
"8
PRINT PREVIEW USING

FINITE STATE MACHINE EMULATION

OF AN IBM 3812 PAGE PRINTER

by

Gregg Allen Thomas

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science |

in

Electrical Engineering

APPROVED:

Dr. Charles E. Nunnally, C an

Sl & List Bb C. Wa klimur.
[Pre oseph G. Tront (John C. McKeeman

May, 1990

Blacksburg, Virginia

Ly

WSs

\as5
1440

/ bl

C4

PRINT PREVIEW USING

FINITE STATE MACHINE EMULATION

OF AN IBM 3812 PAGE PRINTER

by

Gregg Allen Thomas

Dr. Charles E. Nunnally, Chairman

(ABSTRACT)

A methodology and prototype has been developed which enables users of GML and

SCRIPT on an IBM 3090 to preview documents on a locally attached personal

computer before printing. Currently, no utility exists to accomplish this activity. This

new preview process is graphical in nature and provides an absolute picture of the

document, exactly as it will be printed on an IBM 3812 laser printer.

Acknowledgements

I would like to thank Dr. Charles E. Nunnally for introducing me to this challenging

endeavor. I also thank him for all of the guidance, support, and encouragement he has

given throughout the course of the development of this work. I truly feel that this is an

effort which would not have reached completion without his backing. I also thank Dr.

Tront and Dr. McKeeman for serving on my committee.

As always, my parents have been there for me during my studies at Virginia Tech. There

are not enough ways to thank them for their infinite love and support. Thanks also to my

fellow C.E.L.-mates: Sandeep, Tom, Chang, Rajan, Sanjay, Scott, Raghu, and Chak for

making my stay at Virginia Tech more enjoyable. A special thanks goes to Manish Modi,

who has become a much valued friend whom I shall miss upon his return to India.

I would also like to thank Wanda Baber and Mark Potter for providing much-apprieciated

technical assistance. I am also in debt to Bob Lineberry, whose advice I often sought

made my life much easier, and to Karen Snider for always being so helpful and nice.

iii

Table of Contents

1.0 Introduction

2.0 The Printing Process Overview

2.1 Existing Printing System

2.1.1 YTERM

2.1.2 The Text Editor

2.1.3 SCRIPT Engine

2.1.4 Printer Service Machine

2.1.5 IBM 3812 Page Printer

2.2 Ideal Printing System

2.2.1 Improved Text Editor

2.2.2 Print Preview

2.3 Print Preview Development

2.3.1 CPDS Data Stream

2.3.2 IPDS Data Stream

10

11

11

14

14

15

16

16

19

iv

3.0 Printer Finite State Machine

3.1 PMP Command Structure

3.1.1 Page Commands

3.1.2 Cursor Commands

3.1.3 Font Commands

3.1.4 Generation Commands

3.1.5 Macro Commands

3.2 3812 Printer Finite State Machine

3.3 PMP Data Stream Capture

4.0 Capabilities of the Personal Computer

4.1 Graphics Modes of the Personal Computer

4.2 Memory of the Personal Computer

4.3 Visual Specifications of Preview

4.3.1 General Visual Flow

4.3.2 Condensed Page

4.3.3 Explode Area

4.4 Preview Techniques

4.4.1 Memory Mapping

4.4.2 PMP Command String Interpretation

21

21

23

25

27

29

29

32

36

37

37

39

40

40

41

46

48

48

49

5.0 State Machine Mapping on the Personal Computer

5.1 PMP Data Stream Capture

5.2 State Machine Mapping

5.2.1 PMP Command Subset

5.2.2 Print Preview State Machine

5.3 Preview Implementation

5.3.1 PMP Font Index

5.3.2 PMP Print Block Buffer

6.0 Further Development of the Preview Methodology

6.1 General Steps for Transfer of the Methodology

6.2 Enhanced Communications Platform

6.3 Modifications to the Personal Computer Preview State Machine

6.4 Transfer of the Methodology to the Host

6.5 Means of PMP Data Stream Capture

7.0 Conclusion

50

50

51

31

54

61

61

66

68

68

69

71

72

74

76

vi

BIBLIOGRAPHY 78

APPENDIX A - PMP Command Listing 81

APPENDIX B - Capturing the PMP Data Stream 88

APPENDIX C - Implementation of the Print Preview Methodology 90

APPENDIX D - Extended Example of PMP Command Flow 91

VITA 117

vii

List of Illustrations

Figure 1. Printing Process Overview

Figure 2. Improved Printing System

Figure 3. IPDS vs. CPDS Data Streams

Figure 4. 3812 Printer Finite State Machine

Figure 5. States of PMP Page Commands

Figure 6. States of PMP Cursor Commands

Figure 7. States of PMP Font Commands

Figure 8. States of PMP Generation Commands

Figure 9. States of PMP Macro Commands

Figure 10. PMP Command Flow Example

Figure 11. User Interface Visual Flow

Figure 12. User Interface Layout

Figure 13. Condensed Page Filter

Figure 14. Explode Area Filter

Figure 15. PMP Data Stream Capture

Figure 16. Print Preview Finite State Machine

17

18

22

24

26

28

30

31

35

42

43

44

47

32

56

viii

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.

Figure 22.

Figure 23.

Figure 24.

Figure 25.

Figure 26.

States of PMP Page Commands

States of PMP Cursor Commands

States of PMP Font Commands

States of PMP Generation Commands

Typical Character Raster Pattern

Font Index Structure

Font Reference Overview

Page Print Block Structure Overview

Further Development of Preview Methodology

PC to PC Dialogue Development

57

58

59

62

65

67

70

73

Chapter 1. Introduction

Type has evolved from blocks of wood and metal bearing the raised character shape to

the many and varied digitized representations of characters that are available by using

current computer technology. Typography is the art or technique of composing printed

material from type. The evolution of typography into digital type as found in computers

has introduced a higher level of complexity into document composition. Further,

presentation service software development has proceeded at exponentially increasing rates

to accommodate these services. As a result, a diverse group of products are being

developed to address this new technology. This in turn has created many techniques of

accomplishing document presentation, but without a standard for typographic logic and

taste.[16]

Documents composed with typographic fonts attain visible distinction and clarity.

Typeset copy, like any attractive object, invites one to look at it and encourages the eye

to keep moving through the text. One can use any of a great variety of faces and styles

for each distinct editorial element of a message. Headings, text, captions, footnotes,

passages to be stressed, anything written that plays a role in getting the writer’s thoughts

1.0 Introduction 1

across to the reader.[16] As new methods of document composition and presentation

achieve greater levels of functionality, the levels of complexity in overall document

preparation will increase as well.

With most document preparation systems, the novice is often left to face the trial and

error method of achieving the end result during document preparation. With the power

of the computer and its innate ability to display graphical images, it has become possible

to aid document preparation by providing a preview function which allows the user to

view the document on a computer screen. This is done without having to complete the

printing cycle. This function is commonly known as print previewing and aids the user

by providing a method of catching and preventing printing errors. Pagination, paragraph

formatting, font changes, etc., can be done while the user is still at the computer used to

prepare the document. By providing the platform which eliminates many printing

mistakes, the print preview function has achieved its objective, to increase user

productivity and reduce overall operating costs of the printing system.

The intent of this work was to develop a methodology and system which uses standard

personal computers as graphical output devices, attached to mainframe computers such

as an IBM 3090. Specifically, the personal computers are used to develop advanced

document preparation including exact printer previewing. This methodology will offer

exact replication of the document prior to printing. The methodology developed in this

research supports documents which include general fonts, mathematical symbols, vectors,

1.0 Introduction 2

and bit-image graphical images. This particular implementation focuses on advance

printer previewing as it relates to an IBM 3812 page printer. During the course of

this development it will become more obvious to the reader that complete graphical

emulation of the IBM 3812 page printer has been accomplished. This was the main

objective of the work. While being classified as a preview function, the methodology

is unique in the approach. Commercial software available for personal computers provide

preview functions by operating upon source documents while employing a particular

printer driver. In general, the software provides the preview function by utilizing outline

fonts which are scaleable in size and also reflect attribute changes. The new methodology

differs in that the personal computer is emulating a device, the 3812 page printer. By

attacking the problem in this manner exact printer output previews are available as

opposed to representations of printer output. This preview function also allows the

opportunity of mapping the 3812 data stream into other printing devices data streams such

as HP LaserJet printers using HPGL, standard dot matrix printers, and also to printers

supporting PostScript.

An additional theme of this work is the reality that this methodology can be

implemented between a host machine and a remote intelligent graphical device. This

study also gives creditability to the idea that the methodology will be useful when

applied across low speed serial data connections. This fact exists primarily

because the basic software tool utilized is a simple text editor implementing a text

formatting style of development. This software platform is fundamentally character

1.0 Introduction 3

based, while the new methodology presented permits attachment of full graphical

previewing of the documents.

The need for such a preview function is simple. The rewards for successful

implementation of a preview function are substantial savings in the form of faster

turnaround time and lowered production costs.[17] Today laser printers provide a good,

inexpensive printing solution for those who do not make enormous demands on

typographic quality. A good program will provide special Greek (for scientific notation)

characters and the ability to handle formulas.[1] The new methodology fully supports

extended characters and Greek symbol sets, as well as all output created from the

powerful General Markup Language (GML) formula directives.

In general, printing data streams are limited in function by the very nature of their

implementation. Typically the data streams incorporate fonts and images which make use

of font raster patterns. Therefore, to change font point sizes in fact means that a separate

font file has to be accessed and used. This is the method of implementation within the

IBM 3090 printing system. The font access is almost virtually unlimited, since the user

has access to a wide array of fonts which are stored on the host. However, to be truly

“unlimited", fonts need to be absolutely scaleable. One such printing description language

is PostScript, developed by Adobe Systems. The concept and goal for PostScript is to

be able to “print anything" and be output device independent.[19] Since a great number

of printers now support the PostScript printing description language, a logical extension

1.0 Introduction 4

to this work is a translation of the data stream used in the IBM 3090 printing system to

that used by PostScript.

The logical solution to providing the proper means of print previewing is to define a

computer whose display architecture is identical or substantially close to the printing

architecture. Adobe Systems, the company who first developed PostScript, has provided

a sound base towards that solution. In conjunction with Steve Jobs, the founder of Apple

Computers, the NeXT computer has such an architecture with the appropriate software

drivers. The screen display and the printer output are both driven by Display PostScript,

which is the first method of providing device independent graphics for computer

screens.| 19]

Due to the proprietary nature of current commercial printing techniques, no technical

references are available for comparison to the printing methods described in this work.

All technical references are documents published and maintained by IBM Corporation.

The body of this work is divided into two general categories. Chapters 2 and 3 address

the printing system of the IBM 3090 and the IBM 3812 page printer. Chapters 4 through

6 address the function and implementation of the preview methodology.

1.0 Introduction §

Chapter 2. Overview of the Printing Process

2.1 Existing Printing System

The process to create and print a document on an IBM 3090 has several steps. Figure

1 shows the printing process overview for the IBM 3090 printing system. A user may

connect to the host by using a number of communications packages. Shown in the figure

is the connection provided to the host by using the 3270 terminal emulation program

YTERM. The text editor typically used to compose documents is XEDIT. Once the

document has been prepared, the SCRIPT print invocation sends the source document to

the VM3812 SCRIPT Engine, whose output is the Composed Page Data Set (CPDS) data

stream. The 3812 Service Machine creates the Intelligent Print Data Stream (IPDS) by

using the CPDS data stream and CPDS resource objects. The IPDS Data Stream is sent

directly to the IBM 3812 Page Printer, where the finite state machine of the printer

composes the pages of the document in memory and generates the output document.

2.0 Overview of the Printing Process 6

Terminal Mode

(YTERM)

Text Editor

(XEDIT)

SA Source
Document

VM3812 SCRIPT

aA :
CPDS Data

Stream

3812 Service A
Machine

oS IPDS Data
Stream SS

IBM 3812

Page Printer

Figure 1. Printing Process Overview

2.0 Overview of the Printing Process

The individual components of the printing system will be discussed in the following

sections.

2.1.1 YTERM

Users must first connect to the IBM 3090 by using a standard communications package

such as YTERM. The communications software typically uses a data switch line to call

one of the modems in the IBM 3090 modem pool, which enables a personal computer to

communicate with the IBM 3090. The BAUD rate of the data lines is 19,200 BAUD.

The software used by the IBM 3090 as well as the software used by the personal

computer system are text based. None of these packages use the power or the capabilities

of the attached personal computer. Therefore, using the document preparation facilities

on the IBM 3090 provides a computing paradox. The host offers vasts amounts of speed

and memory to the user and a very powerful document preparation tool in GML, as well

as the printing capabilities of an IBM 3812 laser printer. However, the graphics

capabilities of the attached personal computer are wasted due to the lack of connectivity

and appropriate software protocol. Further, the additional memory that a personal

computer may have is not used by the IBM 3090, or host, and the host cannot make use

of input devices attached to the personal computer, such as a mouse, when the personal

computer is attached to a host. Therefore, all personal computers, regardless of model,

are reduced to the role of acting as a dumb terminal when attached to the mainframe.

2.0 Overview of the Printing Process 8

2.1.2 The Text Editor

The first step in the printing process is to create and compose the document. Documents

are created on the mainframe by using a simple text editor, XEDIT. Print commands are

embedded within the document as tags, or print directives. The tags are collectively

known as_ the General Markup Language (GML). GML allows the user to identify

logical document structures, such as chapters and paragraphs and specify formatting for

each logical structure. For example, the control :H1 defines a heading level 1, which

typically corresponds to the chapter heading in a book. The :H1 control can result in the

following specific formatting steps:

¢ Skip down one inch.
¢ Tum on centering.

¢ Put the text of the heading in uppercase 14 point bold italic Times Roman.
e Skip one inch after the heading.
¢ Put the heading text into the table of contents.
¢ Put the heading text in a running footline at the bottom of pages in this chapter.[2]

These printing directives control such aspects as paragraph formatting, font changes, page

numbering, etc. Every change in the document, such as bold characters, italic characters,

size of characters, or a change in the font style itself is invoked by a GML tag. Thus,

once a document has been composed and is ready for printing, it is fully character

based and contains no control characters or special printing characters.

Currently, the only method of previewing a document is the DOIT directive within the

text editor. The DOIT exec is a method of previewing the document prior to printing but

2.0 Overview of the Printing Process 9

has limited functionality. It allows the user to examine pagination, paragraph formatting,

and page numbering. This method is severely handicapped however, in that it is a

text-mode based tool and is also limited by size of the terminal or display device,

which is typically twenty-five lines. Therefore, the usefulness of this utility is ineffectual

and does not contribute towards increased productivity.

