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ABSTRACT 

 

Exposure assessment is a critical step in air quality-related epidemiological studies. Accurate 

estimates of exposure within urban areas are a vital input to models that aim to assess the health 

effects of air quality among populations of interest. In this study, I have derived and applied a 

novel approach for capturing the distribution of air quality in Arlington, VA and Washington DC 

using mobile monitoring. The main objectives of this study are: 

1. Deploy a year-long sampling campaign in the Washington DC region to capture the 

within-city variability of air quality for Particle Number Concentration (PNC), fine 

particulate matter (PM2.5), and Black Carbon (BC) using mobile monitoring.    

2. Derive a method for selecting the best representative mobile monitoring routes to capture 

within-city spatial patterns of air quality. The end-use of the monitoring campaign 

described here is as an input for Land Use Regression (LUR) models. 

3. Collect unconventional data to characterize the built environment, e.g., videos, sound, 

etc., that could be employed to improve the LUR models beyond conventional 

approaches. 

This study describes the data collection effort that was deployed for a year to characterize annual 

average concentrations at different locations across the Washington DC region. My thesis 

describes the challenges experienced and lessons learned during the data collection phase. The 



goal of this thesis is to describe the data collected and the methods used to sample the DC region. 

This effort is a component of a larger project that will later use these observations in LUR models. 

 

The central site used for measurement of background concentration had a lower concentration 

median when compared with the median concentration measured on bike. The median PM2.5 

concentration at the central site was observed to be 5.2 μg/m3 and the median PNC at the central 

site was observed to be 6,365 #/cm3. The Arlington PM2.5 concentration was 1 μg/m3 and the 

Washington DC concentration PM2.5 was 0.3 μg/m3 higher than the background median 

concentration. Also, the Particle Number Concentration (PNC) was 222 #/cm3 more and the 

Washington DC PNC was 2,139 #/cm3 higher than the median background concentration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Mobile Monitoring of Air Quality in the Washington DC Region 

 

Kuldeep Kumar Dixit 

 

 

 

GENERAL AUDIENCE ABSTRACT 

 

 
 

Many studies have shown that living in polluted air has long-term negative impacts on human 

health. These negative impacts include premature death, lung disease, heart disease, blood disease, 

and other complications. Due to these impacts, it is critical to know the level of air pollution within 

cities to identify areas that have elevated concentrations.  

 

The measurement of air quality is challenging because of the low number of monitors available 

due to cost. Reference grade air quality monitors are often very costly. In this study, I have 

developed an approach for using a bike to collect mobile measurements of particulate air pollutants 

in the Washington DC area. I collected one year of data at a fixed site in Arlington and four seasons 

of data from the bike mobile monitoring campaign. After analyzing the data, I observed that the 

fixed station showed lower concentration when compared with the data collected by bicycle. I have 

also suggested improvements in the mobile monitoring method and developed an approach for 

joining these data with outputs from computer vision models to describe the built environment.  
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1.0 Introduction 

 

 

According to the Lancet commission (Fuller et al., 2022), air pollution causes 9 million deaths 

around the world annually; according to the global burden disease study (Cohen et al., 2017), fine 

particulate matter (PM2.5) was the fifth leading global cause of death. This highlights the 

importance of PM2.5 monitoring at ground level. However, due to the high cost of monitoring 

instruments, it is not always possible to deploy a large number of monitors, and scientists use 

methods like Land Use Regression (LUR) models to estimate exposure. Researchers have also 

employed satellite data-based models and chemical transport models to estimate various 

pollutants; but, chemical transport models are dependent on emission inventory data that are 

available at a very coarse resolution and are thus unable to capture the urban-level variation within 

the city. 

