IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 20, 2020, accepted June 12, 2020, date of publication June 16, 2020, date of current version June 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3002770

Gated Recurrent Unit Neural Networks for
Automatic Modulation Classification With
Resource-Constrained End-Devices

RAMIRO UTRILLA™1, ERIKA FONSECA“2, ALVARO ARAUJO"1,

AND LUIZ A. DASILVA 23, (Fellow, IEEE)

1'B105 Electronic Systems Lab, ETSI Telecomunicacién, Universidad Politécnica de Madrid, 28040 Madrid, Spain
2CONNECT Research Centre for Future Networks and Communications, Trinity College Dublin, Dublin 2, D02 PN40 Ireland

3Commonwealth Cyber Initiative, Virginia Tech, Arlington, VA 22203, USA
Corresponding author: Ramiro Utrilla (rutrilla@b105.upm.es)

This work was supported in part by the Science Foundation Ireland under Grant 17/NSFC/5224.

ABSTRACT The continuous increase in the number of mobile and Internet of Things (IoT) devices, as well
as in the wireless data traffic they generate, represents an essential challenge in terms of spectral coexistence.
As aresult, these devices are now expected to make efficient and dynamic use of the spectrum by employing
Cognitive Radio (CR) techniques. In this work, we focus on the Automatic Modulation Classification
(AMC). AMC is essential to carry out multiple CR techniques, such as dynamic spectrum access, link
adaptation and interference detection, aimed at improving communications throughput and reliability and,
in turn, spectral efficiency. In recent years, multiple Deep Learning (DL) techniques have been proposed
to address the AMC problem. These DL techniques have demonstrated better generalization, scalability
and robustness capabilities compared to previous solutions. However, most of these techniques require high
processing and storage capabilities that limit their applicability to energy- and computation-constrained end-
devices. In this work, we propose a new gated recurrent unit neural network solution for AMC that has
been specifically designed for resource-constrained IoT devices. We trained and tested our solution with
over-the-air measurements of real radio signals. Our results show that the proposed solution has a memory
footprint of 73.5 kBytes, 51.74% less than the reference model, and achieves a classification accuracy
of 92.4%.

INDEX TERMS Cognitive radio, spectrum sensing, deep learning, automatic modulation classification,

recurrent neural network, gated recurrent unit, IoT, end-device, edge computing, software-defined radio.

I. INTRODUCTION

The number of mobile and Internet of Things (IoT) devices,
as well as the wireless data traffic they generate, continues to
grow at an unprecedent rate [1]. These devices often operate
in the same frequency bands, substantially increasing spec-
trum occupancy and posing new and essential challenges to
overcome. One of these challenges is to achieve highly effi-
cient and reliable communications in increasingly complex,
heterogeneous, and dynamic scenarios, where many differ-
ent radio systems coexist. To this end, multiple Cognitive
Radio (CR) techniques have been proposed to sense and
analyze the spectrum and, based on that information and on
previous experience, make decisions about its use and adapt
the communication parameters of the devices accordingly [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ding Xu

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Performing these CR tasks in a centralized manner would
generate latency problems and massive network traffic due
to the data distribution between the devices, complicat-
ing the growing spectrum scarcity problem. For this rea-
son, and aided by the improved capabilities of end-devices,
non-cooperative and edge computing approaches are gaining
importance in areas like the IoT [3], [4]. In these approaches,
the end-devices are responsible for performing all or at
least some of these computation-intensive CR tasks, allow-
ing faster response times and reducing communication over-
head [5]. The field that has emerged from the application
of CR techniques to the IoT is known as Cognitive IoT
(ClIoT) [6], [7].

Spectrum sensing is the first step of the cognitive cycle.
Within it, in this work, we focus on the Automatic Modula-
tion Classification (AMC), as an integral part of intelligent
radio systems. AMC consists of recognizing the modulation

112783

https://orcid.org/0000-0002-4464-0814
https://orcid.org/0000-0001-9221-9859
https://orcid.org/0000-0001-9269-5900
https://orcid.org/0000-0001-6310-6150
https://orcid.org/0000-0002-3759-4805

IEEE Access

R. Utrilla et al.: GRU Neural Networks for AMC With Resource-Constrained End-Devices

scheme of a sensed signal, which is an essential feature
to carry out multiple CR techniques, both in military and
civilian applications [8]. As detailed in section II, many
AMC methods have been proposed in the literature. However,
most of them have not been conceived to be implemented in
autonomous IoT end-devices, since they require high energy,
processing, and storage resources.

In this work, we address AMC from the perspective of
resource-constrained devices. This poses multiple challenges.
AMC methods require the use of Software-Defined Radios
(SDRs) to acquire the raw radio signals they need as input.
However, low-power SDR end-devices have certain acqui-
sition limitations compared to Universal Software Radio
Peripherals (USRPs) and other widely used traditional SDR
systems [9]-[11]. The complexity of AMC methods must
therefore be reduced to adapt their requirements to the mem-
ory and processing resources of end-devices. This complex-
ity reduction will decrease the classification accuracy of a
method to a greater or lesser extent. Considering this, our
main objective is to achieve a highly accurate AMC solution,
with a memory footprint that allows its implementation in
resource-constrained end-devices, and to validate it with real
samples acquired with a platform of these characteristics.
The main contributions of this work include:

1) A publicly available dataset consisting of over-the-air
measurements of real radio signals with 11 different
modulations [12]. These measurements were acquired
with a resource-constrained SDR end-device [11],
which is the type of platform targeted by this work.
Specifically, the signals were recorded in an office
environment at two different distances between the
transmitter and the receiver, 1 and 6 meters, so their
amplitude, noise level, and propagation conditions are
different. Even so, in both cases, the Signal-to-Noise
Ratio (SNR) is greater than 20 dB. All the tests carried
out in this work were performed with this dataset.
In this way, the AMC models studied have been evalu-
ated under realistic conditions, both in the use of signals
transmitted over the air and in the type of platform
adopted to acquire those signals.

2) An empirical validation, using our dataset, of a ref-
erence Gated Recurrent Unit (GRU) neural network
model for AMC [13]. This model was originally eval-
uated with RadioML2016.10a!, a dataset of synthet-
ically generated radio signals using a channel model
that includes the following effects: random center
frequency and sample rate offsets, additive white
Gaussian noise, multi-path, and fading [14]. Specifi-
cally, we selected this model for its low memory foot-
print. The results obtained training and evaluating this
model with our generated dataset are consistent with
those of the reference work under equivalent high-SNR
conditions, establishing a solid starting point for our
subsequent study.

1 https://www.deepsig.ai/datasets

112784

3) A study of how multiple parameters affect the clas-
sification accuracy, the complexity, and the memory
footprint of the reference GRU neural network model.
The parameters evaluated are the size of the training
set, the length of the input vector, the number of layers
in the model, and the number of cells in each layer.
The procedure carried out provides useful insights on
how to optimize other models for resource-constrained
devices.

4) A new GRU neural network model and a new training
set size resulting from the previous study. The mem-
ory footprint of our proposed solution is 73.5 kBytes,
while that of the reference model is 152.3 kBytes [13].
In addition, a classification accuracy of 92.4% has been
achieved by increasing the training set size. This was
possible since the potential of the model was not fully
exploited with the original size used in the reference
work.

