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Abstract 
 

The goal of this body of work is to explore various aspects 

of data analytics (DA) and its applications in agriculture. In our 

research, we produce decisions with mathematical models, create 

models, evaluate existing models, and review how certain models 

are best applied. The increasing granularity in decisions being 

made on farm, like individualized feeding, sub-plot level crop 

management, and plant and animal disease prevention, creates 

complex systems requiring DA to identify variance and patterns in 

data collected. Precision agriculture requires DA to make 

decisions about how to feasibly improve efficiency or performance 

in the system. Our research demonstrates ways to provide 

recommendations and make decisions in such systems.  

 Our first research goal was to clarify research on the topic 

of endophyte-infected tall fescue by relating different infection-

measuring techniques and quantifying the effect of infection-level 

on grazing cattle growth. Cattle graze endophyte-infected tall 

fescue in many parts of the U.S and this feedstuff is thought to 

limit growth performance in those cattle. Our results suggest 

ergovaline concentration makes up close to 80% of the effect of 



 

measured total ergot alkaloids and cattle average daily gain 

decreased 33 g/d for each 100ppb increase in ergovaline 

concentration. By comparing decreased weight gain to the costs of 

reseeding a pasture, producers can make decisions related to the 

management of infected pastures. 

 The next research goal was to evaluate experimental and feed 

factors that affect measurements associated with ruminant protein 

digestion. Measurements explored were 0-h washout, potentially 

degradable, and undegradable protein fractions, protein 

degradation rate and digestibility of rumen undegradable protein. 

Our research found that the aforementioned measurements were 

significantly affected by feedstuff characteristics like neutral 

detergent fiber content and crude protein content, and also 

measurement variables like bag pore size, incubation time, bag 

area, and sample size to bag area ratio. Our findings suggest that 

current methods to measure and predict protein digestion lack 

robustness and are therefore not reliable to make feeding decisions 

or build research models.  

The first two research projects involved creating models to 

help researchers and farmers make better decisions. Next, we aimed 

to produce a summary of existing DA frameworks and propose future 

areas for model building in agriculture. Machine learning models 

were discussed along with potential applications in animal 

agriculture. Additionally, we discuss the importance of model 



 

evaluation when producing applicable models. We propose that the 

future of DA in agriculture comes with increasing decision making 

done without human input and better integration of DA insights 

into farmer decision-making.  

After detailing how mathematical models and machine learning 

could be used to further research, models were used to predict 

cases of clinical mastitis (CM) in dairy cows. Machine learning 

models took daily inputs relating to activity and production to 

produce probabilities of CM. By considering the economic costs of 

treatment and non-treatment in CM cases, we provide insight into 

the lack of applicable models being produced, and why smarter data 

collection, representative datasets, and validation that reflects 

how the model will be used are needed.  

The overall goal of this body of work was to advance our 

understanding of agriculture and the complex decisions involved 

through the use of DA. Each project sheds light on model building, 

model evaluation, or model applicability. By relating modeling 

techniques in other fields to agriculture, this research aims to 

improve translation of these techniques in future research. As 

data collection in agriculture becomes even more commonplace, the 

need for good modeling practices will increase. 
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General Audience Abstract 
 

Data analytics (DA) has become more popular with the 

increasing data collection capabilities using technologies like 

sensors, improvement in data storage techniques, and expanding 

literature on algorithms that can be used in prediction and 

summarization. This body of work explores many aspects of 

agricultural DA and its applications on-farm. The field of 

precision agriculture has risen from an influx of data and new 

possibilities for using these data. Even small farms are now 

able to collect data using technologies like sensor-equipped 

tractors and drones which are relatively inexpensive. Our 

research shows how using mathematical models combined with these 

data can help researchers produce more applicable tools and, in 

turn, help producers make more targeted decisions. We examine 

cases where models improve the understanding of a system, 

specifically, the effect of endophyte infection in tall fescue 

pastures, the effect of measurement on protein digestibility for 

ration formulation, and methods to predict sparse diseases using 

big data. Although DA is widely applied, specific agricultural 

research on topics such as model types, model performance, and 



 

model utility needs to be done. This research presented herein 

expands on these topics in detail, using DA and mathematical 

models to make predictions and understand systems while 

utilizing applicable DA frameworks for future research.  
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Chapter 1: Introduction 
 

Broadly, data can be any set of values (Shannon, 1948). Data 

become information or knowledge when they can be represented in 

context or through analysis (Long et al., 2016). Statistician Nate 

Silver says, “The numbers have no way of speaking for themselves. 

We speak for them. We imbue them with meaning” (Silver, 2012). In 

agriculture, we collect data on many decisions and actions. The 

intent of any data collection is that these data will be useful in 

making future decisions and learning from past experience. “Big 

data” is a popular term born from the dramatically increasing 

ability to collect and store more data because of improvements in 

technology (Francis, 2012; Reinsel et al., 2017). Big data does 

not have a single definition, but typically deals with data stored 

digitally, as opposed to analog, that is too complex to be analyzed 

by a human alone (Mashey, 1998).  

Because big data may be too complex for human analysis, 

mathematical modeling has become a burgeoning field focused on 

finding patterns, explaining variance, and predicting outcomes 

using data without direct human insight. In general, mathematical 

models, or models, define a system that creates data. Models can 

be theoretical, based on laws or widely accepted truths, or 

experimental, meaning the model is derived from observations. 

Theoretical models can also be applied to observations to determine 



 2 

the validity of our beliefs or to identify our relative uncertainty 

with a system. Model building is the first step to using data to 

derive or inform decisions regarding a given system. 

A model, mathematical or otherwise, typically begins with 

information that a human accepts as true before seeing data, or 

assumptions (Boghossian 2017). An example of an assumption for 

building models would be assuming that gravity will govern the 

movement of an object. If someone throws a ball at you, you know 

that the ball will slowly drop over time as it approaches you. 

This assumption is a good starting point, but not enough 

information to help someone know exactly how to catch a ball or 

where it will land. In the same way, we may start building 

mathematical models using equations that we know will govern a 

system, like the equation for gravity to predict the endpoint of 

a thrown ball. We will still need to measure or estimate other 

properties of the ball, e.g. the angle of release and speed at 

release, but this a priori information will improve model 

performance. In research, once a model is built to understand a 

system, the model should be compared against reality whenever 

possible in an attempt to discern from where error in a model 

comes. Continuing the example with a ball, we may use a set of 

equations to predict the trajectory and endpoint of a thrown ball, 

but in reality, the ball lands in a different place. Because 

reality is not straightforward like equations, there can be 
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definite sources of error or inherent uncertainty in a system. We 

may not have accounted for wind in our model, thus producing 

slightly biased predictions. To determine the accuracy and 

precision of a model, model evaluation techniques are useful.  

Model evaluation is a key part of mathematical modeling, as 

evaluation makes sure that a model is useful in the context of the 

system at hand. With empirical data to test models, fit statistics 

are a common way to evaluate the performance of a model. A 

statistic like mean squared error (MSE), which measures the average 

squared deviation of each prediction from the true value, 

increasingly weights greater deviations from the truth (Berger and 

Lehmann, 1984). Using MSE as a measure of model performance will 

select models that tend to predict values closer to the average. 

Other functions for measuring performance focus on the median error 

instead, which is less sensitive to outliers. Splitting data into 

two groups, one to parameterize the model and one to test the 

parameters using some statistical accuracy measure, is common when 

data are readily available. Splitting data aims to prevent models 

from only applying to specific data and not the overarching system. 

Cross validation, as this splitting technique is called, does not 

guarantee no overfit models (Wani et al., 2018). If the two halves 

of split data are dissimilar, the model will not be robust. 

Accuracy measures should be tailored to the model, as there are 

many ways for a model to be considered accurate. A model that is 
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only accurate on average would not be useful in modeling a system 

where high impact, low frequency events occur (high variability), 

e.g. earthquakes (Dieterich and Kilgore, 1996; Stewart et al., 

2015). In a case like earthquake prediction, there is massive 

amounts of seismic data on non-earthquake events, but the few 

earthquake events are of much greater importance and their relative 

infrequency should be reflected in the model training data. Systems 

that generate great amounts of data are reliant on data storage 

methods to capture the depth of said system.  

A byproduct of increased storage capacity is a trade-off 

between data quality and data quantity. Analysis with more “noisy” 

data becomes a major big data challenge. Where once we were 

concerned about being able to collect enough information to detect 

a trend, we now are concerned about collecting so much information 

we might miss the trend in the noise (Saha and Srivastava, 2014; 

Liu et al., 2016). This is a defining feature of the new age of 

“big data.” Although some agricultural practices still involve 

relatively little data, others are beginning to collect great 

amounts of data on a daily basis (Bronson and Knezevic, 2016; 

Carolan, 2017; Kamilaris et al., 2017). Consider a large-scale 

dairy farm, where 2,000 cows being milked 3-times per day have 

GPS-enabled ear tags and an in-line milking system. GPS-enabled 

ear tags can currently collect data up to once every second 

(Wolfger et al., 2017), while accelerometers in dairy cows can 
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measure up to 10 times per second (Alsaaod et al., 2015). The in-

line milking system analyses all milk for components, volume, and 

somatic cells. The complexity of these data become great when 

considering each cow individually. However, with the increasing 

complexity of collected data comes the opportunity to benefit by 

deriving insights from this data through data analytics (DA). 

Creating applicable DA tools and research is important 

because of the number of decisions farmers are making on a daily 

basis. Research in agricultural DA is focused on the decisions 

farmers make that are most economically impactful. Popular areas 

for DA are disease prediction, nutrient digestion, and genetic 

potential. Being able to predict and prevent costly diseases in 

plants or animals is vital for the farmer to profit and sustain 

their operation (Pennypacker, 1980; Berger and Lehmann, 1984; 

Garrett et al., 2004; Rutten et al., 2013). Models like the Molly 

Cow model (Baldwin et al., 1987) utilize our understanding of 

ruminant nutrition to predict digestion of feedstuffs and help to 

inform feeding decisions. A natural place for DA is genetics, where 

a full genome contains billions of base pairs (Koonin, 1998) 

interacting in near-infinite ways to influence an animal’s 

biology. Identifying important genes and determining the genetic 

merit of plants and animals are fields where analytics helps humans 

discern patterns on a micro-scale. All of these examples illustrate 

how DA can be applied in agriculture to help make decisions.  
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As data collection in agriculture continues to grow, there is 

an opportunity to bolster our understanding of systems like 

digestion, genetics, and disease, but also explore new fields like 

personalized treatment, autonomous decision-making systems on-

farm, or higher resolution weather and plant health models. 

Agricultural practices are steadily increasing the amount of data 

collected, and in that data are patterns and signals that will 

help shape the way producers make decisions. By applying DA 

techniques to agriculture, we aim to improve the breadth and depth 

of decision-making through example. This work includes examples of 

modelling systems for prediction and assessment of management 

practices, model types along with their strengths and 

shortcomings, and model evaluation in practice and the importance 

of appropriate context. 	  



 7 

Chapter 2: Literature Review 
 

Data Analytics 

 

Steps of Data Analytics 

To draw from our original description of data, DA is the tool 

employed to transform data into information and insights, and to 

separate the signal from the noise (Shamoo and Resnik, 2009). The 

process of DA can be generally broken down into four steps: 1) 

processing raw data; 2) cleaning data; 3) exploratory DA; and 4) 

modeling and algorithms (O’Neil and Schutt, 2013). This process 

can be used in the vast majority of DA cases.  

First, to process data means to take raw data and organize it 

into a structure that is better suited for analysis, such as rows 

and columns (O’Neil and Schutt, 2013). Doing this allows 

statistical software to handle the data more easily and allows for 

faster outlier detection as well because data is ordered and 

unusual values will stand out. Though often taken for granted, the 

way we organize our data in the initial processing step can greatly 

influence our subsequent analysis. This organization of raw data 

is called the “data structure” or “data model.” Data models 

abstractly relate the elements of the data to each other and 

inherently require knowledge of the system (McCaleb, 1999). As an 

example, individual dairy cow data might be structured by milk 

yield, milk components, and weight separately, but also be 
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separated in a hierarchy by individual cow ID. By relating 

observations, this data structure creates more flexibility for 

analysis and allows for easier analysis in the later steps of 

traditional DA because data can be reshaped in many ways. 

After data are structured, collection errors need to be 

addressed through data cleaning in order to extract the most useful 

information. Data errors, missing data, and outlier data can occur 

as a result of data collection in the real world, and the presence 

of these errors is usually unpredictable. There is no specific way 

to remove “dirty” data, but some helpful ways to clean data are 

comparing to previously published data (Koomey, 2006); statistical 

analysis of the characteristics of data for changes in mean, 

variance, or another statistic; or strict validation: the removal 

of values that do not match a set list of values (such as English 

words or zip codes). A trade-off in data cleaning is making sure 

not to remove data that could be useful in later analysis, while 

still allowing the greatest proportion of “true” data to make it 

through to the analysis steps (Lloyd, 1993). For example, an 

extremely low milk yield measurement may be an outlier, given a 

cow’s milking history, or it could be an indication of disease. 

Human intervention in cleansing slows the process, but also, the 

ingestion of new data requires re-running of all cleansing 

procedures because all data must be compared against the entire 

dataset. There are algorithms useful for outlier removal, however, 
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their appropriateness is best determined on a case-by-case basis. 

In fact, like outlier detection, many aspects of the DA process 

require a scenario-specific procedure. 

Exploratory data analysis (EDA) is step 3 in the traditional 

DA process. John W. Tukey pioneered EDA in the 60s and 70s, writing 

a book of the same name in 1977. Formally, EDA is the process of 

analyzing data sets to summarize their main characteristics 

(Tukey, 1977). Tukey encouraged other statisticians to use EDA to 

explore data to formulate hypotheses then collect more data. This 

may seem backward, even now. Traditionally, data is collected after 

a hypothesis is formed, and the data is used as a means to reject 

or fail to reject the null hypothesis. Tukey argued that 

oftentimes, coming up with an appropriate research question was 

the most difficult part of the scientific process and that 

collecting more data to test the hypothesis was just “confirmatory 

data analysis” (Tukey, 1980). Indeed, the formulation of good 

research questions is essential to good experiments, and EDA is a 

means to this end. Albert Einstein is attributed with versions of 

a quote, most likely actually coming from an anonymous Yale 

professor, saying, “If I had only one hour to solve a problem, I 

would spend up to two-thirds of that hour in attempting to define 

what the problem is” (Markle, 1966). Tukey’s ideas help explore 

and clean data, as we will see using a real-world example.  
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Consider an example dataset of daily milking data from a large 

dairy farm (2000 milking head; milking 3x per day). The dataset is 

from the previous year (i.e., 2,190,000 individual milkings 

recorded). Along with the milk yield data, there are also 

components (fat, protein, lactose, and somatic cell count) and 

individual cow data on age, DIM, and lactation number. When doing 

EDA the first question to ask is usually: “what research question 

are we trying to answer?” A good second question comes from Bourke 

(2019): “what kind of data do you have and how do you treat 

different types?” If the research problem is predicting milk yield, 

you should first examine the data to familiarize yourself with it. 

Data may have missing values, erroneous values, or other oddities 

that need to be noted before continuing. Notice that even if we 

knew exactly what models we wanted to employ, issues with data 

quality can hinder analysis. Knowing what our data look like is 

essential for having confidence in any later DA.  

Especially important to John Tukey’s strategy was the 

visualization of data for understanding. In our above example, 

observing milk yield curves for each cow plotted on a graph will 

give a better idea of the variation in data and the impact of 

possible missing data. Another important tool in EDA can be feature 

engineering. In our example, creating 5-day moving averages of 

milk yield may help smooth yield curves and decrease impact of any 

single erroneous value. While there are useful tools, there are no 
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set steps for EDA. Consider that Tukey himself said that EDA is 

not a set of tools, rather an attitude to have while doing DA 

(Tukey, 1977).  

 

The final step of the DA process is creating models and 

algorithms to represent the data. Models are one or more algorithms 

that represent the inherent structure of the data. Algorithms can 

informally be defined as a set of rules that precisely defines a 

sequence of operations (Stone, 1971). Stone (1971) goes even 

further to say that an algorithm can be any set of rules such that 

a “robot is guaranteed to be able to obey [them].” More formally, 

consider that a mathematical formula like y = βx + ε is a set of 

instructions, and therefore an algorithm that describes a linear 

relationship.  

By representing the data, we can discover patterns and 

relationships in the data that we may not have understood 

otherwise. In order for models to inform our analysis, the model 

choice must be appropriate for the given dataset. This is 

necessarily ambiguous because all datasets will require different 

models and algorithms for summarization and characterization. For 

example, a dataset of monthly fluid milk prices and the dates of 

those recorded prices may require a time-series plot showing the 

change in milk price over time. An algorithm that took the 6-month 

moving-average of milk price and a subsequent plot of this moving-
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average along with the monthly milk prices would help to visualize 

variation between the statistic and the data (Figure 2-1).  

Although research using DA and mathematical modeling is a 

rapidly developing field, advances have been slower to take hold 

in agricultural research. Improved evaluation leads to easier 

application of DA across specialties within agriculture. Many 

research efforts employ an analytical framework as described here, 

but papers are narrowly applicable and researchers seeking to 

employ the same framework outside of the given field may find it 

hard to translate the work. Our research goal was to produce an 

evaluation of DA techniques and provide example situations for 

their use that would assist future researchers in choosing 

appropriate analytical frameworks.  

 

In agriculture, as in any other scientific field and the 

world, to make proper assumptions of our surroundings and then 

make inferences as to how the world works, we need data. Data 

informs decision-making, informs assumptions, and, when we know 

where to look, it can disprove previously held assumptions about 

our world. But data must be collected and structured in order to 

be used. The sources of data in agriculture are extensive, but in 

recent years sensors have become essential to informing the 

analytics revolution.  
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Data Collection 

Data are any collection of observations, often numeric, and 

can be collected from an infinite number of sources on a farm, at 

a market, in a field, or in an individual animal. Given this 

diversity, it is useful to catalog the ways in which we gather 

data in practice. Data is usually gathered from sources that have 

the most potential to return value to the collector, relative to 

the cost of data collection. For example, weather data can be 

costly to capture (although it is widely available as a free 

service of the U.S. government), but is a major driver of decisions 

on the farm, day-to-day and long-term (Potgieter et al., 2005; 

Kantanantha et al., 2010). Although the producer may not be the 

one paying the majority of the costs associated with predicting 

the weather, weather predictions help many other sections of the 

population. In order to make money, farmers rely on crop prices 

and commodity prices to help decide which crops to plant (Eales et 

al., 1990; Hoffman, 2019). The pattern of paying to collect data 

until the returns offset the costs is common across agriculture. 

Sensors in animal agriculture are becoming far more 

widespread, as newer technologies allow for smaller, longer-

lasting, more versatile tools to be placed on or near animals to 

collect data. GPS sensors can track individual cow movements within 

a barn with a deviation of 1.22 meters using just an ear tag 

(Wolfger et al., 2017). Knowing a cow’s location reduces labor 
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costs and improves productivity by limiting time spent in the barn 

searching for cows to deliver treatments or checking a cows’ 

health. Other wearable devices include halters, collars, and leg 

bands that measure things like chewing, grazing behavior, or 

rumination (Borchers et al., 2016; Zehner et al., 2017; Reiter et 

al., 2018); ankle monitors that measure steps taken and laying 

time (Maatje et al., 1997; Alsaaod et al., 2012); and tail sensors 

that detect heat (Miura et al., 2017). Data collection devices can 

also be inside the animal, like a ruminal sensor, which can measure 

things like rumination, rumen pH, and even rumen contents in some 

cases (Enemark et al., 2003; Ipema et al., 2008; Mottram et al., 

2008). Although animals provide a necessary challenge to track and 

record from a data collection standpoint, crop agriculture also 

utilizes sensors to improve yields and management practices.  

Understanding the fields that crops grow in is obviously of 

utmost importance to the crop producer. Using soil sensors, 

variables like pH, nutrient levels, moisture, or airflow can be 

recorded at any desired granularity in the field (Hamilton et al., 

2007). This understanding of soil dynamics helps the producer 

target specific areas for special treatment. Spectral reflectance 

is commonly measured to assess crop growth in fields, specifically 

nitrogen deficiency (Solie et al., 1996; Stone et al., 1996). These 

recordings can be used to better predict growth and adjust crop 

management in order to maximize yields. Bushong et al. (2016) 
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showed that combining spectral readings and soil moisture profiles 

to improve prediction capabilities of their models. Moisture 

profiles can even affect the planting of crops, because it has 

been shown that optimal soil moisture can allow farmers to plant 

10 to 20% more grain (Rehm and Schmitt, 1989). 

Precision GPS allows for better topography of any field, 

allowing for better planting and interpretation of yield and other 

sensor data (Price and Gaultney, 1993). With the advent and 

popularization of drones, more individualized plant care is 

possible (Burema and Filin, 2016). Drones, or unmanned aerial 

vehicles (UAV), have been shown to assist with estimation of crop 

yield or height, mapping of plant locations, and fertilizing (Luna 

and Lobo, 2016; Feng et al., 2018; Li et al., 2019). The goals of 

using UAV technology are to optimize field management and evaluate 

crop performance (Feng et al., 2018). Because traditional methods 

to measure yield, height, or the health of plants are costly, 

typically involving tractors or other large vehicles, advantages 

of UAV are the low cost, as well as the improved accuracy. A 

downside of many precision technologies that involve complex data 

collection is the increased need for on-farm processing power or 

improved networks to transmit data from the field to a server. 

Crop systems are becoming more efficient with the use of 

sensors and livestock systems are adopting some similar 

technologies. For instance, a “Virtual Dairy Farm Brain” is being 
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developed by researchers at the University of Wisconsin that aims 

to take advantage of technological innovations to improve whole 

farm decision-making (Lianga et al., 2018). Examples of decisions 

being made in this framework are optimal cow replacement decisions, 

reproductive decisions, insemination outcome prediction, feeding 

efficiency, and natural language processing (Cabrera, 2010, 2012; 

Kalantari et al., 2016; John et al., 2017). Although the goals of 

this project are far-reaching, a downside of large, multi-

disciplinary efforts is the speed of progress. New technologies 

will be developed with time and applicable tools produced may 

become obsolete quickly. Another problem with large-scale efforts 

is the inability to produce an applicable tool for farmers that is 

easily understood, but still efficient and effective (Hunt et al., 

2011). By integrating many different data sources, this research 

group hopes to generate applicable predictions that will change 

the way dairy decision-making is done. 

A sensor in a field, on a cow, or in the ground, is rarely 

equipped with computation power to process raw data. Therefore, 

the data must be passed from the sensors to a computer for 

cleaning, exploration, and modeling, the final three steps of DA 

as mentioned above. The internet of things (IoT) refers to the 

interconnected nature of electronic devices in the current 

internet-age (Evans, 2011). Many barns are outfitted with wireless 

internet to connect animal sensors to a central computer or cloud 
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computing (Kwong et al., 2012). This allows data collected out in 

the fields to be collated in one place for analysis. Although the 

exact definitions and devices that are encompassed in the IoT are 

ever-changing, the IoT is an important addition to farming and 

agriculture in general as it provides a digital infrastructure for 

data to be collected and utilized. 

The rise of precision technologies to aid in the management 

of animals and crops has also exposed general problems, some 

referenced above. Precision technologies rely on improved network 

capabilities for sharing and transmitting data around the farm. 

Another issue associated with more sensors for data collection is 

the need for greater power to run these technologies (Keshtgary 

and Deljoo, 2012). The architecture needed to implement precision 

technologies is necessarily greater than that needed for human-

measurement. Besides the physical limitations, precision data 

technologies frequently rely on models to interpret data 

collected. That is, the data collected is a proxy for the actual 

variable of interest. For instance, measurements of spectral 

reflectance act as a proxy for nitrogen status in crops. Without 

additional modeling, spectral reflectance is not useful to the 

farmer. The use of models to translate collected data into insights 

is a great feat, but also drives reliance on those same models. 

Despite these concerns, precision agriculture and modeling will be 

key factors in improving decision-making on-farm.  
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Modeling in Agricultural Systems 

Linear Regression Models 

Perhaps the most common statistical models used in 

agriculture are linear regressions, regression being the 

estimation of the relationship between variables. By knowing the 

relationship between the variables, we can attempt to predict a 

response variable given a set of independent variables. The use of 

regression to predict a specific variable’s value, Y, at any fixed 

values for all independent variables, X, is called conditional 

expectation, defined by: 

 

which suggests that Y is also a fixed value in the solution. The 

use of a conditional expectation framework allows us to solve for 

the expected value of any variable (the variable we are interested 

in) by fixing the values of all other variables. Using linear 

regression we have 

 

Where the expectation of εi = 0, for normally distributed error 

(which is to be assumed), so: 
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The Yi are conditionally dependent on each xi as mentioned 

above, giving us the conditional expectation form of the linear 

regression equation. Being a linear regression means that the 

conditional expectation of Y (the result), given the parameters, 

must be a linear function of the input parameters only (Casella 

and Berger, 2002).  

Linear regressions rely only on the assumption that the 

dependent variables be linearly related to the independent 

variable. This assumption may not always be justified, but is 

extremely convenient when fitting models or interpreting results. 

When fitting a line to data, a least squares estimate of the line 

that minimizes the residual sum of squares is always possible. 

This is a powerful tool, meaning that a solution does not need to 

be searched for or optimized for, it can be mathematically solved 

for using, assuming any line through the data y = c + dx: 

, 

and minimizing c and d. Additionally, when interpreting the 

coefficients of a linear regression, the value is the expected 

change in the independent variable when the given dependent 

variable is changed and all other variables are held fixed. In 

general, the coefficients relate to the change per one-unit in 

change of each independent variable. The linear framework also 

allows the user to theoretically change multiple input values and 

2
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predict the change in the response variable. Sometimes is it 

unrealistic to only change one variable without changing others 

slightly, because of intrinsic correlation. Correlation tables or 

using a single variable linear model, called a simple linear 

regression would work to account for this variation. The first 

linear models were used as early as 1805 (Yan and Su, 2009), and 

their advantages of having a specific solution and intuitive 

interpretation make it clear to see why linear models are still 

used so often today in agricultural modelling.  

As previously mentioned, linear models can have downsides 

when their assumptions are not met. If a given descriptive variable 

does not relate to the response variable in a linear manner, a 

linear model may be misleading. In 1973, Francis Anscombe created 

four relatively notorious datasets of 11 (x, y) points each, now 

called “Anscombe’s quartet” (Figure 2-2). Each dataset possessed 

the same x and y means, sample variances, correlation, linear 

regression line, and coefficient of determination (Anscombe, 

1973). This data outlines the weakness of fitting linear regression 

models on data that does not have a linear relationship with the 

response variable.  

 

Multicollinearity can also skew results in a linear 

regression. Multicollinearity occurs when there is a strong 

correlation between the dependent variables. A consequence of 
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multicollinearity is that it can be hard to estimate the effect of 

any single independent variable. This is based on the assumption 

in regression that controlling all other independent variables and 

changing the variable of interest will reflect the impact that 

variable of interest alone. However, when independent variables 

are correlated, this assumption breaks down. It is also important 

to note that, as long as the multicollinearity in the data holds 

in new data, predictions using a model with multicollinearity are 

not hindered (Gujarati and Porter, 2003).  

Homoscedasticity, or constant error along the regression 

line, is also assumed in regression (Statistics Solutions, 2013). 

If the dependent variable’s variance depends on the value of the 

independent variable, the data is heteroscedastic. Predictions 

from regression models trained on heteroscedastic data will be 

more uncertain than in certain areas than others. The Breusch-

Pagan test is used to measure heteroscedasticity. This test uses 

the least squares of the fitted model’s residuals. If the mean of 

the least squares residuals is far from 0, than the data is likely 

heteroscedastic (Breusch and Pagan, 1979). Although linear 

regression models offer an easy and succinct way to analyze data, 

the pitfalls and assumptions can hinder good analysis.  

Growing in popularity is another type of linear model: the 

mixed effects linear model, or just “mixed model”, containing fixed 

effects and random effects. These models are useful in scientific 
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research because the user knows, to a degree, which factors were 

random and which were manipulated. A more comprehensive definition 

of fixed and random effects comes from Green and Tukey (1960): 

“When a sample exhausts the population, the corresponding variable 

is fixed; when the sample is a small (i.e., negligible) part of 

the population the corresponding variable is random.” This 

statement is true of most agricultural experiments in areas like 

supplement effect, effect of feed changes, or management strategy 

effects, where the variable of interest relates to samples across 

possible values, while effects like possible location or 

individual animal do not. Mixed models use a best linear unbiased 

predictor to estimate random effects and their variance (Robinson, 

1991). To estimate the effects of independent variables the best 

linear unbiased estimator is used. The mixed model equation is 

then 

 

Where y are the observations; β are the fixed effects; µ are 

the random effects, with mean = 0; ε are the random errors; and X 

and Z are the observations. A joint estimate for β and µ must be 

made to solve this equation, which is traditionally done using 

expectation maximization of the joint likelihood (Lindstrom and 

Bates, 1988).  

Mixed models improve on the traditional simple linear 

regression model for agricultural research in their ability to 

y X Zb µ e= + +
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handle repeated measures of the same statistical unit, which is 

common in research trials. A driving piece in the Journal of Animal 

Science (St-Pierre, 2001) illustrating the shortcomings of linear 

regression in repeated measures experiments helped shift 

practitioner’s opinions towards a more robust modelling framework. 