 

1.1 Mobile Monitoring Method 

 

One of the limitations of the Land Use Regression (LUR) method is that it needs ~100 fixed sites 

(Basagaña et al., 2012) to have good model performance and subsequently estimate exposure in 

an urban environment. To overcome these limitations mobile monitoring is one of the low-cost 

and viable alternatives. Mobile monitoring campaigns are much more affordable than buying 

multiple (Federal Reference Method) FRM monitors. For monitoring pollutants some studies have 

used data from available from fixed monitors for mapping, some have used the monitoring data as 

input for the LUR models and some try to assess exposure through different modes of transports 

like automobiles, bikes, pedestrian mode, etc. Some Studies have (Apte et al., 2017; Chambliss et 
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al., 2021) used measurements from the Google street-view vehicle to build a LUR model. Some 

(Hankey et al., 2015; Samad et al., 2020) have used a bike to sample air quality and some (Alas et 

al., 2021) have used backpack on foot to measure air quality. The three methods have their 

advantage and disadvantages, with the most accurate being the pedestrian method of collecting as 

it measures the most-accurate exposure to the human body but, due to the slow speed of travel, it 

often lacks spatial coverage. The automobile mode has the most spatial coverage of all three modes 

but, it is limited to near-road exposure only as automobiles are not allowed on many walkways. 

The bike mode lies in between the pedestrian mode and the automobile mode as it can cover more 

spatial coverage than the pedestrian mode (and less than the automobile) but can sample most areas 

where pedestrians are allowed (e.g., trails or parks). In this study, I have used an approach extended 

previous study (Hankey et al., 2015) for measuring air quality. I have used miniaturized 

instruments like the sidepak AM520, Condensation Particle Counter (CPC) 3007, microaeth AE51 

to collect air quality parameters like fine particulate matter (PM2.5), particle number concentration 

(PNC) and black carbon (BC) with reasonable accuracy. Using the bike-based measurement 

platform I was able to collect measurements from trails, walkways, and parks in addition to a 

variety of roadways.  I also tried to spread the route across the spatial and temporal domains to 

keep the sample normalized as much as possible in this study.     

 

1.2 Use of Computer Vision in Air Quality Modelling  

 

Recent studies (Qi et al., 2021; Qi et al., 2022) have demonstrated that Google Street View (GSV) 

images could be utilized to build a highly accurate air quality model for Particle Number 

Concentration (PNC), Black Carbon (BC) and Nitrogen Dioxide (NO2). Studies (Ganji et al., 2020; 
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Dao et al., 2021) have shown that street view images could be used to enhance the accuracy of air 

quality estimates. In this study, I have also used this unconventional new approach and recorded a 

stable video for each bike run using two GoPro Hero 9 Black cameras to capture the built 

environment from each route. This thesis focuses on the data collection effort; However, this data 

could be utilized later to extract built environment features for better estimation in the LUR model. 

My approach is novel, as to the best of my knowledge, no one has tried to build a similar model 

using on-the-shelf cameras. The setup of the two bike cameras is explained more in the 

methodology section. 

 

1.3 The Portable Filter Sampler 

 

This study also shows low-cost sensor and sidepak performance in comparison to the filter-based 

measurement from the Ultrasonic Personal Air Sampler (UPAS). The UPAS is a relatively new 

mobile measurement instrument, and there are few studies available that compare UPAS 

performance in an outdoor environment. Some studies (Pillarisetti et al., 2018; Volckens et al., 

2017; Burrowes et al., 2020; Arku et al., 2018) have compared the UPAS performance in indoor 

environments. Although, I have not used the Federal Reference Method (FRM) instrument in this 

study to compare UPAS performance but our study in agreement with one other study (Vernooij 

et al., 2022) show a very high correlation between the sidepak and gravimetric method in an 

outdoor environment. I have used the correlation between sidepak and UPAS as a metric of the 

performance of the two devices. 
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2.0 Methodology 

 

I primarily collected data in this study from two sources 1) the central site and, 2) the two fixed 

bike routes. The Virginia Tech Research Center (VTRC) located at 900 N Glebe Rd, Arlington, 

Virginia was used as the central site to collect the background measurements. The location of the 

background site is shown in Figure 2.0.1. The CPC 3007, sidepak, and all four micro-athelometers 

were serviced before the start of the campaign. I also regularly changed the wick of CPC 3783 and 

CPC 3007 at regular intervals of one per month. Also, the sidepaks were zero-calibrated roughly 

every two months, and the flow rate was checked for the CPC 3007 at least three times during the 

one-year study. 

