
odb/Tools Project Report

by

Fred L. Drake, Jr.

Project report submitted to the faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

Computer Science

c©Fred L. Drake, Jr. and VPI & SU 1995

APPROVED:

Lenwood S. Heath, Chairman

James A. Arthur Edward A. Fox

August, 1995

Blacksburg, Virginia

odb/Tools Project Report

by

Fred L. Drake, Jr.

Committee Chairman: Lenwood S. Heath

Computer Science

(ABSTRACT)

odb/Tools is a suite of object classes providing scriptable access to the object database

facility of Project Envision. It implements an interface to the base ODB library for the

Python embeddable language using both a C-language module linked to the host runtime

environment and several native Python modules to provide the high level access to the

facility.

ACKNOWLEDGEMENTS

I would like to thank my wife, Cathy, for supporting me through the course of executing

this project, putting up with the long hours I spent away from our wonderful relationship,

and for taking care of our son, William, while I was working. I would like to thank my

parents for their support for my continued education. I would also like to thank my advisor,

Dr. Heath, for supporting my work on such a tight schedule, and his many contributions to

the work described. I would like to thank Dr. Fox for providing thought-provoking advice

as well as reading the documents I’ve written in conjunction with this project. Dr. Arthur

I thank for serving on my committee. I would also like to thank Guillermo Averboch for

providing some of the foundations for this project, and answering many questions regarding

ODB. I would also like to thank Bill Wake for answering questions and proofreading, and

Scott Guyer for testing odb/Tools and the documentation.

ii

TABLE OF CONTENTS

1 Introduction and Overview 1
1.1 Motivation . 1

1.2 Organization of the odb/Tools . 3
1.2.1 Examining the Database Structure 4

1.2.2 Accessing Database Entities . 5
1.2.3 Change Management . 6

1.2.4 Iterating Over the Database . 7
1.2.5 Selecting Objects . 8

1.3 How the odb/Tools are Used . 9
1.4 Selection of Language . 11
1.5 Efficiency Notes . 12

1.6 Python Reference Material . 13
1.7 Overview of Modules . 14

1.8 Documentation Conventions and Notes . 17
1.9 Organization of the Report . 18

2 The ODB Object Database 20

2.1 Organization of Stored Information . 20
2.1.1 Field Definitions and Constraints . 21

2.2 Indexing Facilities . 22
2.3 File Organization on the Persistent Store 23

3 Low-level Database Interface 24
3.1 Built-in Module odb . 24

3.2 odb Functions . 25
3.3 odb Public Data and Exceptions . 26

3.4 OdbDatabase Objects . 29
3.4.1 OdbDatabase Methods . 29

3.4.2 OdbDatabase Member Data . 35
3.5 OdbInstance Objects . 37

3.5.1 OdbInstance Methods . 38
3.5.2 OdbInstance Member Data . 38

4 The Data Dictionary 40
4.1 Overview of the Data Dictionary Facilities 41

4.2 Introduction to the Classes . 43

iii

CONTENTS

4.3 Common Methods . 43
4.4 Odb module DataDictionary . 44

4.4.1 DataDictionary Methods . 45
4.5 Odb module ClassDefn . 46

4.5.1 ClassDefn Methods . 47
4.6 Odb module FieldDefn . 49

4.6.1 FieldDefn Methods . 49

5 Accessing the Database 52
5.1 Odb module Database . 52

5.1.1 Database Methods . 53
5.1.2 Database Member Data . 56

6 The Object Protocol 59
6.1 Object Protocol Methods . 60

6.1.1 Supporting Objects . 62
6.2 Field Protocol Methods . 63

6.2.1 Supporting Objects . 65
6.2.2 Iterating Over Field Values . 66

7 Iteration and Traversal Mechanisms 69

7.1 Iterators Module . 69
7.2 Sequential Iteration . 70
7.3 Depth-first Traversal . 72

7.4 Using Iterators Efficiently . 73

8 Selection and Traversal Predicates 75
8.1 Odb module Predicates . 76

8.1.1 Selection Predicate Classes . 76
8.1.2 Compositional Predicate Classes . 78

8.2 Odb module Traversals . 79
8.2.1 Compositional Predicates and Traversal 80

8.3 Implementing New Predicates . 80
8.3.1 Functions as Predicates . 80
8.3.2 Classes as Predicate Generators . 81

8.3.3 Traversal Predicates . 86
8.3.4 Invoking Predicates Directly . 86

A Installing odb/Tools 88

A.1 Obtaining Python . 88
A.2 Obtaining and Installing GDBM . 89

A.3 Building and Installing odb/Tools . 90

iv

CONTENTS

A.3.1 Compiler Selection . 91
A.3.2 Using the Readline Library . 91

A.3.3 Setting the Installation Prefix . 91
A.3.4 Running ./configure . 92

A.3.5 Configuring the Built-in Modules . 92
A.3.6 Building the Interpreter . 93

A.4 Testing the Installation . 93
A.5 Version Information . 94

B Running odb/Tools Scripts 95

v

Chapter 1

Introduction and Overview

This chapter discusses the ideas and motivation behind the odb/Tools package and

provides a brief introduction to its capabilities. Detailed reference information appears in

subsequent chapters. odb/Tools arose from the need to perform manipulation and reporting

on the meta-information related to the document database of Project Envision. The existing

low-level interface to the ODB database package made developing small applications for

handling the database time consuming, tedious, and error prone. The new interface is

designed to encourage the creation of tools as they are needed and to allow prototyping of

larger applications should the need arise. The position of odb/Tools within the Envision

framework is diagrammed in Figure 1.1.

The project included the design of an interface to the ODB library for the Python

programming language to allow a rapid development approach to be taken in creating tools

used to manipulate and report on data stored in the database populated by DELTO [Ave95]

and other tools used to import documents into the Project Envision library. Implementing

the interface involved writing a Python module in C to provide access to the existing

database functions and creating several modules written in Python to provide the high

level, object-oriented interface for application programmers.

1.1 Motivation

Project Envision, an initiative to create a digital library of the computer science litera-

ture at Virginia Polytechnic Institute and State University, includes many components tied

together in part by a database holding document meta-data [HHN+95]. This meta-data

1

CHAPTER 1. INTRODUCTION AND OVERVIEW

Analyze and

Translate

New Text
Documents

Envision
Client Presentation System (WWW)

Envision
Search
System

SGML Database
Database

(Objects: images,

audio, video, text,

Mathematica,

programs, etc.)

Envision

Organize

and Link

Other New Documents
and Objects

In
se

rt
R

et
re

iv
e

O
bj

ec
t

In
se

rt

Envision Data System

Object

Database

odb /Tools

Retrieve Text Find Object by ID

Figure 1.1: odb/Tools in Context

2

CHAPTER 1. INTRODUCTION AND OVERVIEW

covers bibliographic and inter-document relationship information, forming a complex and

potentially dynamic information graph with complex semantics. The meta-data is stored

in an object database implemented using the ODB database library created by Guillermo

Averboch. The DELTO document processor, also by Averboch, populates this database

with information extracted from documents being prepared for inclusion in the document

database [Ave95]. In the Envision database, the relationship information includes links

between Computing Review categories and documents which have been assigned to each

category, people and the organizations with which they are associated, authors and the

documents they have written, editors and the documents they have edited, documents and

the documents they cite, and keywords and the documents keyed to them.

Minimal tools exist to manipulate entries in the database, perform indexing operations,

and allow browsing the database both on a character terminal and World Wide Web inter-

face. These tools are all implemented over a low-level, C language interface provided by the

original ODB library.

One cause of the poor availability of general and robust tools for managing the Envision

library of documents has been the original interface to the ODB database library. Though

the C implementation is fairly efficient in many ways, writing applications to this interface

is quite tedious and error-prone. The primary goal of odb/Tools is to provide an interface

more easily used for rapid application development. To achieve this goal, odb/Tools provides

a layered, object-oriented wrapper to the underlying ODB library, providing higher-level

abstractions, removing the need for explicit memory management in most cases, and en-

couraging the use of rapid prototyping techniques for initial application design.

1.2 Organization of the odb/Tools

The odb/Tools approach the creation of the interface over the base ODB library using

a layered structure. The only module to actually come in contact with the underlying

ODB library is the Python module named odb, implemented in C. This module provides a

3

CHAPTER 1. INTRODUCTION AND OVERVIEW

thin object-oriented layer on top of the C functions in the library. It exports two types of

objects, one representing an entire database and the other representing a single database

entity. Functions are exported to open a database and provide other information from the

ODB library.

Above this a set of high level objects defined in Python provides the application-level

view of the database. The primary objects in this set are the DataDictionary, representing

the class structure defined in the database, and the Database, providing access to the data

entities and file management aspects of ODB. The Database class, defined in a module of

the same name, provides a change dictionary for databases opened with write permission;

this is used to cache database changes to allow a limited form of transaction processing,

including support for commit and rollback. The limitation lies in the lack of protection

against I/O failures on the mass storage devices associated with the control and data files

of the database. The change dictionary is defined in the module Delta.

1.2.1 Examining the Database Structure

The structure of an ODB database is defined by a set of entity classes, each containing

fields constrained by data type and the allowed number of values. The set of classes and

their fields and constraints form the data dictionary of the database. In the odb/Tools, this

information is provided through an instance of the DataDictionary class, which provides

information regarding the structure of the database as a group of objects which represent

class definitions, which in turn provide field definition objects to represent the constraints

placed on each field. These objects provide methods by which various attributes of the

definitions may be queried and modified, while limiting the flexibility to modify existing

definitions by disallowing restrictive modifications. This limitation is imposed to prevent

unintentionally introducing integrity failures in objects already in the database. To allow

this limitation to be bypassed, an application may explicitly indicate that this safety check

be ignored, acknowledging responsibility for maintaining object integrity. The classes re-

lated to the data dictionary are defined in the modules DataDictionary, ClassDefn, and

4

CHAPTER 1. INTRODUCTION AND OVERVIEW

FieldDefn.

1.2.2 Accessing Database Entities

Objects in a database are accessed by subscripting a corresponding Database object

with the object ID of the desired object. Methods are provided to query the database for

a list of existing object IDs, as well as to determine the presence of a particular object ID.

Additional methods support the creation and deletion of objects from the database.

The database objects themselves are implemented as a set of classes, each with a different

purpose and level of capability, but all share a common base level of functionality and a

common interface. The primary interface to these objects is defined by a pair of protocols.

Each protocol defines a minimal set of methods and semantic behavior that is provided by

all implementation classes. This interface is defined by the Object Protocol and is given a

minimal implementation by the ObjectProtocol class defined in the module of the same

name. This class is used as a base class by all other classes supporting the protocol. The

protocol defines means by which the program objects representing database entities may be

queried to determine their state, including which fields are represented, the object ID, and

the ID of the database class of which it is an element. Two mechanisms are provided to

access the data fields of the object, one providing a short-hand notation which is likely to

be of use to most application programmers and which provides the most readable form of

field access, and another, more general access method. The short-hand method imposes the

restriction that the name be a valid Python identifier, and that it not be a Python reserved

word. The general mechanism imposes no restrictions.

Distinct classes are used to represent read-only and read/write objects. Subscripting

a database object with an object ID yields the appropriate object class for the access

permissions of the database. The simpler read-only object is used where possible as a

performance boost as well as to reduce the memory footprint of the objects extracted from

the database. For write-enabled databases, an object is produced that orchestrates data

retrieval from a read-only object and a delta object produced by the change dictionary and

5

CHAPTER 1. INTRODUCTION AND OVERVIEW

that redirects updates to the change dictionary object as well.

As with database entities, individual fields of entities are represented by objects and

share a corresponding interface, known as the Field Protocol. The base class for objects

supporting this protocol is implemented in module FieldProtocol. This protocol provides

support for querying the status of a field, determining the number and indexes of values

assigned to the field, determining the parent object from which the field was derived, and

providing information that can be used to retrieve additional information about the field

from the data dictionary. Specific values can be retrieved from a field, or they can be set

for fields derived from a database opened with write permission. Field values can be set

using simple assignment expressions, with values being managed by the change dictionary

and object internals being managed internally. One implementation of the Field Protocol

is provided for each class supporting the Object Protocol.

1.2.3 Change Management

The change dictionary used by the Database class operates in much the same way as the

database, allowing objects to be retrieved, queried, and updated. Objects retrieved from

the change dictionary parallel the user-level objects provided by the Database methods,

including the field-level objects retrieved from the entity objects. The most important

difference is that they are created on reference rather than requiring explicit creation. This

allows the change dictionary entities to provide objects with an interface that conforms with

that defined by the object protocol.

This component of the odb/Tools supports a large volume of changes to the database

while maintaining a low memory profile. This is achieved by placing change entries in a

GDBM database on disk when they are not referenced by any active object in memory. This

database is managed entirely by the change dictionary and is removed when the dictionary

is closed or de-allocated. The change dictionary is used to drive the commit procedure on

the Database object and is replaced during a rollback operation.

6

CHAPTER 1. INTRODUCTION AND OVERVIEW

1.2.4 Iterating Over the Database

The odb/Tools support the idea of using high-level iteration mechanisms with distinct

selection and operation components to operate over a database. Classes are provided to rep-

resent the basic traversal mechanisms and some common selection semantics. A discussion

of the selection mechanism follows in the next section, and information on extending the

selection system is given in the reference material in Section 8.3. Operations are considered

application-specific and must be provided by the odb/Tools-based application.

To allow a flexible handling of the database traversal, odb/Tools provides two primary

iteration mechanisms via the classes FlatIterator and DepthIterator. Each of these pro-

duces a distinctly different result and applies to different situations. Both of these classes,

together with a common base class, are defined in the module Iterators. The simplest

iterator, FlatIterator, visits each node in the database without regard for ordering or

structure, and passes the node to the operation if the selection mechanism indicates accep-

tance. This will be most heavily used in searching applications for which no relevant index

exists, as well as for programs which build indexes.

A more elaborate mechanism for traversing the database is a depth-first traversal, im-

plemented by the DepthIterator class. Unlike the FlatIterator, which has no regard for

structure in the data, the DepthIterator is dominated by structural interpretation of the

data. While the FlatIterator is controlled only by the selection mechanism, the depth

search has a somewhat more complicated set of controls to match the extended semantics

of the iteration. These controls are defined in the Traversals module. An object called a

traversal predicate is used to determine if links exhibiting a particular relationship between

two nodes of the database are traversed. These predicates are offered in the form of func-

tions with bound state, in some ways similar to the lexical closures of Lisp and Scheme. The

function part of a traversal predicate receives information about the entity classes and field

definitions of the endpoints of a link and may use these to determine if the link should be

followed. The state of a predicate may be empty, statically initialized when the predicate is

7

CHAPTER 1. INTRODUCTION AND OVERVIEW

defined, dynamically initialized when the predicate is instantiated, or actively mutated over

the life of the predicate. Note that the predicate does not receive the actual objects at each

end of the link, and has no access to the field data of the objects. The entire decision must

be made with no more information than the class and field definitions and the current state

of the predicate. The intent in providing objects with this behavior is to allow a means

to prevent the DepthIterator from traversing links which cannot yield results of interest

to the application. Fundamental traversal predicates provided by odb/Tools include accep-

tance based on the class and field identifiers for the source object, as these are expected

to be useful to most applications, and the logical operations and, or, and not, which may

be used to provide composition of other predicates. Iterators are discussed in detail in

Chapter 7.

As an example, consider an application which receives a set of criteria for selecting a

document through a dialog with a user. The user indicates that information is needed

regarding the authors of the documents selected, including a list of institutions with which

they are associated. A FlatIterator can be used to locate the document objects which

match the search criteria provided by the user. The operation that takes place for each

object found by the search can use a DepthIterator to descend into the list of authors to

retrieve their names and a list of institutions they are affiliated with. This information can

be printed as it is found or stored in a data structure for further processing.

1.2.5 Selecting Objects

The previous section intersperses many references to the “selection mechanism” with-

out providing any details. This section will provide those missing details. The material

described here is defined in the module Predicates.

The selection mechanism is implemented by selection predicates, a set of functions with

optional bound state information. This mechanism is quite similar to the traversal predi-

cates defined above, though perhaps simpler to understand. Selection predicates are used to

determine which database entities are selected using only the information available through

8

CHAPTER 1. INTRODUCTION AND OVERVIEW

the database object and the state of the predicate. As with traversal predicates, there are

no restrictions on the maintenance of state information. Logical compositions using and,

or, and not are supported.

For many of the predefined selection predicate classes, the state associated with the

predicate is used to store a field name and a string against which values of the field should

be matched using some algorithm. A variety of string-matching predicate classes are pro-

vided, including approximate string matching. These classes are useful in conjunction with

both the FlatIterator and DepthIterator classes. The AcceptOnce predicate allows a

depth search to control how many times a node may be retrieved. An extensible demon-

stration class has been implemented which collects statistical data on the database entities

for which it is queried. Detailed information on predicates and predicate classes is available

in Chapter 8.

1.3 How the odb/Tools are Used

Since odb/Tools is a new package, there are few applications that have been created

using it. However, some demonstration applications have been created to serve, in part,

as examples that are discussed in detail in the reference documentation. This section

discusses these applications and describes potential future applications, both in the context

of Envision and as a general tool associated with the ODB library.

The simplest applications based on odb/Tools will be reporting applications which ex-

amine the database for some criteria to present simple list-oriented reports. The existing

odb/Dict application is an example of this style. The application opens a database and

presents a simple report listing all the entity classes defined for the database, each with a

list of fields present in the class and constraints placed upon them. The implementation

requires under 150 lines of Python code in two modules, including command like processing,

report formatting, and source code comments.