This work by St. Pierre also illustrated the importance of using 

mixed models to control for experiment as a random effect in meta-

analyses, a common practice in the agricultural field. 

Additionally, mixed models allow missing data, as long as that 

data is missing-at-random, which traditional linear regression 

would remove (Seltman, 2012).  

 A downside of using a mixed-effects model comes when the 

number of samples within a random variable is small. It is 

difficult to estimate differences in slopes of regression lines 

across random groups, and the subsequent estimation of overall 

model variance will be great (Mok, 1995; Clarke and Wheaton, 2007; 

Bell et al., 2008). Another issue with using mixed-effects models 

is that it is necessary to make informed decisions as to the nature 

of the variables measured (Seltman, 2012). Determining which 

variables are random effects and which are fixed will affect the 

resulting model. Because applied research will face challenges 

associated with a small sample size, it is important to consider 

the implications of model choice on the accuracy and precision of 

the predictions. In practice, mixed- and fixed- effects models are 
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easily run as part of a statistical computing package, like R (R 

Team, 2018). Because of the ease of use, linear regression is 

extremely common in agricultural research. However, there are 

other methods of generating models seen in the literature, 

principally among them Bayesian methods.  

The two most common schools of statistical inference are 

Bayesian and frequentist. The difference between the two 

approaches revolves around their interpretation of probability 

(Orloff and Bloom, 2014). While a frequentist sees probability as 

the long-term frequency of an event, a Bayesian refers to 

probability as the degree of belief generated from past information 

and the data. A frequentist does not place a probability on a 

hypothesis, only the probability of the data given a hypothesis. 

The result of a frequentist analysis will be an estimation of a 

statistic’s value, and a confidence interval around that value. 

The confidence interval does not give probabilities to the values 

around the estimated value, except to say the true value will be 

within the range some proportion of the time when the scenario is 

repeated infinite times. A 95% confidence interval does not mean 

that a single sampled statistic will be within the interval 95% of 

the time. A Bayesian sees hypotheses, statistics, and data as 

having probabilities. A Bayesian would give a probability curve 

relating all values under a given hypothesis. Here, the estimated 

value is not set, but a range of values with varying chances of 
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being the true value. Although these two views are thought to be 

opposing, the majority of frequentist concepts have an equivalent 

in the Bayesian framework and vice versa. For instance, optimal 

estimates of a value sampled from a normal population would be the 

same under both frameworks, despite being derived from different 

starting places.  

 

Bayesian Models 

Bayesian models rely on the Bayesian interpretation of 

probability, that probability represents a degree of belief in an 

event (Bayes, 1763). Thomas Bayes, the namesake of Bayesian 

practices, formulated Bayes’ Theorem which is generally stated, 

for any two events A and B: 

 

P(A) is called the prior, because it is a distribution reflective 

of prior knowledge about A, the proposition. P(B|A) is the 

likelihood, or the likelihood of observing B given A. P(A|B) is 

the posterior probability or the likelihood of observing A given 

B. The posterior is what we aim to solve, the likelihood of our 

proposition being true, given the evidence we observe. P(B) is the 

probability of the evidence observed in any scenario. The 

probability of the evidence can be rewritten as: 
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or  in the discrete case 

Oftentimes, calculating P(B) directly can be challenging and 

unnecessary because the evidence does not change in the analysis, 

meaning P(B) is always the same for any given evidence. The 

posterior likelihood can be written like so: 

 or 

Posterior ∝ Likelihood × Prior 

The important thing to realize is that the maximum likelihood of 

this posterior distribution will be the same, regardless of whether 

or not we include P(B) (Gelman et al., 2013). Using the 

proportionality instead of the full equation simplifies the 

problem greatly, avoiding the need to integrate over all possible 

propositions. To predict using Bayes’ theorem analytically, you 

must integrate the posterior over all possible evidence (or sum in 

the discrete case).  

In practice, unless the product of the prior and likelihood 

distributions are in the same family of distributions and produce 

a closed-form expression (called “conjugate”), it will be hard to 

evaluate the posterior. For instance, if the likelihood is normally 

distributed with a known mean and variance, a normally distributed 

prior will produce a closed-form, normal, posterior distribution. 

1

( ) ( | ) ( )
N

i i
i

P B P B A P A dA
=

= ò

1
( ) ( | ) ( )

N

i i
i

P B P B A P A
=

=å

( | ) ( | ) ( )P A B P B A P Aµ



 27 

In cases where the prior and likelihood are not conjugate, 

numerical integration can be used to find approximate solutions to 

describe the resulting distribution.  

 Numerical integration is useful because many priors, like 

uniform or normal, are not conjugate in many cases. That is, the 

use of only conjugate priors can be constraining to analysis. 

Numerical integration is the process for finding numerical 

approximations to a differential equation, like the differential 

equation needed to predict from a posterior distribution: 

#(%|', )) 	= , #(%|-)#(-)	.- 

where x = new data to be predicted, X = sample, a = the 

hyperparameters of the parameters of the new data, and -= 

parameters of the new data’s distribution -= P(-| a). Markov chain 

Monte Carlo (MCMC) methods refer to a class of algorithms used to 

do numeric integration by sampling from a distribution with a 

probability density proportional to the distribution of interest. 

By repeatedly sampling and using points in proportion to the “true” 

distribution, the new distribution will converge towards the true 

distribution. Because this proportional sampling will produce 

points, we can calculate an expected value or variance using this 

data. The key of MCMC is having an algorithm that can “walk” in 

the potential parameter space, moving into areas of high 
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probability according to the integral. The process of searching 

the space is called a random walk. 

 

An example of a random walking MCMC algorithm is the 

Metropolis-Hastings algorithm. Here, in order to move in the space 

and sample, a move is proposed and either rejected or accepted 

based on the density of the integral in the new space compared to 

the old space. Importantly, the move is not always rejected in the 

case of moving to a space with lower density, rather, the move is 

rejected proportionally to the density change between the old and 

new point, called the acceptance ratio. Written formally, the 

acceptance ratio is: 

Acceptance ratio = /(%′)//(%) 

where x = the previous point and x’ = the proposed point and f(•) 

is the function of interest. If the acceptance ratio > 1, the 

algorithm will always accept the move. Repeating this random walk 

many times, usually from multiple starting positions, will produce 

a distribution that follows the desired distribution. Figure 2-3 

shows an example of a random walk over many runs and the produced 

distribution of a parameter (Tran, 2014). The popularity of 

Bayesian techniques in research stems from the ability to extend 

the techniques to hypothesis testing. 

In research, Bayesian inference is frequently used in 

hypothesis testing, with the proposition being a hypothesis and 
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the evidence being collected or observed data: P(H0|X) ∝ P(X|H0) 

✕ P(H0). In recent agricultural research, some examples of Bayesian 

inference have been to estimate the energy requirements of cattle 

(Moraes et al., 2014), water requirements of fields (Padalalu et 

al., 2017), and yield prediction of crops (Savla et al., 2015). 

Another Bayesian use example is for genome-wide association 

studies (GWAS). Freua et al. (2017) used a database of phenotypic 

and genotypic information for 893 cattle. Using three established 

differential equations relating to DNA accretion and energy of 

maintenance requirement, the study estimated the distributions of 

two parameters using the information on the single nucleotide 

polymorphisms (SNP) present in the data. To generate probability 

distributions for each parameter, Gibbs sampling, a sub-type of 

Metropolis-Hasting sampling was used for MCMC. Predictions of DNA 

accretion and energy requirements were estimated with SNPs shown 

to have 95% confidence intervals of their parameter estimates 

greater than 0 (Freua et al., 2017). Phenotypic variation was 

better explained using a Bayesian approach compared to previous 

models (Freua et al., 2017). This example in GWAS illustrates the 

Bayesian framework’s ability to estimate complex parameter 

distributions and improve predictions.  
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Hypothesis Testing 

In research, oftentimes we are testing hypotheses using data. 

In order to test hypotheses, we start with a null hypothesis, which 

is a model of our belief, given that nothing is out of the ordinary 

(Everitt, 2006). The null hypothesis is assumed to be true until 

disproved. This is the challenge of all scientists: to prove that 

their theories have validity against previously held truths. The 

null hypothesis is part of the field of inferential statistics, 

used to derive properties of underlying distributions and make 

inferences about a population, given a sample from the population. 

When a researcher rejects the null hypothesis, sometimes based on 

a p-value, they are rejecting the belief that conditions are as 

previously believed, in favor of a new belief.  

Assumptions are key in inference and therefore important in 

testing hypotheses in research. The p-value, which we use to decide 

whether to reject the null hypothesis, reflects the probability of 

seeing data at least as extreme, or more extreme, given that the 

data was generated from a model reflecting our null assumptions 

(Wasserstein and Lazar, 2016). Notice that the p-value’s 

definition does not include any ties to the alternate hypothesis. 

Just because data is unlikely to be drawn under the null 

hypothesis’ distribution does not mean the data does come from the 

proposed alternative distribution. Model assumptions can be a 

problem when testing hypotheses because poor model assumptions can 
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guarantee that collected data will disagree with the null 

hypothesis. P-values have been criticized for sometimes not 

producing coherent results in a two-sided test. The two-sided 

hypothesis test compares two datasets and determines the 

probability of the two samples being different (either one dataset 

being greater or less than the other). One would expect as the 

average difference between the two datasets diverged, that the p-

value of this test would decrease, but this is not always the case. 

The property of test statistics to never increase as the average 

difference between samples increases is called monotonicity. P-

values in a two-sided hypothesis test are not monotonic. 

Statisticians have called for varying solutions to the issue that 

arise from p-value use in research.  

Research has shown that a disproportionate number of 

published studies have p-values directly below 0.05, most likely 

stemming from the acceptance of 0.05 as a threshold for statistical 

significance (Hartgerink et al., 2016). The most widely accepted 

origins of the 0.05 threshold come from a 1925 book, Statistical 

Methods for Research Workers by R.A. Fisher, where he claimed about 

0.05: “The value for which P=0.05 … it is convenient to take this 

point as a limit in judging whether a deviation ought to be 

considered significant or not” (Fisher, 1925). However, less than 

100 pages later in the same book, Fisher calls a p-value between 

0.02 and 0.05 to be “significant, though barely so...” (Fisher, 
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1925). The extreme popularity of a 0.05 threshold for significance 

in research is likely as a result of the need for enough research 

to be published (Bross, 1971). If a lower threshold, say 0.01, was 

common, much less research would be publishable, and Bross (1971) 

supposed that the “evolutionary process would have eliminated it.” 

Although alternatives have been proposed and many other hypothesis 

testing frameworks exist, p-values and a 0.05 is by far the norm. 

 

The hypothesis testing method used in Bayesian inference, 

Bayes factors, have a different interpretation than classical p-

values (Morey et al., 2016). The Bayes factor is the likelihood 

ratio of two models’ marginal likelihoods. While classical p-

values measure the likelihood of the data or more extreme data 

under the null hypothesis, Bayes factors compare two models (like 

the null and alternative hypothesis) and represent the support of 

one model over the other. That is, a greater Bayes factor only 

suggests that the alternative model is more likely than the null 

model, given the data and priors. When both models are equally 

likely a priori, the Bayes factor is equal to the ratio of the 

posterior probabilities of the two models. A Bayesian framework 

can be easily interpreted because it compares the alternative 

hypothesis to the null directly. This interpretation differs from 

traditional p-values which compare the null hypothesis to all other 

possible hypotheses. The Bayesian framework is gaining popularity 



 33 

in research because its interpretation is more in line with the 

research process.  

Creating mathematical models in research requires hypothesis 

testing to disprove our previous beliefs. Hypothesis testing is 

invaluable when used correctly, but there are dangers of hypothesis 

testing, sometimes stemming from a misunderstanding of the tool or 

what a p-value means to research results (Chow, 1996; Morrison and 

Henkel, 2006). For instance, the classical p-value from a t-test 

does not indicate anything about the validity of the alternative 

hypothesis, only the null hypothesis’ fit under the data. 

Researchers commonly associate lower p-values with more 

significant results, which is not the case (Ziliak and McCloskey, 

2008). If a poor null hypothesis is chosen, like a model that is 

infeasible, the resulting p-value will almost certainly be 

significant. Despite these concerns, good model selection involves 

using statistical tests like a t-test or Bayesian framework to 

choose the best models to represent complex systems. 

 

Model Types 

In agriculture, modeling natural processes usually involves 

complex models with multiple sub-models to produce predictions. 

There are many different types of models that are used in 

agriculture, differentiated by the model’s structure. Some common 
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classifications of models are static vs. dynamic; deterministic 

vs. stochastic; and empirical vs. mechanistic. Static and dynamic 

models refer to the handling of time in model calculations; 

deterministic and stochastic models deal with randomness in the 

system; and mechanistic and empirical models differ regarding how 

the model is created, based on theory or observed data.  

Many modeled systems vary over time and our research interests 

require knowledge of these changes. A dynamic system is defined as 

a system in which a function describes the time dependence of a 

point in phase space (Katok and Hasselblatt, 1997). A rule of 

dynamical modeling is that given all points up to time t-1, we can 

predict the state of a point at time t, called the time evolution 

law. While systems can vary over time, Henri Poincaré provided the 

Poincaré recurrence theorem showing that, given enough time, all 

systems will reach near-steady state (Poincaré, 1890). This 

additional information is useful because, if we are interested in 

only the steady state behavior of a system, we can model the 

behavior without consideration of time. Models that are time-

indifferent are called static models. Using static models, we can 

represent systems that are in steady state or systems at a specific 

point in time. The use of static versus dynamic models in 

agriculture depends mostly on the system of interest and whether 

time-dependence is assumed or necessary.  
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When modeling a system, the randomness therein is also 

important when deciding which type of model to use. Deterministic 

models assume all inputs are fixed and known, meaning the output 

will always be the same (Meiss, 2007). Deterministic models are 

useful when most variance in outcomes is described by the model’s 

variables. Stochastic models use probability distributions for 

variables, meaning that outputs will vary. Because of the 

probabilistic framework, stochastic models are frequently called 

statistical models. A common example of a statistical model is one 

of height in children based on age. A deterministic interpretation 

of this system for the ith child’s height would be: 

heighti = β0 + β1agei 

where β0 = the intercept; β1 = the slope; and agei = the age of the 

ith child. The related stochastic model would include an error-

term for the prediction of each child: 

heighti = βi + β0agei + εi 

where εi = the error of the prediction for the ith child. The error 

term would be an assumed probability distribution. Each prediction 

from the statistical model involves randomly realizing one value 

from the error distribution, providing a different estimate for 

height each time. Because stochastic models require draws from 

probabilistic distributions for each output, the models can be 

very slow to near infinitely slow, for all intents and purposes, 

if the distributions are complex. When solutions to stochastic 
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models are practically feasible, solutions can be more robust than 

deterministic models because error terms can simulate variance 

inherent in the system not described by the input variables.  

 Mechanistic and empirical models are both common in 

agricultural literature. Mechanistic models directly relate to an 

assumed underlying mechanism in the modeled system, while 

empirical models are created based on observed data and make no 

assumptions about system mechanisms (Thakur, 1991). A model cannot 

be completely mechanistic because lower-level mechanisms cannot be 

completely described (Gill et al., 1989). Consider a model of 

digestion that accounts for the mechanisms of the organs and 

tissues, which accounts for the mechanisms in the individual cells. 

In this case, there is no finite end to the number of systems that 

would need to be accounted for to keep the model completely 

mechanistic (France et al., 1984). Another limitation of 

mechanistic models is their ability to describe nonlinear and 

dynamic systems, which describe most biological processes 

(Sauvant, 1991).  

When mechanistic models cannot describe complex systems, 

empirical models are a good alternative, able to closely mimic the 

system’s outputs without knowing the underlying actions at play. 

To evade needing to understand every part of a given process, 

empirical models can produce a confidence measure in predictions 

or error estimates. This uncertainty allows a single model to 
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reflect complex interactions or inherent variation in a process. 

Empirical models tend to have a more narrow focus, must rely on 

the accuracy of previous observations, and limit the array of 

possible statistical methods (Hristov et al., 2018). This property 

of empirical models makes them better for prediction (Tedeschi et 

al., 2005). In systems like digestion, there are many pathways 

that must be modeled, with varying levels of understanding of the 

mechanisms present. Because of the breadth and depth of modeling 

systems like digestion, many agricultural models incorporate both 

mechanistic and empirical models. There are many examples of models 

used in agriculture that illustrate the different potential model 

types.  

 

Applied Animal Models 

In the field of animal science, there are examples of 

mathematical models for decision-making, at the individual-, farm-

, or national-level. These models are especially prescient, as 

demand for food and natural resources in 2050 is expected to 

increase to double 2009-levels (FAO, 2009). All animal models allow 

the integration of knowledge about feed, digestion, metabolism, 

energy movement, and other processes (Tedeschi et al., 2005). The 

integration of knowledge allows us to make predictions about areas 

like nutrient requirements or management practices to improve the 
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overall decision-making process. Although most animal models have 

the same goal of providing insight, varying of models have 

different advantages.  

The Molly cow model represents nutrient digestion and 

metabolism of the rumen (Baldwin et al., 1987). After the first 

iteration of Molly in 1987, many changes and updates have been 

proposed and integrated into the model like reparameterization of 

the digestion models, prediction of methane emissions, and 

volatile fatty acid production (Offner and Sauvant, 2004; 

Gregorini et al., 2013; Hanigan et al., 2013; Ghimire et al., 

2014). Molly is dynamic, deterministic, and primarily mechanistic. 

The Molly cow model was designed primarily for lactating cows and 

has been used on-farm to make decisions regarding greenhouse gas 

emissions (GHGe) (Beukes et al., 2011), nitrogen excretion 

(Johnson and Baldwin, 2008), and ration formulation (Kohn et al., 

1998). The ability to constantly improve models via additional 

empirical data and studies has allowed the Molly model to remain 

useful 30 years after its initial creation. However, Molly also 

illustrates a weakness in mechanistic, individual models: that 

complex models rely on greater equation parameterization to be 

accurate (Hanigan et al., 2013). The parameterization may not be 

the same for all scenarios, making the derivation of one specific 

prediction cumbersome.  
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The Cornell Net Carbohydrate and Protein System (CNCPS) is 

another example of a commonly used model in agriculture to help 

make decisions (Fox et al., 1992; Russell et al., 1992; Sniffen et 

al., 1992). The CNCPS model has mechanistic and empirical 

components, used to produce predictions of various dairy and beef 

cow processes. The CNCPS submodels use knowledge of maintenance 

energy requirements and growth patterns for predictions in the 

absence of data on a certain set of cattle (Fox et al., 1992). 

When producers provide their own data and parameterizations, CNCPS 

allows integration of this information for improved predictions 

(Fox et al., 1992, 1995). Because of the flexibility and use of 

production data to improve the applicability, the CNCPS has been 

actively used and updated for over 25 years (Lanzas et al., 2007; 

Van Amburgh et al., 2013, 2015; Higgs et al., 2015). Similarly to 

the Molly cow model, in order to be used by farmers, the CNCPS 

needs to be distilled into specific parts like a growth model, 

energy needs, or feed digestion and inputs must be understood as 

the system is sensitive to initial conditions (Tedeschi et al., 

2005).  

Where Molly and CNCPS models predict individual animal 

performance, other models can be used to simulate the effects of 

budgetary farm-level decisions, for example. Tall fescue toxicosis 

is a problem specific to grazing animals, especially beef cattle, 

in the southern U.S. Endophytes, a fungus found in tall fescue, 
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can produce ergot alkaloids that are vasoconstricting and cause a 

variety of ailments like thermoregulation issues and decreased 

fertility. Non-ergot alkaloid endophyte cultivars are becoming 

more common, such as MaxQ (Pennington Seeds, Madison, GA), because 

they still possess endophytes that help maintain the hardy nature 

of tall fescue while not producing the toxin. With new non-ergot 

alkaloid endophyte, completely endophyte-free, and traditional 

cultivars, farmers face a decision regarding which cultivar is 

economically advantageous. Research on a healthy limit for ergot 

endophyte concentration brings mixed conclusions. Additionally, 

what alkaloids to measure and their respective effects have been 

debated. Our goal is to produce a meta-analysis of endophyte-

infected tall fescue to create a rule-of-thumb as to the potential 

effect of varying concentrations of ergot alkaloids in fields. Our 

research objectives were two-fold: determine the relationship 

between varying measurements of ergot alkaloid concentration and 

cattle ADG; and identify a threshold past which increasing effects 

of infection are not seen. Both objectives will improve decision-

making of farmers when assessing which cultivars to graze their 

cattle.  

Disease modeling is another popular field where many types of 

models are employed. Hierarchical models of chronic disease 

incidence (Boshuizen et al., 2017), physical representations of 

kidney tissue to model kidney disease (Morizane and Bonventre, 
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2018), and agent-based models of noncommunicable diseases (Nianogo 

and Arah, 2015) are just a few examples of varying model frameworks 

used in human disease modeling. Translating this research into 

agriculture is already being done, with studies like Østergaard 

and colleagues' study (2005) of mastitis spread and control. In 

this study, 35 different scenarios of clinical and sub-clinical 

mastitis infection in a herd were simulated (Østergaard et al., 

2005). Various control strategies were implemented and the 

economic consequences and input variable sensitivity were 

observed. Predictions from the models were compared to the true 

consequences of mastitis in a dairy herd (Østergaard et al., 2005). 

When modeling a system with many potential variables, simulation 

models are especially helpful to compare treatments and examine 

the variability of predictions.  

Complex model frameworks allow the user to predict responses, 

but not only in the previously observed space. Put another way, a 

model can give us an idea of how a process works, allowing us to 

predict what will happen in scenarios we haven’t yet observed. For 

example, atomic particle behavior can be modeled to predict 

reactions in collisions or laboratory experiments that have not 

been performed (Hockney and Eastwood, 1988). Modeling can 

illuminate the mechanism of a system, or just provide a rule-of-

thumb for decisions in the future. However, when data is scarce, 
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complex models may not provide appropriate predictions of error 

around predictions may be great.  

 

Model Evaluation 

Overfitting is the creation of a model that too closely 

mirrors the data (Everitt, 2006). The use of excessive parameters 

to describe data that is not appropriately complete will produce 

overfit models. An overfit model generally will perform poorly on 

held-out data or in the prediction of future data. Measures can be 

taken to prevent choosing overfit models, despite the models 

performing well on a given dataset. Cross-validation is frequently 

used in the literature to test model performance. Cross-validation 

involves holding out part of a dataset to use for testing. If a 

model does not produce similar performance metrics on held-out 

data, overfitting may be involved.  

When assessing the value of a model, the purpose of the model 

is important to consider. Models are used to help understand and 

predict a given system. Models being used to predict can either be 

interpolating or extrapolating beyond the scope of the data used 

to train the model. A model that performs well on a subset of data 

used for training is not necessarily adequate for extrapolation. 

This inconsistency in a model’s effective scope is a challenge 

when validating a model. Another issue that arises from models 
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that poorly extrapolate is the assumption of causality. When a 

model performs well, it is common to assume these variables cause 

the variation in the dependent variable. However, without knowing 

the performance of a model on data outside the scope of the 

training data, causation is not guaranteed. In order to create 

useful models, the model’s purpose must align with its scope.  

Model evaluation, often referred to as model validation, 

offers many ways to test the robustness of a given model to 

independent data. In research, it is unlikely that a modeler will 

have access to two complete datasets, one for training, and another 

completely independent source of data for evaluation. Methods like 

cross-validation, as mentioned above, help achieve an estimation 

of performance on independent data without needing two datasets. 

K-folds cross-validation is very common in agricultural research, 

where the data is divided into k subsamples and one subsection is 

held out for evaluation. This process is repeated k times with 

each subsection being the test set. The advantage of this approach 

over randomly held-out samples is the guaranteed inclusion of every 

point exactly one time. When k = n, where n is the number of points 

in the dataset, this is called leave-one-out cross-validation. 

Leave-one-out validation is more common with smaller datasets, as 

the training set is n-1 points and the resulting test performance 

is averaged over n trials. There are many methods of evaluation 

models and limitations to evaluation also need to be considered.  
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Another popular model evaluation procedure involves 

partitioning the data randomly into two splits for training and 

testing (the testing split is usually smaller), then repeatedly 

testing the performance of the models on the test splits. This 

process is called repeated random sub-sampling or Monte Carlo cross 

validation (Xu and Liang, 2001). This process does not guarantee 

the same performance results each time, due to randomness in the 

selection of the test datasets but is powerful because it allows 

the user the freedom to choose the train/test proportion and 

iterations without being bound by the dataset’s size, like in K-

folds validation. In any evaluation scheme that includes 

proportions of the data for training and testing, the user must 

consider the properties of the performance metrics generated. If 

F is the true performance of a model, than our cross-validation 

estimate is F* and E[F] is the expectation of our model fit. With 

each iteration of cross-validation, F* will vary, with most of the 

error being attributable to variance, assuming our proportion of 

training to test data is reasonable (Christensen, 2015). Consider 

that the V[F*] is not directly correlated to model fit, rather the 

evaluation process that generated F*. That is, models with a lesser 

performance do not guarantee better E[F].  

The idea of model validation, or evaluation, itself has been 

questioned. There are at least two schools of thought on the 
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definition of statistical model validation, as observed in 

Lewandowski (1982).  

 

“... (model validation is) substantiation that a computerized 

model within its domain of applicability possesses a satisfactory 

range of accuracy [consistent] with the intended application of 

the model.” - (SCS Technical Committee, 1979) 

 

This definition suggests model validation as subjective to 

the user, only needing to possess “satisfactory” performance.  

 

“... a model is valid if its behaviour corresponds to system 

behaviour under all conditions of interest. A model is considered 

invalid if we can devise an experiment in which the model outputs 

disagree with system measurements within the specified area of 

interest…” - (Mankin et al., 1977) 

 

Here, the definition is more in-line with general validity; 

the model must match all conditions and be globally accurate to be 

valid. Validity is “the quality of being well-grounded, sound, or 

correct,” as defined by the Merriam-Webster Dictionary (Merriam-

Webster and Inc. Staff, 2016). The “correct” definition of model 

validation may change depending on the application on the model 

(Lewandowski, 1981). Mankin et al. (1977) suggests two alternative 
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measures of model performance when making predictions: reliability 

and usefulness. Reliability is how often a model is right. While 

a valid model must be invariably correct, a reliable model will 

perform acceptably in prediction without perfect accuracy (Mankin 

et al., 1977). The difference between terms that describe a similar 

process illustrate why the term “evaluation” is becoming more 

common, as it is more ambiguous. Since the 1970s, the objectives 

of model evaluation have moved towards an understanding of a 

model’s error structure and areas of uncertainty (National 

Research Council et al., 2012). With the increasing complexity of 

models in general, because of improved computing power, access to 

data, among other reasons, the idea that a valid model must be 

invariably correct can be disregarded. Instead of absolute 

accuracy, comparisons between models are often used to determine 

the quality of any individual model’s performance (National 

Research Council et al., 2012). Additionally, determining the 

causes of uncertainty, like input parameter variation are 

emphasized for creating better performing models (National 

Research Council et al., 2012). For practical purposes, the user 

must be cognizant of the limitations of the model in prediction, 

understanding a system, or scenario analysis. An evaluation method 

can only prevent the selection of overfit models, but to avoid 

creating overfit models is the responsibility of the practitioner 

considering the dimensionality and complexity of their data.  
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In agriculture, models that make predictions about the future 

or about unknown processes are of particular interest. A challenge 

that comes with building prediction models is comparing the 

performance of models and determining the applicability of a model. 

Although cross-validation is a method to assess results, there are 

many statistical tests available to measure performance or fit. 

Measures like root-mean-square error (RMSE), mean-square error 

(MSE), or median absolute deviation (MAD) for continuous 

predictors and log-loss, specificity (Sp), sensitivity (Se), or 

positive predictive value (PPV) for discrete cases are common. The 

RMSE and MSE both measure average deviation between predicted and 

actual value; MSE squares this deviation before averaging while 

RMSE does the same, but then takes the square root of this value. 

The RMSE and MSE both are sensitive to outliers because both 

increase proportional to the square of the error (Bermejo and 

Cabestany, 2001). Although MSE estimates the variance of unbiased 

estimators, RMSE estimates the standard deviation and is reported 

in the same units as the estimator. The MAD differs from both RMSE 

and MSE by measuring the median distance between predictions and 

the actual value, making it robust with respect to outliers (Leys 

et al., 2013).  

For discrete predictors, there are only certain values that 

can be realized, therefore assessing model fit is different than 

for models with continuous possible outcomes. Frequently there 
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will be only two possible outcomes - e.g.,“disease” or “no disease” 

- in agricultural models, while the predictions take on all values 

between the two outcomes. Logarithmic loss, or log-loss, is used 

to assess fit on a continuous scale for discrete predictors by 

penalizing the model proportional to the log-distance between the 

prediction and outcome (always 0 or 1). Alternatively, continuous 

predictions can be converted to discrete predictions using a 

threshold value. When a prediction is greater than threshold, a 

positive prediction will be reported and vice versa. When 

predictions and outcomes are both discrete, a confusion matrix can 

be used to assess fit by putting predictions in four groups: true- 

and false-positives (TP; FP) and true- and false-negatives (TN; 

TP). An example confusion matrix is shown in Figure 2-4.  