 

 The central site operated on the top of VTRC Arlington building from 15th September 2021 to 

15th September 2022. There were less than seven days when the central site was not running 

because of maintenance and extreme weather conditions. The central site effectively has one year's 

worth of data. Figure 2.0.1 shows the location of the central site in Arlington. 
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Figure 2.0.1 The location of the central site on a map and from satellite view in Arlington, 

Virginia 

 

2.1 Background Site Setup 

 

Instruments were located on the top floor penthouse to capture respective environmental 

parameters. The list of instruments used at the central site are given in Table 2.1.1. 

 

It is also to be noted that while the location of the central site was fixed, instruments like the 

microaeth, sidepak, and purpleair (PPA) varied in number as some of these devices were rotated 

with the instruments installed on the bike and some of them were deployed to the other locations. 

We strived to rotate instruments to the central site regularly to ensure that all instruments were 

VTRC Arlington 
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calibrated appropriately throughout the study period. The CPC 3783 and the UPAS were the only 

instruments that were not used on the bike for data collection. 

Table 2.1.1 The instruments located at the central site 

Device Manufacturer Measurement Sampling 

Interval 

Number of 

Instrument 

Instrument 

flow rate 

Instrument 

Range 

Ultrasonic 

Personal Air 

Sampler 

Access Sensor 

Technologies 

PM2.5 mass 

concentration 

30 - 72 

hours 

3 1.0 L/min - 

CPC 3783 TSI, Inc. Particle 

number 

concentration 

1 second 1 3.0 L/min >3 μm 

Micro-

aethalometer 

AE-51 

AethLabs Black carbon 

concentration 

1 second 4 100-200 

ml/min (50, 

150 ml/min 

also 

possible) 

0-1 mg/m3 

SidePak 

AM520 

TSI, Inc. PM2.5 mass 

concentration 

1 second 3 0 - 1.8 

liters/min 

0.001 - 100 

mg/m3 

PurpleAir 

PA-II-SD 

PurpleAir, 

LLC 

PM2.5 mass 

concentration, 

Temperature 

and Humidity 

~2 

minute 

Up to 25 0.1 L/min 0–500 µg/m3 

 

 

2.1.1 The Penthouse Setup 

 

Most instruments were running inside the penthouse as the penthouse was air-conditioned and 

heated. This helped us to collect the data during the entire year that otherwise would not have been 

possible because of the instrument operational temperature ranges. A picture of the penthouse 

showing the instruments used at the central site is given in Figure 2.1.1. The instrument includes 

two CPC 3783, one CPC 3007, four microaeths, and two sidepaks. It is also to be noted that while 

Figure 2.1.1 show the two CPC 3783s, we used only one CPC 3783 at the central site and kept the 

other one as a reserve because of the supply chain issues at the time. Also, we used three sidepaks 

with a rotation of one sidepak to the bike from the penthouse. 
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Figure 2.1.1 The setup of instruments at the penthouse of the VTRC building 

 

 

2.1.2 The Rooftop Setup 

 

The UPAS and the PPA were kept outside the penthouse because there were no tubing arrangement 

on these devices and they needed to be directly in contact with outdoor air. Figure 2.1.2 shows the 

outside setup of the PPA and the UPAS device. 

Tube leading to roof 
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Figure 2.1.2 The rooftop device setup for the PPA sensors and UPAS 

 

As shown in Figure 2.1.2, the UPAS was used under a shade to protect the device from rain and 

snow. The UPAS was also connected with an IoT-compatible Voltaic V50 12,800mAh external 

battery pack to supply the UPAS with enough power to last ~48 hours. Due to the lack of enough 

power, we had to use the external power pack with the UPAS as we needed at least 24 hours 

runtime to collect enough PM2.5 weight on the filter. Figure 2.1.3 shows the UPAS used for 

collecting filter samples. 
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Figure 2.1.2 The picture of UPAS used in our study 

 

2.2 The Bike Setup 

 

An e-bike was used following the previous methodology (Hankey et al., 2015). I placed 

instruments in a rear rack and strapped tightly with two layers of foam in between to cushion the 
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shock from road impacts. I used the Specialized Turbo e-bike for sampling. The e-bike was 

equipped with front shock absorbers to dampen the sudden impact of potholes making the sample 

collection effort smoother. The position of the instruments installed on the bike is shown in Table 

2.2. 

