
An Object-Oriented Class Library 

for the Creation of Engineering Graphs 

by 
R. Steven Uhorchak 

Thesis submitted to the Faculty of the 

Virginia Polytechnic Institute and State University 

in partial fulfillment of the requirements for the degree of 

Master of Science 

in 

Mechanical Engineering 

APPROVED: 

Dr. Sankar Yayabam, Chairman 

del Upyhlbed- SY With 
b 

Dr. A. Myklebust Dr, J. R. Mahan 

May 3, 1993 
Blacksburg, Virginia



tg $ 

Cy 36?



Abstract 

Since the availability of the first PHIGS (Programmers Hierarchical Interactive Graphics 

System) implementation in the mid 1980’s, interest in the use of PHIGS has been steadily 

growing among the CAD applications developer’s community. Every year, more PHIGS- 

based CAD applications programs are being created to ensure portability and make use 

of the high-level support provided by PHIGS [JAYA93b]. 

One of the common uses of computer graphics in engineering is for the creation of 

graphs. Commonly used graphs, such as line graphs (two-dimensional or three- 

dimensional), bar charts, pie charts, surface plots, etc., can be created using PHIGS. This 

involves the creation of several methods to scale the data, draw the graph, display labels, 

display axes, display legends and several other programming tasks, which are re-created 

by each applications program. 

This thesis describes the creation of an object-oriented class library to facilitate the 

creation of engineering graphs using PHIGS. This library provides the programmer with 

a set of tools to create commonly used graphs (line graphs, pie charts, bar charts, polar 

plots, and 3D plots). The class library will allow PHIGS programmers to quickly and 

easily create graphs for use with applications programs. This set of classes uses a 

PHIGS-based, Motif-like interface framework (described by Woyak and Myklebust 

Abstract



[WOYA93]). User interface methods to allow the end-user of the graphing program to 

modify attributes of the graph (e.g. line types, legends, colors, etc.) are encapsulated 

within this class library and are hidden from the programmer using these classes. The 

library of classes, the user interface methods, and the use of this system is described in 

this thesis. 

Abstract



Acknowledgements 

First, I would like to thank my parents, Robert and Jeanne Uhorchak for their love and 

support throughout my career. They taught me that through hard work, dedication, and 

by not giving up that almost all obstacles can be overcome. 

To Sankar Jayaram, my advisor, I would like to give thanks for all the guidance, patience, 

direction, and help on my thesis as well as many other projects endeavored during my 

academic career at Virginia Tech. 

Thanks must also be extended to Dr. Arvid Myklebust, the director of the CAD Lab and 

Co-director of the ACSYNT Institute for the opportunity to work on the ACSYNT 

project. In addition I would like to thank Dr. J. R. Mahan for being on my committee. 

Since my work was supported by the ACSYNT Institute I would like to thank all of the 

institute members for their financial support. 

Finally, I would like to thank all of the members of the CAD lab for their support and 

encouragement, with special thanks going to Scott Woyak for his never ending patience 

and understanding of all my questions. 

Acknowledgements iV



Table of Contents 

1.0 ImtrOduction  ...........ccscsssccscscssccsssnssscsoscsecesecssecsesseccsescsossscssserssescoesssessoescoes 1 

2.0 Literature Review  ..........scccscccccscssccssssccssssssccsssvsccssssccesssenenssessssconssceness 3 

3.0 Graphs in ACSYNT - A Case Study .........cccccssscsssssssssecssssscsssssecsscssscccsess 6 

3.1 Current Methods Used in ACSYNT uuu... ccccssecssccescecssrceeseeceereeceeraeees 7 

3.2 Flexibility of Graphs oo... eee ccscccssccsseesscceescseeceseceeeessncecssecssseesecsesescseceeanes 12 

4.0 Thesis ODjectives ...........ccssscssssscessscsssscsescessscssscssccesssccssscseccesssscesescssceees 13 

5.0 Object-Oriented Design .........scccscssssscescesssscseccesceassscssscnscsscsecssesecsessooseses 15 

5.1 Traditional Programming Philosophy 00.0... ceesscesnssssccsseenseeeteeesseeoneees 15 

5.2 Object-Oriented Philosophy 0... cee esesecseeeesteecnenecesssesaseeessesenssesseeenes 16 

5.3 Object-Oriented Design oun... eeecsccsssscccesseceessscessenssceensececesssseseescceceenaeceees 17 

5.4 Object-Oriented Programming Terms (Using C++) ......cccceescesssceeeeecesees 18 

5.4.1 C1aSS oie eeeesseecsssseceensecessncceessacecscoeeeseaeecessaeeecesesesecssedecseeeaeess 18 

5.4.2 Polymorphism (Function Overloading) 0... cecsecseseeneeeeeeees 18 

5.4.3 Tmheritance ooo... ee eeeecssssseceessscceessssaeeenssseeescseeesseeessseeeesveseeueeees 18 

5.4.4 Encapsulation .......ccccsscscsssessscesseecsensscsseeseasscseceseseeeneeesseseescnses 19 

Table of Contents



5.5 Advantages of Object-Oriented Programming 00... ccc essscessteceerceseseeeeees 20 

6.0 Motif-Like Interface  ............sccccsscsscssssessssccssccscssescsesconscsesssesseesonesseeseossos 23 

7.0 Overview Of the Design ............cccscssssessssscssssescsesscasscossensssssesseascssssonscceees 26 

7.1 Class Hierarchy ou... ccccssssssecceccesssssssneseceeseseneaeeceseceesssennsaseseesceesseseensaas 26 

7.2 User Interface For Graph Modification oo... eee eescesceeececseeeeteceeeseeeeoees 28 

8.0 Descriptions Of Classes ..........ccccccssscssssccessscssssssssccssscccssssssscesaccssssssecosceecs 31 

8.1 Graph Manager Class oo... ececssscsscsseceeccceeseasseseesssesssseessseessecssseessseenaens 31 

8.2 Graph Class oo... cecscesssssscssccsscesssccssccessssessesnssseccssssseesceessceeseneseesesenessseeoenes 32 

8.3 Individual Graph Classes oc... cc ceesssssssssessessacecseecseeenscessnsssesssneessscesaee ees 32 

8.3.1 Bar_Graph Class ....c.cccecccsscccsssscsessssecesecesescecseeessesaseesesaeecsesneeeessaeees 34 

8.3.2 Line_Graph Class ooo... cceccsssecssscesssecssceessesseseecsscceseecsescecseusecesaeecnees 37 

8.3.3 Pie_Graph CASS o...eeecessccesccesssscesseccseesensesessceessscsseeeensesecnescsceeecsenaeenses 40 

8.3.4 Polar Graph Class oc... ccesccsscccessscesscessscssscceseesecascssesseseeeeseseeeeeeeees 43 

8.3.5 Stacked _Bar Class oo... eessscsccecssccseneecsseeeeceesssesesecenssaeesssaseesseeeens 45 

8.3.6 XYZ_Plot Class occ eccscssesesseeeseeceessessecsessseesseseeseeeeessesseesoseaes 48 

9.0 Graph Entity Classes  ..........cssccsscssscssssscsssscssssessssssssscsasescssessssscosssonssessoes 52 

Q.1 Graph Entities oo... eeccssceseeecssecessnecesceecssccssnsecsseeseneeceseeeesaeenssaeceeseecsees 52 

Table of Contents



QD.1.1 AxeS Class oiccceccceccceccccscccccsccnscccsscceccccscccsesceasscecesccssecessceucescceseccenscens 53 

Q.1.2 Bar Class wee. cecceecccsssccssscssscecssecesceecesccesssscssceeseaeesescecsacecseeeesneeeeeneeeeas 58 

Q.1.3 Curve Class wee ceccccscccsssssececeessesececssnseceesesseaeeesssneececeessaaceessesseaeseeees 62 

D.1.4 Grid Class wu... ceessssccssscecssrescessseceesssccessceesssasscscssseccssececssssceessssseeesaeees 65 

D.1.5 Legend Class oo... cccccscsccescsssncecssssnsesscssnseceesssecessessaeeecesssseaeceseensaees 68 

9.1.6 Pie Class weecccesccsssccecccsenecssececseecessascseecsenaseceesseadesseaessseeesssecesseeseenes 71 

9.1.7 Polar Axes Class wei. eecsceesccssceeenecesseceensecsseeecsceessneescseceeaeesosseeessees 74 

9.1.8 Stacked Bar Class oo... ecessseceesscecceeesseeeeseessceeesessssaeseceesesaeees 77 

Q.1.9 Text Class ..ceecesccssscssseceeneeeseccsessscsscesscaecsecesesssesssascnseesosseeesseeseeseeees 80 

10.0 Otter Classes  ............cssscscssscscsccsscccsscscsecsssscssscescccssssccssscssssscescosscerseeecs 83 

10.1 Data Series Class oo... cccsecsssessecsecescserseceaecsaecssesssseessssensseauesseesesneoegs 83 

10.2 Control Entities oo. ccsssseseceenssessesseseeessecesseessseecsseeessaserseeeeeseeeenas 84 

© 10.2.1 Deletion Class ..scccccceccssscssssssseccssssssesscsssccsssesssusessuvcssssecssscsanecssstesseee 84 

10.2.2 Highlighting Class oe ceessccssscceesscceceeececseeceesseeecesaeeecsenseenes 85 

10.2.3 Invisibility Class ooo... ceecccscecssccsenescsscesessecssceessecescsesceseeeeeeaaeersanes 86 

11.0 Implementation and Sample Progralm  ............c.cccossssssescssssccscrsscssosesoees 88 

12.0 Implementation of Graphs for ACSYNT ........ sscecceseesseceessoccoese ssssssvee 110 

Table of Contents Vil



13.0 COMCIUSION  .............cccccccccsscscccccccscccssscccccccesescesecccsecessccsssseccssccescssesecccsecacs 112 

14.0 References  ..........ccscccssccscssscsssssccsscsssssssscescsnacscssesssssssescsscsassecssnessoesessssees 114 

Appendix A. Class Library User Guide  ...........ccsccccssrsssssscssssscsessscscssscsssoes 119 

A.1 Graph Classes wo... csccceesssrceceeesseseessessecesesseceesssssesesecssenseseecseneeeeaeersnes 119 

A.1.1 Bar Graph wo. ecccssesssseeecsseesssesesesseeecsseecssceeasessascscssecesesesseeeseas 119 

A.1.2 Lime Graph oo... ecceecccessssccecesssaceeeccssancesesssaeecsssssnececeesssuaeeeeceeeaseees 121 

A.1.3 Phe Graph oo. ceeseecssccecseeeeencecssceeenaecsseceenaecessascsaeeessseeeesaecesensesees 123 

A.1.4 Polar Graph oo... ecsseesceceneeeeseeecssceesseecseccesneesesssecsssecseseesnaeeseees 125 

A.1.5) Stacked Bar Graph a... eceessseesceeecssccesssncessseneeessceessesecsssaseesoaees 127 

A.2 Graph Entities oo... ecessecesncceeeecenecseeceseessaceseceseceeaeeesuseaeetsseeneceesuesseeees 129 

A.2.1 AXES coececceesscsssscscssccesesceecssaeeessesceececeseseneeesneecssaeeesssseceeensneseesteeeseees 129 

A.2.2 Bal occccccsccssssscssccsccsecescesscescesssesaecenesseesseeenceseeneesessesesensessessnseeeeecseesnees 133 

A.2.3 CUTVE viceescscccscesssesccssecssccsceencesesscnsescesecseseaeeescesaeeseceseseeeseceesasoseeesnessees 136 

A.2.4 GID veececsccesccsssceteccneecssessseeesseseeaeescsseusccsscsdecssecesscensesseasoseesssseeneeeoneasees 139 

A.2.5 Legend .....eeeessccecssssscccssssscecscsescececscsseaecessseeecessssseeecsesseneceessssaaeessesssnaeees 142 

A.2.6 PIC occ eccsssessscssecssccescceceeessceescessscessceesccesnescneessseeseeesaesesceesseesseserseseenees 145 

A.2.7 Polar AX€S oo... ceecesccsscssssseceseseseseaccssccsceseseseceseessccssscenecsacesaecseeesesonseeuees 148 

A.2.8 SOTICS oooceecessesssccsnecsssetsnsssscecseeceeecnaeeesecsseeeneesnaeseaeecnaecsseeesnesecdesseeeeseaes 151 

A.2.9 Stacked Bar w...ccescscsssssssceseessecssecesseesseseaeseeescssessssesseaseeasosesseneees 152 

Table of Contents vill



A.2.10 Text seseeseceesseessssecsencecsaeessacecesceessseceensecscesensessseeecssececnsecneeeeseneeeaaeesees 155 

A.3 Control Entities oo. cccesccessesscesecsseeseeenneeeeseacesesescescesaeeaecsaecseeaeeneeoeaes 157 

A.3.1 Deletion w.ceeeeccecceestecsscesssecseeeeesecesaecnseeecsneeesnesenseceenaeseedeeeseaaeseeeaeees 157 

A.3.2 Highlight 0.0... cc cecsssscsnccssecssecsseceecescesecneecsseseseceseseeaesoeecseeseeasoseeenes 158 

A.3.3 Invisible occ. cccsscssseecesssccesssceessececsessccessacesecsasecsceeeeceseeesesssceesseeeeees 160 

Vita .recccssceees sscescsscessocenes seenssecccsscccsessveccesessoccrsccsssccsseores secevccsseccesccceccssoeccssnessscssoss 162 

Table of Contents 1X



List of INustrations 

Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

Figure 5. 

Figure 6. 

Figure 7. 

Figure 8&. 

Figure 9. 

Figure 10. 

Figure 11. 

Figure 12. 

Figure 13. 

Figure 14. 

Figure 15. 

Figure 16. 

Figure 17. 

Figure 18. 

Figure 19, 

Example of Graph in ACSYNT ou... eeeesenercecececnsneeceseesseneeese 8 

Present ACSYNT Graphing Routines ......... cc ccceccceeeeeeeeseseeeeees 9 

Procedure for Creating Graphs in ACSYNT oo. eee ceeeeeeeeees 10 

Class Organization of Motif-Like Interface Framework ............... 25 

Class Hierarchy - First Design ou... eeseesceeesesseeeeeseessenseessensnes 27 

Class Hierarchy ou... ...cccsessccecssscecsscceessneccescecessccecsssuecesseaasenseaeees 29 

Graph Entities Used For Bar Graphs oie eeesseseessneeeeenseeeeenes 35 

Graph Entities Used For Line Graphs ooo... eee eeeeceesereeeeeeeeenees 38 

Graph Entities Used For Pie Graphs o0...... cece cesseceeseceeeseeeeesseees 41 

Graph Entities Used For Polar Graphs oo... eee ceesseeeeeeeenenees 44 

Graph Entities Used For Stacked Bar Graphs ou... eee essen eeee 47 

Graph Entities Used For XYZ Plots oo... cesseccesssseeeeseceeeseseeees 50 

Sample Program ..........ccsscccssssccsesssceesscccseseceesssaccecsececeseaeeeceesaeceseees 89 

Line Graph Created Using Class Library oo... ecessseseseeeeeeees 90 

Flow of Control After User Input 0... eeeeeeccecesecseeeeeesoennees 92 

Line Graph Function for Processing User Input 0.0... eeeseeeee 93 

Axes Functions for Processing User Input 0... ee ceeeereeeeeeee 94 

Pop-Up Menu Created by Axes Class oo... eeecesseeesestreesesnenees 95 

Example of a Bar Graph ou... ceceseecssesecsseeseeecsseessnsessnesesseeesens 96 

List of Illustrations



Figure 20. 

Figure 21. 

Figure 22. 

Figure 23. 

Figure 24. 

Figure 25. 

Figure 26. 

Figure 27. 

Figure 28. 

Figure 29. 

Figure 30. 

Figure 31. 

Figure 32. 

Figure 33. 

Example of a Stacked Bar Graph ooo... eee ceseesseseeeeesecrsenesseoseees 97 

Example of a Pie Graph ooo... cececsscccssssrcecesssnseeecesesstceeceeeensnseees 98 

Example of a Polar Graph oo... eee cess cstseseneeceeeeeseeeeesenaseseeeeees 99 

Example of a XYZ Plot oo... eee eee ceeseesaceeecesseeueeseeesseseeeesoees 100 

Pop-Up Menu Created by Bar and Stacked Bar Classes. ............... 101 

Pop-Up Menu Created by Curve Class oo... eeesesssseeceesseceeneneees 102 

Pop-Up Menu Created by Grid Class oo... cesccereeceseeeeeeeceees 103 

Pop-Up Menu Created by Legend Class wee cseeessrceeesreeeees 104 

Pop-Up Menu Created by Text Class owe eeececeeceeseeeesneeeeeees 105 

Pop-Up Menu Created by Pie AxeS oo... eecccsseeeseeseneceeneeeeenaes 106 

Pop-Up Menu Created by Polar AXeS ou... eee ccsssseccesteteceesseceone 107 

Example of Color Modification Menu ........ ee cecseeeseeeeseeseseeeeees 108 

Example of PHIGS Primitive Attribute Modification Menu ........ 109 

Example of Variables Template in ACSYNT oo. ecceeeseeeeees 111 

List of Dlustrations xi



1.0 Introduction 

Every year thousands of CAD/CAM and engineering applications software packages are 

created by software engineers. In a recent survey of the use of CAD/CAM systems in 

a pre-selected group of 41 Fortune 500 companies, many companies reported the 

development of custom CAD software in-house [PENN91] [PENN92]. A significant 

amount of time and effort is spent by these programmers in developing the graphics 

interfaces to be provided to the user (e.g., user input facilities such as menus and icons, 

geometry rendering, data visualization, etc.). Thus, CAD applications developers are 

always on the lookout for better and higher-level tools which will assist them in quickly 

creating customized graphical user interfaces (GUI’s) for their CAD systems. 

The ISO standard for three-dimensional graphics, Programmers Hierarchical Interactive 

Graphics System (PHIGS), is one of the tools commonly used by CAD applications 

programmers. Although PHIGS-based programs are device-independent, PHIGS does not 

provide enough high-level support for the creation of custom CAD systems. In addition 

to graphics and GUI’s, high-level tools are needed in the areas of geometric modeling, 

artificial intelligence, database methods, data exchange, etc. A number of researchers 

have been working toward providing a set of high-level tools to support CAD applications 

programming [JAYA90] [JAYA91] [JAYA92] [JAYA93a] [MONT91] [FLEM91] 

[FLEM92] [LINW93] [MYKL92a] [MYKL92b] [SCHR92]. These tools should not only 

Introduction 1



be device-independent, but also extensible and maintainable. Such reusable tools will 

reduce the time and money spent on implementing basic methods and techniques required 

by most CAD systems (e.g., GUI, graphs, etc.). 

Many of these attributes can be realized by ensuring that the tools being created are 

object oriented. The reuse of working code from project to project was originally viewed 

aS a promising way to address the difficulties with developing and modifying large 

systems. 

One of the common uses of computer graphics in engineering is for the creation of 

graphs. Commonly used graphs, such as line graphs, bar charts, etc., can be created using 

PHIGS. This would involve the creation of methods to scale the data, draw the graph, 

display labels, display axes, display legends, and several other programming tasks which 

are re-created by each applications program. This thesis describes the creation of an 

object-oriented class library to facilitate the creation of engineering graphs using PHIGS. 

This library will allow PHIGS programmers to quickly and easily create graphs for use 

with their applications programs. The library of classes, the user interface methods and 

examples of the use of this system are described in this thesis. 

Introduction 2



2.0 Literature Review 

Many commercial graphics software packages are available such as PHIGURE, FIGraph, 

DADiSP 3.0, XPLOT, GPHIGS, HOOPS, etc., but at the present time "there are still no 

sound object-oriented graphics systems available" [WISS90]. Some commercial systems 

claim to be object oriented, but are in fact not written in an object-oriented manner, they 

are merely object-like. PHIGURE is designed for users who need to quickly visualize 

data and develop graphics applications. PHIGURE is furnished with an object code 

library with C and FORTRAN 77 interfaces and is integrated with Motif. The graphics 

PHIGURE uses is GPHIGS. FIGraph is a visualization toolkit for two-dimensional and 

three-dimensional graphical representations using C and FORTRAN. FIGraph is based 

on FIGARO+. XPLOT is a program designed to quickly generate graphical output. 