Using a confusion matrix, many helpful measures can be 

derived. The PPV, which is calculated as Σ(TP) / Σ(all positive 

predictions), represents the percentage of positive predictions 

that will result in actual positive cases. This number can be 

extremely useful to producers, as a model that can predict all 

positive cases of a disease, but also mis-labels many non-diseased 

cases as positive is not useful. False-positive predictions can be 

a waste of time and cause distrust in a model (Bell, 2010). 

Commonly used in tandem, Se and Sp are common in discrete model 

evaluation (Hogeveen et al., 2010). Specificity represents 1 - 

type I error, or the ability of the model to detect positive cases, 
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relative to all true positive cases. Sensitivity is the ability to 

detect true negative cases and is equal to 1 - type II error. A 

model’s Se and Sp are statistics concerned with the proportion of 

true cases, while PPV is concerned with the relationship between 

predicted and true cases. None of the aforementioned statistics 

can completely describe the applicability of the model, rather 

they provide pieces of a complete analysis (Dominiak and 

Kristensen, 2017). Choosing which metrics to use to measure model 

fit is up to the researcher and the goals of the model. 

 

Data in Decision Making 

Creating a model to predict an outcome does not inherently 

produce better decision making. In research of sensor systems used 

in production agriculture, there are four levels of information 

that can be provided by the sensor: (I) raw data from the sensor; 

(II) interpretations based on sensor data; (III) advice derived 

from interpretations and outside knowledge or data; and (IV) a 

decision being made (Rutten et al., 2013). A model prediction 

trained on data falls into level II of the information used in 

decision making. For example, a model prediction of average daily 

gain based on various feed compositions does not explicitly 

indicate the “best” course of action or carry out a decision. 

Rutten et al. (2013) showed that all reviewed sensor information 



 50 

falls into level I or II, failing to generate advice or actual 

decisions directly (Figure 2-5). From a modeling perspective, the 

lack of higher level sensor information suggests a lack of 

applicability of models. That is, models are currently not 

producing predictions that need further context or more 

information before an actual decision can be made on-farm.  

Decision support systems (DSS) are intended to help producers 

with the great number of decisions they must make (Steeneveld et 

al., 2010). Most producers have to use intuition, or herdsmanship, 

to estimate variables relevant to each decision, like economics, 

possible outcomes, or herd health (Groenendaal et al., 2004). 

Because profitability is the major concern for more agricultural 

decisions, models can help provide better estimations of the range 

of possible outcomes for a decision than the producer could alone 

(Aramyan et al., 2007). Insights like economic consequences of 

decisions integrated into existing and future models would create 

the necessary DSS needed to derive clear advice on-farm.  

Models that aim to produce actual decisions, although sparse, 

are present in the agricultural literature. A DSS describes the 

situation where collected data produces advice and decisions for 

the farmer, while a decision support tool (DST) can suggest optimal 

decision paths and act as evidence for the user to make decisions 

(Rose et al., 2016). Mastitis prediction models (Hogeveen et al., 

2010; Mollenhorst et al., 2012), locomotion-based models (Bicalho 
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et al., 2007; Bruijnis et al., 2010; Pastell et al., 2010), and 

fertility models (Williams et al., 1981; Galon, 2010) are all 

examples of DST. The methods used to produce predictions are 

varied, but show the statistical methods often employed resulting 

in better decision making.  

In the case of locomotion-based models on dairy farms, models 

have been created to predict the presence of lesions, sores, or 

other ailments that affect the cow’s welfare and production. 

Pastell et al. (2010) use weight distribution and visual 

observation to detect lameness. This system identified a 

relationship between weight distribution and a cow’s gait that was 

statistically significant. However, the reliance on human 

observation means that this model cannot truly be a DSS, as the 

model cannot make decisions alone and does not make recommendations 

on what the farmer should do in cases of lameness or lesions. 

Another locomotion modeling study used veterinarians to assess 

lameness, which was then fed to a model to predict lameness 

(Bicalho et al., 2007). Here, the study found that veterinarians' 

scores to be a better predictor than an automatic gait scoring 

software (Bicalho et al., 2007). Again, these studies indicate the 

inability to rely entirely on a model for lameness predictions and 

the lack of clear advice that current locomotion models give. 

Estrus detection using sensors aims to aid farmers in making 

decisions about when inseminate their cows. Pedometry is a common 
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method for detecting estrus and is used around the world (Roelofs 

et al., 2005). In a review of pedometry for estrus detection, Galon 

(2010) found that negative pregnancy check rate varied from 9.5 to 

53.4%. This variation makes accurate predictions difficult, 

especially when considering farm-to-farm variability. Other 

methods of estrus detection can be effective, like tail painting, 

but require entirely human inputs (Xu et al., 1998). There has 

also been recent research showing that vaginal temperatures alone 

may be better than pedometery in predicting estrus (Sakatani et 

al., 2016). Overall, research in the area of estrus detection shows 

promise for DA to improve on-farm decision-making while decreasing 

the human intervention needed.  

Decision-making systems in place for clinical mastitis (CM) 

are traditionally interpretations of raw data into insights, but 

not actual decisions. For instance, a CM model that takes milk 

component and production data to derive a prediction of disease 

likelihood does not indicate whether or not treatment is warranted, 

making the model a DST. The current model evaluation scheme uses 

Se and Sp as the gold standards to measure performance and 

applicability. Although these two measures are important for 

measuring model performance, they only represent part of the set 

of classification statistics. Of particular importance to 

producers is the PPV, or proportion of predicted positive cases 

that are correct. The goal of our research was to illuminate the 
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importance of other model performance measures and show how to 

implement weighting schemes in model-building to more closely 

mirror producers’ costs associated with predicting CM.  

Simulation models can be especially useful in on-farm 

decision making because of the abilities to forecast outputs far 

into the future, explore many different decision paths, and be 

tailored directly to a given farm. A simulation is simply a method 

for implementing a model over time (U.S. Department of Defense, 

2018). An example simulation study measured the economic value of 

implementing information technologies, specifically activity 

meters, concentrate feeders, and automated parlour systems (van 

Asseldonk et al., 1999). By using models of animal performance, 

fertility, and feeding strategy, van Asseldonk et al. (1999) were 

able to compare a range of inputs by expected monetary return. The 

specific ranges of each variable were determined using past 

research and were inputted into the model in all combinations. By 

accounting for all expected combinations of inputs, simulation 

models predict variation in a process over time in many scenarios.  

One specific animal example of simulation modeling is GHGe. 

Greenhouse gas emissions are an important topic within the research 

community and the public. Animal agriculture is often attributed 

to being a significant contributor of GHGe, and many people are 

proponents of the removal of animal production systems as a means 

to decrease global GHGe. Although there is research that focuses 
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on the impacts of complete removal of animals from a GHGe, land-

use, and nutrient requirement standpoint (White and Hall, 2017), 

less is understood about the implications of removal of select 

species. Simulation models can be used to estimate GHGe 

contributions of varying animal populations. White et al. (2010) 

used a whole-farm model along with nutrient budgeting software to 

simulate the effects of intensifying the production of beef cows 

in New Zealand. In another example, O’Brien et al. (2010) used a 

simulation model to assess the effects of genetic merit on GHGe. 

Each of these examples explores the results of a specific change 

in animal production systems aimed at reducing GHGe, but 

considerations for exactly how we would reach a goal of complete 

animal production system removal have not been explored in this 

context. The goal of this research was to elucidate the effects of 

removal of all dairy cow production systems from the U.S. The 

effects of removal were measured in terms of GHGe, land-use, and 

nutrient requirements, and several scenarios for removal of dairy 

cows were explored. Our compilation of pertinent data and 

simulations of dairy cow removal scenarios will improve the body 

of research relating to decision-making for policy changes and 

clarify dairy cow production’s impact on GHGe.  

Much of the literature on decision-making in agriculture is 

specific to the domain. Although there may be literature on a 

specific DA topic, it may not be applied to agriculture in a way 
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that makes translation easy. Gaps could be literal gaps in 

knowledge or simply gaps in translation. Translating analytical 

work done in other fields is necessary for advancing the field of 

DA in agriculture and creating better decision-making tools and 

systems.  
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Figures 

 
Figure 2-1. Example graph of milk price data over time. Lines for 
actual price and 6-month moving average are shown.	  
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Figure 2-2. Anscombe’s quartet. A series of four datasets with 
equal x and y means, sample variances, correlation, linear 
regression line, and coefficient of determination (Anscombe, 1973)	  
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Figure 2-3. Resulting samples from an algorithm used to sample 
from a parameter distribution with unknown density. The plot on 
the left is called a “random walk” because each generated point is 
different from the last and is proposed randomly, although sampling 
algorithms have different operations to decide whether to accept 
the proposed move in parameter space. 	  
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Figure 2-4. Confusion matrix showing the possible outcomes of a 
binary prediction model. TP = True positive; FP = False positive; 
TN = True negative; FN = False negative.	  
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Figure 2-5. Number of studied sensor systems for mastitis, 
fertility, locomotion, and metabolism per development level 
(Rutten et al., 2013): Level I = technique, Level II = data 
interpretation, Level III = integration of information, and Level 
IV = decision making. Levels I and II are subdivided into solely 
measuring a parameter (Level I, X), an assumed relation between 
gold standard and sensor data (Level I, A), a statistically tested 
relation between gold standard and sensor data (Level II, T), or 
a validated algorithm for detection (Level II, V). 
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CHAPTER 3: Contributions of dairy products to environmental 
impacts and nutritional supplies from United States agriculture 

**To be submitted to Journal of Dairy Science  

Abstract 

Questions regarding the balance between contribution to human 

nutrition and environmental impact of livestock food products 

rarely evaluate specific species or how to accomplish the 

recommended depopulation. The objective of this study was to assess 

current contributions of the U.S. dairy industry to the supply of 

nutrients and environmental impact, characterize potential impacts 

of alternative land use for land previously used for crops for 

dairy cattle, and evaluate the approaches’ impacts on U.S. dairy 

herd depopulation. Data on U.S. dairy production were obtained 

from the analysis conducted by White and Hall (2017; 

https://doi.org/10.1073/pnas.1707322114). We modeled three 

scenarios to reflect different sets of assumptions for how and why 

to remove dairy cattle from the U.S. food production system coupled 

with four land use strategies for the potential newly available 

land previously cropped for dairy feed. Scenarios also differed in 

assumptions of how to repurpose land previously used to grow grain 

for dairy cows. The current system provides sufficient fluid milk 

to meet the annual energy, protein, and calcium requirements of 

71.2, 169, and 254 million people, respectively. Vitamins supplied 

by dairy products also make up a high proportion of total domestic 

supplies from foods, with dairy providing 39% of the vitamin A, 



 81 

54% of the vitamin D, 47% of the riboflavin, 57% of the vitamin 

B12, and 29% of the choline available for human consumption in the 

U.S. Retiring, or cows maintained without product collection, 

dairy cattle under their current management resulted in no change 

in absolute greenhouse gas emissions (GHGE) relative to the current 

production system. Both depopulation and retirement to pasture 

resulted in modest reductions (6.8 to 12.0%) in GHGE relative to 

the current agricultural system. Most dairy cow removal scenarios 

reduced availability of essential micronutrients such as alpha-

linolenic acid, vitamins A, D, B12 and choline, as well as Ca. 

Those removal scenarios that did not reduce micronutrient 

availability also did not improve GHGE relative to the current 

production system. These results suggest that reducing GHGE 

without reducing the supply of the most limiting nutrients to the 

population is difficult.  

Keywords: dairy, calcium, protein, greenhouse gases 
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Introduction 

The UN Food and Agriculture Organization (FAO) recommends 

that food production nearly double from 2009 levels by 2050 to 

ensure sufficient human nutrition worldwide (FAO, 2009). Increased 

food production is a major challenge because of existing 

limitations in land and water availability, food distribution and 

storage solutions to eliminate food waste, and yield efficiencies, 

among other factors (Gupta and Deshpande, 2004; Bruinsma, 2009; 

Sauer et al., 2010). A common recommendation when considering this 

impending food crisis is to eliminate or reduce animal production 

in favor of plant sources (Aleksandrowicz et al. 2016). Many 

consider livestock and poultry production resource-intensive in 

terms of land-use, GHGE, and water use per kilocalorie of food 

produced, having significantly greater environmental impacts when 

compared to plant-source foods (Clark and Tillman, 2017). Despite 

the simplification of this issue, the public frequently views 

animal production as resource-intensive without considering 

variability or other factors like nutrient profile or viability of 

alternatives. Accordingly, some research has called to reduce 

consumption of animal-derived foods (Pimentel and Pimentel, 2003; 

Weber and Matthews, 2008). Some suggest the near elimination of 

animal agriculture based on environmental, human health, and 

ethical bases (Willett et al., 2019). However, an assessment of 

U.S. agriculture revealed increased micronutrient deficiencies, in 
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terms of human nutrient requirements per year (HNRY), despite 

greater food availability in a simulated system without farmed 

animals as food resources (White and Hall, 2017). A major 

difference between the White and Hall (2017) assessment and other 

studies is the assumption regarding land use in a system without 

animals: White and Hall (2017) assumed similar land use to the 

current agricultural system while other assessments assume land 

use will adapt to meet food demand (Emery, 2018). Neither of these 

strategies is ideal (Springmann et al., 2018) given that 

agricultural land use is dynamic and governed by physical, 

chemical, climatological, biological, economic, and social 

factors. As such, there is a need to consider the mechanics of how 

land use within the agricultural system might adapt under a 

scenario where society moves toward reduced consumption of animal 

products.  

An additional important consideration in these assessments 

involves the assumptions about what happens to the supporting 

animal populations when we reduce consumption of animal-source 

foods. Although may be easy to recommend a world without livestock, 

it is less comfortable to discuss how we might get to such a world. 

Assessing elimination of dairy cattle production is a logical 

starting place for this type of assessment for several reasons. 

First, dairy cattle predominantly consume total-mixed rations in 

confinement systems, making cows accessible, which allows for 
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easier implementation of strategies aimed at reducing production 

(entire elimination and movement to pasture-based production, 

among others). It is important to consider these strategies for 

scaling back production because the environmental and human food 

benefits from entire depopulation of cattle will undoubtedly 

differ from the benefits if cattle persist as a feral or semi-

managed population. Dairy is also an interesting case because dairy 

products have unique nutrient composition (USDA, 2018b) and 

production of milk from dairy cattle has a lower environmental 

impact than meat production (Nijdam et al., 2012; Luo et al., 2015) 

and some plant source products such as lettuce (Marvinney, 2016). 

As such, understanding what role dairy products, specifically, 

play in the U.S. agricultural system and the nutritional and 

environmental impacts associated with removing dairy production 

would be of use in assessing dairy production’s utility in the 

U.S. food production system.  

The objectives of this study were: 1) to ascertain the current 

contributions of dairy products to the nutrient supply in the U.S.; 

2) to evaluate impacts of approaches to depopulation of the U.S. 

dairy herd by estimating GHGE, land use, and HNRY; and 3) to 

evaluate the potential impact of alternatives for land use for 

land previously used for crops fed to dairy cattle. 

 



 85 

Materials and Methods 

Data on U.S. dairy production were obtained from the analysis 

conducted by White and Hall (2017), which utilized data from the 

U.S. Department of Agriculture (USDA, 2018a) and Economic Research 

Service (USDA/ERS, 2018a; USDA/ERS, 2018b) and Food Composition 

databases (USDA, 2018b); the U.S. Environmental Protection Agency 

(US Environmental Protection Agency, 2010); the United Nations 

Food and Agriculture Organization (FAO, 2013); and other peer-

reviewed, published sources to estimate nutritional and greenhouse 

gas contributions of livestock to U.S. agriculture. In the current 

work, we disaggregated the reported animal metrics to specifically 

assess the contributions of the U.S. dairy industry to nutrient 

supply and GHG emission (GHGE) within the agricultural system. 

Unless otherwise specified, metrics are estimated as described in 

White and Hall (2017). All modeling was based on estimated 

population sizes from the above data. All assessments terminated 

at fluid milk production and did not consider further processing 

and does not include foods derived from dairy animal carcasses. 

 

Scenarios for Removing Dairy Products for U.S. Use 

We assessed three scenarios which differed in their assumptions 

about the removal of dairy cattle from the agricultural system. 

The method of animal removal was an attribute in the scenarios 

studied because it addresses societal concerns about the fates of 
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animals and affects alterations in GHGE and land use. Assuming the 

U.S. stopped consuming dairy products, we considered three 

possible scenarios: 

• Depopulation (DEP) 

• Current management; export dairy (CME) 

• Retirement (RET) 

In DEP, dairy animals would be depopulated in response to 

consumers ceasing consumption of dairy products. In CME, dairy 

cattle would be kept under current management and milk produced 

would go to products other than human food or would be exported 

from the U.S. for human consumption. In RET, dairy cattle would be 

retired to a pasture-based management system. In this third 

scenario, the number of lactating cows in the national herd was 

reduced to that which could be supported by the available 

pastureland. Land use was a focus in all animal removal scenarios 

because of the concerns raised in response to previous work (White 

and Hall, 2017; Emery, 2018; Springmann et al., 2018; Van Meerbeek 

and Svenning, 2018) and in the surprising findings related to 

increasing fruit and vegetable production reported in White and 

Hall (2018). 

 

Depopulation 

 In simulating DEP, we only compared diets for the U.S. human 

population and outputs pre- and post-cattle depopulation and 
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considered the transition period to be instantaneous. That is, no 

food product resulted from the slaughter of the dairy cattle 

population, given the short duration and non-renewable nature of 

the event. If dairy cattle are no longer present in U.S. 

agriculture, we must consider downstream effects like handling of 

pasture and grain land previously used for producing dairy feed, 

disposition of byproduct feeds, and sourcing fertilizer.  

We modeled several cropland allocation options to reflect 

different sets of assumptions for repurposing land for crop 

production that previously grew feed for dairy cattle.  White and 

Hall (2017) assumed that all cropland used to grow grain crops for 

animal feed would continue to be used for growing grain, though 

others contended that it may be more appropriate to reallocate 

this land along with the land used for silage production for the 

cultivation of non-grain crops (Emery, 2018; Springmann et al., 

2018; Van Meerbeek and Svenning, 2018). Here, 2 options for dairy 

land reallocation to other crops were tested: 1) reallocate silage 

land only or 2) reallocate silage and grain land.  All DEP 

scenarios did not repurpose pastureland because we assumed it could 

be repurposed for beef cattle production. To test how land use 

change might influence scenario outcomes, we tested each of four 

land use options (LU-1 through LU-4) with crop reallocation of 

newly available land previously used to produce silage, or grain 

and silage, for dairy cattle: LU-1) Current Proportions, all newly 
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available land was replaced with crops according to the current 

proportions of crops grown in the U.S.; LU-2) Fruits and 

Vegetables, all newly available land was planted to fruits and 

vegetables only, according to their current proportion of crops in 

the U.S.; LU-3) Nuts and Legumes, all newly available land was 

planted to nuts and legumes only, according to their current 

proportion of crops in the U.S.; and LU-4) Non-

grain/oilseed/sugar, all newly available land was planted to any 

crop except those used to produce grains, oilseeds and sugar, 

according to their current proportion of crops in the U.S. Figure 

3-1 shows land reallocation and land use options within DEP.  

We assumed land used for silage crops (3.1 million ha) to be 

dairy-specific and repurposed for production of other crops. To 

test the effect of re-allocating the land for grain consumed by 

dairy cattle, it is essential to calculate the land area used for 

producing grain for dairy cattle. Eshel et al., (2014) estimated 

the proportions of grain consumed by the dairy industry (kg 

consumed by dairy cattle / kg produced). Yield data from USDA NASS 

(2018) was used to estimate grain land-area (proportion of grain 

consumed by dairy multiplied by land area for grain production). 

That liberated grain land-area (3.7 million ha) was then re-

allocated based on the previously described land use options (Table 

3-1).   
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Other important assumptions in each dairy scenario included 

handling of dairy cattle' byproduct feeds, like bakery products or 

wheat middlings, and fertilizer. In DEP, other livestock utilized 

all dairy production byproducts, resulting in no net GHGE from the 

disposal of byproducts. Synthetic fertilizers replaced fertilizer 

produced using dairy manure and these synthetic fertilizers 

accounted for additional agricultural GHG.  

 

Current Management; no human products/exports 

Under CME, we assumed that dairy products would be exported 

with none entering the U.S. food system, but the industry would 

continue to house and manage cows and bulls in a similar manner to 

current practice. In this scenario, we assume no land liberation 

because cows would continue to eat silage, grain, and pasture as 

they do today. As such, none of the land use options applied to 

CME. Similarly, dairy cows would continue to consume byproduct 

feeds and all manure would still be available for use as 

fertilizer. Essentially, CME retained all aspects of the system 

the same as our current system, except nutrient availability from 

dairy products and meat from culled animals to the U.S. 

population.   
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Retirement 

RET reflects the idealistic perspective of ending milk 

production while allowing remaining dairy cattle to continue in a 

pasture-based setting. This scenario reflects what might happen if 

we allowed a reduced population of cattle to roam and breed freely 

on pastureland. RET addresses the magnitude of possible animal 

numbers given the carrying capacity of the land and impacts of the 

retained herd. We assumed available pastureland was equal to 

combined, current pasture and silage land areas. We did not assess 

costs of fencing, infrastructure, or other peripherals. The 

conversion of silage land and use of pastureland means that none 

of this land would be available for additional crop production, as 

a result, this scenario did not consider any of the land use 

options described in DEP. The carrying capacity of cows on this 

land was calculated based on maintenance intake (National Research 

Council, 2001) of pasture (12.8 kg DM/d) and an estimated annual 

yield of 6,200 kg DM per ha of pasture. The carrying capacity was 

estimated at 4.176 million individual animals, approximately 44% 

of the current population (USDA, 2018a). To achieve this population 

size either animals would have to be released onto the fenced 

lands, leading to issues of survival, and oscillations in 

population size with changes in pasture availability, or humans 

would have to intervene to cull the animals in excess of the 

carrying capacity of the available pastureland.  
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Handling of byproduct feeds and fertilizer in RET was assumed 

to be a hybrid of the DEP and CME. Byproduct feeds previously 

consumed by dairy cattle were assumed to be repurposed for 

consumption by other livestock industries, meaning that no 

environmental penalty was considered for byproduct feed disposal. 

Nutrients in dairy manure were assumed to be deposited directly 

onto the pasture and not recovered for use as fertilizer. As such, 

we assumed that additional synthetic fertilizer would be used to 

replace the manure fertilizer that would previously have been 

produced by the dairy industry and used on existing cropland. 

In previous work by White and Hall (2017), the production of 

food products estimates the carbon footprint of the agricultural 

system. The kilograms of milk produced by all dairy cows estimated 

the GHGE associated with the dairy industry, approximately 1.23 kg 

of carbon dioxide equivalents (CO2-e) per kg of fat and protein 

corrected milk (Thoma et al., 2013); however, the carbon footprint 

estimate for milk is only valid for the current U.S. dairy industry 

and would not be an appropriate reflection of the emissions from 

the dairy cattle RET system. The diets of dairy cows raised in 

confinement systems is quite different than that of dairy cows on 

pasture. As such, we only used enteric and manure methane and 

nitrous oxide emissions to estimate emissions from RET. Enteric 

methane emissions were estimated based on the equations listed in 

(Ellis et al., 2007) and pasture composition data from the DairyOne 
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feed library (dairyone.com). Manure methane and nitrous oxide 

emissions were calculated using IPCC tier II methodology 

(Intergovernmental Panel on Climate Change and Intergovernmental 

Panel on Climate Change). Methane and nitrous oxide were converted 

to carbon dioxide equivalents (CO2-e) assuming 25 kg CO2-e per kg 

CH4 and 289 kg CO2-e per kg N2O. These CO2-e were used for 

consistency with other GHGE estimates, though it should be noted 

that other research has called into question the validity of CO2-

e estimates on enteric methane estimates (Allen et al., 2018).  

 

Comparisons Among Scenarios 

The proposed dairy cow removal scenarios, land reallocation 

and land use options, described above were intended for specific 

comparisons. The way in which cattle are removed from the food 

production system is examined by comparing DEP LU-1 (current 

proportions) with silage and grain land reallocation, CME and RET. 

This comparison is important because the way in which we eliminate, 

or export production has potential relevance on the environmental 

impacts and nutritional profile, in terms of HNRY, of the food 

produced by the agricultural system. A second set of comparisons 

relies on evaluating the different land use options within the DEP 

scenario. If we were to remove dairy cattle entirely from U.S. 

agriculture, it is important to consider what agricultural 

products might take their place. 
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Results and Discussion 

Current Contributions of the Dairy Industry to Nutrient Supplies 
and GHG Emissions 

Dairy products contribute substantially to the supply of 

human-edible nutrients in the current U.S. agricultural system. 

The current system provides sufficient fluid milk to meet the 

annual energy, protein, and calcium requirements of 71, 169, and 

254 million people, respectively. Calcium content and availability 

in dairy products makes it feasible to meet calcium nutrient 

requirements from foods, whereas achieving that on a strictly 

plant-based diet is largely impractical without fortification or 

supplements (Weaver et al., 1999). Dairy products are a significant 

component of the protein supply in the U.S., providing 20% of the 

protein and 20 to 30% of many essential AA. According to previous 

assessments, whole milk protein’s digestible indispensable AA 

score (DIAAS), a reflection of the nutritional value of proteins 

to humans, is anywhere between 15.5% (Ertl et al., 2016) and 30% 

(Rutherfurd et al., 2015), with greater than values reported for 

legume protein sources. The new DIAAS system measures the true 

ileal digestibility of proteins.  The DIAAS system gives greater 

credit to the AA quality of animal protein sources for meeting 

human needs than did the previous protein digestibility-corrected 

AA score system (PDCAAS) which truncates the values’ sum of animal 

proteins at 100% and generally overestimated nitrogen 
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digestibility of plant-based proteins (Rutherfurd et al., 2015). 

A report by the U.N. Food and Agriculture Organization (2013) 

recommended the adoption of DIAAS as a replacement for PDCAAS as 

a more accurate descriptor of protein nutritional value.    

Vitamins supplied by dairy products also make up a high 

proportion of total domestic supplies, with dairy providing 39% of 

the vitamin A, 54% of the vitamin D, 47% of the riboflavin, 57% of 

the vitamin B12, and 29% of the choline available for human 

consumption in the U.S. These vitamins are often in low supply in 

the U.S. food production system (White and Hall, 2017), but are 

essential for eye (vitamin A), bone (vitamin D), brain (vitamin 

B12), and organ (choline) health and energy metabolism 

(riboflavin). A study of the contribution of dairy products to 

essential micronutrient intakes in France identified vitamins (B12, 

choline, D, and A) as important contributors of dairy to human 

diets (Coudray, 2011).   

In agreement with the present study, numerous other reports 

have identified the nutritional importance of dairy products in 

developed (Hess et al., 2015) and developing countries (Hoddinott 

et al., 2013; Murphy et al., 2016). In particular, studies find 

that dairy products are an important source of Ca (Murphy et al., 

2016), a macromineral essential for bone and tooth health, muscle 

and enzyme function, and blood clotting, among other functions. 

Dairy products provide a greater amount of absorbable Ca per 
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serving than the majority of vegetable sources (Weaver et al. 

1999). Although this study only followed fluid milk production, it 

is also important to note that microorganisms in fermented dairy 

products can also contribute to human health (Fernández et al., 

2015) both directly (probiotics) and indirectly through the 

production of metabolically active compounds like vitamins, 

linoleic acid, and others. Dairy products are not free from 

speculation about negative effects on human health (Thorning et 

al., 2016; Zhu and Kannan, 2018); however, their role in providing 

a substantial supply of essential, bioavailable nutrients for 

human consumption is clear.   

The U. S. dairy industry accounts for 16% of GHGE from all of 

U.S. agriculture (White and Hall, 2017). Based on most recent 

estimates, the U.S.  Environmental Protection Agency found that 

8.4% of total U.S. GHGE were the result of agricultural activities 

(U.S. Environmental Protection Agency, 2019). Using the assumption 

that dairy production accounts for 16% of agricultural GHGE and 

agricultural emissions makeup 8.4% of total U.S. GHGE, our numbers 

suggest the U.S. dairy industry responsible for about 1.28% of 

total U.S. GHGE. All subsequent results regarding GHG values and 

reductions reported herein will be in terms of their proportion of 

current agricultural GHGE.  
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Impacts of Cattle Removal Strategy 

If the U.S. were to discontinue dairy production, the question 

of what should happen to the current dairy herd has animal welfare 

and public perception concerns Figure 3-2 shows the estimated total 

agricultural GHGE with each of the 3 dairy cow removal scenarios, 

DEP, CME, and RET, compared with current production. Figure 3-3 

includes the nutrient supplies estimated from these scenarios. By 

design, CME showed no difference (±0.0%) from current production 

or baseline in terms of GHGE (Figure 3-2), as dairy production 

continued, and products were simply moved elsewhere. Additionally, 

using dairy cows for non-consumable products, like leather, animal 

feed or manure, and exports yielded a decrease in many domestic, 

human-edible nutrient supplies in terms of HNRY compared to current 

diets and when compared to the DEP scenario (Figure 3-3). A RET 

scenario showed a 11.97% decline in total agricultural GHG (Figure 

3-2) compared to current emissions. This GHG decline with RET is 

likely because of the reduced population of cows sustainable on 

available pastureland. Along with this reduction in agricultural 

GHGE under RET, domestically available supplies of all nutrients 

decreased. The CME and RET scenarios use the same amount of land 

and therefore both averaged an 18% reduction in HNRY supply 

compared with current production across all nutrients measured 

(Figure 3-3). All 39 nutrients either declined or remained the 

same in CME and RET. Total energy HNRY harvested from the 
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agricultural system in RET decreased by 11% compared with current 

production. Although CME and RET could be considered more publicly-

favored because they retain dairy cows in the U.S., the DEP 

scenario allows more freedom in terms of land reallocation. Under 

DEP assumptions, GHGE declined 7.2% compared to current levels 

(Figure 3-2). Nutrient supplies under DEP rose 42% on average, 

with 30 of the 39 nutrients measured increasing compared to levels 

in our current system.  Comparing potential dairy removal 

scenarios demonstrates the likely trade-offs inherent in affecting 

change in agricultural systems: namely, it is difficult to find 

scenarios that simultaneously increase supplies of critically 

limiting nutrients and decrease GHGE. Table 3-2 compares GHGE 

changes on the basis of total agricultural GHGE, dairy GHGE only, 

and total U.S. GHGE.  