 

Table 2.2 The list of instruments installed on the bike. 

Device Manufacturer Measurement Sampling 

Interval 

Instrument flow 

rate 

Instrument 

Range 

Condensation 

Particle 

Counter 3007 

TSI, Inc. Particle number 

concentration 

1 second 700 ml/min 0-100,000 

pt/cca 

Micro-

aethalometer 

AE-51 

AethLabs Black carbon 

concentration 

1 second 100-200 ml/min 

(50, 150 ml/min 

also possible) 

0-1 mg/m3 

SidePak 

AM520 

TSI, Inc. PM2.5 mass 

concentration 

1 second 0 - 1.8 liters/min 0.001 - 100 

mg/m3  

PurpleAir PA-

II-SD 

PurpleAir, LLC PM2.5 mass 

concentration, 

Temperature 

and Humidity 

~2 minute 0.1 L/min 0–

500 µg/m3 

BU-353 GlobalSat 

WorldCom 

Corp. 

Global 

coordinates 

1 second 

(>1 micro-

second) 

- - 

Hero 9 Black GoPro Video 24 

frames/sec 

- - 

 

The bike carrier was padded with two layers of 2-inch soft foam to cushion the instruments from 

mechanical shock. The foam was strapped to the wooden base of the rear rack using parachute 

buckle straps. A picture of the bike carrier with the different instruments is shown in Figure 2.2.1. 

The bike carrier was strapped with two portable 10000-watt Anker power banks, one to power the 

raspberry pi and the other to power the PPA sensor. The list of other devices is given in Table 2.1 

and the setup is highlighted in Figure 2.2.1. 
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Figure 2.2.1: The setup of the  

 

 

Figure 2.2.1 The instruments fitted on the e-bike for air quality measurement, geolocation 

and video logging 

 

A square foam was glued above the sidepak AM520 to make up for loose grip because of the small 

size of the sidepak, the straps were tied carefully before every run to secure and keep clear the 

PurpleAir 

Power-bank 

CPC 3007 

SidePak  GPS 

Conductive 

Tubing 

Steel Rod support  
GoPro 

Camera GoPro 

Camera 

MicroAeth  

Raspberry Pi 
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outlet for the proper functioning of airflow. A pole was selected that matched the height of the 

rider. The inlet tube of all three devices (i.e, microaeth, CPC, and the sidepak) was fixed near the 

top of the steel pole at about six feet from the ground to match the breathing height of the pedestrian 

and rider so that it matched closely with the actual exposure of the commuters. The GPS was glued 

over the top of the pole to receive the GPS signal accurately. The PPA sensor was fixed to the pole 

at the same rider height near the top of the pole. Also, both the tubing and the PPA air inlet were 

kept pointing downward to minimize wind interference while riding the bike. The CPC tilt alarm 

was also disabled by soldering and bypassing the circuit in CPC 3007. 

 

2.2.1 The GoPro Setup  

 

The GoPro Hero 9 was used to capture video and sound from the bike routes in conjunction with 

the air-quality measurements. As shown in Figure 2.2.1, the two opposite-facing cameras were 

used for recording video with one camera attached to the front handle and the other one attached 

to the rear pole. The video from both cameras was captured in a 2.7K resolution at a rate of 24 

frames per second. The cameras were also fitted with a fisheye camera module from GoPro 

otherwise, called Max lens to maximize the Field of View (FOV) of the camera and, according to 

the GoPro community support page, the Hero 9 with max lens has a diagonal FOV of 144 degrees. 