2.1.3 SCRIPT Engine

Once the document, including GML print directives, has been fully developed using the

text editor, the user sends the file to the IBM 3812 Page Printer by invoking the SCRIPT

print command. Higher level printing directives, such as the number of copies to be

printed, printer destination, etc., are given as part of the SCRIPT print command. The

SCRIPT command sends the document to the SCRIPT Engine which processes the

document and converts it to a CPDS data stream. This data stream is subsequently routed

to the VM3812 printer service machine.

In the CPDS data stream, a formatted document is represented as a document object

stored in a CPDS print file. A CPDS document object is a hierarchical structure of other

CPDS objects and CPDS structured fields that mirror the structure of the physical

document it describes. Each of these objects is composed of other CPDS objects and of

structured fields that specify the details of how characters and images are to be placed on

the page.[4]

2.0 Overview of the Printing Process 10

2.1.4 Printer Service Machine

Once the document has been processed by the SCRIPT Engine, all CPDS resource

objects have their reference included within the output CPDS data stream. Higher level

printing directives, such as the number of copies to be printed, printer destination, etc.,

have also been incorporated as part of the CPDS data stream. All CPDS resource objects

are referenced and incorporated into the IPDS data stream format. CPDS resource objects

include:

¢ Print files created by SCRIPT/VS Release 3
* Code page files
¢ Code font files
¢ Page segment files
¢ Overlay files [4]

Users of the printing process using SCRIPT have a virtually unlimited font library size.

This is because each printer has access to every font in the host based library of fonts.[13]

The VM3812 printer service machine interprets the CPDS data stream and formats all

CPDS object references together to form the IPDS. The IDPS data stream is sent to and

interpreted by the IBM 3812 printer.

2.1.5 IBM 3812 Page Printer

Generally, the IBM 3812 Page Printer is centrally located to its users or at a remote

printing site. During the final phase of the printing process, the IPDS data stream

containing the necessary print information is sent from the VM3812 printer service

2.0 Overview of the Printing Process 11

machine to the IBM 3812 printer. This IPDS data stream that is sent to the printer

is composed of Page Map Primitive (PMP) commands. The VM3812 Service Machine

also drives the printer. The service machine must understand the communications

interface to each printer and provide the appropriate protocol, buffering, and device-

management commands so that the printing jobs are delivered and correctly executed by

the printer. The IPDS data stream provides a two-way communication path to the printer.

This path is used to query the printer, initialize the printer, load and manage resources,

and validate the receipt and successful processing of each message.[2] The IPDS data

stream is interpreted by the finite state machine resident in the printer which composes

the pages of the document.

When the 3812 is attached to a VM3812 printer service machine, only the raster bit

patterns for each character in the font that are actually used in the job are included in the

IPDS data stream. The font bit patterns for the characters that are not referenced by the

data stream are not sent to the printer. Of the 256K RAM available to the controller over

130K remains for storage of font patterns. The VM3812 Service Machine automatically

manages the available font memory in the printer. The character bit patterns loaded into

the printer are maintained on a least recently used basis, character by character, across

jobs.[15]

2.0 Overview of the Printing Process 12

The IBM 3812 printer is a page printer, which means that each page is composed

entirely in memory prior to actual printing of the document. This memory area is known

as the page memory map.

A pel is defined as the smallest addressable point on a piece of paper. Since the

resolution of the IBM 3812 page printer is 240 pels per inch, the page memory map

within the printer itself contains almost seven million addressable bits, which represent

aS many unique addressable points on a piece of paper. By using PMPs, pels may be

turned on or off either explicitly, or implicitly, by printing a character pattern or a vector.

The printer finite state machine interprets the PMP commands and builds the page

map in stages as subsequent PMP commands are read. Once a page has been fully

composed in the page memory map, a print page PMP command is issued. The

printer uses the pel patterns contained in the page memory map to drive a light

emitting diode (LED) array which is one page in width. The array projects points of light

onto the surface of a rotating photoconductor belt. Static charges are discharged to the

belt at points where the LED light falls. As the belt rotates past a toner source, the

discharged areas attract a fine black powder, known as the toner. The photoconductor

belt then carries this toner image to the paper. A static charge attracts the toner from

the belt to the paper. Heat and pressure fuse the toner to the paper to form the printed

page.[6]

2.0 Overview of the Printing Process 13

2.2 Ideal Printing System

The individual components of the printing process and the printing system show that the

system for composing and printing documents can be improved. The first step in

improving the system is to incorporate a communications package which uses the

capabilities of the personal computer. The new communications platform should take

advantage of the graphical nature of the personal computer and also any of its attached

pointing devices. Additional memory installed in the personal computer should be

utilized by the communications platform to enhance the performance of the system.

The lack any of graphic preview capability for users of the IBM 3090 presents a need for

a preview option. Because of the graphical capabilities of attached personal computers,

the technical means for providing such a preview function also exist.

The following two sections describe improvements to the editor and implementation of

the new preview methodology respectively.

2.2.1 Improved Text Editor - GXEDIT

By using a graphically based communications platform, the host editor, XEDIT, can use

the graphical capabilities of the attached personal computer. The new host editor,

GXEDIT, can also be enhanced by incorporating options that are found in most personal

2.0 Overview of the Printing Process 14

computer based word processing packages. By having the mouse as a pointing device,

the host editor can be made more powerful and functional as editor option selections can

be made available to the user through pull down menus. Commands which were

previously awkward or required memorization by the user are made easier to use and

more intuitive. This allows the user to create documents faster than before. Also, printer

directives such as printer destination, number of copies, etc. can also be selected through

the use of pull down menus.

2.2.2 Print Preview - GDOIT

In order to facilitate the preparation of documents, a graphical preview option is provided

to replace the DOIT directive. The new preview function, GDOIT, makes use of the

graphics available with an attached personal computer as well as the mouse as a pointing

device. The preview function is a graphics based program which enables the user to view

the document at the full page layout level. The character patterns which are displayed

match those which are utilized at printing time. This makes the preview methodology

unique in that the preview is in fact an exact replica of the printed page prior to printing

as opposed to a mapping or representation. An index window provides the user a means

of selectively "exploding" areas of the page for closer inspection. Both the full page view

and the "explode" area are "what you see is what you get" (WYSIWYG) views of the

document.

2.0 Overview of the Printing Process 15

A preview option for the IBM 3090 printing process will provide an increase in

productivity. Trial and error printing techniques are reduced. Page layout, multiple

character sets, character sizes and attributes, math symbols, as well as vectors may be

previewed, allowing the user to fully compose a document which is of final draft quality

before it is printed. This saves a great deal of time in retrieving printouts from centrally

located or remote printing sites. Additionally, the amount of paper consumption itself

will be vastly reduced as more and more users become aware of and use the new preview

utility as part of the printing process. Figure 2 shows the printing system with the added

features and improvements.

2.3 Print Preview Development

The data streams used in the printing process may be captured as files at two intermediate

steps. All GML printing tags within the document are processed and used to create the

first of the two data streams used in the process, the CPDS data stream.

2.3.1 CPDS Data Stream

Figure 3 illustrates the function of the VM3812 Service Engine. The CPDS data stream

contains references to all fonts used when printing the document, but not the actual raster

patterns themselves. The font files are contained on the VM3812 print utilities disk.

Overlays are also referenced CPDS objects which are not included within the CPDS data

2.0 Overview of the Printing Process 16

Graphical —

Terminal Mode Pointing
(GYTERM) Device

J "st
Text Edi i Memory
(GXEDIT)

C pours
C pours ocumen

> VM3B12 S SCRIPT

[Print Preview |

(GDOIT)

CPDS —

Stream

3812 Service a

Machine

IPDS Data
Stream

oS IBM 3812
Page Printer

Figure 2. Improved Printing System

2.0 Overview of the Printing Process 17

“fe
> >

> >

Machine

3812 Service ean Data

Stream IPDS Data

Figure 3. IPDS vs. CPDS Data Streams

2.0 Overview of the Printing Process 18

stream itself. From this data stream the VM3812 printer service machine gathers

everything which is needed for printing the document. For every character used in the

document, the correct raster pattern is obtained from the appropriate font by referencing

its CPDS font resource object. These are included as part of the PMP data stream, which

is the output from the VM3812 printer service machine. Any bit image graphics also

have their CPDS object resources referenced and included in the IPDS data stream as well

as their cursor positioning information.

2.3.2 IPDS Data Stream

The reason for intercepting the data stream at the point after it has been processed by the

VM3812 printer service machine in the printing process versus prior to the VM3812

printer service machine is straightforward. By intercepting the IPDS data stream as

opposed to the CPDS data stream, all required CPDS objects have already been

referenced and gathered together in one data stream. Thus, the IPDS data stream is a

stand alone entity used by the finite state machine of the 3812 printer to create the

document. That is, all fonts, images, and overlays used during printing and formatting

information are already embedded within the IPDS data stream, and no further referencing

to fonts or other formatting tools is necessary. By operating on the IPDS data stream, the

new methodology provides the preview function by emulating the IBM 3812 Page Printer

finite state machine. In this way, instead of having to replicate the printing process

following the output CPDS data stream from the SCRIPT engine, the methodology uses

2.0 Overview of the Printing Process 19

the VM3812 service machine to gather and incorporate all CPDS resource objects.

A personal computer in a stand alone environment was used to develop the new preview

methodology. Documents were SCRIPTed to a "dummy" VM3812 printer service

machine using the PUNCH option. The PUNCH option creates an output data stream

which the IBM 3812 printer uses when it is attached to personal computers. The PMP

data stream contains all of the PMP commands used to print the documents, but does not

include the query language and dialogue information. The PMP data stream is returned

to the user’s reader list. These PMP data stream files were received from the reader list

and subsequently downloaded to a disk on the attached personal computer. The preview

program uses these PMP data stream files as input to emulate the IBM 3812 Page Printer

finite state machine. The user sees the document graphically in a full page mode with

the option to selectively display portions of the page for exact previewing. The IBM

3812 Page Printer finite state machine as well its mapping into the preview state machine

contained on the personal computer will be discussed further in Chapter Three.

2.0 Overview of the Printing Process 20

Chapter 3. Printer Finite State Machine

3.1 PMP Command Structure

To develop the IBM 3812 finite state machine, the input data stream (PMP) to the printer

must first be examined. This data stream is captured and saved as a file when the

PUNCH option is used. The captured PMP data stream file is made up entirely of PMP

commands and is void of extraneous control printing commands or printing codes. The

higher level PMP commands define the finite state machine of the 3812 page printer. All

commands of the PMP data stream command set fall into five general categories:

¢ Page Commands
¢ Cursor Commands
¢ Font Commands
¢ Generation Commands
¢ Macro Commands

The PMP command categories will be discussed further in the following sections. Figure

4 shows the printer finite state machine with the PMP states grouped into the five

categories. A complete listing of the PMP command set with definitions and functions

of the commands is shown in Appendix A.

3.0 Printer Finite State Machine 21

* Interconnections represent bidirectional flow

Figure 4. 3812 Printer Finite State Machine

3.0 Printer Finite State Machine 22

3.1.1 Category One - Page Commands

Page commands are placed at the beginning of every set of PMP commands within the

data stream required to form a page memory map. In other words, these commands set

overall parameters prior to generating each page of the document as a page memory map

within the printer. They include such directives such as page size and printing

orientation, such as landscape versus portrait. The most important page command is the

print page directive, which causes the composed page within the printer page memory

map to be printed to paper. Figure 5 shows the states of the PMP Page Command

category.

The first two states of the figure, Set Page Size and Set Page Orientation, are the first two

states of the printer finite state machine. After these two states are reached, the third state

is found in the Generation Command category. The Print Page command is the final state

of the finite state machine and may be reached from all of the other four categories of

commands.

3.0 Printer Finite State Machine 23

1. Set Page Size

2. Set Page Orientation
3. Print Page

Page
Commands

Figure 5. States of PMP Page Commands

3.0 Printer Finite State Machine 24

3.1.2 Category Two - Cursor Commands

The page memory map within the printer is treated as a matrix by the printer finite state

machine. As each page of the document is composed within the page memory map in

the 3812 printer, the printer resident program monitors the active location of the matrix,

called the cursor. Since the page map is a two-dimensional matrix, the cursor has two

components, the horizontal and vertical displacement. The active cursor location is stored

in a memory location known as the cursor register. The states in the Cursor command

category are used to set the cursor register, update the cursor register, and also to save

and restore the cursor register. The active cursor location is used as a reference point in

order to copy font raster patterns, vectors, and bit images to the correct location within

the page memory map.

Figure 6 shows the states of PMP category number two, Cursor Commands. The initial

states of this category are one and two, Set Cursor Horizontally and Set Cursor Vertically.

Additionally, state five, Save Cursor, much be reached before states six or seven, Restore

Cursor and Restore Cursor Component respectively, can be reached.

3.0 Printer Finite State Machine 25

5. Save Cursor
6. Restore Cursor
7. Restore Cursor Component

 * Interconnections represent bidirectional flow

1. Set Cursor Horizontally

2. Set Cursor Vertically Cursor < |
3. Move Cursor Horizontally Commands / \

4. Move Cursor Vertically =

Figure 6. States of PMP Cursor Commands

3.0 Printer Finite State Machine 26

3.1.3 Category Three - Font Commands

At the time that the PMP data stream is downloaded to the 3812 printer, all of the font

raster patterns necessary for forming the page map are contained within the data stream.

None of the fonts used for forming the page memory map are contained within the

printer.

Font commands are used to initially store the fonts in the PMP data stream to the memory

on the 3812 printer. They are also used to manipulate the fonts while forming the page

map. Fonts are activated and deactivated as needed when the characters within the

document change characteristics, such as a change of font or a change in attribute, such

as bold or italic. Fonts downloaded into the 3812 printer memory may also be stored as

bold fonts, even if the original font patterns do not have the bold attribute.

Figure 7 shows the states of PMP category number three, PMP Font Commands. States

four and five are the initial states within this category. Once the fonts have been

downloaded, all other states may be reached.

3.0 Printer Finite State Machine 27

1. Activate Font

2. Activate Alternate Font

3. Deactivate Font

4. Load Font Pattern

5. Load Large Font Pattern
6. Copy Font
7. Copy Font Pattern

8. Unload Font
9. Unload All Fonts

10. Select Font Emphasis

* Interconnections represent bidirectional flow

Figure 7. States of PMP Font Commands

3.0 Printer Finite State Machine 28

3.1.4 Category Four - Generation Commands

Generation commands are used to turn pels on or off within the page memory map.

Specifically, the commands are used to reference the fonts stored in the 3812 printer

memory. The necessary character raster patterns are copied to the page map when the

page is being generated. The commands are also used to generate vectors on the page

memory map of varying lengths and thicknesses. Bit mapped images can also be

generated directly from the PMP data stream and copied to the page memory map.