A future application related to the maintenance of the data dictionary of an ODB

9

CHAPTER 1. INTRODUCTION AND OVERVIEW

database could support a graphical interface to allow editing of the entity class definitions,

with information about the relationships formed by the data content of link fields displayed.

Such an interface would be useful since existing tools are tedious to use, and would provide

new functionality by allowing the actual link relationships to be readily examined in the gen-

eral case. This is important because the ODB database library does not provide for general

endpoint constraints on link values: the only restriction is that each endpoint be a link field.

For example, tools created using odb/Tools can check that all links from a field “author” of

entity class “document” terminate at entities of class “person” or “organization.”

Future research in digital library applications and technologies will require statistical

information regarding the databases used to test new algorithms and techniques in order to

determine the applicability of the databases to the problems being solved, or to measure the

effectiveness of algorithms. odb/Tools supports collection of information across databases;

see Section 8.3 for an example of statistic collection.

Another intended application for odb/Tools is the creation of an application which ana-

lyzes the content of an ODB database to locate possible data faults that may have resulted

from failures in the initial import of data from full-text sources. Additional applications

may be created to repair problem data; these programs will have to deal with decomposing

and merging subgraphs of the database to allow identification errors to be corrected as well

as allow simple editing of data values. This undertaking will require further research in

repairing faulty information graphs in order to identify the full scope of the problem and

determine a general solution.

Applications currently in their design and implementation phases include a simple search

utility to operate on the Envision database, a date format analysis and conversion utility

to ensure that dates stored in existing databases will be usable beyond the end of the

millennium, and a demonstration utility to merge two entities into a unified entity with

meaningful links to related entities.

10

CHAPTER 1. INTRODUCTION AND OVERVIEW

1.4 Selection of Language

The Python programming language was selected as the host environment for a number

of reasons. Most importantly, it is a powerful object-oriented language well suited for

both medium-sized projects written entirely in itself and for embedding in applications

written in other third-generation languages. The ease of extensibility of the interpreter

implementation proved valuable in creating the low-level database interface and provides

incentive for others to create extensions as well, providing access to a great many facilities

from a single programming environment.

Another important aspect of the language selection revolves around usability: the lan-

guage chosen needed to be easy to learn quickly, or at least easy enough to get useful work

done with relatively little delay. For this reason, modularity and popularity were both

considered important. Tcl/Tk is a leader in popularity, but does not scale well or offer

much modularity in its raw form. Large applications are difficult to develop due to the

single name space and high level of overhead achieved through repetitious parsing of static

program text. Occasional Tcl programmers find the string-processing foundations of the

language difficult to deal with [Con95]. Perl is perhaps even more popular, scales fairly

well now that modules and object-oriented programming are supported in the most recent

releases, and has a high level of performance. Unfortunately, it remains cryptic and does

not enjoy broad acceptance as a general purpose language. Its strength lies in large part in

its reputation as a system administration tool. Forms of Lisp and Scheme were considered

as well, primarily due to the applicative nature of the language and the availability of inter-

preters that could be modified and extended in much the same way that the other languages

considered could. These were rejected primarily due to lack of documentation on extending

the interpreters with new functions provided in C, as well as the lack of familiarity with

functional programming among many programmers.

The Python environment offers modularity and object-orientation, is well-accepted for

small- to medium-sized projects, and executes quickly since, like Perl, it is byte-compiled

11

CHAPTER 1. INTRODUCTION AND OVERVIEW

rather than interpreted directly from the source text. Projects as large as twenty thousand

source lines have been implemented and considered successful [vRdB91]. This is quite large

for interpreted languages.

1.5 Efficiency Notes

A number of factors affect the efficiency of most database applications, and odb/Tools-

based systems are no exception. There are a number of internal aspects of odb/Tools that

address efficiency and work to alleviate unnecessary entity retrievals from the database.

While these manipulations are handled within odb/Tools and should never affect application

code, it is important for programmers to be aware of these aspects of internal operation. In

all cases, these points are discussed in the reference chapters in which they are appropriate.

This section discusses the motivation for the way efficiency issues are addressed.

Improving performance in odb/Tools is accomplished primarily through lazy evaluation

of queries against the database itself, delaying actual retrieval of objects until they are

needed. Evidence of delayed retrieval is seen in the base odb module in the result of the

keys() method of the OdbDatabase object, in the arguments to the traversal predicates

used in depth-first traversal of a database, and is a result of delayed evaluation of iterators

as well.

Limited caching is performed by the odb module as well, allowing multiple requests for

the same entity to use the program object as long as there is a reference to the original

object, alleviating repeated database accesses. Using this cache requires that some reference

to the original object exist in the application code; odb/Tools will not force objects to remain

in the cache without a reference.

The application programmer can gain the most advantage of these measures by creating

traversal predicates that make decisions based on the link source rather than the target, or

arranging composite predicates in such a way that short-circuiting of boolean evaluation may

avoid using information about the target as often as possible. This improves performance

12

CHAPTER 1. INTRODUCTION AND OVERVIEW

by avoiding the retrieval of the target entity whenever possible. Iterators used in parallel

with user interaction may be used to improve performance by avoiding the evaluation of

the entire iterator at any single point during program execution. Based on the interaction

required, this may be possible, allowing the user to cancel an operation or otherwise interact

with the application without having to analyze the entire database.

1.6 Python Reference Material

Though the volume of reference material published on paper for Python is low, the

language is beginning to receive an increased level of press in various magazine and jour-

nals relating to computer science. More importantly, the material available as part of the

standard distribution is of good quality, and exceeds what is available for many interpreted

languages used in research environments.

For beginners with Python, the distribution includes a document titled simply Python

Tutorial [vR95d]. This document provides an introduction to using the Python language

and the interpreter, and shows a few simple examples of the language. Detailed information

on Python can be found in the Python Reference Manual [vR95c], which defines the lan-

guage constructs formally and in detail, and the Python Library Reference [vR95b], which

gives information on the many standard modules provided with the interpreter. A number

of contributed demonstration programs are provided as well, serving as examples of mod-

ule usage and demonstrations of common idioms used in crafting Python programs. For

advanced users interested in extending the interpreter or embedding it into an application,

a supplemental manual titled Extending and Embedding the Python Interpreter [vR95a] is

provided. This manual is very much a work-in-progress.

The primary Python distribution and supporting material may be found on the Internet

for FTP at ftp.python.org, with online documentation available as hypertext through the

World Wide Web at URL http://www.python.org/. This site is home of and maintained

by the Python Software Activity. These materials are mirrored in Europe at ftp.cwi.nl

13

CHAPTER 1. INTRODUCTION AND OVERVIEW

and http://www.cwi.nl/~guido/. The USENET newsgroup comp.lang.python supports

ongoing discussion and information about current events and developments in the Python

community. Refer to Appendix A for more information about obtaining the Python distri-

bution.

In early 1996, an introductory book on writing Python programs, written by Mark Lutz,

will be published by O’Reilly & Associates [Lut96].

1.7 Overview of Modules

The odb/Tools interface is defined by several modules, each providing an element of the

package’s functionality. Many of these can be used with only a few of the others being

available, but they are intended to be used together. There is one module that is written in

C and must be compiled and linked into the Python interpreter, or at least made available

as a shared object for those platforms that support dynamic linking and loading. Other

odb/Tools modules are written in Python. A graphic display of the relationship of several

of the high-level objects to the foundation object in the C module is given in Figure 1.2.

odb

This low-level database module, written in C, is required and must be available to

the interpreter to use the odb/Tools facilities. It should be considered internal to the

odb/Tools package and not accessed directly. The other modules of the package will

work with it as needed, and provide an object-oriented interface to the base facilities

available here.

Database

Entire databases are presented to application code as instances of the class imple-

mented by this module. Both read-only and read/write support is provided. All

entity access and transaction control is handled through this module.

Delta

This module provides the Change Dictionary facility used to enable transaction-

14

CHAPTER 1. INTRODUCTION AND OVERVIEW

Database Access
Database

ObjectIndirect
Database Entity

FieldIndirect
Entity Field

DataDictionary
Schema Definition Facility

ClassDefn
Entity Class Definition

FieldDefn
Class Field Definition

C library access module
OdbDatabase

Figure 1.2: Module Relationships in odb/Tools

oriented use of ODB databases. This facility allows changes to be made to the database

without requiring updates to be stored to disk until a review and confirmation can be

performed.

DataDictionary

The structure of an ODB database, given by the entity classes and the fields they

contain, is represented by the Python class defined in this module. The data dictionary

can be interrogated and modified through this interface.

ClassDefn

A single ODB class within the database is represented by the Python class in this mod-

ule. Class attributes made available directly include the class ID, name, alternative

ID, the “next field ID” and “other info.” Updates to these attributes are performed

according to the restrictions imposed by the ODB library and database permissions.

Access to field information is provided indirectly through the FieldDefn module.

15

CHAPTER 1. INTRODUCTION AND OVERVIEW

FieldDefn

Fields within ODB classes are represented by this Python class. Field attributes made

available include the number of occurances, name, ID number, and type. Updates to

these attributes are performed according to the restrictions imposed by the ODB

library and database permissions.

DDictReport

An example use of the data dictionary support provided by the previous three modules

is implemented here. This is more application oriented, and serves as an example use

of the data dictionary classes defined in the three modules listed immediately above.

It receives no further mention in this document.

Iterators

Primitive mechanisms for traversing the database are defined in this module. Sequen-

tial and depth-first traversals are provided.

Predicates

Many basic selection predicates are defined in this module. These are sample predi-

cates for use in iteration over an ODB database, and may be used directly or composed

with application-specific predicates as required. Logical composition classes are pro-

vided through this module as well.

CountPred

The CountPredicate class defined in this module is an example of extending the set

of available predicates and is discussed in section 8.3.2.

Traversals

This module mirrors the Predicates module, but provides traversal predicates for

manipulating the depth-first search mechanisms. The logical composition predicates

exported by Predicates are shared and exported by this module as well.

The odb/Tools package requires the gdbm module, an optional module provided with the

standard Python distribution, to use the Change Dictionary. Since the ODB library already

requires that the GDBM library be linked with the interpreter, there is little additional code

16

CHAPTER 1. INTRODUCTION AND OVERVIEW

introduced by adding this module. If the soundex module is available, the Predicates

module is able to take advantage of it, but it is not required. This capability provides

approximate string matching for selection predicates, described further in Chapter 8.

1.8 Documentation Conventions and Notes

There are a few typographic conventions used in this manual that readers should be

aware of, though most readers will probably be familiar with these. Text is used to com-

municate all of the information in this manual, though there are several different uses of

text in the computing environment being described. Different typefaces are used to indicate

information about the specific meaning of each text element in this document. The text

“ODB” refers to the base object database package, and “odb” refers to the Python interface

module of the same name.

Roman Normal text.

Italic Terms being defined.

Courier Code fragments, function names in text, module names.

Courier Italic Variables in code fragments.

At all points, some familiarity with the structure of an ODB database and the Python

language is assumed. An introduction to several concepts found in the ODB library and

databases it handles is provided in Chapter 2. Some specific points to keep in mind include:

• When calling a Python function, object method, or class method, a TypeError ex-

ception is always possible if too few or too many parameters are supplied, or if they

are of the wrong type. This point is not mentioned for each function or method when

exceptional conditions are discussed, but such exceptions are possible.

• A MemoryError exception can be raised at any time due to a malloc() failure. This

should be considered a possibility at any time, including during a call to a function or

method provided as part of the ODB interface, regardless of whether the implementa-

tion was in C or Python.

17

CHAPTER 1. INTRODUCTION AND OVERVIEW

• Object methods with names of the form __*__ are used to implement disciplines in the

Python environment. These disciplines are used in much the same way that overloaded

operators are used in other object-oriented languages. The required semantics for these

methods are detailed in the Python reference documentation. [vR95c]

1.9 Organization of the Report

The remainder of this report provides information important in using odb/Tools. After a

brief review of concepts particular to the ODB database library, the objects and methods in

the odb/Tools library are covered in detail. Appendices describe the installation procedure

and using odb/Tools scripts as command-line utilities in the UNIX environment.

Chapter 2 describes several of the underlying concepts reflected in the design of the

ODB database library and why they are appropriate for use in Project Envision. The

chapter includes information on database organization, structure, and constraints; indexing

facilities; and file organization.

Chapter 3 provides reference documentation on the odb module and the objects created

by the functions in that module. This includes the OdbDatabase and OdbInstance objects,

upon which most other modules in odb/Tools build.

Chapter 4 describes the data dictionary supported by ODB databases and the interface

used to query and manipulate the dictionary through odb/Tools. This includes information

on the DataDictionary, ClassDefn, and FieldDefn modules.

Chapter 5 provides reference information on the high-level interface to the database

itself, including information on gaining access to the data dictionary and retrieving entities

from the database. The transactional support provided by odb/Tools and other information

particular to managing a database are included in this chapter.

Chapter 6 covers the behavior of individual entities retrieved from the database, and

of the fields retrieved from each entity. This includes information on the classes which

support the protocols defined here and how to use the protocols to retrieve information

18

CHAPTER 1. INTRODUCTION AND OVERVIEW

from an entity.

Chapter 7 describes the high-level database traversal mechanisms provided by odb/Tools,

including both sequential iteration and depth-first traversals. Simple examples are included.

Chapter 8 includes information on the predicate classes provided with odb/Tools, using

predicates, and extending the set of predicates. This chapter covers the odb/Tools modules

Predicates and Traversals and the CountPred example module.

Appendix A describes the installation procedure, and lists the versions of various associ-

ated software that have been tested with odb/Tools in a variety of operating envirionments.

Appendix B covers using odb/Tools scripts as stand-alone applications under environ-

ments which support UNIX-style interpreted execution from the command line.

19

Chapter 2

The ODB Object Database

The Envision object database, initially defined by the output of the DELTO document

analyzer and managed by the functions of the ODB library created as a part of that project,

is a fairly simple database with a number of useful attributes use by Envision [Ave95]. There

are a number of structure and administrative aspects of the database which are important

for any application which uses the ODB library either independently or as part of Envision.

This chapter provides an overview of these concepts and the terminology used to describe

an ODB database. Familiarity with these concepts and terms is assumed through the rest

of this reference document.

2.1 Organization of Stored Information

The information stored in an ODB database is structured as entities, or objects, of

various classes, each of which has a set of fields with constraints on the type and number

of values each may take. Each class and each field can take on certain attributes, some of

which are required to be unique within the enclosing larger context. Each entity is identified

by a unique string called the object ID.

Each class is identified by a string of characters terminated by a trailing zero byte.

All upper-case characters are mapped to lower case within the ODB library, making the

identifiers case-insensitive. Each class identifier must be unique across the entire database.

Also associated with each class is a name, which is case-sensitive and need not be unique.

This name provides a way to identify a class in a very high-level fashion, typically as a

human-readable name, while the class ID is typically short. Allowing the ID to be short is

20

CHAPTER 2. THE ODB OBJECT DATABASE

important since it is stored with each entity.

Additional attributes of class definitions include an alternative ID, a non-negative nu-

meric identifier which must be unique across the entire database, an other info text field for

holding arbitrary additional information, a number which is used internally to form field

identifiers when fields are added to the class, and the actual list of fields defined for the

class. The alternative ID is provided as a convenience for application programmers using

the C interface to ODB, and is not normally used otherwise.

2.1.1 Field Definitions and Constraints

Field definitions in ODB are somewhat more elaborate than class definitions. Each

field has a number of attributes, including a numeric ID which must be unique within the

class, but which also is generated by ODB when each field is created rather than being

specified by the schema designer as are the class IDs. Each field also has a name which is

a zero-terminated character string and must be unique within the enclosing class, and is

case-insensitive in the way that the class identifier is insensitive to case. In addition to these

attributes, fields have a type attribute which specifies the type of data which may be stored

in the field. Valid types include STRING, DATE, OBJECT ID, and LINK. The actual data

for all field types are zero-terminated strings, but semantic distinctions are defined on these

types to allow an application to format data meaningfully.

The STRING and DATE types are self-explanatory, but the OBJECT ID and LINK

types require further explanation. The OBJECT ID data type specifies an object ID,

identifying a single entity from the database. The LINK data type is handled specially

under ODB to form bi-directional relationships between objects. When a value is added to

a LINK field, called the source field, that value corresponds to an object ID and a field

ID where the field is specified as part of the entity referred to by the object ID. This is the

target field. A value is automatically added to the target field which forms a relationship

back to the source field, making the link fully bi-directional. Removing a value from a

LINK field removes the corresponding value in the target field as well. Special methods are

21

CHAPTER 2. THE ODB OBJECT DATABASE

required to manipulate LINK fields.

Each field defines constraints on the number of values which may be assigned to the field.

These constraints take the form of minimum and maximum values, where the maximum my

be unrestricted. The minimum number may be any non-negative integer, and the maximum

may be any positive integer or unrestricted. Entities which contain fields where the number

of values assigned does not fall within the range specified by the constraints are not stored

in the database; storing such an entity would constitute an integrity failure in the database.

These integrity constraints are required to hold true after deletion of field values or entire

entities as well. An operation which would create an integrity failure is not completed,

but returns a failure condition to the application. Entity deletion could cause an integrity

failure by causing the number of values of a LINK field referred by the object being deleted

to drop below the minimum number set for that field.