Ideally, we intended to capture the full panoramic image but because of the structural limitations 

of the bike setup, we fitted the camera on the front and back of the bike to capture as much of the 

image as possible. Brief information on the image-based model is in section 2.6. 
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2.3 The Raspberry Pi Application 

 

The raspberry pi application was developed by the Center for Geospatial Information Technology 

(CGIT), Virginia Tech team. The application was used to record the data from the CPC 3007, 

microaeth AE51, and the GPS BU-353 sensors through serial communication over the Universal 

Serial Bus (USB) cable connected to pi while collecting the data on the bike. The data was 

collected inside the pi memory card in form of a database file. The data was synced in real-time 

with the internal pi clock during bike runs. The data from the other instruments not connected to 

pi like the sidepak and PPA were merged with pi-collected data in the post-processing of the data. 

Figure 2.3.1 shows the image of the raspberry pi application running on the home screen. The 

raspberry pi was powered by an on-bike power bank during sample collection. The raspberry pi 

was also fitted with a touch screen to interact with the application. 
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Figure 2.3.1 The bike data application running over raspberry pi and showing the live 

values of CPC, MicroAeth and GPS 
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2.4 Bike Route Selection 

 

To select the best routes, I primarily used three data sources to optimize the routes. The three data 

sources were: 

1. The Google Street View images and segmentation by PSPNet model 

2. Jurisdiction zoning data 

3. The road classification  

The objective for selecting the above data was to select routes that were the most representative of 

the DC region and the route selection was done to maximize the representation of each region 

along with balancing of different factors like safety and feasibility of the route. To obtain the 

optimum path, I first planned different routes using the Google bike routing tool in such a way that 

each route was roughly 2 hours long (i.e., Arlington route and Washington DC route). I planned 

~15 routes for both the DC and Arlington regions. After selecting the route, I used the google 

directions API and gpsvisualizer tool to convert the google route links into kml shape files. These 

shapefiles were then used to extract features from Arlington and Washington DC’s local 

government road data and the zoning data. Figure 2.4.1 shows the flow chart of the route selection 

process. 
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Figure 2.4.1 The flowchart of the route selection process 

 

2.5 Selected Bike Routes 

 

Utilizing the process described in section 2.4 the two routes selected are shown in Figure 2.5.1. It 

is to be noted that even though one of the routes is called as Washington DC route, it covers both 

the Arlington and Washington DC area because we used the central site for storing the bike and 

equipment at the basement parking level of the VTRC building. 
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Figure 2.5.1 The zoning distribution of the selected Arlington and Washington DC route. 

The light colored lines show the frequent detours taken during sample collection 

 

 

 

I also consolidated the zoning codes before the extraction of zoning by the routes. The motivation 

for aggregating the zoning categories is that most jurisdictions in the country have unique zoning 

ordinance. Thus, we needed to aggregate the ordinance into basic categories among the two 
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jurisdictions: Washington DC and Arlington local government. I merged the residential apartment, 

and residential zone for the residential category; the downtown zone, mixed-use zone, 

neighborhood mixed-use zone, and commercial zone were merged into the commercial zone 

category; the industrial, production, distribution, and repair zones were merged inside the 

industrial zone category; and the unzoned, roads and parking zone special    was merged inside the 

open zone category. 

 

 

2.6 GSV Images and PSPNet 

 

The study uses the Pyramid Scene Parsing Network otherwise known as PSPNet (Zaho et al., 

2017) for the segmentation of the GSV images. GSV images were downloaded from the Google 

Streetview API and these images were segmented using the PSPNet model trained over the 

ADE20K dataset (Zhou et al., 2017). Although the dataset has 150 objects and classes, based on 

analysis done in GSV model study (Qi et al., 2021), I selected 16 categories that had an impact on 

the built environment and exposure. These 16 categories are 'wall', 'building', 'sky', 'tree', 'road', 

'grass', 'earth', 'field', 'plant', 'water', 'fence', 'person', 'HMV', 'car', 'bikes', and 'ship'. There were 

1151 GSV images within the 200-meter buffer for the Washington DC route and 992 GSV images 

for the Arlington route. The distribution of both routes was compared to the baseline features 

located in Arlington for the Arlington route and, Washington DC-Arlington combined features for 

the Washington DC route. The distribution of the 16 selected features is shown in Figure 2.6.2 and 

Figure 2.6,3. Also, Figure 2.6.1 shows the segmentation of an image captured near VTRC using 

the GoPro. The features identified by PSPNet are highlighted in discrete colors below the raw 
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image. These features are aggregated in percentage cover in text data from each GSV image and 

were then utilized for comparing the distribution. 