XPLOT runs under the X Window System. It uses the OPEN LOOK graphical user 

interface. GPHIGS is a high-level two-dimensional and three-dimensional graphics 

development toolkit. GPHIGS uses C and FORTRAN 77 and is integrated with Motif. 

It uses the PHIGS graphics standard. HOOPS is a subroutine library callable from C, 

C++, and FORTRAN. HOOPS consists of routines for creating, managing, querying, and 

editing a graphics database. HOOPS, while being object-oriented does not use the PHIGS 

standard. Also, for the majority of platforms HOOPS supports, either Motif or Windows 

is used as the window manager. 

Literature Review 3



Conventional approaches to computer graphics are failing and are causing a bottleneck 

in industry. Even when graphics packages provide sophisticated capabilities, a mismatch 

exists between what is offered by a graphics system Application Program Interface (API) 

and what is required by most applications programmers, because graphics systems must 

be managed at an extremely low level [CUNN92]. 

Very little is known on how to create a set of software components that can be reused in 

different systems with little or no change [DUNN91]. In a survey of 41 Fortune 500 

companies in which 26 responded, it was found that 73 percent develop their own 

customized software for their needs [PENN92]. Dunn and Knight [DUNN91] 

Summarized a case study of the problems that limit the reuse of code in an industrial 

setting. They concluded that a reusable library of classes written in C++ was very 

successful in addressing this problem. The use of object-oriented methods in computer 

graphics has been compared to traditional methods by Fellner [FELL91]. This study 

showed that object-oriented techniques significantly improve the readability of the 

algorithms and drastically improve productivity. The learning curve for a large class 

library is substantial but the investment is usually recovered quickly. Moreover, the cost 

of integration and testing is reduced, leading to a more effective management of the 

efforts of several developers. Some of the benefits of using object-oriented techniques 

in computer graphics have been illustrated through examples [CUNN92]. Wisskirchen 

States that two separate groups of researchers and developers are working in computer 

Literature Review 4



graphics [WISS90]. One group concentrates on traditional graphics approaches and 

graphics standards (PHIGS and GKS). The other group is striving towards object-oriented 

systems. Although these groups are slowly coming together, object-oriented graphics 

Systems are currently not available. Some systems which claim to be object oriented have 

not been created from an object-oriented design. 

The development of a class library with the object-oriented paradigm will impose an 

engineering discipline that will allow the software to be built from reusable, 

interchangeable, and extensible parts. This will allow for a graphics program to be put 

together by just assembling the desired parts and putting them together [CUNN92]. Since 

all of the parts will be modular, any future applications program can use the existing 

parts, or make modifications or extensions to them to adapt them to a particular 

application with minimum effort. 

Literature Review 5



3.0 Graphs in ACSYNT - A Case Study 

In 1990 a group of eight U.S. aerospace companies together with several NASA and Navy 

centers, led by NASA Ames Research Center and Virginia Tech’s CAD Laboratory, 

agreed, through the assistance of American Technology Initiative, to form the ACSYNT 

Institute [JAYA92]. This Institute is supported by a Joint Sponsored Research Agreement 

to continue the research and development in computer aided conceptual design of aircraft 

initiated by NASA Ames Research Center and Virginia Tech’s CAD Laboratory. The 

result of this collaboration is a feature-based, parametric, computer aided aircraft 

conceptual design system called ACSYNT (AirCraft SYNThesis) [WAMP88a] 

[WAMP88b] [JAYA92]. This code is based on analysis routines begun at NASA Ames 

in the early 1970’s. ACSYNT’s CAD system is based entirely on PHIGS and includes 

a highly interactive graphical user interface, automatically generated surface models and 

shaded image displays. 

The ACSYNT analysis discipline modules generate a large amount of output data for the 

aircraft designer. The disciplines this data covers are trajectory, aerodynamics, cycle, 

economics, weights, and noise. The data for these different disciplines can be displayed 

singularly or can be multi-disciplinary. Interactive methods have been created to allow 

the designer to quickly display graphs based on these data. The types of graphs currently 

Graphs in ACSYNT - A Case Study 6



supported by ACS YNT includes two-dimensional line graphs, two-dimensional bar graphs, 

polar plots and carpet plots. An example of a graph in ACSYNT is shown in Figure 1. 

3.1 Current Methods Used in ACSYNT 

At the present time, the ACSYNT graphing functions are located in ten different files. 

The files, their function and the number of lines of code in each are listed in Figure 2. 

These lines of code deal only with the display of the graphs on the screen and for graph 

modification. They do not include the routines that generate the data for the graphs. 

All of the graphs in ACSYNT are generated using similar procedures. This procedure is 

outlined below and illustrated in Figure 3. 

1. The PHIGS structure organization is set up to accommodate the graph. This includes 

determining the number of structures necessary to create the graph, opening a root 

Structure and executing all other structures from within this root structure. Then all the 

default attributes are inserted in all the structures. 

2. The axes of the graph are then drawn. These are the axes lines themselves without 

labels. They are drawn at a fixed location to a fixed length. The grid for the graph is 

also drawn at this time. It is also drawn to a fixed set of parameters and attribute values. 

Graphs in ACSYNT - A Case Study 7



  
          

Figure 1. Example of Graph in ACSYNT 

Graphs in ACSYNT - A Case Study



  

  

    
  

  
  

  

  

  
  

  

  

  

  

  

          

Filename Description # Lines 

agrphl.vpi Trajectory Graphs 4994 

agrph2.vpi Economics Graphs 4925 

agrph3.vpi Aerodynamics Graphs 3785 

Cycle Graphs 

agrph4.vpi VN Diagrams 6931 

Boom Graphs 

Flexibility Routines For Graphs 

Overlay Routines 

agrph5.vpi Envelope Graphs 2171 

airgrph.vpi Infrared (Polar) Graphs 1317 

aghcp.vpi Carpet Plots 5754 

pstcar.vpi Postscript Printing For Carpet Plots 412 

middleman.c Translator between C and FORTRAN routines 528 

graphing.c Graphing routines in C 2237 

Total 33054 

  

Figure 2. Present ACSYNT Graphing Routines 

Graphs in ACSYNT - A Case Study 

  

  

 



  
Figure 3. Procedure for Creating Graphs in ACSYNT 

Graphs in ACSYNT - A Case Study 10



3. The titles of the graph, and the x and y axes labels are then drawn with fixed 

attributes. 

4. The minimum and maximum data values of the data to be graphed are determined. 

5. The proper scale to be used for the axes is then calculated. The user is not 

provided with methods to change this scale. 

6. The marks and labels for the x and y axes are then drawn onto the axes. 

7. The points for the curves or bars to be drawn are then normalized according to the 

calculated axes range and the curves or bars are then drawn onto the graph. 

8. Finally, the legend of the graph is drawn. 

All the different types of graphs for the different modules have their own independent 

routines to perform all of these functions. Therefore, if an attribute change is desired 

in all graph types in must be changed in each type of graph separately instead of in 

one central location. The only common functions shared by the different graph 

routines are those that determine the scale of the axes, normalize the data, and 

interpolate the data points to obtain intermediate points for drawing the curves. 

Graphs in ACSYNT - A Case Study 11



The ACSYNT graphing modules are implemented using about 33,000 lines of 

FORTRAN and C code. If a new type of graph is to be added to ACSYNT or if a 

new analysis module requires graphs, code will need to be written following the 

procedure shown in Figure 3. This would require considerable knowledge of PHIGS, 

and can turn out to be a time-consuming process involving hundreds or thousands of 

lines of new code. 

3.2 Flexibility of Graphs 

The graphing functions also allow the user to apply minor modifications to improve 

readability and visualization of the graphs. The legend, grid, and points on the curves 

can be toggled on and off. Curves can be removed from the graph and the graph can 

be enlarged to take up the entire viewport. However, no other changes are available 

to the user. This is a severe limitation to a user desiring to use the graphs for a 

technical report or presentation. Also, the utility of the graph is reduced by the fact 

that the scale and range cannot be modified. 

Graphs in ACSYNT - A Case Study 12



4.0 Thesis Objectives 

The overall objective of the work presented in this thesis is to create a high-level tool 

which would allow applications programmers to quickly and easily create customized 

graphing functions to support computer aided design. This would save a significant 

amount of money and time being spent on re-creation of tools for many commonly used 

graphs for CAD (e.g., line graphs, surface plots, bar charts, etc.). The resulting set of 

tools should also meet the criteria listed below. 

1, Portability and compatibility with PHIGS: PHIGS is fast gaining popularity as the 

graphics system chosen by CAD applications programmers. The use of PHIGS 

in this set of tools will ensure portability and device independence. 

2. Modern look and feel: Users of graphical systems are usually familiar with the 

look and feel of the graphical user interfaces provided by windowing systems 

(MS-Windows, X-windows, Motif-based GUI’s, etc.). Any graphical interface 

which is provided to the end user by this graphing tool should have a similar look 

and feel. 

3, Ease of use: The toolkit should be easy to use. The CAD applications 

programmer should be able to create graphing methods easily and without 

Thesis Objectives 13



spending a lot of time learning the details of the tools. The tools should be simple 

enough for engineers to use with their programs without having to learn to use 

PHIGS. 

Support CAD needs: During the design of the toolkit, the needs of CAD 
  

applications programmers should be considered. The graphs used commonly by 

CAD systems should be implemented such that CAD programmers should be able 

to easily integrate it with existing or new CAD systems. 

Object-Oriented: In keeping with the latest trends and technology related to 

CAD software creation, this toolkit should be completely object oriented. This 

will allow programmers to include graphs at a very high level without requiring 

them to understand the details of the implementation of these tools. Moreover, 

a truly object-oriented set of tools will automatically lead to a reliable and 

maintainable system which can be extended or modified easily in the future. 

Thesis Objectives 14



5.0 Object-Oriented Design 

5.1 Traditional Programming Philosophy 

In general, computer languages deal with two items, data and algorithms. The data is the 

information to be used or calculated and the algorithms are the processes to manipulate 

the data. 

The traditional approach is to define the procedure for a process and then use the 

computer to execute this procedure. Top-down design became the dominant method of 

design. In this method a large program is divided into several smaller tasks. If one of 

these smaller tasks is still too large it was further divided into even smaller tasks. This 

process was continued until all the tasks were of manageable size and easily programmed. 

While this method allowed for the breakdown of complicated tasks and improved the 

clarity, reliability, and the ease of maintenance, it is easily seen how the code becomes 

difficult to maintain and modify as changes or additions are required, especially if they 

occur near the top of the program as this affects all the routines underneath them. Object- 

oriented programming solves this problem. 

Object-Oriented Design 15



5.2 Object-Oriented Philosophy 

Object-oriented programming emphasizes the data and what operations can be performed 

on it. The object-oriented programming approach tries to tie the language to the problem, 

not the problem to the language. "The idea is to design a data form that corresponds to 

the essential features of a problem. In C++, a class is a specification describing such a 

new data form, and an object is a particular data structure constructed according to that 

plan” [PRAT91]. The class specifies what data are associated with an object and what 

operations can be performed on that object. 

In this way object-oriented programming works more like the actual human thought 

process. A personnel program, for example, would define classes to represent the 

personnel employee information, payroll information, etc. The class definitions for these 

would determine the permissible operations for each item. Then a program is designed 

using objects of these classes. The object in this case would be one particular employee. 

The method of going from classes to program design is known as bottom-up 

programming. This method allows the user to easily add an additional class as changes 

are needed or if something was overlooked. This cannot be done easily in the top-down 

approach. 

Object-Oriented Design 16



5.3 Object-Oriented Design 

Object-oriented design cannot be simply explained as top-down or bottom-up 

programming. It is best explained by the Round Trip Gestalt design. This design 

emphasizes the incremental and iterative development of the system through the entire 

system. First the system is designed as well as possible with the information available. 

Then the system is examined and refined again and again in an iterative manner until the 

system meets the design requirements. 

The order of events which needs to take place for an object-oriented design is as follows: 

Identify all the classes and objects. 

Identify the significance and meaning of all the classes and objects. 

Identify the relationships among the classes and objects. 

Implement the classes and objects. 

This process should be repeated until there are no new abstractions, or when already 

discovered classes and objects may be implemented by composing them from existing 

reusable components [BOOC91]. 

Object-Oriented Design 17



5.4 Object-Oriented Programming Terms (Using C++) 

5.4.1 Class 

A class is the C++ means of combining data representation and methods for manipulating 

that data into one format. Put more simply, a class is a classic C structure that contains 

in addition to variables, functions as members. At a minimum, a class is only a C 

structure. 

5.4.2 Polymorphism (Function Overloading) 

Polymorphism refers to the act of using the same name to accomplish different purposes. 

In C++ polymorphism, or function overloading, allows the user to create different 

functions having the same name provided they have different argument lists. 

5.4.3 Inheritance 

Object-Oriented Design 18



Inheritance is the concept of building a new class from classes that have already been 

created [ADAM92]. Using inheritance, code duplication can be avoided. By inheriting 

from a base class, a derived class assumes all the properties, both data members and 

member functions, of the base class in addition to the new ones it defines. Classes can 

be derived from numerous other classes creating a class hierarchy. 

As an example, if you want to add something to an already working class you can derive 

a new class with all the properties of the existing working class. Then you can add code 

to the new class. And because the former class still exists, it can be used by other parts 

of your program with no side effects or extra work. 

5.4.4 Encapsulation 

"Encapsulation refers to the bundling together of a group of data and the functions that 

operate on the data" [ADAM92]. "Objects are quite frequently spoken of as 

encapsulations of abstractions as each object within itself contains both the knowledge of 

how to respond to a set of messages and the values for its internal states (as defined by 

the class description for an object of its class). In addition, the internals of an object 

(methods and state variables) are invisible to and unalterable by other objects" [FELL91]. 

Object-Oriented Design 19



"Because you can treat the data and the functions as an object, you do not have to 

concern yourself with detail" [ADAM92]. Encapsulation keeps some of the complexity 

of the program away from the user. This allows the user to be able to concentrate and 

plan on a higher level and in broader terms than was previously possible. It also reduces 

misuse or incorrect manipulation of data by the user. 

5.5 Advantages of Object Oriented Programming 

At first the use of object-oriented programming techniques will require more time and 

effort to learn the design philosophy and apply it correctly. But as soon as this learning 

period is completed, the modification of classes becomes much easier and more efficient 

than writing code in standard programming languages [FELL91]. 

Some of the many advantages of using object-oriented programming are [FELL91]: 

° Given a rich set of classes, rapid prototyping is both possible and useful. 

. The use of object-oriented programming makes it possible to effectively 

manage and integrate the efforts of many developers. 

Object-Oriented Design 20



° The cost of integration and testing is small. 

° The learning curve for a large class library is substantial. Nevertheless, the 

time is well spent and the investment is usually recovered during the next 

application developed. 

Since object-oriented programming is an entirely new philosophy it is important to realize 

that software programmers and developers will not be able to simply make an immediate 

Switch to object-oriented programming by learning a specific object-oriented language. 

They will require additional training on the object-oriented philosophy itself [FELL91]. 

"The limiting factor is that no design techniques exist that are specifically intended to take 

advantage of a set of reusable components" [DUNN9Q1]. This is sure to be corrected in 

the near future as programmers and developers become more experienced in the new 

philosophy. This will further benefit those using and making the transition to object- 

oriented programming. 

An argument against making the switch to object-oriented programming is that old 

software is not reusable in the object-oriented programming environment. This is not the 

case. Even if a particular component cannot be reused exactly as it is, the analysis 

Object-Oriented Design 21



embodied in the component often provides the means with which to redesign it to fit the 

new application [DUNN91]. A study conducted in an industrial environment by Dunn 

and Knight in cooperation with Sperry Marine Incorporated showed a very high level of 

code reuse as well as the fact that old software can be reused [DUNN9Q1]. 

Finally it is good to remember that "Good object-oriented design is still an art rather than 

a science. Object-oriented methodology works as an amplifier for programming skills: 

the good programmers get better and the weak ones fall by the wayside" [FELL91]. 

Object-Oriented Design 22



6.0 Motif-Like Interface 

Motif is the most widely-used interface tool for workstations. However, CAD 

programmers have found the need to resort to other interface methods because of several 

reasons, some of which are: 

° Motif is limited to two-dimensional graphics 

° Other device-independent graphics tools (PHIGS) support three-dimensional 

graphics 

. PHIGS-input and Motif-input models are incompatible 

° Motif is not truly object oriented 

. Adding a Motif interface to an existing CAD program is difficult 

. Motif cannot be easily expanded by the user 

Because of the reasons presented above, the author found it necessary to use a PHIGS- 

based interface system which is truly object oriented and provides a "Motif-Like" look 

and feel. One such system has been designed and implemented by Woyak and Myklebust 

[WOYA92, WOYA93]. Some of the tools provided by this interface system were used 

as the basic building blocks for the work presented in this thesis. For the sake of 

completeness, an overview of this class library of object-oriented interface tools is 

presented below. 

Motif-Like Interface 23



Five major groups of classes are included in this interface framework: Windows, 

Interface Managers, Menu Managers, Menu Items, and Menu Item Managers. A Window 

is a channel of communication between the user and the applications program. The 

Interface Manager is the central processing object. A Menu Manager maintains a group 

of Menu Items which may also be controlled by a Menu Item Manager. Several different 

types of windows have been defined in this framework. Geometry Managers are windows 

that display and maintain a PHIGS view. Pop-Up Menus are windows used to display 

menu items and Dialogue Managers are windows used to send messages to a user. The 

powerful C++ features of inheritance and virtual functions allow all these windows to 

inherit the properties of a base "Window" class. The Interface Manager maintains a list 

of windows associated with it and manages these windows without regard to what "type" 

of window they are. Thus, any new class which inherits the Window class can 

automatically be managed by the Interface Manager without any changes to this interface. 

Figure 4 shows an example of the class organization of this framework. 

Motif-Like Interface 24



    

a ‘ 
I ‘ 

' Menu Item *, 
; Manager , 

' ‘\ ' ‘ ‘= ‘\ a 4 ° Interface ‘1 Menu \ Radio Button, 1 I ; Manager , } Manager 1 Manager ! 

no. ‘ 
1 a } Item ? i d ‘\ 

. 4 Radio 
Window ! e~wleoty 8-7 ~ Button } 

--" \ oto 
, Pop-Up Sess 

. ; Menu, ser 8 

oot? ‘ one 7 Ny t ~~~! ‘ . 

Manager ; 1 Simple * V7 / i ‘N 

' jy View; + Push Neer tte 
. Pe ied t i ! Button I 

A €_ B 
Class A creates class B 

A -——————P> B 

Class A inherits class B 

Figure 4. Class Organization of Motif-Like Interface Framework [WOYA93] 

Motif-Like Interface 25



7.0 Overview of the Design 

7.1 Class Hierarchy 

The first design of the class hierarchy can be seen in Figure 5. It involves using a 

Geometry Manager class, and creating a set of graph entity classes (e.g., Axes, Legends, 

etc.). A Graph class would inherit all of these separate classes. This Graph class would 

then be inherited by the individual graph classes (e.g. Line, Bar, etc.). This gives the 

individual graph classes access to the basic entities they may need to produce the desired 

graph. 

This structure layout was rejected for several reasons. Inheritance represents an "is a" 

relationship. Since "Graph" is not a kind of "Axes", "Text", etc., this setup was violating 

this relationship. Also, this setup is not very flexible. Since the Graph class inherits all 

the basic entities, the user would have to modify the entity and the graph classes and 

check for any other effects to the other classes if changes to any of the entities are desired 

or if any new entities are to be added. Also since the basic graph entities are data items, 

extra work would be involved in passing data from class to class to determine what 

should be constructed. 