2.2 Indexing Facilities

ODB provides an indexing facility to enable an application to rapidly search for records

matching a given string value. Matching is performed in a case-insensitive manner. For

each string in the database index, a list of object IDs is available which contains each entity

explicitly indexed under that string. The indexed strings may be data values from some field

of the entity, or they may be computed from the fields of the entity. The use of arbitrary

strings is permitted.

The indexes are not maintained automatically, as no mechanism is in place to describe

how an index should be built or updated in response to changes in the entities of the

database. This is a serious failing in ODB which should be corrected at a future date.

Tools are available to generate indexes for the entire database using information provided

by an interactive user interface.

22

CHAPTER 2. THE ODB OBJECT DATABASE

2.3 File Organization on the Persistent Store

The ODB library uses the GDBM database library to handle most of the files it uses on

external storage devices. This library was developed by the Free Software Foundation in

association with the GNU project [Gau94]. All large data files and the entity definition file

are GDBM databases. There are a few additional control files which are defined as textual

data.

All files in an ODB database can be grouped into one of four categories. Two categories,

the object file group and index file group, are used to store the database entities and string

indexes, respectively. Each of these categories is implemented as a group of files which,

taken together, store all the data required for that aspect of the database. Within each

group, one file is specified as current: this is the file in which new entries for the group are

stored. This setting is independent for each of these two file groups, as is the number of

files used. For each group, there is also a maximum number of files which may be used,

determined by a compile-time constant in the ODB library.

The next category on the persistent store contains a single file used to store entity

class definitions. This is a single GDBM file containing an entry for each class definition.

One entry is used to store all the information for a class, including all the associated field

definitions.

The final category consists of the various control files containing textual information.

Files are used to record the “high points” for the object ID identifiers, to allow creating new,

unique IDs quickly and responsively, and to record which file in each group is current, to al-

low this setting to be persistent across invocations of various database tools. Unfortunately,

there are several very small files in this group, rather than a single control file.

No facilities are provided in the base ODB library to support transaction-level controls,

multiple writers, or entity-level locking. Only one writer is allowed, and this writer is

sufficient to block all other access to the database. This is a limitation of the underlying

GDBM implementation.

23

Chapter 3

Low-level Database Interface

The odb module provides an interface to the ODB object database library developed

by Guillermo Averboch for Project Envision. This interface is intended to allow Python

scripts to be created which perform useful operations on the databases generated by DELTO

and queried by other Envision programs. The Python modules which use this library are

portable to all operating systems provided that the GDBM library is available.

To provide the needed access to the ODB library, this module was implemented in C

and must be linked into the Python interpreter along with the base ODB library. Service

modules written in Python should be used to provide various aspects of object control

and semantic interpretation. Several such modules are described in later chapters of this

document, and should be used as the basis for applications using ODB whenever possible.

3.1 Built-in Module odb

This module provides a few functions to provide a minimal interface to the base ODB

library, and two public object types which provide most of the functionality of the underlying

database facility. The interface is object-oriented, but many concessions were made to

produce this layer quickly and with emphasis placed on maintaining the integrity of the

database.

Functions are available to open an existing database, retrieve a list of the data types

available in the ODB library, affect the blocking factor of index entries, and retrieve the

text of the global ODB error message. All access to the objects in the databases and the

indexes is provided by the OdbDatabase and OdbInstance objects. The former object type

24

CHAPTER 3. LOW-LEVEL DATABASE INTERFACE

is used to represent and manipulate the database as a whole, including updating the data

dictionary and the later is used to manipulate individual entities in the database.

3.2 odb Functions

The odb module defines the following functions:

error_msg()

This function returns the error message located within the ODB library. This message

is not bound to an object as there is no intrinsic association between the message

and the operations performed by the ODB library. No matter how many databases

are open, there is only one error message buffer. It is generally preferable to use

information associated with exceptions raised by the odb module to diagnose problems.

This error message may be included in the exception’s associated information where

appropriate. If there is no error message, this function returns an empty string.

field_types()

The ODB database library supports a small number of data types for field values.

These types are identified in the Python environment by string names. This function

returns a list of the valid type names. Currently, each database can only support those

type identifiers defined globally and included in the list returned by this function. See

also the field_types() method of the OdbDatabase object.

index_extra_blocking([blocksize])

Get or set the size of the block allocated to an index entry. This corresponds directly

to reading or setting the index_extra_blocking variable defined by the ODB package.

The optional blocksize parameter sets the value, and must be a non-negative integer.

The function always returns the value of the index_extra_blocking variable at the end

of the function. The only exception which can be raised is a TypeError, which can

occur if too many parameters are passed or if a single parameter is not a non-negative

integer.

25

CHAPTER 3. LOW-LEVEL DATABASE INTERFACE

open(basename [, rwmode [, filemode]])

Open the ODB database named by basename if possible. If a relative or absolute

pathname is needed, it should be given as part of basename. It is important that

no file extension be used; the database consists of several files, with extensions used

to distinguish among them. In order for the files to be found, the extensions, in-

cluding the “dot” character, cannot be used. The rwmode parameter specifies the

desired access to the database; the default value is ’r’ for read-only access. Possi-

ble values include ’r’, ’w’, and ’rw’, where the later two both indicate read/write

access. The database must already exist; it cannot be created or reset through this

function. These capabilities can be easily implemented in Python should an appli-

cation require the capability. The filemode parameter is used to indicate the file

permissions which should be requested when adding a file to the database using the

OdbDatabase.add_index_file() or OdbDatabase.add_object_file() methods. In

the future it may be used to specify the file mode for database creation as well. The de-

fault value is 0666 (global read/write access, adjusted by the user’s current umask(2)

setting). When successful, the open() function returns an OdbDatabase object. The

database object supports a close() method, which will be invoked automatically

when the object is garbage collected or explicitly by the programmer.

3.3 odb Public Data and Exceptions

The public data in the odb module includes two type objects, an exception, and several

constant definitions which reflect limits in the underlying ODB library. For programmers not

familiar with types in Python, a few words are in order. A Python type is not congruent with

the formal notion of type found in most current programming languages and is especially

distinct from that found in languages requiring strong static typing. Not only is Python

typing dynamic in a manner very similar to Lisp, but a “type” is actually an object which

can be passed like an integer or object instance. These type objects can be acquired from any

26

CHAPTER 3. LOW-LEVEL DATABASE INTERFACE

object, including other type objects, by using the built-in type() function. Unfortunately,

this is the only way to retrieve type objects in most circumstances. The standard module

types provides bindings between identifier and type objects for all types which are provided

with the standard interpreter. It creates these bindings by using the type() function on

examples of each type of object. Unfortunately, this is not necessarily a reasonable approach

with any of the objects created by this module. These two type objects are provided by

odb to avoid the potential need to create instances of these objects simply to gain access to

their type objects.

OdbDatabaseType

This is the type object representing the database objects returned by the open()

function. It is provided to allow testing for the type without having to create a

dummy database to use in obtaining the type descriptor.

OdbInstanceType

The objects stored in the databases have this type. Like OdbDatabaseType, it is

provided for convenience and to allow the avoidance of creating spurious objects that

must be destroyed.

OdbKeysIteratorType

This is the type of objects returned by the keys() method of the OdbDatabase objects.

These are sequence objects which are evaluated lazily, yielding keys from the database.

Additional information is available with the keys() method documentation.

error

Exception raised when an operation fails for some reason specific to the semantics

of the ODB library. Errors related to input values and I/O raise the appropriate

errors. The documentation for each method of the OdbDatabase and OdbInstance

objects includes information on the exact exceptions each may raise. Most of the

“associated values” are strings, but many are tuples including an error code from the

underlying GDBM library as well as the GDBM or ODB error text. Each of these

will have the format (errcode, ’odbmessage’, ’odblib_or_gdbm_message’). The

27

CHAPTER 3. LOW-LEVEL DATABASE INTERFACE

exact meanings of the exception values is described under the function or method that

raises it, for those cases where the value is not simply a descriptive string.

The remaining data items are constants matching limit definitions of the base ODB

library. These are provided as reference values only, but are valid for the version of the

ODB package against which this module is compiled.

MAX_CLASS_ID_LENGTH

This is the maximum length of a class ID which may be used to create a new class.

MAX_CLASS_NAME_LENGTH

This is the maximum length of a class name which may be used to create or update

a class definition.

MAX_CLASS_OTHER_INFO_LENGTH

This is the maximum length of the “other info” attribute used to create or update a

class definition.

MAX_DATABASE_NAME_LENGTH

This is the maximum length of the base name of a database, including any absolute

or relative path information needed. If a longer name is needed, use a short, relative

name here and always switch to the appropriate directory before opening the database

or adding files to the database using the add_index_file() or add_object_file()

methods of the OdbDatabase objects.

MAX_ERROR_MSG_LENGTH

This is the maximum length of the message returned by error_msg().

MAX_FIELD_NAME_LENGTH

This is the maximum value of a field name within a entity class definition.

MAX_INDEX_STR_LENGTH

This is the maximum length of a string which can be indexed.

MAX_NUMBER_INDEX_FILES

This is the maximum number of files which may be created to store index information

in a database.

28

CHAPTER 3. LOW-LEVEL DATABASE INTERFACE

MAX_NUMBER_OBJECT_FILES

This is the maximum number of files which may be created to store entity data.

MAX_OBJ_ID_LENGTH

This is the maximum length of an object ID.

3.4 OdbDatabase Objects

OdbDatabase objects (returned by open() above) have several methods and a number

of data members. These methods are defined to allow most operations allowed by the ODB

library that require the database itself to be operated upon. Some of the data members

also allow operations to be performed on the database through assignment, though most are

read-only. These are not intended for general use; wrapper classes providing appropriate

semantics should be used for that purpose. Several classes associated with the ODB interface

are provided in associated modules described in subsequent sections.

It is important to know that in all cases, operations which require that a database be

open with write permission will raise an odb.error exception with an appropriate message

string as an associated value. If this requirement applies to a method, it will be noted at the

beginning of the description. Equally important is the requirement that a database remain

open when any of its methods are invoked, including such queries as retrieving the list of

classes defined in the database. This requirement exists to protect the application from

opening the database to gain information, closing it, and re-opening it with the intention

to write updated information to the database. While this is not sufficient in itself, it does

encourage the careful use of all database information.

3.4.1 OdbDatabase Methods

General Methods

add_index_file()

[Requires that the database be open with write permission.] This function attempts

29

CHAPTER 3. LOW-LEVEL DATABASE INTERFACE

to create a new GDBM file and add it to the index group. The access control per-

missions used to create the file are those specified when the database was opened and

made available as the filemode attribute. If the file is created successfully, the new

number of index files is returned and made the new value of the number_index_files

attribute. This does not affect the value of the current_index_file setting. If the

limit on the number of index files has been reached, or the database is closed or opened

without write permission, an odb.error exception is raised. If the GDBM library is

not able to create a new file, an IOError exception is raised.

add_object_file()

[Requires that the database be open with write permission.] This method cor-

responds to the add_index_file() method, but operates with the object file

group. If successful, a new file is added for the storage of object data, and the

number_object_filesmember variable is updated. On failure, an exception is raised;

refer to the description of the add_index_file() method for details on the exceptions

which may be raised. The new file is not made the default for storing new object data;

the setting of the current_object_file must be adjusted to make that change.

close()

The database can be closed at any point by using this method. For databases opened

with write permission, this can be used to flush any changes to disk; for read-only

database objects, this can release the database to a process waiting to open it with

read/write permissions. This release only actually occurs if there are no other readers

of the database at the time. Once the database is closed, almost no operations can

be performed on the database object. This method is made available in addition to

closing the database on object deletion to allow the application a way to ensure the

physical database is closed immediately rather than relying on the garbage collector

to finalize the object. This is the only way to control closing of the database.

Data Dictionary Manipulation

30

CHAPTER 3. LOW-LEVEL DATABASE INTERFACE

add_class(id, name, alt_id, other_info, (name, type, min, max) ...)

[Requires that the database be open with write permission.] Creates a new class

in the database. All arguments are required, and must include at least one field

definition. The id and alt_id parameters must be unique within the database; if

either is not, an odb.error exception is raised with an associated value string stating

that one or the other is already in use.

add_field(class_id, name, type, min, max)

[Requires that the database be open with write permission.] Adds a field to an

existing class. If the database is read-only, an odb.error exception is raised. Any

other error relates to the value of one or more parameters, and a ValueError exception

is raised with a string associated value. The class affected, identified by class_id, must

already exist, and the new field name must be unique within the class. If any error

occurs, a ValueError or IOError exception is raised with an appropriate message

string as an associated value. An odb.error exception indicates an internal failure.

classes()

Returns a list of class IDs defined for this database. Each ID is a non-empty

string. These ID strings, or strings that are equal to these, can be passed to the

get_class_info() method to obtain more information on any named class. As an

example, the expression ‘"cid" in db.classes()’ should be used to determine if the

class "cid" exists in the database db.

delete_field(class_id, name)

[Requires that the database be open with write permission.] Fields may be removed

from class definitions using this method. The class must be identified by the string

class_id, and the field by name. If the class is not present in the database, or does not

contain a field named name, a ValueError exception is raised. An IOError is raised

in the event of a failure while storing the updated class definition, and an odb.error

exception is raised if the named field is the last field in the class. Note that classes

cannot be deleted from the database, and all classes must contain at least one field.

31

CHAPTER 3. LOW-LEVEL DATABASE INTERFACE

These are limitations of the base ODB library.

field_types()

The field_types() method is actually identical to the module function of the same

name, but is provided in the hope that ODB may someday allow additional data

types to be defined for each database, with needed support or descriptors stored in

the database. In the meanwhile, this method provides a “free” forward compatibility

path for applications. Using this will allow an augmented ODB and odb/Tools with

the ability to define additional field types per database to replace the existing libraries

without requiring application changes.

get_class_info(class_id)

This method allows the application to get information on a named entity class defined

in the database. The class_id specifies the ID of the class of interest. If the class exists

in the database, the method will return a structure of the form:

(’id’, ’name’, alternative_id, ’other info’, next_field_id,

(field_id, ’fieldname’, ’fieldtype’, min_occur, max_occur),

...

)

If the specified class doesn’t exist, an odb.error exception is raised.

update_class(id, name, [alt_id, [other_info]])

[Requires that the database be open with write permission.] Modifies the attributes

of an database entity class definition. The id string identifies the class to update. Any

other parameter may be None to indicate that it should not be changed, or take on

a string (name, other_info) or integer (alt_id) value to update that attribute of the

class definition. A true value will be returned on success. An odb.error exception

is raised when a new alternative ID duplicates one in use for a different class, and a

ValueError is raised if the specified class does not exist in the database.

update_field(class_id, oldname, newname, type, min, max)

[Requires that the database be open with write permission.] In a manner similar

to that defined for update_class(), this method provides a mechanism to change

32

CHAPTER 3. LOW-LEVEL DATABASE INTERFACE

the definition of a field within an already-defined class. The field named oldname

in class_id is updated to have the new attributes specified in the parameters. The

newname and type parameters may take the value None to indicate that they should

not be changed. If any of the parameter values are illegal, or if the class is not found,

a ValueError exception is raised.

Entity Handling Methods

[object_id]

The use of the indexing operator is provided to allow retrieval of an object from

the database. This operator is the only way to extract an object. The object_id

index must be a string representing the object’s ID, and will be an element of the

list returned by the keys() method. The return value will be an OdbInstance object

as described below. If object_id does not correspond to an object in the database, a

KeyError exception will be raised. Note that database entities may not be defined or

changed using this mechanism: this provides read-only access. To change an object,

retrieve it using this, then use that object’s store_data() method, described below.

delete_object(obj_specifier)

[Requires that the database be open with write permission.] Removal of individual

objects from the database is performed by this database method. It is called with

either an object ID string or an OdbInstance object. If deleting the object does not

result in an integrity failure for a linked object, the deletion proceeds and the object

is removed from the database, causing this method to return a true value. Such an

integrity failure could only be caused by the need to reduce the number of links in

the linked object’s fields below the minimum number of values threshold for that

object’s class. Failure to delete the object may cause an odb.error or KeyError to

be raised. The associated value of the exception is either a 3-tuple giving a database

error number, odb module error, and any error message from the underlying ODB or

GDBM libraries, or it may be a simple string. Note that the ODB library currently

33

CHAPTER 3. LOW-LEVEL DATABASE INTERFACE

provides no way to tell if a storage failure (IOError exception) occurred for the object

for which deletion was requested or for a linked object. This may change in the future;

the second element of the 3-tuple exception value will indicate if the failure may have

been due to a linked object at the time the module was compiled.

has_key(object_id)

Determines if an object ID string is valid for this database. If so, a true value is

returned, otherwise, false. The object_id parameter must be a string.

keys()

Returns a sequence object which yields each key of the database. The object pro-

vides lazy evaluations whenever possible to increase interactive efficiency. This object

supports most non-destructive objects on lists, with the exceptions of concatenation

and replication. These operations may be emulated by requesting a slice of the object

without specifying the endpoints explicitly. This works because requesting the length

of the object will force evaluation to be completed, allowing the length and slice op-

eration to be meaningful. To retrieve a list object with all the keys for the database

db, evaluate the expression ‘db.keys[:]’.