The rest of the paper is organized as follows. Section II
presents related works in AMC and its implementation in real
devices. Section III contains a full description of the resources
and methodology used in this work. The results obtained in
the different tests are presented and discussed in section IV.
Conclusions are offered in section V.

Il. RELATED WORK

As already mentioned, AMC is an essential task to carry
out multiple CR techniques aimed at improving spectral effi-
ciency, such as dynamic spectrum access, link adaptation
and interference detection, among others [8]. In addition,
AMC is also useful at a spectrum enforcement level, as it
allows devices to better analyze the wireless environment,
identify suspicious transmissions, detect abnormal behaviors
and localize sources of interference [15].

For this reason, AMC is a long-studied problem in the
field of CR. It has been traditionally approached from two
major kinds of methods: those based on likelihood the-
ory, and those based on feature extraction and classifica-
tion techniques. Likelihood-Based (LB) methods suffer from
high computational complexity in most practical cases, and
in the Feature-Based (FB) approach, the design of feature
extractors is a time-consuming task that requires consider-
able domain expertise [16]. Furthermore, these drawbacks
are compounded by the increasing complexity of wireless
scenarios. On the other hand, Deep Learning (DL) methods
can be directly fed with raw data and automatically discover a
suitable internal representation or feature vector from which
the learning subsystem, often a classifier, can detect or clas-
sify patterns in the input. These methods have dramatically
improved the state of the art in many domains, demonstrating
better generalization, scalability and robustness capabilities
than previous solutions [17]. As aresult, in recent years, many
researchers are exploring the application of DL methods to
the AMC field, obtaining promising results [5], [18].

The generation of radio signal datasets, and their open-
access publication and availability to the community,

VOLUME 8, 2020

R. Utrilla et al.: GRU Neural Networks for AMC With Resource-Constrained End-Devices

IEEE Access

have greatly contributed to accelerate this progress.
RadioML [14] is a representative example of it. This dataset
was generated with the GNU Radio [19] development toolkit,
and it contains a set of synthetically generated signals with
different SNR levels that correspond to different modulations.
Along with the dataset, O’Shea et al. published several
works where they proposed AMC methods based on Deep
Convolutional Neural Networks (DCNNs) [14], [20]. These
networks are designed to process data that come in the form of
multiple arrays and are the dominant method in the computer
vision domain, where they have brought about significant
advances [17]. In fact, in a later work [21], these authors
achieved accuracy results close to 100% at high SNRs, and
they also validated their model with over-the-air measure-
ments of the signals.

Many works have also used DCNN structures to explore
the AMC problem considering other aspects, such as the
input wireless signals representation [22], the effect of SNR
variations between the training and testing phases on model
robustness [23], and the efficiency of training and retrain-
ing processes [24]. However, all of them are complex solu-
tions with a memory footprint of the order of hundreds of
megabytes or higher [25], which makes their implementation
in autonomous resource-constrained devices unfeasible.

Model quantization is an enabling step to implement this
kind of solutions in real embedded systems with less com-
putational, storage and energy resources. However, direct
quantization usually leads to accuracy losses. Therefore,
new methods are being proposed to avoid this degrada-
tion. Nagel et al. [26] have recently introduced a data-free
FP32 to INT8 quantization method that achieves state-of-
the-art results. Additionally, because of its great flexibility,
the use of special purpose hardware, such as Field Pro-
grammable Gate Arrays (FPGAs), is being widely explored to
bring DL techniques to end-devices [27], [28]. Consequently,
during the last years, multiple tools for mapping neural net-
works on FPGAs have appeared [29], [30].

However, even with quantification techniques, the mem-
ory required by DCNN-based methods is still high for end-
devices, which usually have between 128 and 512 kBytes of
non-volatile memory [31]-[35]. In addition, these methods
would involve a high computational load on these devices,
which would result in high latencies and could adversely
affect other system tasks that share the processor [36].

For this reason, other works have proposed the use of
less complex Recurrent Neural Networks (RNNs) [13], [25].
These networks have feedback connections, so they retain
an internal hidden state that implicitly contains information
about all the past elements in a data sequence [37]. In this way,
the network can discover correlations between them. This
feature makes RNNs prime candidates for learning problems
that involve sequential data, such as handwriting and speech
recognition, or the classification of time-series and medical
signals [17], [38], [39].

Conventional RNNs often experience vanishing/exploding
gradient problems during their training [17]. For this reason,

VOLUME 8, 2020

multiple variants have been proposed, such as the GRU [40]
and Long Short-Term Memory (LSTM) [41] neural networks.
These networks introduce gating mechanisms to regulate the
input, output, and feedback information in the cells, and have
proved to be more robust against these training problems.

Hong et al. [13] explored the use of GRU neural networks
for the AMC problem. Specifically, they proposed to directly
feed these networks with the In-phase and Quadrature (I/Q)
samples of the baseband radio signals. They evaluated the
impact of varying the number of layers in their proposed
structure and the number of cells in each layer. This work
shows that with a much less complex model than the one
used by O’Shea et al. [20] accuracy results above 90% can
be achieved. Similarly, Rajendran et al. [25] also used this
type of simpler RNN structures but, instead of GRUs, they
employed LSTM cells, which are slightly more complex [42].
Besides, they fed their model with amplitude and phase infor-
mation, since they obtained poor results by simply providing
raw I/Q samples. In this work, they also studied the impact of
quantifying the weights and activation functions of the model
with the aim of reducing its computational load and memory
footprint requirements. With this approach, they observed
a 10% accuracy loss with respect to their full precision
version.

The solutions proposed in these two works achieve mem-
ory footprints of 152.3 and 400.1 kBytes, respectively. These
are in the order of the memory available in typical IoT end-
devices, which is hundreds of kilobytes. However, devices
cannot allocate most of their memory only to the AMC task.
For this reason, in this work, we study these proposals in
depth, and we evaluate the parameters that affect the memory
footprint and the classification accuracy to finally propose an
AMC model optimized for resource-constrained devices.

lll. METHODOLOGY

A. PROBLEM STATEMENT

Modulation classification is generally addressed as an
N-class classification problem, in which each of the N classes
corresponds to a different modulation. The received signal
r (¢) can be expressed as follows:

r(t)y=s@)xc()+n(), (1)

where s (¢) is the modulated signal from the transmitter,
c (¢) is the impulse response of the wireless communication
channel, and 7 (¢) is additive noise. Thus, given r (¢) as the
only input signal, the modulation classifier must determine
the probability that s (#) is modulated with each of the N
possible modulations. This can be expressed as follows:

P = P(s(1) € Nilr(1)), @)

where P; is the probability that s (r) is modulated with the
modulation corresponding to the ith class.

Radio receivers used in CR usually provide the received
signals in I/Q format. The in-phase and quadrature com-
ponents of a received signal r(¢#) can be expressed as

112785

IEEE Access

R. Utrilla et al.: GRU Neural Networks for AMC With Resource-Constrained End-Devices

I =Acos(p) and Q = Asin(¢), where A and ¢ are the
instantaneous amplitude and phase of r (¢).