 
Figure 2.6.1 The image segmentation of a GoPro image by the PSPNet model. The image 

was captured using GoPro near the VTRC building 
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Figure 2.6.2 The distribution of 16 factors compared with the baseline distribution for 

Washington DC route. The dashed vertical line and solid line represents the 95% and 99% 

coverage of each class respectively 

 



21 

 

 
Figure 2.6.3 The distribution of 16 factors compared with the baseline distribution for 

Arlington route. The dashed vertical line and solid line represents the 95% and 99% 

coverage of each class respectively 

 

 

 

 

2.7 Road Coverage of Bike Routes 

 

I compared the type of road covered by both routes. The comparison of the routes for the type of 

roads is given in Figure 2.7.1. I tried to normalize the distribution of the road types in the route 

selection process but, the trails still represented a slightly higher percentage because of safety 

reasons as described in the last step of the route selection process in Figure 2.4.1. The road type 

shown in Figure 2.7.1 is extracted using an algorithm. It was extracted using the selected routes 
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20 meters buffer shape file. It essentially means that the road which lies within 20 meters of the 

trail would also be counted in the overall length of each type of road. 

 
 

Figure 2.7.1 The type of road covered by each route 
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3.0 Data Description 

 

This section describes and compares the data collected from the bike routes and the background 

central site. I was not able to process the data for the microaeth with limited time so, it was not 

included in this section. 

 

3.1 Central Site Data 

 

The data collected from the central site was continuous except for a few days. To process the 

central site data, I averaged at a one-hour resolution to keep it standardized for all the devices.  The 

median CPC concentration was observed to be 6365 #/cm3 and the median PM2.5 observed to be 

5.2 µg/m3. 

 

3.1.1 UPAS Data 

 

We collected about 20 UPAS samples but used only 12 to correct the rest of the central site 

instruments. The UPAS filters were ignored for the days on which the precipitation was more than 

0.002. I used ERA5 (Hersbash et al., 2020) reanalysis data to estimate the precipitation over the 

VTRC building location.  We first corrected the sidepak SP_632 and then used SP_632 to correct 

the rest of the PPA and the sidepak devices. The R-squared between the SP_632 and the UPAS 

filter was found to be 0.942 with a standard error of 0.03 mg/m3. The intercept was fixed at zero 
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for the OLS linear regression. The scatter plot for the correction of sidepak SP_632 and the UPAS 

is shown in fig 3.1.1. The correction table for the rest of the PM2.5 devices used on the bike is given 

in Table 3.1.1. The intercept was fixed at zero for all the correction equations and so the intercept 

is zero for all the devices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.1 The correlation between the UPAS and the SidePak SP_632 data for rooftop. 

The R2 between UPAS and SidePak SP_632 was observed to be 0.92 
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Table 3.1.1 The correction factor for all the PM2.5 devices used on the bike  

 

 

3.1.2 The PurpleAir and SidePak Data 

 

The PPA data was filtered for the anomalies between the two channels of the device The channel 

‘a’ and channel ‘b’ were checked for anomalies after the aggregation of data at one hour resolution 

and only those data point which showed less than 20% deviation, or 3 micro-gram difference were 

kept (Malings et al., 2019). Figure 3.1.2.1 shows the correlation Pearson plot and the time series 

of the PPA sensors. It is to be noted that the data shown in Figure 3.1.2.1 is not adjusted with the 

filter measurements. 

 

Instrument Reference ID (X) Corrected_with 

(Y) 

Slope Intercept 

SidePak Yes (for all other PM2.5 

devices) 

632 Filter 

measurement 

0.442 NA 

SidePak No 633 SidePak 632 

corrected 

0.442 NA 

SidePak No 634 SidePak 632 

corrected 

0.438 NA 

PurpleAir Yes (for all PPA 

devices) 

44_C9_AC SidePak 632 

corrected 

0.399 NA 

PurpleAir No 41_8D_13 44_C9_AC 

corrected 

0.382 NA 

PurpleAir No 44_D4_A6 44_C9_AC 

corrected 

0.407 NA 

PurpleAir No 17_65_75 44_C9_AC 

corrected 

0.413 NA 

PurpleAir No 4d_7e_81 44_C9_AC 

corrected 

0.399 NA 
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Figure 3.1.2.1 The correlation between the PPA sensors at the central site and the timeseries 

plot of the uncorrected PPA sensors.  