Overview of the Design 26



  

    
Class A inherits class B 

Figure 5. Class Hierarchy - First Design 

Overview of the Design



The modified class hierarchy layout (Figure 6) includes the creation of a Graph Manager 

which inherits a Geometry Manager. The Graph Manager is inherited by a Graph class. 

The Graph class is then inherited by the individual graph classes. The basic graph entities 

are then defined in their own individual classes which can be included as instanced 

objects in any of the individual graph classes. This setup offered many advantages over 

the previous design. This setup allows for generic "common" functions to be put where 

all classes have access to them. It also allows greater flexibility for changing graph 

entities or adding new entities. 

7.2 User Interface For Graph Modification 

The user interface tools this system uses are part of the PHIGS-based, Motif-like interface 

framework described by Woyak and Myklebust [WOYA93]. The Geometry Manager 

controls the views into which the graphs are placed. This Geometry Manager allows the 

graph classes to align the viewport in an appropriate position depending on what type of 

graph is being displayed by sending the appropriate messages to the Geometry Manager. 

The Interface Manager also aids in keeping track of PHIGS structure identifiers. By 

using the tools built into the library, each entity is assured of getting its own unique 

Overview of the Design 28



Graph \ 

an —- we 7 TN 

f ~ { Polar_Graph \ 
( Pie_Graph \ \ _ 7 

\ / ~— 7 
~_-7 

a 
\ Line_Graph \ 

ff ~_e 

( XYZ_Plot \ 
\ —~ 7 TO 

~ —_ 

(| Stack_Bar_Graph  \ 

f ™ ~~ ~ —_ ” 

| Bar_Graph \ 

\ ~ 7 
~ -” - A} 

Class A inherits class B 

A —————}> B 
Class A inherits class B 

Figure 6. Class Hierarchy 

Overview of the Design 29



structure identifier. This relieves the programmer of the burden of structure identifier 

management. 

In addition to this all of the individual entity classes in this system make use of the 

various input/output devices provided for in this Motif-like interface framework, such as 

pop-up menus, number boxes, radio buttons, etc. The user interfaces for all of the graph 

entities are encapsulated within the entities themselves. The end user gains access to the 

interface by picking the entity with the mouse. When an entity is "picked", it uses its 

own internal methods to create a pop-up menu which will allow the user to make 

modifications to the attributes of that entity class. If any of the modifications the user 

makes affect any of the other entity classes, these classes will automatically modify 

themselves to account for the change. 

Overview of the Design 30



8.0 Descriptions of Classes 

Several classes have been defined for inclusion in this library to support two-dimensional 

and three-dimensional graphs. All the graphs except for the polar graphs have the ability 

to be displayed in two or three dimensions. All graphs are drawn in two dimensions in 

the XY plane, unless the user specifies otherwise. 

The graphs drawn in three-dimensional are drawn with the positive Z axis coming out of 

the screen towards the user. In bar graphs, the cubic dimension of the bar is along the 

Z axes. In pie graphs, the pie is drawn in the XZ plane and the cubic height dimension 

is drawn along the Y axes. In line graphs, the points are drawn in three-dimensional 

space. The GUI framework automatically provides the end user with tools to apply three- 

dimensional viewing transformations to the window. 

8.1 Graph Manager Class 

The Graph Manager class inherits the Geometry Manager class provided as a part of the 

Motif-like interface described earlier. This class is the base class for this object-oriented 

toolkit from which most graph classes are derived. This is the "gateway" class between 

the class library being described in this thesis and the interface framework described by 

Descriptions of Classes 31



Woyak and Myklebust. It inherits all the methods and data from the Geometry Manager 

class and is hence a "Window’" class. 

8.2 Graph Class 

The Graph class is derived from the Graph Manager class. This class forms the base 

from which each individual graph class is derived. It contains methods for gaining access 

to graph entities displayed in a graph window. 

&.3 Individual Graph Classes 

Each type of graph supported by this system is a separate class. For example, the 

Line_Graph class allows programmers to create a line graph using PHIGS. This is done 

by creating an instance of the Line_Graph. Since the Line_Graph class is derived 

ultimately from the base "Window" class, a Line_Graph object is a "Window" object. 

Thus, creating a Line_Graph object automatically creates a new window with all related 

functions (resizing, raising, lowering, etc.) which are provided for in the Interface 

Manager. A number of functions are redefined by the Line-Graph class to tailor this class 

Descriptions of Classes 32



to the needs of a Line_Graph. This class inherits methods from the Graph Manager for 

processing user input. The types (classes) of graphs defined in this class library include: 

. Line_Graph 

. Bar_Graph 

° Stacked_Bar_Graph 

° XYZ_Plot 

e Pie_Graph 

° Polar_Graph 

Each class includes a number of public (available for use by any other function or class) 

functions which the programmer can use to modify the graph. The common functions are 

inherited from the Graph class and specific ones are inherited and redefined or defined 

within the class. Each class creates instances of graph entities from various graph entity 

classes (described later). 

In the following sections a detailed description of the design of the classes is provided. 

This description includes the functions to be included in each class. Some of these 

functions are private (i.e. available for use only by the class) and some are public. 

Descriptions of Classes 33



All constructors in the following classes create the entities with default attributes, but 

these can be changed by the programmer using the public functions. 

8.3.1 Bar_Graph Class 

The Bar Graph class is used to generate an instance of a bar graph. Bar graphs are used 

for showing volume and simple time comparisons. Each bar in a bar graph represents one 

data value. An example of the type of data that requires a bar chart is comparing the 

first-unit costs of several different items. The bars can be displayed two or three 

dimensionally. Instances of the Axes, Grid, Data Series, Invisibility Filter, Deletion 

Filter, Bar, Text and Legend classes will automatically be generated and displayed by the 

Bar Graph class (Figure 7). A list of the functions included in the Bar Graph class is 

provided below. 

Constructor: 

Bar_Graph (two-dimensional or three-dimensional, number rows in data array, 

number columns in data array, data array, text array) 

The constructor performs these operations: 

Descriptions of Classes 34



— ~ 
_— 

( \ — Deletion_Filter 

==! 

oneey 
—_—_-_—-— 

I Invisibility_Filter 

—_ =~ 

Data_Series 

~ 

‘ 

Text 
NL 

Bar_Graph 

l Axes 7 _— 
\ _) 

~ \ 

~ 

_-_—-_-_— + 
_ ~ oS 

I Legend ‘ | Grid \ 

\ _) \ ) 
~ 7” ~ - 

A CB 
Class A creates class B 

Figure 7. Graph Entities Used For Bar Graphs 

Descriptions of Classes 35



° Sets any default values needed by the graph, either by user supplied input 

or default values. 

° Copies data arrays into data series entities. 

. Creates axes entity with necessary pointers and values. 

° Creates grid entity with necessary pointers and values. 

° Creates sets of bar and legend entities. 

Public Functions: 

process_geometry_view (): Process input from the geometry manager and pass 

it on to the appropriate graph entity. This function is inherited by the interface 

manager and redefined by this class. 

manage (): Control drawing of bar graph. First the viewport is rotated for correct 

viewing of the graph. Then the axes and grid entities are managed. Then the 

bars, titles, and legend are drawn. This function is inherited from the interface 

manager and redefined by this class. 

draw_bars (): Draw the bars for the graph. Attributes for the bars are set and the 

bars are drawn. 

draw_titles (: Draw the titles for the graph. Attributes for the title and axes 

labels are set and the title and labels are drawn. 

draw_legend (): Draw the legend for the graph. Attributes for the legend are set 

and the legend is drawn. 

Descriptions of Classes 36



recreate_graph (): Recreate the graph. Tells all the graph entities to recreate 

themselves. 

8.3.2 Line_Graph Class 

The Line Graph class generates an instance of a line graph. Line graphs show the amount 

of change between one data point and the next. This allows the user to easily identify 

data fluctuations. An example of the type of data that requires a line graph is the 

cashflow spent on a project per year. The graph can be displayed two or three 

dimensionally. Instances of the Axes, Grid, Data Series, Invisibility Filter, Deletion 

Filter, Curve, Text and Legend classes will automatically be generated by the Line Graph 

class (Figure 8). A list of the functions included in the Line Graph class is provided 

below. 

Constructor: 

Line_Graph (number of rows in data arrays, number of columns in data arrays, 

x data array, y data array, text array) 

Line_Graph (number of rows in data arrays, number of columns in data arrays, 

x data array, y data array, z data array, text array) 

The constructor performs these operations: 

Descriptions of Classes 37



— = 

OC ~ 
‘ —_— ~ 

Deletion_Filter . 

Data_Series 

~ 

\ " swsiy Fe \ 
| 

SL L>~ 

Line_Graph 

TTS JL \ | 
Axes | ~ 4 + i 

in Cc \ — urve 

~ 7 | } 
NX ~_- _ 

—_-— +\\ 

( Legend \ Grid 

NX —_ | 
~ 7 \ ~ - 7 

i a : 
Class A creates class B 

Figure 8. Graph Entities Used For Line Graphs 

Descriptions of Classes 38



° Sets any default values needed by the graph, either by user supplied input 

or default values. 

° Copies data arrays into data series entities. 

. Creates axes entity with necessary pointers and values. 

. Creates grid entities with necessary pointers and values. 

° Creates sets of curve and legend entities. 

Public Functions: 

process_geometry_view (): Process input from the geometry manager and pass 

it on to the appropriate graph entity. This function is inherited by the interface 

manager and redefined by this class. 

manage (): Control drawing of line graph. First the viewport is rotated for correct 

viewing of the graph. Then the axes and grid entities are managed. The curves, 

titles, and legend are drawn. This function is inherited by the interface manager 

and redefined by this class. 

draw_curves (): Draw the curves for the graph. Attributes for the curves are set 

and the curves are drawn. 

draw_titles (): Draw the titles for the graph. Attributes for the title and axes 

labels are set and the title and labels are drawn. 

draw_legend (): Draw the legend for the graph. Attributes for the legend are set 

and the legend is drawn. 

Descriptions of Classes 39



recreate_graph (): Recreate the graph. Tells all the graph entities to recreate 

themselves. 

8.3.3 Pie Graph Class 

The Pie Graph class generates an instance of a pie graph. Pie graphs are used to show 

the percentages of the whole. An example of the type of data that requires a pie graph 

is the weight breakdown of an aircraft. The user can quickly determine the individual 

contributions of the components toward the total weight of the aircraft. The graph can 

be displayed two or three dimensionally. Instances of the Data Series, Pie, Text and 

Legend classes will automatically be generated by the Pie Graph class (Figure 9). A list 

of the functions included in the Pie Graph class is provided below. 

Constructor: 

Pie_Graph (two-dimensional or three-dimensional, number of rows in data array, 

number of columns in data array, data array, text array) 

The constructor performs these operations: 

. Sets any default values needed by the graph, either by user supplied input 

or default values. 

Descriptions of Classes 40



aus» 
— — — —w 

7 ~ fT ~ 

| ‘ ! \ 
Data_; Series * Text \ 

Pie_Graph 

A 
7 ~ 

Legend ‘ ‘ Pie ‘ 
_ 2 

‘ ~ - “ ~ ~— 7 

A cB 
Class A creates class B 

Figure 9. Graph Entities Used For Pie Graphs 

Descriptions of Classes 41



° Copies data arrays into data series entities. 

. Creates sets of pie and legend entities. 

Public Functions: 

process_geometry_view (): Process input from the geometry manager and pass 

it on to the appropriate graph entity. This function is inherited from the interface 

manager and redefined by this class. 

manage (): Control drawing of pie graph. First the viewport is rotated for correct 

viewing of the graph. Then the axes and grid entities are managed. Then the 

pie slices, titles, and legend are drawn. This function is inherited from the 

interface manager and redefined by this class. 

draw_pie_slices (): Draw the pie slices for the graph. Attributes for the pie slices 

are set and pie slices are drawn. 

draw_titles Q: Draw the titles for the graph. Attributes for the title are set and 

the title is drawn. 

draw_legend (): Draw the legend for the graph. Attributes for the legend are set 

and the legend is drawn. 

recreate_graph (): Recreate the graph. Tells all the graph entities to recreate 

themselves. 

Descriptions of Classes 42



8.3.4 Polar Graph Class 

The Polar Graph class generates an instance of a polar graph. Polar graphs are used for 

showing the differences of magnitude and degree from point to point. The type of data 

that requires a polar graph is the radar or infrared signature of an aircraft. Instances of 

the Polar Axes, Data Series, Invisibility Filter, Deletion Filter, Curve, Text and Legend 

classes will automatically be generated by the Polar Graph class (Figure 10). A list of 

the functions included in the Polar Graph class is provided below. 

Constructor: 

Polar_Graph (number of rows in data arrays, number of columns in data arrays, 

magnitude data array, degree data array, text array) 

The constructor performs these operations: 

Sets any default values needed by the graph, either by user supplied input 

or default values. 

Copies data arrays into data series entities. 

Creates polar axes entity with necessary pointers and values. 

Creates sets of curve and legend entities. 

Public Functions: 

Descriptions of Classes 43



~ 

l Data_Series \ 

XN / 
Soe T7 

| + 

{ Tov Filter N Text 

    7 
po Polar_Graph ‘ 

a Polar_Axes \ ~ 

\ _7 i 
NL \ 

~ 

— ! * 
a ~ co — ~ 

| Deletion_Filter \ ( Legend \ 
\ 7 \ 7 ~ L.-T ~LseT 

A €_—____ B 

Class A creates class B 

Figure 10. Graph Entities Used For Polar Graphs 

Descriptions of Classes



process_geometry_view (): Process input from the geometry window and pass it 

on to the appropriate graph entity. This function is inherited from the interface 

manager and redefined by this class. 

manage (): Control drawing of polar graph. First the viewport is rotated for 

correct viewing of the graph. Then the polar axes is managed. Then the curves, 

title, and legend are drawn. This function is inherited from the interface 

manager and redefined by this class. 

draw_curves (): Draw the curves for the graph. Attributes for the curves are set 

and the curves are drawn. 

draw_titles (): Draw the titles for the graph. Attributes for the title and axes 

labels are set and the title and labels are drawn. 

draw_legend (): Draw the legend for the graph. Attributes for the legend are set 

and the legend is drawn. 

recreate_graph (): Recreate the graph. Tells the graph entities to recreate 

themselves. 

8.3.5 Stacked _Bar_Graph Class 

The Stacked Bar Graph class generates an instance of a stacked bar graph. The stacked 

bar graph is used to show the percentages of the whole. The type of data that requires 

Descriptions of Classes 45



a stacked bar graph would be the first unit cost of an aircraft. The user can quickly 

determine what percentage each component costs as it relates to the total price of the 

aircraft. The bars can be displayed two or three dimensionally. Instances of the Axes, 

Grid, Data Series, Invisibility Filter, Deletion Filter, Stack Bar, Text and Legend classes 

will automatically be generated by the Stacked Bar Graph class (Figure 11). A list of the 

functions included in the Stacked Bar Graph class is provided below. 

Constructor: 

Stack_Bar_Graph (two-dimensional or three-dimensional, number rows in data 

array, number columns in data array, data array, text array) 

The constructor performs these operations: 

° Sets any default values needed by the graph, either by user supplied input 

or default values. 

° Copies data arrays into data series entities. 

° Creates axes entity with necessary pointers and values. 

° Creates grid entity with necessary pointers and values. 

. Creates sets of stack bar and legend entities. 

Public Functions: 

process_geometry_view (): Process input from the geometry window and pass it 

Descriptions of Classes 46



—_ 

oo ~ 

‘ = — ~ 

oe Filter . 

Data_Series 

~ 

ti oa Text ‘ 

_] 

Stack_Bar_Graph 

_ ” N _ 

{ Axes 2 1 + -_ ~ . 

\ _o { Stack Bar 
~ 

— NX _ 

~— —_ - 

—_-— + ~ = con ~ 

I ‘ \ 
\ _ . 

~ — ~~ ~ - ™ 

A BB 

Class A creates class B 

Figure 11. Graph Entities Used For Stacked Bar Graphs 

Descriptions of Classes 47



on to the appropriate graph entity. This function is inherited from the interface 

manager and redefined by this class. 

manage (): Control drawing of stack bar graph. First the viewport is rotated for 

correct viewing of the graph. Then the axes and grid entities are managed. 

Then the stack bars, titles, and legend are drawn. This function is inherited from 

the interface manager and redefined by this class. 

draw_bars (): Draw the stack bars for the graph. Attributes for the stack bars are 

set and the bars are drawn. 

draw_titles (: Draw the titles for the graph. Attributes for the title and axes 

labels are set and the title and labels are drawn. 

draw_legend (): Draw the legend for the graph. Attributes for the legend are set 

and the legend is drawn. 

recreate_graph (): Recreate the graph. Tells all the graph entities to recreate 

themselves. 

8.3.6 XYZ Plot Class 

The XYZ Plot Graph class generates an instance of a xyz plot. Instances of the Axes, 

Grid, Data Series, Invisibility Filter, Deletion Filter, Curve, Text and Legend classes will 

Descriptions of Classes 48



automatically be generated by the XYZ Plot class (Figure 12). A list of the functions 

included in the XYZ Plot class is provided below. 

Constructor: 

XYZ_Plot (number of rows in data arrays, number of columns in data arrays, x 

data array, y data array, z data array, text array) 

The constructor performs these operations: 

° Sets any default values needed by the graph, either by user supplied input 

or default values. 

. Copies data arrays into data series entities. 

. Creates axes entity with necessary pointers and values. 

. Creates grid entities with necessary pointers and values. 

° Creates sets of curve and legend entities. 

Public Functions: 

process_geometry_view (): Process input from the geometry manager and pass 

it on to the appropriate graph entity. This function is inherited from the interface 

manager and redefined by this class. 

manage (): Control drawing of xyz plot. First the viewport is rotated for 

viewing of the graph. Then the axes, titles, and plot are drawn. This 

Descriptions of Classes 49



    

/ \ 
\ Data_Series | 

‘X - = 
~ 

rs 
ora ~ . 

~ ~ Text , 
Invisibility_Filter \ _ 

- 

NX = 1 += a” 

~ .- 

1 Wi 
— = 

I ~@1 
\ XYZ_Plot 

\ _ 

_ - 
1 1 

a ~ 

\ Axes / N 
\ Curve | 

‘ -- 

+. \ -_- 
~ w- 

A C__—_ B 
Class A creates class B 

Figure 12. Graph Entities Used For XYZ Plots 

Descriptions of Classes 50



function is inherited from the interface manager and redefined by this class. 

draw_plot (): Draw the plot for the graph. Attributes for the surface are set 

and the plot is drawn. 

draw_titles (): Draw the titles for the graph. Attributes for the titles are set and 

the titles are drawn. 

draw_legend (): Draw the legend for the graph. Attributes for the legend are set 

and the legend is drawn. 

recreate_graph (): Recreate the graph. Tells all the graph entities to recreate 

themselves. 

Descriptions of Classes 51



9.0 Graph Entity Classes 

A graph entity is an object created and displayed by the program. All the basic graph 

entity classes are defined in a similar manner. Each graph entity is derived from the 

Graph Manager class and inherits the "manage" function. This function will tell the entity 

what structure identifier to use, which view index to use, the priority to give to this view, 

and will pass the pointer to the Interface Manager. The entity also inherits the 

"unmanage" function which will allow the entity to remove itself. 