B. BASELINE METHOD

The gated RNN structures proposed in [13], [25], and further
discussed at the end of section II, are similar. In this work,
we take the solution proposed by Hong et al. [13] as the
baseline method for two main reasons:

o Whereas the classification accuracy results are similar
with GRU and LSTM cells, GRUs have fewer trainable
parameters [43], so they require less memory, and they
train and execute faster than LSTMs.

o As the transceiver directly provides the I/Q samples of
the received signal, the use of this format at the model
input is more efficient than the use of amplitude and
phase information, the calculation of which involves
additional computational overhead for the device.

As previously mentioned, Hong et al. evaluated different
versions of a model, varying the number of GRU layers and
the number of cells per layer. From all their evaluated ver-
sions, in this work, we take as our reference model the struc-
ture shown in Fig.1, which is formed by one GRU layer with
100 cells followed by two dense fully connected layers with
64 and 11 units respectively. This decision involves a trade-
off between classification accuracy and memory and pro-
cessing requirements. Specifically, using the Keras library,
the RadioML2016.10a dataset and for high SNRs, this model
achieves a classification accuracy of 85%, compared to 90%
of the version with two GRU layers, which requires more
than double the memory. On the other hand, the accuracy
improvement between the version with 100 cells and those
with 150 and 200 cells is negligible.

128x%2 Input vector

¢« v 3 T v 4

GRU layer, 100 cells

A 4 h 4 A 4 U \ 4 A A

Dense fully connected layer, 64 units

A

Dense SoftMax layer, 11 units

Vb v oy

11x1 Output vector

FIGURE 1. Baseline GRU network model for AMC.

In this model, the GRU layer applies the Rectified Linear
Unit (ReLU) function, while the final dense layer uses the

112786

SoftMax function. In addition, the RMSprop optimizer and
the categorical cross entropy loss function were adopted for
the network training. Finally, to perform a classification,
this model requires an input of 128 I/Q samples, which are
shaped as a 128 x 2 vector. These samples are fed to the
model sequentially, i.e., each of these 128 I/Q samples is
simultaneously fed to all GRU cells in the first layer at its
corresponding time step.

C. DATASET

Addressing the AMC problem from the perspective of
end-devices poses a challenge in terms of resource utilization,
but also because of their signal acquisition capabilities, which
are limited compared to traditional SDR systems. For this
reason, in this work we have generated a new dataset with
wireless signals recorded in a real environment directly by a
resource-constrained SDR end-device. Specifically, we have
used MIGOU [11], a low-power experimental platform with
SDR capabilities that has been specifically designed to
address the hardware architectural constraints that limit CR
research and experimentation with low-power end-devices.
This platform was configured to sense a communication
channel and send the raw I/Q samples (without timing recov-
ery) to a computer that properly stores them.

A USRP B210 connected to another computer running
GNU Radio was used on the transmitter side. In order
to implement the different transmitters with the same set
of 11 modulations adopted by the baseline work, we used
the source code’ and same data sources with which
RadioML2016.10a was generated. Figure 2 shows the com-
plete dataset generation set up, where d is the distance
between both devices.

@@ RX

L []

GNU Radio USRP +—————————— MIGOU Storage
Computer B210 Computer

FIGURE 2. Dataset generation scenario set up.

The configuration parameters of the different elements
used to generate the dataset are shown in Table 1. In addi-
tion, the parameters related to the content and format of the
generated dataset are shown in Table 2.

At this initial stage, the purpose of this work is to determine
the maximum classification accuracy that can be achieved
in real conditions with an AMC model specifically designed
for resource-constrained devices. As shown in previous
works [13], [20]-[25], the best results are always obtained
in low-noise conditions, i.e. no significant improvements are
seen for SNR values greater than 15 dB. Therefore, the basis
for selecting the distances from the transmitter at which to
make the recordings was to ensure a SNR greater than this
value.

2 An error with AM modulations, solved in later versions of the RadioML
dataset, was corrected for our dataset generation.

VOLUME 8, 2020

R. Utrilla et al.: GRU Neural Networks for AMC With Resource-Constrained End-Devices

IEEE Access

CPFSK Modulation
Center frequency = 868.025 MHz

— | Samples
~——Q Samples

0.5F 1

Amplitude
o

-1 . ‘ . .
0 0.2 0.4 0.6 0.8 1

Time [s] %x10°°

CPFSK Modulation
Center frequency = 868.025 MHz

1
— | Samples
—Q Samples
©
E 0.5 1
=
£
<
o 0
@
N
®
<
ZQ -0.5
-1 ! :
0 0.2 0.4 0.6 0.8 1
Time [s] x10°

(a)

CPFSK Modulation
Center frequency = 868.025 MHz

1
— | Samples
~——Q Samples

05r 1

@

°

=

5 0

£

<

-0.5 1

-1 L . L !
0 0.2 0.4 0.6 0.8 1
Time [s] %x10°°

CPFSK Modulation
Center frequency = 868.025 MHz

Normalized Amplitude
o

0.8 1
Time [s] x10°

(b)

FIGURE 3. Comparison of signals recorded at (a) 1 and (b) 6 meters. The signals in the bottom row are the normalized version of those in the top

row.

TABLE 1. Configuration parameters of the dataset elements.

TABLE 2. Dataset parameters.

Specifically, measurements were taken at two distances
from the transmitter, 1 and 6 meters, and were carried out
indoors, in an office environment. Naturally, changes in the
distance between devices, and in relation to other elements
in their surroundings, affect the amplitude, noise level and
propagation conditions of the recorded radio signals. There-
fore, we also evaluated the robustness of the AMC methods
to these factors. The average SNRs of the signals recorded

VOLUME 8, 2020

Element Parameter Value Parameter Value
Transmitter Sample Rate 200 kHz Modulations BPSK, QPSK, 8PSK, PAM4,
(TX) Samples per Symbol 8 QAMI16, QAM64, GFSK, CPFSK,
USRP B210 TX Gain 40 WBFM, AM-DSB, AM-SSB
Receiver Sample rate 500 kHz Average SNRs 37 dB (at 1 m) and 22 dB (at 6 m)
(RX) Bandwidth 500 kHz Number of vectors per 400,000
Intermediate Freq. 500 kHz modulation-SNR pair
MIGOU RX Gain 12 Vector shape 128x2
Common Operating Frequency 868.025 MHz
Antennas VERT900 (Ettus Research)

at 1 and 6 meters are 37 dB and 22 dB, respectively. To cal-
culate these values, the background noise in the channel was
recorded under the same conditions, but without transmitting
any signal. With that noise signal, the SNR of each modulated
signal was calculated separately for both distances. Record-
ings of 2 seconds of the signals were used for this calculation.
Finally, the SNRs of the 11 modulated signals were averaged
for each distance. The difference in amplitude of raw signals
recorded at both distances and normalized to the transceiver
reception range can be seen in the top row of Fig.3.

112787

IEEE Access

R. Utrilla et al.: GRU Neural Networks for AMC With Resource-Constrained End-Devices

All the recorded I/Q signals were divided and formatted
into 128 x 2 vectors, which consist of 128 consecutive sam-
ples where the I/Q components of the samples have been sep-
arated. These vectors were individually normalized according
to the following expression:

Sij Vie{0,...,127}

= . , 3
ST e (Sel) Yielo 1) ®)

where S is the original vector, and SN is the normalized
vector. It should be noted that in a real implementation of an
AMC method, the signal normalization process to prepare the
input vector will be performed by the end-device. The result
of applying this normalization to the raw I/Q signals can be
seen in the bottom row of Fig.3. It can also be seen that the
SNR of the signals recorded at 6 meters is lower.