 

The r-value for every PPA sensor was above 0.98 and there was almost perfect correlation among 

the PPA devices at the rooftop. A heat plot with all the PPA sensor and the sidepak is given in 

Figure 3.1.2.2. The r-value for sidepak and PPA sensors was also observed to be above 0.83. Also, 

it is interesting to note that the correlation between the UPAS and the PPA was always below the 

correlation between the UPAS and the sidepak. This also shows that the sidepak was more accurate 

when compared with the sidepak. The scatter plot between sidepak and PPA device ‘44_C9_AC’ 

is shown in Figure 3.1.1.3. 
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Figure 3.1.2.2 The correlation between the SidePak and the different PPA devices at the 

central site 

 

Figure 3.1.2.3 The scatterplot between the SidePak 632 and the PPA 44_C9_AC. The R2 

between the two device was observed to be 0.82 

 

The box plot of all the PM2.5 instruments after correction is shown in Figure 3.1.1.4 and as could 

be observed the median value of the concentration is around 5 μg/m3. 
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Figure 3.1.2.4 The box plot of the SidePak and PPA sensors after correction at the 

central site 

 

3.1.3 CPC Data: 

 

The CPC 3783 and the CPC 3007 data scatter plot is shown in Figure 3.1.3.1. We used the CPC 

3783 at the central site to be the reference instrument as it had a higher accuracy. The R-squared 

for both the CPCs was observed to be 0.98. The correction factor for the CPC 3007 is also shown 

in Figure 3.1.3.1. 

Also, for correcting the CPC 3007 data above 100,000 #/cm3 I used the correction factor from 

from previous study (Westerdahl et al., 2005). Equation 3.1.3 was used to correct the values of 

CPC 3007 that were above 100,000 #/cm3: 

𝑃𝑁𝐶𝐶𝑜𝑟𝑟 = 38456*exp(𝑃𝑁𝐶𝑟𝑎𝑤 ∗ 0.00001)       equation 3.1.3 
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Where, 

PNCcorr = The corrected Particle Number Concentration (PNC) 

PNCraw = The raw concentration as logged by CPC 3007 

  

  

Figure 3.1.3.1 The correlation between the CPC 3007 and the CPC 3783 at the central site 

and the distribution of one year data collected from the CPC 3783 at the central site. 

 

 

3.2 The Bike Data Description 

 

The data collected on the bike was for 104 runs in total which included four random sampling runs 

that could be utilized later on for evaluating the LUR models. Each run was ~2 hours long so we 

roughly recorded ~208 hours of data from the Arlington and the Washington DC route.  The bike 

data was collected from 4th November 2021 to 17th September 2022. The hourly, weekday, and 

monthly distribution of the data collected in each unit hour slot is shown in Figure 3.2.1 and Figure 
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3.2.2. We tried to balance the sample distribution as much as possible. The bike runs were done 

from 5 am morning to 9 pm. No runs were completed at night because of low activity and safety 

reasons. 

 

Figure 3.2.1 The hourly and weekday distribution of bike sample runs for Arlington and 

Washington DC route 
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Figure 3.2.2 The monthly distribution of bike sample runs for Arlington and Washington 

DC route 

 

The descriptive statistics for both routes are given in Table 3.2.1. It is to be noted that Table 3.2.1 

shows data only from the main route and does not consider the detours and random routes that 

were taken during the bike runs. The values shown in Table 3.2.1 were corrected with the reference 

instruments as given in Table 3.1.1 before the analysis. 
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Table 3.2.1 The data description as collected from the two routes and the central site 

 

 

As can be observed from Table 3.2.1, the average at the central site is less than the average of both 

routes. Both PNC and PM2.5 showed a lower concentration at the central site when compared to 

the bike runs.  