9.1 Graph Entities 

Each entity class contains its own private variables. This means that entities cannot 

accidentally interfere with each other. Each entity has several public functions that allow 

the entity itself, or other entities, to change the attributes of the entity. All these classes 

contain a pointer to the Graph class to which it is associated. The graph entities are: 

. Axes 

° Bar 

° Curve 

° Grid 

° Legend 

. Pie 

Graph Entity Classes 52



° Polar Axes 

e Data Series 

e Stack Bar 

° Text 

There are three common functions among all the entity classes. They perform the same 

function for all the entity classes. These are: 

manage (): Tells the entity what structure identifier to use, which view index to 

use, the priority to give the view, and passes the pointer to the Interface 

Manager. 

unmanage (): Disassociates the PHIGS structure from the view and empties the 

structure. 

perform (): Creates a pop-up menu to allow user to make modifications to the 

entity attributes. Using the pop-up menu gives the user the means of accessing 

the functions to change the attributes of the entity while still being in the 

program. When the user changes one of the attributes, the appropriate function 

call is made by the program to reset that entity attribute. 

9.1.1 Axes Class 

Graph Entity Classes 53



The Axes class is used to draw the axis for the graph. The Axes class defaults to a two- 

dimensional axis in the XY plane. If a three-dimensional axis is specified, it is viewed 

with the Y axis vertical, and the X and Z axes pointing to the lower-right and lower-left 

corners of the screen, respectively. The default axes color is red. The axis is scaled 

automatically according to the data points to be graphed unless the user specifies the 

Starting and ending values for each axis. The axis has six labeled division marks along 

each axis. The Axes class contains pointers to the Graph, and Invisibility Filter classes. 

This will allow the axes class to communicate with these classes. 

When the Axes constructor is called the axis is assigned default attributes. If the starting 

and ending values for each axis are not specified by the user, an appropriate scale for 

each axis will be calculated. The axis is then drawn. Attributes for the axis can be set 

by the programmer before the axis is drawn by using the functions provided below. The 

program user can also change the attributes by picking the axis. This will provide the 

user with a pop-up menu that will allow the axis attributes to be changed without having 

to modify the code. A list of functions in the Axes class is given below: 

Constructors: 

Axes () 

Axes (2D or 3D, X-axes-start-pt, Y-axes-start-pt, Z-axes-start-pt, xlength, ylength, 

zlength) 

Axes (2D or 3D, X-axes-start-pt, Y-axes-start-pt, Z-axes-start-pt, xlength, ylength, 

Graph Entity Classes 54



zlength, color) 

Axes (2D or 3D, X-axes-start-pt, Y-axes-start-pt, Z-axes-start-pt, xlength, ylength, 

zlength, linewidth) 

Axes (2D or 3D, X-axes-start-pt, Y-axes-start-pt, Z-axes-start-pt, xlength, ylength, 

Zlength, linewidth, color) 

Axes (2D or 3D, X-axes-start-pt, Y-axes-start-pt, Z-axes-start-pt, xlength, ylength, 

zlength, number-divisions-x, number-divisions-y, number-divisions-z) 

Axes (2D or 3D, X-axes-start-pt, Y-axes-start-pt, Z-axes-start-pt, xlength, ylength, 

zlength, number-divisions-x, number-divisions-y, number-divisions-z, color) 

Axes (2D or 3D, X-axes-start-pt, Y-axes-start-pt, Z-axes-start-pt, xlength, ylength, 

zlength, number-divisions-x, number-divisions-y, number-divisions-z, linewidth) 

Axes (2D or 3D, X-axes-start-pt, Y-axes-start-pt, Z-axes-start-pt, xlength, ylength, 

zlength, number-divisions-x, number-divisions-y, number-divisions-z, color) 

Each constructor takes advantage of the polymorphism (function overloading) capability 

of object-oriented code. Each constructor shown has a different set of arguments allowing 

the user to choose which options to set. If an option is not input by the user, the 

constructor will assign it a default value. For example, if the user chooses the third 

constructor in the list the color is set. With the fourth constructor the color will be given 

a default value and the user is now setting the linewidth. All the constructors for the rest 

of the entity classes work similarly and will not be described in detail. 

Graph Entity Classes 55



Destructor: 

~Axes (): This function checks if the axis is presently managed. If it is, it will 

unmanage the axis, disassociate the PHIGS structure from the view and empty the 

structure. 

Inguiry Functions: 

Inquiry functions are necessary to allow the other classes to obtain values of data 

members of this class. 

get_x_axes_start_pt (): Returns x axis starting position. 

get_y_axes_start_pt (): Returns y axis starting position. 

get_z_axes_start_pt (): Returns z axis starting position. 

get_x_axes_length (): Returns x axis length. 

get_y_axes_length (): Returns y axis length. 

get_z_axes_length (): Returns z axis length. 

get_x_axes_hi_boundary (): Returns high boundary value of x axis. 

get_y_axes_hi_boundary (): Returns high boundary value of y axis. 

get_z_axes_hi_boundary (): Returns high boundary value of z axis. 

get_x_axes_low_boundary (): Returns low boundary value of x axis. 

get_x_axes_low_boundary (): Returns low boundary value of y axis. 

get_x_axes_low_boundary (): Returns low boundary value of z axis. 

Graph Entity Classes 56



Public Functions: 

initialize_axes (): Initializes the axis with the appropriate attributes, either by 

assigning defaults or giving user desired attributes. 

create_structure (): Draws the axis. This function displays the axis on the screen. 

set_color (): Sets the color for the axis. 

set_linewidth Q): Sets the linewidth for the axis. 

set_x_text_height (): Sets the text height for x axis labels. 

set_y_text_height (): Sets the text height for y axis labels. 

set_z_text_height (): Sets the text height for z axis labels. 

set_x_text_color (): Sets the text color for x axis labels. 

set_y_text_color (): Sets the text color for y axis labels. 

set_z_text_color (): Sets the text color for z axis labels. 

set_type (): Specifies whether 2D or 3D display. 

- $et_pointer_to_data_series (): Sets pointer to the data Series class. 

set_pointer_to_invisibility_filter (: Sets pointer to the Invisibility Filter class. 

set_pointer_to_graph (): Sets pointer to the Graph class. 

scale_axes (): Calculates the scale to be used for each axis. First, the span 

between the maximum and minimum data values is determined. Then the 

logarithm of this span is calculated. Then the high and low boundaries are 

multiplied by this logarithm until there values exceed the maximum and 

minimum values respectively. 

manual_scale_axes (): High and low boundary values are specified by user. The 

Graph Entity Classes 57



scale is determined by the dividing data range span by number of marks for each 

axIS. 

x_axes_marks (): Draws division marks for x axis. 

y_axes_marks (): Draws division marks for y axis. 

z_axes_marks (): Draws division marks for z axis. 

recreate_structure (): Recreates the axis. 

perform (): Creates a pop-up menu to allow user to make modifications to the 

attributes of the axis. Using the pop-up menu gives the user the means of 

accessing the functions to change the attributes of the axis while still being in 

the program. When the user changes one of the attributes, the appropriate 

function call is made by the program to reset that axis attribute. 

Inherited Virtual Functions 

manage (): Tells the axes what structure identifier to use, which view index to 

use, the priority to give the view, and passes the pointer to the Interface 

Manager. 

unmanage (): Disassociates the structure from the view and empties the structure. 

9.1.2 Bar Class 

Graph Entity Classes 58



The bar class represents a single bar in a bar graph. The bar location and width in both 

the X and Z dimensions is determined by the number of bars to be drawn along each axis. 

The bar height is determined by inquiring the limits of the axes from the Axes class. The 

bar data is then normalized according to the axes values. The bars are drawn with a solid 

interior unless the user specifies otherwise. The color of the bar steps up the color table 

index until the last entry of the color table is reached. The color index then wraps around 

to the first entry. The Bar class contains pointers to the Axes, Graph, Series, and 

Deletion Filter classes. This will allow the bar class to communicate with these classes. 

The bar is assigned default attributes when the Bar class constructor is called. Unless the 

user has specified the position for the bar, its location is calculated according the position 

in the data array the bar represents. The bar is then drawn. Attributes for the bar can be 

set by the programmer before the bar is drawn by using the functions provided below. 

The user of the program can also change the attributes by picking the bar. This will 

provide the user with a pop-up menu that will allow him to change the bar attributes 

without having to modify the code. A list of functions in the Bar class is given below: 

Constructors: 

Bar () 

Bar (2D or 3D, data value, bar location, bar width) 

Bar (2D or 3D, data value, bar location, bar width, color) 

Bar (2D or 3D, data value, bar location, bar width, color, interior pattern) 

Graph Entity Classes 59



See Axes Class for description of constructors. 

Destructor: 

~Bar (): This function checks if the bar is presently managed. If it is, it will 

unmanage the bar, disassociate the PHIGS structure from the view and empty the 

Structure. 

Inquiry Functions: 

get_color_index (): Returns color index for the bar. 

get_interior_style (): Returns interior style for the bar. 

get_interior_pattern (): Returns interior pattern for the bar. 

Public Functions: 

initialize_bar (): Initializes the bar with the appropriate attributes, either by 

assigning defaults or giving user input attributes. 

set_color (): Sets the color of bar. 

set_bar_location (): Sets bar location. 

set_interior_style (Q: Sets interior style of bar. 

set_interior_pattern (): Sets interior pattern of bar. 

set_total_number_of_bars (): Sets the total number of bars to be graphed. This 

number is used in determining location of bars when it is not specified by the 

Graph Entity Classes 60



user. 

set_row_count (): Sets the number of rows in data series presently being graphed. 

set_column_count (): Sets the number of columns in data series presently being 

graphed. 

set_total_number_sets (): Sets the number of rows in data series being graphed. 

set_bar_type Q: 2D or 3D display. 

set_pointer_to_data_series (): Sets pointer to Data Series class. 

set_pointer_to_axes (): Sets pointer to Axes class. 

set_pointer_to_deletion_filter Q: Sets pointer to Deletion Filter class. 

set_pointer_to_graph (): Sets pointer to Graph class. 

create_structure (): Draws the bar. This displays the bar on the screen. 

recreate_structure (): Recreates the bar. 

perform (): Creates a pop-up menu to allow user to delete or make modifications 

to the attributes of the bar. Using the pop-up menu gives the user the means of 

accessing the functions to change the attributes of the bar while still being in the 

program. When the user changes one of the attributes, the appropriate function 

call is made by the program to reset that attribute. 

Inherited Virtual Functions 

manage (): Tells the bar what structure identifier to use, which view index to use, 

the priority to give the view, and passes the pointer to the Interface Manager. 

unmanage (): Disassociates the structure from the view and empties the structure. 

Graph Entity Classes 61



9.1.3 Curve Class 

The Curve class is used to draw curves in the graphs. The curves default to point to 

point lines unless the user requests spline curves. The data points for the curves are 

normalized by inquiring the axes limits from the Axes class. The data values are then 

normalized accordingly. The color of the curves step up the color table index until the 

last entry of the color table is reached. The color index then wraps around to the first 

entry. The Curve class also contains pointers to the Axes, Graph, Series and Deletion 

Filter classes. 

When the Curve class constructor is called the curve is assigned default or user input 

attributes. Then markers and curves are drawn. Attributes for the curve can be set by 

the programmer before the curve is drawn by using the functions provided below. The 

user of the program can also change the attributes by picking the curve. This will provide 

the user with a pop-up menu that will allow the curve and polymarker attributes to be 

changed without having to modify the code. A list of functions in the Curve class is 

given below: 

Constructors: 

Graph Entity Classes 62



Curve () 

Curve (row count, number column, xdata, ydata, zdata) 

Curve (row count, number column, xdata, ydata, zdata, color) 

Curve (row count, number column, xdata, ydata, zdata, linewidth) 

Curve (row count, number column, xdata, ydata, zdata, linewidth, color) 

Curve (row count, number column, xdata, ydata, zdata, linewidth, point-to-point 

or spline, color) 

See Axes Class for description of constructors. 

Destructor: 

~Curve (): This function checks if the curve is presently managed. If it is, it will 

unmanage the curve, disassociate the PHIGS structure from the view and empty the 

structure. 

Inquiry Functions: 

get_line_color (): Returns line color. 

get_linetype (): Returns linetype. 

get_marker_type (): Returns polymarker type. 

get_marker_scale (): Returns marker scale. 

Public Functions: 

Graph Entity Classes 63



initialize_curve (): Initializes the curve with appropriate attributes, either by 

assigning defaults or giving user input attributes. 

set_color (Q: Sets the color of the curve. 

set_linewidth (): Sets the linewidth. 

set_linetype (): Sets the linetype. 

set_marker_scale_factor (): Sets the polymarker scale factor. 

set_curve_type (): Point_to_point or spline curve. 

set_graph_type (): 2D or 3D display. 

set_pointer_to_data_series (): Set pointer to Data Series class. 

set_pointer_to_axes (): Set pointer to Axes class. 

set_pointer_to_polar_axes (): Set pointer to Polar Axes class. 

set_pointer_to_deletion_filter (): Set pointer to Deletion Filter class. 

set_pointer_to_graph (): Set pointer to Graph class. 

set_row_count (): Set number of rows in data series presently being graphed. 

set_number_column (): Set number of columns in data series being graphed. 

create_structure (): Draw the curve. This displays the curve on the screen. 

recreate_structure (): Recreate the curve. 

perform (): Creates a pop-up menu to allow user to delete or make modifications 

to the attributes of the curve. Using the pop-up menu gives the user the means 

of accessing the functions to change the attributes of the curve while still being 

in the program. When the user changes one of the attributes, the appropriate 

function call is made by the program to reset that attribute. 

Graph Entity Classes 64



Inherited Virtual Functions 

manage (): Tells the curve what structure identifier to use, which view index to 

use, the priority to give the view, and passes the pointer to the Interface 

Manager. 

unmanage (): Disassociates the structure from the view and empties the structure. 

9.1.4 Grid Class 

The grid class controls the drawing of the grids on the graph. If the graph is two 

dimensional only one grid is drawn in the XY plane. If the graph is three dimensional, 

three separate grids are drawn. One each in the XY, XZ, and the YZ planes. Each grid 

inquires from the Axes class the starting and ending locations of the axes lines and draws 

the grid accordingly. The default color for the grids is gray. The grids have twenty-five 

divisions along each axes by default. The Grid classes also have pointers to the 

Invisibility Filter class. 

Attributes for the grid can be set by the programmer before the grid is drawn by using 

the functions provided below. The user of the program can also change the attributes by 

picking the grid. This will provide the user with a pop-up menu that will allow him to 

change the grid attributes without having to modify the code. A list of functions in the 

Graph Entity Classes 65



Grid class is given below. 

Constructors: 

Grid () 

Grid (orientation, x-start-pt, y-start-pt, z-start-pt, x-length, y-length, z-length) 

Grid (orientation, x-start-pt, y-start-pt, z-start-pt, x-length, y-length, z-length, 

number-x-division, number-y-divisions) 

Grid (orientation, x-start-pt, y-start-pt, z-start-pt, x-length, y-length, z-length, 

number-x-division, number-y-divisions, color) 

Grid (orientation, x-start-pt, y-start-pt, z-start-pt, x-length, y-length, z-length, 

number-x-division, number-y-divisions, linewidth) 

Grid (orientation, x-start-pt, y-start-pt, z-start-pt, x-length, y-length, z-length, 

number-x-division, number-y-divisions, linewidth, color) 

See Axes Class for description of constructors. 

Destructor: 

~Grid (): This function checks if the grid is presently managed. If it is, it will 

unmanage the grid, disassociate the PHIGS structure from the view and empty the 

structure. 

Public Functions: 

Graph Entity Classes 66



initialize-grid (): Initializes the grid with appropriate attributes, either by assigning 

defaults or giving user input attributes. 

create_structure (): Draws the grid. This displays the grid on the screen. 

set_color (): Sets the color of the grid. 

set_linewidth (): Sets the linewidth. 

set_vertical_linetype (): Sets linetype for the vertical grid lines. 

set_horizontal_linetype (): Sets linewidth for the horizontal grid lines. 

set_manual_grid_set (): Flag if grid has been changed by user. 

set_pointer_to_axes (): Sets pointer to Axes class. 

set_pointer_to_invisibility_filter (): Sets pointer to Invisibility Filter class. 

recreate_structure (): Recreates the grid. 

perform (): Creates a pop-up menu to allow user to make modifications to the 

attributes of the grid. Using the pop-up menu gives the user the means of 

accessing the functions to change the attributes of the grid while still being in 

the program. When the user changes one of the attributes, the appropriate 

function call is made by the program to reset that attribute. 

Inherited Virtual Functions 

manage (): Tells the grid what structure identifier to use, which view index to 

use, the priority to give the view, and passes the pointer to the Interface 

Manager. 

unmanage (): Disassociates the structure from the view and empties the structure. 

Graph Entity Classes 67



9.1.5 Legend Class 

The legend class controls the drawing of the legends for the graph. If the graph type is 

a bar, stack bar, or pie graph the legend draws a box of the same color and interior style 

as the bar or pie slice on the graph. If the graph type is a line graph the legend draws 

a line of the same color, style, and marker type as in the graph. Both legend types then 

have the legend text displayed underneath the box or line. With the bar graph, each row 

of bars has a corresponding column of legends. With the line graph, the legends are 

displayed in a column format. The Legend class contains a pointer to the Deletion Filter 

class. 

Attributes for the legend can be set by the programmer before the legend is drawn by 

using the functions provided below. The user of the program can also change the 

attributes by picking the legend. This will provide the user with a pop-up menu that will 

allow him to change the legend attributes without having to modify the code. A list of 

functions in the Legend class is given below. 

Constructors: 

Legend (): 

Graph Entity Classes 68



Legend (graph type, location, legend-width, legend-height, text-string) 

See Axes Class for description of constructors. 

Destructor: 

~Legend (): This function checks if the legend is presently managed. If it is, it 

will unmanage the legend, disassociate the PHIGS structure from the view and empty the 

structure. 

Public Functions: 

initialize_legend (): Initializes the legend with appropriate attributes, either by 

assigning defaults or giving user input attributes. 

set_line_color (): Sets line color. 

set_linewidth (): Sets linewidth. 

set_linetype (): Sets linetype. 

set_marker_scale_factor (): Sets polymarker scale factor. 

set_marker_type (): Sets polymarker type. 

set_interior_color (): Sets interior color. 

set_interior_style (): Sets interior style. 

set_interior_pattern (): Sets interior pattern. 

set_text_height (): Sets text height. 

set_text_color (): Sets text color. 

Graph Entity Classes 69



set_text_font (): Sets text font. 

set_legend_width (): Sets legend width. 

set_legend_height (): Sets legend height. 

set_legend_location (): Sets legend location. 

set_legend_text (): Set text string for legend. 

set_graph_type (): Set what type of graph is being drawn. 

create_structure (): Creates legend. This displays the legend on the screen. 

recreate_structure (): Recreates the legend. 

perform (): Creates a pop-up menu to allow user to make modifications to the 

attributes of the legend. Using the pop-up menu gives the user the means of 

accessing the functions to change the attributes of the legend while still being 

in the program. When the user changes one of the attributes, the appropriate 

function call is made by the program to reset.that attribute. 

Inherited Virtual Functions 

manage (): Tells the legend what structure identifier to use, which view index to 

use, the priority to give the view, and passes the pointer to the Interface 

Manager. 

unmanage (): Disassociates the structure from the view and empties the structure. 

Graph Entity Classes 70



9.1.6 Pie Class 

The pie class controls the drawing of the pie slices within a pie graph. The default for 

a pie slice is a two-dimensional slice in the XY plane. If the graph is three dimensional, 

the pie will be circular in the XZ plane and have height going up the Y axis. The data 

value for the pie slice will be normalized by summing the entire row of the data values 

and then calculating the percentage of each individual value. The color of the pie slices 

will step up the color table index until the last entry of the color table is reached. The 

color index then wraps around to the first entry. The Pie class has a pointer to the Data 

Series and Graph classes. 

Attributes for the pie can be set by the programmer before the pie is drawn by using the 

functions provided below. The user of the program can also change the attributes by 

picking the pie. This will provide the user with a pop-up menu that will allow him to 

change the pie attributes without having to modify the code. A list of functions in the 

Pie class is given below. 