Finally, 400,000 normalized vectors were included for each
modulation-SNR (MOD-SNR) pair in the dataset, resulting in
a total of 8.8 million vectors.

D. PROPOSED MODEL

In this work, we propose a model for AMC with two layers,
as shown in Fig.4. The first one is a GRU layer with N cells.
The input format of this layer is a M x 2 vector of I/Q samples,
where M is the number of samples and 2 corresponds to
each of the I/Q components of a sample. These vectors are
normalized to the range [—1, 1], as explained in subsection
II-C. The GRU layer applies the ReLU activation function
and its output is a one-dimensional vector of length N formed
by the last output of the output sequence of each cell. This
vector is fed to the next layer.

Mx2 Input vector

¢« v 3 I

GRU layer, N cells

5L IO

Dense SoftMax layer, 11 units

vovov vy

11x1 Output vector

<

FIGURE 4. Our proposed GRU network model for AMC.

The second layer of our proposed AMC model is a dense
SoftMax layer with 11 units. It maps the signal features
extracted in the first layer to each of the 11 output classes
that represent the possible modulation schemes.

To prevent overfitting problems, a dropout layer with a
drop rate of 0.2 is placed between the two layers during

112788

the training phase. This technique is a common practice to
address overfitting issues in neural network training [44].
Finally, the RMSprop optimizer, with the categorical cross
entropy loss function, a learning rate of 0.001 and a clipnorm
parameter of 0.1, is adopted for the model training.

The same activation functions, optimizer, and loss function
as in the reference work were used for comparison purposes.
However, the learning rate and the clipnorm parameter were
empirically selected as they were not specified in that work.

E. IMPLEMENTATION DETAILS

The training and testing of the different models evaluated
were performed with the Keras library using the Tensor-
Flow backend. Specifically, the Keras 2.2.5 and TensorFlow
1.15.0 versions were used. In addition, its execution was
carried out on a server equipped with an NVIDIA Graphics
Processing Unit (GPU) with Compute Unified Device Archi-
tecture (CUDA), speeding up the process.

In all the tests, we employed the same number of vectors
for the model training and for its validation. These vec-
tors were randomly selected from the dataset and were not
repeated. The set of vectors used for training is known as the
training set.

All tests were conducted with 300 training epochs. How-
ever, a callback was used for early stopping when the valida-
tion loss value did not improve for T consecutive epochs. The
parameter 7 is known as patience and, along with the batch
size, it had to be empirically adjusted in some tests to avoid
vanishing/exploding gradient problems. The configuration
used in each case is detailed in the next section.

IV. RESULTS AND DISCUSSION

All tests presented in this section have been carried out
using raw I/Q samples, which have only been normalized as
described in subsection III-C. No synchronization or timing
recovery has been performed.

The main metrics evaluated in the following subsections
are the classification accuracy and the memory footprint.
In all cases, accuracy is given for both distances, 1 and
6 meters. Moreover, when comparing our proposed model
with the baseline one, an average of both is also used.

Since the memory required by a model is mainly due to
the storage of its trainable parameters, its memory footprint
is calculated as the number of trainable parameters of the
model multiplied by the memory occupied by each parameter.
In TensorFlow, the weights or trainable parameters are 32-bit
floating point numbers, so each one occupies 4 bytes of
memory.

A. BASELINE MODEL

First, we tested the baseline model with our dataset in order
to replicate the results obtained by Hong et al. using the
RadioML dataset. In this way, we established a reference with
which to later compare our AMC model, and we validated our
dataset generation method.

VOLUME 8, 2020

R. Utrilla et al.: GRU Neural Networks for AMC With Resource-Constrained End-Devices

IEEE Access

TABLE 3. Baseline model test parameters and results.

Dataset RadioML2016.10a | Our dataset
MOD-SNR pairs 220 22
Number of vectors per 500 5,000
MOD-SNR pair

Input vector size 128x2 128x2
Batch size - 512
Early stopping patience - 30
Training set size (vectors) 110k 110k
Classification accuracy at | ~85% 85.4%
high SNRs

Trainable parameters 38,079 38,079
Memory footprint 152.3 1523
(kBytes)

RadioML contains signals with 20 different SNRs for each
of the 11 modulations, representing a total of 220 MOD-SNR
pairs. Hong er al. trained their model with 500 vectors per
each pair, which is a total of 110,000 vectors. Our dataset
only has signals recorded at two different distances, i.e., with
two different SNRs. Therefore, having 22 MOD-SNR pairs,
we had to employ 5,000 vectors per pair in order to keep the
same training set size, which is an important aspect in DL.
The parameters and results of this test are shown in Table 3.

As can be seen, using the same training set size, the classi-
fication accuracy at high SNR obtained by the baseline model
using our dataset is equivalent to the original. Specifically, the
classification accuracy reached with our dataset at 6 meters
was 84.6%, while at 1 meter it was 86.2%. This serves to val-
idate the method and tools used to generate our dataset, and
to validate the baseline model with real signal measurements.
It also establishes a solid starting point for our subsequent
study.

Baseline Model Confusion Matrix (at 6 meter)

8PSKH 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.02 0.07 0.0 Ho
AM-DSB 4 0.0 {o#4:30.22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AM-SSB 4 0.0 0.37 {efee8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 08
BPSK-4 0.0 0.0 0.0 [eEsFR 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 CPFSK+ 0.0 0.0 0.0 0.0 [eBsE} 0.0 0.0 0.0 0.0 0.0 0.0 0.6
g GFSK4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01
S
= PAM4+ 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 L 0.4
QAM1640.05 0.0 0.0 0.0 0.0 0.0 0.0 0.44 0.01 0.0
QAM64 40.05 0.0 0.0 0.0 0.0 0.0 0.0 0.29@0.01 0.0 Lo
QPSK-40.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0
WBFM 40.01 0.0 0.01 0.0 0.01 0.02 0.0 0.0 0.0 0.0
T T T =—-0.0

B o b e o b b ik A
S L LPE TSN RO
& FEE LS S
Predicted label
FIGURE 5. Confusion matrix of the baseline model trained with

110,000 vectors (at 6 meters).

Figure 5 shows the confusion matrix of the worst case,
at 6 meters. As we can see, this model has difficulties in
distinguishing between AM-DSB and AM-SSB modulations.

VOLUME 8, 2020

This is because the source signal, which is an analog audio
signal, has multiple silence periods in which both modula-
tions continue to transmit the carrier. Thus, in these silence
samples, these modulations are indistinguishable. The model
also confuses QAM16 and QAMG64 modulations. This is
due to the constellation points of the former are contained
in those of the latter. Both difficulties were also discussed
by Hong et al.

Baseline Model Training History

—— Training Loss
2.00 A - Validation Loss

0 20 40 60 80 100 120 140
Training Epochs

FIGURE 6. Training history of the baseline model trained with
110,000 vectors.

