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Notes on spacetime thermodynamics and the observer dependence of entropy

Donald Marolf*
Physics Department, UCSB, Santa Barbara, California 93106, USA

Djordje Minic†

Institute for Particle Physics and Astrophysics, Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA

Simon F. Ross‡

Centre for Particle Theory, Department of Mathematical Sciences, University of Durham, South Road,
Durham DH1 3LE, United Kingdom

~Received 11 November 2003; published 10 March 2004!

Because of the Unruh effect, accelerated and inertial observers differ in their description of a given quantum
state. The implications of this effect are explored for the entropy assigned by such observers to localized
objects that may cross the associated Rindler horizon. It is shown that the assigned entropies differ radically in
the limit where the number of internal statesn becomes large. In particular, the entropy assigned by the
accelerated observer is a bounded function ofn. General arguments are given along with explicit calculations
for free fields. The implications for discussions of the generalized second law and proposed entropy bounds are
also discussed.
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I. INTRODUCTION

The interaction of thermodynamics with gravitation h
been a subject of intense interest since the discovery of b
hole entropy@1# and Hawking radiation@2#. The geometrical
entropy associated with black hole horizons is thought
provide an important clue to the quantum structure of spa
time, and many attempts have been made to parse the c
sponding riddle. The approach most reminiscent of ordin
statistical mechanics attempts to identify a collection of m
crostates whose counting reproduces this entropy. Des
some successes, particularly in the context of string the
@3#, we are still far from having a concrete understanding
these states in the regime where the classical geomet
description of a black hole is a good approximation to
underlying physics~and we do not aim to improve this situ
ation in the present paper!.

Other authors have tried to extend black hole entropy
more general principles. In particular, the conjecture that
relation between entropy and area extends to any event
rizon ~for example, to acceleration horizons in flat space! has
been recently championed by Jacobson@4# and by Jacobson
and Parentani@5# who studied the associated first law
thermodynamics.1 An interesting output of this line of rea
soning is the suggestion@4# that horizon entropy arises be
cause gravityis thermodynamics~or a special case thereof!.
Adopting an alternative approach, a number of auth
@7–10# have argued that the consistency of the second law
thermodynamics with a black hole entropy related to the a
of the event horizon yields a general principle restricting

*Email address: marolf@physics.syr.edu
†Email address: dminic@vt.edu
‡Email address: S.F.Ross@durham.ac.uk
1Other work with this theme includes@6# and references therein
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allowed entropy ofany system, be it black hole, matter, o
other.

Our aim in this paper is to explore a new relation betwe
horizons and entropy, which we believe is relevant to
discussion above. We will show that the entropy associa
with a simple localized matter system in flat and otherw
empty space is not an invariant quantity defined by the s
tem alone, but rather depends on which observer we as
measure it. An inertial observer will assign the usual, na
entropy given by the logarithm of the number of intern
states. However, an accelerated observer~who sees the ob-
ject immersed in a bath of thermal radiation! will find the
object to carry adifferentamount of entropy. Note that in th
context we will consider both observers are able to desc
the object with the same degree of precision; the issue isnot
that our object is partially hidden behind the Rindler horizo

It is of course well known that the inertial and Rindle
observers already ascribe a different entropy to
Minkowski vacuum, as this is a thermal state with diverge
entropy @11# from the Rindler point of view. Considering
both this fact and the background structures necessary
standard discussions of thermodynamics, Wald has arg
for some time@12# ~see also the last part of@13#! that entropy
is an extremely subtle concept in general relativity—even
ordinary matter systems—and that we still lack the pro
framework for a general discussion. Our results are in co
plete agreement with this philosophy and may be conside
a next small step in pursuit of this goal. In particular, we no
learn that the observer dependence of entropy is far m
than a simple shift of the zero point. What is perhaps surp
ing from the point of view of@12# is that the observers ca
disagree on the entropy of a localized object even when t
assign the same energy to all of its microstates.

The fact that an accelerated observer does not measur
usual naive entropy for an inertial matter system clearly
important consequences for thermodynamic discussions,
©2004 The American Physical Society06-1
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our motivation for investigating these questions is clos
related to recent explorations of such issues. Let us there
recall the recent progress@14,15# in clarifying issues related
to the 2nd law as raised in@7–10#. To review the basic ques
tion, suppose one considers a black hole of temperatuT
and massM. Classically, a massM black hole will absorb
any small object placed nearby.2 If an object ~obj! carries
energyEob j into the black hole the associated increase
black hole entropy will bedS5Eob j /T by the first law. But
what if the small object itself has more entropySob j than
Eob j /T? Then such an absorption would violate the gene
ized 2nd law.