Figure 8 shows the states of PMP category number four, PMP Generation Commands.

States one and two, Set Generation Mode and Set Font Pattern Controls, are states three

and four of the finite state machine and initial states of the category. State three,

Generate Font Patterns, may only be reached after the Load Font Pattern or Load Large

Font Pattern states of category three, PMP Font Commands.

3.1.5 Category Five - Macro Commands

Macros allow for complex PMP command sequences to be recorded and referenced. This

allows complex PMP command sequences to be invoked as a macro instead of having to

repeat the sequence. By using macros, complex sequences of PMP commands may be

executed and new PMP commands may be defined. Also, macros may be nested within

other macros, up to a maximum nesting level of eight. Figure 9 shows the states of PMP

category number five, PMP Macro Commands.

3.0 Printer Finite State Machine 29

1. Set Generation Mode
2. Set Font Pattern Controls

3. Generate Font Patterns

4. Generate Pattern Immediate

5. Generate Vectors

6. Generate Vectors - Fill

* Interconnections represent bidirectional flow

Generation
Commands

Figure 8. States of PMP Generation Commands

3.0 Printer Finite State Machine 30

* Interconnections represent bidirectional flow

Figure 9. States of PMP Macro Commands

3.0 Printer Finite State Machine 31

State one, Load Macro, must be reached before states two, three, and four can be reached.

State five is somewhat independent in that a library macro may be invoked as long as it

is resident on the printer disk. State six, Push State, must be reached before state seven,

Pop State, can be reached.

3.2 3812 Printer Finite State Machine

The 3812 printer finite state machine is defined by the higher level PMP commands. In

examining the flow of the state machine, the term "PMP Page Print Block”, or PMP PPB,

is first defined. The PMP PPB is the subset of PMP commands within the PMP data

stream which are required to print a single page of a document. Thus, for any document

there is a corresponding PMP PPB for any page which leads to its composition to the

page memory map within the 3812 printer. Also, once a particular font raster pattern has

been downloaded from the PMP data stream for use in forming a page, it may be

referenced by all subsequent pages and does not require downloading.

Therefore, the finite state machine of the IBM 3812 Page Printer is derived from the PMP

PPB subset of the PMP data stream. To process documents which consist of more than

one page is simply the finite state machine reapplied to each page print block.

The first two initial states of the finite machine are derived from two of the commands

within the Page Command category of PMP commands. The first state sets the page size

3.0 Printer Finite State Machine 32

and the second state sets the page orientation. Once these initial parameters have been

set, the finite state machine may move to any of the other four categories of PMP

commands, Cursor Commands, Font Commands, Generation Commands, and Macro

Commands until the page has been fully composed within the page memory map. When

the page memory map has been fully composed, the finite state machine reaches its final

state and issues the print page directive.

Font raster patterns are loaded to printer memory prior to being used to form the page

memory map. Once the font raster pattern has been downloaded however, it may be

referenced in order to compose subsequent pages of the document. In general, font raster

patterns for a particular font are loaded prior to generating the patterns for the words

within a page to the page memory map.

Figure 10 shows the section of PMP commands which cause the generation of "This is

a test." to the 3812 page memory map. To print "This is a test." the raster patterns for

"T", "h", "i", "s", "a", "t", "e", and "." are downloaded to printer memory. The cursor is

then positioned to the correct location within the page memory map, and then the font

raster patterns for the first word, "This", are referenced and copied to the page memory

map. The cursor is then repositioned and the font raster pattern for "a" is copied to the

page memory map, followed by the font raster patterns for "is". The cursor is then

positioned and the patterns for "test." are copied to the page memory map. In order to

3.0 Printer Finite State Machine 33

create the page number, the font pattern for "1" is then downloaded to printer memory,

the cursor repositioned, and the pattern copied to the page memory map.

An extended example is demonstrated in Appendix D.

3.0 Printer Finite State Machine 34

"This is a test."

Ds 00 Set Font Pattern Controls
D9 00 Set Generation Mode Black on white
EO 00 00 Set Cursor Horizontally
El 00 00 Set Cursor Vertically
C2 Deactivate Font
D2 00 Set Page Orientation
El 00 97 Set Cursor Vertically
EO 01 2c Set Cursor Horizontally
E2 00 20 Move Cursor Horizontally
E2 00 CO Move Cursor Horizontally
C2 Deactivate Font
D2 00 Set Page Orientation Normal portrait
El 00 FB Set Cursor Vertically
EO 01 2¢ Set Cursor Horizontrally
D3 03 Activate Font Activate Font #3
FO E3 18 16 01 01 18 Load Font Pattern Load "T"
FO 88 19 13 00 00 19 Load Font Pattern Load “h”"
FO 89 19 09 00 00 19 Load Font Pattern Load "i"
FO A2 10 OA 02 0110 Load Font Pattern Load "s"
FO 40 00 00 00 0B 00 Load Font Pattern Load " "
FO 81 10 OF 01 00 10 Load Font Pattern Load “a”
FO A3 15 0A 00 01 15 Load Font Pattern Load “t"
FO 85 10 OD 01 0110 Load Font Pattern Load "e"
FO 4B 04 04 03 02 04 Load Font Pattern Load "."
04 E3 88 89 A2 Generate Font Patterns Print "This"
E2 00 OB Move Cursor Horizontally
02 89 A2 Generate Font Patterns Print "is"
E2 00 0B Move Cursor Horizontally
01 81 Generate Font Patterns Print "a"
E2 00 OB Move Cursor Horizontally
05 A3 85 A2 A3 4B Generate Font Patterns Print "test."
C2 Deactivate Font Deactivate Font #3
D2 00 Set Page Orientation
El 09 D7 Set Cursor Vertically
EO 01 2c Set Cursor Horizontally
E2 00 OB Move Cursor Horizontally
D3 04 Activate Font Activate Font #4
FO Fl 15 08 04 04 15 Load Font Pattern Load "1"
01 Fl Generate Font Patterns Print "1"
C2 Deactivate Font
D2 00 Set Page Orientation
EO 00 00 Set Cursor Horizontally
El 00 00 Set Cursor Vertically
D1 00 Print Page

Figure 10. PMP Command Flow Example

3.0 Printer Finite State Machine 35

The 3812 printer finite state machine moves interactively within the previously mentioned

four categories of PMP commands until the page of the document is fully composed

within the page memory map. During the final state, a print page directive is issued.

This is a PMP command contained within the Page Command category which causes the

page memory map to be printed.

3.3 PMP Data Stream Capture

Having defined the 3812 printer finite state machine from the PMP data stream, a method

must be developed to capture the data stream. By capturing the PMP data stream, the

3812 printer state machine input sequence can be processed on a personal computer and

therefore can be used to map the 3812 printer state machine into a similar state machine

contained in the personal computer. Once this new state machine is developed, it will be

possible to fully emulate the functions of the IBM 3812 Page Printer by using the

graphical capabilities of the personal computer. This is the underlying method for

providing the new print preview methodology for the printing system contained within

the IBM 3090 system.

3.0 Printer Finite State Machine 36

Chapter 4. Capabilities of the Personal Computer

4.1 Graphics Modes of the Personal Computer

By using standard personal computers, it is now possible to map the finite state machine

of the IBM 3812 Page Printer into a similar state machine contained on the personal

computer. Similar in nature to the page memory map of the IBM 3812 Page Printer, the

graphics mode of a personal computer can be used to generate a given page of a

document onto the personal computer screen. Instead of pels turned on or off within a

page memory map, pixels can be toggled on the personal computer screen.

However, due to the nature of graphics modes, there are unavoidable tradeoffs with regard

to resolution versus the number of colors that are able to be displayed in a certain pixel.

In general, if a given graphics video mode has a high pixel to screen resolution, there will

be less colors that can be displayed per pixel. The reverse is also true in that if the set

of colors that can be displayed per pixel is very high, there will less pixels that can be

displayed on the screen. Of course this means that there are certain resolution constraints

4.0 Capabilities of the Personal Computer 37

imposed by the set of graphics modes within the video configuration of a personal

computer. Once the graphics limitations and constraints are resolved, all that remains to

provide the finite state machine is to map the finite state machine of the IBM 3812 Page

Printer into the finite state machine within the personal computer.

The finite state machine on the personal computer is created to replicate the finite state

machine of the 3812 printer state machine. The values of the bits within the page

memory map may be turned either on or off, representing pels on the actual print media

being on or off. Thus only two colors are needed to represent the page memory map.

This means that a graphics mode may be chosen without regard to color resolution, since

two colors is the minimum set of colors that is used in any given graphics mode. This

offers the highest pixel to screen resolution possible, regardless of the choice of graphics

mode. However, if the graphics mode of an attached personal computer is several years

old, then the pixel to screen resolution is limited by the technology itself. By the same

token, if the process expects fairly recent technology in the video display card, then the

process will effectively be eliminating the ability of older model personal computers to

utilize the print preview function.

It has been decided that the print preview process will use one of the more recent video

display options, the Multi Color Graphics Adapter, or MCGA. This particular graphics

mode was chosen for its high pixel to screen resolution in its MCGA HI video mode.

Also, the latest available configuration, Video Graphics Array, or VGA, offers within its

4.0 Capabilities of the Personal Computer 38

set of video modes a complete mapping of the highest of the MCGA video modes as far

as pixel to screen resolution, MCGA HI RES mode. However, since even the highest

resolution of the personal computer video modes does not approach the resolution of the

printed page of the 3812 printer, the print preview process can never be an absolute

mapping of an entire page. Rather, the area of the page memory map must somehow be

mapped into the smaller resolution display area of the personal computer. The Condensed

Page section in this chapter will discuss this mapping.

4.1 Memory of the Personal Computer

The DOS operating system of personal computers is currently configured to operate

within a base memory size of 640K RAM. Personal computers may have additional

RAM added to their systems, but in general DOS and DOS applications do not make use

of this additional RAM without special system drivers. Also, lower end machines

typically do not run at speeds which would warrant the extra RAM.

Within the IBM 3812 printer, approximately 130K of RAM is made available for font

storage. Also, the complete working RAM of the printer is only 256K. In comparison,

the 3812 printer RAM is considerably less in size than the 640K base memory size of the

personal computer.

The two points mentioned above lead to the conclusion that the methodology for the print

4.0 Capabilities of the Personal Computer 39

preview process should be developed with regard to a 640K RAM limit, minus the

memory required to run DOS and the communications software. By keeping the memory

size within 640K, this also permits most personal computers to make use of the preview

function.

4.3 Visual Specifications of Preview

4.3.1 General Visual Flow

The new print preview system must allow a user to interactively use the function in a

manner that is smooth and user friendly. This means that the User Interface (UI) of the

methodology must be implemented in such a way as to stay within the memory and

graphical constraints of the attached personal computer.

The design of the visual flow of the UI was outlined primarily with the user in mind. At

the most basic level, the UI has four major components:

¢ Condensed Page Display
¢ Explode Area Display
¢ Index Window
¢ Command Instruction Line

The print preview process visual flow is fairly simple. The user is first presented with

a Condensed Page on the left hand side of the personal computer screen. A command

instruction line is shown on the bottom of the screen which provides instructions to

4.0 Capabilities of the Personal Computer 40

function key usage within the preview process UI. A non-destructive Index Window is

then overlaid on the Condensed Page. The user may move the Index Window about the

Condensed page until an area is selected for an exploded view. The area within the Index

Window, which represents approximately a one square inch area on the printed page, can

be selected to be shown in the Explode Area on the right hand side of the personal

computer screen. Figure 11 shows the process as it relates to the visual flow within the

UI. Figure 12 shows a representation of the layout of the UI on a computer terminal.

4.3.2 Condensed Page

Since the graphics mode has been chosen the display parameters for the condensed page

can be calculated. Figure 13 shows the algorithm used to map the pels within the page

memory map into pixels within the condensed page window. The limiting factor for

displaying a full page in condensed mode is the vertical length of the page, due to the fact

that the vertical aspect of the personal computer screen offers less pixels for display than

the horizontal aspect of the screen. For an eight and a half by eleven inch piece of paper,

the vertical eleven inches corresponds to 2640 pels of vertical pel resolution, due to the

240 pel per inch resolution of the 3812 printer. The video graphics mode chosen offers

a pixel screen resolution of 640 horizontal pixels and 480 vertical pixels. Thus the 2640

vertical pels must somehow be mapped into the 480 vertical pixels available for display

on the personal computer screen.

4.0 Capabilities of the Personal Computer 41

Show Condensed Move Index \Y
Page Window Window

J Window

aa Keystrokes Sx S

Preview Previous

Explode Area

Page

In Index Window

Preview Next 4
| Page

Show Explode
Area Window

Figure 11. User Interface Visual Flow

4.0 Capabilities of the Personal Computer 42

>

>

A

Index Window A
Explode Window O

O

°

|
Condensed Page Window Computer Monitor

Figure 12. User Interface Layout

4.0 Capabilities of the Personal Computer 43

O
O
O
N
0
0
0
0
0
0
0
0
0
0

0
0

O
O
O
N
Q
D
Q
O
0
O
O
0
O
0
0

0
0
0
0

O
O
N
O
Q
N
0
N
Q
D
0
O
0
0
0
0
0
0

0
0

OT OT OTOL OT O
T
O
O
T
O
L
O
T
O
L
O
l
O
r
e
r
e

©
2
0
0
0
0
6
0
6
0
0

0
8
0
0
0
0
0
8

0
0
0
0
6
0
0
0
8
0
8
0
0

0
0
8
0

0
0
0
0
0
0
0
8
0

0
8
0
0
8
0
0
0
8
0

©
0
0
0
0
0
0
0
8
0

0
8
0
0
8
0
8
0
0
8

0
0
0
0
0
0
0
8
0

0
8
0
0
8
0
0
0
8

0
0
0
0
0
0
0
8
0

0
8
0
0
0
0
0
8
0

©
0
0
0
0
0
0
8
0

0
8
0
8
8
8
0
8

©
0
0
0
0
0
0
8
0
0
0
0
0
6
0

O
O
D
D
Q
O
D
V
O
C
V
O
O
0
O
0
0
C
N
0
0
O

 O
O
Q
O
N
O
D
D
V
O
V
O
V
Q
V
Q
0
N
0
N
0
O

O
O
O
Q
O
Q
O
Q
V
O
Q
O
Q
O
V
O
0

0
0
0

O
OO

Page Memory Map

@O

 Condensed Page Window =, @O

Figure 13. Condensed Page Filter

4.0 Capabilities of the Personal Computer

By using the two vertical resolutions, a vertical filter value can be found for use when

displaying the condensed page. The personal computer vertical pixel resolution divides

the vertical pel resolution of a page to give a result of six after rounding the result to the

next highest integer value.