Although RET has limited economic justification, it was 

important to assess from the social dimension. The approximately 

44% of the national dairy herd retired to pastureland would produce 

11.6% less of national agricultural GHGE, declining from the 

current 16% because of two major factors: reduced numbers of cows, 

and a change in the management of those animals.  Because existing 

pastureland would need to sustain all retired cows, RET would 

sustain only an estimated 44% of the current dairy cattle 

population. Additionally, whereas current dairy production relies 

heavily on high intakes (25 to 30 kg of DM/cow/d) of total-mixed 
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rations comprised of silage, grains, and byproduct feeds to support 

milk production, the current scenario assumed low intake (12.8 kg 

DM/cow/d) of pasture only. Despite methane emissions on forage-

based diets being higher than diets with greater inclusion of 

cereal grains and byproduct feeds, total feed (energy) intake, 

which decreases, is the major driver of emissions (Johnson and 

Johnson, 1995). A lesser factor contributing to the decline in GHG 

under RET is the accounting of emissions associated with fertilizer 

synthesis. In RET, we assumed fertilizer production would increase 

because of the challenges associated with harvesting manure from 

pasture-based housing systems. This synthesis of fertilizer, 

through processes like the Haber Bosch process (Haber, 1905), 

accounted for a 1.0% increase in agricultural GHGE in RET, or about 

9% of the GHG that would have been lost by removing excess dairy 

cows.   

Although GHGE considerations are important, dairy cows must 

ultimately produce foods for human consumption. In addition to 

achieving minimal or no reductions in GHGE, production decreased 

in many nutrients when considering future scenarios which retain 

dairy cows (CME or RET) when compared to the current HNRY supply. 

Calcium, alpha-linolenic acid, vitamin A, vitamin D, vitamin B12, 

choline, histidine, isoleucine, leucine, lysine, methionine, 

phenylalanine, threonine, tryptophan, and valine all decreased 20% 

or more in HNRY in CME and RET scenarios compared to current 
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production system (Figure 3-3). Protein is not in the figure, 

because its decline relative to the baseline was only 19%. Relative 

to the current contributions of dairy to the U.S. agricultural 

system, domestically produced supplies of Ca (-72.6%), vitamin B12 

(-56.7%) and vitamin D (-53.9%) were the nutrients most markedly 

affected by retiring dairy cattle. These reductions translate to 

254 million less people meeting their Ca requirements for the year, 

500 million less for B12, and 16 million less for vitamin D. The 

nutritional importance of Ca to humans was discussed above. Vitamin 

B12 is essential for normal function of the central nervous system, 

in the formation of red blood cells, and in cellular metabolism 

(Wokes et al., 1955), and is particularly important for the correct 

development of the brain (Müller-Wielsch et al., 2010). Vitamin D 

is essential for skeletal homeostasis and prevention of bone 

disorders. Additionally, suboptimal vitamin D status is implicated 

in chronic autoimmune and cardiovascular disease, hypertension, 

and common cancers (Hewison, 2012). When considering the impact of 

removing any animal production system, we should consider the 

nutrients produced and the proportion of the population whose 

nutrient requirements will be met. 

 

Impacts of Land Allocation Strategy 

Of the approximately 134 million ha of land considered in 

this analysis, the 3.1 million ha of arable land previously 
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allocated to silage was available for reallocation in DEP. Under 

LU-1 with silage and grain land reallocation, the grain supply 

decreased by 2%, while under LU-2, LU-3, and LU-4, grain production 

decreased by 5% compared to current production. Grains provide an 

energy- and nutrient-dense food source (Macdiarmid et al., 2012). 

Optimization of food production for human diets for either cost, 

environmental impact, or both, tend to have high amounts of grains 

because grains can be produced efficiently and can also be 

fortified with missing, but required, nutrients (Clydesdale, 1994; 

Cook et al., 1997; Macdiarmid et al., 2012). The relatively small 

change in grain land when accounting for land previously used to 

feed dairy cattle suggests that dairy cattle consume very minimal 

quantities of human-edible grains, thus are minimally competitive 

for human food.   

Assessing the different land-use options makes it clear that 

shifts in use of relatively small land areas (e.g., the 3.1 million 

ha of land in the U.S. allocated to silage currently compared to 

the approximately 134 million ha of U.S. cropland in the baseline 

scenario) can have substantial effects on the production of 

nutrients from the agricultural system. Figure 3-4 compares 

current or baseline GHGE to DEP with silage and grain reallocation 

and land use for fruit and vegetable production (LU-2). Figure 3-

5 illustrates food production (in kg) and   CO2-e, broken down by 

food product, under LU-2. Under LU-2 with silage and grain land 
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reallocation, GHGE increased by 9.9% when compared to current 

emissions. However, LU-2 without grain land reallocation resulted 

in a net neutral effect (+0.04%) on GHGE. Following the assumptions 

of DEP with no grain land reallocation, using LU-1, LU-3, and LU-

4 resulted in decreased GHGE of 6.88%, 8.18%, and 7.59%, when 

compared to current production. Fruits and vegetables tend to be 

more carbon-intensive, GHG emitting crops compared to grains, 

making them less likely to appear in optimized diets (Macdiarmid 

et al., 2012; Wilson et al., 2013; Gephart et al., 2016). Although 

fruits and vegetables can provide some of the same nutrients as 

dairy products, like vitamin A and vitamin C, the increased GHG 

cost makes this option less desirable. As described above, the 

non-fruit and vegetable scenarios also resulted in reduced 

availability of critical micronutrients supplied in high 

concentration in dairy products. As a result, our analysis suggests 

that all proposed land reallocation options appear to be suboptimal 

for limiting GHGE while still meeting the nutrient requirements of 

the population. Figure 3-6 compares the GHGE of all land 

reallocation scenarios and land-use options.  

The removal of dairy cows from the U.S. agricultural system 

under DEP, with each land use option, increases land available and 

crops yields (approximately 17%) in terms of total energy of 

nutrients supplied. However, under any dairy removal scenarios, 

the land allocation options further reduce the supply of vitamin 
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D, choline, calcium, vitamin A, and alpha-linolenic acid, which 

are all within the 11 least abundant nutrients in our analysis. In 

the current food production system, calcium is in sufficient supply 

to meet the requirements of approximately 350 million humans. Under 

DEP with grain land reallocation and LU-1, LU-2, LU-3, and LU-4, 

calcium supply would change by -89.1, -57.6, -87.4, -85.3 million 

HNRY respectively. Figure 3-7 shows the changes in calcium and 

other least-abundant nutrients within the DEP scenario under all 

land use options with grain land reallocation. The data suggest 

reduced availability of these micronutrients regardless of land 

use and grain land reallocation. The declines in supply of the 

most limiting nutrients of the U.S. food production system 

illustrates the nutritional impact of removing dairy cows from 

agriculture: dairy cows provide a relatively efficient, nutrient-

dense source of valuable micronutrients that cannot currently be 

mirrored in common plant-source foods. 

 

Practical Feasibility of Land Use Options 

Another important consideration for the different land use 

options evaluated is the actual suitability of land for various 

agricultural practices. There is a diverse literature evaluating 

indices to characterize the suitability of agricultural land 

(Littleboy et al., 1996; Reshmidevi et al., 2009; Singha and Swain, 

2016; Senagi et al., 2017). Although some horticultural crops, 
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tree nuts, and fruits can be competitive with grain crops in terms 

of land use (Wolz and DeLucia, 2019), many are particularly 

sensitive to climate and there is concern over how climate change 

will influence the productivity of these crops (Luedeling et al., 

2009; Parker and Abatzoglou, 2017). Indeed, a geospatial analysis 

of the United States based on suitability of land for growing 

selected fruits and vegetables suggests only 144,000 ha of 

agricultural land area is suitable for repurposing for fruit and 

vegetable production (Conrad et al., 2017). For reference, the 

current assessment reflects a 3.1 to 6.8 million ha change in land 

use (21 to 47 times the expected suitable land area). To effect 

such a change in land use, there would need to be substantial 

technological improvements to support growing fruits and 

vegetables on land currently unsuited to the purpose. Overall, 

analyses of the soil characteristics, climatological parameters, 

and other factors for agricultural areas across the U.S. suggest 

limited opportunity to expand fruit and vegetable production, in 

particular, and we must take these practical challenges into 

account when planning alternative land uses in agricultural 

systems.  

 

Conclusion 

Our investigations into the impacts and alternatives when 

removing dairy cows from U.S. production agriculture suggest that 
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GHGE changes would be minor, equivalent of 0.7% of total U.S. GHGE. 

Emissions may increase if we optimize cropland through the 

production of more carbon-intensive crops to improve the current 

nutrient supply to the US population. At the same time, supplies 

of some limiting essential nutrients for the human population would 

decline. Lastly, any reductions in GHGE or increases in available 

cropland come at the cost of culling more or all dairy cattle. 

Scenarios involving such culling incurs ethical costs not assessed 

in the current work.  
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Tables 
 
Table 3-1. Comparisons of all scenarios and land use allocation options used in study.  
  

Change from Baseline Land Use, %1 

Categor
y 

Baseli
ne 
Land 
Use 
(Ha) 

Current 
Land 
Use, No 
Re-
Allocat
ion 

Current 
Land 
Use, 
Re-
Allocat
ion 

Fruits 
and Veg 
Land 
Use, No 
Re-
Allocat
ion 

Fruits 
and Veg 
Land 
Use, 
Re-
Allocat
ion 

Nuts 
and 
Pulses 
Land 
Use, No 
Re-
Allocat
ion 

Nuts 
and 
Pulses 
Land 
Use, 
Re-
Allocat
ion 

Non-
grain 
land 
use, No 
Re-
Allocat
ion 

Non-
grain 
land 
use, 
Re-
Allocat
ion 

Fruit 118105
8 

2.8% 6.3% 119.7% 261.0% 0.0% 0.0% 8.6% 18.7% 

Grain 697490
95 

2.8% 0.7% 0.0% -5.3% 0.0% -5.3% 0.0% -5.3% 

Legume 324166
97 

2.8% 6.3% 0.0% 0.0% 9.2% 20.1% 8.6% 18.7% 

Nut 120575
7 

2.8% 6.3% 0.0% 0.0% 9.2% 20.1% 8.6% 18.7% 

Oil 484984
1 

2.8% 6.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Sugar 832723 2.8% 6.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Vegetab
le 

141069
1 

2.8% 6.3% 119.7% 261.0% 0.0% 0.0% 8.6% 18.7% 

Hay 195789
13 

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
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Silage 310122
1 

-100.0% -100.0% -100.0% -100.0% -100.0% -100.0% -100.0% -100.0% 

Croppab
le 
pasture 

57278 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

1Change is the percentage increase or decrease of hectares used in the alternative land 

use allocation compared to the baseline.
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Table 3-2. Percentage change in greenhouse gas (GHG) emissions of four 
select scenarios on the basis of U.S. dairy GHG, total U.S. 
agricultural GHG, and total U.S. GHG. 

 

Depopulated
, Current 
Land Use, 
No Grain 
Land Re-

Allocation 

Depopulated
, Current 
Land Use, 
Grain Land 

Re-
Allocation 

Retirement - 
Current 

Management, 
No Land 

Reallocation
, No Grain 

Land 
Reallocation 

Retiremen
t - To 

Pasture, 
No Land 

Use 
Change, 
No Grain 
Land Re-
Allocatio

n 
U.S. Dairy 
GHG, % 

-42.98% -31.93% 0.00% -74.84% 

U.S. 
Agricultura
l GHG, % 

-6.88% -5.11% 0.00% -11.97% 

U.S. Total 
GHG, % -0.58% -0.43% 0.00% -1.01% 
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Figures 

 
Figure 3-1. Description of the depopulation scenario describing 
how dairy cattle would be removed from U.S. agriculture. Two 
different land reallocation options were used: re-allocate only 
silage land previously used for dairy or additionally take grain 
land previously used for dairy out of production. The four uses 
for reallocated land are shown as LU-1 through LU4: allocate new 
land based on current land use, based on increasing production 
of fruits and vegetables, based on increasing production of nuts 
and legumes, or based on increasing production of all products 
except grains, oils and sugar.  
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Figure 3-2. Comparison of GHG emissions from agriculture in kg 
CO2 equivalents between Baseline - the current production system; 
Depopulation - all dairy animals are removed; Current Management 
with Exports - a scenario where animals are kept under current 
management and dairy products are not consumed in the U.S.; and 
Retirement - dairy animals are retired to a pasture-based 
system.  
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Figure 3-3. Nutrient supply of current production compared to 
that of three dairy cow removal strategies in terms of human 
nutrient requirement years (HNRY) met, in millions.  
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Figure 3-4. Comparison of land use classifications under current 
conditions (Baseline) and a scenario where grain land previously 
used for dairy cattle feed is repurposed for fruit and vegetable 
production (LU-2). Although land use shifts involve only 6.8 
million ha of land, the shifts in consumable food produced and 
in carbon emissions produced are substantial because of the high 
yields of fruit and vegetable products per unit of land area.  
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Figure 3-5. Consumable product and tonnes of CO2-equivilent (CO2-
e), broken down by food category, of a land reallocation 
strategy where grain land previously used for dairy cattle feed 
is repurposed for fruit and vegetable production. Fruits and 
vegetables account for an increased amount of consumable 
product, but also disproportionately increase total GHG costs.  
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Figure 3-6. Comparison to current production system (baseline) 
of total greenhouse gas emissions under land reallocation 
scenarios using various crop replacement methods. (A) Replant 
vacated land with crops in proportion to their current 
production in the U.S. (B) Replant land with only fruits and 
vegetables (C) Replant land with only nuts and pulses (D) 
Replant land in proportion to current U.S. crop production, 
without planting any additional grain. No Grain Allocation = 
only reallocate land directly freed from removal of dairy 
animals or used for silage. Grain Allocation = reallocate land 
directly freed from removal of dairy animals, used for silage, 
and used for dairy feed grain.  
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Figure 3-7. Comparison of nutrient supplies among land use options 
in a scenario where dairy cattle are depopulated from the 
agricultural system. Nutrients shown are those that had reduced 
supply in one or more land use option compared with the baseline 
scenario. 
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Chapter 4: Analytics in Sustainable Precision Animal Nutrition 
 
Published as: Liebe, D.M., and R.R. White. 2019. Analytics in 
sustainable precision animal nutrition. Anim Fron 9:16–24. 
doi:10.1093/af/vfz003. 
 

Implications 

The global population, resource, and climate dynamics suggest 

we must improve sustainability of food production systems; 

precision feeding of livestock may be one way to accomplish this 

goal.  

Analytics for precision management can be classified 

according to four levels: I) technique, II) data interpretation, 

III) integration of information, and IV) decision making. Most 

current animal agricultural analytics fall under categories I and 

II. Moving toward analytics that address integration of 

information and decision making is of critical importance.  

Data analytical techniques such as linear modeling and 

machine learning provide unique and important tools for 

interpreting data obtained from on-farm sensors. These techniques 

each apply to the different levels of precision management 

classification.  

Assessing adequacy and performance of analytics tools must, 

by default, depend on the objective of those tools and the type of 

response considered. As more advanced level III and IV systems are 

developed, integration of expert opinion into analytics may be 

essential to optimize performance and relevance on-farm.  
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Main Text 

 

How will precision nutrition influence sustainability? 

The global population, resource, and climate dynamics suggest 

we must improve sustainability of food production systems 

(Ohlsson, 2014; Kleinman et al., 2018). Improving livestock 

production sustainability is particularly important because a 

significant portion of the projected increases in global food 

demand is anticipated to come from livestock (Thornton, 2010). 

Improving sustainability of livestock production systems can be 

achieved through optimized reproductive, genetic, nutritional, and 

health management (White et al., 2014; White et al., 2015). 

Management decisions within livestock production can be thought of 

as two interleaved feedback loops. The first feedback loop is 

between the animal and the environment: the animal is influenced 

by its environment and, in turn, influences its environment. The 

second feedback loop is between the animal and the manager: the 

manager takes information about the animals behavior and attempts 

to influence the environment to optimize the animals performance. 

Managers make management decisions on different timescales ranging 

from immediate to relaxed. An example of an immediate management 

decision would be a farmer identifying an animal as sick, isolating 

the animal, and treating the animal for the illness. We term this 

immediate because the farmer must identify the sick animal as soon 
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as possible and must react to the diagnosis as soon as possible. 

An example of a relaxed management decision would be the farmer 

electing to change the feed provided to his animals in response to 

something observed about their production (i.e., the cows are 

producing poorly, so change the ration to provide higher nutrient 

density to correct a nutrient shortfall). This decision is more 

relaxed because its formulation and response are subjected to 

natural biological delays (i.e., it may take days to weeks to see 

a production response to a new diet). Improving the precision of 

these decision-making processes and reducing the burden of 

decision making on farmers are two critical steps toward improving 

sustainability of livestock production. Precision agricultural 

technologies have been identified as one possible solution 

(Berckmans, 2014; Tullo et al., 2019).  

Precision field crop agriculture has dramatically expanded 

and industrialized over the last several decades, demonstrating 

substantial opportunity for using precision technologies in 

agriculture (Thorp and Tian, 2004; Nash et al., 2009; Zhang and 

Kovacs, 2012). Such technologies include global positioning system 

(GPS) guided equipment, unmanned aerial vehicles, robotic 

harvesting and monitoring equipment, automated application of 

agrochemicals, among many others. Precision animal agriculture, on 

the other hand, has had limited expansion. Although technologies 

such as temperature monitors, rumen sensors, robotic milkers, and 
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others exist, the uptake and industrialization of precision animal 

agriculture has not paralleled crop agriculture. There are several 

differences between crop and livestock management that may 

contribute to this difference in technology uptake. For example, 

the management time scales for crop agriculture interventions, 

while highly profitable, are often measured in days or weeks. In 

animal agriculture, timescales for certain management can range 

from hours to days. For issues of nutrition, health, productivity, 

and efficiency, animal agriculture must treat both the individuals 

and the collective, whereas crop agriculture focuses primarily on 

the field-scale. Animal losses are also perceived differently than 

crop losses due to moral concerns, possibly imposing higher 

standards on animal-based decision technology. Collectively, these 

challenges mean that animal agriculture will likely require 

different types of technological interventions than have been 

pioneered in crop systems. Exploring opportunities for where 

precision technologies may be relevant in the livestock nutrition 

space exemplifies this. 

 

Management applications for precision animal nutrition 

 

Optimizing Rumen Fermentation.  

The idea that fermentation can be optimized if degradable 

carbohydrate sources and degradable protein sources are properly 
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matched has been contemplated for decades (Sinclair, 1995; 

Sinclair et al., 1995). The theory behind optimizing nutrient 

synchrony suggests that fermentations will be optimized if they 

are never limited by energy or N (i.e., supplies are balanced). 

Despite this theory being sound, achieving nutrient synchrony 

within rumen fermentations is extremely difficult to accomplish 

with currently available technologies (Hall and Huntington, 2008). 

One potential reason for this challenge is the limited real-time 

data available on the fermentation environment. Several models 

attempt to account for nutrient degradation kinetics (Hanigan et 

al., 2013; Higgs et al., 2015; Van Amburgh et al., 2015; Li et 

al., 2018), however, obtaining data to construct and evaluate 

models of degradation kinetics in vivo often requires expensive 

experiments. The advent of technologies such as indwelling rumen 

sensors have enabled more precise understanding of how pH changes 

over the course of a day. Expanding these sensors to include 

recording other important metabolites could enable development of 

feeding recommendations that take fermentation profile into 

account more precisely.  

 

Detection of Metabolic Diseases.  

It is possible to use analytics to identify risk of metabolic 

diseases. Existing efforts to identify other disease states (e.g., 
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mastitis) have shown moderate promise. Although mastitis is 

extremely costly to the dairy industry, it can be difficult to 

predict due to the imbalance of positive results (disease cases) 

relative to the population. The incidence rate of clinical mastitis 

ranges depending on many factors like housing or location, but is 

near 15 cases per 100 cow lactations, or 1 case per 2033 cow days, 

assuming a 305 day lactation (McDougall et al., 2007). Put another 

way, a priori, a randomly selected lactating cow from a random 

herd is only approximately 0.05% likely to exhibit clinical 

mastitis. Sparse datasets, the analytical term for the issue of 

having a disproportionate amount of positive test cases in a 

dataset, is a common problem in present-day analytics (Han et al., 

2015; Greenland et al., 2016). However, due to the widespread 

nature of the issue, new analytical techniques like modified tree-

based algorithms can learn patterns while maintaining the 

underlying proportion of cases in the training data (Ushikubo et 

al., 2017). Alternatively, the collation of larger datasets is 

also advantageous for producing better metabolic disease 

predictions. There is a tendency to collect new data to train new 

models, but in cases with sparse data, the combination of past 

data and new data will lead to richer training sets. Consider that 

each additional positive training case will greatly improve 

accuracy compared to each new negative case. In fact, removing 

additional negative cases to artificially improve the proportion 
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of positive cases can help to train models. The caveat to training 

on stratified datasets is that they must be properly validated on 

datasets with the appropriate proportion of positive cases to 

determine real-world use. By utilizing strategies designed for the 

problem of sparse data in machine learning, predicting metabolic 

disease will become easier, and most importantly, more accurate, 

providing decreased false-positives. 

 

Response-based Nutrient Requirement Recommendations.  

A major limitation of existing nutrient requirement systems 

like the National Research Council Requirements for dairy cattle 

(National Research Council et al., 2001) is the requirement-based 

nature of the recommendations. Maximizing production mass is often 

not the same as optimizing production efficiency. Multicriteria 

optimization has previously been used to formulate rations to 

simultaneously achieve multiple environmental goals (White et al., 

2014; White et al., 2015). Optimizing productivity or economic 

parameters could also be accomplished with this technique if the 

underlying equations linked dietary inputs with productive outputs 

in a responsive way. A challenge with response-based nutrient 

requirements systems is that most of our current data that could 

be used to develop such a system relies on pen-fed cattle. 

Responses of individuals are likely unique and such a response-
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based model would be more useful if feeding systems and nutrition 

models did a better job of representing the individual, rather 

than the collective. 

 

Precision Nutrition Research. 

In a wide variety of ruminant nutrition research, access to 

the rumen is obtained through rumen cannulae; however, sampling 

through this orifice is physically difficult and often results in 

mixing of naturally stratified (vertical and horizontal) rumen 

contents. The physical difficulty in sampling the rumen can impede 

precision monitoring of difficult-to-reach areas. Additionally, 

disrupting the rumen environment through sampling physically or 

chemically alters the unique microclimates that are thought to 

exist within the rumen, and thus precluding accurate and 

representative sampling. Collectively, these challenges make 

accessing unique microclimates within the rumen a challenge. The 

availability of a platform that can monitor rumen sensors would be 

valuable to the study of these unique rumen microclimates. 

 

What limitations exist for current technologies?  

Rutten et al. (2013) summarized 126 publications describing 

139 dairy sensor systems from the period 2002 to 2012. The systems 

were then compared based on the four levels of: I) technique, II) 
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data interpretation, III) integration of information, and IV) 

decision making. Systems that accomplish all 4 of these levels are 

often referred to as cyberphysical systems (CPS). These CPS are 

often an automated network of sensors, networking technologies, 

analytics, and actuation technologies that work in combination 

with or independent of the farmer to affect management changes 

based on real-time sensed information on-farm. None of the 139 

sensor systems evaluated by Rutten et al. (2013) included 

integration of sensed metrics with other information available on 

the farm to produce management advice or automated decision making 

(Rutten et al., 2013). Most sensor systems that were used in the 

farmer’s decision process only provided the raw data measured by 

the sensor, or a probability (such as the probability of disease 

given the sensor data). In both cases, the farmer is left to their 

intuition to integrate and actually make a management decision.  

Although basic linear models or logit models produce 

predictions that are correct on average over a group, these models 

cannot account for increased variation in individuals. The models 

being used to interpret data, as referenced in level II of Rutten 

et al. (2013) can be slow or fail to converge on a suggested action 

under the complexity of decision-making. For example, although 

there may be a manageable number of factors that affect the 

prediction of ketosis, the number of factors affecting the costs 

and benefits of the treatment of said ketosis is surely greater. 
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Put another way, knowing that a cow is 35% ± 2 likely to be ketotic 

tomorrow does not say anything about whether the farmer should 

check the cow, treat the cow, cull her, or do something else. To 

properly assess the promise of analytics in creating CPS capable 

of filling all four levels of the Rutten et al. (2013) summary of 

agricultural systems, we will present a common precision nutrition 

aim: automated individualized feeding of dairy cows. Using this 

example objective, we highlight several possible alternative 

analytical approaches and discuss their strengths and potential 

pitfalls relevant to this objective. 

 

A Nutrition Analytics Example: Automated Individual Feeding 

Automated Individualized Feeding.  

Given the variation among individual animals, it is 

reasonable to assume that by using data specific to each animal, 

we can make better decisions on what, and how much, to feed. As we 

have previously noted, model-based feeding can optimize 

productivity for the whole farm because individuals likely have 

differing and unique requirements. Individual feeding requires the 

ability to collect data specific to each animal coupled with the 

analytics capable of estimating individual requirements from that 

data. Feeding individuals eliminates the need to over-feed some 

animals to avoid under-feeding others, leading to more targeted 

feeding practices. One does not necessarily need to feed each 
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animal individually; this same reduction in over/under feeding can 

be accomplished simply by reducing the variation in the feeding 

group, either by feeding more like-animals together or by feeding 

animals in small groups. An example of variance reduction through 

smaller groupings of animals would be the use of different feeding 

groups by lactation number in dairy cows. It is clear that nutrient 

requirements are vastly different for first and fourth lactation 

cows, so they are separated to reduce the feed requirement 

variance. Another more targeted example of individualized feeding 

is concentrate supplement feeding. A larger group of animals can 

receive the same basal diet and the supplement is provided 

separately to smaller groups (Dela Rue and Eastwood, 2017). 

However, this type of individualized feeding, as noted by Dela Rue 

and Eastwood (2017), has not been shown to provide marginal 

benefits to farmers. Multiple recent studies which suggested 

individualized supplement feeding saw no improvement in milk 

production, BCS, or BW (Lawrence et al., 2015; Dale et al., 2016; 

Little et al., 2016).  

 Although it seems intuitive that more individualized feeding 

regimens would lead to better performance, this is not always what 

occurs in practice. These limitations may be because of the 

aforementioned issues with requirement models, which are based on 

data from groups of animals, not individuals. Another limitation 

might be the complexity of analytics used for feeding 
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recommendations. Of the three citations above that showed no 

increase in performance on individualized concentrate feeding, all 

studies used only one variable (milk yield) to inform concentrate 

requirement. In one study, only two levels of concentrate based on 

milk yield were fed, and a linear multiplier of milk yield was 

used in the other two studies to determine concentrate. Such low-

dimensionality models, using only one variable to predict a 

response, limits the robustness of the predictions and results. We 

will examine potentials of higher-level modeling approaches by 

examining the current infrastructure to support CPS in the four 

levels described by Rutten and colleagues. 

 

Current CPS Infrastructure.  

Level I, the techniques for data collection, is comprised of 

technologies like radio frequency identification (RFID) tags, 

accelerometers, and other output measurement software like inline 

milking parlor sensors. We can use this data that is collected 

daily, or even in real-time, to broadly evaluate the performance 

of animals. One of the issues with the techniques of collecting 

raw data is the interpretation. With only raw data, it is hard to 

determine the cause-effect relationship between feeding and 

performance. For example, the fact that the daily step count of an 

animal has increased on a new diet does not inform the farmer 
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whether or not to continue feeding this diet or what needs to be 

changed. Rather, raw data must be interpreted before it can be 

used effectively to make diet decisions. Level II, or the 

interpretation of sensor data, seeks to add context to sensor data 

with emphasis on explaining such relationships. Many models 

attempt to predict intake requirements of dairy cows using raw 

data as predictors (Jensen et al., 2015). Jensen et al. (2015) 

evaluated models that were used on a national scale in different 

countries. All models were fit to held-out intake data to determine 

the residual error in each prediction model. The root mean square 

prediction error for each model ranged between 1.2 kg dry matter 

(DM) per day to 3.2 kg DM per day (Jensen et al., 2015). The held-

out data included 94 treatment means derived from 917 lactating 

dairy cows. A given model’s average prediction was near 2.0 kg of 

DM greater or less than a cow’s average intake. If these results 

were applied to individual cow days, the variance would necessarily 

be greater than the variance in predictions for a cow’s average 

intake. Models predicting DMI can be simple, lending themselves to 

being correct on average, which is not as useful in individualized 

feeding because response variance increases. 