Constructors: 

Pie () 

Pie (2D or 3D, starting angle, data value) 

Pie (2D or 3D, starting angle, data value, height) 

Pie (2D or 3D, starting angle, data value, height, radius) 

Graph Entity Classes 71



See Axes Class for description of constructors. 

Destructor: 

~Pie (): This function checks if the pie is presently managed. If it is, it will 

unmanage the pie, disassociate the PHIGS structure from the view and empty the 

Structure. 

Inguiry Functions: 
  

get_color_index (): Returns color index being used. 

get_interior_style (): Returns interior style. 

get_interior_pattern (): Returns interior pattern. 

Public Functions: 

initialize_pie (): Initializes the pie slice with appropriate attributes, either by 

assigning defaults or giving user input attributes. 

set_color (): Sets the color. 

set_origin (): Sets the location for the origin (center) of pie graph. 

set_height (): Sets the height of the pie slice. 

set_radius (): Sets the radius of the pie slice. 

set_column_count (): Tells which column value of data Series is presently being 

drawn. 

set_starting angle (): Sets the angle from which pie slice is to be started from. 

Graph Entity Classes 72



set_interior_style (): Sets interior style. 

set_interior_pattern (): Sets interior pattern. 

set_pie_type (): 2D or 3D display. 

set_pointer_to_data_series (): Sets pointer to data Series class. 

set_pointer_to_graph (): Sets pointer to Graph class. 

get_number_degree (): Determine number of degrees pie slice should represent. 

create_structure (): Draw the pie slice. This displays the pie slice on the screen. 

recreate_structure (): Recreate the pie slice. 

perform (): Creates a pop-up menu to allow user to make modifications to the 

attributes of the pie slice. Using the pop-up menu gives the user the means of 

accessing the functions to change the attributes of the pie slice while still being 

in the program. When the user changes one of the attributes, the appropriate 

function call is made by the program to reset that attribute. 

Inherited Virtual Functions 

manage (): Tells the pie slice what structure identifier to use, which view index 

to use, the priority to give the view, and passes the pointer to the Interface 

Manager. 

unmanage (): Disassociates the structure from the view and empties the structure. 

Graph Entity Classes 73



9.1.7 Polar Axes Class 

The polar axes class controls the drawing of a polar axes for the graph. The polar axes 

are two dimensional axes drawn in the XY plane. The default color for the axes is red. 

The axes have four circular divisions. The class automatically scales the axes based on 

the data value array to be graphed. The Polar-Axes class has a pointer to the Invisibility 

Filter and Graph classes. 

Attributes for the polar axes can be set by the programmer before the polar axes is drawn 

by using the functions provided below. The user of the program can also change the 

attributes by picking the polar axes. This will provide the user with a pop-up menu that 

will allow him to change the polar axes attributes without having to modify the code.A 

list of functions in the Polar-Axes class if given below. 

Constructors: 

Polar_Axes () 

Polar_Axes (origin, radius) 

Polar_Axes (origin, radius, color) 

Polar_Axes (origin, radius, linewidth) 

Polar_Axes (origin, radius, linewidth, color) 

See Axes Class for description of constructors. 

Graph Entity Classes 74



Destructor: 

~Polar_Axes (): This function checks if the polar-axes is presently managed. If 

it 1s, it will unmanage the polar-axes, disassociate the PHIGS structure from the view and 

empty the structure. 

Inquiry Functions: 

get_x_origin_point (): Returns x value of graph origin. 

get_y_origin_point (): Returns y value of graph origin. 

get_z_origin_point (Q): Returns z value of graph origin. 

get_graph_radius (): Returns radius of graph. 

get_hi_magnitude (): Returns high magnitude of polar_axes. 

get_low_magnitude (): Returns low magnitude of polar_axes. 

Public Functions: 

initialize_axes (): Initializes the polar-axes with appropriate attributes, either by 

assigning defaults or giving user input attributes. 

set_color (): Sets the color of the axes. 

set_linewidth (): Sets the linewidth. 

set_number_circles (): Sets the number of circular divisions. 

set_x_text_height (): Sets the text height of axes labels. 

set_x_text_color (): Sets axes text color. 

set_graph_radius (): Set radius of polar-axes. 

Graph Entity Classes 75



set_pointer_to_data_series (): Set pointer to data Series class. 

set_pointer_to_invisibility_filter Q: Set pointer to Invisibility Filter class. 

set_pointer_to_graph_class (): Set pointer to Graph class. 

scale_axes (): Determine appropriate scale for polar-axes. Uses the same method 

as Axes class described earlier. 

manual_scale_axes (): Set scale for polar-axes. Uses same method as Axes class 

described earlier. 

x_axes_marks (): Draw polar-axes labels. 

create_structure(): Draw the polar-axes. This displays the polar axes on the 

screen. 

recreate_structure (): Recreate the polar-axes. 

perform (): Creates a pop-up menu to allow user to make modifications to the 

attributes of the pie slice. Using the pop-up menu gives the user the means of 

accessing the functions to change the attributes of the polar axes while still being 

in the program. When the user changes one of the attributes, the appropriate 

function call is made by the program to reset that attribute. 

Inherited Virtual Functions 

manage (): Tells the pie slice what structure identifier to use, which view index 

to use, the priority to give the view, and passes the pointer to the Interface 

Manager. 

unmanage (): Disassociates the structure from the view and empties the structure. 

Graph Entity Classes 76



9.18 Stacked Bar 

The Stacked Bar class controls the drawing of each stack bar in a stacked bar graph. The 

bar location and width in both the X and Z dimensions are determined by the number of 

bars to be drawn along each axes. The bar height is determined by inquiring the limits 

of the axes from the Axes class. The bar data is then be normalized to the axes values. 

The bars are drawn with a solid interior unless the user specifies otherwise. The color 

of the bar steps up the color table index until the last entry of the color table is reached. 

The color index then wraps around to the first entry. The Stacked Bar class contains 

pointers to the Graph and Deletion Filter classes. 

When the Stacked Bar class constructor is called the bar is assigned default attributes. 

Unless the user has input the position for the bar, its location is calculated according the 

position in the data array the bar represents. The bar is then drawn. Attributes for the 

stack bar can be set by the programmer before the stack bar is drawn by using the 

functions provided below. The user of the program can also change the attributes by 

picking the stack bar. This will provide the user with a pop-up menu that will allow him 

to change the stack bar attributes without having to modify the code. A list of functions 

in the Stacked Bar class is given below: 

Graph Entity Classes 77



Constructors: 

Stack_Bar () 

Stack_Bar (2D or 3D, data value, bar location, bar width) 

Stack_Bar (2D or 3D, data value, bar location, bar width, color) 

Stack_Bar (2D or 3D, data value, bar location, bar width, color, interior pattern) 

See Axes Class for description of constructors. 

Destructor: 

~Stack_Bar (): This function checks if the stack bar is presently managed. If it 

is, it will unmanage the stack bar, disassociate the PHIGS structure from the view and 

empty the structure. 

Inquiry Functions: 

get_color_index (): Returns color index for the bar. 

get_interior_style (): Returns interior style for the bar. 

get_interior_pattern (): Returns interior patter for the bar. 

Public Functions: 

initialize_bar (): Initializes the stack bar with the appropriate attributes, either by 

assigning defaults or giving user input attributes. 

set_color (): Sets the color of bar. 

Graph Entity Classes 78



set_bar_location (): Sets bars location. 

set_interior_style (): Sets interior style of bar. 

set_interior_pattern (): Sets interior pattern of bar. 

set_total_number_of_bars (): Sets the total number of bars to be graphed. This 

number is used in determining location of bars when it is not specified by the 

user. 

set_row_count (): Sets the number of row in data series presently being graphed. 

set_column_count (): Sets the number of column in data series presently being 

graphed. 

set_total_number_sets (): Sets the number of rows in data series being graphed. 

set_Ylast (): Set the starting position for the stack bar. 

set_bar_type Q: 2D or 3D display. 

set_pointer_to_data_series (): Sets pointer to data Series class. 

set_pointer_to_axes (): Sets pointer to Axes class. 

set_pointer_to_deletion_filter (): Sets pointer to Deletion Filter class. 

set_pointer_to_graph (): Sets pointer to Graph class. 

get_bar_height (): Return the height of the bar being drawn. 

create_structure (): Draws the bar. This displays the stack bar on the screen. 

recreate_structure (): Recreates the bar. 

perform (): Creates a pop-up menu to allow user to delete or make modifications 

to the attributes of the stack bar. Using the pop-up menu gives the user the 

means of accessing the functions to change the attributes of the stack bar while 

Graph Entity Classes 79



still being in the program. When the user changes one of the attributes, the 

appropriate function call is made by the program to reset that attribute. 

Inherited Virtual Functions 

manage (): Tells the stack bar what structure identifier to use, which view index 

to use, the priority to give the view, and passes the pointer to the Interface 

Manager. 

unmanage (): Disassociates the structure from the view and empties the structure. 

9.1.9 Text 

The Text class controls the text strings that are present in the graph. These include the 

titles and the legend text strings. The Text class allows the user control over the text 

string, text font, text height, text color, and the location of the text. The text is annotation 

text so that it is always legible to the user. 

Attributes for the text can be set by the programmer before the text is drawn by using the 

functions provided below. The user of the program can also change the attributes by 

picking the text. This will provide the user with a pop-up menu that will allow him to 

change the text attributes without having to modify the code. A list of functions in the 

Graph Entity Classes 80



text class is given below: 

Constructors: 

Text (0 

Text (x-location, y-location, z-location, text string) 

See Axes Class for description of constructors. 

Destructor: 

~Text (): This function checks if the text is presently managed. If it is, it will 

unmanage the structure, disassociate the structure from the view and empty the structure. 

Public Functions: 

initialize_text (): Initializes the text with the appropriate attributes, either by 

assigning defaults or giving user input attributes. 

set_text_color Q: Sets the text color. 

set_text_height (): Sets the text height. 

set_text_font (): Sets the text font. 

set_pointer_to_invisibility_filter Q: Sets pointer to Invisibility Filter class. 

create_structure (): Draws the text structure. This displays the text on the screen. 

recreate_structure (): Recreates the text structure. 

perform (): Creates a pop-up menu to allow user to make modifications to the 

Graph Entity Classes 81



attributes of the text. Using the pop-up menu gives the user the means of 

accessing the functions to change the attributes of the text while still being in 

the program. When the user changes one of the attributes, the appropriate 

function call is made by the program to reset that attribute. 

Inherited Virtual Functions 

manage (): Tells the text what structure identifier to use, which view index to use, 

the priority to give the view, and passes the pointer to the Interface Manager. 

unmanage (): Disassociates the structure from the view and empties the structure. 

Graph Entity Classes 82



10.0 Other Classes 

10.1 Data Series Class 

The Data Series class provides the means to access and manipulate the data array sent in 

to be graphed. This class provides the mathematical functions required by the graph 

classes to supply the data values and normalize them correctly according to the type of 

graph being produced. It also contains the functions which determine the intermediate 

points for the curve class. A list of functions in the Data Series class is given below. 

Public Functions: 

set_data (): Set data array to be graphed in Data Series class. 

get_maximum_data_value (): Determine maximum data value. 

get_minimum_data_value (): Determine minimum data value. 

get_number_rows (): Return number of rows in data array. 

get_number_columns (): Return number of columns in data array. 

get_normalized_data_value (): Return normalized data value. 

get_maximum_row_sum (): Determine maximum value of each row summed. 

get_value (): Return value of data array position. 

curve_fit (): Set up variables needed for curve-fitting algorithm. 

Other Classes 83



spl3d Q: Compute chord lengths. 

spline (): Use blending functions and compute points for curve. 

10.2 Control Entities 

Filters in PHIGS are a means of applying attributes to only certain structure elements, as 

opposed to all elements in a structure. Control classes were necessary to control the 

PHIGS filters. The PHIGS filters totally reset the filter after every call made to them. 

The filters do not append a name to or remove it from the filter. This creates a lot of 

overhead for the programmer in constantly maintaining what should or should not be 

included in the filter at all points in the program. The creation of the control classes 

alleviates this task for the programmer. By using the filters one item can be appended 

or removed from the filter, without having to be concerned with resetting all other filter 

values. 

10.2.1 Deletion Class 

The Deletion Class is not a PHIGS filter. This class is created for a filter at the structure 

level. The Deletion class controls the deletion filter. Functions provided by this class 

Other Classes 84



allow the user to add a structure to the filter and to see if a structure is present in the 

filter. When a graph is recreated the deletion filter will be checked. If a particular 

entities identifier is in the deletion filter this means the user does not want this entity 

displayed. Therefore it will not be sent the command to recreate itself. 

Constructor 

Deletion Q 

Public Functions: 

add_to_deletion_filter (): Add structure id to deletion filter. 

check_deletion_array (): Check to see if a structure is present in deletion filter. 

check_deletion_array_size (): Check to see how many structures are present in 

deletion filter. 

10.2.2 Highlighting Class 

The Highlighting class controls the highlighting filter used by PHIGS. Functions 

provided by this class allow programmers to add PHIGS class name sets to, or delete the 

name sets from, the inclusion and exclusion filters. The user can also inquire the current 

State of this filter. 

Other Classes 85



Constructors: 

Highlight 0 

Highlight (workstation identifier, inclusion array length, inclusion array, exclusion 

array length, exclusion array) 

Public Functions: 

initialize_highlighting filter (): Initialize the variables for the highlighting filter. 

add_to_highlighting filter Q: Add PHIGS class name set to highlighting filter. 

exclude_from_highlighting filter (): Remove PHIGS class name set from 

highlighting filter. 

inquire_highlighting filter_state (): Inquire the present state of the highlighting 

filter. 

10.2.3 Invisibility Class 

The Invisibility class controls the invisibility filter used by PHIGS. Functions provided 

by this class allow programmers to add PHIGS class name sets to, or delete the name sets 

from, the inclusion and exclusion filters. The user can also inquire the current state of 

this filter. 

Other Classes 86



Constructors: 

Invisible Q) 

Invisible (workstation identifier, inclusion array length, inclusion array, exclusion 

array length, exclusion array) 

Public Functions: 

initialize_invisibility_filter Q: Initialize the variables for the invisibility filter. 

add_to_invisibility_filter (): Add PHIGS class name set to invisibility filter. 

exclude_from_invisibility_filter Q: Remove PHIGS class name set from 

invisibility filter. 

inquire_invisibility_filter_state (): Inquire the present state of the invisibility filter. 

Other Classes 87



11.0 Implementation and Sample Program 

The above described classes were implemented on IBM RS/6000s. The operating system 

for these machines is UNIX. The programming language chosen for this implementation 

was C++. It provided all of the features essential to an object-oriented language 

(encapsulation, inheritance, and polymorphism). The graphics language chosen was 

PHIGS. The Graphics User Interface (GUI) chosen was developed by Woyak, and was 

explained earlier. 

Creating graphs using the class library is a very simple and easy task. The programmer 

does not need to deal with PHIGS functions or structures. Instead, creating a few 

instances from the class library will suffice to display a graph on the screen and provide 

the end user with interactive methods to modify the graph for better visualization (e.g., 

scaling, changing colors, removing entities, etc.). Figure 13 illustrates a typical program 

which creates a two-dimensional line graph. First an Interface Manager is created to 

control the windows. The graph is created by creating one instance from the Line_Graph 

class. The Line_Graph constructor processes the data, normalizes the values and creates 

all the instances from the graph entity classes. This Line_Graph object is then added to 

the Interface Manager which creates a window and displays the line graph as shown in 

Figure 14. The function "process()" in the Interface Manager waits for input from the 

user. The 

Implementation and Sample Program 88



  
Figure 13. Sample Program 

Implementation and Sample Program 89



Cashfiow vs Year 

Dollars, Millions 600068. @ 

45008.0 

30008. 8 

15008.90 

-15088. 

  

          

Figure 14. Line Graph Created Using Class Library 

Implementation and Sample Program



flow of control at this point is illustrated in Figure 15. If the input (from mouse) is on 

the window border, the Interface Manager passes control to the Geometry Manager class 

for processing the input. If the input is from the geometry window, the input is passed 

on to the Graph class. The Graph class checks the input to determine which graph entity 

was selected and passes control to the appropriate entity. This process is illustrated in 

Figure 16. Each entity class includes a function "perform()" for processing user input. 

Figure 17 shows an example of the "perform" function for the Axes class. This process 

automatically brings up appropriate pop-up menus which allow the user to modify 

attributes of the axes. Figure 18 shows an example of a pop-up menu displayed by the 

Axes class for modifying the axes parameters. Figures 19 through 23 show examples of 

all other types of graphs created by this class library. Figures 24 through 30 show 

examples of pop-up menus available for modifications by the user. 

Implementation and Sample Program 91



—_—_ —- 

~ 

  

/ \ 
\ Interface_Manager 

N - 
~ i - 

Process if window border 

—— — =—_ ~ _- ~ = ~~ 

/ N Process if geometry view i \ 
\ Geometry_Manager 4— >\ Line_Graph \ 

~N - “ - 
~_e - ~ - 

Process user input 

| \ 
Graph_Entity 

\ \ 
~ -“- 

~ - 

Figure 15. Flow of Control After User Input 

Implementation and Sample Program 92



  
Figure 16. Line Graph Function for Processing User Input 

Implementation and Sample Program 93



  
Figure 17. Axes Functions for Processing User Input 

Implementation and Sample Program 94



GEOMETRY MANAGER oO 

Cashflow ws Year 
  

Axes Attributes 
  

  
  
  
  
  
  
  
  
  
  
  
  

  

  
  
  
  
  
  
  
  
  
  
  
                    

“ene = Color [| [ ]on/oftt 

X Y Z Length 

wane TTT start x: 

15026.@ + Marke —H =: =: 

Text Height 

id 7 Text: Color CJ Cc] LC] 

Linewidth [1.55 [cont] 

“19080. Pe an Ul 336 — me LU bit im bare 
Year       

Figure 18. Pop Up Menu Created by Axes Class 

Implementation and Sample Program 95



62.8 

3b. 8 

24.8 

12.8     

    

Fuel 

Ys 
Instrument 

OX 
Avienies 

Fined Equip 

      

Figure 19. Example of a Bar Graph 

Implementation and Sample Program 96



97 

 
 

 
 

 
 

 
 

 
       

 

        

  
 
 

 
 

o os on 

 
 

  

Figure 20. Example of a Stacked Bar Graph 

Implementation and Sample Program



  

= 7 a a 

First Unit Co ul
 

ot
 

  

Instruments 

LORE: Dhistes 

  

Wing         
  

Figure 21. Example of a Pie Graph 

Implementation and Sample Program 98



  

e               

Figure 22. Example of a Polar Graph 

Implementation and Sample Program 99



Surface Plot 

G. 7708 

g. 7168 

Y axes title 

  

          

Figure 23. Example of XYZ Plot 

Implementation and Sample Program 100



    

    GEOMETRY MANAGER 
First ilniz Cost 

75.9 Dotlars, Mittrons 

62.9 

Bar Attributes 

’ : Delete | oes 
45.9 . ‘ Color | 

: Pattern]. 

3a.a 

15.9 

2.8   

  

        

Figure 24. Example of Pop Up Menu Created by Bar and Stacked Bar Classes 

Implementation and Sample Program 101



        

. GEOMETRY MANAGER. 

Cashflow 

[|   
  

   hime Attributes oe 
     

        

   

  ‘Sali 

    
aier’ Bee 

Type 

  

fet. 

  

deietel ae 

_ king. Marker" 

Ee ~styte 

Width: LaF see of 

Pept” r 

      

  

Figure 25. Example of Pop Up Menu Created by Curve Class 

Implementation and Sample Program 102



  

       ; GEOMETRY MANAGER 

Firat Unit Cast 

  

Grid At tributes - 

‘coton [. of > On/ort 

45.4 .Oivisions: “E25 asf 

tinetyse To 

62.9 

Linewidth 
38.@ 

15.8               

Figure 26. Example of Pop Up Menu Created by Grid Class 

Implementation and Sample Program 103



75.8 

68.8 

30.8 

    

  

First Unit Cost 

= BEOMETRY. “MANAGER °- 

  

Dollars, Millions 
LL ity. 
  