Figure 6 shows the training history of the baseline
model with our dataset. This training took 150 epochs
(47.5 minutes) and was stopped by the early stopping call-
back after 30 consecutive epochs in which the validation loss
value did not improve. In addition, the Keras’ ModelCheck-
point callback was also used to save the model weights with
its best last result, in this case on epoch 120. Thus, the results
in Table 3 correspond to this version of the model. During
the last epochs, it can be observed that the model begins
to experience overfitting, i.e., the training loss continues to
decrease but not the validation loss. This indicates that what
the model is learning with the training set does not generalize
to the validation set, which are new samples. This fact led
us to suspect that the potential of the model was not fully
exploited with a training set of this size.

Finally, it should be noted that the baseline model has
38,079 trainable parameters, which entails a memory foot-
print of 152.3 kBytes.

B. TRAINING SET SIZE

In this test, we first evaluated the performance of our pro-
posed AMC model under the same conditions as in the pre-
vious subsection, i.e., using a training set of 110,000 vectors
randomly extracted from our dataset. Next, we progressively
increased the training set size to assess whether our model can
still learn more by using a larger number of sample vectors
during training. In all the tests of this subsection, the val-
idation sets used were the same size as the corresponding
training set, and 128 x 2 input vectors were used in all cases.

112789

IEEE Access

R. Utrilla et al.: GRU Neural Networks for AMC With Resource-Constrained End-Devices

Also, the GRU layer was configured with 100 cells, as the
baseline model.

e
[}

o
o
L5

o
-
o

Classification Accuracy

==o== At 1m (37 dB SNR}
=== At 6 m (22 dB SNR)

B

Qo
o
N

0 0.5 1 1.5 2 25 3 3.5 4 4.5
Training Set Size
{Millions of vectors)

FIGURE 7. Classification accuracy for different training set sizes.

The classification accuracy results for each training set
size are shown in Fig.7 and Table 4, which also includes the
test parameters used in each case and the time spent in the
training.

TABLE 4. Test parameters and results for different training set sizes.

Training | Batch Patience Training Classification
set size size time accuracy (%)
(minutes) At Im At 6m

110k 512 30 52 85.1 84.0
275k 512 30 189 89.8 88.4
550 k 512 30 328 92.3 91.0
1.IM 1024 30 367 93.1 92.7
22M 1024 12 494 94.2 93.1
44M 2048 12 380 94.0 91.8

The average classification accuracy of our model with a
training set size of 110,000 vectors is 84.55%, slightly less
than the 85.4% obtained by the baseline model under the same
conditions. This is the precision we have lost by removing
the intermediate dense fully connected layer of the baseline
model. In return, our model has fewer trainable parameters
and, therefore, a smaller memory footprint. Specifically, with
100 GRU cells, our model has 32,011 trainable parameters,
which entails a memory footprint of 128 kBytes, 24.3 kBytes
less that the reference model.

If we observe the results with the different training set
sizes, we realize that the potential of the model was not fully
exploited with the initial size. We see that as we increment this
size, the classification accuracy increases, reaching almost
10% improvement before saturating. These results demon-
strate that to maximize the performance of a model and,
therefore, not to oversize it without need, it is essential to
have enough training data to verify that its capabilities have
saturated.

112790

On the other hand, increasing the size of the training set
has a direct impact on the time required to train the model.
However, this does not affect the inference time once the
model is implemented and executed on a device. Finally,
it should be noted that when the size of the training set was
increased, hyperparameters such as batch size or patience
had to be adjusted to stabilize the training process and avoid
vanishing/exploding gradient problems.

C. INPUT VECTOR LENGTH

In this test, we evaluated the influence of the input vec-
tor length on the classification accuracy. This length corre-
sponds to the number of I/Q samples that the vector contains,
which is the amount of signal information that it has in
order to infer the modulation. To illustrate this, the different
lengths evaluated are represented over a modulated signal
in Fig.8.

CPFSK Modulation
Center frequency = 868.025 MHz

! —— | Samples
—— Q Samples
i

Normalized Amplitude
L

128 Samples
256 Samples

Time [s] <1074

FIGURE 8. Different input vector lengths represented over a signal.

All tests carried out in this subsection use our AMC model
with 100 cells in the GRU layer. In addition, the training
set consisted of 70.4 million samples. This size results from
multiplying the size of the training set, expressed in vec-
tors, by the number of I/Q samples per vector. In order to
maintain the same number of I/Q samples in the training set,
a change in the input vector length must be compensated by
adjusting accordingly the number of vectors in the training
set. Additionally, for input vector lengths other than 128,
the raw I/Q samples normalization process shown in (3)
was repeated with the corresponding vector length, i.e., 32,
64 and 256 samples. These details and other test parameters
are shown in Table 5. The classification accuracy results are
depicted in Fig.9 and are also included in Table 5.

To perform a classification or, in general terms, an infer-
ence, the I/Q samples required to form an input vector
must first be acquired. These samples are acquired at a
fixed sampling rate. Then, they must be fed to the model,
where they are processed to obtain a result. As explained

VOLUME 8, 2020

R. Utrilla et al.: GRU Neural Networks for AMC With Resource-Constrained End-Devices

IEEE Access

TABLE 5. Test parameters and results for different input vector lengths.

TABLE 6. Test parameters and results for a different number of cells in
the GRU layer.

Input Training Batch Training Classification
vector set size size time accuracy (%) GRU Memory Patience Training Classification
length (vectors) (minutes) Atlm | At6m cells footprint time accuracy (%)
(samples) (kBytes) (minutes) At Im At 6m
32 22 M 1024 295 78.0 73.9 50 34.0 30 503 86.8 86.4
64 I.1M 1024 270 87.3 86.4 64 543 30 894 91.8 90.2
128 550 k 512 328 92.3 91.0 75 73.5 30 823 93.1 91.7
256 275k 512 246 93.1 92.3 100 128.0 12 494 94.2 93.1
128 206.9 12 429 94.6 93.5
0.95
)| D. NUMBER OF CELLS IN THE GRU LAYER
09 - } In this test, we evaluated the influence of the number of
g ’ cells in the GRU layer on the classification accuracy of the
3 085 proposed model. For these experiments, we fixed the training
- set size to 2.2 million vectors, the input vector size to 128 x 2,
(o]
5 and the batch size to 1024. As in the previous tests, patience
o 08
= was adjusted in each case to avoid training problems. The
© test parameters and results are shown in Table 6. In addition,
© 073 =o= At 1m (37 dB SNR) the results are depicted in Fig.10.
0.7 At 6 m (22 dB SNR)
32 64 9% 128 160 192 224 256 0.95
Input Vector Length
(samples) 0.93

FIGURE 9. Classification accuracy for different input vector lengths.

in subsection III-B, at each time step, a sample of the input
vector is fed simultaneously to all cells of the first layer.
Therefore, a M x2 vector of I/Q samples requires M time
steps to be fully fed to the model. Taking that into considera-
tion, using an input vector with fewer I/Q samples reduces
its acquisition and processing time, which will result in a
reduction of the inference latency in the devices. However,
by reducing the length of the input vector, the classification
accuracy decreases, as can be seen in Fig.9. This decrease is
especially pronounced for input vector lengths shorter than
128 samples. The selection of this length implies a tradeoff
between inference speed and classification accuracy. Never-
theless, it should be noted that the accuracy saturates after a
certain length value.