There are two special member variables for this object, named blocking_factor and

length. The blocking_factor member defines the minimum increase in the size of

the internal memory buffer allocated to store evaluation results. This value must be

a positive integer and defaults to 1024. Each key which has been evaluated requires

one slot in the internal structure. Decreasing the value of this variable may lead to

memory fragmentation. The length member variable provides access to the number

of keys which have already been evaluated. This is not equivalent to the length of the

list of keys: Calling the built-in len() function on a keys object forces evaluation of

the list, while accessing the length member does not.

new_object(class_id)

[Requires that the database be open with write permission.] Creates a new object in

the database with the given class ID. The class_id must be a string, and must already

34

CHAPTER 3. LOW-LEVEL DATABASE INTERFACE

be defined in the database. If the class is not defined, a ValueError exception will

be raised. The new object will be assigned an unused object ID string automatically,

but will not be stored immediately since there are no data fields for the object. The

return value is an OdbInstance object to which data should be stored immediately

using the obj.store_data() method. An odb.error exception will be raised in the

event of an internal failure.

Index Handling Methods

get_index_entry(string)

Retrieves an index entry from the database. The single parameter is a text string

to search for. If the string is found in the indexes, a tuple is returned with the first

element being the string sought, and the second being a list of objects identified in

the index:

(’indexed string’,

[’object_id_0’, ’object_id_1’, ’object_id_2’ ...]

)

Be aware that this list may be empty and may contain objects which have been

removed from the database. If the string is not found in the index, the value None is

returned.

store_index_entry(index_entry)

[Requires that the database be open with write permission.] Adds or updates an

index entry in the database. The entry must have the form described for the return

value of get_index_entry()method, above. No validation of the object IDs specified

is performed. The only exceptions raised are the IOError and TypeError exceptions.

3.4.2 OdbDatabase Member Data

The OdbDatabase objects offer a few data members as well as the methods defined

above. Most of these elements are read-only, and are used to access information regarding

35

CHAPTER 3. LOW-LEVEL DATABASE INTERFACE

the current state of the database as defined when the object was created. Attributes which

provide write access are noted, along with the effects of assigning new values.

closed

This value is false if the database is open for any form of access, otherwise it is true.

current_index_file

[Requires that the database be open with write permission.] The ODB allows each

database to have multiple files for the storage of indexes and data objects (the two uses

of files are distinct, and the data does not share files with the indexes). Within each

group of files, one file is considered current, and is the location in which all new records

of that form are stored. This data attribute records the setting of the current file in the

index file group, and allows the application to adjust this value as well. The integer in

this attribute for the database db is in the range 0 ... db.number_index_files - 1.

Attempting to set this to a value outside that range or to a non-integer raises a

ValueError exception. If an error occurs recording this information in the database,

an IOError exception is raised.

current_object_file

[Requires that the database be open with write permission.] This attribute performs

in a manner identical to that defined for current_index_file, but for the object

file group. The legal range of integer values is 0 ... db.number_object_files for

database db.

filemode

[Requires that the database be open with write permission.] This member is set

when the database is opened, and is used to determine the access control permissions

for files added to the database. When database creation is supported directly, this

value will be used for that as well. The default value is 0666 (octal), representing

global read and write permissions under Posix compliant operating systems.

name

This attribute holds the base value of the current database, excluding any filename

36

CHAPTER 3. LOW-LEVEL DATABASE INTERFACE

extensions. If the database was opened using an absolute or relative path name, that

path information is included.

number_index_files

[Requires that the database be open with write permission.] As discussed under the

data attribute current_index_file above, ODB maintains its data and indexes in

two groups of files. This value specifies the number of files in the index group. It can

only be affected by calling the add_index_file() method. The maximum value is

10.

number_object_files

[Requires that the database be open with write permission.] This attribute specifies

the number of object storage files in the database. The maximum value is 10, and

the actual value is affected by the add_object_file() method.

open

This value is true if the database is open for any access.

rwmode

[Requires that the database be open.] This member specifies the permissions string

specified when the database was opened. The specification ’rw’ will be used when

’w’ was used in the call to odb.open() since both reading and writing are permitted

in that mode.

3.5 OdbInstance Objects

OdbInstance objects represent individual objects from an ODB database. These objects

cannot be created directly, but must be provided by a member function of an OdbDatabase

object. The indexing operator and the new_object() method provide objects of this type

as result values. Several methods are provided to allow interrogation and update of the

object’s internal state, which corresponds directly to the contents of the physical database.

Update is only allowed if the parent database was opened in read/write mode and remains

37

CHAPTER 3. LOW-LEVEL DATABASE INTERFACE

open at the time of update.

3.5.1 OdbInstance Methods

field_data()

Return the current values of all fields as a list of lists. The top-level list contains a

single entry for each field ID in the class of the object. If the field has been deleted,

the entry for that field is None, otherwise it is a list of all values in the field. If a field

has no values but is not deleted from the class definition, the entry is an empty list,

[], not None.

has_field(name)

Determines if this object has a data field named by the given string value. Returns 1

if such a field exists, or 0 if it doesn’t.

store_data(data)

This method replaces all field values for an object except for the LINK fields. The

parameter data should receive a list of the same structure as that returned by the

field_data() method. A field_data() return value can be destructively modified

to provide the input to this method if desired: Since the result of the field_data()

method is returned as a list of lists, rather than tuples, replacing a single value in

the result structure is meaningful, and the modified structure may be passed to

store_data() to be updated in the database. Updating the structure will not create

any side effects, and will avoid having to re-build the entire structure.

3.5.2 OdbInstance Member Data

All data elements are read-only, and are provided to make available information regard-

ing the source of the object and the type of data it contains.

class_id

Returns a string identifying the class to which the data object belongs. This string

can be used in a call to the get_class_info() method of the parent database to get

38

CHAPTER 3. LOW-LEVEL DATABASE INTERFACE

additional information on the object’s class.

database

This is the parent OdbDatabase object. It is used extensively internally, and is avail-

able to the application as a read-only attribute to ease the use of multiple ODB

databases within a single application. Testing for identity of this attribute for different

OdbInstance objects can determine if both were extracted from the same database.

object_id

Returns the object ID of the object as a string. This may be used to retrieve the

object again in the future or to create an entry in the Change Dictionary defined in

module Delta.

39

Chapter 4

The Data Dictionary

Any effective database management system must provide some method of defining and

manipulating the structure of information stored in the database. The description of the

database contents and the relationships among the various entities is commonly called the

data dictionary. While the form of data in ODB databases is reasonably well defined by the

structures and field types provided by the base package, a great deal of information about

the structure is used by the applications using the system. A general tool for working

with ODB databases must provide access to and support manipulation of as much of this

information as possible.

The ODB package supports this by defining a mechanism by which database entities

may belong to certain classes of objects; each class provides a set of fields which may take

on values of restricted type and number. Every entity in an ODB database belongs to

exactly one class. The definition of a class may change over time, with fields being removed

or added to the class definition, or with the constraints placed on a field being changed.

These operations will not take place often with a database that is in production use, but

flexibility in evolving the database schema is very useful for any database application under

development, or for a database management system designed for highly dynamic systems.

The odb/Tools package provides access to all the facilities offered by the base ODB

package, and makes some additional operations normally available only through the odbms

administrators’ tool more readily available for use from within applications. No provision is

offered to extend the database beyond what the base package is able to manipulate normally,

so no new features are provided by odb/Tools but may be provided by applications as

needed.

40

CHAPTER 4. THE DATA DICTIONARY

4.1 Overview of the Data Dictionary Facilities

The underlying ODB library provides access to the data dictionary through a number of

functions which provide many useful operations on the dictionary but do not always present

a consistent interface or coding style. These functions are highly procedural. The odb/Tools

package provides an object oriented abstraction which operates at a slightly higher level,

retaining the ability to perform all the available operations on the dictionary.

The data dictionary allows the application to define classes, or types, of database entities.

Each entity can be constrained on the data fields it may contain and the type and number

of values each field may store. All classes must define at least one field, but the number

of fields which may be defined for each is constrained only by the word size of the host

environment and the size of virtual memory.

Class IDs and field names are sequences of lower case alphabetic characters, digits, and

the underscore. odb/Tools imposes the additional restriction that the first character in the

name not be numeric for fields accessed using the shorthand form of field access, as described

in Chapter 6, though the more general access method imposes no such restriction. There

is no maximal restriction on the length of class IDs or field names, but each name must

contain at least one character. Field names must be unique within the enclosing class, and

class IDs must be unique within the database.

Each field may hold values of a single type. Type identifiers are given as strings in

Python, and are not case sensitive. The defined type specifiers and descriptions of the

corresponding data requirements are given below.

’STRING’

String fields are the most general data values available in an ODB database. The

content is restricted only in that byte values of zero are not allowed: there are no

restrictions on the character set used beyond that, and the value may be arbitrary

binary data. Since zero byte values are not allowed in string data, a character set

which includes zero bytes, such as the 16-bit Unicode set [Uni91], may not be used.

41

CHAPTER 4. THE DATA DICTIONARY

However, multibyte character sets which do not include zero bytes are allowed. Popu-

lar multibyte sets which can be used with ODB include Shift-JIS [Wal94] and UTF-8

[Ted93].

’DATE’

These fields are handled as STRING fields within the ODB and the odb/Tools package,

but are used to store dates from the Gregorian calendar in the format yyyymmdd, where

yyyy is the year with the century specified, mm is the month, and dd is the day of the

month. Data in a DATE field is presented to the client code as a conventional string

in the host language (zero-terminated from C, or of type StringType in Python). It is

the responsibility of the application to format date information correctly. odb/Tools

will preserve application formatting of these fields, so an alternate format may be

used if appropriate.

’LINK’

The values of these fields represent a bi-directional relationship between two objects

in the database. Each object in the relation contains a LINK value referring to the

other. Special operations are provided to manipulate these values; simple assignment

semantics do not apply in the current implementation of odb/Tools. The values are

represented as tuples with the type (OBJECT ID, IntType). The string represen-

tation stored in the physical database contains an Object ID concatenated with an

ASCII ETX character (byte value 3) followed by a field ID represented as a decimal

number.

’OBJ-ID’

This type, representing an object ID, can be used to represent a uni-directional link.

No special support is provided for this type. The values of these fields are strings

representing the unique identifier of a database entity. No assumptions can be made

regarding the content of this data, but these values can be tested for equality using

the ‘==’ operator. Identity tests using the ‘is’ operator are not supported.

42

CHAPTER 4. THE DATA DICTIONARY

4.2 Introduction to the Classes

There are three classes which implement the data dictionary interface in odb/Tools. The

primary interface is defined by DataDictionary and is supplemented by ClassDefn and

FieldDefn. These classes are implemented in Python and use the odb module to query the

state of the dictionary and modify it as needed by the application. Each class is defined

in a separate module. In most cases, the application will not need to import any of these

directly, or instantiate a DataDictionary object. The Database class defines the method

DataDictionary which will supply a data dictionary with the permissions with which the

database is opened. When not accessing the odb module directly, this is the best method

to obtain a handle to the appropriate DataDictionary instance.

4.3 Common Methods

There are a number of methods which are shared by all three classes which form the

data dictionary interface. These methods are described below, rather than being repeated

for each class.

Flexibility(flex)

This method sets the new value of the flexibility setting to flex . Only the boolean

value 0 or 1 will be stored; the object passed in will not be held if not one of these

two values. The new value is returned.

Flexible()

This method returns whether the flexibility attribute is set for the object. Though only

methods of the FieldDefn object use this to modify their behavior, the attribute is in-

herited from each object’s parent in the data dictionary representation. The attribute

is false by default in the DataDictionary, but may be set using the Flexibility()

method, described above, to allow child objects to inherit this attribute.

Mutable()

This method returns true if update of the data dictionary through this object is

43

CHAPTER 4. THE DATA DICTIONARY

possible. Attempting to modify an object for which this method does not return a

true value causes a DataDictionary.DDError exception to be raised.

4.4 Odb module DataDictionary

The DataDictionary module defines operations on the entire data dictionary structure,

and allows individual classes to be accessed, as well as providing a facility for adding new

classes to an ODB database. The base level of access control on the data dictionary is

defined by this class as well.

Two top-level entries are made available in this module. The first is an exception used

by all modules which provide the data dictionary support, and the constructor for the

DataDictionary class.

DDError

This exception is used for all failures on the data dictionary objects created by

the constructor defined above, including errors in the related implementation classes

ClassDefn and FieldDefn. The associated value for this exception is always a string.

The exceptions TypeError and ValueError may be raised as well; refer to the docu-

mentation for each method for circumstances which raise each possible exception.

DataDictionary(odb_database [, rwmode])

The data dictionary itself is constructed from an OdbDatabase object to allow both

read- and write-access to the physical dictionary, as well as to improve efficiency and

eliminate complexity in the high-level Database class. The data dictionary object is

created as read-only unless both the database was opened with read/write permis-

sion and the rwmode parameter is specified with a true value. The data dictionary

will never be write-enabled if the corresponding database is read-only. Methods are

provided to query the permissions on the resulting DataDictionary object.

44

CHAPTER 4. THE DATA DICTIONARY

4.4.1 DataDictionary Methods

The data dictionary objects returned by the constructor DataDictionary() have several

methods to query and manipulate the structure of an ODB database. For each of the

methods below, attempting to modify the dictionary of a read-only database causes the

DataDictionary.DDError exception to be raised with a string as an associated value.

AddClass(class_id [, name [, other_info]])

New class definitions may be added to the database with this method. If Mutable()

is true of this database and class_id represents a unique, unused class ID, a new

ClassDefn object is created and returned to the user. The new class definition is

different from other ClassDefn objects in that full flexibility to manipulate the def-

inition is enabled. See section 4.5 for more information about full flexibility. The

optional name and other_info parameters default to empty strings.

Class(class_id)

Definition objects for individual objects may be retrieved using this method. The

class_id parameter should contain the abbreviated class ID; the class name is not

usable since it is not required to be unique across a database. The class ID must be a

string containing no upper case alphabetic characters. The definition object returned

is an instance of the ClassDefn class defined below. The returned object will inherit

the access permissions of the parent database. This method will raise a TypeError if

class_id is not a string, and a DDError if the class ID requested does not represent

some class in the database.

Classes()

This method returns a list of all classes defined in the database. Each entry in the

list is a class ID string which may be used to return a definition object for the corre-

sponding class using the Class() method of the dictionary. This method never raises

an exception.

45

CHAPTER 4. THE DATA DICTIONARY

HasClass(class_id)

The HasClass() method determines if a particular class ID is used by the database,

returning a true value if the ID has already been assigned. This method will only

raise TypeError if the class_id is not a string.

4.5 Odb module ClassDefn

The ClassDefn module provides access to information concerning an entity class in an

ODB database. There is only one new public object defined in this module. This is the con-

structor for ClassDefn objects, and should normally only be called by the DataDictionary

object methods.

ClassDefn(datadict, class_id)

The ClassDefn constructor takes the parent DataDictionary object and the class

ID string as parameters. The resulting class definition inherits the dictionary’s access

permissions and flexibility setting. Calling the constructor directly will fail with a

DataDictionary.DDError exception.

The flexibility setting of a class definition is largely a topic dealt with internally to the

classes which implement the data dictionary; the user should never care about it. The

only classes for which the setting has any meaning are the ClassDefn and FieldDefn

classes, which normally just inherit the setting from their parent. The setting is always

false for DataDictionary instances as currently implemented. Newly created class and field

definitions will be granted “flexibility” to make changes to themselves which would allow the

potential invalidation of database objects were any in the database. While it is impossible

to completely protect the database from hostile updates to the data dictionary, this makes

such changes harder to bring about accidentally. The Flexible() and Flexibility()

methods, described in Section 4.3, are used to query and manipulate the flexibility setting.

The class definition object returned by a call to DataDictionary.AddClass() will re-

ceive the flexibility attribute from the parent data dictionary.

46

CHAPTER 4. THE DATA DICTIONARY

4.5.1 ClassDefn Methods

AddField(name [, ftype [, min, max]])

New field definitions may be added to the database with this method. The new field

will be automatically assigned a field ID and given the name specified by name. The

initial type of the field is STRING if another type is not specified in ftype, and there

may be exactly one value in the field unless the min and max values are specified.

The minimum number of values, if specified, must be a non-negative integer, and the

maximum number of values must be a positive integer or None. The None value is

used to indicate that there is no upper limit on the number of values assigned to the

field. An instance of the FieldDefn class is returned to represent the field and allow

update. The new field definition object is given the flexibility attribute described

above; details of behavioral changes are given with the descriptions of the FieldDefn

methods affected. Creating a LINK field may only be done by calling this method

to create a field; a field may not become a LINK after creation, nor may it loose

this status. Refer to the documentation for the FieldDefn.Type() method for more

information on field type manipulations.

AlternativeID([new_id])

The alternative ID of an entity class provides a numeric alternative to the class ID

string normally used to identify a class. The alternative ID must be a non-negative

integer and is required to be unique within a database. Calling this method with an

empty parameter list returns the current value of the alternative ID. Passing a single

parameter of the required type sets the value if uniqueness is maintained and returns

the new value. If the requested ID is already in use by another class in the database,

a DataDictionary.DDError exception is raised.

Field(field_name)

Definition objects for individual fields may be retrieved using this method. The

field_name parameter should contain the numeric field identifier or the field name

47

CHAPTER 4. THE DATA DICTIONARY

as a string. Both of these attributes are unique within a class definition. The field

name is considered the “normal” value to be passed in, since it is an effective way to

access the field and allows more readable code. For interactive applications, this is

most likely the information the user is able to supply.