This means that at most the vertical resolution is one sixth of the actual resolution of the

page in pels. The value for the vertical filter will be six, meaning that when displaying

the condensed page on the personal computer screen, only every sixth pel will be

displayed. The pels not used for display are discarded. This corresponds to 440 pixels

being used for displaying the vertical portion of the page on the personal computer screen.

If the same filter value is used for the horizontal portion of the condensed page, this

corresponds to 340 horizontal pixels being used. However, due to the aspect ratio of the

personal computer screen, approximately 0.32, using the same filter value for both the

vertical and horizontal portions of the condensed page proves to be impractical and results

in a condensed page which is unrealistic in appearance.

In order to obtain a condensed page which is realistic in appearance, a value of seven

must be used for the horizontal filter value. This results in 292 pixels being used to

display 2040 pels for the horizontal portion of the condensed page.

4.0 Capabilities of the Personal Computer 45

The horizontal and vertical filter values generate the condensed page window, which

represents the eight and one half by eleven page of the document within the UI of the

print preview process. In other words the mapping of the page memory map into the

condensed page involves translating the 240 pel per inch resolution of a page into the

condensed page window. It is interesting to note that in spite of the dense resolution of

the page memory map, only a very small amount of this data is used to generate the

visual representation in the UI. The condensed page uses data which is approximately

2.4% of the original data that composes the page memory map.

4.3.3 Explode Area

The area on the right hand side of the screen is reserved for showing selected areas of the

condensed page. Within this area, pels from the 3812 printer page memory map are

mapped on a one to one basis with pixels on the personal computer screen. When

previewing, the explode area represents a 1.06 inch by 1 inch area with regard to an eight

and one half inch by eleven inch piece of paper. Figure 14 depicts the area filter used

to show portions of the page memory map to the explode area window. This means that

the index window covers approximately 1.14% of the condensed page. Within the

explode area characters, math symbols, images, and vectors are shown exactly as they

would be printed. As soon as the index window is moved by the user and a new area is

selected for display, the explode window is updated and the new area is shown.

4.0 Capabilities of the Personal Computer 46

X AX
X

Page Memory Map

 Explode Area Window

Figure 14. Explode Area Filter

4.0 Capabilities of the Personal Computer 47

4.4 Preview Techniques

4.4.1 Memory Mapping

One possible algorithm for implementing the preview process calls for forming the pages

of the document within the memory of the personal computer in the same manner as they

are formed within the 3812 printer page memory map. However, the 240 pel resolution

of the printer necessitates 5,385,600 bits (657 K-bytes) per page to store the entire page

layout. A comparison with the base memory configuration on the personal computer of

640K shows that the page map obviously cannot be formed in memory.

Another alternative again involves forming the page of a document as in the 3812 printer

page memory map, but not in the personal computer’s memory, but instead as a file to

be saved to disk. This would require the system to have a hard disk, which would place

limitations on the number and types of personal computers which could use the preview

function.

Also, in order to follow either of the two methods above would involve forming the

complete page map and then use it as a reference to show specific areas for previewing.

This would involve extra overhead in computing time prior to being able to show any

type of preview. Once the index window is positioned over an area on the condensed

page, an index is calculated in order to select the exact area for previewing and show it

4.0 Capabilities of the Personal Computer 48

in the explode area window. The next method discussed eliminates the need for forming

the complete page and instead uses the captured data stream as an operator in order to

form the condensed page and the explode area.

4.4.2 PMP Command String Interpretation

This approach calls for saving the PMP bytes within the captured data stream that are

necessary to compose the document to memory. As shown in the discussion on the PMP

data stream, a file can be captured which contained the necessary PMP command bytes

for forming the document without any external references. Thus, if this file is intercepted

and stored to the memory on the personal computer, each page can be composed from the

PMP data stream as needed. By using the PMP data stream to interactively create the

condensed page window and the explode window as needed, added computing overhead

is eliminated. This also eliminates the need for a hard disk, and also stays within the

memory constraints needed for the program.

4.0 Capabilities of the Personal Computer 49

Chapter 5. Print Preview State Machine

5.1 PMP Data Stream Capture

In order to emulate the 3812 printer finite state machine, its input sequence, the PMP data

stream must be further analyzed. In order to operate on the PMP data stream, a "dummy"

VM3812 printer service machine has been set up and configured as resident on the IBM

3090. Instead of the PMP data stream being sent to a 3812 printer, it is instead returned

to the user’s reader list on the IBM 3090.

Since the PMP data stream is the data stream used to print documents when the 3812

printer is attached to the personal computer under DOS, the new preview method also

lends itself to extending its use beyond previewing from the host alone. The new preview

method may also be implemented for the 3812 printer when attached to a single personal

computer under DOS, or with further modification, to a distributed network with an

attached 3812 printer, such as a token ring network.

5.0 Print Preview State Machine 50

See Appendix B on exact instructions on capturing the PMP data stream. Figure 15

illustrates this process.

5.2 State Machine Mapping

5.2.1 PMP Command Subset

In order to map the 3812 printer finite state machine into a new print preview finite state

machine to be contained on the personal computer, the PMP command structure must be

examined again. The finite state machine of the printer is easily implemented on the

personal computer. However, there are some structural changes in the state machine

brought about simply due to the differences in architecture as well as the printing process

system in general.

Since the preview function is for use with documents that are the end result of the

SCRIPT process, each document has a job header page which includes such information

as the job number, date, user ID, etc. Since the methodology that has been developed is

directed solely towards previewing the document itself, it becomes well within the bounds

of the exercise to exclude this job header page and effectively render it transparent to the

user.

5.0 Print Preview State Machine 51

Terminal Mode

(YTERM)

|
Text Editor

(XEDIT)

SS VM3812 SCRIPT

Zn =
CPDS Data

Stream

3812 Service PMP Data Reader List
Machine QO Stream (USER)

CPDS Data
Stream

Se IBM 3812
Page Printer

Figure 15. PMP Data Stream Capture

5.0 Print Preview State Machine §2

Additionally, some job printouts routed through the 3812 Page Printer such as program

listings and program output require landscape printouts. The landscape printing style

would require a different visual layout on the personal computer screen. This does not

lend itself towards meeting the visual criteria which has been set for the print preview

process, so the landscape printing mode has been excluded as a permissible input to the

print preview process developed in this document.

These generalizations inherently reduce the subset of PMP commands within category

one, PMP Page Commands, to that of a single command, Print Page.

There are a total of thirty-three PMP commands which compose the PMP data stream.

All of these commands fall within the five categories shown in Chapter Two. The printer

service machine interprets the file which has been SCRIPTed and composes the PMP data

stream to be sent to the 3812 Page Printer. Presently the VM3812 service machine for

the 3812 Page Printer does not include any of the macro PMP commands in its output,

which reduces the set of PMP commands to only four general categories and a total PMP

set of twenty-six commands. Macro commands are provided mainly for use with the IBM

3812 Page Printer when used as a printing device from within the personal computer DOS

environment. Therefore, the 3812 printer state machine being discussed and developed

does not include macro commands as inputs. However, the macro commands are

included and defined in Appendix A, the complete listing of the PMP command set.

5.0 Print Preview State Machine 53

Furthermore, in examining the Font Command subset of PMP commands, there are only

three out of ten PMP commands which are used in the state machine on the personal

computer. On the IBM 3812 Page Printer, there is always an active font. The fonts are

also loaded and unloaded into the active font workspace as they are needed. However,

within the personal computer state machine, all fonts are stored to memory and referenced

as necessary, so no font manipulation is necessary with regard to the active font

workspace. This further reduces the command set to a total of seventeen PMP commands

which are actually used within the personal computer state machine. This subset of PMP

commands is still contained within the four general categories of PMP commands

mentioned earlier.

§.2.2 Print Preview State Machine

Although the original set of PMP commands used by the 3812 printer state machine has

been reduced, full emulation of the 3812 printer is possible. Once again, by using the

concept of the PMP Page Print Block, the new state machine can be derived from the

high level PMP commands in the new reduced subset of PMP commands.

By reducing the subset of PMP commands within category one within the printer state

machine, the initial state of the state machine has also been changed. The printer state

machine structure is basically the same, however three of four of the categories of PMP

commands have been reduced, and one category eliminated. This basic structure creates

5.0 Print Preview State Machine 54

a new print preview state machine that is simply a subset of the 3812 printer state

machine. The flow of the subset of PMP commands remains the same as in the full 3812

printer state machine.

Figure 16 shows the new finite state machine PMP categories as they are mapped into the

personal computer. Figure 17 shows PMP category one, Page Commands, Figure 18

shows PMP category two, Cursor Commands, Figure 19 shows category three, Font

Commands, and Figure 20 shows PMP category four, Generation Commands.

5.0 Print Preview State Machine 55

Page Generation

Commands Commands

Cursor Font

Commands Commands

* Interconnections represent bidirectional flow

Figure 16. Print Preview Finite State Machine

§.0 Print Preview State Machine 56

3. Print Page

Page
Commands

Final State

* Interconnectinos represent bidirectional flow

Figure 17. States of PMP Page Commands

5.0 Print Preview State Machine 57

1, Set Cursor Horizontally
2. Set Cursor Vertically
3. Move Cursor Horizontally
4. Move Cursor Vertically
5. Save Cursor
6. Restore Cursor
7. Restore Cursor Component \

 * Interconnectinos represent bidirectional flow

Figure 18. States of PMP Cursor Commands

5.0 Print Preview State Machine 58

2. Set Font Pattern Controls

3. Generate Font Patterns
4. Generate Pattern Immediate

5. Generate Vectors

6. Generate Vectors - Fill

 WK

Generation

Commands

* Interconnectinos represent bidirectional flow

Figure 19. States of PMP Font Commands

5.0 Print Preview State Machine 59

2. Set Font Pattern Controls

3. Generate Font Patterns

4. Generate Pattern Immediate

5. Generate Vectors

6. Generate Vectors - Fill

Figure 20. States of PMP Generation Commands

5.0 Print Preview State Machine

5.3 Preview Implementation

5.3.1 PMP Font Index

Fonts contained within the PMP data stream are stored and referenced from the memory

on the personal computer. A font index table is created in order to reference the fonts

while creating the condensed page window and the explode window. The VM3812

printer service machine for the IBM 3812 Page Printer stores only those characters from

a font used during printing. Characters within a font that are not used for printing are not

incorporated into the PMP data stream file. This is a result of trying to minimize the size

of the PMP data stream, which indirectly reduces the amount of memory needed to store

and index the fonts when using them in the new preview state machine.

The characters which are printed are stored as simple raster patterns. Each character has

several control bytes used by the printer state machine. The control bytes are the

character reference number, the width of the character pattern, height of the character

pattern, and the spacing of the character pattern with regard to the cursor line. Shown

in Figure 21 is a typical character raster pattern with its control bytes.

5.0 Print Preview State Machine 61

Pattern Reference Number ———~>

193

Cursor

Line ——— CLO
Offset

 —_—_@—

Left a [-LT—|

Cursor
Position

Left Top Space

Right Bottom Space

Figure 21. Typical Character Raster Pattern

5.0 Print Preview State Machine 62

On the IBM 3812 Page Printer, fonts are stored separately from each other and are loaded

into the working memory as they are needed when forming the page memory map. On

the personal computer, the font character patterns themselves are stored in memory as a

linked list. Each member of the list has three distinct components. The first component

is the font pattern reference number. This number is derived from a font code page.

The character pattern reference number is made up of a hexadecimal byte. The first digit

of the byte is from the top row of the font table, and the second digit is from the left

hand column of the table. Since the font tables are similar and in most cases the same

from font to font, the same characters in different fonts usually have the same reference

number. The structure of the font index with its components is shown in Figure 22.

The algorithm to copy the character raster patterns to the screen must first verify the

character by referencing the font index. Each element in the font index has the font index

structure shown in Figure 22. The font index structure itself is shown in Figure 23. The

requested character number is first compared with the font index reference number, then

the active font number is compared again the font index character font number, and if

both match the character is verified and printed.

5.0 Print Preview State Machine 63

Font Pattern Reference Number

Font Number

 Font Pattern Data

|

Pattern Reference Number

Pattern Box Height

Pattern Box Width

Left/Top Space

Right/Bottom Space

Cursor Line Offset

J
U
U
U
U
U
L

1 Pattern Data

Figure 22. Font Index Structure

5.0 Print Preview State Machine

Font Pattern Reference Number

Font Number

Font Pattern Data

{

| L Font Index Array

~~
W
N

 Figure 23. Font Reference Overview

5.0 Print Preview State Machine 65

5.3.2 PMP Print Block Buffer

A page print block is again defined as those PMP bytes which are needed in order to

print an individual page of the document. These bytes within the page print blocks are

also summed in order to reserve the correct amount of memory for the page print block

index. An index by page number is created in order to reference the page print blocks.

Figure 24 depicts the page block print buffer data structure. This enables the preview

function to process a page without having to repeatedly process the entire PMP file.

When a particular page is to be previewed, the program references the print block buffer

index, and uses the appropriate page print block of PMP commands to generate the

condensed page window and the explode area window. All PMP bytes which are not

used to print, such as the load font command, are then discarded. Following the creation

of the font index and the page print block index all processing of the PMP data stream

is complete, and the PMP data stream file is closed. Characters are generated by

referencing the font index, and images and vectors are generated by processing the

respective PMP commands for images and vectors. All further action taken by the

preview function uses the print page block index and the font index, which are both

stored in memory.

5.0 Print Preview State Machine 66

Page Print Blocks
Page Print Block Pointer

Page Print Block PMP Count

1

2

1 3
2

Sa

n ——! nn

Figure 24. Page Print Block Structure Overview

5.0 Print Preview State Machine 67

Chapter 6. Further Development

6.1 General Steps for the Transfer of the Technology

The 3812 Printer state machine has been fully developed in a stand alone personal

computer DOS environment. Chapter Five describes the steps of this development.

However, in order to fully realize the objective, providing the new print preview

methodology to the users of the SCRIPT process, the methodology implementation must

be modified and reorganized further. The process is fully functional at this time in that

SCRIPT documents may be fully previewed. However, in order to utilize the preview

function the input to the 3812 printer, the PMP data stream, must be downloaded from

the host and transported to a personal computer meeting the hardware and software

prerequisites as outlined in Chapter Four.

Further development of the new preview methodology involves several steps. These steps

include development of a new communications platform, personal computer to personal

computer dialogue, transferal of the preview implementation to the host, and finally host

to personal computer dialogue. The culmination of the development process will result

in an interactive flow between the host and the personal computer during the print

6.0 Further Development 68

preview process. Figure 25 shows the development steps overview.

Parts of the implementation such as the graphical display, user interface, and the mouse

driver will remain resident within the new communications software platform. The host

will simply transfer data streams to the attached computer which consist of pure graphical

data. Once the print preview has been invoked, the contents of the condensed page

window, pure graphical data, will be transferred by the host to the personal computer.