As seen in Table 5, in this case the differences in training
time were not as significant as in the previous subsection.
This is because although the length of the input vector varies,
the number of I/Q samples in the training set is the same in all
cases. In this test, it was also necessary to adjust the batch size
to stabilize the training process. However, patience remained
fixed at 30 epochs. Finally, it is worth mentioning that since
the 1/Q samples of the input vector are sequentially fed to the
model, the length of this vector does not affect the number
of trainable parameters of the model. Therefore, the memory
footprint of the 100-cell model is still 128 kBytes. However,
it should be noted that a longer input vector will temporarily
require more device memory for its storage, but this memory
can be dynamically allocated and deallocated at runtime.

VOLUME 8, 2020

0.91

0.89

Classification Accuracy

0.87

o= At 1m (37 dB SNR)
At 6m (22 dB SNR)

0.85
50 60 70 80 20 100 110 120 130

Number of GRU Cells

FIGURE 10. Classification accuracy for a different number of cells in the
GRU layer.

As we can see, increasing the number of cells in the
GRU layer improves classification accuracy. However, from
a certain point, there are diminishing marginal benefits in
increasing the number of GRU cells. In addition, it should be
noted that increasing the number of cells also has an impact
on the memory footprint; doubling the number of cells means
an almost 4-fold increase in the memory footprint. This is
an important fact to consider for the implementation of these
solutions in resource-constrained devices.

E. SUMMARY

In this subsection, we have selected some of the previous
experiments in order to summarize the procedure carried out
to optimize an existing AMC model for its use in end-devices.
All these experiments were performed with our dataset and
with an input vector length of 128 I/Q samples. The classi-
fication accuracy and memory footprint of the models tested
in the selected experiments are shown in Fig.11 and Fig.12,
respectively.

112791

IEEE Access

R. Utrilla et al.: GRU Neural Networks for AMC With Resource-Constrained End-Devices

0.937
0.924

[4
o
o N

0.854

4
%0
-3

Classification Accuracy
o =]
[-J -]
I 0

o
0
N

0.80

m Baseline Model (110k vectors) m Our Model w. 100 Cells (110 k vectors)

Our model w. 100 Cells (2.2 M vectors) = Our model w. 75 Cells (2.2 M vectors)

FIGURE 11. Classification accuracy for different representative AMC
models and training set sizes.

160 152.3

140 128.0 1280
120
100
20 735
60
0
20
0

B Baseline Model {110k vectors)

Memory Footprint (kBytes)

® Our Model w. 100 Cells (110 k vectors)
Our model w. 100 Cells {2.2 M vectors) = Our model w. 75 Cells (2.2 M vectors)

FIGURE 12. Memory footprint of different representative AMC models.

As a reference point, we have selected the experiment
carried out in subsection IV-A, with the baseline model
(100 GRU cells) and a training set size of 110,000 vectors,
as the one originally used by Hong ef al. If we compare these
results with those of our model, keeping 100 cells in the GRU
layer and the same size of the training set, we observe a
16% reduction in the memory footprint and only 1% in the
classification accuracy. This is because our model eliminates
the intermediate dense fully connected layer of the baseline
model, which does not contribute significantly to accuracy.

The next aspect we observe is that the potential of our
model is not fully exploited and that, by using a larger training
set size (2.2 million vectors), it is possible to achieve a
classification accuracy of almost 94%, compared to the 85%
achieved with 110,000 vectors. As mentioned before, increas-
ing the size of the training set has no effect on the memory
footprint, it only increases the training time. Having a higher
classification accuracy allows the developer to reduce the
number of cells in the GRU layer while still obtaining good
performance. This results in a reduction of the memory foot-
print. For example, using our AMC model with 75 GRU cells
instead of 100 represents a reduction in the memory footprint
of 42.6% and only 1.4% in the classification accuracy, which
still remains above 90%.

112792

Our Model Confusion Matrix (at 6 meter)

8PSKM 00 00 00 00 00 00 00 0.0 0.03 0.0 0
AM-Dsg 0.0 [E3¥0.18 0.0 00 0.0 00 0.0 0.0 0.0 0.01
AM-SSB 4 0.0 00 00 00 00 00 00 001 08
BPSK{ 0.0 0.0 00 00 00 00 00 0.0

5 CPFSK{0.0 00 00 00 0.0 00 00 00 0.6

% GFSK{0.0 0.0 00 0.0 0.0 00 0.0 0.0 001

]

P pama{00 00 00 00 00 0.0 0.0 L0
QAM160.02 0.0 0.0 0.0 0.0 00 0.0 [KJ0.12 00 0.0
QAM640.01 0.0 0.0 0.0 0.0 0.0 0.0 0.12[J 0.0 oo
QPSK{ 0.0 0.0 0.0 0.0 00 00 00 00 0.0
WBFM{ 0.0 0.02 0.01 0.0 0.0 0.01 0.0 0.0 0.0

L oo
ézc}L ‘;“‘o&@h& Q)qe* (3@*‘ éc)*‘ Q@“ &é\"’b&e@b‘ d‘é_ ﬁe\

Predicted label

FIGURE 13. Confusion matrix of our model with 75 GRU cells and trained
with 2.2 million vectors (at 6 meters).

The confusion matrix of this last model is shown in Fig.13.
If we compare these results with those of the baseline model
depicted in Fig.5, we observe that it is possible to improve the
classification of AM and QAM modulations using a simpler
model but trained with more I/Q sample vectors.

Our Model Training History

—— Training Loss
—— Validation Loss

0.2 1 IA MAA.LL A‘A-‘A

0 50 100 150 200 250
Training Epochs

FIGURE 14. Training history of our model with 75 GRU cells and trained
with 2.2 million vectors.

In addition, the training history of our 75-cell model is
shown in Fig.14. The training of this model took 241 epochs
(823 minutes) to complete, representing a 17-fold increase
in training time compared to the baseline model, which took
47.5 minutes. This is the main cost of using a larger training
set.

In this case, the training and validation loss curves jointly
decrease to a point of stability with a minimal gap between
their values. This means that the model is well fitted and
performs the same with the training and validation sets, that
is, no overfitting/underfitting problems occur.

VOLUME 8, 2020

R. Utrilla et al.: GRU Neural Networks for AMC With Resource-Constrained End-Devices

IEEE Access

Exploring all these tradeoffs between training time, perfor-
mance, and resource utilization is essential when looking for
DL-based solutions for low-resource end-devices. For exam-
ple, the MIGOU platform has an embedded Non-Volatile
Memory (eNVM) of 256 kBytes. If we consider this platform
as the target device, the baseline model would occupy 59.5%
of its memory, while our 75-cell model would occupy only
28.7%.

Allocating almost 30% of a device’s memory to the AMC
task may not be acceptable. In that case, other techniques
such as post-training quantization should be explored. This
technique converts the neural network weights from 32-bit
floating point numbers to 8-bit integers with minimal clas-
sification accuracy losses [26]. This conversion reduces
a model’s memory footprint by a factor of four, which
for our 75-cell model would suppose a memory footprint
of 18.4 kBytes, i.e., 7.2% of MIGOU’s eNVM.

The evaluation of these quantization techniques, as well as
the implementation and evaluation of the AMC model in the
MIGOU platform will be addressed in our future work.