 In a review of linear models predicting DMI (Jensen et al., 

2015), models referred to as “advanced” were those that 

incorporated interaction terms into the linear model, specifically 
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the models “TDMI” and “NorFor” (Huhtanen et al., 2011; Volden et 

al., 2011). Many recent publications involve predicting intake 

using less than 10 total predictor variables and rely on basic 

linear regression (McParland et al., 2014; de Haas et al., 2015; 

Shetty et al., 2017; White et al., 2017). Most models attempt to 

find the few variables that will reduce the variance better than 

previous models. At some point, we will not be able to find a 

selection of 10 or fewer variables that continue to reduce variance 

in a meaningful way. One advance in data analytics is hierarchical 

modeling, which works well in the case where there are many models 

using varying parameters to predict the same response. Making a 

“model of models” can improve accuracy beyond that of any one model 

in the group (Gelman, 2006). This is possible due to uncorrelated 

error structures in different sub-models. To create an example 

hierarchical model for predicting DMI in dairy cows, we could 

combine the outputs of models built on herd level data into models 

built on models using different individual cow measurements to 

make a more accurate prediction of individual DMI than using a 

single model alone. Although hierarchical modeling is just a 

framework, there are many useful ways to combine existing models 

that can improve model accuracy. Models can be weighted based on 

accuracy in a test dataset, the variance of predictions, or even 

on prior knowledge. 
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With over 9 million dairy cows in the United States, it 

intuitively seems easy to collect sufficient data to predict 

intake; however, this is not necessarily the case (McParland et 

al., 2014). First, many data sources must be collated to create 

better-trained models. There are incentives now for farmers to 

continue to collect individual intake data and genetic data 

relating to intake to help inform farmers in the future (Berry et 

al., 2014). An estimated 89% of genetic variation in DMI could be 

explained with only four common animal characteristics, according 

to one meta-analysis of genetic studies (Berry and Crowley, 2013). 

Although we have great amounts of data, there are near-infinite 

permutations of cow characteristics that would need to be predicted 

in order to improve DMI prediction. Luckily, data analytics offers 

a way to reduce the dimensionality of problems and also group 

similar animals together to make the prediction space more 

manageable. Principal components analysis (PCA) attempts to reduce 

dimensionality while maintaining maximal variance in the remaining 

dimensions using an orthogonal transformation (Pearson, 1901). 

Consider a 3-dimensional set of data, shown in Figure 4-1. If we 

know the groupings ahead of time, we can find two linear 

descriptors using all three factors that maximizes variance in the 

data set. By using all three factors (in this example, genes), but 

condensing the desciprtors into two values for each point, we have 

reduced the dimensionality at minimal varaince cost between 
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groups. This is evident in the image on the right in Figure 4-1. 

Using PCA can also help discern groups, as PCA is sensitive to 

scale changes and can be used to determine the distance between 

two multi-dimensional points in space. Traditionally, a machine 

learning technique like k-nearest neighbors (Altman, 1992) or k-

means (Lloyd, 1982) is used to determine the similarity between 

points. In our example with a herd of cows that we need to predict 

and feed individually, a linear model trained on the entire herd 

will only be right on average. If we do not have sufficient data 

to make low-variance predictions for individual cows, we could 

employ PCA on the individual cow data to determine cows that are 

most similar, combine their data and train models on these smaller 

combined datasets of similar cows to achieve more accurate results. 

By using a fixed modeling procedure and measure of accuracy, we 

could iteratively test models using data from smaller groups until 

we no longer saw an improvement in accuracy. Consider the scenario 

outlined in Figure 4-2 which explains the framework for using PCA 

to find the optimal groupings for a given model.  

It is important to note that although 2-dimensional PCA is 

easiest to visualize, PCA results should be retained in the number 

of dimensions that explains a specified amount of variance. Figure 

4-3 shows a plot of the variance explained as the number of 

dimensions included in PCA is increased. With fewer dimensions 

there is less variance explained by the components and the 
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proportion of variance explained by each additional component is 

high. As we increase dimensions, the cumulative variance explained 

increases but the proportion of variance explained by each 

additional component decreases. Humans tend to interpret best in 

two dimensions, but we can see that if we wanted our PCA to explain 

at least 80% of the variance in our dataset, 2 dimensions would 

not be sufficient. Also keep in mind that not all datasets will 

produce such steady reductions in variance with each component. 

There is no rule of thumb for how many components to condense. 

With PCA, and many algorithms in data analytics, we must trade-

off interpretability for accuracy. 

Opportunities to leverage machine learning in precision 
livestock nutrition 

In level III, integration of information, the predictions 

made by models are used to created recommendations for the farmer. 

Level IV is the culmination of the prediction, leading to action, 

either by the system itself or the farmer. A lack of level III and 

IV CPS was noted in Rutten et al. (2013). We would expect that, by 

utilizing the most appropriate modeling techniques to generate 

predictions at levels I and II, appropriate decision-making models 

would be possible. However, this is obviously not the case, as we 

see minimal examples of decision making algorithms present in the 

current animal nutrition literature. One factor that traditional 

modeling frameworks do not allow for is the ability to update based 
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on feedback. If a level II model predicts DMI at 50 kg, but the 

farmer continuously adjusts this to 45 kg, based on his/her 

knowledge of something outside the model scope, a traditional model 

does not “learn.” Here neural networks, and other recurrent machine 

learning algorithms provide a promising approach to decision-

making frameworks by allowing for revising predictions in 

practice. In a traditional individualized feeding modeling 

framework, a model is built for each cow and the model itself does 

not change, only the predictions. In a machine learning framework, 

the predicted DMI for a cow each day could be predicted and, using 

all data available along with the actual response of the animal, 

the algorithm may change the weights of certain factors in the 

model. This dynamic feedback loop allows the model to “learn” on-

farm and produce more accurate predictions.  

Neural networks, or artificial neural networks, are actually 

a combination of many algorithms in a network, where layers of 

nodes, representing algorithms, feed outputs from the previous 

layer of nodes as inputs to the next layer, until the final layer’s 

output is used as the prediction (McCulloch and Pitts, 1943). 

Figure 4-4 shows a typical framework for neural network, with raw 

information being fed into the left and predictions coming from 

the right. Nodes each represent a nondescript function, typically 

those that make small changes to inputs, allowing for better 

control at each node over the final prediction. The real power for 
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a problem with the complexity of individualized feeding is the 

idea of backpropagation, where the accuracy of prediction is back-

propagated through the nodes of a network to re-weight the 

importance of each node, thereby ensuring better accuracy on the 

same example datum if presented again (Werbos, 1974). Put simply, 

backpropagation allows us to distribute error through the existing 

network. Neural networks have been shown to detect patterns in 

highly nonlinear data, which is nearly-impossible for linear 

models (Fukushima, 1980). 

 Reinforcement learning is another key concept in the field of 

machine learning and is crucial for problems where cost functions 

are not explicit, like in predicting feed intake. That is, we do 

not know the exact cost of overfeeding or underfeeding. Suppose we 

are training a model to tell a farmer how to feed each cow, but 

the farmer is well-informed and keeps adjusting the predictions. 

If we were trying to minimize the need for farmer intervention, 

our feedback loop would weight errors based on the farmer’s 

adjustment to each prediction. That is to say the recurrent neural 

network is estimating the model that limits error under the unknown 

cost function. The framework starts with substantial uncertainty 

about the cost function and the network performs poorly; then, the 

network is trained and the model parameterized to decrease the 

cumulative costs. This is done in an updating manner called a 

Markov decision process (Howard, 1960). In the real world, our 
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farmers are likely not omniscient, but the ability to estimate 

models under cost uncertainty can still be utilized to choose 

better models for actual decision making, because the cost of 

feeding decisions is not fixed or known, but predictions must be 

made every day for every cow. In fact, reinforcement models are 

seen in many places where decisions must be made, despite 

uncertainty about their costs, like game-playing algorithms and 

resource allocation problems (Damas et al., 2000).  

Making prediction under uncertainty can make modeling more 

difficult and is surely a reason why reliable level III and IV CPS 

are not seen in animal agriculture. For example, a model built to 

predict crop demand would have a large amount of training data, 

because these data have been collected for many years. But how 

will a model predict the appropriate desire for crops during a 

global pandemic? Many predictions made in animal agriculture are 

based on rare scenarios relative to the amount of data collected. 

Assume a scenario where predictions for a cow’s intake have been 

very accurate, then she gets her foot caught in the parlor and is 

in a great deal of pain, the injury is not caught immediately and 

will not be fed into the model as an explicit variable. Is it 

correct to punish the model for incorrectly predicting intake on 

this day? Likely not, because a known, but unanticipated, event 

can explain the variation. This example points to a major challenge 

with deploying these modeling techniques on-farm. If allowed to 
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iterate and update in an unrestricted manner, the model will try 

to assign weights to other factors to explain why the cow reduced 

intake the day she injured herself. For example, if activity data 

were included in the model, the weight on activity responses might 

be updated because we would anticipate activity to also change 

with the injured hoof. However, the model may take some time to 

recover from this prediction to correct the weight on activity 

under a non-injured scenario, resulting in a period of time where 

predictions were poor. A solution to this type of challenge would 

be to include an injury variable in the model to account for these 

types of cases; however, the point of the example is that there is 

always opportunity for factors exogenous to the model to influence 

the behavior of the response variable. When building and deploying 

these analytics, we must consider that reality. Another solution 

to the challenge is to omit data from the day in question. However, 

that opportunity introduces the issue of human perception with 

respect to identifying exogenous causes and correctly 

differentiating them from endogenous causes. It is important to 

keep in mind that we cannot leave out predictions that are not 

correct without reason, because every cow needs to get a prediction 

every day. A different solution might be found in the training of 

the model. Instead of focusing on minimizing the average cost of 

a prediction, it is possible to train the model on minimizing the 

maximum cost of prediction. The measure of costs relates to a 
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secondary problem plaguing models of all varieties today: how to 

choose the cost functions, or, how to know which model is best. 

Challenges with Model Selection and Evaluation 

There are a number of model evaluation statistics used 

commonly to assess the precision and accuracy of predictions; 

however, when models are applied as analytics in conjunction with 

sensors and in the context of CPS, the system as a whole is often 

evaluated on the basis of sensitivity (Se) and specificity (Sp). 

Indeed, in an example outside nutrition, there are actually 

International Standards Organization standards for Se and Sp for 

CPS formulated initially for automated detection of mastitis 

(Rutten, N., A. G. J. Velthuis, W. Steeneveld, H. Hogeveen, 2013-

27, 2013). Sensitivity is a model’s ability to detect positive 

cases, that is, the percentage of all true positives that are 

detected. Specificity is the same metric applied to negative cases, 

namely the percentage of total negative cases that the model 

detects correctly. High Sp and low Se leads to models that rarely 

detect (predict) a positive case, while the opposite would be true 

of high Se, low Sp models. In the case of precision feeding, a 

positive case may be overfeeding and a negative case may be 

underfeeding. Alternatively, if detecting metabolic disease is an 

important attribute of the precision feeding system, a positive 

case might be an animal with metabolic disease whereas a negative 

case might be an animal free from disease. Although both of these 
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calculations are extremely important for a useful CPS model in 

animal agriculture, false alarms can become an issue, especially 

in cases where the proportion of positive to negative cases is 

skewed in the overall population. In the case of models that detect 

animal conditions to alert farmers, the positive predictive value 

(PPV) is a third measure of model accuracy that should be 

considered. The PPV can be thought of as the probability that an 

alert (predicted positive case) actually is positive. Models with 

low PPV will have more false alarms. Although PPV would not be 

useful in the proportion of positive to negative cases in the 

population was equal, in many disease detection, less than 1% of 

cow-days on a typical farm will be positive.  

When we consider the example of predicting intake, or 

designing an ideal supplementation strategy for a cow, the use of 

Se and Sp for model evaluation becomes more nebulous. Undoubtedly, 

it is more important to know by how much you over- or under-

predicted a response like intake or milk yield than it is to know 

the binary directionality of the residual. A number of statistics 

(root mean squared error, mean absolute error, etc.) are available 

to quantify fit in this manner. However, as discussed above, when 

making recommendations on-farm, incorporating the cost of these 

decisions is perhaps most important. Working more explicitly to 

tie performance predictions to economic data on-farm will be an 

important step in advancing analytics of precision feeding. 
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When are the Analytics Good Enough? 

As John von Neumann said, "truth … is much too complicated to 

allow anything but approximations" (Szász, 2011). Approximations 

are a necessary evil, particularly in the business of feeding 

animals. Livestock nutrition is a complex science, verging on an 

art form, and successful nutritionists combine analytics and 

exogenous information to optimize productivity of their farms. A 

CPS, almost by design, limits the opportunity for exogenous data 

or, at a minimum, change the way that exogenous data will influence 

the system. To assess gold standards for when a CPS is good enough 

for deployment to farms, it may be useful to evaluate the standards 

professional nutritionists use for making feeding recommendations. 

Many nutritionists have a dollar value or a milk response cutoff 

that they believe a product, or feeding recommendation, must be 

expected to achieve before it should be recommended to a farmer. 

Gaining consensus on those cutoffs may be one way to evaluate the 

relevance of precision nutrition analytics from an industry 

context. Although it is possible to set more objective cutoffs, 

creating such an objective cutoff implies that a given model's 

knowledge completely covers that of the experts, which is very 

unlikely. Although models can help weigh options in complex 

environments, they are only as complex as the data they are trained 

on, and thus by default are less informed than an expert who has 

the opportunity to see exogenous and endogenous variables. Further 
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work is needed to identify the best strategies to combine and 

incorporating expert opinion/knowledge into CPS focused on animal 

feeding.  
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Figures 

 

 

Figure 4-1. Example of Principal Component Analysis using three 
gene variables. The three gene factors are combined into two 
components that maximize variance between groups in 2-
dimensional space, as seen on the right (Scholz, 2006). 
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Figure 4-2. Comparison of fitting models after grouping PCA 
results. Top) Fitting single linear model to data after PCA. 
Bottom) Fitting group of linear models based on clustering 
algorithm to data after PCA. Grouping data based on a clustering 
algorithm allows the same model increased flexibility when making 
predictions. Notice that the linear model used does not change, 
only the data used to train the model is varied.  
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Figure 4-3. A potential example plot of the proportion of 
variance explained by each additional component in principal 
component analysis. Variance explained by each additional 
component can vary considerably based on the data you are 
working with. (Shah et al., 2018)	  
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Figure 4-4. An example of a neural network framework. Circles 
represent individual equations which are fed data from all 
connected nodes. The lack of a 1-1 ratio of nodes in each layer 
of the network forces the model to condense information and 
leads to the most important information being determined 
iteratively through backpropagation of error. (Ivezić et al., 
2014) 
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Chapter 5: Methodological and feed factors affecting measurement 
of protein A, B, and C fractions, degradation rate, and 
intestinal digestibility of rumen-undegraded protein 
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factors affecting measurement of protein A, B, and C fractions, 
degradation rate, and intestinal digestibility of rumen-
undegraded protein. J. Dairy Sci. 101:8046–8053. 
doi:10.3168/jds.2018-14837. 
 

Abstract 

When formulating dairy cow rations, characterization of 

protein in feed requires estimation of protein degradation in both 

the rumen and intestine. The objective of this work was to evaluate 

experimental and feed related factors that affect 

characterization, using in-situ, in-vitro, or mobile bag 

techniques, of 0-h washout (A), potentially degradable (B), and 

undegradable (C) protein fractions, protein degradation rate (Kd), 

and digestibility of rumen undegradable protein (dRUP). Datasets 

of 136 studies on A, B, C, and Kd and 113 studies on dRUP were 

amassed from the literature. Mixed-effect linear models were used 

to relate these variables to methodological and feed factors while 

accounting for random differences among studies. Predictions of A, 

B, and C protein fractions were significantly (P < 0.05) influenced 

by CP and NDF interactions with sample grind size, bag pore size, 

incubation time, bag area, and sample-to-bag area ratio. For 

example, a 20% decrease in CP of a theoretical legume silage sample 
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would increase A fraction prediction by 20.1%, but 34.7% with bag 

incubation time -1 SD below the mean. A shift in measurement method 

nearly doubles the predicted A fraction of the same feed. 

Similarly, reported Kd values were significantly (P < 0.05) 

influenced by CP interactions with sample grind size, bag area, 

and sample-to-bag area ratio. Feed variables and measurement 

variables influencing protein digestibility measures suggest that 

these analytical factors are likely associated with variance among 

differing methodologies and within unique samples of the same feed. 

When predicting dRUP, pepsin-acid incubation time and use of mobile 

bag method produced significantly different (P < 0.05) estimates 

compared to the traditional in-vitro 3-step method. The use of 

mobile bag resulted in a 12% (±3.1%) higher estimate of dRUP 

compared to the in-situ technique. In 618 and 977 samples, sample 

variation to sample mean ratio for ADF and pepsin-acid incubation 

time was 63% and 58%, respectively. Variation in feedstuff content 

and lack of standardization of methods used to measure protein 

disappearance lead to a lack of robustness in the measurements 

commonly employed. 

Keywords: ruminal degradability of protein, in-situ, in-vitro 

 

TECHNICAL NOTE 
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Data Collection and Preparation 

Data were collected from published, peer-reviewed papers that 

reported ruminal disappearance of protein from nylon bags and 

intestinal disappearance of protein using either in vitro or mobile 

bag procedures. Keywords used in searches for relevant articles 

included: protein, digestibility, nylon bag, in situ, mobile bag, 

protein disappearance, and rumen undegradable protein. Searches 

were conducted in the Fall of 2015 using Google 

(http://www.scholar.google.com/) and PubMed 

(https://www.ncbi.nlm.nih.gov/pubmed), as well as using the 

searches located on the websites of the following journals: Journal 

of Dairy Science (http://www.journalofdairyscience.org/) , 

Canadian Journal of Animal Science 

(http://www.nrcresearchpress.com/journal/cjas), 

Animal (https://www.cambridge.org/core/journals/animal), and 

Animal Feed Science and Technology 

(http://www.sciencedirect.com/science/journal/03778401). Every 

article recovered was also screened for references with relevant 

titles for subsequent searches. If studies used animals other than 

cattle, the article was not considered. 

 Reported estimates of feed A, B, C protein fractions, protein 

degradation rate (Kd) of the B fraction (Ørskov and McDonald, 

1979), and intestinal digestibility of RUP (dRUP), using either in 

vitro or mobile bag methods (Calsamiglia and Stern, 1995; Hvelplund 
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at al. 1992; Gargallo et al., 2006), were gathered from published 

studies. Additional data gathered from each study included feed 

sample name, proportion of forage fed, bag characteristics 

(dimensions and pore size), and incubation times, and all criteria 

outlined in the NRC (2001) for standardization of in-situ 

procedures (NRC, 2001). Studies that failed to report microbial 

nitrogen corrections were included to compile a robust dataset. A 

total of 187 studies reporting A, B, C, and Kd and 143 studies 

reporting dRUP were identified. Of these, studies from which no A 

or C fraction could be derived due to log-linear transformation, 

short incubation time, or otherwise were removed. Studies that 

incubated bags for less than 48 hours were also removed. If the 

sum of the fractions (A+B+C) diverged from 100% by more than 10%, 

the study was excluded. Studies reporting feed crude protein above 

100% of dry matter or RUP digestibility less than 0% of RUP were 

also excluded from the analysis. After applying these exclusion 

criteria, 136 studies on A, B, C and Kd and 113 studies on dRUP 

were used for analysis. The summary statistics of the degradability 

dataset are included in Table 5-1 and summary statistics of the 

digestibility dataset are included in Table 5-2.  

Some studies failed to report all protein fractions or 

reported three protein fractions that did not sum to 100. For 

studies that used log-linear approaches without a computer model, 

the B pool was adjusted until A + B + C equaled 100%. For studies 
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fitting A and B using a computer model, C was estimated as 100 – 

A – B. If a study fitting A and B using a computer model had A and 

B summing to greater than 100, the A fraction was decreased until 

A and B summed to 100. Finally, if B and C were fit by a computer 

model, A was assumed to be 100 – A - C. 

Mathematical Models 

 Multiple regression models were used to estimate all 

dependent variables of interest. All models included a random 

effect of study and fixed effects for each independent variable. 

Statistical analysis was conducted as described by Roman-Garcia et 

al. (2016) using the lmer package (Kuznetsova et al., 2013) in R 

version 3.1.0. (R Core Team, 2014).  

Model Derivation Approach 

Key groupings of explanatory variables (Table 5-1) were 

included in an initial multiple regression model. Variables were 

iteratively eliminated based on removing the highest P-value for 

each iteration until all variable P-values suggested at least a 

tendency (P < 0.10) for significance. For A, B, C, and Kd, the 

initial model included: feed NDF (% of DM), feed CP (% of DM), 

forage type, feed category, feed name, grind size, bag area, bag 

pore size, ratio of sample size to bag area, and incubation length. 

Interaction terms for feed category, forage type, or NDF and CP 

with pore size, grind size, bag area, bag pore size, ratio of 

sample size to bag area, and incubation length of time were also 
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tested. For the dRUP dataset, the initial model included feed NDF, 

ADF, and CP, feed name, total time incubated in the rumen, time 

exposed to acid, and method (in vitro or mobile bag). Two-way 

interaction terms for CP, NDF, ADF, pore size, incubation time, 

and acid incubation time with method were also evaluated.  

A critical reason for the interest in understanding the 

influence of methodological factors in estimating A, B, C, Kd, and 

dRUP are the results of White et al. (2017a,b). This study 

concluded that existing A, B, and C fraction estimates, in 

combination with Kd values, did not yield adequate predictions of 

ruminally degradable protein. One reason for the failure of these 

feed-specific factors to function as effective predictors of 

dietary rumen degradable protein would be methodological 

inconsistencies in estimating A, B, and C fractions or Kd among 

feeds. The presence of significant interactions between feed 

chemical components and methodological variables would suggest a 

possible reason for why the A, B, and C fraction estimates and Kd 

values are not representative predictors of ruminal N outflows.  

 

Chemical and Methodological Factors Influencing Measurement of 
Protein Fractions 

For the final A, B, C, and Kd models (Table 5-3), a 

combination of surface area of the bag, grind size, pore size, 

incubation time, sample size to bag area ratio, NDF, and CP were 
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identified as significant variables. The model for B fraction did 

not include area or grind size. The C fraction model did not use 

grind size. All protein fractions (A, B, C) had significant 

interaction terms for CP and NDF interactions with methodological 

variables. Significant interaction terms with CP were present for 

incubation time, pore size, bag area, grind size, and sample size 

to bag area ratio for the A, B, and C protein fraction models. 

Significant interaction terms with sample NDF were also present 

for pore size, bag area, and sample to bag area ratio in the A, B, 

and C fraction models. The model for Kd only included interaction 

terms with CP, for bag area, grind size, and sample size to bag 

area ratio.  

These results suggest challenges with current practices 

measuring A, B, and C fractions of protein. A major challenge is 

the fact that methodological variables significantly influenced 

reported A, B, and C fractions within a feed. Measuring the same 

feed but grinding to different sample particle sizes would result 

in two different predictions for A, B, and C fraction protein. For 

example, estimating fraction protein disappearance in legume 

silage (NDF = 44.5%, CP = 19.4%) using incubation time ±1 SD of 

those reported in the dataset (all other variables represented by 

the means in Table 5-1) would result in a 36.5% increase, or a 

12.5 percentage point increase, in estimated B fraction protein.  
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An additional challenge is illustrated by the models: the 

observation that feed chemical composition interacted with 

methodological factors to influence reported A, B, and C fractions. 

These interactions suggest that fraction measurement is not 

consistent across feed types or perhaps even within feeds of 

differing chemical composition (low CP forage vs high CP forage). 

For example, a 20% decrease in the CP content of legume hay (from 

20.5% to 16.4%, all other variables represented by the means in 

Table 5-1) would result in an increase the predicted A fraction by 

20.1% and decrease the predicted B fraction by 7.9%. However, if 

an incubation time-1 SD from the mean was used for measurement, 

the same 20% decrease in CP content of legume hay would increase 

A fraction by 34.7% and decrease B fraction by 8.7%. The use of a 

shorter incubation time increases the effect of decreasing CP 

content on fraction predictions. To further demonstrate the 

challenges revealed by the significant variables and their 

interactions, Table 5-4 lists the effects of changing the variables 

in the model for B fraction protein by ±1 standard deviation for 

a variety of feeds included most often in the dataset. 

An additional challenge with measuring protein fractions is 

artifact from bacterial CP contamination. Research has shown that 

rumen-exposed feedstuffs contained microbial nitrogen between 8 

and 26%, as a percentage of total nitrogen (Erasmus et al., 1994). 

Bacterial contamination can decrease RDP by up to 5% (Alexandrov, 
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1998) and also potentially underestimate Kd through the 

mismeasurement of the B fraction (Wanderley et al., 1993). To 

overcome the challenge of contamination, researchers have 

attempted to quantify microbial nitrogen in samples by using 

various microbial markers in the residue (Michalet-Doreau and 

Ould-Bah, 1992; Machado et al., 2013) most recently employing real-

time PCR to measure microbial DNA (Sylvester et al., 2004; Paz et 

al., 2014). Increasing NDF and decreasing CP increased the 

potential for bacterial contamination to effect fractions and Kd 

estimates, along with adding starch to grasses and increasing 

incubation times (De Visser et al., 1998; Yang et al., 1999). 

Because Kd is derived using estimates of the material undigested 

in the rumen, Kd is highly correlated with the protein fraction 

estimations (Woods et al., 2003).  

 

Chemical and Methodological Factors Influencing Measurement of 
Kd 

For the final Kd model, bag area, grind size, sample size to 

bag area ratio, NDF, and CP were identified as significant. 

Additionally, CP had significant interactions with bag area, grind 

size, and sample size to bag area ratio. The measurement of Kd 

appears to be affected by similar challenges described above for 

the A, B, and C protein fractions within a feed. Namely, method 

significantly influenced outcomes such that interactions were 
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detected between chemical composition and methodological factors 

that influenced measured Kd. For example, a 10% decrease in the CP 

content of legume hay using the dataset’s mean grind size would 

result in a 5.5% increase in predicted Kd. The same 2 CP 

concentrations measured with a grind size -1 SD from the mean would 

result in a 9.0% increase in predicted Kd. The varying relationship 

between Kd and CP using 2 different grind sizes for the chemical 

analysis exhibits almost double the predicted Kd. In practice, 

this means that samples measured with a finer grind will result in 

elevated Kd estimates, possibly leading to an overestimation in 

RDP. Because of the methodological implications on measuring Kd 

and the resulting effect on calculating RDP, these inconsistencies 

might lead to a failure to accurately supply MP to the animal. 

The inaccuracy of standard protein digestibility practices 

has been noted in studies going back to the 1980’s. Weakley et al. 

(1983) reported variation in DM and CP disappearance measurements 

based on the grind and pore size of the in-situ bags used in the 

analysis. A later meta-analysis pointed to myriad factors that 

appeared to cause variation in in-situ degradability measurements 

(Vanzant et al. 1998). Most relevant analyses of protein 

digestibility measurement have suggested a standardization in 

procedure in some way; however, standardizing all aspects of these 

procedures is challenging. In particular, an approach to correct 

for bacterial contamination has not been standardized, although 
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quantitative PCR shows promise. Paz et al. (2014) showed how 

isolating bacterial contamination via DNA or purine markers on 

bacteria showed potential for better feedstuff digestibility 

estimation. Although no consensus has been reached on 

standardizing measurements for bacterial contamination, Michalet-

Doreau and Ould-Bah (1992) provided several suggestions on how to 

reduce variation in measurement including standardizing pore size, 

pre-treatment bag preparation, grind size, and incubation time. 

Despite these suggestions, time-series analysis of the data 

collected herein suggests standardization does not appear to be 

occurring in practice. 

In the current dataset, with studies from 1985 to 2015, the 

average protein fractionation digestibility measurement parameters 

did not change significantly over the 30-year period for grind 

size, bag area, or pore size (P = 0.81, 0.98, 0.19). Year had a 

positive relationship with incubation time (P = 0.007), with 

incubation time increasing by an average of 0.9 hours each year. 

The variance of each parameter did not change over time for grind 

size, bag size, pore size, or incubation time (P = 0.80, 0.49, 

0.20, 0.53, respectively). Lack of change in incubation time 

variation indicates that, despite the apparent increase in mean 

incubation time up to 2015, there is still a similar range of 

incubation times being used. These observations suggest that 

recommendations for proper disappearance measurement have not been 
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heeded or a consensus has not been reached in the scientific 

community. Future meta-analyses focused on defining robust and 

consistent A, B, C, and Kd estimates for use in feed libraries 

should consider removing studies that contain sample size to bag 

area ratios or pore sizes that vary significantly from current 

recommendations (Vanzant et al. 1998) to ensure consistent and 

quality data. This elimination of variance associated with 

measurement methods related to protein fraction measurement would 

improve the accuracy of future feed libraries and hopefully address 

the issues with the A, B, C system raised in White et al. (2017a, 

b). 