Once the user positions the index window on the condensed page window and selects an

area for preview, the communications platform passes the index parameters to the host.

Using these index parameters, the explode window is generated and sent to the personal

computer. As far as the user is concerned, changes to the structure and implementation

are transparent and the visual flow remains unchanged from that which is described in

Chapter Four. The two data stream packets sent from the host containing the condensed

page and the explode area represent data transfers sizes of 15.68K and 7.62K respectively.

If the personal computers are attached to the host via data lines with reasonable

bandwidths, the data transfer rates become negligible.

6.2 Enhanced Communications Platform

The first of the development steps as shown in Figure 25 is the enhancement and

improvement of the communications software platform as described in Chapter Two. Full

development of the communications software will not be discussed at this time.

6.0 Further Development 69

Stand Alone PC

DOS Environment

|
Enhanced Communications

Platform

|
PC to PC Dialog

|
Tranfer Preview

Implementation
to Host

|
Host to PC Dialog

Figure 25. Further Development of Preview Methodology

6.0 Further Development

However, an essential component of the print preview system is the correct

implementation of dialogue between the host and the attached personal computer. This

requires the communications platform to recognize sends and requests of certain

parameters between the attached device and the host and also for the personal computer

to receive data transferral of print preview data. As the condensed page and the explode

area are sent to the attached personal computer, the resident communications software

platform will dynamically place the graphical data in the appropriate location in video

memory.

With regard to this particular point within the development chart, the component of the

communications software platform which involves the print preview may be developed

independently of the entire communications platform itself. Only a resident program need

be developed which simply handles the user interface and placement of the condensed

page and explode area on the personal computer screen.

6.3 Modifications to the Personal Computer Preview State
Machine

Once the preview components of the new communications platform have been developed,

the state machine implementation must also be modified. Instead of operating in a stand

alone DOS environment on a personal computer, the preview process will instead operate

between two personal computers. One machine will contain the print preview state

6.0 Further Development 71

machine, and one will contain the communications platform preview module.

The preview state machine resident on the personal computer will assume as its input

sequence the PMP data stream. It will also assume this data stream is to be sent to a

specified location when the print preview process is invoked by the user. Therefore, the

interactive dialogue at this point in the development process involves a request from one

personal computer (simulating the attached device) invoking the print process on the

second personal computer (simulating the host). Figure 26 shows the dialogue flow as

related to the print preview process during this stage of development.

6.4 Transfer of the Methodology to the Host

Once the communications platform preview module and the preview state machine are

communicating satisfactorily, the print preview state machine must be transported to the

host. This main complexity with regard to implementation relocation will involve

language differences between the personal computer and the host. The communications

dialogue will remain the same as that used during the personal computer to personal

computer simulation. Thus the dialogue flow is the same as that shown above in Figure

26. Relocation of the preview state machine to the host should result in much faster

computation times for the generation of the condensed page and the explode area. A

design consideration at this point involves the generation and manipulation of the

graphical data, the condensed page and the explode area. These data blocks may either

6.0 Further Development 72

Attached Device Host

(First Personal Computer) (Second Personal Computer)

Invoke Print
Previ

Process PMP
a Data Stream File

Initialize Graphics ae
and

Display Screen

Generate Condensed
A Page and Send Data to

Z a Attached Device

Receive and Display
Data Packet =

_ Generate Explode

| J. Area and Send Data to
——_ Attached Device

Process User Ca
Command

Display Exit
Help Print Data Lines

Window Preview

Figure 26. PC to PC Dialogue Development

6.0 Further Development 73

be generated and dynamically sent to the attached personal computer as shown in Figure

15, or may be saved as a file and then transferred to the personal computer. The personal

computer resident portion of the preview function will interpret both of these methods in

the same manner. Either type of data block is first acknowledged by the personal

computer. Then as the data blocks themselves are sent across the data lines, the preview

component on the personal computer simply positions the graphical data into the

appropriate window.

6.5 Means of PMP Data Stream Capture

Once the print preview process is invoked by the user on the attached personal computer,

the preview state machine on the host must operate on the PMP data stream as discussed

in Chapters Three, Four and Five. The difference however is the method of operation on

the PMP data stream.

In order to properly make use of the preview methodology, the PMP data stream is still

required as an input sequence to the preview state machine. However, a new method of

capturing this data stream must be implemented. One possible solution is of course to

employ a null VM3812 service machine in the same manner as discussed in Chapter Five.

This printer service machine would capture the PMP data stream and save it as a file.

The PMP data stream file would then be returned to the user’s reader list. The preview

state machine would then access by default the PMP data stream file through the user’s

6.0 Further Development 74

reader list.

6.0 Further Development 75

Chapter 7. Conclusion

The SCRIPT printing system which currently resides on the IBM 3090 provides excellent

tools for users to edit, format, and print documents. However, the overall system

configured with attached personal computers to the host has been described and its

limitations have been outlined. Because of the limitations on this larger connective

system between the attached personal computers and the host, there are inherent

limitations placed on the printing system.

Improvements to the connective system have been discussed. Particularly, enhancements

to the printing system, a subset or component of the connective system have been

discussed and a new print preview methodology has been developed. This new print

preview methodology maps the IBM 3812 printer finite state machine into a preview

finite state machine. This process currently operates on a stand alone personal computer

DOS environment. The methodology allows its users the benefit of creating a final draft

prior to ever using a printer, thus saving both time and effort. Currently there are no

preview methods which match the newly developed preview process methodology. The

process creates an exact replica of documents during the preview process, which allows

7.0 Conclusion 76

for tremendous accuracy when displaying all facets of a document, but limits the preview

process in speed in comparison to other preview processes which operate on the personal

computer.

Future research involves transporting the preview state machine to the host. Once the

preview state machine is implemented on the host, the speed and power of the mainframe

will increase the speed of the limiting factors of the preview process tremendously. When

fully implemented on the host, the new print preview methodology will grant its users the

best of both worlds - the complex graphical nature of the personal computer coupled with

the speed and power of the IBM 3090 mainframe computer.

7.0 Conclusion 77

BIBLIOGRAPHY

1) J. Cavuoto, "Successful Publishing’s Secret?", Computer Graphics World, Vol. 9,

No. 11, November 1986, pp. 63-70.

2) R.K. deBry and B.G. Platte, "Advanced Function Printing: A Tutorial", IBM

Systems Journal, Vol. 27, No. 2, pp. 219-233.

3) R.K. debry, B.G. Platte, C.L. Berinato, and J.W. Martin, "Architectures of

Advanced Function Printing", IBM Systems Journal, Vol. 27, No. 2, pp. 234-245.

4) IBM Corporation, "VM3812-IBM 3812 Pageprinter VM Support: Application

Programmer’s Guide", 1985.

Bibliography 78

5) IBM Corporation, "VM3812 User’s Guide", 1987.

6) IBM Corporation, "Pageprinter 3812 Hardware Reference Library: Programming

Reference", 19835.

7) IBM Corporation, "Pageprinter 3812 Hardware Reference Library: Introduction

and Planning Guide", 1985.

8) IBM Corporation, "Pageprinter 3812 Hardware Reference Library: Guide to

Operations", 1985.

9) IBM Corporation, "About Type, IBM’s Technical Reference for 240-pel Digitized

Type", 1988.

10) IBM Corporation, "IBM 3812 Pageprinter Technical Update", 1987.

11) IBM Corporation, "Intelligent Printer Data Stream Reference", 1987.

12) IBM Corporation, "Print Services Facility, Data Stream Reference", 1988.

13) IBM Corporation, PROFS Note, "The VM3812 Environment", 1989.

Bibliography 79

14) IBM Corporation, PROFS Note, "VM3812 Functional Characteristics", 1989.

15) IBM Corporation, PROFS Note, "VM3812 Performance", 1989.

16) A.K. Griffee and C.A. Casey, "An Introduction to Typographic Fonts and Digital

Font Resources", IBM Systems Journal, Vol. 27, No. 2, 1988, pp. 206-218.

17) D. McCammish, "Desktop Publishing Drives a High-Tech Company", Modern

Office Technology, Vol. 33, No. 5, May 1988, pp. 80-88.

18) R.A. McGrath, "Affordable PC Publishing", Computer Graphics World, Vol. 10,

No. 3, March 1987, pp. 113-118.

19) T.S. Perry, "PostScript Prints Anything: A Case History", IEEE Spectrum, Vol.

25, No. 5, May 1988, pp. 42-46.

Bibliography 80

Appendix A - PMP Command Listing

As discussed in Chapter Three, there are a total of thirty- three PMP commands which

fall into five general categories. The PMP commands are given below in conjunction with

a brief function description.

Page Commands

F6H - Set Page Size

The Set Page Size command defines the paper size to be used and lines up the page map

with the correct paper tray.

D2H - Set Page Orientation

The Set Page Orientation command defines which side of the paper is to be treated as the

top of the paper. Landscape and Portrait modes are standard modes, but the orientation

of a page may be rotated by 90, 180, and 270 degrees, allowing for printing in any

direction.

Appendix A - PMP Command Listing 81

Page Commands (continued)

D1H - Print Page

The Print Page command causes the page memory map to be printed to paper. There are

also options which allow the page map to be saved following the command, as well as

an option which allows selection of an alternate paper tray source.

Cursor Commands

EOH - Set Cursor Horizontally

The Set Cursor Horizontally command sets the horizontal component of the cursor.

E1H - Set Cursor Vertically

The Set Cursor Vertically command sets the vertical component of the cursor.

E2H - Move Cursor Horizontally

Moves the position of the cursor right or left.

E3H - Move Cursor Vertically

Moves the position of the cursor either up or down.

Appendix A - PMP Command Listing 82

Cursor Commands (continued)

8xH - Save Cursor

Saves the current cursor position in one of 15 cursor registers.

9xH - Restore Cursor

Changes the cursor position to the position saved in one of the 16 cursor registers.

E4H - Restore Cursor Component

Restores one of the cursor components - either horizontal or vertical - while leaving the

other component unchanged.

Font Commands

D3H - Activate Font

This command is used for two purposes. If no patterns have been previously loaded in

the font number being activated, it prepares that number for loading. If font patterns have

been previously loaded into that font number, it makes those patterns available for

immediate generation into the page memory map.

Appendix A - PMP Command Listing 83

Font Commands (continued)

D7H - Activate Alternate Font

Activates the an alternate font. An alternate font is not mandatory. The alternate font

may be used to back up the active font if the active font is missing some font patterns.

C2H - Deactivate Font

Deactivates the currently active font and the alternate font.

FOH - Load Font Pattern

Loads into the active font a specified pattern.

F4H - Load Large Font Pattern

Loads a large pattern into the active font.

E5H - Copy Font

Copies one loaded font to another

FAH - Copy Font Pattern

Copies a single pattern from a specified font into the active font.

Appendix A - PMP Command Listing 84

Font Commands (continued)

D4H - Unload Font

Clears a font from working storage.

C7H - Unload All Fonts

Removes all fonts from working storage and deactivates the active and alternate fonts.

DCH - Select/Deselect Font Emphasis

Allows any pattern loaded through the Load Font Pattern command to be loaded as a bold

character.

Generation Commands

D9H - Set Generation Mode

Selects how pattern data bits are generated into page memory map pels. For example,

it controls whether a 1 data bit means "black" or "white."

D8H - Set Font Pattern Controls

Sets up options for the command "Generate Font Patterns."

Appendix A - PMP Command Listing 85

Generation Commands (continued)

Oxxxxxxx - Generate Font Patterns

Generates a pattern or patterns form the active font into the page memory map. This is

the PMP command you use for generating text.

F5H - Generate Pattern Immediate

Places a bit pattern directly into the page memory map at the current cursor position.

This is the command used to generate bit image graphics.

F8H - Generate Vectors

Generates vectors in the page memory map by drawing lines between successive points,

starting with the current cursor position.

F9H - Generate Vectors - Close and Fill

Creates a closed polygon that the Page Printer fills in after drawing the vectors.

Macro Commands

F7H - Load Macro

Lets a macro be defined.

Appendix A - PMP Command Listing 86

Macro Commands (continued)

DAH - Execute Macro

Runs a macro from working storage.

A0OH-BFH - Execute Macro - Short

Allows a one byte invocation of any one of the first thirty two macros in Page Printer

working storage.

C8H - Unload All Macros

Unloads all normal macros from working storage.

FBH - Execute Library Macro

Searches for and runs a macro from the printer diskette.

C9H - Push State

Saves the state of the PMP processor.

CAH - Pop State

Restores the PMP state variables saved by a previous Push State command.

Appendix A - PMP Command Listing 87

Appendix B - Capturing the PMP data stream

The input sequence to the IBM 3812 Page Printer is the PMP data stream. In order to

develop the print preview state machine, the PMP data stream is captured as a file. To

do this, a document is created using XEDIT. Once the document has been formatted

using GML, it may be printed by using the SCRIPT process.

However, in order to capture the PMP data stream, the file is SCRIPTed to a dummy

printer service machine. The command used to capture all of the test PMP data files used

during the development of the new preview methodology is as follows:

SCRIPT filename filetype userdisk (d 3812 dest VM3812C

Appendix B - Capturing the PMP Data Stream 88 -

The invocation of this command simply returns the PMP data stream as a file to the

users reader list with the same filename and filetype PMP3812. The file may then be

received into the user’s filelist. To transport the PMP data files to the attached

environment, the following command is used:

PCTRANS DOWNB [drive:filename.ext] [filename PMP3812 userdisk]

a. "drive" is the destination drive on the personal computer.
b. "filename.ext" is the filename of the file on the personal computer.
c. "filename" is the filename of the document on the host.
d. "userdisk" is the drive where the file is located on the host.

Appendix B - Capturing the PMP Data Stream 89

Appendix C - Print Preview Implementation

The new print preview methodology was implemented in the C programming language.

This appendix describes the steps taken to create the executable form of the program

which describes the preview state machine.

The program, GDOIT.EXE, was written in C and was compiled using Turbo C version

2.0. There are twenty different source files used to create the program. The source files

are given in Appendix D. In order to re-create the executable file, the project file must

be loaded into Turbo C and autodependencies should be turned on. Code optimization

should be set for speed, and code generation should be set for 8088/8086 code or

80186/80286 code generation as appropriate.

After GDOIT.EXE has been created, the files CGA.BGI and SANS.CHR must be present

in the same directory at execution time in order to run the application. CGA.BGI is the

graphics driver for MCGA and VGA HI graphics modes, and SANS.CHER is the character

font used during the user interface (UI) display.

Appendix C - Print Preview Implementation 90

Appendix D - Extended PMP Flow Example

As an extended example of the PMP command structure the "SLIDE" SCRIPT document

is presented. This document makes use of the majority of PMP commands, including

multiple fonts, special math symbols, and vector graphics.