  

  

  

bi tdiree: PET pi i pit 1 

apy a Ll 
ae —T —— 4 

L| «1 os begend Attributes. a 
TO: - = a ++ 

H.eéior f FD 
I a ne oa Tc 

| : a = 

te 

  

  

    

    
     

  

  

          

  

  

  

   
Fuel 

Instruments 

    
  

Figure 27. Example of Pop Up Menu Created by Legend Class 

Implementation and Sample Program 104



      
  

  

  

GEOMETRY. MANAGER | Ci 

First Unit Cost 

. . Foe | 

75.0 Y Axes Title 

Instruremts 

- Text Attributes: a 
69.4 " — — 

Col oe . . ma 
° at CJ sore _ a , Fixed Causa 

String.- (Dollors, Millions 
45.9 .. L. : - ¥ . 2 ¥ | Prooulsion 

Thrust Rev 

30.0 
Necalle 

Land Gear 

5. @ * — 
Teil 

| 
Bow 

@.2 

iz 
Wing         

  

Figure 28. Example of Pop Up Menu Created by Text Class 

Implementation and Sample Program 105



Fargt innit 

      
   
   

  

Calor 

Pie Attributes 

Pattern 

Radius 0.25F 
Height 

| GEOMETRY MANAGER rc 
~ 
Lest 

" a 
7 

4 
a + 

- 
2 i 3 

i
f
 

» 4 * 
1
 

a : 5 

Tl
 I 4 3 

a <    

4 o 

. 
‘ 

9 
3 

' 
4 

* 
‘ 

. 
. 

4 
. ° 

Fa
 

= 
g 

- 
uw 

a   
        
  

Figure 29. Example of Pop Up Menu Created by Pie Class 

Implementation and Sample Program 106



    

    Cone ele lie GEOMETRY MANAGER | 

Cashflow 

Axes Attributes” ole 2. 

deer ne JF antott, 

  

  

   

   
eS i 

. : 8 

Mi nh. Mog a 

1596.@ 1200.0 309 + i ¢ ref: es. Tp . 22 os 

be i - reign Color. ie coe 

Text. oF fo 

“Linewidth “ak ; 

er ‘was }: 

  

   
   

he -           
  

Figure 30. Example of Pop Up Menu Created by Polar Axes Class 

Implementation and Sample Program 107



60892. a 

45008.9 

  

  

  

it       

Dettara, (@illions) 
wie { 

1 

                T Le 
  

  
hog jah 
- 

a     Line Attributes 

I 

  

bop 

    
1 i Color | Delete| 

Color Selector ne 
  

308 

      

    

a 
   Cm < 

Marker 

| Styie | 

1.9F size 1 oF 

[cont 
  

  

TE
C 
P
r
e
e
 y
d 

ct
 

  

  

  

                  

-15908.9 i i! 
19 

                

= 
GEOMETRY MANAGER | 

Cashficw vs Year 
a 

Manufec 

——— 

Sustain 

—_— od 

Income 

tee 

Cash? iow 

  

i 

oy : =] ! 
OK [ CANCEL That 
Vit 

t pte it gt dy ! : 
ag 1954 1998 2902 2007 2012 

Year     
  

  

Figure 31. Example of Color Modification Menu 

Implementation and Sample Program 108



    

GEOMETRY MANAGER 

Lastflow vs Year 
    

icliars         

   

    

eogas.@ (Milliess) 
    

: ' . . 

45000. 3 Line Attributes Sstei 

Color Delete| Incare 

Li Morker ss 

3eage.0 || Type Style | Casntiow 

Linetypes 1 oF Size 1.0F 

ceseeeeeeees S 

15998. 2 

715008. 

Year           

Figure 32. Example of PHIGS Primitive Attribute Modification Menu 

Implementation and Sample Program 109



12.0 Implementation of Graphs for ACSYNT 

Within ACSYNT the variables to be graphed are chosen from a template (Figure 33) by 

the user. Once the user has entered the variables to be displayed, the correct arrays are 

read in and the data points are sent into the graphing module. The data arrays are sent 

into the proper graphs constructor. A new PHIGS workstation (window) is then opened 

for the graph. This workstation (window) takes control and displays the graph. All user 

interface methods (for graph modifications) are made available to the user. Once the user 

is done looking at the graph and exits, control is returned to the main ACSYNT window. 

Implementation of Graphs for ACSYNT 110



  

  

  

AERODYNAMICS GRAPH SET-UP 
  

X-ANIS CHOICES: 
MACH NUMBER - 
ANGLE OF ATTACK © 
LUFT COEFFICIENT - CL” 
LIFT TO DRAG RATIO“ CO 

ORAC COEFFITIENT - CD 

¥maXIS CHOICES: 
LIFT COEFFICIENT =- CL 
LIFT TO DRAG RATIO LO 
ORAG COEFFICIENT - CO - 

PRE-DEFINED, GRAPHS: 
COO VERSUS MACH NO 
CL VERSUS CO aT MACH NOS. 
GL VERSUS ANGLE OF ATTACK AT MACH NOS. 
CO VERSUS MACH NO. AT ANGLES OF - ATTACK 

    
  

  SELTLTR PM Heny Te Coreen”     

 lweruan 7 
DATA FRE 7 

LUNEAR CRABH: .~ 

OADGY GRAPH 

SOFT VAL WINDOW 

corr COLORS, 

- EMIT.     

Implementation of Graphs for ACSYNT 

Figure 33. Example of Variables Template in ACSYNT 

111



13.0 Conclusion 

The design and creation of a set of high-level tools to facilitate the inclusion of 

engineering graphs in CAD applications programs has been described. These tools are 

provided through an object-oriented class library. This system uses PHIGS and a PHIGS- 

based, Motif-like interface framework for graphics and GUI support. An engineer or 

applications programmer with little or no knowledge of PHIGS can easily add graphing 

functions to his program using this set of classes. Examples of the use of this system has 

been described along with sample code listings. The use of object-oriented methods 

makes this system very flexible and extendable. Other graph entities and types of graphs 

can be added very easily to this class library in the future. 

This class library was used to create a new set of graphing functions. Implementing these 

new graphs took about five months and 13,000 lines of code. This new code replaced 

33,000 lines of existing code and provided much better functionality and flexibility to the 

end user. 

Although PHIGS provides applications programmers with methods to create device- 

independent code, more high-level tools are needed to support the needs of engineering 

Conclusion 112



and CAD applications developers. More object-oriented class libraries (such as the one 

described in this paper) need to be created in the future to satisfy these needs. 

Conclusion 113



14.0 References 

[ADAM92] Adams, L., Supercharged C++ Graphics, Blue Ridge Summit: Windcrest 

Books, 1992. 

[BOOC91] Booch, G., Object-Oriented Design with Applications, The 

Benjamin/Cummings Publishing Company, Inc., 1991. 

[CUNN92] Cunningham, S., et al, editor, Computer Graphics Using Object-Oriented 

Programming, New York: John Wiley & Sons, Inc., 1992. 

[DUNN91] Dunn, M. F., and Knight, J. D., "Software Reuse in an Industrial Setting: A 

Case Study", 13th International Conference on Software Engineering, pp. 329-338, 1991. 

[FELL91] Fellner, D. W., "Object-Oriented Programming - Does it Help in Computer 

Graphics?", New Results and New Trends in Computer Science, 555, pp. 132-151, June 

1991. 

References 114



[FLEM91] Fleming, S. and Myklebust, A., "Utilizing the graPHIGS API for CAD 

Applications", Proceedings of the Second International graPHIGS User’s Group 

Conference and Workshop, Blacksburg, Virginia, October 20-23, 1991, pp. 3-10. 

[FLEM92] Fleming, S. and Myklebust, A., "The Enhancement of PHIGS+ B-spline 

Functionality for Geometric Modeling", presented at the Fourth IFIP WG5S.2 Workshop 

on Geometric Modeling in Computer Aided Design, Rensselaerville, New York, 

September 27-October 1, 1992. 

[JAYA90] Jayaram, S. and Myklebust, A., "Towards a Standardized Environment for the 

Creation of Design and Manufacturing Software," Proceedings of the International 

Conference on Engineering Design, Dubrovnik, Yugoslavia, August 28-31, 1990. 

[JAYA91] Jayaram, S. and Myklebust, A., "The Significance of Standards in CAD 

Education”, Proceedings of University Programs in Computer-Aided Engineering, Design 

and Manufacturing (UPCAEDM), Ninth Annual Conference, Provo, Utah, May 16-18, 

1991, pp. 144-147. 

[JAYA92] Jayaram, S., Myklebust, A., and Gelhausen, P., "ACSYNT - A Standards- 

Based System for Parametric Computer Aided Conceptual Design of Aircraft", presented 

References 115



at the AIAA Aerospace Design Conference, Irvine, California, February 3-6, 1992. AIAA 

paper no. AIAA-92-1198. 

[JAYA93a] Jayaram, S., and Myklebust, A., "Device-Independent Programming 

Environments for CAD/CAM Software Creation", Computer Aided Design, vol. 25, no. 

2, February, 1993. 

[JAYA93b] Jayaram, S., and Myklebust, A., "Evaluating PHIGS for CAD Applications - 

A Case Study", 1st Annual PHIGS User’s Group Conference, March 21-24, 1993, 

Orlando, Florida. 

[LINW93] Lin, W., and Myklebust, A., "A Constraint Driven Solid Modeling Open 

Environment", accepted for presentation at the Second ACM/IEEE Symposium on Solid 

Modeling and Applications, Montreal, Canada, May 19-21, 1993. 

[MONT91] Montgomery, D. E., Keil, M. J., and Myklebust, A., "A PHIGS+ Model 

Rendering System for Simulation of Spatial Mechanisms", Proceedings of the ASME 

International Computers in Engineering Conference, Santa Clara, California, August 18- 

22, 1991, pp. 225-233. 

References 116



[MYKL92a] Myklebust, A., Lin, W., Woyak, S., Feustel, C. D., Fleming, S., Grieshaber, 

M., "A Research Report to IBM Corporation", February 28, 1992. 

[MYKL92b] Myklebust, A., Lin, W. H., Fleming, S., Feustel, C. D., Woyak, S., 

Jacobson, A., LeGal, T., "A Research Report to IBM Corporation", July 15, 1992. 

[PENN9I1] Pennington, S. L., "A Software Engineering approach to the Integration of 

CAD/CAM Systems", Dissertation - Doctor of Philosophy in Mechanical Engineering, 

Virginia Polytechnic Institute and State University, 1991. 

[PENN92] Pennington, S. and Myklebust, A., "A CASE Approach to the Integration of 

CAD/CAM Systems", presented at and published in the Proceedings of the Fifth 

International Workshop on Software Engineering and its Applications, Toulouse, France, 

December 7-11, 1992. 

[PRAT91] Prata, S., C++ Primer Plus, Mill Valley: Waite Group Press, 1991. 

[SCHR92] Schrock, E. V., Jayaram, S., and Myklebust, A., "A PHIGS-Bases Spreadsheet 

for Conceptual Design", presented at and published in the Proceedings of the ASEE 5th 

International Conference on Engineering Computer Graphics and Descriptive Geometry, 

Melbourne, Australia, August 17-21, 1992. 

References 117



[WAMP88a] Wampler, S. G., "Development of a CAD System for Automated 

Conceptual Design of Supersonic Aircraft", M.S. thesis, Mechanical Engineering 

Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 

May 1988. 

[WAMP88b] Wampler, S. G., Myklebust, A., Jayaram, S., and Gelhausen, P., "Improving 

Aircraft Conceptual Design - A PHIGS Interactive Graphics User Interface for ACSYNT", 

AIAA/AHS/ASEE Aircraft Design, Systems and Operations Conference, Atlanta, Georgia, 

September 7-9, 1988, paper no. AIAA-88-4481. 

[WISS90] Wisskirchen, P., Object-Oriented Graphics, New York: Springer-Verlag, 1990. 

[WOYA92] Woyak, S. "A Motif-Like Object-Oriented Interface Framework Using 

PHIGS", Masters Thesis, Mechanical Engineering Department, VPI&SU, Blacksburg, 

Virginia, September 1992. 

[WOYA93] Woyak, S., and Myklebust, A., "A Motif-Like Object-Oriented Interface 

Framework Using PHIGS", 1st Annual PHIGS User’s Group Conference, March 21-24, 

1993, Orlando, Florida. 

References 118



Appendix A. Class Library User Guide 

A.l Graph Classes 

A.l.1 Bar Graph 

Description 

A bar graph is the class which controls the creation of a bar graph. 

Appearance 

The graph will appear as a normal bar graph. It will have an axes, titles, 
legend, and be displayed in two dimensions. 

Constructors 

Standard Arguments: 

None 

Function Call Syntax: 

Bar_Graph(type, number_row, number_column, yarray, text_array) 

Argument Descriptions: 

number_column - integer. Number of columns in the data array. 
number _row - integer. Number of rows in the data array. 

type - integer. Switch for whether graph is two dimensional or three 

dimensional display. Default is two. 

yarray - float. Data values to be graphed. 

text_array - character. Text strings of titles and legends. 

Private Data Members: 

Appendix A. Class Library User Guide 119



axes - pointer of type Axes. Pointer to the axes. 
bar_array - array of pointers of type Bar. Pointer to the bars of the bar 

graph. 

deletion - pointer of type Deletion. Pointer to the deletion filter. 

grid - pointer of type Grid. Pointer to grid class which contains xy grid. 

invisible - pointer of type Invisible. Pointer to the class that controls the 

invisibility filter. 
legend array - array of pointers of type Legend. Pointer to the legends of the bar 
graph. 

main title - pointer of type Text. Pointer to text class which contains graph 
title. 

max_color_index - integer. Number of colors in the color table. 
xdata - pointer of type Series. Pointer to series class which contains x data 
values. 

ydata - pointer of type Series. Pointer to series class which contains y data 
values. 

y_title - pointer of type Text. Pointer to text class which contains y axes title. 
yzegrid - pointer of type Grid. Pointer to grid class which contains yz grid. 

zdata - pointer of type Series. Pointer to series class which contains z data 

values. 

Member Functions 

Public Functions: 

void draw_bars(). Sets attributes for bars and displays them. 

void draw_legend(). Sets attributes for legend and displays it. 

void draw_titles(). Sets attributes for graph title and axes labels and 
displays them. 

void manage(). Controls graphing of bar graph. 
void process_geometry_view(choice, x, y, view_index, depth, 

pick_path, event). Determine which graph entity has been chosen. 

void recreate_graph(). Tell graph entities to recreate themselves. 

Appendix A. Class Library User Guide 120



A.l.2 Line Graph 

Description 

Line graph is the class which controls the creation of a line graph. 

Appearance 

The line graph will appear as a normal line graph. It will have an axes, titles, 
legend, and be displayed two dimensionally. 

Constructors 

Standard Arguments: 

None 

Function Call Syntax: 

Line_Graph(number_row, number_column, xarray, yarray, text_array) 

Line_Graph(number_row, number_column, xarray, yarray, zarray, 

text_array) 

Argument Descriptions: 

number_column - integer. Number of columns in the data array. (Number of 
points per line) 

number_row - integer. Number of rows in the data array. (Number of lines) 

xarray - float. X data values to be graphed. 

yarray - float. Y data values to be graphed. 

zarray - float. Z data values to be graphed. 

text_array - character. Text strings of titles and legends. 

Private Data Members: 

axes - pointer of type Axes. Pointer to the axes. 

curve_array - array of pointers of type Curve. Pointer to the curves of the 
line graph. 

curve_type - integer. Flag for whether curve to be point to point or spline 

curve. 

Appendix A. Class Library User Guide 121



deletion - pointer of type Deletion. Pointer to deletion filter. 
grid - pointer of type Grid. Pointer to grid class which contains xy grid. 

invisible - pointer of type Invisible. Pointer to the class that controls the 
invisibility filter. 

legend_array - array of pointers of type Legend. Pointer to the legends of the bar 

graph. 

main title - pointer of type Text. Pointer to text class which contains graph 

title. 

max_color_index - integer. Number of colors in the color table. 
type - integer. Switch for whether graph is two dimensional or three 
dimensional display. Default is two. 

xdata - pointer of type Series. Pointer to series class which contains x data 

values. 

x_title - pointer of type Text. Pointer to text class which contains x axes title. 

xzgrid - pointer of type Grid. Pointer to grid class which contains xz grid. 

ydata - pointer of type Series. Pointer to series class which contains y data 

values. 

y_title - pointer of type Text. Pointer to text class which contains y axes title. 

yzgrid - pointer of type Grid. Pointer to grid class which contains yz grid. 

zdata - pointer of type Series. Pointer to series class which contains z data 
values. 

z_title - pointer of type Text. Pointer to text class which contains z axes title. 

Member Functions 

Public Functions: 

void draw_curves(). Set attributes for curves and display them. 

void draw_legend(). Set attributes for legend and display it. 

void draw_titles(). Set attibutes for graph title and axes labels and 

display them. 

void manage(). Control graphing of line graph. 
void process_geometry_view(choice, x, y, view_index, depth, 

pick_path, event). Determine which graph entity has been chosen. 

void recreate_graph(). Tell graph entities to recreate themselves. 

Appendix A. Class Library User Guide 122



A.l.3 Pie Graph 

Description 

Pie graph is the class which controls the creation of a pie graph. 

Appearance 

The pie graph will appear as a normal pie graph. It will have titles, a legend, 

and be displayed two dimensionally. 

Constructors 

Standard Arguments: 

None 

Function Call Syntax: 

Pie_Graph(type, number_row, number_column, yarray, text_array) 

Argument Descriptions: 

number column - integer. Number of columns in the data array. 
number_row - integer. Number of rows in the data array. 

type - integer. Switch for whether graph is two dimensional or three 
dimensional display. Default is two. 

yarray - float. Y data values to be graphed. 

text_array - character. Text strings for titles and legends. 

Private Data Members: 

legend array - array of pointers of type Legend. Pointer to the legends of the bar 

graph. 

main_title - pointer of type Text. Pointer to text class which contains graph 

title. 

max_color_index - integer. Number of colors in the color table. 
pie_array - array of pointers of type Pie. Pointer to the slices of the pie 

graph. 

Appendix A. Class Library User Guide 123



ydata - pointer of type Series. Pointer to series class which contains y data 
values. 

Member Functions 

Public Functions: 

void 

void 

void 

void 

void 

void 

draw_legend(). Set legend attributes and display it. 

draw_pie_slices(). Set pie slice attributes and display them. 

draw_title(). Set attributes for graph title and display it. 
manage(). Control drawing of pie graph. 

process_geometry_view(choice, x, y, view_index, depth, 

pick_path, event). Determine which graph entity has been chosen. 

recreate_graph(). Tell graph entities to recreate themselves. 

Appendix A. Class Library User Guide 124



A.l.4 Polar Graph 

Description 

Polar graph is the class which controls the creation of a polar graph. 

Appearance 

The polar graph will appear as a normal polar graph. It will have a title and a 

legend. 

Constructors 

Standard Arguments: 

None 

Function Call Syntax: 

Polar_Graph(number_row, number_column, magnitude_array, degree_array, 

text_array) 

Argument Descriptions: 

degree_array - float. Array containing degree values to be graphed. 

number_column - integer. Number of columns in the data array. 
number_row - integer. Number of rows in the data array. 
magnitude_array - float. Array containing magnitudes to be graphed. 

text_array - character. Text strings for titles and legends. 

Private Data Members: 

axes - pointers of type Polar Axes. Pointer to the polar axes class. 

curve array - array of pointers of type Curve. Pointer to the curves of the 

polar graph. 

curve type - integer. Flag for whether curves to be displayed point to point or 

with spline curve. 
degree - pointer of type Series. Pointer to series class which contains degree 

data values. 