 

Chemical and Methodological Factors Influencing Measurement of 
dRUP 

The three-step procedure is currently used in feed testing 

laboratories for estimating intestinal digestibility of RUP in 

ruminants. This procedure involves grinding and bagging feed 

samples to be placed in the rumen of a cow for incubation, then 

exposing the remaining sample through pepsin and pancreatin 

enzymes which is also designed to remove any undigested residues 

(Calsamiglia and Stern, 1995). This procedure has since been 

modified (Gargallo et al., 2006), but remains similar to the 

original procedure proposed in 1995. After the three steps, the 

sample is precipitated out of solution and tested for remaining 
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protein. This protein represents that which would be undegraded in 

the rumen but digested in the intestine of a ruminant. In contrast, 

the mobile bag procedure estimated protein digestion but utilizes 

the small intestine of the ruminant in addition to the rumen to 

incubate samples to test for intestinal protein digestibility 

(Hvelplund et al., 1985). In the mobile bag procedure, samples are 

incubated in the rumen, then in pepsin, and finally placed in the 

small intestine of the animal via a duodenal cannula and collected 

in the feces and analyzed for protein content. Although it is 

possible to test intestinal digestibility without first incubating 

samples in the rumen, White et al. (2017a) showed that lack of 

exposure to ruminal microbes can lead to underestimation in 

digestibility. Although the two procedures measure the 

disappearance of protein in the intestine, previous research has 

also identified a significant difference in the measurements made 

on the same feedstuffs (Kopečný et al., 1998; Mesgaran et al., 

2008; Jahani-Azizabadi et al., 2009). 

In the models predicting dRUP of feeds, ADF, acid hydrolysis 

time, and the method of bagging the sample all had a significant 

effect on the measurement (Table 5-5). For example, using the 

mobile bag method increased predicted dRUP by 12 percentage points 

compared with the 3-step procedure. The proportion of SE to mean 

observation (Table 5-2) reflects the variability in reported 

values in the literature. For two key variables identified to be 
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significant (ADF and acid hydrolysis time), this ratio indicated 

substantial variation within the literature (63% and 58% with 618 

and 977 observations, respectively). Previous work done by Harstad 

and Prestlokken (2000; 2001) discussed the significance of bag 

pore size in mobile bag testing on estimates of dRUP. The lack of 

significance for pore size found in this study could be a result 

of the relatively large mean pore size in the dataset. The authors 

cited a pore size of 15 µm as potentially having a significant 

effect on dRUP, but the mean pore size in the current dataset was 

45.9 µm for in-vitro samples and 42.9 µm for mobile bag samples. 

Despite the caution listed in these papers, pore size is still not 

uniform. Perhaps one way to improve consistency of dRUP is to focus 

on more stringent standardization of procedures. 

Although measurement of dRUP was initially intended only to 

evaluate high protein concentrates (Ørskov and McDonald, 1979; 

Stern and Satter, 1984), the technique has since been used to 

measure many forages and fibers, as well as rumen protection in 

certain amino acid supplements (Overton et al., 1996; Berthiaume 

et al., 2000; Koenig and Rode, 2001; Wu et al., 2012). Measuring 

a variety of feedstuffs will lead to the results being limited in 

three ways. First, feeds are not exposed to chewing, nor changes 

in environment, feed pH, or physical mixing (Wu and Papas, 1997; 

Ji et al., 2016). Second, these methods measure resistance to 

degradability in the rumen environment, not the absorption by the 
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animal after the feed leaves the bag (Wu and Papas, 1997). Lastly, 

testing on fine particles may allow the feed to be solubilized and 

leave the bag without necessarily being digested (Erasmus et al., 

2014; Whitehouse et al., 2017). As a consequence of these factors, 

when evaluating information on rumen protection of rumen protected 

amino acid supplements it is possible that the analytical procedure 

may interact with method of protection.  

A myriad of measurement variables play a significant role in 

determining the measured fraction protein percentages. Accurate 

estimates of the protein digestibility and makeup of a diet is 

invaluable in the dairy industry for making sure that cows are 

feed adequate protein for growth, maintenance, and lactation, but 

also to control nitrogen excretion into the environment and many 

studies acknowledge the growing concern over environmental costs 

associated with nitrogen excretions (Cooperband and Good 2002; 

Davidson 2009; Dong et al. 2014). The lack of consistent 

measurement protocols across methods suggests that measuring 

fraction proteins lacks accuracy and standardization of 

measurement methods is essential before compositing literature 

estimates into feed library values. Similarly, any analyses of AA 

should include ruminal degradation and intestinal digestibility of 

total AA for better integration with the CP protocols described 

herein (White et al., 2017c). 
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Conclusion 

The use of A, B, and C fractions of protein and Kd of the B 

fraction for estimating RDP is a well-established technique for 

describing the protein quality in feedstuffs. Measurement methods 

for protein fractionation are similar, but not identical, because 

factors like pore size of the bags used, the grind of the feed 

samples tested, and the size of the bags used can vary. The 

assumption when measuring these values is that measurements will 

not vary significantly within feedstuff or by measurement method. 

Because specific methodological and feed factors change 

predictions, no unified approach to measurement will completely 

alleviate the errors. However, standardization of the entire 

measurement process would lessen the variance among similar 

feedstuffs. Without standardization, diet formulation will 

continue to suffer from poor estimations of ruminal protein 

fraction dynamics and digestibility of rumen-undegradable 

protein.  
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Tables 

Table 5-1. Summary Statistics of Dataset Used for Evaluating A, B, 
and C Protein Fractions 

Variable N. Obs Mean SD Min Max 

NDF, % DM 325 46.39 15.28 8.0 87.8 

CP, % DM 744 25.60 16.90 3.9 97.0 

A Fraction, % CP 941 33.67 18.61 0.0 93.2 

B Fraction, % CP 941 55.89 21.73 4.9 100.0 

C Fraction, % CP 737 10.44 12.42 0.0 86.5 

Degradation Rate, %/h 941 10.10 8.19 0.2 64.0 

Grind, mm 774 10.14 6.12 1.0 25.0 

Pore Size, µm 883 20.11 9.82 1.0 39.0 

Height, mm 182 15.22 5.67 3.0 42.0 

Width, mm 182 8.53 4.48 2.5 35.0 

Area, mm2 862 34.76 24.17 1.0 74.0 

Density, g/mm2 850 21.79 20.95 1.0 69.0 

Calculated C Fraction, % CP 941 10.43 12.79 0.0 91.0 

Lag Time, min 47 0.77 0.87 0.0 4.5 

Sample:Bag Area Ratio, mg/mm2 846 0.90 1.35 0.0 9.0 

Incubation Time, h 822 58.90 34.00 18.0 336.0 
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Table 5-2. Summary Statistics for Dataset Reporting RUP 
Digestibility Values 

Variable N. Obs Mean SD Min Max 

RUP Digestibility, % RUP 1,344 75.4 20.6 1.24 100 

CP, % DM 1,344 29.9 18.2 2.4 99.6 

ADF, % DM 618 17.6 11.1 0.0 86.0 

NDF, % DM 654 34.2 17.8 0.66 82.7 

RUP, % DM 994 41.9 23.4 1.2 100 

ADIN, % N 329 11.1 12.9 0.0 105.6 

NDIN, % N 209 24.2 15.3 2.4 89.6 

Incubation Time, h 1,255 15.9 12.6 0.0 96.0 

Acid Hydrolysis Time, h 977 1.62 0.934 0.0 6.0 

Pore Size, µm 1,211 42.7 10.1 9.0 55.0 
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Table 5-3. Model of A, B, and C Fraction Protein and Kd As Influenced by Feed and Methodological 
Factors 

 

1Square root of the estimated variance associated with study 

 
A 

  
B 

  
C 

  
Kd 

  

Variable Estimate SE P-
value 

Estimate SE P-
value 

Estimate SE P-
value 

Estimate SE P-
Value 

Intercept 61.7 17.6 <0.001 76.6 19.6 <0.001 -35.2 10.9 0.002 23.2 5.7 <0.001 
Area, mm2 -0.391 0.19 0.037 

   
0.394 0.14 0.005 0.143 0.085 0.098 

Grind, mm 0.435 0.38 0.26 
      

-0.794 0.20 <0.001 
Pore size, µm 1.52 0.57 0.008 -1.84 0.68 0.007 0.197 0.18 0.268 

   

Incubation time, 
h 

-0.177 0.14 0.22 -0.249 0.11 0.027 0.333 0.10 0.001 
   

Sample:bag area 
ratio, mg/mm2 

2.01 1.21 0.10 -6.27 3.62 0.085 4.98 1.71 0.004 3.80 0.80 <0.001 

NDF, % DM -0.463 0.17 0.008 -0.177 0.23 0.45 0.685 0.11 <0.001 -0.235 0.055 <0.001 
CP, % DM -1.05 0.49 0.035 0.485 0.35 0.17 0.379 0.29 0.19 -0.0661 0.14 0.636 
CP Interactions: 

            

Incubation time, 
h 

0.0189 0.0063 0.003 
   

-0.012 0.0040 0.0032 
   

Pore size, µm -0.0208 0.011 0.068 0.0350 0.014 0.016 -0.011 0.0055 0.041 
   

Area, mm2 
         

0.039 0.0088 <0.001 
Grind, mm -0.0312 0.017 0.064 

      
-0.0077 0.032 0.014 

Sample:bag area 
ratio, mg/mm2 

-0.131 0.047 0.006 0.121 0.067 0.074 
   

-0.206 0.032 <0.001 

NDF 
Interactions: 

            

Pore size, µm -0.0190 0.0079 0.017 0.0225 0.0088 0.012 
      

Area, mm2 0.00680 0.0035 0.054 
   

-0.0088 0.0025 <0.001 
   

Sample:bag area 
ratio, mg/mm2 

   
0.0849 0.051 0.098 -0.10 0.028 <0.001 

   

Fit Statistics: 
            

N 277 
  

277 
  

277 
  

277 
  

 1 10.2 
  

12.0 
  

8.59 
  

8.26 
  

2 7.07 
  

8.32 
  

4.19 
  

3.35 
  

Ratio of  

  to  

1.45 
  

1.44 
  

2.05 
  

2.46 
  

2
ss
2
es

2
ss

2
es
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2Square root of the estimated variance associate with residual error. 
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Table 5-4. Sensitivity Analysis for Predicting A Fraction Protein 
in Various Feedstuffs. 
 

Changed Variables1 

Feedstuff Pore Size, µm Incubation Time, h Ratio2 

Legume Hay 5.04 23.2 0.22 

Grass Hay 1.13 23.4 -1.81 

Barley Grain Rolled 29.0 17.8 10.3 

Fresh Grass 6.78 24.6 0.69 

Soybean Meal -4.28 15.4 -2.21 

Corn Grain Dry Ground 29.4 12.9 10.8 

Grass Silage 4.50 38.4 -1.38 

Legume Silage 9.17 36.5 0.92 

Canola Meal -6.61 14.8 -3.84 

1Values are percentage change between predictions using +1 SD and 
-1 SD for each feed variable, with all other variables in the model 
as the mean from the dataset. 

2Sample size to bag area ratio (mg/mm2). 
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Table 5-5. Model of RUP Digestibility as Influenced by Feed and 
Methodological Factors 

Variable Estimate SE P-value 

Intercept 60.0 12.6 <0.001 

ADF -0.235 0.122 0.056 

Acid Incubation Time, h -4.01 2.01 0.052 

Method = Mobile Bag 12.0 3.1 <0.001 

Fit Statistics 
   

N 280 
  

 1 8.98 
  

2 6.42 
  

Ratio of   to  1.40 
  

1Square root of the estimated variance associated with study 

2Square root of the estimated variance associate with residual 
error. 
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Chapter 6: Meta-Analysis of Endophyte-Infected Tall Fescue 
Effects on Cattle Growth Rates 

 
Published as: Liebe, D.M., and R.R. White. 2018. Meta-analysis 
of endophyte-infected tall fescue effects on cattle growth 
rates. J. Anim. Sci. 96:1350–1361. doi:10.1093/jas/sky055. 
 

Abstract 

The objective of this study was to quantitatively summarize 

literature reporting endophyte-infected (Neotyphodium 

coenophialum) tall fescue (Festuca arundinacea) effects on cattle 

average daily gain (ADG). This meta-analysis evaluated endophyte 

infection level, weather, and forage yield using a literature 

dataset of 138 treatments from 20 articles. Three infection level 

measurements were tested: endophyte infection as a percentage of 

infected tillers (E%); ergovaline concentration in ppb ([E]); and 

total ergot alkaloid concentration ([TEA]). Three types of weather 

variables were used: base values (temperature, humidity, and 

relative humidity), weather indices (heat index and temperature-

heat index (THI)), and novel weather variables based on time of 

year  which accounted for the duration of weather effects. Mixed 

effect models, weighted by the inverse of the standard error (SEM), 

including a random effect of study were built for each factorial 

combination of measurement method and weather variable group. 

Because many studies were missing SEM, two datasets were used: one 

containing only data with SEM reported and one that also included 

missing-SEM data. For the complete-SEM dataset (CSD), models were 
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weighted by 1/SEM. In the missing-SEM dataset (MSD) the mean 

reported 1/SEM was assigned as the weight for all missing SEM 

treatments. Although 18 initial models were created (2x3x3 

factorial approach), the backward stepwise derivation resulted in 

models that included only endophyte infection level, suggesting a 

negative relationship between infection level and ADG. The CSD 

models predicted ADG to decrease 39 and 33 g/d with each increase 

of 100 ppb of [TEA] and [E], and by 39 g/d for each increase of 

10% E%. In the MSD dataset, predicted ADG decreased by 39 and 33 

g/d with each increase of 100 ppb of [TEA] and [E], and by 47 g/d 

for each increase of 10% E%. All relationships reported had P<0.05. 

After visual inspection of the data, piecewise regression was used 

to identify an infection threshold (IT) of 60 ppb [E] and 11 E%, 

where the effect of infection level was constant on either side of 

the IT. The ADG was 40% and 49% greater for infection levels below 

the IT for [E] and E%, respectively. Across THI values in the 

analysis, ADG decreases ranged from 11.2 to 45.0% for cattle 

grazing endophyte-infected tall fescue compared to non-ergot 

alkaloid endophyte infected tall fescue. Pasture E%, [E], and [TEA] 

have a negative relationship with ADG in growing cattle, and 

increasing temperature decreases ADG when infection level is 

greater than the IT.  

Keywords: cattle, endophyte, ergovaline, fescue, growth, meta-

analysis 
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Introduction 

Non-ergot alkaloid endophyte-infected (NEA) tall fescue is an 

alternative to toxic wild-type endophyte infected tall fescue 

because it has greater stand persistence than endophyte-free tall 

fescue (EFF; Clay, 1988). Accordingly, cattle grazing NEA fescue 

have greater ADG than those grazing EFF (Parish et al., 2003; 

Nihsen et al., 2004). A challenge with adopting NEA tall fescue 

cultivar is the initial investment required to convert to novel 

cultivars; time required for transition is estimated at 3 to 7 

years (Bouton et al., 2002; Gunter and Beck, 2004; Beck et al., 

2008). Without planning tools to evaluate this transition, 

evaluating economic viability is difficult. Quantitative cattle 

performance expectations on different cultivars is necessary for 

such planning.  

Because of the large number of cultivars and the limited 

number of studies on each, it is more feasible to evaluate cattle 

responses to endophyte infection level. Three infection level 

metrics are reported: endophyte percentage (E%) measured as the 

proportion of infected tillers; concentrations of ergovaline 

([E]); and total ergot alkaloid concentration ([TEA]). The 

literature on endophytes currently contains studies using E%, [E], 

and [TEA], and production expectations must also account for these 

variable reporting methods. 
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  The objective of this study was to develop equations to 

describe performance of cattle grazing infected tall fescue 

pastures using meta-analysis of literature reporting on endophyte 

infection level and cattle ADG. Weather variables were 

investigated for effects on growth, and novel weather variables 

were created to better model the cyclic nature of climate’s effect 

on endophyte growth. A secondary objective was to investigate the 

possibility of an infection threshold (IT), where infection effect 

differs in relation to IT. It was hypothesized that ADG would be 

decreased with increasing infection level and that other factors, 

such as weather, would exacerbate these effects.  

 

Materials and Methods 

To properly assess the effects of grazing endophyte-infected 

tall fescue on stocker cattle ADG, a dataset was compiled, and the 

papers were screened based on the inclusion and exclusion criteria 

detailed below. Weather variables not reported in papers were 

obtained from public weather station data repositories based on 

the dates and durations of the appropriate studies. Weather indices 

were calculated to more succinctly describe weather variables. To 

account for changes in environment over time, novel parameters for 

the effect of study start date, temperature, and duration were 

created using sinusoidal curves to mimic the changes in endophyte 

growth over the year.  
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All models were built using the lmer package (Kuznetsova et 

al., 2013) in R version 3.1.0. (R Core Team, 2014) and data was 

weighted based on study standard error (SEM). For data reported 

without SEM, a second dataset was tested with unreported SEM data 

being given the average SEM of all other studies. This resulted in 

two sets of data for model-building. Initial models were designed 

using a 2x3x3 factorial approach with factors being weighting 

strategy, weather variable, and measurement type. The 18 resulting 

models were derived using backward, stepwise elimination multiple 

regression and tested for significance. Models were compared using 

corrected Akaike information criterion (AICc) and estimated 

variance of study and error. Only models that resulted in 

significant parameters are reported as results of the meta-

analysis. 

 

Data Collection 

Data were collected from peer-reviewed published journal 

articles through a comprehensive literature search. Key words used 

to search for relevant articles were: fescue, endophyte, infected, 

ergot alkaloid, toxicosis, ergovaline, gain, and cattle. 

Subsequent titles were searched from the references of recovered 

articles, allowing an increased search space. To be included in 

the dataset, papers needed to be published before 2017 in English 

and include data for ADG using live BW. Articles reporting the 
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effects of tall fescue grazing on animals other than cattle were 

also excluded. Test animals that were fed an endophyte-infected 

seed concentrate were not considered for inclusion in the dataset 

because the focus of the study was on grazed tall fescue. 

The complete dataset included 138 treatment means from 20 

articles. Summary statistics for key variables reported within the 

dataset are provided in Table 6-1 and a listing of article 

citations is included in Supplementary Table 6-1. Of the 20 

articles, 6 included growth data for heifers and cows instead of, 

or in addition to, data on steers. The growth curves of these 

animals would differ, but the addition of a random effect for trial 

should have accounted for this variation. All animals included 

were Bos taurus species with a combination of predominantly Angus 

and Angus crossbreeds. 

  

Weighting Strategies 

A challenge with meta-analysis is incomplete reporting of 

SEM. Often, papers that fail to report SEM are removed entirely 

from the dataset. However, not weighting these studies at all is 

likely inappropriate because they do have some value, it is just 

difficult to determine the exact value because the precision of 

the reported means is unknown. As an alternative to weighting the 

studies with a value of 0, studies were weighted equally to the 

average study in the dataset. Because this weighting approach is 
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not conventional, two approaches were employed: the complete-SEM 

dataset (CSD), including only studies with reported SEM and the 

missing-SEM dataset (MSD), including all data with the mean SEM 

given to all incomplete data.  

Data were weighted for 1/SEM to limit the weight of studies 

with very small trials and error. Optimal weighting using this 

method has been previously documented (Roman-Garcia et al., 2016; 

White et al., 2016) and works well with mixed models (St-Pierre, 

2001). All papers included in the dataset were checked to determine 

whether the statistical analysis used a fixed or mixed effect 

model. The weighting factor was calculated as each study’s SEM 

divided by the mean SEM of the data within analysis type and taking 

the reciprocal so the lesser the SEM of the study, the greater 

weight in the model. Dividing by the mean reciprocal SEM normalized 

the weighting factors to 1 irrespective of analysis type, 

effectively standardizing the weights across fixed effect or mixed 

models (White et al., 2015; Roman-Garcia et al., 2016). In studies 

that reported SEM as less than one-fourth the mean SEM, the SEM 

was set to one-fourth of the mean SEM across all studies to prevent 

over weighting (Firkins et al., 2001; Roman-Garcia et al., 2016; 

White et al., 2016). The curtailing of SEM resulted in 5.2% and 

3.6% of errors being trimmed for CSD and MSD, respectively. The 

SEM trimming was conducted separately for mixed and fixed effect 

models, because mixed-models had greater SEM. The result of this 
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cleaning was weighting factors equivalent to the reciprocal SEM 

without bias for statistical method, without overweighting 

extremely precise studies. 

 

Variables to Represent Weather 

Raw weather variables of interest within this study included 

mean, maximum, and standard deviation of temperature by month. 

Mean humidity was also considered. Weather data were gathered for 

each study from the National Centers for Environmental 

Information’s local climatological database (National Climatic 

Data Center (NCDC)). Data were downloaded from the database and 

mean temperatures, dew points, and maximum temperatures for the 

duration of the studies were recorded. The Relative Humidity (RH), 

which the sourced weather data did not supply, was calculated using 

the formula:  

[1] , 

where T is Temperature in degrees Celsius and TD is the Dew Point 

(Alduchov and Eskridge, 1996). 

As a means to potentially reduce complexity in the models, 

and better describe weather effects, various indices were employed 

to represent the effect of weather on ADG. Because previous work 

has suggested cattle consuming endophyte infected tall fescue are 

hypersensitive to heat, specific focus was placed on variables 
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that would reflect heat stress, including: heat index (HI) and 

temperature-humidity index (THI).  

The HI was calculated as:  

[2] ,  

where T is Temperature in degrees Celsius and RH is Relative 

Humidity as a percentage (Rothfusz and Headquarters, 1990).  

A metric combining temperature and humidity is often employed 

to more accurately represent the heat load on the animal. The most 

common technique, used in The Livestock Weather Safety Index (LCI, 

1970), is the temperature-humidity index (THI). The THI was 

calculated using the equation:  

[3] ,  

where T is Temperature in degrees Celsius and RH is Relative 

Humidity as a percentage. The THI has been shown to effectively 

indicate heat stress in cattle, and continues to be refined with 

more recent adjustments for wind speed and solar radiation (Mader 

et al., 2006). Although wind speed and radiation have been shown 

to influence heat stress, these data were not available in the 

current study. However, Mader et al. (2006) suggest that THI is an 

adequate representation of thermal load with or without adjustment 

for wind speed and radiation. 
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It is established knowledge that increased endophytic 

infection leads to greater vasoconstriction, making it more 

difficult for animals to dissipate heat. Research has also shown 

that E% and [E] change throughout the year relative to maximum 

infection potential, regardless of location (Ju et al., 2006). 

Given the concurrent change in temperature and infection 

percentage, it was hypothesized that a variable representing 

weather impacts on tall fescue ADG responses should also represent 

the temporal behavior of stand infection. Table 6-2 includes data 

from Ju et al. (2006), which was used to derive a curve to describe 

the effect of time of year on endophyte levels. A curve for E% and 

[E] effects as a percentage of max infection level were derived 

using nonlinear least-squares regression and the following 

formula: 

[4]       , 

where A is Amplitude, f is Frequency, t is Time in months, φ is 

the Phase and β is the y-intercept (P < 0.001 for all parameters). 

By fitting sinusoidal curves to E% and [E] the effects of infection 

level over time were quantified. Trial duration was accounted for 

by integrating over the curve in 1/30th-month intervals from the 

start date of the trial to determine the mean effect of infection 

level experienced by the animals on any specific trial. The 
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equation for average endophyte level over a given duration (AEL) 

was: 

[5]    , 

where start is the start month of the trial and duration is the 

length of the trial as a fraction of a month. This resulted in a 

number that, in theory, more accurately described the combined 

thermal and endophyte consumption effects experienced within each 

treatment group.  

 
 

Infection Threshold 

The IT, defined as the threshold to produce clinical tall 

fescue toxicosis, has been measured as 300 to 750 pbb [E] 

(Hovermale and Craig, 2001; Tor-Agbidye et al., 2001; Craig et 

al., 2014). Along with the three common measurement methods 

previously described: E%, [E], and [TEA], an IT was derived by 

piecewise regression to analyze the effect of splitting the 

response surface. This approach fits one slope to infection level 

greater than a threshold and a different slope below the threshold. 

The threshold value was identified by iteratively testing models 

over the sample space of each infection level measurement to 

determine the optimal threshold. The IT value was chosen based on 

the infection level identified to generate the smallest AICc 
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(Hurvich and Tsai 1989). Once a threshold was identified, forward 

stepwise regression was used to test for significance of weather 

variables. 

 
 

Model Derivation Procedure 

All models were derived using the lmer (Bates et al., 2017) 

function in R version 3.1.0. (R Core Team, 2017). Growing cattle 

ADG was used as the response variable for all models. All 

explanatory variables are summarized in Table 6-1. For the set of 

18 factorial models, models were refined through backward stepwise 

elimination multiple regression as described in Roman-Garcia et 

al. (2016) and White et al. (2016). The variable with the greatest 

non-significant P-value (P > 0.05) was iteratively eliminated from 

the model unless the term was a linear term with a significant 

quadratic effect (P ≤ 0.05). The piecewise models were derived as 

previously described. After the threshold infection percentage was 

identified, forward stepwise regression was used to test for 

parameter significance. 

Final models were also checked to ensure all variance 

inflation factors (VIF) factors were acceptable. The VIF measures 

the severity of the multicollinearity in a regression and the 

resulting severity of the inflation of variance due to this 

collinearity in the parameter estimations. The square root of the 

VIF indicates the inflation of the variance of the parameter 
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estimate compared with an ideal scenario of no collinearity. This 

study used a VIF cutoff of VIF < 10 for linear factors not involved 

in interactions or quadratic terms, meaning the variance due to 

collinearity was one factor greater than that of a regression with 

no collinearity in parameter estimates. The cutoff for quadratic 

terms, interaction terms and linear terms involved in either 

quadratic or interaction terms was VIF < 100. These cutoffs are in 

line with current research practices, although no clear rules have 

been established (Roman-Garcia et al., 2016). 

 
 

Evaluating Model Performance 

Models were evaluated based on AICc and root estimated 

variance due to error (σ̂ɛ, i.e. the estimated variance for error) 

and study (σ̂s). Both σ̂ɛ and σ̂s are expressed as a percentage of 

the dependent variable mean. The AICc was the predominant indicator 

of model performance because all models were derived from the same 

size datasets using the same response variable. The reporting of 

RMSE was avoided because of the inclusion of a random effect of 

study. When a random study effect is included and models are chosen 

based on RMSE, the models perform poorly on new data with different 

studies because they underestimate error (Boerman et al., 2015). 

All variables were assessed for simple correlation to evaluate 

collinearity. Residual plots used data adjusted for the random 

effect of study, and the linear regressions were weighted for the 
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SEM to check for patterns in the data. Slope and mean bias as a 

percentage of the dependent variable mean were recorded and any 

model displaying a significant bias was adjusted or removed. When 

models were comparable, the one with more observations was deemed 

more desirable. 

 

 

Results and Discussion 

Equation Descriptions 

A set of linear models was derived using a 2x3x3 factorial 

approach with factors for weighting strategy, weather variable, 

and measurement type. The final equations for each of the 18 factor 

combinations can be viewed in Table 6-3. When different factorial 

combinations lead to the same equation, the resulting equation was 

only listed once.  

 
 

Average Daily Gain Responses 

After backward elimination, infection level was the only 

significant variable in all tested models. The 3 equations using 

E%, [E], and [TEA] were considered the basis of comparison for all 

other models and can be found in Table 6-3. Each of the three 

measurement methods had significant (P < 0.05), negative 

relationships with ADG. Using the derived equations from the CSD: 

for a 10% increase in E%, a 100 ppb increase in [E] and a 100 ppb 
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increase in [TEA] was associated with a decrease in ADG of 38 g 

(5.3%), 33 g (4.4%), and 39 g (6.6%) per day, respectively. Barker 

et al. (2009) noted that a rule of thumb for E% is a loss of 45 

g/d for each 10% increase in E%, which is marginally greater but 

generally in line with the CSD estimates.  

 

Measurement Methods 

Equations utilized one of the three base methods for 

estimating endophyte levels in tall fescue: [E] in parts per 

billion, E% and [TEA] in parts per billion. From 1983 to 1993, the 

popular method for measuring endophyte levels involved taking 

samples from tillers in the field and inspecting the samples for 

the presence of endophytes. The results of this microscopy work 

were reported as infected tillers as a percentage of total samples 

taken (E%). This method was used until Rottinghaus et al. (2001) 

developed a method of using High-Performance Liquid Chromatography 

(HPLC) to measure [E], the most abundant toxic alkaloid produced 

by the endophytes (Rottinghaus et al., 1991). This HPLC measurement 

remains the most common measurement method in research on 

endophyte-infected tall fescue due in part to the recent creation 

of non-ergot alkaloid endophyte strains which do not produce 

ergovaline.  