The example is given in four parts:

¢ SCRIPT Source file, p. 92
¢ Actual printed page of "SLIDE", p. 94
¢ Screen dump of GDOIT processing "SLIDE", p. 95
* PMP Command Flow Listing, pp. 96-116

Appendix D - Extended PMP Flow Example 9]

SCRIPT source file for "SLIDE"

-pn off
-dr thick weight 1mm
-dr med weight .5mm
-dr thin weight .lmm
-df fontl6 type(16 bold)
-Gf fontl4 type(14 bold)
-df fontl2 type(12 bold)
-df font10 type(10 bold)
-df font&8 type(8 bold)
-df font6é type(6 bold)
-df fonteq type(12 bold)
-bx thick Ocm 15.5cm
-bx new med 0.25cm 15.28cm
ein +0.75cm
eir +0.75cm
-pn off
.ce on
-bf fonts

Department of Electrical Engineering
Virginia Tech, Blacksburg, VA 24061

-pf
ehr thin 0.25cem 15.28cm
-bf fonté
This is fonté
This is a test slide
We can use this method to generate

slides for presentations
It should be easier than other methods
And a whole lot neater
-pf
-bf fonts
This is fonts
This is a test slide
We can use this method to generate

slides for presentations
It should be easier than other methods
And a whole lot neater
-pf
-bf fontlo
This is fontlo
This is a test slide
We can use this method to generate

slides for presentations
It should be easier than other methods
And a whole lot neater
-pf
-bf fontl2
This is fontl2
This is a test slide
We can use this method to generate

slides for presentations
It should be easier than other methods
And a whole lot neater

Appendix D - Extended PMP Flow Example 92

pf
-bf fontl4
This is fontl4
This is a test slide
We can use this method to generate

slides for presentations
It should be easier than other methods
And a whole lot neater
pf
-bf fontl1é
This is fontl6
This is a test slide
We can use this method to generate

slides for presentations
It should be easier than other methods
And a whole lot neater
-pft
-bf fonteq

This is forteq=fontl2

-setsym smff
-se ask ‘alpha sub k’
:df frame=none align=center.
s(x) = (1 + sigma) u sub 0 = q over 1 %%

left lb 1 + delta b+2
sum from <k=l> to infinity of

<a sub k + b tanh &ask delta>
over

<&ask (&ask sup 2 + b &ask

tanh &ask delta + 1) > %%
cos &ask x right rb

:edf.
:df£ frame=none align=center.
<vardelta sup 2 phi> over <vardelta x sup 2> %
<vardelta sup 2 phi> over <vardelta y sup 2> %
<vardelta sup 2 phi> over <vardelta z sup 2> %

z:edf.
-pft
-ce off
-bx of f
-bx off
-pn off

Appendix D - Extended PMP Flow Example

i
+
+

dP

oP

d
P

Department of Electrical Engineering Virginia Tech, Blacksburg, VA 24061

This {ts fonté
This is a test slide

We can ase this method to generate
slides for presentaiions

It should be easier than oiher methods
And a whole lot neater

This is font8
This is a test slide

We can use this method to generate

slides for presentations
It should be easier than other methods

And a whole lot neater

This is font10
This is a test slide

We can use this method to generate
slides for presentations

It should be easier than other methods
And a whole lot neater

This is font12
This is a test slide

We can use this method to generate
slides for presentations

It should be easier than other methods
And a whole lot neater

This is fontl4
This is a test slide

We can use this method to generate
slides for presentations

It should be easier than other methods
And a whole lot neater

This is font16

This is a test slide

We can use this method to generate
slides for presentations

It should be easier than other methods

And a whole lot neater

This is forteq = font12

eo b tanh «,6
s(x) = (I+ 6)uy — 1+6b6+2> An F 0 fan Fk COS a,x

f k=l a, (a? + ba, tanh «,5 + 1)

ao ao ao
7 + 77 + Tr =?

ox oy Oz

Appendix D - Extended PMP Flow Example

B
G
E
d

X
O
N

a
B
e
g

N
a
i
d

mn
OTe (SY

-
d
n
6
d

ME-leleiale
3IxQ

-
bA

abed
-

€4
$3Q0/UQ

M
O
Y
S
O
y
N
Y

-
zZ4

PP le Maller
Fis)

4
8
H

-
TA

TOO
e6eg

Sem
Of oe

of
,

Vadyte
ego

‘ey
g

tug

i
;

ae
et

me M
e
n
g
e
 ce

Try
w
e
n
s
 ay

M
A
M
I

WE
Pett,

Ke
PRT

S
P
L
I
T

L
e

C
E

A
M
T

A

PUTT
4]

sany taal
any cept

Reema 1
POSE

RY!
AU

BD
21),

APIS
pe

F
SENG

OT amy
ol E

L

D
E
W

A
E
y

S
P
M
.

sdAIF eg
A
F
 ED

ag E
M
P

weopeqecaued
rng

weigs

208 C
E
E

OE P
B
I

QE. 28 H
D

94

R
E

Ce
Oy

oLroms SPL)
P
U
M

A

A
I
U
D

P
R

S
E
C
E
D
E
:

Ahfe
Daye NYLD

by P
P
E

A
a
o
m
e
p
e
w
e
l

sq >aep
wrest

my S
e
p
p
a
n

pes F4 OFs
am

Vr
p
a
r
e

aay
orery

@Peil
a
r
e
n
r
v
e
r
(
y

95 Appendix D - Extended PMP Flow Example

Input file: d:\slide.txt 20880 bytes

C6 Jog Exit Tray
D8 00 Set Font Pattern Controls
D9 90 Set Generation Mode
EO 00 00 Set Cursor Horizontally
El 00 00 Set Cursor Vertically
C2 Deactivate Font
El 00 97 Set Cursor Vertically
EO 01 2c Set Cursor Horizontally
E2 02 co Move Cursor Horizontally
E2 00 20 Move Cursor Horizontally
C2 Deactivate Font
El 00 EC Set Cursor Vertically
EO O01 2c Set Cursor Horizontally
E3 FF F8 Move Cursor Vertically
83 Save Cursor to Register #3
E2 00 04 Move Cursor Horizontally
E3 00 04 Move Cursor Vertically
F8 C9 00 00 O05 B3 Generate Vectors
93 Restore Cursor from Register #3
E3 00 08 Move Cursor Vertically
El 00 ED Set Cursor Vertically
EO 01 2c Set Cursor Horizontally
83 Save Cursor to Register #3
E3 00 04 Move Cursor Vertically
E2 00 04 Move Cursor Horizontally
F8 C9 00 08 00 00 Generate Vectors
93 Restore Cursor from Register #3
EO 06 DF Set Cursor Horizontally
83 Save Cursor to Register #3
E3 00 04 Move Cursor Vertically
E2 00 04 Move Cursor Horizontally
F8 C9 00 08 00 00 Generate Vectors
93 Restore Cursor from Register #3
El 00 FD Set Cursor Vertically
EO 01 40 Set Cursor Horizontally
E3 FF FC Move Cursor Vertically
83 Save Cursor to Register #3
E2 00 02 Move Cursor Horizontally
E3 00 02 Move Cursor Vertically
F8 C5 00 00 05 8¢ Generate Vectors
93 Restore Cursor from Register #3
E3 00 04 Move Cursor Vertically
El 00 FE Set Cursor Vertically
EO O01 2c Set Cursor Horizontally
83 Save Cursor to Register #3
E3 00 04 Move Cursor Vertically
E2 00 04 Move Cursor Horizontally
F8 C9 07 9B 00 00 Generate Vectors
93 Restore Cursor from Register #3
EO 01 40 Set Cursor Horizontally
83 Save Cursor to Register #3
E3 00 02 Move Cursor Vertically
E2 00 02 Move Cursor Horizontally
F8 C5 07 9F 00 00 Generate Vectors

Appendix D - Extended PMP Flow Example

F8 C5 07 9F

F8 C9 07 9B

00

00

00

00

94

81

85

Restore Cursor from Register #3
Set Cursor Horizontally
Save Cursor to Register #3
Move Cursor Vertically
Move Cursor Horizontally
Generate Vectors

Restore Cursor from Register #3
Set Cursor Horizontally
Save Cursor to Register #3
Move Cursor Vertically
Move Cursor Horizontally
Generate Vectors

Restore Cursor from Register #3
Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Activate Font #4
Load Font Pattern
Load Font Pattern

Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Generate Font Patterns
Generate Font Patterns

Move Cursor Horizontally
Generate Font Patterns

Move Cursor Horizontally
Generate Font Patterns
Generate Font Patterns

Move Cursor Horizontally
Generate Font Patterns

Generate Font Patterns

Move Cursor Horizontally
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern

Appendix D - Extended PMP Flow Example

FO F4 12 OD 00 O1 12 Load Font Pattern

FO FO 12 0C 01 01 12 Load Font Pattern
FO F6 12 OC 01 O01 12 Load Font Pattern
FO Fl 12 09 02 03 12 Load Font Pattern
08 E5 89 99 87 89 95 89 Generate Font Patterns
81 Generate Font Patterns
E2 00 09 Move Cursor Horizontally
05 E3 85 83 88 6B Generate Font Patterns
E2 00 09 Move Cursor Horizontally
OB C2 93 81 83 92 A2 82 Generate Font Patterns
A4 99 87 6B Generate Font Patterns

E2 00 09 Move Cursor Horizontally
02 E5 cl Generate Font Patterns
E2 00 09 Move Cursor Horizontally
05 F2 F4 FO F6 Fl Generate Font Patterns
El 01 5E Set Cursor Vertically
EO 01 43 Set Cursor Horizontally
E3 00 00 Move Cursor Vertically
83 Save Cursor to Register #3
E2 00 00 Move Cursor Horizontally
E3 00 00 Move Cursor Vertically
F8 Cl 00 00 05 8c Generate Vectors
93 Restore Cursor from Register #3
E3 00 00 Move Cursor Vertically
El 01 73 Set Cursor Vertically
EO 01 2c Set Cursor Horizontally
E2 02 98 Move Cursor Horizontally
D3 05 Activate Font #5
FO E3 OE OD Q1 00 OE Load Font Pattern
FO 88 OE OA 00 00 OE Load Font Pattern
FO 89 OE 05 00 O01 OE Load Font Pattern
FO A2 OA 07 O1 O1 OA Load Font Pattern
FO 40 00 00 00 07 00 Load Font Pattern
FO 86 OF O08 O00 FF OE Load Font Pattern

FO 96 OA 09 00 O1 OA Load Font Pattern
FO 95 OA OA 00 00 OA Load Font Pattern
FO A3 OE 06 00 01 OF Load Font Pattern
FO F6 OE 09 00 O1 OE Load Font Pattern
04 E3 88 89 A2 Generate Font Patterns
E2 00 07 Move Cursor Horizontally
02 89 A2 Generate Font Patterns
E2 00 07 Move Cursor Horizontally
05 86 96 95 A3 F6 Generate Font Patterns
El 01 88 Set Cursor Vertically
EO 01 2c Set Cursor Horizontally
E2 02 7E Move Cursor Horizontally
FO 81 OA 09 01 00 OA Load Font Pattern
FO 85 OA 08 OO O01 OA Load Font Pattern

FO 93 OE 05 00 O1 OE Load Font Pattern
FO 84 OE OA 00 00 OE Load Font Pattern
04 E3 88 89 A2 Generate Font Patterns
E2 00 07 Move Cursor Horizontally
02 89 A2 Generate Font Patterns

E2 00 07 Move Cursor Horizontally
01 81 Generate Font Patterns

Appendix D - Extended PMP Flow Example

04 A3 85 A2

05 A2 93 89

03 83 81 95

03 A4 A2 85

04 A3 88 89

06 94 85 A3

08 87 85 95

FO 97 OE OA
06 A2 93 89

03 86 96 99

OD 97 99 85
81 A3 89 96

FO C9 OE 07
FO 82 OE OA

06 A2 88 96

06 85 81 A2

04 A3 88 81

05 96 A3 88

A3

84

00
ol
00
00

00

A2

88

85

00
84

A2
95

01
00

A4

89

95

85

85

00
01
00
00

00

96

99

01
85

85
A2

00
01

93

85

99

84

81

OA
A2

95

OE
OE

84

99

A3

A3

Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Generate Font Patterns
Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Move Cursor Horizontally
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Generate Font Patterns
Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Load Font Pattern
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally

Appendix D - Extended PMP Flow Example

07 94 85 A3

FO Cl OE OF

03 Cl 95 84

05 A6 88 96

03 93 96 A3

06 95 85 81

FO F8 12 0C
04 E3 88 89

05 86 96 95

FO 84 12 OD
04 E3 88 89

04 A3 85 A2

05 A2 93 89

FO E6 12 1B

03 83 81 95

03 A4 A2 85

04 A3 88 89

06 94 85 A3

08 87 85 95

88

00

93

A3

01
A2

A3

01
A2

A3

84

00

A2

88

85

96

00
00

85

85

01

F8

00

85

00

96

99

84 A2

0E
OA

99

12

12

12

84

81 A3

Generate Font Patterns
Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Load Font Pattern
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Activate Font #4
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns

Appendix D - Extended PMP Flow Example

85 Generate Font Patterns

El 02 4c Set Cursor Vertically
EO 01 2c Set Cursor Horizontally
E2 02 3E Move Cursor Horizontally
E2 00 1B Move Cursor Horizontally
06 A2 93 89 84 85 A2 Generate Font Patterns
E2 00 09 Move Cursor Horizontally
03 86 96 99 Generate Font Patterns
E2 00 09 Move Cursor Horizontally
OD 97 99 85 A2 85 95 A3 Generate Font Patterns
81 A3 89 96 95 A2 Generate Font Patterns
El 02 68 Set Cursor Vertically
EO 01 2c Set Cursor Horizontally
E2 01 Fl Move Cursor Horizontally
FO C9 12 08 O01 O01 12 Load Font Pattern
02 C9 A3 Generate Font Patterns
E2 00 09 Move Cursor Horizontally
06 A2 88 96 Ad 93 84 Generate Font Patterns
E2 00 09 Move Cursor Horizontally
02 82 85 Generate Font Patterns
E2 00 09 Move Cursor Horizontally
06 85 81 A2 89 85 99 Generate Font Patterns
E2 00 09 Move Cursor Horizontally
04 A3 88 81 95 Generate Font Patterns
E2 00 09 Move Cursor Horizontally
05 96 A3 88 85 99 Generate Font Patterns
E2 00 09 Move Cursor Horizontally
07 94 85 A3 88 96 84 A2 Generate Font Patterns
El 02 84 Set Cursor Vertically
EO 01 2c Set Cursor Horizontally
E2 02 4B Move Cursor Horizontally
FO A6 OD 11 00 01 OD Load Font Pattern
03 Cl 95 84 Generate Font Patterns
E2 00 09 Move Cursor Horizontally
01 81 Generate Font Patterns
E2 00 09 Move Cursor Horizontally
05 A6 88 96 93 85 Generate Font Patterns
E2 00 09 Move Cursor Horizontally
03 93 96 A3 Generate Font Patterns
E2 00 09 Move Cursor Horizontally
06 95 85 81 A3 85 99 Generate Font Patterns
El 02 A8 Set Cursor Vertically
EO 01 2c Set Cursor Horizontally
E2 02 6C Move Cursor Horizontally
D3 06 Activate Font #6
FO E3 18 16 01 00 18 Load Font Pattern
FO 88 18 10 01 01 18 Load Font Pattern
FO 89 18 07 O1 01 18 Load Font Pattern
FO A2 10 Oc 01 00 10 Load Font Pattern
FO 40 00 00 00 OB 00 Load Font Pattern
FO 86 18 OD 01 FD 18 Load Font Pattern
FO 96 10 10 01 00 10 Load Font Pattern
FO 95 10 10 01 01 10 Load Font Pattern
FO A3 16 OA O01 O1 16 Load Font Pattern
FO F118 OA 04 03 18 Load Font Pattern