Fields()

This method returns a list of all field names defined within the class. Each entry in the

list is a string which may be used to return a definition object for the corresponding

class using the Field() method of the class definition. This method never raises an

exception.

HasField(field_name)

The HasField() method determines if a particular field name is used by the class,

returning a true value if the name has already been assigned. This method will only

raise TypeError if the field_name is not a string.

ID()

This method returns the ID string of the class. There is no way to set this ID once

the class has been created using DataDictionary.AddClass().

Name([new_name])

Each entity class has a name, typically used to indicated in human-readable form

the class of external objects represented by entities of that class. The names are

not assured to be unique across the database, but are useful for associating database

entities with real-world counterparts. Calling this method with no parameter returns

the name of the class. Invoking it with a single string parameter sets the class name

and returns the new value.

OtherInfo([new_info])

Each class defined in an ODB database allows a string value to be added to the class

definition. This field is not used by the database library, but is maintained to allow

information to be appended if needed. The value has the same restriction that all

string values do under ODB: that no zero bytes be part of the string data. This

48

CHAPTER 4. THE DATA DICTIONARY

method allows odb/Tools applications to query and set the value of this field. Calling

this with no parameters returns the current value of this field, and providing a string

parameter sets the value and returns the new value.

4.6 Odb module FieldDefn

The FieldDefn module provides access to information concerning a field of an entity

class in an ODB database. As with the ClassDefn module, here is only one new public

object defined here. This is the constructor for FieldDefn objects, and should normally

only be called by the ClassDefn object methods.

FieldDefn(classdefn, field_id)

The FieldDefn constructor takes the parent ClassDefn object and the field ID num-

ber as parameters. The resulting field definition inherits the dictionary’s access

permissions and flexibility setting. Calling the constructor directly will fail with a

DataDictionary.DDError exception.

The flexibility setting of a field definition is used to allow the field to be modified in ways

that increase the restrictions placed on the field. Normally, only operations which decrease

the restrictions placed on a field are permitted. Each method below details the effect of

the flexibility setting on their operation. The methods Flexible() and Flexibility(),

described in Section 4.3, may be used to query and manipulate this setting if necessary.

4.6.1 FieldDefn Methods

ID()

This method returns the numeric ID of the field. There is no way to set this ID once

the class has been created using ClassDefn.AddField().

Max([new_max])

Returns the maximum number of values allowed in the field when called with no

parameters. If new_max is provided, that value must be either a positive integer or

49

CHAPTER 4. THE DATA DICTIONARY

None. The return value is the value after any changes have been made.

The flexibility attribute assigned at the creation of the FieldDefn object is used to

determine the range of possible new values. The default, without flexibility, is from

the current setting through the “no limit” value symbolized by None. With flexibility

enabled, any positive integer will be accepted, as well as the None value. This prevents

the invalidation of existing database objects by reducing the number of allowed values

in the field below the number already stored.

Min([new_min])

In a fashion similar to that of the Max() method described above, the Min() method

provides access to the minimum number of field values allowed. Calling this method

without any parameter returns the current value, which will always be a non-negative

integer. Providing a positive integer as a parameter sets the value of the attribute.

This value must be explicit; there is no semantic equivalent of the None value used

with the Max() method. The new value is returned.

As with Max(), the flexibility attribute affects the range of permissible values. Without

flexibility, the range extends from zero to the current setting. This is done to prevent

increasing the minimum number of field values beyond that available in the database.

With flexibility enabled, any integer value less than or equal to the maximum number

of values is allowed.

Name([new_name])

Each class field has a name which is normally used to access it. Unlike class names,

field names are unique within the enclosing object (the class). Calling this method

with no parameter returns the name of the field. Invoking it with a single string

parameter sets the field name and returns the new value if the new value is unique.

If not, the DataDictionary.DDError exception is raised.

Range([new_min, new_max])

This method, when called with no parameters, returns the tuple (Min(), Max()).

50

CHAPTER 4. THE DATA DICTIONARY

With two parameters, each is interpreted as described for the parameters of the same

names in the methods Min() and Max(). All rules for the allowable changes hold as

specified for those methods, including the effects of the flexibility setting.

Type([typespec])

The data type of the field may be determined by calling this method with no pa-

rameters. The string value returned is one of the type identifiers described above.

Calling this method with a single string field type identifier sets the type of the field

for read/write databases. The only restriction is that fields may not be changed to

or from the LINK type. Any attempt to do so will raise a DataDictionary.DDError

exception. The flexibility setting does not affect this operation in any way. Of those

type changes which are allowed, no attempt is made to alter the data of the field

values in the database entities; this remains the responsibility of the application.

51

Chapter 5

Accessing the Database

The odb module, discussed above, provides only a minimalist’s interface to the capa-

bilities of the ODB database library. While the functions of the library are accessible, if

indirectly, there is no real improvement over the base library. This module, in conjunction

with the DataDictionary class discussed in an earlier chapter, offers a much more robust

and effective interface for the object-oriented application.

5.1 Odb module Database

As with other high-level modules in the odb/Tools package, this module provides an

object class and an exception which is raised on certain error conditions. The class is used

to represent a complete database, but does not provide direct manipulation of the data

dictionary.

Database(name [, rwmode [, filemode]])

This is the primary point of access to an ODB database for application programmers.

This class is responsible for providing a Python object representation of the database

over the odb module, providing better object-oriented support for the database as a

whole. The name parameter should be the base name for the database, excluding any

file name extension and including any needed relative or absolute path specification.

The optional rwmode parameter is used to specify whether the database should be

opened in read-only mode or should allow update; the default value is read-only. Valid

mode specifies include ’r’ for read-only mode and code’rw’ and ’w’, both indicating

read-write mode. The specifier ’c’ indicates that the database should be created if

52

CHAPTER 5. ACCESSING THE DATABASE

it doesn’t exist and opened for update. The last specifier, ’n’, indicates that the

database should be reset to empty or created if it doesn’t already exist, and then

opened for reading and writing. The third parameter, filemode, is used to specify the

access control permissions used to create new database files when needed. The default

value is 0666 masked by the user’s current setting for umask(2).

DatabaseError

This exception is used to indicate failures specific to the database. The associated

values for this exception are strings describing the cause or type of failure. Specific

circumstances under which this exception is raised are detailed by the various methods

of the Database class.

5.1.1 Database Methods

The Database class provides access to most of the general facilities of the ODB library.

Since such a large portion of the functionality is made available through this class, the

methods will be divided into functional groups in the list of method definitions which

follows.

General Methods

AddIndexFile()

This method mirrors the add_index_file() method of the OdbDatabase object, al-

lowing the addition of new index files to the database. If successful, the method re-

turns the number of index files in the database, otherwise an exception is thrown.

If the database was opened without write permission, the exception raised is

DatabaseError, else the exception may be odb.error, indicating that the limit on in-

dex files has been reached, or IOError, indicating that the GDBM library was not able

to create the new file. For all exceptions, the associated value is a string describing the

failure. Successful completion does not install the new file as the default in which new

index entries are stored; that can only be affected by setting the current_index_file

53

CHAPTER 5. ACCESSING THE DATABASE

member variable.

AddObjectFile()

In a manner similar to the AddIndexFile() method described above, this method

affects the number of files used to store object data in the database. When successful,

this method adds a data file in which entity data is stored in the database. The

exceptions raised match those described for AddIndexFile() exactly; refer to that

description for details. On success, the return value is an integer giving the number of

object files currently available for the database. The new file is not made the default

for storing new object instances; the current_object_file member variable must be

used to control that setting.

Close()

This method performs an implicit Rollback() and closes the database, preventing

any further use of derived objects and discarding all changes made since the database

was opened or the most recent Commit() was executed.

Commit()

As with all database management systems, there must be some method by which

the end of a transaction may be designated. With odb/Tools, this takes the form

of executing this Commit() method to terminate the current transaction and accept

the changes stored in the change dictionary. Refer to the Rollback() method for

information on not accepting changes.

DataDictionary()

The data dictionary of a database opened using this class cannot be created directly

using the DataDictionary() constructor since the corresponding OdbDatabase object

is not available. This method allows the data dictionary to be made available. The

DataDictionary object returned has the same permissions as the database: if the

database is opened with write permission, the data dictionary may be manipulated as

well as interrogated. Data dictionary changes are not stored in the data dictionary, but

take affect immediately. Multiple calls to this method will return the same instance of

54

CHAPTER 5. ACCESSING THE DATABASE

the data dictionary, so it is safe to use in the face of changes made to the dictionary.

Mutable()

This method returns true if the database was opened in a mode allowing updates.

The modes passed to the constructor which open a mutable database include ’c’,

’n’, ’rw’, and ’w’.

Rollback()

The Rollback()method performs the counterpart operation of the Commit() method,

reseting the change dictionary and related state information regarding changes made

to the set of database entities in the database. The database will hold the same data

after calling this method as it did before either the most recent call to Commit() or

the opening of the database, whichever came last. Changes to the data dictionary or

the indexes are not affected by this method; only changes to entity data.

Entity Handling Methods

[object_id]

If the object specified by object_id exists in the database, this will retrieve it. The

class of the object returned is determined by the access permissions on the database.

If the database is opened read-only, an ObjectInstance is returned, otherwise an

ObjectIndirect is returned. Both of these classes support the object protocol, so

there should be no affect on application code, unless the ability to modify an object

is assumed.

has_key(object_id)

The Database objects behave in some ways like a Python dictionary object in how

data is extracted from the database. The has_key() method has exactly the same

semantics as it does for the built-in dictionaries. Given a string argument, this method

returns true if the string is a valid object ID in the database, whether the object

identified by the string exists in the physical database or is a new object created by

NewObject() but not yet stored by a Commit() operation. For all other values of

55

CHAPTER 5. ACCESSING THE DATABASE

object_id, this method returns a false value.

keys()

This method also emulates the method of the same name on built-in dictionaries.

A list of all valid object IDs for this database is returned. Note that the related

methods of the built-in dictionaries, items() and values(), are not implemented for

the Database class to avoid exhaustion of memory resources.

NewObject(class_id)

The NewObject() method creates a new object in the database with the object

class specified by class_id. If class_id is not a valid class ID for the database, a

DataDictionary.DDError exception is raised. If successful, a new object is returned

of the specified class as an ObjectIndirect instance. The new object will have no

data associated with it until the application adds it. This implies that the object

cannot be saved during a Commit() operation until at least minimal data required by

the entity class has been provided.

RemoveObject(object_or_id)

This method deletes an object from the dictionary. Links to related objects are

removed as well. If no object exists in the database which corresponds to the object ID

passed in, or if the object passed in does not belong to this database, a DatabaseError

exception is raised.

5.1.2 Database Member Data

The Database class offers several data elements which may be used to gain information

about the database being manipulated. These elements all mirror elements of the underlying

OdbDatabase object, and provide the same forms of access with identical semantics. This

list is provided here for completeness.

closed

This value is false if the database is open for any form of access, otherwise it is true.

56

CHAPTER 5. ACCESSING THE DATABASE

current_index_file

The ODB allows each database to have multiple files for the storage of indexes and

data objects (the two uses of files are distinct, and the data does not share files with

the indexes). Within each group of files, one file is considered current, and is the

location in which all new records of that form are stored. This data attribute records

the setting of the current file in the index file group, and allows the application to

adjust this value as well. The integer in this attribute for the database db is in the

range 0 ... db.number_index_files - 1. Attempting to set this to a value outside

that range or to a non-integer raises a ValueError exception. If an error occurs

recording this information in the database, an IOError exception is raised. Since

adjusting the current file for the index and object groups is not automatic under

ODB, manipulation of this setting should be considered an administrative operation.

The database must be open for a reference to this variable to be valid, and update is

only permitted if the database is open with write permission.

current_object_file

This attribute performs in a manner identical to that

defined for current_index_file, but for the object file group. The legal range of

integer values is 0 ... db.number_object_files for database db. The database must

be open for a reference to this variable to be valid, and update is only permitted if

the database is open with write permission.

filemode

This member variable records the filemode requested when the database was opened.

If none was specified, the default value (0666) is returned.

name

This attribute holds the base value of the current database, excluding any filename

extensions. If the database was opened using an absolute or relative path name, that

path information is included.

57

CHAPTER 5. ACCESSING THE DATABASE

number_index_files

This attribute specifies the number of index storage files in the database. The maxi-

mum value is given by odb.MAX_NUMBER_INDEX_FILES, and the actual value is affected

by the AddIndexFile() method. This variable is read-only and requires the database

to be open.

number_object_files

This attribute specifies the number of object storage files in the database. The max-

imum value is given by odb.MAX_NUMBER_OBJECT_FILES, and the actual value is af-

fected by the AddObjectFile() method. This variable is read-only and requires the

database to be open.

open

This value is true if the database is open for any access.

rwmode

This member specifies the permissions string specified when the database was opened.

The specification ’rw’ will be used when ’w’ was used in the call to odb.open()

since both reading and writing are permitted in that mode. The only difference

between rwmode on a Database instance and an OdbDatabase instance is that

Database.rwmode supports and may evaluate to the ’c’ and ’n’ access specifiers.

Refer to the documentation on the Database() constructor for information on these

specifiers. This variable is read-only and requires the database to be open.

58

Chapter 6

The Object Protocol

The odb/Tools package includes several objects which provide an interface which makes

them look and act like objects from the database. This interface is called the Object Protocol.

Restricting general access to an object to the methods defined by this interface allows an

application to operate effectively regardless of the underlying object layers. This protocol

has been used to provide an interface to the actual database objects, to elements in the

Change Dictionary, and to various proxy objects used at various points.

This protocol is ensured to operate on all program objects produced by the Python

support interface to the ODB database library. When the specifications set forth below are

consistently adhered to, each object supporting the protocol is ensured to be maintained

correctly without introducing data integrity or program failure. Objects which are read-

only will correctly maintain their state, and read/write objects will ensure that all program

objects representing the same database entity will report the correct state.

A second protocol, named the Field Protocol, defines the public interface to the objects

representing individual fields within objects. This is required in order to handle fields with

the same transparency as the Object Protocol allows for objects.

There are two important points to keep in mind when working with objects supporting

the protocols. Though all supporting objects support the same protocols and provide the

same effective semantics for each method defined by the protocols, the implementations of

these methods may vary significantly in operation, and can have side affects which affect

future operation of the objects.

For example, if an object represents a change record from an object in the physical

database, data which is not part of the delta may not be available. If a value was appended

59

CHAPTER 6. THE OBJECT PROTOCOL

to a field, the initial values are not defined for the delta object. Fields which have not

changed may not be represented at all, but may be added dynamically when referenced.

The protocol defines means by which availability of data can be determined to ensure that

behaviors may be predicted or handled meaningfully given the application does not make

assumptions but is willing to query the state of an object before performing operations.

The second point to remember is that the OdbInstance objects defined in the low-level

support for the ODB library interface are not intended for general use and do not support

this protocol.

6.1 Object Protocol Methods

The Object Protocol is defined by a set of methods provided by objects supporting the

interface. These methods are defined in this section.

ClassID()

This method returns a string naming the class ID for the database entity the object

represents. It is ensured to be a valid ID. No additional information about the class

should be considered valid if derived from the object providing this ID, with the sole

exception that field names returned by the Fields() method, defined below, will be

valid field names for the given class. Canonical information regarding a class can only

be retrieved from DataDictionary objects.

Field(name)

The Field() method is a generalization of the shorter access method described below

for retrieving individual fields from the object. Though the short-hand method is

expected to be the most-used mechanism due to the brevity and clarity of the no-

tation, it does restrict field names to conform to the naming conventions of Python

identifiers. This access method imposes no such restrictions, and allows any legal field

name permitted with the ODB library, including field names that embed punctuation

and whitespace. Only the ObjectProtocol class needs to implement this method;

60

CHAPTER 6. THE OBJECT PROTOCOL

derivative classes need only define the __getattr__() discipline, as described below.

Fields()

Returns a list of the names of all data fields present in the object. This does not

indicate that data is available for all fields named in the list. Fields may exist in the

class of the object without being present in the list. Inclusion signifies that the field

name holds meaning for the object in its current state.

HasField(field_name)

The HasField() method returns a truth value indicating whether a field named by

field_name exists in the object. The expression ob.HasField(field_name) is defined

to be equivalent to the expression field_name in ob.Fields(). A false value does

not indicate that field_name is not a valid field name in the object’s class.

ObjectID()

This method returns the object ID of the object.

Mutable()

This method returns a true value if the object may be modified in any way. All objects

are readable.

field_name

A reference to a field name will return a representation of the field, with operations

appropriate to the semantics of the generating object. If the protocol-compliant object

is read-only, modifying the field representation will either raise an exception or be inef-

fective at changing the state of the database entity. A read/write object will generate

a representation which will propagate changes to the base entity. This method of ac-

cessing an individual field is considered a short-hand form of the Field() method. For

any given object obj , the expressions obj.field_name and obj.Field(’field_name’)

are identical when field_name is a valid Python identifier. When the field name is not

a valid identifier, the Field() method must be used to access the field representation.

This aspect of Object Protocol behavior must be implemented through the standard

__getattr__() and __setattr__() disciplines. Recall that field names of ODB en-

61

CHAPTER 6. THE OBJECT PROTOCOL

tities must be in lower case; the behavior of these methods is allowed to vary for any

attribute name which is contains upper-case characters and, therefore, is not a poten-

tial field name. If the name is potentially valid, the object must define an appropriate

behavior or throw a DataDictionary.DDError exception. The associated value of

the exception is not defined or restricted, and should be meaningful to allow debug-

ging of client code. Exception values must be documented by the protocol provider

in the __getattr__() discipline’s __doc__ attribute as well as in other published

documentation.