V. CONCLUSIONS

In this work, we propose a new GRU neural network model
for AMC that has been specifically designed for resource-
constrained end-devices. This model consists of a GRU layer
followed by a SoftMax layer. To come up with this model,
a study was carried out on how multiple parameters affect
the classification accuracy and the memory footprint of a
reference model. The parameters evaluated were the size of
the training set, the length of the input vector, the number
of layers in the model, and the number of cells in each
layer. As part of this work, a dataset has also been generated
with over-the-air measurements of real radio signals acquired
with MIGOU, a low-resource SDR experimental platform.
All experiments have been performed with this dataset. Our
results show that the proposed model has a memory footprint
of 73.5 kBytes, 51.74% less than the reference model, and
achieves a classification accuracy of 92.4%. The evaluation of
quantization techniques to further reduce the model’s mem-
ory footprint, as well as its implementation and evaluation
on the MIGOU platform will be addressed in our future
work.

This study has shown that the tradeoffs between training
time, model performance, and resource utilization should be
explored when developing neural network-based solutions
for resource-constrained end-devices. Increasing the training
set size, and consequently the training time, can lead to
improvements in the performance of a model without the need
to increase its complexity. In turn, these improvements may
allow developers to reduce to some degree the complexity
of the model and, therefore, the device resources it requires.
However, longer training processes can also lead to diverse
fitting and gradient problems and dealing with these problems
require fine tuning of the hyperparameters, which can be a
time-consuming task. The procedure carried out in this work

VOLUME 8, 2020

provides good insights on how to optimize other DL-based
solutions.

ACKNOWLEDGMENT

The authors would like to thank Alba Rozas, Julia Docampo,
and Irene Azpiazu for their valuable comments and sugges-
tions that greatly improved this article.

REFERENCES

[11 Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2017-2022, Cisco Systems, San Jose, CA, USA, 2019.

[2] F. Wunsch, F. Paisana, S. Rajendran, A. Selim, P. Alvarez, S. Miiller,
S. Koslowski, B. Van den Bergh, and S. Pollin, “DySPAN spectrum
challenge: Situational awareness and opportunistic spectrum access bench-
marked,” IEEE Trans. Cognit. Commun. Netw., vol. 3, no. 3, pp. 550-562,
Sep. 2017.

[3] G. Premsankar, M. Di Francesco, and T. Taleb, “Edge computing for the

Internet of Things: A case study,” IEEE Internet Things J., vol. 5, no. 2,

pp. 1275-1284, Apr. 2018.

M. Chiang and T. Zhang, “‘Fog and IoT: An overview of research opportu-

nities,” IEEE Internet Things J., vol. 3, no. 6, pp. 854-864, Dec. 2016.

J. Jagannath, N. Polosky, A. Jagannath, F. Restuccia, and T. Melodia,

“Machine learning for wireless communications in the Internet of

Things: A comprehensive survey,” Ad Hoc Netw., vol. 93, Oct. 2019,

Art. no. 101913.

L. Zhang and Y.-C. Liang, “Joint spectrum sensing and packet error rate

optimization in cognitive 10T,” IEEE Internet Things J., vol. 6, no. 5,

pp. 7816-7827, Oct. 2019.

J. Ploennigs, A. Ba, and M. Barry, “Materializing the promises of cognitive

IoT: How cognitive buildings are shaping the way,” IEEE Internet Things

J., vol. 5, no. 4, pp. 2367-2374, Aug. 2018.

Z.7Zhu and A. K. Nandi, Automatic Modulation Classification: Principles,

Algorithms and Applications, 1st ed. Hoboken, NJ, USA: Wiley, 2014.

[9] Y.-S. Kuo, P. Pannuto, T. Schmid, and P. Dutta, “Reconfiguring the soft-
ware radio to improve power, price, and portability,” in Proc. 10th ACM
Conf. Embedded Netw. Sensor Syst., 2012, pp. 267-280.

[10] S. Szilvasi, B. Babjdk, P. Volgyesi, and A. Lédeczi, “Marmote SDR:
Experimental platform for low-power wireless protocol stack research,”
J. Sensor Actuator Netw., vol. 2, no. 3, pp. 631-652, Sep. 2013.

[11] R. Utrilla, R. Rodriguez-Zurrunero, J. Martin, A. Rozas, and A. Araujo,
“MIGOU: A low-power experimental platform with programmable logic
resources and software-defined radio capabilities,” Sensors, vol. 19, no. 22,
p. 4983, Nov. 2019.

[12] R. Utrilla. (2020). MIGOU-MOD: A Dataset of Modulated Radio Sig-
nals Acquired With MIGOU, a Low-Power IoT Experimental Platform.
[Online]. Available: https://data.mendeley.com/datasets/fkwr8mzndr/1

[13] D.Hong,Z.Zhang, and X. Xu, ‘“Automatic modulation classification using
recurrent neural networks,” in Proc. 3rd IEEE Int. Conf. Comput. Commun.
(ICCC), Dec. 2017, pp. 695-700.

[14] T.J.O’Sheaand N. West, “‘Radio machine learning dataset generation with
GNU radio,” in Proc. GNU Radio Conf., Sep. 2016, vol. 1, no. 1. [Online].
Available: https://pubs.gnuradio.org/index.php/grcon/article/view/11

[15] S. Rajendran and S. Pollin, “Large-scale wireless spectrum monitoring:
Challenges and solutions based on machine learning,” in Spectrum Shar-
ing: The Next Frontier in Wireless Networks, 1st ed. Hoboken, NJ, USA:
Wiley, 2020, pp. 321-339.

[16] O.A.Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of automatic mod-
ulation classification techniques: Classical approaches and new trends,”
IET Commun., vol. 1, no. 2, pp. 137-156, Apr. 2007.

[17] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436444, May 2015.

[18] X.Li, F. Dong, S. Zhang, and W. Guo, “A survey on deep learning tech-
niques in wireless signal recognition,” Wirel. Commun. Mobile Comput.,
vol. 2019, Feb. 2019, Art. no. 5629572.

[191 GNU Radio—Free & Open-Source Software Development Toolkit.
Accessed: May 10, 2020. [Online]. Available: https://www.gnuradio.org/

[20] T.J. O’Shea, J. Corgan, and T. C. Clancy, ‘“Convolutional Radio Modu-
lation Recognition Networks,” in Proc. 17th Int. Conf. Eng. Appl. Neural
Netw. (EANN), 2016, pp. 213-226.

[21] T.J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-Air deep learning based
radio signal classification,” IEEE J. Sel. Topics Signal Process., vol. 12,
no. 1, pp. 168-179, Feb. 2018.

[4

—

[5

—

[6

—

17

—

(8

—

112793

IEEE Access

R. Utrilla et al.: GRU Neural Networks for AMC With Resource-Constrained End-Devices

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

M. Kulin, T. Kazaz, I. Moerman, and E. De Poorter, “End-to-End learn-
ing from spectrum data: A deep learning approach for wireless signal
identification in spectrum monitoring applications,” IEEE Access, vol. 6,
pp. 18484-18501, 2018.