Non-ergot alkaloid endophytes present in tall fescue still 

appear using microscopy, but do not create the harmful ergot 
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alkaloids that are toxic to cattle. As a result, novel cultivars 

cannot be reliably distinguished from endophyte infected tall 

fescue when using the E% method. Because of the growth in 

popularity and interest in endophyte-infected tall fescue that 

does not produce ergot alkaloids, HPLC is distinctly more effective 

at properly quantifying the infection level key to decreased ADG 

in cattle. Using E% as the measurement method (Eq. 6) yielded the 

greatest slope and mean error as a percentage of the mean SE in 

the CSD. In terms of variation, the E% equation parameter estimate 

CV was greatest among all equations, with CV of 130, 93, and 77% 

for Eq. 6, 7, and 8, respectively. When coupled with inability to 

differentiate toxic from novel, nontoxic cultivars, these 

observations suggest E% is a poor indicator of ADG.  

The [E] has been cited as making up between 85 to 97% of [TEA] 

in tall fescue (Lyons et al., 1986). Using the models derived 

herein, the proportion of ADG loss associated with [E] and [TEA] 

can be calculated. This calculation was done using the following 

simple arithmetic and Eq. 6 and 7. 

[6]   

[7]   

[8]   
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Using this equation, the effect of any given [TEA] in terms of an 

[E] can be derived. Taking into consideration the almost identical 

slopes of Eq. 6 and 7, the difference in the effect of an increase 

in [TEA] versus [E] is approximately 20%. This suggests that 

ergovaline accounts for at most 80% of the effect on ADG of the 

[TEA] produced by a given tall fescue cultivar. 80% reflects a 

maximum because there could be effects common between [E] and [TEA] 

such as shade, water availability, mineral supplementation, or 

some other factor. Note that this percentage is different than the 

aforementioned 85 to 97% for the proportion of ergovaline in the 

[TEA]. Although [E] makes up at most 80% of the effect on ADG, the 

remaining 3 to 15% of ergot alkaloids, along with factors like 

genetics or pasture management, are likely responsible for the 

other 20% of the ADG response. 

Because there is a linearly correlated relationship between 

the effect of [E] and [TEA] (r≈1, P <0.001), measuring one should 

provide a good proxy for the other at any concentration. Although 

the difference in slope between the two equations was negligible, 

the proportion of effect attributed to [E] may decrease at high 

concentrations; [E] makes up about 65% of the total effect at [TEA] 

of 800 ppb. 
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Weather Variables 

Although variables were systematically added back into the 

final models to identify the best combination, no weather variables 

were identified as significant for the three measurement methods 

using the CDS (P>0.05). There are several reasons why the weather 

variables did not appear to have a significant effect on ADG. By 

utilizing a mixed effects model, publication was a random variable 

to remove study-to-study variation. Because of the small number of 

trials included for each measurement type, 3, 5 and 6 publications 

for [E], E% and [TEA] in the CSD and 4, 8, and 7 publications for 

the MSD, this random effect may explain most of the weather 

variation. In the 14 different publications included in the CSD, 

states in which trials were performed were Arkansas, Oregon, 

Kentucky, Georgia, Tennessee, Alabama, Oklahoma, Louisiana and 

North Carolina. The state with the most studies in the dataset was 

Georgia, with 5 different treatment groups. By isolating points 

from only Georgia, the resulting box plot (Figure 6-1) shows a 

visual relationship between THI and ADG. When only these data were 

analyzed, a 75% decrease in ADG was observed as THI moved up 

approximately 3.5 units (P<0.01). This relationship may be an 

overestimate due to limited sample size; however, this illustrates 

the possibility of weather variables having significance that was 

not apparent in Eq. 6, 7, and 8.  
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A duration by starting month interaction variable was 

included at the beginning of backwards regression in each model 

using the raw weather data factor, with the effect being removed 

due to non-significance each time. The P-value of duration by 

starting month when combined with each measurement method alone 

was only significant (P = 0.014) for [TEA]; however, the AICc value 

was greater in this model and was considered inferior when compared 

to predictions using [TEA] alone. For models using [E] and E%, 

adding a duration by starting month interaction variable either 

showed a tendency towards significance or was non-significant (P 

= 0.069 and 0.8114, respectively) in the CSD. This result could be 

due to the small sample size of starting months.  

A reason for failure to identify significant weather effects 

in most models might be that THI and HI were not within ranges 

typically considered to be severe. Because THI and HI were 

calculated using the average temperatures provided, the indices 

may not have properly captured times of heat stress that may have 

occurred intermittently during the trials. Eigenburg et al. (2005) 

cites a maximum threshold THI of 74 for “normal” conditions; there 

were no trials with a calculated THI greater than 73. Although THI 

was assumed using average temperatures and RH would be a good proxy 

for severity of heat stress experienced, this may not have been 

the case in the current dataset.  
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The research goal was to utilize previous data to extrapolate 

possible weather and infection curves, then use those curves to 

better account for the average effect experienced by the animal 

using integration to account for duration of study. The CSD showed 

a significant (P<0.001) negative correlation between duration of 

the studies included and the starting month (Table 6-4), meaning 

that longer studies tended to start earlier in the year and shorter 

studies at the end of the year. This makes sense from a logical 

standpoint because the prime grazing season is predominantly in 

the spring and summer. However, the correlation between duration 

and starting date made it hard to test AEL. 

 

Piecewise Regression Model Performance 

Studies have identified an [E] threshold value needed to 

produce clinical signs of toxicity. The range of suggested IT was 

large, but these studies suggest a differing effect of infection 

greater and less than a threshold (Hovermale and Craig, 2001; Tor-

Agbidye et al., 2001; Craig et al., 2015). To evaluate whether 

this relationship existed in the current data, piecewise 

regression was used to test models with two linear response 

surfaces based on IT. Previous studies have cited thresholds for 

clinical tall fescue toxicosis (Hovermale and Craig, 2001; Tor-

Agbidye et al., 2001; Craig et al., 2015); however, these 

thresholds have not been derived based on quantitative summary of 
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the available literature. In this analysis, IT models were only 

derived for [E] and E% due to the small sample size of the [TEA] 

data in the CSD and MSD relative to any threshold. Using the IT, 

infection levels less than the IT resulted in a 40 and 49% increase 

in ADG for [E] and E%, respectively. The AICc graphs and visuals 

of the gaps in data are shown in Figure 6-2 and suggest that 

infection levels do not appear uniformly in the literature, but 

rather in discrete ranges.  

Results of the IT models are shown in Table 6-5. For the [E] 

IT, a negative relationship was significant for the infected by 

average temperature interaction variable. The ADG decreased as 

temperature increased when the tall fescue infection level was 

greater than the IT. This is logical due to temperature 

exacerbating the effects of heat stress caused by cattle grazing 

infected tall fescue. The fact that temperature alone did not show 

a negative relationship with ADG also makes sense considering that 

increased temperature would indicate better growing conditions for 

forages, leading to greater ADG in the absence of infected tall 

fescue (lower than the IT). Despite the increase in predictor 

variables, the AICc value for the infection by average temperature 

model was lower than for Eq. 7 using the same data. Using THI as 

the weather variable in place of average temperature also yielded 

significant results and a negative relationship between the 

infected by THI interaction variable (Table 6-5).  
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The use of a AEL variable to account for duration of study 

improved the results of the IT model, with the intercept, infected, 

AEL, and AEL by infected interaction variable all showing 

significance (P<0.05). As with the raw weather indices, the 

interaction of AEL by infected had a negative relationship with 

ADG. As cattle graze infected tall fescue in times of greater 

infection levels, ADG decreases. In times where AEL would be high 

but the pastures are not infected, ADG increases.  

As noted previously, research has shown a change in infection 

rates over the year, with greater infection levels occurring in 

the warmer months (Barker et al., 2009). The fact that both 

infection levels and temperature rise in parallel could be another 

reason why a significant interaction between infection level and 

temperature was not detected. In the models, some of the effects 

of increasing infection rates may be attributed to rises in weather 

variables that compound on an animal’s ability to dissipate heat. 

As such, within the data it is likely that infection level 

represents both the actual infection level of the forage but also 

the season in which the measurements were collected. 

 

 

Weighting Strategies 

In the analysis of the MSD, a larger dataset was utilized by 

including data that did not report SEM of ADG responses. The value 
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and significance of parameter estimates derived from the CSD and 

MSD datasets differed (Table 6-3). At this point, it is unclear 

whether these inconsistencies are caused by the weighting 

procedure (filling in missing SEM as equal to the mean SEM) or by 

the added data revealing new relationships. Future work on 

synthetic data evaluating different ways to handle missing SEM 

data are needed to better understand the best way to deal with 

this data challenge.  

Missing-SEM Data. Results for models derived using the MSD 

are listed in Table 6-3. The estimation for ADG with no infection 

(intercept) changed +8.8, -1.9, and +31.2% from the estimations 

using the CSD for E%, [E], and [TEA], respectively. Changes in 

slopes for E%, [E], and [TEA] were +19.6, +0.2, and -0.6% compared 

to the CSD equations. Both the intercept and parameter estimations 

increased from Eq. 8 to Eq. 11, likely because the mean ADG within 

the MSD dataset was greater than the CSD dataset (0.6771 and 0.5650 

kg/d).  

 

 

Implications 

Total endophyte concentration has been shown to increase 

starting in the spring, with lower concentrations in the winter 

(Ju et al., 2006). A curve for [E] was created using year-long 

measurements of endophyte concentration because it was assumed 
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that the fraction of ergot-alkaloid producing endophytes is 

proportional to total endophyte concentration throughout the year, 

which is reasonable considering E% fluctuates over a year in a 

cyclic manner as well. Studies have reported cyclic changes in [E] 

coinciding with head emergence and seed development in perennial 

ryegrass, and also suggest the highest [E] occurs during peak host 

growth in the summer (Reed et al. 2011). The values in Table 6-2 

were used to calculate a curve for percent [E] of maximum exhibited 

in the year for each day of the year. For example, on March 1st, 

[E] in a field will be 34% of the year’s potential maximum [E]. 

Using three levels of field infection, 0, 100, and 300 ppb [E], 

differences in cumulative growth were calculated for cattle spring 

and fall calving seasons. Cattle BW gain was 33 and 19% greater in 

the 4-month period from October through January for cattle on 0 

ppb [E] fields compared to 300 and 100 ppb, respectively. From 

June through September, BW gain was 128% greater for cattle on 0 

ppb [E] fields compared to both 300 and 100 ppb. A 0 ppb [E] field 

compared to a 300 ppb [E] results in an extra 20 and 65 kg BW gain 

in the fall and spring calving seasons, respectively. The 

cumulative BW gain over 1 year, October through January, and June 

through September are graphed in Figure 6-3. Value per kg of BW 

gain was calculated using Missouri purchase prices from 2012 to 

2017 of 249-kg BW, medium-framed, number 1 steers in September for 

fall grazing and February for spring grazing. The values calculated 
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were $1.27/kg and $1.21/kg in US dollars for fall and spring 

purchase prices, the growth difference among these systems would 

give the 0 ppb pasture a benefit of $25 and $79 per head per 

season. These values are considerable, but very much aligned with 

the data compiled. In two studies that reported ADG for cattle 

grazing tall fescue on both sides of the IT, the average depression 

in ADG for each was 356 and 354 g/d (Parish et al. 2013; Parish et 

al. 2003), whereas the model predicted average ADG depressions of 

262 and 431 g/d. The effect of endophyte-infection level on ADG 

should be an important consideration for farmers when grazing 

cattle.  

When deciding whether to plan for spring or fall calving 

(cow/calf) or grazing (stocker) seasons, the effects of endophyte 

infection level should be considered. One study specifically 

comparing the profitability of fall-calving versus spring-calving 

herds and concluded that, when grazing endophyte-infected fescue, 

it is more cost effective to calve in the fall (Caldwell et al., 

2013). The same study went on to note that higher daily gain could 

be seen in spring-calving herds if the pasture was nontoxic 

endophyte-infected instead (Caldwell et al., 2013). Multiple 

studies have shown the increased profitability of calving in the 

fall, due in part to higher daily gain for calves (Bagley et al. 

1987; McCarter et al., 1991; Gaetner et al., 1992; Henry et al., 

2016). The present study also supports the idea that farmers 
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maintaining pastures with endophyte-infected tall fescue should 

consider switching to a fall calving system as a means to minimize 

BW gain losses.  

 

Limitations 

The biggest limitations of this meta-analysis were sample 

size and data structure. Two weighting strategies were employed to 

combat this limitation by including more incomplete studies with 

incomplete data reporting. Some of the recorded variables did not 

have consistent distributions. For example, there were no data for 

studies beginning in 5 months of the year, which limited ability 

to derive effects by change in weather. Another result was an 

inconsistent distribution of trial durations for each starting 

month, making it hard to establish a duration effect. The 

inconsistency of measurement methods required splitting the data 

into three groups, severely limiting the size of each of the 

training sets. Ideally, as more studies are conducted on the 

effects of novel endophyte-infected tall fescue cultivars, a more 

consistent dataset utilizing one measurement method will become 

available. 
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Tables 

Table 6-1. Summary statistics of the key variables in the study 
dataset, including missing-SEM data. 

Item N1 Mean Median Minimum Maximum 

Studies 20 
    

ADG, kg/d 138 0.683 0.618 -0.340 2.32 

Initial Weight, kg 70 256 247 220 437 

Final Weight, kg 70 354 346 176 687 

Forage Yield, kg/ha 33 3020 2850 1350 8980 

Weather 
     

Max Temp, ⁰C 131 28.0 26.8 12.7 43.3 

Max Temp S.D, ⁰C 80 6.95 6.8 3.01 9.62 

Average Temp, ⁰C 135 18.4 20.7 2.83 36.0 

Average Temp S.D, ⁰C 80 6.48 6.36 2.84 9.06 

Relative Humidity, % 127 63.7 60.2 52.1 77.0 

Relative Humidity S.D, % 80 16.3 16.1 8.42 21.1 

THI 127 63.8 66.7 48.1 73.4 

Heat Index 127 64.1 68.7 41.3 77.6 

Tall Fescue 
     

Endophyte, % 55 42.7 35.0 0.00 98.3 

Ergovaline, ppb 44 196 31.5 0.00 1210 

Total Ergot Alkaloids, ppb 24 145 20.0 0.00 820 
1Number of data points in missing-SEM dataset 
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Table 6-2. Data for ergovaline concentrations* and average 
temperature by month from the missing-SEM dataset. 

Month Endo1 EndoMax, %2 Temp3 TempMax, %4 

January 0.57 0.28 3.77 0.14 

February 0.77 0.37 5.20 0.20 

March 0.66 0.32 10.2 0.38 

April 0.93 0.45 15.1 0.57 

May 1.25 0.60 20.2 0.76 

June 1.52 0.73 24.5 0.92 

July 1.93 0.93 26.2 0.98 

August 1.80 0.87 26.6 1.00 

September 1.87 0.90 22.0 0.83 

October 2.07 1.00 16.3 0.61 

November 1.61 0.78 10.5 0.39 

December 1.16 0.56 12.0 0.45 

*Ergovaline data adapted from Ju et al., 2006 
1Total Endophyte Concentration, mg/g 
2Ergovaline as a decimal percentage of the maximum concentration 
recorded 
3Temperature, °C 
4Temperature percentage as a decimal of maximum temperature 
recorded 
	  



 225 

Table 6-3. Parameter estimates in models of ADG using either the 
complete-SEM dataset or including the missing-SEM data. Models 
were further divided by method used to measure infection level.   

Complete-SEM Dataset Missing-SEM Dataset 
Item1 E% [E] [TEA] E% [E] [TEA] 
Eq. no. 6 7 8 9 10 11 
Intercep
t 

0.7342 0.7443 0.5969 0.7985 0.7302 0.7834 

E% -
3.885x1

0-3 
  

-
4.647x1

0-3 
  

[E] 
 

-
3.254x1

0-4 
  

-
3.259x1

0-4 
 

[TEA] 
  

-
3.934x1

0-4 
  

-
3.912x1

0-4 
Fit 
Statisti
cs 

      

n 32 41 22 55 44 24 
AICc 5.09 -33.4 -4.70 68.3 -34.1 1.52 
σ̂s2 0.037 0.120 0.274 0.440 0.103 0.555 
σ̂ɛ3 0.115 0.106 0.076 0.242 0.110 0.074 

1E% = Endophyte percentage; [E] = Ergovaline, ppb; [TEA] = Total 
Ergot Alkaloids, ppb; AICc = corrected Akaike’s Information 
Criterion. 
2Square root of the estimated variance associated with study 
3Square root of the estimated variance associate with residual 
error. 
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Table 6-4. Correlation table for variables reported in studies 
 

 Dur Mon RH 
RH.s
d 

Max.
T 

Max.Ts
d 

Avg.
T 

Avg.Ts
d ADG 

Forag
e HI THI 

[TEA
] [E] E% AEL 

Dur 1.00                

Mon 

-
0.22

a 1.00               
RH 0.52 0.02 1.00              

RH.sd 

-
0.30

a 
0.59

a 

-
0.32

a 1.00             

Max.T 0.62 

-
0.16

b 0.83 
-

0.88 1.00            
Max.T 
sd 0.05 0.05 0.11 0.52a 

-
0.59a 1.00           

Avg.T 
0.23

a 

-
0.25

a 
0.49

a 
-

0.88 0.70 -0.60a 1.00          
Avg.T 
sd 0.08 

-
0.06 

0.21
b 0.39a 

-
0.43a 0.98 

-
0.44a 1.00         

ADG 
0.14

b 0.07 0.03 
-

0.44a 0.01 -0.16 0.26a -0.11 1.00        
Forag
e 

0.52
a 

-
0.16 

-
0.10 

-
0.72a 0.06 0.09 0.00 0.02 0.02 1.00       

HI 
0.39

a 

-
0.30

a 0.52 
-

0.88 0.72 -0.59a 1.00 -0.44a 
0.26

a 0.00 1.00      

THI 
0.41

a 

-
0.27

a 0.54 
-

0.87 0.73 -0.60a 1.00 -0.46a 
0.27

a -0.01 1.00 1.00     

[TEA] 0.00 
-

0.02 0.05 0.20 
-

0.09 0.00 
-

0.14 0.01 

-
0.46

a 1.00 0.20 0.19 1.00    

[E] 
-

0.07 0.01 0.12 
-

0.04 0.07 -0.12 0.07 -0.07 

-
0.57

a 0.05 0.07 0.07 NA 
1.0
0   

E% 0.16 0.13 0.22 NA 0.23 NA 0.21 NA 

-
0.32

a NA 0.23 0.23 NA NA 
1.0
0  

AEL 
0.20

a 
-

0.57 
0.17

b 
-

0.82 0.45a -0.55a 0.54 -0.45a 
-

0.14 0.48a 
0.47

a 
0.45

a 0.03 
0.0
1 

0.0
3 

1.0
0 
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1Dur = Duration; Mon = Starting Month; RH = Relative Humidity; RH sd = standard deviation 
of the RH; Max.T = Average Maximum Temperature, °C; Max.T sd = standard deviation of 
Max.T; Avg.T = Average Temperature, °C; Avg.T sd = standard deviation of Avg.T; Forage = 
Forage Yield; HI = Heat Index; THI = Temperature-Humidity Index; [TEA] = Total Ergot 
Alkaloid Concentration, ppb; [E] = Ergovaline concentration, ppb; E% = Endophyte 
percentage; AEL = Average Infection Level over duration of study. 
a P < 0.05 
b 0.05 < P < 0.10 
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Table 6-5. Parameter estimates for models of ADG using the 
complete-SEM dataset with thresholds derived from E% and [E] 
separately.   

Infection-Only 
Equations 

Weather-Included 
Equations 

Item1 E% [E] E% [E] 
Eq. no. 15 16 17 18 
Intercept 0.745 0.754 1.017 -0.172 
E% Infected -0.269 

 
-0.226 

 

[E] Infected 
 

-0.249 
 

0.882 
THI 

   
0.016 

AEL 
  

-0.004 
 

[E] Infected x 
THI 

   
-0.020 

Fit Statistics 
    

n 32 41 32 41 
AICc -3.5 -39.4 2.56 -50.3 
σ̂s2 <0.001 0.098 <0.001 0.041 
σ̂ɛ3 0.117 0.114 0.104 0.078 

1E% = Endophyte percentage; [E] = Ergovaline, ppb; [TEA] = Total 
Ergot Alkaloids, ppb; AICc = corrected Akaike’s Information 
Criterion. 
2Square root of the estimated variance associated with study 
3Square root of the estimated variance associate with residual 
error 
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Figures 

 
Figure 6-1. Boxplot of relationship between Temperature-

Humidity Index (THI) and ADG in all Georgia data. Dataset was 
comprised of all studies done in Georgia within the dataset to 
look for a visual relationship between THI and ADG not seen in 
the models derived for ADG.  
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Figure 6-2. (A,B) Corrected Akaike’s Information Criterion 

(AICc) values associated with pairwise regression models built 
at an infection threshold (IT). The optimal IT was selected as 
the first point at which the AICc value reached its minimum. 
(C,D) Plots of infection measurement method, illustrating the 
sparsity of intermediate level infection data.  
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Figure 6-3. (A) Cumulative BW gain over 1 year by maximum 

infection level of a given pasture. Infection level was 
corrected using Ju et. al (2006) and temperature-humidity index 
(THI) data for each month was derived from the weather data 
collect for each study. ADG was calculated using Eq. 12 with 
inputs for THI and infection level based on 60 ppb ergovaline 
concentration ([E]) threshold. (B) Cumulative BW gain over a 
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theoretical fall growing season. (C) Cumulative BW gain over a 
theoretical spring growing season. 
 

Chapter 7: Practical challenges and potential approaches to 
predicting low-incidence diseases on-farm using individual cow 

data: a clinical mastitis example 
**To be submitted to Journal of Animal Science  

Abstract 

Mastitis is an extremely costly disease in the US dairy 

industry. Despite this, clinical mastitis (CM) can be challenging 

to model because of its low prevalence, affecting less than 1% of 

cows per day. This low prevalence means that a model can nearly 

always be correct at predicting the negative instance (no clinical 

infection). But the sparsity of clinical mastitis cases makes 

training, evaluating, and applying CM prediction models a 

challenge. The objective of this study was to build models for 

predicting CM incidence using time-series sensor data and choose 

models that maximize net return based on a cost matrix. This work 

used data from two university dairy farms, the University of 

Florida and Virginia Polytechnic Institute and State University to 

gather representative CM incidence data including 110,156 milkings 

and 333 total CM cases. Variables used in the models were milk 

yield, protein, lactose, fat, activity, conductivity, DIM (7 

bins), and lactation number (1st, 2nd, or 3+). Models that 

predicted either likelihoods of Gram-positive (GP) or Gram-

negative (GN) CM on each day were derived using extreme gradient 
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boosting with weighting favoring true positive cases, logistic 

responses, and log-loss errors. Model accuracies were determined 

using data randomly held-out from the training set on each run. 

All variables considered were in terms of change (slope) over 

previous days including the day of visual mastitis.  The GN and GP 

models were each run 100 times on random 75% samples of the data 

and the GN models had a median sensitivity (Se) of 52.6% and 

specificity (Sp) of 99.8%, while the GP models had a median Se of 

37.5% and Sp of 99.9% when tested on the held-out data. The 

International Standard ISO/FDIS 20966 describes a minimum Se of 

80% with Sp greater than 99%; however, comparison of results in 

the present work suggests that CM models might benefit from greater 

importance placed on Sp. Results also highlight the importance of 

positive predictive value along with Sp and Se. The calculated 

partial net return of our GN and GP models were -$0.15 and -$0.10 

per cow per lactation, respectively; while ISO-standard models 

with Se of 80% and Sp of 99% would return -$1.32 per cow per 

lactation. Models chosen that minimized the cost to the farmer 

were in stark contrast to models that met ISO guidelines, showing 

the asymmetry in targets between Sp and Se when the incidence rate 

of the disease is low.  
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Introduction 

Mastitis is considered one of the costliest diseases facing 

dairy producers. Costs associated with mastitis are estimated to 

be $2 billion in the US annually. Despite the high cost, the 

prevalence of mastitis is between 25 to 41 cases per 100 cows per 

lactation, equivalent to roughly one clinical mastitis (CM) case 

per 1,460 to 890 cow days (0.07% to 0.1%) (Pol and Ruegg, 2007; 

USDA–APHIS–VS–CEAH–NAHMS, 2014). This low prevalence poses a 

challenge to modelers attempting to predict CM. A predictive model 

that is either unable to identify a majority of true positive cases 

or true negative cases would not be useful. Historically, the 

“usefulness” or appropriateness of models or technologies designed 

to predict mastitis have been evaluated based on two outcomes, 

Sensitivity (Se) and Specificity (Sp) (Sargeant et al., 2001; 

Pyörälä, 2003; Koskinen et al., 2009; Ganda et al., 2016; Khatun 

et al., 2017). Specificity refers to the true negative rate, that 

is, the proportion of negative cases correctly identified (true 

negatives) of the total negative cases in the dataset. Sensitivity 

is the true positive rate or proportion of positive cases correctly 

identified from the total positive cases in the dataset. Although 

Se and Sp are commonly used to evaluate mastitis prediction 

approaches, the Se and Sp measurements on low-prevalence datasets 

will tend to skew interpretation of the models. For example, a 

predictive model with Se = 80% and Sp = 80% on a dataset with 50% 
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CM cases compared to a dataset with only 5% CM cases would yield 

the confusion matrices in Table 7-1.  

When the prevalence of CM is 50%, there are 4 true positive 

predictions of CM for every incorrect signal (false positive). 

When the prevalence is decreased to only 5%, the result is 4.75 

false positive cases for every true positive identification. In 

terms of positive predictive value (PPV), or likelihood of a 

positive prediction truly being a positive result, the 10-fold 

decline in CM prevalence results in a 19-fold change in PPV. This 

is an unbalanced change in PPV and highlights the challenge of 

using only Se and Sp to evaluate models describing low prevalence 

datasets. The International Standard ISO/FDIS 20966 (Automatic 

milking installations-requirements and testing) of the 

International Standard Organization (ISO) includes an annex 

describing a minimum Se of 80% with a Sp greater than 99%. These 

two values are commonly reported in the mastitis prediction 

literature as a gold standard for minimum model performance 

(Hogeveen et al., 2010). Because of CM’s low prevalence in the 

data, a model with ISO standard performance in terms of Sp and Se 

will produce more false alarms compared to a model predicting a 

greater prevalence disease. The incidence of false alarm rate is 

a critical consideration because both false positive and false 

negative detection can be an economic and practical burden. For 

example, one study found that an automated milking system reported 



 236 

11,156 alerts for CM, of which 159 were true cases (Steeneveld et 

al., 2010). In this study, farmers used their judgment and non-

milking system data to help filter these alerts in an attempt to 

improve efficiency (Steeneveld et al., 2010). In order for a 

sensor-based mastitis detection system to be successful in the 

industry, the benefit of using the tool must outweigh the costs. 

As such, evaluating the net return of model predictions may be a 

more logical way of evaluating model success.  

One strategy to account for the net return of a model is to 

weight model outcomes proportional to the cost of each outcome. 

Without a weighting scheme, a model’s error structure will be 

unbiased between false positives and false negatives. This may 

appear advantageous, if the model-builder has no preconceived 

notions about false positives or false negatives, but from an 

applicability standpoint this does not reflect the costs the 

producer is facing. It is much more costly for the producer to 

incorrectly treat an animal than to wait an additional day to 

correctly identify CM in that animal. This asymmetry is accentuated 

in a disease with a low prevalence because CM is less likely to 

randomly occur a priori (Dominiak and Kristensen, 2017). Weighting 

schemes can mean setting limits for Se or Sp before running models 

or actually changing the error function to penalize false negatives 

or false positives to be weighted greater. Previously unweighted 

mastitis detection algorithms, meaning no additional penalty for 
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false positives or false negatives, have been successfully 

published using ranging datasets and methods (de Mol et al., 1997; 

Maatje et al., 1997; Cavero et al., 2006; Kamphuis et al., 2008). 

Although models have been built using the principles of weighting 

schemes and imbalanced Se and Sp (Kamphuis et al., 2010; Miekley 

et al., 2012; Huybrechts et al., 2014), the idea of a cost matrix 

to assess applicability is novel to our knowledge and the approach 

can be widely applied to models in this and other similar fields.  

As one review reports, “no sensor-based detection model has 

fulfilled the performance demands needed to generate a 

satisfyingly low level of false positive alarms.” (Dominiak and 

Kristensen, 2017). In most in-line milk monitoring systems, data 

such as conductivity, somatic cell count, and milk components are 

logged and recorded in data management software almost 

instantaneously. One major challenge preventing detection of 

mastitis is the derivation of precise and accurate algorithms to 

convert this quantity of raw, individual animal, time-series data 

into management insights. Techniques such as neural networks 

(Nielen et al., 1995; Cavero et al., 2008; Sun et al., 2009; 

Samarasinghe et al., 2017), fuzzy logic (Cavero et al., 2006; 

Kramer et al., 2009), moving averages (Maatje, 1992), and others 

appear in the research as means to estimate likelihood of CM given 

sensor and non-sensor data being collected on farm. Irrespective 

of the approach, this real-time sensor data is prone to two 
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challenges : 1) missing data (missed measurements or poor farmer 

record keeping) and 2) outlier data (sensor or recording errors). 