6.1.1 Supporting Objects

The objects listed here support the protocol. Each provides a definition of the interface

which implements the appropriate meaning of the methods to provide conformance and

data integrity in the context of their functional specifications.

ObjectProtocol()

This is the base class which provides the default Object Protocol implementation.

Each subclass which supports the protocol should inherit this class or one of its de-

scendents, and override the various methods as appropriate. Refer to the source code

for details on which methods need to be overridden or supplemented, and which can

be considered complete. This class should not be instantiated.

ObjectDelta()

This object represents the changes to an individual object in the database. The

original data is not maintained and is not available in objects of this class.

ObjectIndirect()

The Database class provides an interface to an ODB database buffered by a

change dictionary object when the database is opened in read/write mode. The

ObjectIndirect class provides an interface which directs updates to the change dic-

tionary to allow a delayed commit or rollback action to take place. This object

provides a composition of a single pair of ObjectInstance and ObjectDelta objects.

62

CHAPTER 6. THE OBJECT PROTOCOL

ObjectInstance()

The base client-level interface to database entity objects from the ODB database is

implemented in this object. This object provides an implementation directly bound

to the database entity. These objects are always read-only as the data they contain

never changes. Database update is handled by the Database.Commit() method and

the Change Dictionary.

6.2 Field Protocol Methods

The Field Protocol is defined by a set of methods provided by objects supporting the

interface. These methods are defined in this section, and correspond directly to standard

Python operations on mapping objects, of which all ODB field objects are a form. A

number of additional methods are provided as well. Note that the __len__() discipline is

implemented by all supporting objects. This allows the standard Python len() function to

operate meaningfully on all field objects.

append(new_value)

The append method acts as does the method of the same name for Python’s built-in

list objects. For read/write objects, the new_value is appended to the list of values

with an index one higher than the highest existing index. If the field object is read-

only, an exception of type Database.DatabaseError is raised.

FieldID()

This function returns the numeric ID of the field this object represents. Information

about the field can then be retrieved from a DataDictionary object associated with

the parent database. The information need not be provided by the field object.

has_key(index)

This method returns true if the non-negative integer corresponds to a value entry in

the field object, otherwise, false is returned.

63

CHAPTER 6. THE OBJECT PROTOCOL

items()

The return value of this method consists of a list of (key, value) pairs, with a pair

included in the list for each element of the return value of the keys() method. The

keys are sorted in ascending order.

keys()

The list of valid field value indexes is returned by this method. The list may be

empty. For instance, if an object obj in the database has three values in the ’name’

field, the expression obj.name.keys() evaluates to [0, 1, 2]. Similarly, if obj is

a FieldDelta instance with one value, the same expression may evaluate to [12] if

that value is to become the thirteenth entry in the database.

LinkTo(target_field)

Links between objects are created with this method. A link is formed between the

parent object of this field and the object of the target field, using these fields as

endpoints, thereby defining a relationship between the objects. Both fields are type

checked to be of type LINK, and existing links which are identical to the new link

are not replaced. This method raises a Database.DatabaseError exception in classes

which are read-only or are not equipped with access to verify the integrity of the link.

For fields not of type LINK, a DataDictionary.DDError exception is raised.

Mutable()

This method returns a true value if the field values may be modified in any way. All

field objects are readable.

ObjectID()

This method returns the object ID of the parent object.

RemoveLinkTo(target_field)

The RemoveLinkTo() method is the inverse of the LinkTo() method: it removes a

link from one field to another. Both the source and target fields are type checked,

and the link they represent is verified to exist. If either field is not of type

’LINK’, a DataDictionary.DDError exception is raised. If the link does not exist, a

64

CHAPTER 6. THE OBJECT PROTOCOL

Database.DatabaseError exception is raised.

values()

This method returns a list of just the values in the field, in the same order as the

corresponding indices from the keys() method. Essentially, the keys() and values()

methods provide the “sides” of the tuples returned by items().

[index]

Indexing notation is used to retrieve individual elements from a field representa-

tion. The index must be a non-negative integer represented in the return value of

keys(); if it is not, an IndexError exception is raised. The __getitem__() disci-

pline must be used to implement this. For field objects with write permission, the

__setitem__() discipline must be implemented to allow assignment to index expres-

sions (i.e., ‘obj.name[index] = ’new value’’). For read-only objects, defined failure

semantics must be provided and documented.

Using the generalized disciplines allows access to field values to be fairly transparent

for both reading and writing values. The following example stores the old value of a

field entry and stores a new value in its place.

’db’ is an open database with write-permission.

#

obj = db[’oid’]

old_name = obj.last_name[0]

obj.last_name[0] = ’Drake’

6.2.1 Supporting Objects

FieldProtocol(...)

This is the definitive implementation, providing a common base which other support-

ing classes should inherit from even if all method implementations are being replaced.

It holds the same relationship to the Field Protocol that the ObjectProtocol class

does to the Object Protocol. Source comments indicate which methods must be over-

ridden and which should never be overridden. Many methods may be overridden to

65

CHAPTER 6. THE OBJECT PROTOCOL

provide performance benefits.

FieldDelta(...)

The Change Dictionary must represent the fields of an object in a dynamic form while

maintaining transparency. These objects may be created any time a database entity

is referenced, including through the ObjectIndirect and FieldIndirect objects.

These objects will allow assignments to non-existent field value positions. For example,

if the keys() method evaluates to [0, 1], assignment to field[2] is legal, and after

which keys() evaluates to [0, 1, 2].

FieldIndirect(...)

This object is produced by the Database class when an object from a read/write

database is requested. It functions by composing two other Field Protocol providers

and dispatching operations appropriately.

FieldInstance(...)

The FieldInstance class is used to define read-only objects directly from the OdbIn-

stance objects generated from the physical database. These objects are read-only to

protect the database from inadvertent change, causing updates to be directed to the

Change Dictionary through the FieldIndirect class.

6.2.2 Iterating Over Field Values

There are two different ways to approach iterating of all the values of a field, each with

multiple expressions which can be used to implement them. All of these use a ‘for’ loop

to handle dispatching each field value to the operation being performed, and have quite

similar structure. The most general mechanism is to use the items(), keys(), or values()

methods explicitly:

for key, value in obj.field.items():

print ’db[’ + obj.ObjectID() + ’].field[’ + ‘key‘ + ’] =’, value

In this example, the items() method returns a list of two-element tuples, each consisting

of an index and the field value at that index. Using two variables to hold the loop value

66

CHAPTER 6. THE OBJECT PROTOCOL

forces the tuple to be split, with each variable receiving one value on each iteration through

the loop. For each value with a valid entry, the loop prints a statement of the value. If

the key() or values() methods were used, there could only be one loop variable, since the

elements of the lists those methods returns are not tuples, and cannot be split.

The implicit approach to iteration over field values can also be effective, but is only

recommended for objects which have not been modified, such as those extracted from a read-

only database. This mechanism operated in much the same way, but imposes a restriction

due to the use of Python’s internal list iteration structures. Here’s an example performing

an equivalent operation as the previous code snippet, but using the alternate expression:

key = 0

for value in obj.field:

print ’db[’ + obj.ObjectID() + ’].field[’ + ‘key‘ + ’] =’, value

key = key + 1

There are two aspects of this example which are immediately notable. There can only

be one loop variable since the values pulled from the implied list are individual values,

not tuples. Also, there is no explicit list expression following the field name; the “list”

which is implied is the field object itself. A brief explanation of the implied list is in order.

Each time the Python interpreter evaluates a for var... in expr: statement, it does so

by subscripting the value of expr by an integer starting at zero and incremented by one

each time through the loop. The loop terminates when an IndexError is raised. This

error is masked by the interpreter, and the loop terminates. All other exceptions are passed

on to the running application. For a list object, valid subscripts are always zero through

len(list) - 1. For a Field Protocol object, however, this is not necessarily the case; indexes

may be skipped. For instance, if obj.field.keys() yields [0, 1, 3], indicating that a

value with index 2 existed but has been deleted, the example above might yield the output:

db[’oid’].field[0] = This is the first value.

db[’oid’].field[1] = And this is the second.

Note that the value for db[’oid’].field[3] is suspiciously absent; this is because the

evaluation of obj.field[2] raises an IndexError, terminating the for loop. For unchanged

67

CHAPTER 6. THE OBJECT PROTOCOL

objects, we know this problem will not occur, since the set of keys any field will be contiguous

and start at zero when extracted from the database. Remember that an empty string may

be the actual value, so do not confuse that with the lack of a value.

68

Chapter 7

Iteration and Traversal Mechanisms

In building database applications, there are a number of functions which are used in

manipulating the database above and beyond simply updating the data or creating or

removing entities. In particular, we must be able to iterate over the data, or traverse

the database. Since these are such common and general operations, we should be able to

generalize them effectively. These chapter discusses the object classes provided to support

these mechanisms and useful programming idioms which enable the programmer to use the

efficiently.

There are two important aspects of traversing a database, whether it be a simple sequen-

tial iteration or a more elaborate mechanism. These basic components are the underlying

traversal mechanism itself and the means to make decisions, either to determine the path to

take through a database or which entities are selected as input to some operation. Within

the context of the odb/Tools, these components are called Iterators and Predicates, and

are implemented as a set of classes which maintain various elements of state and perform

independent actions. This chapter will discuss the Iterators, and the next will discuss Pred-

icates, which will be introduced here only enough to explain the interaction between these

two components.

7.1 Iterators Module

odb/Tools provides two fundamental iteration mechanisms which may be combined if

needed to form more complex traversals of the database. The two basic mechanisms pro-

vided are controlled by two classes, named FlatIterator and DepthIterator. The former

69

CHAPTER 7. ITERATION AND TRAVERSAL MECHANISMS

provides sequential access to all entities in the database, and the later provides a depth-wise

traversal across all LINK fields in a connected component of the database starting at a single

node. Combining the two mechanisms can allow a depth-first traversal of all components

in the database.

With only these two mechanisms, only limited encapsulation is achieved for sub-setting

the database at a high level. There remains a need to select a subset of the result of each

traversal to allow operations to be readily mapped to the portions of the database to which

they apply. This selection mechanism is provided by a set of predicates which are used to

determine which nodes to include in the result of the traversal process. The predicates are

described in detail in the following chapter, which also includes information on creating new

predicates to supply application-specific functionality. For the remainder of this chapter,

it is sufficient to know that selection predicates are used to determine which nodes are

included in the result set, and that they can have side affects in the global context.

Depth-first traversals require additional treatment as well. Where selection predicates

determine which nodes are selected for inclusion in an iteration, a method is needed to

determine which links between entities are traversed. A similar mechanism, using objects

called traversal predicates, has been established to satisfy the requirement for such a fa-

cility. These predicates receive information regarding the type of node at each endpoint,

and which fields within each are used to establish the link. As with selection predicates,

these predicates be create global side affects. Detailed information on the defined traversal

predicates and on extending the set of predicates is available in the following chapter.

7.2 Sequential Iteration

A single iteration primitive is provided to pass over all entities in the database without

regard for the structure of links between the various entities.

FlatIterator(database [, selector])

Construct a sequential iterator on the database object database, using the selection

70

CHAPTER 7. ITERATION AND TRAVERSAL MECHANISMS

predicate specified by selector. If not predicate is specified, all entities will be selected.

The object constructed responds to simple subscripting operations, though not slices,

and should be used as the source object in a ‘for’ loop. Explicit use of the subscript

operator (‘iter[5]’), but is unlikely to be useful. Indexing by a non-integer raises

a TypeError exception, and a value which is out of bounds causes an IndexError

exception.

FlatIterators are simple objects with little to offer other than the act of iteration, but

provide for this aspect of handling a database quite effectively. For example, many typical

applications will use segments similar to the following:

from Database import Database

from Iterators import FlatIterator

db = Database(’name’, ’r’)

pred = create_my_selector()

iter = FlatIterator(db, pred)

for obj in iter:

perform_operation(obj)

Other constructs which work with general sequences typically may be used with iterators

as well, and are especially intuitive with the FlatIterator objects. For instance, the

following code fragment creates a list of all the class IDs used in a database, with one entry

in the list for each entity in the database. Sorting the list allows a little more code to

determine how many entities in the database are of each class.

list = map(lambda obj: obj.ClassID(), FlatIterator(db))

list.sort()

while list:

cls = list[0]

list.reverse()

pos = list.index(cls)

list.reverse()

num = len(list) - pos

print num, ’instances of class "’ + cls + ’"’

del list[0:num]

71

CHAPTER 7. ITERATION AND TRAVERSAL MECHANISMS

Fortunately, there are better ways of doing this. See the CountPredicate example in

Section 8.3.2 for a way to do something very similar in a more general way.

7.3 Depth-first Traversal

The second primitive iteration allows the programmer to perform a depth-first search

starting from a particular node. This allows a subgraph of the database to be explored

based on the relationships formed by the values of the link fields present in the search root

and connected nodes.

DepthIterator(database, start [, selector = None [, traversal = None]])

Construct an iterator object which responds to subscripting operations to provide

access to each object found matching the selector specified by selector. If selector

is not specified, all entities are selected. The traversal parameter is used to control

which links are followed. This parameter must be omitted or be a traversal predicate

as described in the following chapter. If omitted, all links are traversed. The predicates

determine which links are followed based on the type of relationship indicated by the

link. The relationship is specified using the class and field definitions of each end of

the link.

Iterators constructed using this class can visit all database entities in a connected com-

ponent of the database graph. Since the root from which the traversal proceeds is specified,

the root is not visited as the first node; links are simply traversed from the root. Any

operations which must be applied to the root should be applied prior to traversal, after the

traversal, or as a result of the root being reached during the traversal. To ensure that a

node of the graph is only visited once, the selection predicate AcceptOnce is provided. This

predicate is described in the following chapter.

It is important to note that the iterators created with this class reach only a single

connected component of the database. To visit each node in all connected components, two

iterators should be active: one to provide complete coverage of the database, and one to

72

CHAPTER 7. ITERATION AND TRAVERSAL MECHANISMS

descend into each subgraph. The following code fragment demonstrates this technique. A

FlatIterator is used to ensure that all components are visited, and a DepthIterator is

created to traverse each component.

from Database import Database

from Iterators import FlatIterator, DepthIterator

from Predicates import AcceptOnce

db = Database(’database’, ’r’)

once = AcceptOnce()

flat = FlatIterator(db, once)

for obj in flat:

do_root_activity(obj)

for dep in DepthIterator(db, obj, once):

do_other_activity(dep)

7.4 Using Iterators Efficiently

Often, a database operation requires that some statistic be collected on the portion of

the database to be operated on in order to make decisions regarding the operation to be

performed. The operation, in this case, can only be carried out after the statistic has been

collected. odb/Tools iterators support this model of working very effectively. By storing

the iterator in a variable, the entire sequence of selected database entities may be re-used

without performing a new selection operation or requiring the programmer to record the

sequence of object IDs during the traversal. Consider the following fragment.

import Database, Iterators, Predicates

db = Database.Database(’mydata’, ’rw’)

pred = Predicates.ObjectIsClass(’dc’)

iter = Iterators.FlatIterator(db, pred)

for obj in iter:

collect_statistic()

if some_condition():

73

CHAPTER 7. ITERATION AND TRAVERSAL MECHANISMS

this does not do a new search:

for obj in iter:

do_some_operation()

The function collect_statistic() can collect information and measure some attribute

of the database. The function some_condition() can query some condition based on the

information collected during the first iteration and return a boolean value. If that condition

is true, the second iteration is executed without performing the original search a second time:

the original results have been stored in the iterator for efficient re-use.

74

Chapter 8

Selection and Traversal Predicates

The iteration mechanisms described in the previous chapter require a means of deter-

mining membership in the set of objects to yield, as well as how to proceed in the depth-first

iterator. As described, the use of selection and traversal predicates allows the application

to describe the choices to be made independently of the iteration methods. This chapter

describes the predicates provided by the odb/Tools package and how to define additional

predicates.

Predicates operate by mapping their input parameters to truth values. A true value indi-

cates that the predicate supports the inclusion of the input set into the result set, and a false

value asserts the predicate’s election to disregard the input. Combining simple predicates

using logical composition allows complex decisions to be made using this mechanism.

Predicate implementation may take the form either of a function or an object class.

The concept of a function predicate follows the commonly held idea of a function supported

by most programming languages and used regularly by all programmers who intend to

keep their jobs. The object approach involves defining classes which support an overloaded

function call operator via the __call__() discipline. Using objects allows internal state to

be readily maintained. This approach is taken for all predicates defined in the odb/Tools

package. Section 8.3 discusses ways of creating new predicates in detail, using both the

function and object approaches.

The odb/Tools package supports two types of predicates, selection predicates which

select individual objects based on the objects themselves and any relevant global or private

state, and traversal iterators which determine what links should be followed during a depth

first search. These predicate types and pre-defined classes for each are defined in the

75

CHAPTER 8. SELECTION AND TRAVERSAL PREDICATES

following two sections. Another section provides information on defining new predicates to

perform application-specific work.

8.1 Odb module Predicates

The Predicates module provides a number of fundamental selection predicates which

may be used directly or in composition, or as examples from which application-specific

predicates may be created. Predicates supporting composition are also defined in this

module. These two groups of predicates are sufficient for many purposes, and are likely to

be used in any application.

