent and dependent variables, respectively. Figure 7 shows the 
performance of the established model. The optimized model 
takes four latent variables to produce OCCRs of 99.25% and 
96.83% for calibration and prediction, respectively. To cal-
culate OCCRs, the predicted values of individual samples are 
first rounded to get values of 1 or 0 and these predicted labels 
are then compared with the true labels, following which equa-
tion 14 is employed.

A confusion matrix showing the classification details for  
prediction is shown in table 3. It shows that the true positive 
for detecting E. coli and L. innocua are 25 and 36, respec-
tively. Accordingly, the sensitivity for detecting E. coli and 
L. innocua species are 0.93 (25/27) and 1 (36/36), respec-
tively. All the above parameters for both calibration and 
prediction demonstrate that the two bacterial species can 
be well classified.

Figure 6. Score plots and loadings of the PCA 
model (1100–2498 nm) for E. coli and L. innocua 
bacterial suspensions. (a) Score plot; (b) and (c) are 
loadings for the first two PCs (Feng et al., 2015).

Table 3. Confusion matrix for bacterial 
species classification.

Actual 
Class

Predicted Class

TotalE. coli L. innocua

E. coli 25 2 27

L. innocua 0 36 36

Total 25 38 63
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In microbial safety inspec-
tion of food products, it is 
important to identify the 
culprit pathogens that are 
responsible for foodborne 
diseases. To achieve this, 
bacteria on food surfaces 
can be sampled, cultured, 
isolated, and suspended, and 
the model can be applied to 
the spectra of bacterial sus-
pensions to tell us which of 
those two species of bacte-
ria are present in the food 
product.

Examples
Example 1: Moving average calculation

Problem:
Fruit variety and ripeness of fruit can be determined by non-destructive methods 
such as NIR spectroscopy. A reflectance spectrum of a peach sample was acquired; 
part of the spectral data in the wavelength range of 640–690 nm is shown in table 4. 
Though the spectrometer is carefully configured, there still might be noise present 
in the spectra due to environmental conditions. Apply the moving average method 
to smooth the spectrum and to reduce potential noise.

Solution:
Various software, including Microsoft, MATLAB, and commercial chemometric 
software (the Unscrambler, PLS Toolbox etc.) are available for implementing the 
moving average. Taking Microsoft Excel as an example, the “average” function is 
required. Given a spectrum presented column-wise (for example, column B), the 
value for the smoothed spectrum at cell B10 can be obtained as average(B9:B11) 
if the window size is 3, and average(B8:B12) or average(B7:B13) if the window 
size is 5 or 7, respectively. For both ends of the spectrum, only the average of 
values present in the window of a particular size is calculated. For instance, the 
spectral value at 639.8 nm after moving average smoothing under the window 
size of 3 can be obtained as the mean values of the original spectrum at 639.8, 
641.1 and 642.2 nm, that is, (0.4728 + 0.4745 + 0.4751)/3 =0.4741.

Figure 8 shows the smoothed spectrum, the result of using the moving aver-
age method. Note that the spectra are shifted 0.01, 0.02, and 0.03 unit for the 

 

Figure 7. PLS-DA classification model performance in the visible-SWNIR range (400–1100 nm). 
(a) Selection of the optimal number of latent variables; (b) model performance for calibration; 
(c) model performance for prediction. The dotted lines indicate the threshold value of 0.5 (Feng 
et al., 2015).
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Win = 3, Win = 5, and Win = 7 spectra to separate 
the curves for visual presentation purposes. It 
is clear that for the original data, there is slight 
fluctuation and such variation is diminished after 
moving average smoothing.

Example 2: Evaluation of model 
performance

Problem:
As pigs cannot sweat, it is important to be able 
to rapidly confirm that conditions in a pig house 
are not causing them stress. Rectal temperature 
is the best indicator of heat stress in an animal, 
but it can be difficult to measure. A pig’s surface 
temperature, however, can be measured easily 
using non-contact sensors. Table 5 shows the 
performance of two PLSR models used to predict 
the rectal temperature of pigs by using vari-
ables including surface temperature and several 
environmental conditions. Model 1 is a many-
variable model and Model 2 is a simplified model 
that utilizes an optimized subset of variables. 
Determine which model is better. The perfor-
mance of models is presented by R and RMSEs 
for calibration, cross-validation, and prediction.