Appendix A. Class Library User Guide 125



invisible - pointer of type Invisible. Pointer to the class which controls the 
invisibility filter. 

legend_array - array of pointers of type Legend. Pointer to legend class for the 
legends of the graph. 

main _ title - pointer of type Text. Pointer to text class which contains graph 

title. 

max_color_index - integer. Number of colors in the color table. 
magnitude - pointer of type Series. Pointer to series class which contains 

magnitude data values. 

Member Functions 

Public Functions: 

void draw_curves(). Set attributes for curves and display them. 

void draw_legend(). Set attributes for legend and display it. 

void draw_titles(). Set attributes for graph title and axes labels and 

display them. 
void manage(). Control drawing of polar graph. 

void process_geometry_view(choice, x, y, view_index, depth, 

pick_path, event). Determine which graph entity has been chosen. 

void recreate_graph(). Tell graph entities to recreate themselves. 

Appendix A. Class Library User Guide 126



A.l.5 Stack Bar Graph 

Description 

A stack bar graph is the class which controls the creation of a stack bar graph. 

Appearance 

The graph will appear as a normal stack bar graph. It will have an axes, titles, 

legend, and be displayed two dimensionally. 

Constructors 

Standard Arguments: 

None 

Function Call Syntax: 

Stack_Bar_Graph(type, number_row, number_column, yarray, text_array) 

Argument Descriptions: 

number_column - integer. Number of columns in the data array. 
number_row - integer. Number of rows in the data array. 
type - integer. Switch for whether graph is two dimensional or three 

dimensional display. Default is two. 

yarray - float. Data values to be graphed. 

text_array - character. Text strings for titles and legends. 

Private Data Members: 

axes - pointer of type Axes. Pointer to the axes. 
bar_array - array of pointers of type Stack Bar. Pointer to the bars of the bar 

graph. 

deletion - pointer of type Deletion. Pointer to deletion filter. 

grid - pointer of type Grid. Pointer to grid class which contains xy grid. 

invisible - pointer of type Invisible. Pointer to the class that controls the 
invisibility filter. 

Appendix A. Class Library User Guide 127



legend _ array - array of pointers of type Legend. Pointer to the legends of the bar 
graph. 

main_title - pointer of type Text. Pointer to text class which contains graph 

title. 

max_color_index - integer. Number of colors in the color table. 
sum - float. Sum of data row for normalization of bars. 

xdata - pointer of type Series. Pointer to series class which contains x data 
values. 

ydata - pointer of type Series. Pointer to series class which contains y data 
values. 

y_title - pointer of type Text. Pointer to text class which contains y axes title. 

yzgrid - pointer of type Grid. Pointer to grid class which contains yz grid. 

zdata - pointer of type Series. Pointer to series class which contains z data 
values. 

Member Functions 

Public Functions: 

void draw_bars(). Set attributes for bars and draw them. 

void draw_legend(). Set attributes for legend and draw it. 

void draw_titles(). Set attributes for graph title and axes labels and draw 

them. 
void manage(). Control drawing of stack bar graph. 

void process_geometry_view(choice, x, y, view_index, depth, 

pick_path, event). Determine which graph entity has been chosen. 

void recreate_graph(). Tell graph entities to recreate themselves. 

Appendix A. Class Library User Guide 128



A.2 Graph Entities 

A.2.1 Axes 

Description 

An axes is the axes of the graph. 

Appearance 

Figure 1 shows the appearance of an axes. The attributes which can be 
controlled by the programmer are the lengths of the individual axes, color, 

linethickness, location, number of increments along each axes, and the legend 
height, color, and font. 

Constructors 

Standard Arguments: 

AXES_STD_ARGS = x_start_pt, y_start_pt, z_start_pt, xlength, ylength, 

zlength 

Function Call Syntax: 

Axes() 

Axes(AXES_STD_ARGS) 

Axes(AXES_STD_ARGS, color_index) 

Axes(AXES_STD_ARGS, linewidth) 

Axes(AXES_STD_ARGS, linewidth, color_index) 

Axes(AXES_STD_ARGS, number_of_marks_x, number_of_marks_y, 

number_of_marks_z) 

Axes(AXES_STD_ARGS, number_of_marks_x, number_of_marks_y, 

number_of_marks_z, color_index) 

Axes(AXES_STD_ARGS, number_of_marks_x, number_of_marks_y, 

number_of_marks_z, linewidth) 

Axes(AXES_STD_ARGS, number_of_marks_x, number_of_marks_y, 

number_of_marks_z, linewidth, color_index) 

Appendix A. Class Library User Guide 129



Argument Descriptions: 

color_index - integer. Index number of the color table entry you wish to use. 
Default is red. 

linewidth - float. Scale factor by which the normal linethickness will be 

multiplied. Default is one. 

number_of_marks_x - integer. Number of scale marks on the x axes. 
Default is six. 

number _of_marks_y - integer. Number of scale marks on the y axes. 
Default is six. 

number_of_marks_z - integer. Number of scale marks on the z axes. 
Default is six. 

xlength - float. Length of the x axes. Default is 0.7. 

x_Start_pt[] - float. Array which holds the starting location for the x axes 

line. 

ylength - float. Length of the y axes. Default is 0.7. 

y_start_pt[] - float. Array which holds the starting location for the y axes 
line. 

zlength - float. Length of the z axes. Default is 0.7. 
z_Start_pt{] - float. Array which holds the starting location for the z axes line. 

Private Data Members: 

axes _visible[] - integer. Array for holding name of set which contains axes 
visibility number. 

cb_1 - integer. Switch for storing check box position. 

class name[] - integer. Array for holding entries for inclusion into name sets. 
color_format - integer. Specifies whether using color table entries(indexed) or 

direct color values. Default is indexed. 
graph - pointer of type Graph. Pointer to the graph. 

hi_boundary x - float. Maximum value of the x axes. 

hi_boundary_y - float. Maximum value of the y axes. 

hi_boundary_z - float. Maximum value of the z axes. 
invisible - pointer of type Invisible. Pointer to the class that controls the 

invisibility filter. 
label_id[] - integer. Array of label identifiers to be used by axes class for 

locating axes attributes during structure traversal. 
low_boundary x - float. Minimum value of the x axes. 
low_boundary_y - float. Minimum value of the y axes. 
low_boundary z - float. Minimum value of the z axes. 

managed - integer. Switch for whether a structure has already been created. 

Appendix A. Class Library User Guide 130



manager - pointer of type Interface_Manager. Pointer to interface manager. 

polymark_scale fact - float. Value by which the normal polymarker scale 

factor will be multiplied. Default is one. 

structure - PHIGS Structure_ID. Structure identifier into which axes will be 
drawn. 

type - integer. Switch for whether graph is two dimensional or three 

dimensional display. Default is two. 

view_index - integer. View index. 
wsid - integer. Workstation identifier. 

X_axes_ manual - integer. Switch for whether calculated axes scale has been 
overwritten by the user. 

xdata - pointer of type Series. Pointer to series class which contains x data 
values. 

xstep - float. Value of the increment between the scale marks along the x 
axes. 

x_text_color_index - integer. Value of the color table index number to be 

used for the x axes increment labels. Default is white. 

x_text_height - float. Character height for the x axes increment labels. 
Default is 0.014. 

y_axes_ manual - integer. Switch for whether calculated axes scale has been 
overwritten by the user. 

ydata - pointer of type Series. Pointer to series class which contains y data 
values. 

ystep - float. Value of the increment between the scale marks along the y 

axes. 

y_text_color_index - integer. Value of the color table index number to be 
used for the y axes increment labels. Default is white. 

y_text_height - float. Character height for the y axes increment labels. 
Default is 0.014. 

z_axeS_ manual - integer. Switch for whether calculated axes scale has been 
overwritten by the user. 

zdata - pointer of type Series. Pointer to series class which contains z data 

values. 

zstep - float. Value of the increment between the scale marks along the z 

axes. 

z_text_color_index - integer. Value of the color table index number to be 
used for the z axes increment labels. Default is white. 

z text_height - float. Character height for the z axes increment labels. 

Default is 0.014. 

Member Functions 

Appendix A. Class Library User Guide 131



Public Functions: 

void 

void 

void 

void 

void 

void 

void 

void 

void 

void 

void 

void 

void 

set_color(color_index) 

set_linewidth(linewidth) 

set_pointer_to_data_series(xdata, ydata, zdata) 

set_pointer_to_graph(graph) 
set_pointer_to_invisibility_filter(invisible) 

set_structure_id(id) 

set_type(type) 
set_x_text_color(x_text_color_index) 

set_x_text_height(x_text_height) 
set_y_text_color(y_text_color_index) 

set_y_text_height(y_text_height) 

set_z_text_color(z_text_color_index) 

set_z_text_height(z_text_height) 

Inquiry Functions: 

int 

float 

float 

float 

float 

float 

float 

float 

float 

float 

float 

float 

float 

get_structure_id() 

get_x_axes_hi_boundary() 

get_x_axes_low_boundary() 

get_x_axes_length() 

get_x_axes_start_pt() 

get_y_axes_hi_boundary() 

get_y_axes_low_boundary() 

get_y_axes_length() 

get_y_axes_start_pt() 

get_z_axes_hi_boundary() 
get_z_axes_low_boundary() 

get_z_axes_length() 

get_z_axes_start_pt() 

Appendix A. Class Library User Guide 132



A.2.2 Bar 

Description 

A bar is a bar on a bar graph. 

Appearance 

Figure 2 shows the appearance of a bar. The attributes which can be controlled 

by the programmer are the color, width, interior pattern, and location. 

Constructors 

Standard Arguments: 

BAR_STD_ARGS = type, yvalue, bar_location, bar_width 

Function Call Syntax: 

Bar() 
Bar(BAR_STD_ARGS) 
Bar(BAR_STD_ARGS, color_index) 

Bar(BAR_STD_ARGS, color_index, interior_pattern) 

Argument Descriptions: 

bar_location[] - float. Location of bar on the graph. 
bar_width[] - float. Width of bar. 
color_index - integer. Index number of the color table entry you wish to 

use. Default is red. 
interior pattern - integer. Type of pattern to be used in the fill area of the 

bar. 

type - integer. Switch for whether graph is two dimensional or three 

dimensional display. Default is two. 

yvalue - float. Normalized height value for the bar. 

Private Data Members: 

axes - pointer of type Axes. Pointer to the axes. 

class name[] - integer. Array for holding entries for inclusion into name sets. 

Appendix A. Class Library User Guide 133



color_format - integer. Specifies whether using color table entries(indexed) or 

direct color values. Default is indexed. 

column_count - integer. Counter for the which bar is presently being drawn. 
deletion - pointer of type Deletion. Pointer to the deletion filter. 

graph - pointer of type Graph. Pointer to the graph. 

interior_style - integer. Type of style to be used in the fill area of the bar. 

Default is solid. 

label_id[] - integer. Array of label identifiers to be used by bar class for 
locating bar attributes during structure traversal. 

managed - integer. Switch for whether a structure has already been created. 

manager - pointer of type Interface_Manager. Pointer to interface manager. 
number column - integer. Number of columns in the data series being 

graphed. (Number of bars per row) 

number_row - integer. Number of rows in the data series being graphed. 

(Number of sets to be graphed) 

row_count - integer. Counter for the which row is presently being drawn. 

structure - PHIGS Structure_ID. Structure identifier into which axes will be 

drawn. 

view_index - integer. View index. 
wsid - integer. Workstation identifier. 

xdata - pointer of type Series. Pointer to series class which contains x data 
values. 

y_bar_manual - integer. Switch for whether y value was manually sent in by the 

user or if data is being read from array and normalized. 

ydata - pointer of type Series. Pointer to series class which contains y data 

values. 

z_bar_width - float. Width of bar along the z axes. 
zdata - pointer of type Series. Pointer to series class which contains z data 

values. 

Member Functions 

Public Functions: 

void set_bar_location(bar_location) 

void set_bar_type(type) 

void set_color(color_index) 

void set_column_count(column_count) 

void set_interior_pattern(interior_pattern) 

void set_interior_style(interior_style) 

void set_pointer_to_axes(axes) 

Appendix A. Class Library User Guide 134



void 

void 

void 

void 

void 

void 

set_pointer_to_data_series(xdata, ydata, zdata) 
set_pointer_to_deletion_filter(deletion) 

set_pointer_to_graph(graph) 

set_total_number_bars(number_column) 

set_total_number_sets(number_row) 

set_row_count(row_count) 

Inquiry Functions: 

int 

int 

int 

int 

get_color_index() 

get_interior_pattern() 

get_interior_style() 

get_structure_id() 

Appendix A. Class Library User Guide 135



A.2.3 Curve 

Description 

A curve is a curve on the graph. 

Appearance 

Figure 3 shows the appearance of a curve. The attributes which can be 

controlled by the programmer are the color, linewidth, linetype, marker type, 

marker scale factor, and type of curve. 

Constructors 

Standard Arguments: 

CURVE_STD_ARGS = row_count, number_column, xdata, ydata, zdata 

Function Call Syntax: 

Curve() 

Curve(CURVE_STD_ARGS) 

Curve(CURVE_STD_ARGS, color_index) 

Curve(CURVE_STD_ARGS, linewidth) 

Curve(CURVE_STD_ARGS, linewidth, color_index) 

Curve(AXES_STD_ARGS, linewidth, curve_type, color_index) 

Argument Descriptions: 

color_index - integer. Index number of the color table entry you wish to use. 
Default is red. 

curve type - integer. Switch for whether curve to be point to point or spline. 

Default is point to point. 

deletion - pointer of type Deletion. Pointer to deletion filter. 

linewidth - float. Scale factor by which the normal linethickness will be 
multiplied. Default is one. 

number_column - integer. Number of columns in the data series being 
graphed. (Number of points per line) 

row_count - integer. Number of rows in the data series being graphed. 

(Number of lines) 

Appendix A. Class Library User Guide 136



xdata - pointer of type Series. Pointer to series class which contains x data 
values. 

ydata - pointer of type Series. Pointer to series class which contains y data 
values. 

zdata - pointer of type Series. Pointer to series class which contains z data 

values. 

Private Data Members: 

axes - pointer of type Axes. Pointer to axes class. 

class _name[] - integer. Array for holding entries for inclusion into name sets. 

color_format - integer. Specifies whether using color table entries(indexed) or 
direct color values. Default is indexed. 

graph - pointer of type Graph. Pointer to the graph. 

label_id[] - integer. Array of label identifiers to be used by curve class for 
locating curve attributes during structure traversal. 

linetype - integer. Switch for which linetype should be used. Default is solid. 

line_visible[] - integer. Array for holding name of set which contains curve 

visibility number. 

managed - integer. Switch for whether a structure has already been created. 

manager - pointer of type Interface_Manager. Pointer to interface manager. 

marker_type - integer. Switch for which marker type should be used. 

marker_visible[] - integer. Array for holding name of set which contains 

marker visibility number. 

polar_axes - pointer of type Polar_Axes. Pointer to Polar_Axes class. 
polymark_scale_fact - float. Value by which the normal polymarker scale 
factor will be multiplied. 

structure - PHIGS Structure ID. Structure identifier into which axes will be 
drawn. 
view_index - integer. View index. 
wsid - integer. Workstation identifier. 

Member Functions 

Public Functions: 

void set_color(color_index) 

void set_curve_type(curve_type) 

void set_graph_type(type) 
void set_linetype(linetype) 

void set_linewidth(inewidth) 

Appendix A. Class Library User Guide 137



void 

void 

void 

void 

void 

void 

void 

void 

void 

set_marker_scale_factor(polymark_scale_fact) 
set_marker_type(marker_type) 

set_number_column(number_column) 

set_pointer_to_axes(axes) 

set_pointer_to_data_series(xdata, ydata, zdata) 

set_pointer_to_deletion_filter(deletion) 

set_pointer_to_graph(graph) 
set_pointer_to_polar_axes(polar_axes) 

set_row_count(row_count) 

Inquiry Functions: 

int 

int 

int 

float 

int 

get_line_color() 

get_linetype() 

get_marker_type() 

get_marker_scale() 

get_structure_id() 

Appendix A. Class Library User Guide 138



A.2.4 Grid 

Description 

A grid is a grid on the graph. 

Appearance 

Figure 4 shows the appearance of a grid. The attributes which can be controlled 
by the programmer are the color, linethickness, vertical linetype, hanzontal 

linetype, and the density of the grid. 

Constructors 

Standard Arguments: 

GRID_STD_ARGS = orientation, x_start_pt, y_start_pt, z_start_pt, xlength, 

ylength, zlength 

Function Call Syntax: 

Grid() 

Grid(GRID_STD_ARGS) 

Grid(GRID_STD_ARGS, number_x_axes_divisions, number_y_axes_divisions ) 

Grid(GRID_STD_ARGS, number_x_axes_divisions, number_y_axes_divisions, 

color_index ) 

Grid(GRID_STD_ARGS, number_x_axes_divisions, number_y_axes_divisions, 

linewidth ) 

Grid(GRID_STD_ARGS, number_x_axes_divisions, number_y_axes_divisions, 

linewidth, color_index ) 

Argument Descriptions: 

color_index - integer. Index number of the color table entry you wish to use. 

Default is gray. 

linewidth - float. Scale factor by which the normal linethickness will be 

multiplied. Default is one. 

number_x_axes divisions - integer. Number of divisions along the x axes. 
Default is twenty-five. 

Appendix A. Class Library User Guide 139



number_y_axes divisions - integer. Number of divisions along the y axes. 
Default is twenty-five. 

orientation - integer. Switch for designating which plane the grid is to be 
drawn into. Default is XY. 

xlength - float. Length of the x axes. 
x_Start_pt[] - float. Array which holds the starting location for the x axes 
line. 
ylength - float. Length of the y axes. 

y_start_pt[] - float. Array which holds the starting location for the y axes 
line. 

zlength - float. Length of the z axes. 

z_Sstart_pt[] - float. Array which holds the starting location for the z axes line. 

Private Data Members: 

axes - pointer of type Axes. Pointer to axes class. 

cb_1 - integer. Switch for storing check box position. 

cb_2 - integer. Switch for storing check box position. 

cb_3 - integer. Switch for storing check box position. 
class_namef[] - integer. Array for holding entries for inclusion into name sets. 

color format - integer. Specifies whether using color table entries(indexed) or 

direct color values. Default is indexed. 

horizontal_linetype - integer. Type of line to be used for horizontal grid 

lines. Default is solid. 

invisible - pointer of type Invisible. Pointer to the class that controls the 
invisibility filter. 

label_id[] - integer. Array of label identifiers to be used by grid class for 

locating grid attributes during structure traversal. 

managed - integer. Switch for whether a structure has already been created. 
manager - pointer of type Interface_Manager. Pointer to interface manager. 

vertical_linetype - integer. Type of line to be used for vertical grid lines. 

Default is solid. 

view_index - integer. View index. 
wsid - integer. Workstation identifier. 
x_grid_structure - PHIGS_Structure_ID. Structure identifier into which x grid 
lines will be drawn. 

xy_x_grid_visible[] - integer. Array for holding name of set which contains 
grid line visibility number. 
xy_y_grid_ visible[] - integer. Array for holding name of set which contains 
grid line visibility number. 

Appendix A. Class Library User Guide 140



xz_x_grid_ visible[] - integer. Array for holding name of set which contains 
grid line visibility number. 

xz_y_grid_visible[] - integer. Array for holding name of set which contains 
grid line visibility number. 

y_grid_structure - PHIGS Structure_ID. Structure identifier into which y grid 
lines will be drawn. 

yz_x_grid_visible[] - integer. Array for holding name of set which contains 

grid line visibility number. 

yz_y_grid_visible[] - integer. Array for holding name of set which contains 
grid line visibility number. 