For spatial display, the point data was extracted inside a raster of 100-meter resolution. The mean 

concentration value was assigned to each grid cell. The spatial raster distribution for PNC and 

PM2.5 is shown in Figure 3.2.3. 

 

 

Figure 3.2.3 The spatial distribution of PM2.5 and PNC for the two bike routes. 

Measurement Device Route/location Count Mean Standard 

Dev 

Minimum 25% 50% 75% Maximum 

PNC CPC 

3007 

Arlington 194182 88646.9 5092090 2.1 4485.2 6587.4 10869 7.67E+08 

PNC CPC 

3007 

Wahington 

DC 

180606 32790.8 2453314 5.4 5574.4 8504.2 13991.7 4.21E+08 

PNC CPC 

3783 

Central Site 

- 8867.9 9970 0.2 3891.7 6365.3 10595.2 125692.6 

PM2.5 SidePak Arlington 175488 7 5 0.5 4.2 6.2 9.1 1180.8 

PM2.5 SidePak Wahington 

DC 

160868 6.4 3.7 1.3 3.7 5.5 8.2 342.6 

PM2.5 SidePak Central Site - 6.0 3.5 0.5 3.3 5.2 7.8 31.1 
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3.2.1 Preliminary Results and Observations 

 

After data cleaning and plotting the spatial data as shown in Figure 3.2.3, it can be observed that 

the special and unzoned areas in Washington DC and Arlingtonhad low concentrations. This 

unzoned and special area includes the Washington Monument, the area near Arlington Cemetery, 

and the open area near the Potomac River. Also, for the Washington DC route, the downtown area 

seems to have the highest concentration of PNC and PM2.5. 

The Arlington route had a more similar spread-out concentration when compared to the 

Washington DC route. The lower concentration for both the PNC and PM2.5 is near the "4-mile 

run" trail and the higher concentration is observed near the downtown area and near the highway. 
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4.0 Conclusion and Lessons Learned 

 

The methods used in my study are novel and can help one to select the best representative routes 

for mobile campaigns. The use of GSV images to select a route can help in the identification of 

potential built environments that are not captured by zoning information, which is traditionally 

used in the selection of mobile monitoring routes.  

I have also shown that the background site registered 0.4 to 1 microgram less PM2.5 mass 

concentration when compared to the DC and the Arlington route. During the campaign, I learned 

some important lessons that could help other researchers avoid potential pitfalls. These lessons 

are: 

1. After the setup is complete on the bike, one should make a standard operating procedure 

for initiating the run and terminating the run. During the initial days, I sometimes forgot 

one or two things which often created problems. It was primarily because there were a lot 

of moving parts like batteries for cameras, e-bike batteries, two power banks, CPC AA 

batteries, two SD cards for the camera, and bike lights for safety. 

2. One should make sure that enough random runs are completed during the campaign for 

validation of the models. In our case, we could only collet four samples runs or, ~4% of 

the total data. 

3. The PPA running status was hard to verify as the device had no indicators outside the 

device so, one should make sure that the cables are connected well before and during the 

bike runs. 
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4. The GoPro needs time calibration after each run and if we do not sync the time between 

two GoPro after changing the battery, it develops a time shift that could be challenging to 

remove in post-processing of the data. 

5. One should get the extra parts before initiating the campaign. This was one point that was 

especially disruptive as the supply chains were slow during the campaign, and we could 

not get some devices like the extra UPAS and the extra CPC on time. This risked the bike 

campaign if any of our devices were to break down during sampling. 

6. Check for local factors while selecting a route. We selected the routes primarily based on 

the algorithmic decision, but it should be noted that some information is not available with 

Google maps. In our case, Google maps put me on a dangerous road during the random 

sampling runs that caught me by surprise. 

 

The next steps in this project are to input this data into the LUR models. This data will include the 

data collected from the mobile monitoring campaign and the data collected at the central site. We 

will also use the video data that we collect during the mobile measurement. Once the model 

development is finished, we will validate our models with the data collected from the random 

routes and the data collected from the PPA network spread in Arlington and Washington DC.  
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