For all predicates, a single exception is defined for error conditions.

PredicateError

This exception is used for all internal failures in the Predicates and Traversals

modules. The Traversals module exports this exception as well.

8.1.1 Selection Predicate Classes

The Predicates module defines the following classes as selection predicates:

Predicate()

This class is a do-nothing predicate which always returns true. This is used as a base

class for all other predicates. There is no reason to ever instantiate this class.

AcceptOnce()

While the FlatIterator class visits each object in the database at most once, this is

not the case with the DepthIterator, which may visit an object any number of times.

This predicate may be used to ensure that each object is visited at most once in that

case, or to limit the number of visits caused by a portion of a composite predicate.

This is achieved by returning true the first time the predicate is called for an object

and false for subsequent calls for the same object. Internal changes to the object do

not affect the operation of this predicate.

76

CHAPTER 8. SELECTION AND TRAVERSAL PREDICATES

ObjectHasField(field_name)

This predicate is used to determine if an object has a field by a particular name. If it

does, the predicate returns true, otherwise it returns false.

ObjectIsClass(class_id)

Predicates created with the ObjectIsClass generator test the class of the database

objects which they receive. If the ODB class ID of the object matches class_id, the

predicate evaluates to true.

SoundexValueMatch(field_name, target)

This class creates predicates which perform approximate string matching using the

soundex algorithm. To use this, the soundex modules must be available to the Python

interpreter; this module is not standard but is freely available on the Internet. The

arguments to the constructor are the name of the field to check and the string to

be matched. The predicate checks each value entry for the named field and returns

true if any value matches target. If the field contains no values or none match, the

predicate returns false. The soundex algorithm is not case-sensitive.

StringValueContains(field_name, target [, case])

This class of predicates tests for the presence of a particular string within a field of

the object being checked. If target is found within any value for the field named by

field_name, true is returned; the target can occur at any point in the field value to be

qualify as a match. If the object has no field named field_name or has not values for

that field, false is returned. The optional argument case may be set to true to enable

case sensitivity.

StringValueStartsWith(field_name, target [, case])

This predicate generator is very similar to the StringValueContains, with the dis-

tinction that it tests for a match only at the beginning of the field being tested.

StringValueMatch(field_name, target [, case])

This is the simplest of the string-matching predicates. The field values and target are

matched exactly, with case sensitivity being the only point of flexibility. As before,

77

CHAPTER 8. SELECTION AND TRAVERSAL PREDICATES

this is set by the case parameter, and is off by default.

8.1.2 Compositional Predicate Classes

The basic selection predicates described above are useful as they stand, but much more

powerful selection mechanisms can be created using logical composition to build new pred-

icates from these simple predicates and application specific predicates. This is achieved

using predicates which combine the affects of others. Classes representing fundamental log-

ical operations are also provided. Each of these represents a single logical operation which

can be performed on the results of one or more “child” predicates passed in as arguments

when the predicate object is created.

Unlike other selection predicates, these may also be used as traversal predicates, de-

scribed below. The predicate type for these classes is determined by the child predicates

passed in as parameters to the constructor: the type of the first parameter predicate is

adopted, and all others are checked to be of the same type. If predicates of both types are

passed in, a Predicates.PredicateError exception is raised.

LogicalPredicate()

This class provides a common base for the logical composition predicates described

below. Unlike the Predicate and Traversal classes, it is an uncaught error to in-

stantiate this class directly. It is not a do-nothing class like the other predicate bases.

And(pred ...)

Performs a logical ∧ (and) operation on a number of predicates. Short circuiting

evaluation is implemented.

Not(pred)

Performs a logical ¬ (negation) operation on a single predicate.

Or(pred ...)

Performs a logical ∨ (or) operation on a number of predicates. Short circuiting eval-

uation is implemented.

78

CHAPTER 8. SELECTION AND TRAVERSAL PREDICATES

8.2 Odb module Traversals

Traversal predicates are similar to selection predicates in that they select the targets of

an action, but the information they receive and the scope of their effect is more limited.

These predicates exist to control how depth-first iterators walk the object graph rather than

to control the selection of objects. Specifically, they allow the traversal to be truncated

at links in which the application is not interested. For instance, an application may be

interested in objects linked on a field named “cites” but not a field named “cited_by.”

A traversal predicate can be used to “prune” the traversal by returning a false value if the

source field is named “cited_by.”

Traversal()

This class is a do-nothing predicate which always returns true. This is used as a base

class for all other traversal predicates. There is no reason to ever instantiate this class.

TraverseClass(class_id)

Predicates created as TraverseClass objects return true for any traversals from ob-

jects with a class ID of class_id. No other criteria is used for distinction. In particular,

all source fields are accepted.

TraverseField(field_name)

Predicates of this class are similar to those of TraverseField, but return true only

for traversals from fields identified by name as field_name. No other criteria is used

to make the distinction; in particular, the class of the source object is not considered.

TraverseClassField(class_id, field_name)

This predicate, a single predicate which performs each of the tests the pre-

vious to predicates provide, is equivalent to And(TraverseClass(class_id),

TraverseField(field_name)). It is provided as a means to improve performance

in situations which require this combination.

79

CHAPTER 8. SELECTION AND TRAVERSAL PREDICATES

8.2.1 Compositional Predicates and Traversal

As with the selection predicates, each simple predicate is useful alone, but additional

clarity and precision can be achieved by combining application-specific predicates and the

simple predicates using logical composition. To encourage readability, separate logical pred-

icates are not provided for traversal operations; the logical operations are available through

the predicates And, Or, and Not described above. Each of these tests that all child predicates

are of the same classification (selection or traversal), and assume that same classification

for themselves. Both modules, Predicates and Traversals, export these common classes.

8.3 Implementing New Predicates

Applications may often want to implement new predicates, either for use in selection

or in traversal. This may be for performance reasons, or the existing predicates may not

provide enough strength or information regarding program state, or perhaps the predicate

needs to record information about the cause of rejection. In any case, there exists the need

to provide extensibility in the set of predicates.

There are two ways to implement any predicate: Implementing the predicate as a func-

tion allows simplicity for predicates which require no information beyond the object being

examined or global state. Using objects to create predicates allows more flexible definitions

of encapsulated predicates which can affect their own operation by maintaining private state

information. This object-oriented approach is used in the Predicates and Traversals

modules to allow clean definition of predicate classes which make use of internal state.

Both methods will be described here.

8.3.1 Functions as Predicates

A function used as a predicate should require only one parameter and allow one to

be given. Any number of parameters with default values may be included, to allow the

function additional uses if appropriate. A function which takes no parameters or requires

80

CHAPTER 8. SELECTION AND TRAVERSAL PREDICATES

more than one causes a TypeError exception to be raised when it is called. The only

significant restriction on function predicates is that they cannot be composed using the

logical composition predicates. This limitation is caused a requirement imposed by the

base class of the compositional predicates: each predicate made a part of the composition

must have a callable attribute named _PredicateType which returns a string indicating

the general type of the predicate. This requirement is made to allow limited type checking

and to determine how the composed predicates must be called. Functions cannot take on

programmer-defined attributes, preventing them from being composable.

When a predicate is invoked on an object, it is called with that object as the only

parameter. The return value should be true if the object should be included and false if

not. Normal Python truth determination rules apply. The actual return value will not be

preserved or passed on, so should be a lightweight object to prevent performance penalties.

If the predicate is implemented as a function, the way to provide these semantics is clear.

To create a predicate which checks the first element of the ’name’ field of an object for a

particular name, we might write this function:

def myFunctionPredicate(object):

return object.HasField(’name’) and object.name[0] == ’Drake’

This function would then be passed to the Iterator constructor to prepare to iterate

over the database db:

iter = db.Iterator(myFunctionPredicate)

for object in iter:

...

8.3.2 Classes as Predicate Generators

The Python object model allows user-defined classes to support a __call__() discipline

which implements function call semantics. This allows the creation of objects with internal

state which may be created dynamically and interpreted as callable functions.

81

CHAPTER 8. SELECTION AND TRAVERSAL PREDICATES

The first advantage of using objects as predicates is the ability to create multiple predi-

cates with the same code, but each having its own private state information. The additional

encapsulation provided by an object can greatly improve the maintainability of application

code.

A second major advantage is the ability to provide and manipulate state independently

of performing a call on the predicate; alternate methods may be provided which allow query

and mutation of the state, or perhaps allow storage to and restoration from a serialized

representation.

An advantage used heavily with the predicates provided in the Predicates and

Traversals modules is that the predicate is the object instance, not the class definition.

The class can be described as a predicate generator, providing a mechanism by which new

predicates are created as needed. All the predicates generated by a class will share some

common attributes provided by the class implementation, with the behavior of the predi-

cate dependent also on the internal state of the individual object. The predicates provided

all use constructor arguments to initialize this internal state, but this is not a requirement.

Object predicates may provide additional methods that affect state, or they may modify it

directly during the course of normal operation.

The simplest meaningful predicate is created from a class defining at least two disci-

plines: __init__() and __call__(). These are used for fairly simple reasons. __init__()

is required to initialize the object and handle construction parameters, and __call__()

provides the function call semantics, accepting the invocation parameter (parameters for

traversal predicates, as we shall see), and computing and returning the result. Any other

methods are optional as far as using the objects as predicates is concerned, but will not

interfere with that operation either. If a predicate is to support logical composition it is

important that it be derived from the Predicate class either directly or indirectly, and

not provide the method _PredicateType(), unless a completely distinct form of predicate

is being created. This special method is used by the compositional predicates to allow an

improved measure of runtime integrity checking. This method must be inherited from either

82

CHAPTER 8. SELECTION AND TRAVERSAL PREDICATES

the Predicate or Traversal base class.

The class definition below can be used as a skeleton for building useful selection predicate

generator classes. The predicate instances will support the composition mechanism since

the base class Predicate is used and the _PredicateType() method is not overridden.

class SelectionTemplate(Predicate):

def __init__(self, *args):

process argument list, create initial state

self.state = function_of(args)

def __call__(self, object):

use ’object’ and the internal state to determine the result

if test_on(self.state) and query_on(object):

possibly update self.state as well

return 1

return 0

Modifying this template with the appropriate construction and function call methods

allows meaningful predicates to be created fairly easily. But also consider that the class

does not need to provide all of its facilities directly: it can inherit from multiple base classes

or indirectly from Predicate.

As an example of this approach to predicate design, the StatPredicate class, defined

in the source fragment below, calls two member functions to do work during the normal

invocation of the predicate. The Measure() method takes a statistical measurement on

the node being examined, and the Select() method determines if the node should be

selected. Since this is used as a base class, these methods need not provide any high level

of functionality in this class, but should be provided as minimal implementations. The

__call__() method provides the required access to each of these methods independently.

83

CHAPTER 8. SELECTION AND TRAVERSAL PREDICATES

from Predicates import Predicate

class StatPredicate(Predicate):

def __call__(self, obj):

self.Measure(obj)

return self.Select(obj)

def Measure(self, obj):

pass

def Select(self, obj):

return 0

For the StatPredicate class to be useful, a subclass needs to be created which pro-

vides at least a more significant Measure() method, and, optionally, a different Select()

implementation. These two methods could be provided by different base classes of the final

predicate class, if appropriate.

One simple but potentially useful statistic which might be desired as a side effect of

iterating over a database is a count of the number of nodes selected grouped by the entity

class ID of the selected nodes. This could easily be achieved by using a predicate class which

accepts all nodes checked and maintains a count of the nodes of each class ID internally.

During or after the iteration, the state of the predicate could be tested to gain the needed

information. Since the StatPredicate class rejects all nodes when defined as above, a new

Select() method must be provided. A class may be defined which provides this capability.

Since this may be useful independently of the measurement being taken, this class may be

independent of the class providing the statistical measurement.

class AlwaysAccept:

def Select(self, obj):

return 1

Since the Measure() method required to implement the required capability is unlikely

to be used in other predicates, the implementation in the StatPredicate base class can

be overridden by a method in the final predicate class. The __call__() method may be

84

CHAPTER 8. SELECTION AND TRAVERSAL PREDICATES

inherited from StatPredicate and Select() may be inherited from AlwaysAccept. The

source for the CountPredicate class is given below. Note that the list of base classes

includes AlwaysAccept before StatPredicate; this specifies that the implementation of

the Select() method should be taken from AlwaysAccept.

Perhaps the most important aspect of this example is that the finished class used to

create the statistical information acquires each aspect of its functionality from a different

source in the class hierarchy, and the demonstration that multiple inheritance is immediately

useful in the context of predicate creation. This example is contained in the odb/Tools

package as the module CountPred.

class CountPredicate(AlwaysAccept, StatPredicate):

def __init__(self):

self._CNT = {}

def Measure(self, obj):

class_id = obj.ClassID()

try:

self._CNT[class_id] = self._CNT[class_id] + 1

except KeyError:

self._CNT[class_id] = 1

def Count(self, class_id = None):

’’’Provide access to either the entire dictionary of results or

to the counts for individual classes.’’’

if class_id is None:

return self._CNT

else:

try:

return self._CNT[class_id]

except KeyError:

return 0

85

CHAPTER 8. SELECTION AND TRAVERSAL PREDICATES

8.3.3 Traversal Predicates

Traversal predicates operate in much the same way as selection predicates but are called

at a different point during iteration and receive different parameters. Both the function

and object implementation methods are available, with the same restriction on function

predicates: they are not composable.

Each call to a general traversal predicate provides two parameters. Each parameter is

an an endpoint which provides describing the class and field definitions for one end of the

link. Endpoints have two data attributes, classdefn and fielddefn, corresponding to

these two values. Where possible, endpoints support a lazy database lookup, allowing the

target not to be retrieved if the predicate can be resolved to a false value without examining

the terminating endpoint.

These two data regarding the endpoints are only information traversal predicates are

allowed regarding the actual objects involved in the traversal. Since these predicates exist to

control the selection of link semantics which are used rather than node selection, this is the

only information pertinent to the decision. The class definitions are provided as ClassDefn

objects, and field definitions take the form of FieldDefn instances.

8.3.4 Invoking Predicates Directly

While the use of predicates from within predicates should never be necessary, it can be

useful to simplify the composition, and may provide an efficiency boost where a predicate

may only be required in unusual circumstances, or where it may be replaced dynamically

during an iteration. Other uses for predicates may arise as well, so it is useful to be able to

invoke a predicate directly, without depending on the iteration mechanisms.

Since predicates are implemented either as functions or as objects, a variable bound to

a predicate can be called just like a function. This example shows how to create a selection

predicate and invoke it independently of the iteration mechanism.

86

CHAPTER 8. SELECTION AND TRAVERSAL PREDICATES

from Predicates import *

pred = And(StringValueMatch(’first_name’, ’Fred’),

StringValueMatch(’last_name’, ’Drake’))

if pred(myObject):

print ’Object matches!’

While traversal predicates can be used this way as well, selection predicates will prove

useful in more situations. Remember to pass the correct parameters to a traversal predicate.

Classes for endpoints may be found in the module Traversals. If both the class and field

definitions are known, the class Endpoint should be used. If a database lookup is required

to determine the class and field definitions, use the class DelayedEndpoint to support lazy

evaluation of the public data members.

87

Appendix A

Installing odb/Tools

This section describes the installation process for obtaining and installing the complete

odb/Tools package. Information is included regarding where the base software distributions

for Python and GDBM may be found, and what is required to install them with odb/Tools.

For each package, be aware that changes may have been made in the distributions of the

base software; please read all release notes included with these packages to allow adjustment

to the installation process described here if needed.

A.1 Obtaining Python

The Python distribution is available free of charge to any individual or organization with

access to the Internet, and is likely available on several CD-ROM distributions of the Linux

operating system. It is often available on recent CD-ROMs providing interpreted language

tools. There are no restrictions on using Python for any purpose, including commercial

uses, so long as the copyright is maintained intact.

The primary means of acquiring Python is by FTP from the home site maintained by

the Python Software Activity, or from one of the mirror sites listed below.

Address Directory Region

ftp.python.org /pub/python Eastern U.S.

ftp.uu.net /languages/python Eastern U.S.
gatekeeper.dec.com /pub/plan/python Western U.S.

ftp.wustl.edu /graphics/graphics/sgi-stuff/python North-west U.S.
ftp.cwi.nl /pub/python Europe

At each site, below the directory listed above, the directory src contains compressed

archives containing the source code to the interpreter, the library, and LATEX source for the

88

APPENDIX A. INSTALLING ODB/TOOLS

documentation. Formatted copies of the documentation are in the doc directory. Refer to

the files named ‘INDEX’ in each directory for information on the current version and which

files are needed.

A.2 Obtaining and Installing GDBM

The GNU GDBM library is required for odb/Tools as well as for the DELTO system, so

sites which have installed the Envision software will typically already have GDBM installed.

Check with the system administrator to find out if this package is already available and

how it has been installed.

If the library has not been installed previously, locate a copy of the distribution archive

at one of the GNU distributions sites. Though a long list of these sites is well publi-

cized, a short list is included below for convenience. The archive to retrieve will be named

‘gdbm-?.?.?.tar.gz’, where ?.?.? is the version number. Un-archive the distribution and

build and install it according to the instructions in the file ‘README’; there are no special con-

siderations in building this package for Envision software, including odb/Tools. If installing

this for general availability on-site, the system administrator may need to lend assistance

with the final stage of installation.