Member Functions 

Public Functions: 

void set_color(color_index) 

void set_horizontal_linetype(horizontal_linetype) 

void set_linewidth(linewidth) 

void set_pointer_to_axes(axes) 

void set_pointer_to_invisibility_filter(invisible) 

void set_structure_id(id) 

void set_vertical_linetype(vertical_linetype) 

Inquiry Functions: 

int get_x_grid_structure_id() 

int get_y_grid_structure_id() 

Appendix A. Class Library User Guide 141



A.2.5 Legend 

Description 

A legend is the legend box on the graph. 

Appearance 

Figure 4 shows the appearance of a legend. The attributes which can be 

controlled by the programmer are the color, linethickness, linetype, marker size, 

marker type, interior style, interior pattern, text color, text font, legend height, 

and legend width. 

Constructors 

Standard Arguments: 

LEGEND_STD_ARGS = type, location, legend_width, legend_height, 

text_string 

Function Call Syntax: 

Legend() 

Legend(LEGEND_STD_ARGS) 

Argument Descriptions: 

legend_height - float. Height of legend area. 

legend_width - float. Width of the legend area. 

location - float. Location of the legend area. 

text_string - character. Legend text string. 

type - integer. Switch for whether legend is for a curve or a bar. 

Private Data Members: 

class_name[] - integer. Array for holding entries for inclusion into name sets. 
color_format - integer. Specifies whether using color table entries(indexed) or 

direct color values. Default is indexed. 
color_index - integer. Index number of the color table entry you wish to use. 
Default is red. 

Appendix A. Class Library User Guide 142



deletion - pointer of type Deletion. Pointer to deletion filter. 
interior pattern - integer. Interior pattern for fill area of bar legend. 

interior style - integer. Interior style pattern for fill area of bar legend. 
Default is solid. 

linewidth - float. Scale factor by which the normal linethickness will be 
multiplied. Default is one. 

linetype - integer. Type of line to be drawn. Default is solid. 

legend visible[] - integer. Array for holding name of set which contains 
legend visibility number. 

label_id[] - integer. Array of label identifiers to be used by legend class for 

locating legend attributes during structure traversal. 

managed - integer. Switch for whether a structure has already been created. 

manager - pointer of type Interface_Manager. Pointer to interface manager. 
marker _ type - integer. Type of marker to be drawn. 

polymark scale fact - float. Value by which the normal polymarker scale 
factor will be multiplied. 

string location - float. Location of legend text string. 
structure - PHIGS Structure ID. Structure identifier into which axes will be 
drawn. 

view_index - integer. View index. 
wsid - integer. Workstation identifier. 
text_color - integer. Value of the color table index number to be used for the 
legend text color. Default is white. 

text_font - integer. Character font for the legend text. Default is one. 

text_height - float. Character height for the legend text. Default is 0.011. 

Member Functions 

Public Functions: 

void set_graph_type(type) 

void set_interior_color(color_index) 

void set_interior_pattern(interior_pattern) 

void set_interior_style(interior_style) 

void set_legend_height(legend_height) 

void set_legend_location(location) 

void set_legend_text(text_string) 

void set_legend_width(legend_width) 

void set_line_color(color_index) 

void set_linetype(linetype) 

void set_linewidth(linewidth) 

Appendix A. Class Library User Guide 143



void 

void 

void 

void 

void 

void 

set_marker_scale_factor(polymark_scale_fact) 
set_marker_type(marker_type) 

set_pointer_to_deletion_filter(deletion) 

set_text_color(text_color) 

set_text_font(text_font) 

set_text_height(text_height) 

Inquiry Functions: 

int get_structure_id() 

Appendix A. Class Library User Guide 144



A.2.6 Pie 

Description 

A pie is a pie slice in a pie graph. 

Appearance 

Figure 5 shows the appearance of a pie. The attributes which can be controlled 

by the programmer are the color, height, radius, interior pattern, interior style 

and number of degrees slice represents. 

Constructors 

Standard Arguments: 

PIE_STD_ARGS = type, starting angle, yvalue 

Function Call Syntax: 

PieQ) 

Pie(PIE_STD_ARGS) 

Pie(PIE_STD_ARGS, height) 
Pie(PIE_STD_ARGS, height, radius) 

Argument Descriptions: 

height - float. Height of pie slice in three dimensional display. Default is 0.3. 
radius - float. Radius of pie slice. Default is 0.25. 
starting angle - integer. Angle from which pie slice will be started. Default is 

zero. 

type - integer. Switch for whether graph is two dimensional or three 

dimensional display. Default is two. 

yvalue - float. Number of degrees slice represents. 

Private Data Members: 

class _name[] - integer. Array for holding entries for inclusion into name sets. 

Appendix A. Class Library User Guide 145



color format - integer. Specifies whether using color table entries(indexed) or 

direct color values. Default is indexed. 

color_index - integer. Index number of the color table entry you wish to use. 
Default is red. 

column_count - integer. Counter for the which bar is presently being drawn. 
graph - pointer of type Graph. Pointer to the graph. 

interior pattern - integer. Type of pattern to be used in the fill area of the 
bar. 

interior style - integer. Type of style to be used in the fill area of the bar. 
Default is solid. 

label_id[] - integer. Array of label identifiers to be used by pie class for 

locating pie attributes during structure traversal. 

managed - integer. Switch for whether a structure has already been created. 

manager - pointer of type Interface_Manager. Pointer to interface manager. 

number_degree - integer. Number of degrees pie slice will represent. 

origin - float. Location of the pie graph origin. Default is 0.4, 0.45, 0.5. 

slice_manual - integer. Switch for whether number of degrees needs to be 
calculated. 

structure - PHIGS Structure_ID. Structure identifier into which axes will be 
drawn. 

view_index - integer. View index. 
wsid - integer. Workstation identifier. 

ydata - pointer of type Series. Pointer to series class which contains y data 

values. 

Member Functions 

Public Functions: 

void set_color(color_index) 

void set_column_count(column_count) 

void set_height(height) 

void set_interior_pattern(interior_pattern) 

void set_interior_style(interior_style) 

void set_pie_type(type) 
void set_pointer_to_data_series(ydata) 

void set_pointer_to_graph(graph) 
void set_origin(origin) 

void set_radius(radius) 

void set_starting angle(starting_ angle) 

Appendix A. Class Library User Guide 146



Inquiry Functions: 

int 

int 

int 

int 

int 

get_color_index() 

get_interior_pattern() 

get_interior_style() 

get_number_degree() 

get_structure_id() 

Appendix A. Class Library User Guide 147



A.2.7 Polar Axes 

Description 

A polar axes is the axes for a polar graph. 

Appearance 

Figure 6 shows the appearance of a polar axes. The attributes which can be 

controlled by the programmer are the radius of the axes, color, linethickness, 

location, and number of increments. 

Constructors 

Standard Arguments: 

POLAR_STD_ARGS = origin, radius 

Function Call Syntax: 

Polar_Axes() 

Polar_Axes(POLAR_STD_ARGS) 

Polar_Axes(POLAR_STD_ARGS, color_index) 

Polar_Axes(POLAR_STD_ARGS, linewidth) 

Polar_Axes(POLAR_STD_ARGS, linewidth, color_index) 

Argument Descriptions: 

color_index - integer. Index number of the color table entry you wish to 

use. Default is red. 

linewidth - float. Scale factor by which the normal linethickness will be 
multiplied. Default is one. 
origin - float. Origin of the polar axes. Default is 0.45, 0.45, 0.0. 

graph_radius - float. Radius of the polar axes. Default is 0.35. 

Private Data Members: 

axes_visible[] - integer. Array for holding name of set which contains axes 
visibility number. 

cb_1 - integer. Switch for storing check box position. 

Appendix A. Class Library User Guide 148



class_name[] - integer. Array for holding entries for inclusion into name sets. 
color format - integer. Specifies whether using color table entries(indexed) or 

direct color values. Default is indexed. 
degree - pointer of type Series. Pointer to array containing the degrees. 
graph - pointer of type Graph. Pointer to the graph. 

hi_magnitude - float. Maximum value of the magnitudes. 
invisible - pointer of type Invisible. Pointer to the class that controls the 
invisibility filter. 

label_id[] - integer. Array of label identifiers to be used by polar axes class for 
locating polar axes attributes during structure traversal. 

low_magnitude - float. Minimum value of the magnitudes. 
magnitude - pointer of type Series. Pointer to array containing the 

magnitudes. 

managed - integer. Switch for whether a structure has already been created. 

manager - pointer of type Interface_Manager. Pointer to interface manager. 

number circles - float. Number of circles on the axes. Default is four. 
structure - PHIGS Structure_I[D. Structure identifier into which axes will be 
drawn. 

view_index - integer. View index. 
wsid - integer. Workstation identifier. 

X_axes manual - integer. Switch for whether calculated axes scale has been 
overwritten by the user. 

xstep - float. Value of the increment between the increment marks along the x 

axes. 

x_text_color_index - integer. Value of the color table index number to be 
used for the x axes increment labels. Default is white. 

x_text_height - float. Character height for the x axes increment labels. 

Default is 0.014. 

Member Functions 

Public Functions: 

void set_color(color_index) 

void set_graph_radius(graph_radius) 
void set_linewidth(linewidth) 

void set_number_circles(number_circles) 

void set_pointer_to_data_series(magnitude, degree) 

void set_pointer_to_graph(graph) 

void set_pointer_to_invisibility_filter(invisibility) 

void set_x_text_color(x_text_color) 

Appendix A. Class Library User Guide 149



void set_x_text_height(x_text_height) 

Inquiry Functions: 

float 

float 

float 

int 

float 

float 

float 

get_graph_radius() 

get_hi_magnitude() 

get_low_magnitude() 
get_structure_id() 

get_x_origin_pt() 

get_y_origin_pt() 

get_z_origin_pt(Q) 

Appendix A. Class Library User Guide 150



A.2.8 Series 

Description 

Class for storing and making calculations with data values. 

Private Data Members: 

array - float. Array for storing data values. 

number_row - integer. Number of rows. 
number_column - integer. Number of columns. 

Member Functions 

Public Functions: 

void set_data(number_row, number_column, data) 

Inquiry Functions: 

float get_maximum_data_value() 

float get_maximum_row_sum() 

float get_minimum_data_value() 

float get_normalized_data_value(high_boundary, low_boundary, 

length, row, column) 
int get_normalized_pie_data_value(total_sum, row, column) 
int get_number_columns() 

int get_number_rows() 

float get_value(row, column) 

Appendix A. Class Library User Guide 15]



A.2.9 Stack Bar 

Description 

A stack bar is a stack bar on a stack bar graph. 

Appearance 

Figure 7 shows the appearance of a stack bar. The attributes which can be 
controlled by the programmer are the color, width, interior style, interior 

pattern and location. 

Constructors 

Standard Arguments: 

STACK_BAR_STD_ARGS = type, yvalue, bar_location, bar_width 

Function Call Syntax: 

Stack_Bar() 

Stack_Bar(Stack_Bar_STD_ARGS) 

Stack_Bar(Stack_Bar_STD_ARGS, color_index) 

Stack_Bar(Stack_Bar_STD_ARGS, color_index, interior_pattern) 

Argument Descriptions: 

bar_location[] - float. Location of bar on the graph. 

bar_width[] - float. Width of bar. 
color_index - integer. Index number of the color table entry you wish to 
use. Default is red. 

interior pattern - integer. Type of pattern to be used in the fill area of the 

bar. 

type - integer. Switch for whether graph is two dimensional or three 
dimensional display. 

yvalue - float. Y data value bar represents. 

Private Data Members: 

axes - pointer of type Axes. Pointer to the axes. 

Appendix A. Class Library User Guide 152



class_name[] - integer. Array for holding entries for inclusion into name sets. 

color_format - integer. Specifies whether using color table entries(indexed) or 

direct color values. Default is indexed. 
column_count - integer. Counter for the which bar is presently being drawn. 

counter - integer. 

deletion - pointer of type Deletion. Pointer to deletion filter. 

graph - pointer of type Graph. Pointer to the graph. 

interior style - integer. Type of style to be used in the fill area of the bar. 

Default is solid. 
label_id[] - integer. Array of label identifiers to be used by stack bar class for 

locating stack bar attributes during structure traversal. 

managed - integer. Switch for whether a structure has already been created. 

manager - pointer of type Interface Manager. Pointer to interface manager. 

number_column - integer. Number of columns in the data series being 
graphed. (Number of bars per stack) 

number_row - integer. Number of rows in the data series being graphed. 
(Number of stacks) 

row_count - integer. Counter for the which row is presently being drawn. 

structure - PHIGS Structure ID. Structure identifier into which axes will be 
drawn. 

view_index - integer. View index. 
wsid - integer. Workstation identifier. 

xdata - pointer of type Series. Pointer to series class which contains x data 

values. 

Y - float. Normalized y data value. 

y_bar_manual - integer. Switch for whether y value was manually sent in by the 
user. 

ydata - pointer of type Series. Pointer to series class which contains y data 
values. 

Ylast - float. Records position to start next bar. 
z_bar_width - float. Width of bar along the z axes. 

zdata - pointer of type Series. Pointer to series class which contains z data 

values. 

Member Functions 

Public Functions: 

void set_bar_location(bar_location) 

void set_bar_type(type) 

void set_color(color_index) 

Appendix A. Class Library User Guide 153



void 

void 

void 

void 

void 

void 

void 

void 

void 

void 

void 

set_column_count(column_count) 

set_interior_pattern(interior_pattern) 

set_interior_style(interior_style) 

set_pointer_to_axes(axes) 

set_pointer_to_data_series(xdata, ydata, zdata) 

set_pointer_to_deletion_filter(deletion) 

set_pointer_to_graph(graph) 
set_row_count(row_count) 

set_total_number_bars(number_column) 

set_total_number_sets(number_row) 

set_Ylast(Ylast) 

Inquiry Functions: 

float 

int 

int 

int 

int 

get_bar_height() 

get_color_index() 

get_interior_pattern() 

get_interior_style() 

get_structure_id() 

Appendix A. Class Library User Guide 154



A.2.10 Text 

Description 

Text is the text located on the graph. 

Appearance 

Figure 8 shows the appearance of text. The attributes which can be controlled yb 

the programmer are the text, text color, text height, and location. 

Constructors 

Standard Arguments: 

TEXT_STD_ARGS = x_location, y_location, z_location, text_string 

Function Call Syntax: 

TextQ) 

Text(TEXT_STD_ARGS) 

Argument Descriptions: 

text_string[] - character. Text string. 

x_location - float. Array which holds the x position of the text string. 
y_location - float. Array which holds the y position of the text string. 

z location - float. Array which holds the z position of the text string. 

Private Data Members: 

class_name[] - integer. Array for holding entries for inclusion into name sets. 

color_format - integer. Specifies whether using color table entries(indexed) or 
direct color values. Default is indexed. 

invisible - pointer of type Invisible. Pointer to the class that controls the 
invisibility filter. 

label_id[] - integer. Array of label identifiers to be used by text class for 
locating text attributes during structure traversal. 

location[] - float. Location of text string. 

managed - integer. Switch for whether a structure has already been created. 

Appendix A. Class Library User Guide 155



manager - pointer of type Interface_Manager. Pointer to interface manager. 

structure - PHIGS_Structure_ID. Structure identifier into which axes will be 
drawn. 

text_color - integer. Value of the color table index number to be used for the 
text. Default is red. 

text_font - integer. Text font to be used. Default is one. 
text_height - float. Character height for the text. 
text_visible[] - integer. Array for holding name of set which contains text 

visibility number. 

view_index - integer. View index. 
wsid - integer. Workstation identifier. 

Member Funtions 

Public Functions: 

void set_pointer_to_invisibility_filter(invisible) 

void set_text_color(text_color) 

void set_text_font(text_font) 

void set_text_height(text_height) 

Inquiry Functions: 

int get_structure_id() 

Appendix A. Class Library User Guide 156



A.3 Control Functions 

A.3.1 Deletion 

Description 

Class for control of the deletion filter. 

Constructors 

Function Call Syntax: 

Deletion() 

Private Data Members: 

incl - integer. Array containing structure identifiers to be included in the 

deletion filter. 
inclen - integer. Length of the inclusion array(incl). 

Member Functions 

Public Functions: 

void add_to_deletion_filter(structure) 

Inquiry Functions: 

int check_deletion_array(size) 

void check_deletion_array(structure) 

Appendix A. Class Library User Guide 157



A.3.2 Highlight 

Description 

Class for control of the highlighting filter. 

Constructors 

Standard Arguments: 

HIGHLIGHT_STD_ARGS = wsid, inclen, incl, exclen, excl 

Function Call Syntax: 

Highlight() 

Highlight(HIGHLIGHT_STD_ARGS) 

Highlight(wsid) 

Argument Descriptions: 

excl - integer. Array containing structure identifiers to be excluded from the 

highlighting filter. 

exclen - integer. Length of the exclusion array(excl). 

incl - integer. Array containing structure identifiers to be included in the 

highlighting filter. 

inclen - integer. Length of the inclusion array(incl). 

wsid - integer. Workstation identifier. 

Private Data Members: 

errind - integer. Error indicator from request. 
errind = 0: successful inquiry of highlighting filter state completed. 

errind = 1: inquire inclusion filter length less than inclusion array length. 

errind = 2: inquire exclusion filter length less than exclusion array length. 

errind = 3: inquire inclusion and inquire exclusion filter lengths less than 

inclusion and exclusion array lengths. 

exlen - integer. Length of the exclusion filter. 
inlen - integer. Length of the inclusion filter. 

Member Functions 

Appendix A. Class Library User Guide 158



Public Functions: 

void add_to_highlighting_filter(wsid, ainclen, aincl) 

void exclude_from_highlighting filter(wsid, aexclen, aexcl) 

Inquiry Functions: 

void inquire_highlighting filter_state(ing_inlen, inq_exlen, _ errind, 

ing_inclen, ing_incl, ing_exclen, ing_excl) 

Appendix A. Class Library User Guide



A.3.3 Invisible 

Description 

Class for control of the highlighting filter. 

Constructors 

Standard Arguments: 

INVISIBLE_STD_ARGS = wsid, inclen, incl, exclen, excl 

Function Call Syntax: 

InvisibleQ) 

InvisibleINVISIBLE_STD_ARGS) 

Invisible(wsid) 

Argument Descriptions: 

excl - integer. Array containing structure identifiers to be excluded from the 

invisibility filter. 

exclen - integer. Length of the exclusion array(excl). 

incl - integer. Array containing structure identifiers to be included in the 

invisibility filter. 

inclen - integer. Length of the inclusion array(incl). 

wsid - integer. Workstation identifier. 

Private Data Members: 

errind - integer. Error indicator from request. 
errind = 0: successful inquiry of invisibility filter state completed. 

errind = 1: inquire inclusion filter length less than inclusion array length. 

errind = 2: inquire exclusion filter length less than exclusion array length. 

errind = 3: inquire inclusion and inquire exclusion filter lengths less than 

inclusion and exclusion array lengths. 
exlen - integer. Length of the exclusion filter. 
inlen - integer. Length of the inclusion filter. 

Member Functions 

Appendix A. Class Library User Guide 160



Public Functions: 

void add_to_invisibility_filter(wsid, ainclen, aincl) 

void exclude_from_invisibility_filter(wsid, aexclen, aexcl) 

Inquiry Functions: 

void inquire_invisibility_filter_state(ing_inlen, inq_exlen, _ errind, 

inqg_inclen, ing_incl, ing_exclen, ing_excl) 

Appendix A. Class Library User Guide 16]



Vita 

R. Steven Uhorchak was born on January 30, 1968 and lived in the small town of 

Canton, New York until he was eleven. His family then moved to Cary, North Carolina, 

a suburb of Raleigh, and are still living their today. With a strong interest in automobiles, 

engines, mechanical systems, and computers the author enrolled in the University of 

North Carolina at Charlotte’s Mechanical Engineering program and completed a Bachelor 

of Science in May 1991. He then completed the requirements for a Master of Science 

in Mechanical Engineering at Virginia Polytechnic Institute and State University. The 

author now hopes to begin his engineering career with a consulting engineering or 

a Hin Wk 

construction firm. 

Vita 162