S. Zhou, Z. Yin, Z. Wu, Y. Chen, N. Zhao, and Z. Yang, “A robust
modulation classification method using convolutional neural networks,”
EURASIP J. Adv. Signal Process., vol. 2019, no. 1, Mar. 2019.

F. Meng, P. Chen, L. Wu, and X. Wang, “Automatic modulation classi-
fication: A deep learning enabled approach,” IEEE Trans. Veh. Technol.,
vol. 67, no. 11, pp. 10760-10772, Nov. 2018.

S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, and S. Pollin, “Deep
learning models for wireless signal classification with distributed low-cost
spectrum sensors,” IEEE Trans. Cognit. Commun. Netw., vol. 4, no. 3,
pp. 433-445, Sep. 2018.

M. Nagel, M. V. Baalen, T. Blankevoort, and M. Welling, “Data-free
quantization through weight equalization and bias correction,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 1325-1334.
Z.-L. Tang, S.-M. Li, and L.-J. Yu, “Implementation of deep learning-
based automatic modulation classifier on FPGA SDR platform,” Electron-
ics, vol. 7, no. 7, p. 122, Jul. 2018.

D. H. Noronha, B. Salehpour, and S. J. E. Wilton, “LeFlow: Enabling
flexible FPGA high-level synthesis of TensorFlow deep neural net-
works,” 2018, arXiv:1807.05317. [Online]. Available: http://arxiv.org/abs/
1807.05317

S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for mapping
convolutional neural networks on FPGAs: A survey and future directions,”
ACM Comput. Surv., vol. 51, no. 3, pp. 1-39, Jul. 2018.

M. Wielgosz and M. Karwatowski, ‘“Mapping neural networks to FPGA-
based IoT devices for ultra-low latency processing,” Sensors, vol. 19,
no. 13, p. 2981, Jul. 2019.

Libelium Comunicaciones Distribuidas S.L. Waspmote Datasheet.
Accessed: May 10, 2020. [Online]. Available: http://www.libelium.
com/downloads/documentation/v12/waspmote_datasheet.pdf

R. Rodriguez-Zurrunero, R. Utrilla, E. Romero, and A. Araujo, “An adap-
tive scheduler for real-time operating systems to extend WSN nodes life-
time,” Wireless Commun. Mobile Comput., vol. 2018, pp. 1-10, Oct. 2018.
Microchip Technology. ATSAMR2I-XPRO Platform. Accessed:
May 10, 2020. [Online]. Available: https://www.microchip.com/
DevelopmentTools/ProductDetails/PartNO/ATSAMR21-XPRO
MEMSIC. MICAz Wireless Measurement System. Accessed:
May 10, 2020. [Online]. Available: http://www.memsic.com/userfiles/
files/Datasheets/WSN/micaz_datasheet-t.pdf

J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra-low power
wireless research,” in Proc. 4th Int. Symp. Inf. Process. Sensor Netw.
(IPSN), 2005, pp. 364-369.

R. Rodriguez-Zurrunero, R. Utrilla, A. Rozas, and A. Araujo, “Process
management in [IoT operating systems: Cross-influence between process-
ing and communication tasks in end-devices,” Sensors, vol. 19, no. 4,
p. 805, Feb. 2019.

Z. Zuo, B. Shuai, G. Wang, X. Liu, X. Wang, B. Wang, and Y. Chen,
“Convolutional recurrent neural networks: Learning spatial dependencies
for image representation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), Jun. 2015, pp. 18-26.

M. Hisken and P. Stagge, “Recurrent neural networks for time series
classification,” Neurocomputing, vol. 50, pp. 223-235, Jan. 2003.

H. Al-Askar, N. Radi, and A. MacDermott, “Recurrent neural networks
in medical data analysis and classifications,” in Applied Computing in
Medicine and Health, 1st ed. San Mateo, CA, USA: Morgan Kaufmann,
2016, pp. 147-165.

K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “‘Learning phrase representations using RNN
encoder—decoder for statistical machine translation,” in Proc. Conf. Empir-
ical Methods Natural Lang. Process. (EMNLP), 2014, pp. 1724-1734.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” in Proc. NIPS,
2014, pp. 1-7.

Z. Wang, Y. Dong, W. Liu, and Z. Ma, “A novel fault diagnosis approach
for chillers based on 1-D convolutional neural network and gated recurrent
unit,” Sensors, vol. 20, no. 9, p. 2458, Apr. 2020.

N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958,
2014.

112794

RAMIRO UTRILLA received the M.Sc. degree in
electronic systems engineering from the Univer-
sidad Politécnica de Madrid, in 2013, where he
is currently pursuing the Ph.D. degree. He car-
ries out research activities in the B105 Electronic
Systems Lab, Universidad Politécnica de Madrid.
His research interests include development of
embedded systems and software-defined radio
techniques to apply cognitive radio to low-power
% autonomous devices. He received the title of
Telecommunication Engineer from the Universidad Auténoma de Madrid
in 2011.

ERIKA FONSECA received the B.Sc. degree in
telecommunications engineering and the M.Sc.
degree in network computing from University Fed-
eral Fluminense, in 2013 and 2017, respectively.
She is currently a Ph.D. Researcher with the
CONNECT Research Centre for Future Networks
and Communications, Trinity College Dublin. She
has experience in wireless network research. Her
research interests include 5G cellular networks,
software-defined radio, and unmanned aerial
vehicle (UAV) communication.

ALVARO ARAUIJO received the Ph.D. degree
from the Universidad Politécnica de Madrid,
in 2007. He was a Postdoctoral Researcher with
the Berkeley Wireless Research Center (BWRC),
UC at Berkeley, working in a White Paper
about Reliable Radio. He did a Research stay
with BWRC, in 2018, working on human net-
works. He is currently an Assistant Profes-
sor with the Electronic Engineering Department,
Escuela Técnica Superior de Ingenieros de Tele-
comunicacion, Universidad Politécnica de Madrid, where he carries out
both research and teaching activities. He is also the Director of the
University-Company Chair Securitas Direct-Verisure and the Co-Director
of the B105 Electronic Systems Lab. He has participated in more than
70 R+D+I projects funded in competitive tenders by public or private
bodies, 21 as PI during the last eight years. His research has as results in
three granted patents in exploitation phase, about 25 scientific publications
in high-impact peer-reviewed international journals articles and more than
30 international and national conferences, including IWAAN, the IEEE
PIRMC, and DySPAN. His main research interests include development
of embedded systems focusing on security, wireless personal area network
systems, cognitive radio, and wireless neural networks. He received the
title of Telecommunication Engineer from the Universidad Politécnica de
Madrid, in 2001.

LUIZ A. DASILVA (Fellow, IEEE) was the Chair
of telecommunications with the Trinity College
Dublin, where he was the Director of CONNECT,
the Science Foundation Ireland Research Centre
for Future Networks and Communications. He is
currently the Executive Director of the Common-
wealth Cyber Initiative. He is also a Professor
with the Bradley Department of Electrical and
Computer Engineering, Virginia Tech. He is also a
Principal Investigator on research projects funded
by the Sc1ence Foundation Ireland and the European Commission. He has
contributed to cognitive networks and resource management in wireless
networks. His research interests include distributed and adaptive resource
management in wireless networks, and in particular radio resource sharing
and the application of game theory to wireless networks.

VOLUME 8, 2020