The GDBM library is built with debugging information by default. If this is not desired,

optimization can be enabled from the make command line. If using the GCC compiler, the

command line below is recommended.

make CFLAGS=-O2 LDFLAGS=-O2

Regardless of the manner of installation, the option used to link the library to an exe-

cutable will be needed during the Python configuration. Make a note of the required option.

Typically this will be -lgdbm if the library is installed for general availability or the entire

path name of the library otherwise.

89

APPENDIX A. INSTALLING ODB/TOOLS

Address Directory Region

prep.ai.mit.edu /pub/gnu Eastern U.S.
sunsite.unc.edu /pub/gnu Eastern U.S.

gatekeeper.dec.com /pub/gnu Western U.S.

A.3 Building and Installing odb/Tools

The odb/Tools package is fairly easy to install, with most of the installation being

handled by the standard Python installation mechanisms.

To begin the installation, the compressed archives containing the Python and odb/Tools

distributions should be in the directory where the project directory should be created.

Unpack the distribution using these commands:

gzip -dc python?.?.tar.gz | tar xf -

cd Python-?.?

gzip -dc ../odbTools.tar.gz | tar xf -

This will create a directory with a name of the form Python-?.?, where ?.? is the

version number of Python. The directory will contain a clean Python source tree and a

number of files needed to add the odb/Tools functionality. To update the build system and

enable modules required for the installation of odb/Tools, run the supplied shell script to

patch various files and detect some site-specific information:

sh odbPatch.sh

The shell script run by this command will make a number of small patches to several

of the files used in the build procedure delivered as part of the Python distribution. These

changes add information to files which are used to build the input files for make. The

modifications are handled this way to allow the Python distribution to be reconfigured

without removing information required to build odb/Tools.

The next step in the installation is to configure the Python distribution. This typically

is only required once, but there are several options which should be considered. Information

about these options are detailed in the file ‘README’ in the Python-?.? directory. The only

90

APPENDIX A. INSTALLING ODB/TOOLS

options discussed here are those likely to be important for a project making use of Python

for access to odb/Tools.

A.3.1 Compiler Selection

As with much of the software available over the Internet, the Python configuration will

use the GCC compiler from the Free Software Foundation by default. Though most of the

development and testing of Python and odb/Tools used this compiler, if it was not used

to compile other parts of the Envision software, including the GDBM library, the standard

cc may be a better choice. This will be used automatically if GCC is not available, but if

both compilers are available, use the --without-gcc option when running ./configure,

as described below.

A.3.2 Using the Readline Library

If odb/Tools will be used in a rapid-prototyping environment, adding the GNU readline

library to the Python interpreter can be advantageous. The readline library allows the

interpreter’s interactive prompt to support a statement history of commands executed from

the prompt. If the interpreter is used interactively for prototyping or debugging, this can be

a great time saver. To enable this capability, use the --with-readline=DIR option, where

DIR is the directory containing the compiled readline library. This library may need to be

obtained if not already installed. It is available at the same sites as the GDBM library.

A.3.3 Setting the Installation Prefix

By default, Python will be configured for installation under ‘/usr/local’, with each file

in the appropriate subtree below that. If the interpreter being built will only be used with

Envision, a different prefix may be required. For instance, if the Envision software tree is

normally rooted at ‘/projects/Envision’, this should be used as the prefix for configuring

the Python interpreter as well. Use configuration option --prefix=DIR will set DIR to be

the installation prefix. This is only required if the prefix should not be ‘/usr/local’.

91

APPENDIX A. INSTALLING ODB/TOOLS

A.3.4 Running ./configure

The first stage of configuring the Python interpreter involves running the script

./configure located in the Python-?.? directory. Any options selected based on the

discussion above should be added to the command line. Since this script is a fairly typical

configuration script as generated by the Free Software Foundation’s autoconf program,

there may be some additional options appropriate to particular sites. The system admin-

istrator should be able to provide assistance with this if needed. Run this script from the

command line with any options selected.

A.3.5 Configuring the Built-in Modules

Many modules are available with the Python distribution. While most are written

in Python and do not need to be configured, there are a number of modules which are

written in C and must be compiled and linked with the interpreter. Some platforms allow

these modules to be loaded dynamically if dynamic loading and linking is supported; refer

to the instructions included with the Python distribution for information on building the

interpreter to support this.

Many platforms do not support dynamic loading, and modules must be linked with the

interpreter statically. The directory Python-?.?/Modules contains the file used to configure

modules to be linked with the interpreter. If the file ‘Setup’ does not exist in this directory,

copy the file ‘Setup.in’ to ‘Setup’. Only ‘Setup’ should ever be edited. It may have been

created by the ‘odbPatch.sh’ script.

Examine the file ‘Setup’ to determine which modules are available which have to be

linked with the interpreter. Instructions for changing the file itself are located at the top

of the file. If a desired module is commented out, simply un-comment the definition in

this file. Be aware that some modules are specific to particular platforms; this will be

indicated in the comments in the file. By default, the gdbm module is not built with

a Python interpreter, but is required by odb/Tools. The ‘odbPatch.sh’ script will have

92

APPENDIX A. INSTALLING ODB/TOOLS

made the necessary change to cause this to be built. It is important not to comment out

this definition: this module is required in order for odb/Tools to operate. The odb/Tools

package has also provided and enabled the soundex module to support approximate string

matching in the Predicates module. If this isn’t desired, this module may be commented

out in ‘Setup’. The Predicates module will accommodate the lack of availability.

If using the tkinter module, refer to the comments in the ‘README’ file in the

Python-?.? directory. The tkinter module provides access to the Tk toolkit commonly

associated with Tcl/Tk.

A.3.6 Building the Interpreter

Use the make command to build the interpreter. If desired, use the OPT variable to

define the level of optimization used during compilation; the default is to include debugging

information using the ‘-g’ option. When using GCC to compile, the following command is

recommended:

make OPT=-O2

Several levels of installation are available with the Python interpreter. The file ‘README’

includes documentation on installation options and procedures; using odb/Tools requires

at least make install and make libinstall. The executable program containing the

augmented Python interpreter is named odbtools.

A.4 Testing the Installation

Once the interpreter has been built, there are two make targets which may be used to

test the installation. The target test determines the success of the underlying Python

build. The target testodb may be used to test the odb/Tools build; this target tests only

the ability to import the various built-in and external modules which make up odb/Tools.

These two make targets are independent of each other and may be used before issuing the

‘make install’ and ‘make libinstall’ commands as discussed above.

93

APPENDIX A. INSTALLING ODB/TOOLS

A.5 Version Information

This section provides information regarding the versions of software with which

odb/Tools was developed and tested. Earlier versions of the Python interpreter may cause

some difficulties with installation; versions before 1.1 may fail to build with odb/Tools.

Package Linux 1.2 OSF/1 3.2 SunOS 4.1

GNU GCC compiler 2.6.2 2.6.3 2.5.8
GNU GDBM database library 1.7.3 1.7.1 1.7.1

GNU readline library 2.0.1
Python 1.2 1.2 1.2

94

Appendix B

Running odb/Tools Scripts

This appendix provides instructions on making odb/Tools scripts executable from the

command line of a UNIX-style command line environment. The installation procedures

described in the previous appendix are assumed; some adjustments may be needed if sig-

nificant variations occurred.

odb/Tools scripts are executed in the same way that most shell scripts are handled

from the shell command line. The script must be saved in a text file with the execute

permission set. The first line of the file must contain the ‘#!’ characters at the start of the

line, followed by the path to the interpreter. Using the installation instructions included

with this document, this would be the installation prefix followed by ‘/bin/odbtools’. The

remainder of the script should simply be the main module of the program, which may do

no more than importing another module and calling a driver function. The beginning of an

odb/Tools script might look like this using the installation defaults:

#!/usr/local/bin/odbtools

#

This is a script based on odb/Tools. It is an example of ...

To set the executable permission for an odb/Tools script, use the chmod(1) command.

Variations may be appropriate based on site administration policies.

chmod +x odb.script

Running a script created this way involves only typing the name of the script on the com-

mand line, optionally followed by any parameters used by the script. Command line param-

eters may be found in ‘sys.argv[1:]’, and the name of the script will be in ‘sys.argv[0]’

[vR95b].

95

REFERENCES

[Ave95] Guillermo A. Averboch. A system for document analysis, translation, and au-
tomatic hypertext linking. Master’s thesis, Virginia Polytechnic Institute and

State University, June 1995.

[Con95] Matthew J. Conway. Python: A GUI development tool. interactions, pages

23–28, April 1995.

[Gau94] Pierre Gaumond. GNU GDBM Manual. Free Software Foundation, 1.7.3 edition,

1994. Online documentation.

[HHN+95] Lenwood S. Heath, Deborah Hix, Lucy T. Nowell, William C. Wake,
Guillermo A. Averboch, Eric Labow, Scott A. Guyer, Dennis J. Bruenu,

Robert K. France, Kaushal Dalal, and Edward A. Fox. Envision: A user-centered
database of computer science literature. Communications of the ACM, 38(4):52–
53, April 1995.

[Lut96] Mark Lutz. Using Python. O’Reilly & Associates, 1996. Expected first quarter.

[Ted93] Lucy A. Tedd. An Introduction to Computer-Based Library Systems. John Wiley
& Sons, 3 edition, 1993.

[Uni91] The Unicode Consortium. The Unicode standard : worldwide character encoding,

volume 1. Addison-Wesley Publishing, 1 edition, 1991.

[vR95a] Guido van Rossum. Extending and Embedding the Python Interpreter. Stichting

Mathematisch Centrum, April 1995. Release 1.2.

[vR95b] Guido van Rossum. Python Library Manual. Stichting Mathematisch Centrum,

April 1995. Release 1.2.

[vR95c] Guido van Rossum. Python Reference Manual. Stichting Mathematisch Cen-
trum, April 1995. Release 1.2.

[vR95d] Guido van Rossum. Python Tutorial. Stichting Mathematisch Centrum, April
1995. Release 1.2.

[vRdB91] Guido van Rossum and Jelke de Boer. Interactively testing remote servers using
the python programming language. CWI Quarterly, 4(4):283–303, December

1991.

[Wal94] Norman Walsh. Making TEX Work. O’Reilly & Associates, 1994.

96

Index

AcceptOnce (in module Predicates), 72,

76
AddClass (DataDictionary method), 45

AddField (ClassDefn method), 47
AddIndexFile (Database method), 53

AddObjectFile (Database method), 54
add_class (OdbDatabase method), 30

add_field (OdbDatabase method), 31
add_index_file (OdbDatabase method),

29

add_object_file (OdbDatabase
method), 30

alternative ID, 21, 32, 47
AlternativeID (ClassDefn method), 47

And (in module Predicates), 78
append (FieldProtocol method), 63

Averboch, Guillermo, 3

character sets, 41
multibyte, 42
Unicode, 41

Class (DataDictionary method), 45
ClassDefn (DataDictionary method), 46

ClassDefn module, 15, 46
Classes (DataDictionary method), 45

classes (OdbDatabase method), 31
ClassID (ObjectProtocol method), 60

class_id (OdbInstance attribute), 38
Close (Database method), 54

close (OdbDatabase method), 30
closed (Database attribute), 56
closed (OdbDatabase attribute), 36

Commit (Database method), 54
control files, 23

CountPred module, 16, 85
current_index_file (Database

attribute), 57

current_index_file (OdbDatabase at-

tribute), 36
current_object_file (Database

attribute), 57
current_object_file (OdbDatabase at-

tribute), 36

Database (in module Database), 52
Database module, 14, 52

database (OdbInstance attribute), 39
DatabaseError (in module Database), 53
DataDictionary (Database method), 54

DataDictionary (in module DataDic-
tionary), 44

DataDictionary module, 15, 44
DDError (in module DataDictionary), 44

DDictReport module, 16
delete_field (OdbDatabase method),

31
delete_object (OdbDatabase method),

33

Delta module, 14
DELTO, 1, 20, 24, 89

DepthIterator (in module Iterators), 72

endpoints, 86, 87
Envision, 1, 89

error (in module odb), 27
error_msg (in module odb), 25

Field (ClassDefn method), 47

Field (ObjectProtocol method), 60
field type specifiers, 41

FieldDefn (ClassDefn method), 49
FieldDefn module, 15, 49
FieldDelta (in module FieldProtocol), 66

FieldID (FieldProtocol method), 63
FieldIndirect (in module Database), 66

97

INDEX

FieldInstance (in module Object), 66
FieldProtocol (in module FieldProto-

col), 65
Fields (ClassDefn method), 48

Fields (ObjectProtocol method), 61
field_data (OdbInstance method), 38

field_types (OdbDatabase method), 32
field_types (in module odb), 25

filemode (Database attribute), 57
filemode (OdbDatabase attribute), 36

FlatIterator (in module Iterators), 70
Flexibility (common data dictionary

method), 43

flexibility, 43, 46, 49, 51
Flexible (common data dictionary

method), 43
Free Software Foundation, 23, 91

GCC, 91, 93

get_class_info (OdbDatabase method),
32

get_index_entry (OdbDatabase
method), 35

HasClass (DataDictionary method), 45
HasField (ClassDefn method), 48

HasField (ObjectProtocol method), 61
has_field (OdbInstance method), 38

has_key (Database method), 55
has_key (FieldProtocol method), 63

has_key (OdbDatabase method), 34

ID (ClassDefn method), 48
ID (FieldDefn method), 49

index file group, 23, 29, 36, 37, 53, 57, 58
index_extra_blocking (in module odb),

25
Internet, 13, 77, 88
items (FieldProtocol method), 64

Iterators module, 16, 69

keys (Database method), 56
keys (FieldProtocol method), 64

keys (OdbDatabase method), 34

LinkTo (FieldProtocol method), 64
Linux, 88

LogicalPredicate (in module Predi-
cates), 78

Lutz, Mark, 14

Max (FieldDefn method), 49
MAX_CLASS_ID_LENGTH (in module odb),

28
MAX_CLASS_NAME_LENGTH (in module

odb), 28
MAX_CLASS_OTHER_INFO_LENGTH (in mod-

ule odb), 28

MAX_DATABASE_NAME_LENGTH (in module
odb), 28

MAX_ERROR_MSG_LENGTH (in module odb),
28

MAX_FIELD_NAME_LENGTH (in module
odb), 28

MAX_INDEX_STR_LENGTH (in module odb),
28

MAX_NUMBER_INDEX_FILES (in module
odb), 28

MAX_NUMBER_OBJECT_FILES (in module

odb), 29
MAX_OBJ_ID_LENGTH (in module odb), 29

Min (FieldDefn method), 50
modules

ClassDefn, 15, 46
CountPred, 16, 85

DDictReport, 16
DataDictionary, 15, 44

Database, 14, 52
Delta, 14
FieldDefn, 15, 49

Iterators, 16, 69
Predicates, 16, 76

Traversals, 16, 79
odb, 14

odb, 24

98

INDEX

Mutable (Database method), 55
Mutable (FieldProtocol method), 64

Mutable (ObjectProtocol method), 61
Mutable (common data dictionary

method), 43

Name (ClassDefn method), 48
Name (FieldDefn method), 50

name (Database attribute), 57
name (OdbDatabase attribute), 36

NewObject (Database method), 56
new_object (OdbDatabase method), 34

Not (in module Predicates), 78
number_index_files (Database

attribute), 57

number_index_files (OdbDatabase at-
tribute), 37

number_object_files (Database
attribute), 58

number_object_files (OdbDatabase at-
tribute), 37

object file group, 23, 30, 36, 37, 54, 57, 58

ObjectDelta (in module Delta), 62
ObjectHasField (in module Predicates),

77

ObjectID (FieldProtocol method), 64
ObjectID (ObjectProtocol method), 61

ObjectIndirect (in module Database),
62

ObjectInstance (in module Object), 63
ObjectIsClass (in module Predicates),

77
ObjectProtocol (in module ObjectProto-

col), 62
object_id (OdbInstance attribute), 39
odb (built-in module), 24

odb module, 14
OdbDatabaseType (in module odb), 27

OdbInstanceType (in module odb), 27
OdbKeysIteratorType (in module odb),

27

open (Database attribute), 58
open (OdbDatabase attribute), 37

open (in module odb), 26
Or (in module Predicates), 78

O’Reilly & Associates, 14
OtherInfo (ClassDefn method), 48

Perl, 11

Predicate (in module Predicates), 76
PredicateError (in module Predicates),

76
Predicates module, 16, 76

Python Software Activity, 13, 88

Range (FieldDefn method), 50

RemoveLinkTo (FieldProtocol method),
64

RemoveObject (Database method), 56
Rollback (Database method), 55

rwmode (Database attribute), 58
rwmode (OdbDatabase attribute), 37

SoundexValueMatch (in module Predi-

cates), 77
store_data (OdbInstance method), 38

store_index_entry (OdbDatabase
method), 35

StringValueContains (in module Predi-

cates), 77
StringValueMatch (in module Predi-

cates), 77
StringValueStartsWith (in module

Predicates), 77

Tcl/Tk, 11, 93
transaction processing

committing, 54
rolling back, 55

Traversal (in module Traversals), 79

Traversals module, 16, 79
TraverseClass (in module Traversals),

79

99

INDEX

TraverseClassField (in module Traver-
sals), 79

TraverseField (in module Traversals),
79

Type (FieldDefn method), 51
type specifiers, 41

Unicode, 41

update_class (OdbDatabase method),
32

update_field (OdbDatabase method),
32

values (FieldProtocol method), 65

100