Solution:
The first step is to check whether R is close to 1 
and RMSE to 0. Correlation coefficients range from 
0.66 to 0.87 (table 5), showing obvious correlation 
between the predicted rectal temperature and 
the real rectal temperature. By investigating the 
RMSEs, it is found that these errors are relatively 
small (0.25°–0.38°C) compared with the measured 
range (37.8°–40.2°C). Therefore, both models are 
useful for predicting the rectal temperature of pigs.

The second step is to check the stability of 
the established models by evaluating the dif-
ference among Rs or RMSEs for calibration, 
cross-validation, and prediction. For the specific 
example, although the best correlation coefficient 
for calibration (RC) and root mean squared error for 
calibration (RMSEC) were attained for the many-
variable model, its performance in cross-validation 
and prediction was inferior to that of the simplified 
model. Most importantly, the biggest difference 

Table 4. Spectral data of a peach sample in the 
640–690 nm range.

Wavelength
(nm) Reflectance

Wavelength
(nm) Reflectance

639.8 0.4728 665.2 0.4755

641.1 0.4745 666.5 0.4743

642.4 0.4751 667.7 0.4721

643.6 0.4758 669.0 0.4701

644.9 0.4766 670.3 0.4680

646.2 0.4777 671.5 0.4673

647.4 0.4791 672.8 0.4664

648.7 0.4807 674.1 0.4661

650.0 0.4829 675.3 0.4672

651.2 0.4850 676.6 0.4689

652.5 0.4854 677.9 0.4715

653.8 0.4854 679.2 0.4747

655.0 0.4851 680.4 0.4796

656.3 0.4838 681.7 0.4862

657.6 0.4826 683.0 0.4932

658.8 0.4814 684.3 0.5010

660.1 0.4801 685.5 0.5093

661.4 0.4789 686.8 0.5182

662.7 0.4782 688.1 0.5269

663.9 0.4765 689.3 0.5360

Figure 8. Example of moving average smoothing of a peach spectrum. 
The spectra are shifted 0.01, 0.02, and 0.03 units for Win = 3, Win = 5 
and Win = 7 spectra, respectively, for better visual presentation.
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among Rs of the many-variable model was 
0.21, while only a tenth of such difference 
(0.02) was found for the simplified model. 
A similar trend was also observed for the 
RMSEs where the maximum differences of 
0.05°C and 1.3°C were yielded for the sim-
plified and many-variable models, respec-
tively. These results strongly demonstrate 
that the simplified model is much more 
stable than the many-variable model.

The third step can evaluate the simplicity of the model. In this example, four 
latent variables were employed to establish the many-variable model while only 
two were needed for the simplified model. Above all, the simplified model showed 
better prediction ability, particularly for cross-validation and prediction, with 
fewer latent variables. Therefore, it is considered as the better model.

Image Credits

Figure 1. Feng, Y. (CC By 4.0). (2020). S-G smoothing of a spectral signal.
Figure 2. Feng, Y. (CC By 4.0). (2020). NIR derivative spectra of bacterial suspensions.
Figure 3. Feng, Y. (CC By 4.0). (2020). SNV processing of vis-NIR spectra of beef samples 

adulterated with chicken meat.
Figure 4. Feng, Y. (CC By 4.0). (2020). Plot of root mean squared error (RMSE) as a function of 

number of latent variables (LV) for a PLSR model.
Figure 5. Feng, Y. (CC By 4.0). (2020). Preprocessing of beef spectra.
Figure 6. Feng, Y. (CC By 4.0). (2020). Score plots and loadings of the PCA model (1100-2498 

nm) for E. coli and L. innocua bacterial suspension.
Figure 7. Feng, Y. (CC By 4.0). (2020). PLS-DA classification model performance in the visible-

SWNIR range (400–1000 nm).
Figure 8. Feng, Y. (CC By 4.0). (2020). Example of moving average smoothing of a peach spectrum.
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