Appendix D - Extended PMP Flow Example 101

FO FO 18 10 O01 00 18 Load Font Pattern

04 E3 88 89 A2 Generate Font Patterns
E2 00 OB Move Cursor Horizontally
02 89 A2 Generate Font Patterns
E2 00 OB Move Cursor Horizontally
06 86 96 95 A3 Fl FO Generate Font Patterns
El 02 cc Set Cursor Vertically
EO 01 2c Set Cursor Horizontally
E2 02 4D Move Cursor Horizontally
FO 811010 O02 FF 10 Load Font Pattern
FO 85 10 OE 01 00 10 Load Font Pattern
FO 93 18 07 01 01 18 Load Font Pattern
FO 84 18 10 01 00 18 Load Font Pattern
04 E3 88 89 A2 Generate Font Patterns
E2 00 OB Move Cursor Horizontally
02 89 A2 Generate Font Patterns
E2 00 OB Move Cursor Horizontally
01 81 Generate Font Patterns
E2 00 OB Move Cursor Horizontally
04 A3 85 A2 A3 Generate Font Patterns
E2 00 OB Move Cursor Horizontally
05 A2 93 89 84 85 Generate Font Patterns
El 02 FO Set Cursor Vertically
EO O01 2c Set Cursor Horizontally
E2 01 CB Move Cursor Horizontally
FO E6 18 23 00 FF 18 Load Font Pattern
FO 83 10 OE O1 00 10 Load Font Pattern

FO A4 1010 01 01 10 Load Font Pattern
FO 94 10 19 01 01 10 Load Font Pattern
FO 87 17 11 O01 00 10 Load Font Pattern
FO 99 10 0c O01 00 10 Load Font Pattern
02 E6 85 Generate Font Patterns
E2 00 OB Move Cursor Horizontally
03 83 81 95 Generate Font Patterns

E2 00 OB Move Cursor Horizontally
03 A4 A2 85 Generate Font Patterns
E2 00 OB Move Cursor Horizontally
04 A3 88 89 A2 Generate Font Patterns
E2 00 OB Move Cursor Horizontally
06 94 85 A3 88 96 84 Generate Font Patterns

E2 00 OB Move Cursor Horizontally
02 A3 96 Generate Font Patterns
E2 00 OB Move Cursor Horizontally
08 87 85 95 85 99 81 A3 Generate Font Patterns
85 Generate Font Patterns
El 03 14 Set Cursor Vertically
EO 01 2c Set Cursor Horizontally
E2 02 1B Move Cursor Horizontally
E2 00 21 Move Cursor Horizontally
FO 97 17 10 01 00 10 Load Font Pattern
06 A2 93 89 84 85 A2 Generate Font Patterns

E2 00 OB Move Cursor Horizontally
03 86 96 99 Generate Font Patterns
E2 00 OB Move Cursor Horizontally
OD 97 99 85 A2 85 95 A3 Generate Font Patterns

Appendix D - Extended PMP Flow Example 102

81 A3 89 96

FO c9 18 OC
FO 82 18 10

06 A2 88 96

06 85 81 A2

04 A3 88 81

05 96 A3 88

07 94 85 A3

FO Cl 18 18

03 Cl 95 84

0S A6 88 96

03 93 96 A3

06 95 85 81

06 86 96 95

95

01
01

A4

89

95

85

88

01
00

93

A3

A3

00
00

93

85

99

96

00
00

85

85

Fl

18
18

84

99

84

18
10

99

F2

A2

Generate Font Patterns
Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Load Font Pattern
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Load Font Pattern
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns

Move Cursor Horizontally
Generate Font Patterns
Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Activate Font #7
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns

Move Cursor Horizontally
Generate Font Patterns

Set Cursor Vertically
Set Cursor Horizontally

Appendix D - Extended PMP Flow Example 103

03 83 81 95

03 A4 A2 85

04 A3 88 89

06 94 85 A3

08 87 85 95

FO 97 1c 13
06 A2 93 89

03 86 96 99

OD 97 99 85
81 A3 89 96

FO c9 1¢C OD
FO 82 1¢C 13

A3

84

A2

88

85

01
84

A2
95

Ol

85

96

99

01
85

85
A2

02
02

84

81

14
A2

95

1c
1c

A3

A3

Move Cursor Horizontally
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Generate Font Patterns

Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns

Move Cursor Horizontally
Generate Font Patterns

Move Cursor Horizontally
Generate Font Patterns

Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Generate Font Patterns

Move Cursor Horizontally
Generate Font Patterns

Move Cursor Horizontally
Generate Font Patterns

Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns

Move Cursor Horizontally
Generate Font Patterns

Move Cursor Horizontally
Generate Font Patterns

Generate Font Patterns
Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Move Cursor Horizontally
Load Font Pattern
Generate Font Patterns

Move Cursor Horizontally
Generate Font Patterns

Move Cursor Horizontally
Generate Font Patterns

Generate Font Patterns

Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Load Font Pattern
Load Font Pattern
Generate Font Patterns

Move Cursor Horizontally

Appendix D - Extended PMP Flow Example

06 A2 88 96 A4 93 84 Generate Font Patterns

E2 00 OD Move Cursor Horizontally
02 82 85 Generate Font Patterns
E2 00 OD Move Cursor Horizontally
06 85 81 A2 89 85 99 Generate Font Patterns
E2 00 OD Move Cursor Horizontally
04 A3 88 81 95 Generate Font Patterns

‘E2 00 OD Move Cursor Horizontally
05 96 A3 88 85 99 Generate Font Patterns
E2 00 OD Move Cursor Horizontally
07 94 85 A3 88 96 84 A2 Generate Font Patterns
El 04 5E Set Cursor Vertically
EO 01 2¢ Set Cursor Horizontally
E2 02 OA Move Cursor Horizontally
FO Cl ic 1D 00 O1 1c Load Font Pattern

FO A6 14 1B 00 O1 14 Load Font Pattern
03 Cl 95 84 Generate Font Patterns
E2 00 OD Move Cursor Horizontally
01 81 Generate Font Patterns
E2 00 OD Move Cursor Horizontally
0S A6 88 96 93 85 Generate Font Patterns
E2 00 OD Move Cursor Horizontally
03 93 96 A3 Generate Font Patterns
E2 00 OD Move Cursor Horizontally
06 95 85 81 A3 85 99 Generate Font Patterns
El 04 90 Set Cursor Vertically
EO 01 2¢ Set Cursor Horizontally
E2 02 4E Move Cursor Horizontally
D3 08 Activate Font #8
FO £3 1E 1B 01 02 1E Load Font Pattern
FO 88 1E 15 01 00 IE Load Font Pattern
FO 89 1F OA 01 01 1F Load Font Pattern
FO A2 16 10 01 00 15 Load Font Pattern
FO 40 00 00 00 10 00 Load Font Pattern

FO 86 1F 10 01 FE I1F Load Font Pattern
FO 96 16 14 01 01 15 Load Font Pattern
FO 95 15 15 01 00 15 Load Font Pattern
FO A3 1D OE 00 01 1¢ Load Font Pattern
FO Fl 1F OF 04 03 I1F Load Font Pattern
FO F4 1E 15 01 00 1E Load Font Pattern
04 E3 88 89 A2 Generate Font Patterns
E2 00 10 Move Cursor Horizontally
02 89 A2 Generate Font Patterns

E2 00 10 Move Cursor Horizontally
06 86 96 95 A3 Fl F4 Generate Font Patterns
El 04 C2 Set Cursor Vertically
EO 01 2c Set Cursor Horizontally
E2 02 23 Move Cursor Horizontally
FO 81 16 14 02 00 15 Load Font Pattern
FO 85 16 11 02 01 15 Load Font Pattern
FO $93 1E OA 01 O01 IE Load Font Pattern
FO 84 1F 14 01 01 1E Load Font Pattern
04 E3 88 89 A2 Generate Font Patterns
E2 00 10 Move Cursor Horizontally
02 89 A2 Generate Font Patterns

Appendix D - Extended PMP Flow Example 105

04 A3 85 A2

05 A2 93 89

FO E6 1F 2c

FO A4 15 15
FO 94 15 20
FO 87 1F 14
FO 99 15 10

03 83 81 95

03 A4 A2 85

04 A3 88 89

06 94 85 A3

08 87 85 95

FO 97 1F 14
06 A2 93 89

03 86 96 99

OD 97 99 85
81 A3 89 96

FO c9 1E OF
FO 82 1F 14

06 A2 88 96

06 85 81 A2

04 A3 88 81

A3

84

A2

88

85

01
84

A2
95

Ol
01

A4

89

95

85

96

99

Ol
85

85
A2

Ol
01

93

85

84

81

15
A2

95

1E
1E

84

99

A3

A3

Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Generate Font Patterns
Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Move Cursor Horizontally
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Generate Font Patterns
Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Load Font Pattern
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally

Appendix D - Extended PMP Flow Example

05 96 A3 88

07 94 85 A3

FO Cl 1F 20

03 Cl 95 84

05 A6 88 96

03 93 96 A3

06 95 85 81

06 86 96 95

FO 81 1A 17
FO 85 1A 15
FO 93 24 OD

04 E3 88 89

04 A3 85 A2

05 A2 93 89

85

88

00
00

93

A3

A3

A3

84

99

96

00
00

85

85

Fl

85

84 A2

1F
14

99

F6

Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Load Font Pattern
Load Font Pattern
Generate Font Patterns

Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns

Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Activate Font #9
Load Font Pattern
Load Font Pattern
Load Font Pattern

Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern

Generate Font Patterns
Move Cursor Horizontally

Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Load Font Pattern
Load Font Pattern
Load Font Pattern
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns

Move Cursor Horizontally
Generate Font Patterns

Move Cursor Horizontally
Generate Font Patterns

Set Cursor Vertically
Set Cursor Horizontally

Appendix D - Extended PMP Flow Example

E2 01 47 Move Cursor Horizontally
FO E6 25 33 00 00 24 Load Font Pattern
FO 83 1A 15 01 01 19 Load Font Pattern
FO A4 19 19 00 01 18 Load Font Pattern
FO 94 19 25 01 01 19 Load Font Pattern
FO 87 24 17 02 01 19 Load Font Pattern
FO 99 19 13 00 01 19 Load Font Pattern
02 E6 85 Generate Font Patterns
E2 00 12 Move Cursor Horizontally
03 83 81 95 Generate Font Patterns
E2 00 12 Move Cursor Horizontally
03 A4 A2 85 Generate Font Patterns
E2 00 12 Move Cursor Horizontally
04 A3 88 89 A2 Generate Font Patterns
E2 00 12 Move Cursor Horizontally
06 94 85 A3 88 96 84 Generate Font Patterns
E2 00 12 Move Cursor Horizontally
02 A3 96 Generate Font Patterns
E2 00 12 Move Cursor Horizontally
08 87 85 95 85 99 81 A3 85 Generate Font Patterns
El 06 6E Set Cursor Vertically
EO 01 2c Set Cursor Horizontally
E2 01 BC Move Cursor Horizontally
E2 00 36 Move Cursor Horizontally
FO 97 24 18 01 01 19 Load Font Pattern
06 A2 93 89 84 85 A2 Generate Font Patterns
E2 00 12 Move Cursor Horizontally
03 86 96 99 Generate Font Patterns
E2 00 12 Move Cursor Horizontally
OD 97 99 85 A2 85 95 A3 Generate Font Patterns
81 A3 89 96 95 A2 Generate Font Patterns
El 06 A7 Set Cursor Vertically
EO 01 2c Set Cursor Horizontally
E2 01 2¢ Move Cursor Horizontally
FO c9 24 12 01 O1 24 Load Font Pattern
FO 82 25 19 00 01 24 Load Font Pattern

02 C9 A3 Generate Font Patterns
E2 00 12 Move Cursor Horizontally
06 A2 88 96 A4 93 84 Generate Font Patterns
E2 00 12 Move Cursor Horizontally
02 82 85 Generate Font Patterns
E2 00 12 Move Cursor Horizontally
06 85 81 A2 89 85 99 Generate Font Patterns
E2 00 12 Move Cursor Horizontally
04 A3 88 81 95 Generate Font Patterns
E2 00 12 Move Cursor Horizontally
05 96 A3 88 85 99 Generate Font Patterns
E2 00 12 Move Cursor Horizontally
07 94 85 A3 88 96 84 A2 Generate Font Patterns
El 06 EO Set Cursor Vertically
EO 01 2c Set Cursor Horizontally
E2 01 D5 Move Cursor Horizontally
FO Cl 25 24 00 01 25 Load Font Pattern
FO A6 19 22 01 00 18 Load Font Pattern
03 cl 95 84 Generate Font Patterns

Appendix D - Extended PMP Flow Example

FO 4C 27

FO A7 13

FO SC 27
FO 40 00

E2 00 OA

FO 7E 0c
FO 40 00

E2 00 OA

FO 93 1D
FO 40 00

E2 00 OA

FO 4E 1A
FO A2 12

E2 00 OA

96

A3

81

13
17
89

99
A3

OF

OA

14

OA
00

1A
00

0D
00

1A
14

93

A3

O01
09

A3
Fl

01

00

01
00

03
00

01
00

03
01

85

85

01
09

85
F2

00

01

02

02
OE

03
OE

FD
OD

03
02

99

14
13

98

13

1lE

13

1lE
00

11
00

1D
00

18
12

7E

Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Activate Font #7
Load Font Pattern
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Generate Font Patterns

Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Horizontally
Move Cursor Vertically
Activate Font #11
Load Font Pattern
Generate Font Patterns