In the four unweighted model papers referenced above, none 

reference any data cleaning technique relating to missing data (de 

Mol et al., 1997; Maatje et al., 1997; Cavero et al., 2006; 

Kamphuis et al., 2008). In Kamphuis et al. (2010) and Miekley et 

al. (2012) removal of data outside of certain preset bounds was 

used to determine outlier points and data missing important 

variables was removed prior to analysis. In Huybrechts et al. 

(2014), maximum likelihood estimation was used to estimate values 

for milk yield if a value was missed to allow their model to work 

as intended. Addressing these data challenges with various data 

cleaning techniques is essential to deriving industry-relevant 

models.  

Another shortfall of previously published mastitis detection 

algorithms, as they pertain to on-farm application, is the lack of 

pathogen specificity (Dominiak and Kristensen, 2017). Mastitis 

infections are predominantly caused by two major categories of 

pathogen: Gram-positive (GP) or Gram-negative (GN). Because the 

protocol for treating mastitis infections caused by these two 

pathogen types differs, an ideal mastitis detection algorithm 

would report the probable pathogen. In general, GP cases are 

treated with antibiotics which require milk be discarded until the 

antibiotic clears the cow’s system; GN cases are not treated with 
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antibiotics. Recent research has shown differences in sensor 

variables leading up to CM detection in GP and GN cases, suggesting 

it might be possible to expand the use of sensor-based mastitic 

detection algorithms to also suggest which pathogen is implicated 

in the infection (Vasquez et al., 2018). Future efforts to advance 

the sensor-based prediction of CM should be complementary with 

efforts to evaluate models on the basis of net returns, and efforts 

to reduce challenges associated with missing and outlier data.  

The objective of this study was to build separate GN and GP 

models for predicting CM incidence using time-series sensor data 

and compare models that maximize net return based on a partial 

costs matrix to those created to maximize Sp and Se. It was 

hypothesized that creating models using a partial costs matrix as 

the accuracy measure would produce models that would produce 

greater net returns on farm than maximizing model Sp and Se.  

 

Materials and Methods 

 

Data 

Data were collected from lactating cows on the Virginia Tech 

(VT) and University of Florida (UF) dairy farms between August 

2015 and April 2017. Milk yield and conductivity were measured via 

milk meter (AfiMilk MPC) and composition data (protein, fat, 

lactose, and somatic cell count) were collected using an in-line 

milk analyzer (AfiLab©, Afimilk Ltd., Kibbutz Afikim, Israel). 
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Daily activity measures, daily rest bout, rest duration, and total 

activity, were collected using Afi PedometerPlus© at VT and Afi 

Pedometer© at UF. At both farms, any variables measured twice daily 

were reported as the average of the two values in model building. 

Cows were milked twice daily on both farms and milk yield was 

summed rather than averaged when used in the models. Cows were 

labeled as clinically mastitic on the day of detection and the 

previous 2 days or 5 days for GN or GP, respectively. This practice 

of labelling mastitis differently based on Gram-type is uncommon 

with respect to similar research on modeling CM (Steeneveld et 

al., 2009; Kamphuis et al., 2011). Actual cases of CM were 

identified by farm staff and recorded in the Afifarm Software. The 

use of farm staff to determine CM cases is consistent with the 

literature (de Mol et al., 1997; Kamphuis et al., 2010; Miekley et 

al., 2012). Another common way to label CM cases is to set variable 

thresholds, like conductivity or SCC, and all cows that exceed 

these thresholds are considered mastitic (Maatje, 1992; Kamphuis 

et al., 2008). This dataset provided a representative proportion 

of CM cases to healthy cows (milkings = 136,127, CM% = 0.47%). 

Table 7-2 shows the raw data’s summary statistics prior to  any 

data cleansing. 
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Data Preparation 

On both farms, daily milk yield and composition were comprised 

of morning (AM) and evening (PM) measurements, reflecting twice-

daily milkings. Because the parlor system used to collect milk 

data is automated, there are occasional failures in the system 

that lead to missing data. Such failures include: milking events 

where the in-parlor radio-frequency identification tag reader mis-

reads the animal’s tag; milk composition or yield readings linked 

to an animal are not reported, often because they are outside the 

feasible range; and events that require manual recording are missed 

or forgotten. Computer error and truly missed-milkings can be hard 

to differentiate simply by looking back at the data. These missing 

data create a computational challenge during analysis because the 

maximum number of days used in the slope calculation was seven, 

meaning each missing day had high potential to impact the resulting 

slope. Approximately 0.78% of milking yield and composition 

records were missing either the AM or PM measurements. To handle 

these missing data, days with single data points were repeated in 

the empty records. We used this method because cows were milked 

every 12 hours, lending to similar AM and PM measurements. After 

adjusting for these missing values, daily average milk yield and 

composition were calculated by averaging over paired samples each 

day, by cow. The use of this data-filling technique helped with 

calculating the change in each variable over time. 
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Data were then standardized to mean = 0 and standard deviation 

= 1 and values greater than 5 standard deviations from the mean 

were considered outliers and removed. This approach was chosen 

because it eliminated approximately 5% of values in each variable 

measured, which is consistent with other research (Kamphuis et 

al., 2010). Conductivity, daily rest bout, rest duration, and 

activity measurements had a higher proportion of outlier data than 

milk yield and composition variables. Outliers were also 

identified based on the average of previous values to deal with 

variables with significant variance. In cases like milk yield, an 

outlier at one point in lactation may be normal later in lactation. 

In these cases, the previous 4-day average was used as a comparator 

and the absolute difference between the target value and the 4-

day average was calculated. By curtailing the top 5% of these 

values to the average of the previous 4 days, we attempted to 

dampen noise in the sensed variables and better characterize the 

changes in variables over time, as illustrated in Figure 7-1. 

When cleaning and standardizing the data, data from each farm 

was standardized separately. When combined standardization was 

used, data were found to be too dissimilar between farms and made 

slopes less indicative of changes. Standardization allows for 

comparison across variables in terms of change, is common in 

multivariate model-building, and has been used to standardize 

conductivity scores in past CM sensor models (de Mol and Woldt, 
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2001). A summary of the combined dataset with standardization and 

outlier removed can be found in Table 7-3 (n = 110,156, CM% = 

0.30%). Although the CM incidence in this dataset was greater than 

the estimated 0.1% of the average U.S. farm (Pol and Ruegg, 2007; 

USDA–APHIS–VS–CEAH–NAHMS, 2014), it is important to consider that 

CM incidence is not distributed normally about the mean. Farms 

with greater CM incidence will skew the distribution to the right. 

This being the case, the total CM incidence in the dataset is 

similar to other research in the field of sensor-based detection 

modeling, with de Mol et al. (1997) reporting a CM incidence of 

0.14% per cow day in 75,000 milkings or Miekley et al. (2012) 

reporting 0.5% CM incidence per day in 46,000 cow days. These data 

cleaning techniques are useful not only in the preparation of 

training data sets, but also in actual farm monitoring systems, 

because missing data, outliers, and skewed values are 

commonplace.  

 
 

Boosting 

Gradient boosting trees algorithms (sometimes referred to as 

just “boosting”) have become a popular machine learning technique 

recently because of their accuracy and speed. Boosting is a method 

of learning a dataset by deriving iteratively more accurate “weak 

learners”. Weak learners are decision trees that are simple (few 

nodes) and have predictable biases that can be corrected with 
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additional decision trees. By iteratively correcting these trees 

by adding another tree, improved accuracy can be attained. This 

method is useful for learning the importance of features of the 

dataset as well, because of the ability to analyze the Gini indices 

of the trees. Gini indices measure the ability of a tree to produce 

classifications proportional to the labels true proportion in the 

data and are commonly used to identify feature importance of 

decision tree-based algorithms (Ushikubo et al., 2017). 

Extreme Gradient Boosting (XGBoost) is currently one of the 

most popular gradient boosting tree algorithms (Chen and Guestrin, 

2016). Chen and Guestrin (2016) cite problems like store sales 

prediction; high energy physics event classification; and massive 

online course dropout rate prediction as just some of the problems 

in which XGBoost has won prediction competitions. The XGBoost 

algorithm was also used to discover the Higgs Boson at the Large 

Hadron Collider because of its applicability to complex datasets 

(Chen and He, 2014). Although these examples may seem far from 

applicable to CM detection, the underlying data all share similar 

characteristics. Because of its previous success in other sparse 

data problems, it is logical to test XGBoost as a means of CM 

prediction. Already, techniques advancing beyond linear 

regression, like the aforementioned boosting, bagging, or markov 

chains, have been used to tackle the issue of predicting disease 

from sensor data (Kamphuis et al., 2010; Ostersen et al., 2010). 
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An added advantage of the XGBoost algorithm is that it uses 

efficient computing techniques such as parallelization and cache 

optimization, to make classifications on sparse datasets more 

accurate than traditional tree algorithms. Parallelization allows 

models to be built and run on all cores simultaneously, increasing 

speed and improving search space. Cache optimization reduces the 

computational investment in accessing information stored in a 

computer's memory.  

 
 

Model Building 

XGBoost version 0.82.1 (Chen and He, 2014) was used in R (R 

Team, 2018) for all model building. Each iteration of each model 

was trained on 75% of the dataset, with 25% being held out randomly 

for testing. Each model was iterated 100 times with new, random 

samplings for the train-test data split. All models were run using 

the xgboost() command in R, with a scaled learning rate of 0.5, 

maximum tree depth of 100, 4 parallel threads, 40 rounds of 

boosting, model objective set to “binary:logistic”, and binary 

classification error.  

The response variable used in all algorithms was the presence 

of CM, either GN CM or GP CM, depending on the model being built. 

To better account for prevalence, GN cases were predicted using 

all data, using healthy cows and GP cases as negative examples. 

Conversely, GP cases were predicted including healthy cows and GN 
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cases as negative examples. Using cases with the opposite pathogen 

type as a negative example in the training data allowed for a 

larger dataset and should theoretically improve the algorithm’s 

ability to differentiate between CM types. Potential explanatory 

variables offered into the algorithms included slopes for daily 

rest bout, rest duration, activity, conductivity, fat, lactose, 

protein, and milk yield. Additional variables were included for 

DIM, binned into seven discrete groups, and lactation number, 

either first, second, or third or greater. Seven bins were chosen 

to describe the lactation curve because this best balanced the 

need to separate differently sloping areas of the curve, while 

maintaining great enough sample sizes within each bin.  

The model itself was a binary logistic model and predictions 

of CM (0 or 1) were determined by using the model outputs 

(probability between 0.0 and 1.0). A threshold for positive 

predictions was set at 0.5 and a log loss function was utilized to 

propagate error in the model. Because of the significant imbalance 

in the costs associated with misprediction in a CM positive case 

compared to a CM negative case, the error associated with positive 

predictions was scaled 1,000,000 times that of a negative in the 

XGBoost framework using the “scale_pos_weight = 1000000” command. 

This strategy was implemented to mimic the cost matrix outlined in 

Table 7-4, where the importance of positive predictions are 

infinitely greater than that of negative predictions. The value of 
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1,000,000 was chosen because accuracy was found to not increase 

any more if the value was any greater.  

 
 

Model Evaluation 

Evaluation of models was completed using held-out data, with 

75% of the data used to train models and 25% to test. Random splits 

of this proportion were repeated 100 times and Se and Sp were 

recorded. Change in potential net return (Δcost) based on model 

decision was used as a metric for cost associated with each model. 

Change in potential net return was calculated as the return from 

a healthy cow minus the cost associated with milk loss, minus the 

cost associated with increased mortality, minus the cost 

associated with treatment. Using the values from Bar et al. (2008), 

we considered a healthy cow to return $426, and considered losses 

as $115 due to milk loss, $14 due to increased mortality, and $50 

due to treatment-associated costs. Using these values, the return 

of a cow treated that was not actually infected would be $426 - 

$115 - $50 = $261 and the Δcost = -$165. The return of a cow left 

untreated for CM would be the milk lost over that period, $115. 

Therefore, the return for treating a cow would be $426 - $115 - 

$14 - $50 = $247 and the Δcost = +$132. In both the true and false 

negative cases, the Δcost = $0 because these cases reflect the 

action given that no models were used at all. Table 7-4 illustrates 

the costs associated with each outcome of the confusion matrix.  
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The threshold for prediction in the training data was always 

0.5 or 50%. Using receiver operator characteristic curves and the 

cost matrix of missed CM cases and treated CM cases, we determined 

the optimal threshold for each resulting model. The optimal 

threshold minimized the value of [TP x 132] - [FP x 165] at a given 

Sp and Se. To prevent the threshold from being near the extremes, 

that is 0% or 100%, thresholds were chosen as that which maximized 

the net return and was between 10% and 90%. Excluding thresholds 

near the extremes prevented models that never predicted CM cases, 

but still produced good net returns per prediction. The resulting 

optimal thresholds for all 100 model iterations are shown in Figure 

7-2. The lack of a consistent threshold that improves net returns, 

combined with the scale of improvement in returns, lead us to 

choose 0.5 as the threshold for evaluating all proceeding models.  

 

Results and Discussion 

The GN models had a median Se of 52.6% and Sp of 99.8% when 

tested on held-out data. The GP models had a median Se of 37.5% 

and Sp of 99.9% when tested on the test data. Table 7-5 shows 

prediction results for all GN and GP models. These values represent 

improvement in mean Sp and Se compared to the values derived on 

the same data in Steele et al., (2019, in press). Steele et al. 

(2019, in press) describes 3-day linear models which utilized the 

same data. These models generated greater Se but lesser Sp; GN 
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models resulted in Se of 73.3% and Sp of 74.1%, while for GP 

models, Se = 47.4% and Sp = 89.4%. These differences are, in part, 

because of the different algorithms used and because of the 

approach for selection of prediction thresholds. When considering 

the practical implications of greater Sp, the lessening of false 

positives makes our models more appropriate for on-farm use. 

Model performance, in terms of Se and Sp, was optimized for 

net cost of each prediction. Assuming a cost of $165 for each FP 

and a net gain of $132 for each TP case, the GN prediction model 

with Se of 52.63% and Sp of 99.78% yielded a net return of -$0.15 

per cow per lactation, assuming 0.30% CM incidence rate, as in the 

full dataset. Using the unweighted linear model under the same 

cost matrix produced a net return per cow per lactation of -$42.32 

(Steele et al., 2019). The optimization parameters of the model 

being built clearly have importance in the CM prediction problem. 

For the GP CM prediction model, Se = 37.5% and Sp = 99.9% also 

resulted in net returns per prediction, yielding an estimate of -

$0.10 per cow per lactation. Although the net returns per 

prediction are still negative, they are close to zero in comparison 

to the previous unweighted linear model, which produced a net loss 

per cow per lactation of $17.25 (Steele et al. 2019; in press). 

Both these comparisons assume no producer input into the decisions, 

while, in reality, producers provide intuition and insight into 

treatment decisions (Steeneveld et al., 2010). 
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Plots of all variables and the distribution of their 

respective gains across models are shown in Figure 7-3 for GN and 

Figure 7-4 for GP. Milk yield slope over the previous 3 days was 

consistently the most important variable in the GN models, while 

lactose and protein slopes had the greatest median gains in 

accuracy in the GP models. Lactation number was consistently the 

least-influential variable in the models. In the GN models, the 

median gain in accuracy attributed to milk yield was more than 

twice that of the next most important variable, activity, measured 

as steps per day. Gram-negative CM is associated with greater 

losses in milk yield during first-case occurrences when compared 

to GP cases (Gröhn et al., 2004). Gram-negative CM is also 

associated with a faster onset of infection and subsequently faster 

decline in milk yield compared to GP CM (Smith et al., 1985; 

Pyörälä et al., 1994; Bannerman et al., 2004); these easily 

measurable variations attributable to GN CM suggest that 

classification methods are viable. The model results show 

differing variables as most important in the days leading up to CM 

incidence, which supports the supposition that GP and GN cases 

present in different manners. Pathogen-specific treatment of CM 

has been shown to be cost effective in treating GN CM and helps 

reduce the use of antibiotics (Schukken et al., 2011; Fuenzalida 

and Ruegg, 2019). The variation in CM presentation coupled with 

the fact that targeted treatment has shown promise suggests that 
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retroactive classification models built on a cost matrix framework 

could produce tools for recommending CM treatment protocol using 

on-farm data, but deriving such retroactive models was outside the 

scope of this study.  

The cost matrix can be used in the evaluation of existing 

models and as a loss function for training models. Using a loss 

function that values true positives and penalizes false negatives 

leads to models with greater Sp than models with no weighted loss 

function. For example, a model with 95% Se and 95% Sp implemented 

on a herd with 1% incidence of CM/cow-day would have a net cost of 

$6.91 per cow per lactation. Although this model appears to be 

exceptional based on Se and Sp, its implementation would cost a 

farm with 250 lactating cows over $2,067 per year. This assessment 

of cost is not perfect because farmers are likely to integrate 

their own judgment into any treatment decision (Steeneveld et al., 

2010), meaning any model would most likely be employed in addition 

to human observation, which would likely reduce costs. However, it 

allows for a more realistic and objective comparison among models 

and highlights major challenges with the existing ISO standards 

for precision dairy technologies (International Standard 

Organization, 2007). 

In agriculture, as in other sectors, profitability a primary 

importance to producers. By analyzing the results of the model’s 

predictions and using appropriate costs, the savings from a 
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correctly identified case of mastitis is approximately equal to 

the loss of treating an uninfected cow (Bar et al., 2008). With 

this cost assumption, the hypothetical model trained on 5% positive 

cases would have a negative net return per cow treated. In order 

to reach net positive returns on predictions, we needed to reach 

a ratio of: 

 

Because the costs of FP and benefits of TP are similar, this 

suggests that measuring the number of true positives for each 

predicted positive instance, called positive predictive value 

(PPV), adds insights that Se and Sp lack on their own. The formula 

for PPV is: 

 

 

The implications of models with high Sp and Se but low PPV 

would be high false alarm rates or high unnecessary treatment. In 

the context of mastitis prediction, farmers would be checking a 

majority of cows and not finding clinical signs. In this scenario, 

farmers may become insensitive to the alerts of a system like this. 

“Alarm fatigue” is a well-documented problem in critical care 

medicine (Graham and Cvach, 2010; Borowski et al., 2011). Results 

of high rates of false positive alerts lead to increased workload, 

decreased Se, and increased missed critical events (Graham and 

Benefit of TP TP 1.0
Cost of FP FP

´
>

´

TPPPV
TP FP

=
+
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Cvach, 2010). In 2014, alarms were the Emergency Care Research 

Institute’s #1 hazard to care (Emergency Care Research Institute, 

2013). In order to prevent cases similar to this in mastitis 

prevention, an appropriate threshold PPV value (or similar 

statistic) should be established.  

By using a cost matrix to evaluate the models produced in this 

work, predicted net returns per cow per lactation were -$0.15 for 

GN and -$0.10 for GP models. Although these net returns are still 

negative, consider the value of using a cost matrix-based 

evaluation to choose models over maximizing Sp and Se 

simultaneously. Consider that a dataset with 0.3% CM incidence, 

models with Se/Sp = 80/95; 95/98; 99/99 would have net returns per 

lactation of -$7.91, -$2.91, -$1.25, respectively, under our 

partial costs matrix. The best of these models, Se/Sp = 99/99, 

would still be more than 8-times more costly per lactation than 

the GN model described above (-$1.25 versus -$0.15 per cow per 

lactation), producing 40% more false-positives per true-positive 

(0.3 versus 0.72 PPV). 

 

Conclusion 

Building models that predict CM using sensor-based detection 

data requires thoughtful collection, analysis, and implementation. 

When collecting data for predicting CM, where incidence is very 

low, consider that building a model on this data will inherently 



 254 

lead to severely limiting results, such as higher false alarm 

rates. When analyzing the success of the models built, mastitis 

prediction guidelines specify Sp and Se thresholds, but other 

measures like PPV, can be useful in building a practical model. 

Consider that, on-farm, the cost comes in falsely predicting CM. 

Building models that weight all contingencies equally does not 

properly assess the situation the producer faces. 
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Tables 

Table 7-1. Confusion matrices for models with Se = 80% and Sp = 
80% for datasets with varying incidence rates of clinical 
mastitis. Percentages reported are proportion of dataset that 
would predicted with the given label by the model. 
  

True 

Negatives 

True 

Positives 

 
CM Rate = 

50% 

Predicted 

Negatives 

40% 10% 

Predicted 

Positives 

10% 40% 

 
CM Rate = 5% 

Predicted 

Negatives 

76% 1% 

Predicted 

Positives 

19% 4% 
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Table 7-2. Summary of variables used in models before cleaning 
and standardization. 

Variable n1 mean sd min max % NA2 

DIM 135596 173.6 110.5 0 687 0.4% 

Lactation number 135596 1.994 1.091 1 6 0.4% 

Milk yield 131920 33.69 11.15 0.209 108 3.1% 

Conductivity 127741 9.413 0.906 5.7 22.7 6.2% 

Fat 131610 3.994 0.677 0.9 9.12 3.3% 

Protein 131099 3.017 0.519 0.21 6.72 3.7% 

Lactose 131169 3.860 0.745 0.1 11.2 3.6% 

Milking time (s) 131117 353.7 116.8 10 1290 3.7% 

SCC 126431 102144 7260742 1 1.46E+09 7.1% 

Live weight (lb) 122487 1364 244.9 719 2198 10.0% 

Activity 135005 124 55.04 1 1136 0.8% 

TotalRestTime (s) 122006 725 150 3 1466 10.4% 

DailyRestBout (n) 122980 11.62 11.8 0 508 9.7% 

Rest duration (s) 121818 71.94 28.72 0.123 733 10.5% 

CM, Y/N 136127 0.0047 0.068 0 1 0.0% 

Repeat Case (n) 218 2.243 1.375 -5 4 - 
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Days between 
repeat CM 

202 73.97 53.07 11 223 - 

Day relative to CM 3551 -0.112 8.221 -14 14 - 

1n = number of instances 
2% NA = Percentage of given data that was missing for a given 
variable. Values not given are for variables that were not 
expected every milking. 
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Table 7-3. Summary of standardized values after data cleaning; 
AS = Activity Score; CS = Conductivity Score; FS = Fat Score; LS 
= Lactose Score; MY = Milk Yield; PS = Protein Score; RBS = Rest 
Bout Score; RDS = Rest Duration Score. Number suffixes refer to 
slopes from day 7 to n (e.g. AS1 is slope of activity from day 7 
to 1). 
Variable n mean sd min max 

Weight 103,007 -0.0005 0.999 -2.586 3.968 

GramNeg 110,156 0.0008 0.029 0.000 1.000 

GramPos 110,156 0.0022 0.047 0.000 1.000 

AS1 110,145 -0.0007 0.107 -2.349 5.684 

AS2 110,145 -0.0005 0.134 -2.679 5.684 

AS3 110,121 -0.0003 0.168 -3.158 5.684 

CS1 110,145 0.0021 0.093 -2.402 1.526 

CS2 110,145 0.0013 0.116 -2.712 1.892 

CS3 110,121 0.0005 0.150 -4.803 2.543 

FS1 109,983 0.0036 0.141 -2.387 2.280 

FS2 109,808 0.0029 0.171 -3.367 2.602 

FS3 109,601 0.0020 0.223 -4.652 5.127 

LS1 110,134 0.0001 0.138 -3.268 2.644 

LS2 110,134 0.0009 0.169 -3.268 3.305 

LS3 110,110 0.0009 0.214 -5.061 3.305 

MYS1 110,145 0.0012 0.074 -2.022 1.830 

MYS2 110,145 0.0020 0.090 -2.022 2.344 

MYS3 110,121 0.0029 0.115 -2.022 3.123 

PS1 110,145 0.0021 0.196 -3.812 4.892 

PS2 110,145 0.0067 0.258 -3.812 5.030 

PS3 110,121 0.0106 0.332 -3.812 5.030 

RBS1 110,145 -0.0018 0.132 -3.644 2.603 

RBS2 110,145 -0.0021 0.166 -3.644 2.863 

RBS3 110,121 -0.0015 0.216 -3.644 2.993 

RDS1 110,145 0.0037 0.116 -1.895 2.581 

RDS2 110,145 0.0033 0.143 -2.627 2.581 

RDS3 110,121 0.0032 0.184 -3.366 2.581 

RTS1 110,145 0.0037 0.130 -2.469 2.577 
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RTS2 110,145 0.0035 0.169 -2.906 2.577 

RTS3 110,121 0.0037 0.228 -4.297 3.300 
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Table 7-4. Partial costs matrix or change in the net return of 
an animal classified as either CM positive or negative, given 
that the animal was either CM positive or negative. 
 

True Negatives True Positives 

Predicted Negatives $0 $0 

Predicted Positives -$165 +$132 
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Table 7-5. Median sensitivity and specificity values 
(interquartile range) for 100 models build on 75% of data and 
tested on 25% of held-out data for Gram-positive and Gram-
negative prediction models.  

 Sensitivity Specificity 

Gram-Negative 0.5263 (0.4615-0.6087) 0.9978 (0.9976-0.9979) 

Gram-Positive 0.3750 (0.3367-0.4152) 0.9985 (0.9983-0.9987) 
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Figures 

 

Figure 7-1. Example of removing points by absolute distance from 
average measurements of four previous days in milk (DIM). Here, 
the d0 measurement is well within the range of measurements for 
the entire dataset, but clearly abnormal within the trend of 
milk yield (MY) over time. This method detected outliers that 
were erroneous relative to the cow’s DIM.  
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Figure 7-2. Optimal thresholds for differentiating disease and 
non-disease cases in Gram-negative (GN) and Gram-positive (GP) 
models. Each model was derived from a sample of the total data 
and thresholds were derived using the remaining data along with 
a cost matrix. 
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Figure 7-3. Model gain for all variables in the Gram-negative CM 
models. Arranged by median gain over the 100 model iterations 
tested on held-out data. All variables are the change (slope) of 
the variable over time. MYS = Milk Yield; AS = Activity (steps); 
CS = Conductivity; LS = Lactose; PS = Protein; FS = Fat; aDIM = 
adjusted DIM (7 bins); Lactno = Lactation number (1st, 2nd, 3+). 
The number following the abbreviation indicates the number of 
days prior to the day of prediction that the slope is estimated.  
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Figure 7-4. Model gain for all variables in the Gram-positive CM 
models. Arranged by median gain over the 100 model iterations 
tested on held-out data. All variables are the change (slope) of 
the variable over time. MYS = Milk Yield; AS = Activity (steps); 
CS = Conductivity; LS = Lactose; PS = Protein; FS = Fat; aDIM = 
adjusted DIM (7 bins); Lactno = Lactation number (1st, 2nd, 3+). 
The number following the abbreviation indicates the number of 
days prior to the day of prediction that the slope is estimated.  
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Conclusion 
 

Ultimately, this body of work aimed to demonstrate some of 

the many ways that data analytics can be applied to make better 

management decisions on livestock operations. In this vein, many 

different facets of data analytics were explored, including 

model building, model evaluation, data collection, hypothesis 

testing, and data parsing. In the field of agricultural 

research, we are only scratching the surface of the analytical 

techniques available. Agriculturalists can learn from other 

fields, like data science, computer science, and statistics to 

combat challenges associated with greater amounts of data, 

different sources and types of data, and using data to 

forecast.  

Machine learning is one specific field of data analytics 

that shows promise in solving complicated problems and being 

integrated into decision making systems. Existing research seeks 

to leverage computer vision to identify locomotive disease in 

cattle on-farm and crop density in fields, just to illustrate 

some examples.  

In the first chapter of this work, simulation modeling was 

done to approximate the effects of removing dairy cows and dairy 

products from the U.S. The simulations are an example of how 

management decisions can be analyzed in a mathematical framework 

to inform policy decisions and make predictions about drastic 
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changes to the U.S. agricultural landscape. Next, specific 

analytical techniques for common management practices like 

feeding and disease detection were explored. Machine learning 

techniques were discussed that are uncommon currently in 

agricultural research, but more common in computer science and 

data analytics, like neural networks. The concept of 

reinforcement learning in machine learning was also discussed, 

illustrating a path between understanding and implementing 

machine learning algorithms into on-farm decision-making 

processes. 

We next used data analytics to coalesce information on a 

management decision, grazing beef cattle, and showed how to use 

this information to improve decision-making. By understanding 

the effect of unreported study standard-error on our 

predictions’ precision, we are ultimately making smarter, more 

economically-sound decisions. We also examined how to use data 

analytics to assess current best-practices, in the form of feed 

digestible rumen-undegradable protein measurements. These 

findings have implications on future feed testing and the 

accuracy of those results, with feed composition being an 

important factor in formulation rations for animals. Lastly, we 

applied XGBoost, a popular boosting algorithm, to the prediction 

of sparse clinical mastitis cases. Because producers are 

economically incentivized to only treat mastitic cows that are 
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sure to need treatment, incorporating case-specific knowledge 

was imperative to creating useful models. This example showed 

the importance of synergizing algorithms and domain knowledge 

to create more useful predictions. 

As we move into a research era involving more observations 

and readily available information, we must be even more mindful 

of the techniques we employ to analyze data and make 

predictions. Analytical techniques like machine learning are 

complicated but have potential to expand our capabilities to 

analyze data in agriculture. With this potential, there are also 

some risks, specifically misuse or misunderstanding of the 

techniques being used. Data analytics is a fledgling field, with 

advancements being made every day across many disciplines. In 

agriculture, there is a high ceiling for improving data 

analytical practices, but how researchers approach learning new 

techniques will determine the realized benefit. 