Activate Font #12
Load Font Pattern
Generate Font Patterns

Activate Font #11
Load Font Pattern
Generate Font Patterns

Activate Font #12
Load Font Pattern
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Activate Font #10
Load Font Pattern
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Activate Font #12

Generate Font Patterns
Activate Font #11

Load Font Pattern
Load Font Pattern

Generate Font Patterns

Move Cursor Horizontally
Activate Font #10
Load Font Pattern
Load Font Pattern
Generate Font Patterns

Move Cursor Horizontally

Appendix D - Extended PMP Flow Example

FO A4 13

E2 FF FF
E3 00 OA

FO FO 15
FO 40 00

E2 00 OA
E3 FF F6

FO 60 04

13

OE
00

1A

13

00

01

01
00

03

O01

00

01

01
09

03

Ol

27

00 00 OE

00 00 OE

SA 00 00

13

15
00

OD

13

Generate Font Patterns
Activate Font #12
Generate Font Patterns
Activate Font #11
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Move Cursor Vertically
Activate Font #3
Load Font Pattern
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Move Cursor Vertically
Activate Font #10
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Move Cursor Vertically
Activate Font #11
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Move Cursor Vertically
Save Cursor to Register #3
Move Cursor Horizontally
Move Cursor Vertically
Generate Vectors
Restore Cursor from Register #3
Move Cursor Horizontally
Move Cursor Horizontally
Move Cursor Vertically
Generate Font Patterns
Move Cursor Horizontally
Move Cursor Vertically
Save Cursor to Register #3
Move Cursor Horizontally
Move Cursor Vertically
Generate Vectors
Restore Cursor from Register #3
Move Cursor Horizontally
Move Cursor Horizontally
Move Cursor Vertically
Save Cursor to Register #3
Move Cursor Horizontally
Move Cursor Vertically
Generate Vectors
Restore Cursor from Register #3
Move Cursor Horizontally
Move Cursor Horizontally
Save Cursor to Register #3
Move Cursor Vertically
Move Cursor Horizontally
Generate Vectors
Restore Cursor from Register #3

Appendix D - Extended PMP Flow Example 110

E2 00 04
E2 00 10
E3 00 39

E2 00 OA

FO 84 1E

E2 00 OA

FO 82 1D

E2 00 OA

E2 00 OA

E2 00 OB
E3 FF FD

FO 80 25

E2 FF DE
E3 FF Dc

FO Bl OB

E2 FF D4
E3 00 48

FO 92 15

FO 7E 09

FO Fl 15

E2 00 63
E3 FF Co

FO 81 13

E2 FF FF
E3 00 OA

FO 40 00
E2 00 OA
E3 FF F6

12 01 02 1E

12 01 02 1D

20

1D

10

14

08

13

00

00

01

O01

02

04

01

00

03

02

00

02

04

01

09

1D

OB

15

oc

15

13

00

Move Cursor Horizontally
Move Cursor Horizontally
Move Cursor Vertically
Activate Font #7
Generate Font Patterns

Move Cursor Horizontally
Activate Font #10
Load Font Pattern
Generate Font Patterns

Move Cursor Horizontally
Generate Font Patterns

Activate Font #11
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Activate Font #10
Generate Font Patterns

Move Cursor Horizontally
Activate Font #7
Generate Font Patterns

Move Cursor Horizontally
Move Cursor Vertically
Activate Font #12
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Move Cursor Vertically
Activate Font #14
Load Font Pattern
Generate Font Patterns

Move Cursor Horizontally
Move Cursor Vertically
Activate Font #13
Load Font Pattern
Generate Font Patterns
Activate Font #14
Load Font Pattern
Generate Font Patterns

Activate Font #3
Load Font Pattern
Generate Font Patterns

Move Cursor Horizontally
Move Cursor Vertically
Activate Font #11
Load Font Pattern
Generate Font Patterns

Move Cursor Horizontally
Move Cursor Vertically
Activate Font #13
Generate Font Patterns
Load Font Pattern
Move Cursor Horizontally
Move Cursor Vertically
Activate Font #10

Generate Font Patterns

Appendix D - Extended PMP Flow Example 111

E2 00 OA

E2 00 OA

04 A3 81
E2 00 0A

FO 81 13

E3 00 OA

E3 FF F6

E2 FE 94
E3 00 12

E2 00 01
E3 00 O01
F8 C3 00

E2 01 CF
E2 FE 3B
E3 00 34

E3 00 OA

E3 FF F6

E3 FF EC

FO F2 15

E2 FF FO
E3 00 1E

E2 00 OA
E3 FF F6

E2 00 OA

E3 00 OA

95 88

13 O01 O01 13

00 01 cc

OE 01 01 15

Move Cursor Horizontally
Activate Font #11
Generate Font Patterns
Move Cursor Horizontally
Activate Font #7
Generate Font Patterns
Move Cursor Horizontally
Activate Font #10
Load Font Pattern
Generate Font Patterns
Move Cursor Vertically
Activate Font #13
Generate Font Patterns
Move Cursor Vertically
Activate Font #10
Generate Font Patterns
Move Cursor Horizontally
Move Cursor Vertically
Save Cursor to Register #3
Move Cursor Horizontally
Move Cursor Vertically
Generate Vectors
Restore Cursor from Register #3
Move Cursor Horizontally
Move Cursor Horizontally
Move Cursor Vertically
Generate Font Patterns

Move Cursor Vertically
Activate Font #13
Generate Font Patterns
Move Cursor Vertically
Activate Font #12
Generate Font Patterns

Activate Font #10
Generate Font Patterns

Move Cursor Vertically
Activate Font #3
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Move Cursor Vertically
Activate Font #13
Generate Font Patterns

Move Cursor Horizontally
Move Cursor Vertically
Activate Font #10
Generate Font Patterns
Move Cursor Horizontally
Activate Font #11
Generate Font Patterns
Activate Font #10
Generate Font Patterns

Move Cursor Vertically
Activate Font #13
Generate Font Patterns

Appendix D - Extended PMP Flow Example 112

E2 00 0A

04 AZ 81 95 88
E2 00 OA

E3 00 OA

E3 FF F6

E2 00 OA

E2 00 OA

E2 00 34
E3 FF D9

03 83 96 A2
E2 00 OA

E3 00 OA

E3 FF F6

E2 00 04
E3 00 23

E2 00 01
E3 00 01
F8 C2 00 00 00 OE

E2 00 10
E2 FF FO
E3 FF A4

E2 00 01
E3 00 01
F8 C2 00 00 00 OE

E2 00 10
E2 FF FC

E3 00 02
E2 00 02
F8 C4 00 5A 00 00

Move Cursor Horizontally
Move Cursor Vertically
Activate Font #7
Generate Font Patterns
Move Cursor Horizontally
Activate Font #10
Generate Font Patterns
Move Cursor Vertically
Activate Font #13
Generate Font Patterns
Move Cursor Vertically
Activate Font #10
Generate Font Patterns
Move Cursor Horizontally
Generate Font Patterns
Move Cursor Horizontally
Activate Font #7
Generate Font Patterns
Activate Font #12
Generate Font Patterns
Move Cursor Horizontally
Move Cursor Vertically
Activate Font #7
Generate Font Patterns
Move Cursor Horizontally
Activate Font #10
Generate Font Patterns
Move Cursor Vertically
Activate Font #13
Generate Font Patterns
Move Cursor Vertically
Activate Font #11
Generate Font Patterns
Move Cursor Horizontally
Move Cursor Vertically
Save Cursor to Register #3
Move Cursor Horizontally
Move Cursor Vertically
Generate Vectors
Restore Cursor from Register #3
Move Cursor Horizontally
Move Cursor Horizontally
Move Cursor Vertically
Save Cursor to Register #3
Move Cursor Horizontally
Move Cursor Vertically
Generate Vectors
Restore Cursor from Register #3
Move Cursor Horizontally
Move Cursor Horizontally
Save Cursor to Register #3
Move Cursor Vertically
Move Cursor Horizontally
Generate Vectors
Restore Cursor from Register #3

Appendix D - Extended PMP Flow Example 113

E2 00 04 Move Cursor Horizontally
E2 00 04 Move Cursor Horizontally
E3 00 5E Move Cursor Vertically
El 08 7A Set Cursor Vertically
EO 01 2c Set Cursor Horizontally
E2 01 BE Move Cursor Horizontally
D3 07 Activate Font #7
E2 00 OA Move Cursor Horizontally
E3 FF B4 Move Cursor Vertically
D3 OA Activate Font #10
FO 73 1D 12 01 02 1D Load Font Pattern
01 73 Generate Font Patterns
E3 FF EC Move Cursor Vertically
D3 03 Activate Font #3
01 F2 Generate Font Patterns
E3 00 14 Move Cursor Vertically
D3 OA Activate Font #10
FO 86 26 18 01 03 IE Load Font Pattern
Ol 86 Generate Font Patterns
E2 FF B5 Move Cursor Horizontally
E3 00 10 Move Cursor Vertically
83 Save Cursor to Register #3
E2 00 O01 Move Cursor Horizontally
E3 00 01 Move Cursor Vertically
F8 ¢C3 00 00 00 53 Generate Vectors
93 Restore Cursor from Register #3
E2 00 56 Move Cursor Horizontally
E2 FF B6 Move Cursor Horizontally
E3 00 34 Move Cursor Vertically
Ql 73 Generate Font Patterns
D3 OB Activate Font #11
Ol A7 Generate Font Patterns
E2 00 02 Move Cursor Horizontally
E3 FF EC Move Cursor Vertically
D3 03 Activate Font #3
01 F2 Generate Font Patterns
E2 00 2B Move Cursor Horizontally
E3 FF ED Move Cursor Vertically
D3 OA Activate Font #10
Ol 4E Generate Font Patterns
E2 00 29 Move Cursor Horizontally
E3 FF E3 Move Cursor Vertically
01 73 Generate Font Patterns
E3 FF EC Move Cursor Vertically
D3 03 Activate Font #3
Ol F2 Generate Font Patterns
E3 00 14 Move Cursor Vertically
D3 OA Activate Font #10
01 86 Generate Font Patterns
E2 FF B5 Move Cursor Horizontally
E3 00 10 Move Cursor Vertically
83 Save Cursor to Register #3
E2 00 01 Move Cursor Horizontally
E3 00 01 Move Cursor Vertically
F8 C3 00 00 00 53 Generate Vectors

Appendix D - Extended PMP Flow Example 114

E2 00 56
E2 FF B7
E3 00 34

FO A8 1B 16 FE 01 13

E2 00 02
E3 FF EC

E2 00 2B
E3 FF ED

E2 00 29
E3 FF E3

E3 FF EC

E3 00 14

E2 FF B5
E3 00 10

E2 00 01
E3 00 01
F8 C3 00 00 00 53

E2 00 56
E2 FF B8
E3 00 34

FO AS 16 11 O1 00 13

E2 00 02
E3 FF EC

E2 00 2D
E3 FF ED

E2 00 15

FO FO 1C 12 01 02 Ic

E3 00 2F
El 08 Al
EO O01 40
E3 FF FC

Restore Cursor from Register #3
Move Cursor Horizontally
Move Cursor Horizontally
Move Cursor Vertically
Generate Font Patterns
Activate Font #11
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Move Cursor Vertically
Activate Font #3
Generate Font Patterns
Move Cursor Horizontally
Move Cursor Vertically
Activate Font #10
Generate Font Patterns
Move Cursor Horizontally
Move Cursor Vertically
Generate Font Patterns
Move Cursor Vertically
Activate Font #3
Generate Font Patterns
Move Cursor Vertically
Activate Font #10
Generate Font Patterns
Move Cursor Horizontally
Move Cursor Vertically
Save Cursor to Register #3
Move Cursor Horizontally
Move Cursor Vertically
Generate Vectors
Restore Cursor from Register #3
Move Cursor Horizontally
Move Cursor Horizontally
Move Cursor Vertically
Generate Font Patterns
Activate Font #11
Load Font Pattern
Generate Font Patterns
Move Cursor Horizontally
Move Cursor Vertically
Activate Font #3
Generate Font Patterns
Move Cursor Horizontally
Move Cursor Vertically
Activate Font #10
Generate Font Patterns
Move Cursor Horizontally
Activate Font #7
Load Font Pattern
Generate Font Patterns
Move Cursor Vertically
Set Cursor Vertically
Set Cursor Horizontally
Move Cursor Vertically

Appendix D - Extended PMP Flow Example 118

83 Save Cursor to Register #3
E2 00 02 Move Cursor Horizontally
E3 00 02 Move Cursor Vertically
F8 C5 00 00 05 8¢ Generate Vectors
93 Restore Cursor from Register #3
E3 00 04 Move Cursor Vertically
El 08 A2 Set Cursor Vertically
EO 01 2c Set Cursor Horizontally
83 Save Cursor to Register #3
E3 00 04 Move Cursor Vertically
E2 00 04 Move Cursor Horizontally
F8 c9 00 OC 00 00 Generate Vectors
93 Restore Cursor from Register #3
EO 06 DF Set Cursor Horizontally
83 Save Cursor to Register #3
E3 00 04 Move Cursor Vertically
E2 00 04 Move Cursor Horizontally
F8 c9 00 OC 00 00 Generate Vectors
93 Restore Cursor from Register #3
El 08 B6 Set Cursor Vertically
EO 01 2c Set Cursor Horizontally
E3 FF F8 Move Cursor Vertically
83 Save Cursor to Register #3
E2 00 04 Move Cursor Horizontally
E3 00 04 Move Cursor Vertically
F8 c9 00 00 05 B3 Generate Vectors
93 Restore Cursor from Register #3
E3 00 08 Move Cursor Vertically
C2 Deactivate Font
El 09 D7 Set Cursor Vertically
EO 01 2c Set Cursor Horizontally
E2 05 90 Move Cursor Horizontally
D3 03 Activate Font #3
01 Fl Generate Font Patterns
C2 Deactivate Font
EO 00 00 Set Cursor Horizontally
El 00 00 Set Cursor Vertically
D1 00 Print Page
D4 02 Unload Font #2
D8 00 Set Font Pattern Controls
D9 90 Set Generation Mode

End of data file...

Appendix D - Extended PMP Flow Example 116

VITA

Gregg Allen Thomas was born on February 17, 1966. He attended the Virginia Military

Institute and graduated in 1988 with a B.S. degree in Electrical Engineering with

distinction. Following graduation from V.M.L, he enrolled in graduate studies at Virginia

Tech to pursue a M.S. degree in Electrical Engineering.

He will enter active duty in the U.S. Air Force after graduation from Virginia Tech. His

immediate plans also include pursuing an M.B.A. degree from Florida State University.

Personal interests include photography, music, computer programming, and sports.

VITA 117