But let us also recall that@16# argues that the generalize
2nd law will in generalbe satisfied when the system outsi
the black hole can be described by quantum field theory
curved spacetime. Though issues of divergences and
reaction prevent this from being a rigorous proof, it is at le
highly suggestive. If correct, then there are two logical alt
natives. Either objects withSob j.Eob j /T cannot exist in any
consistent quantum field theory~in curved spacetime!, or
some quantum effect must intervene to increase the ent
of the final state.

The latter conclusion was recently argued in@14,15#. The
main point was that forS.E/T either~i! thermally produced
objects macroscopically indistinguishable from that wh
one is attempting to insert into the given black hole will pl
an important role in the thermal atmosphere of this bla
hole, or ~ii ! the object of interest will be unable to free
penetrate this black hole’s thermal atmosphere. There
large overlap between the two cases; for example, the p
ence of similar objects in the thermal atmosphere can ca
the new object one introduces to experience a repulsive p
sure. Such an effect might come either through an exp
interaction or through statistical effects~e.g., the Pauli exclu-
sion principle!. This repulsive pressure can prohibit our o
ject from falling into the black hole.

In the case where our objectcan freely penetrate the ther
mal atmosphere,@15# suggested how quantum effects cou
still alter the final state. The point is that, as mention
above, the thermal atmosphere must contain a signific
number of such objects. This is argued@15# by computing the
free energyFob j5Eob j2TSob j of such an object at the
Hawking temperatureT and finding thatFob j is negative.
Since the vacuum has zero free energy~i.e., a greater
amount!, at temperatureT our objects are more likely to exis
than not.

Suppose now that the black hole were to come to equ
rium ~say, if placed in a small reflecting cavity! with its
thermal atmosphere. Such an equilibrium state would con
a significant flux of objects directed toward the black ho
But since there is equilibrium, it must be that similar obje
are also radiated from the black hole at a significant ra
Reference@15# argues that this will be the case even for lar
Eob j /T due to the fact that the entropySob j has been as
sumed even larger.

This effect appears to be sufficient to protect the sec

2Though classically such a black hole will haveT50.
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law when one drops a singleSob j.Eob j /T object~or a small
number of such objects! into a black hole in otherwise empt
space. But there remains a final wrinkle to sort out: wha
we measure the flux of such objects being radiated from
black hole and then arrange to beam our objects into
black hole at a higher rate? Or, suppose we place the b
hole in a reflecting cavity, let it reach equilibrium, andthen
send in another object with more thaneEob j /T internal states?

Since the density of such objects in equilibrium may
ready be high, this may require us to assume extremely w
interactions. But this is not a problem in principle, and in t
present work we focus on the case of free fields. In the li
of a large black hole, the problem reduces to the study o
Rindler horizon in flat spacetime. The equilibrium state
just the Minkowski vacuum which, however, appears th
mally excited to uniformly accelerated~i.e., Rindler! observ-
ers.

Here, the observer dependence of entropy becomes
cial. We find that inertial and Rindler observers donot as-
cribe the same amount of entropy to our object. Inertial o
servers ascribe an entropy equal to the logarithm of
number of internal states, as expected. However, in the l
where the number of internal statesn is large, a Rindler
observer ascribes only an entropySacc5Eacc /T,3 suggesting
consistency of the second law4 when such an object crosse
the event horizon. Thus, a consequence of our observer
pendence of entropy is that allowing an object to fall acro
an event horizonwill plausibly respect the generalized se
ond law from the point of view of the accelerated observ
who remains outside of the horizon, no matter how ma
internal states the object carries. However, our analysis s
short of being a proof for reasons related to the unresol
issues with@16#; these are discussed further in the conclu
ing section.~The inertial observer, on the other hand, nev
loses sight of the object, so there can be no question
violation of the second law from their point of view.!

We will give a general argument for this observer depe
dence of the entropy in the next section. Our argument re
simply on general points about thermodynamics and the
lation of entropy to statistical ensembles. We will see that
Rindler observer ascribes an entropySacc5Eacc /T to the
object whenever it represents a small perturbation on
thermal state, which in particular will be true in the limit o
a large number of microstates. Section III then fleshes out
detailed calculations in the case of free boson and free
mion fields. In particular, the relation between the Rind
energyEacc of the object and the inertially measured ener
Einertial is calculated for a well-localized object. With th
proper normalization ofEacc , and in the limitEinertial!T,

3HereEacc ~the energy measured by theaccelerated observer! is
the Killing energy associated with the boost symmetryj ~i.e., the
Rindler time translation!. The associated temperatureT is given by
T5k/2p wherek is the surface gravity ofj. As usual, the normal-
ization of j cancels so thatEacc /T is independent of this choice.

4Either the second law for black holes in the limit of a large bla
hole, or the ‘‘stationary comparison’’ second law for asympto
Rindler horizons@5#.
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one findsEacc5Einertial as one would expect. However, fo
larger T the answer can be rather different. We close w
some discussion in Sec. IV.

II. ENTROPY AND OBSERVERS

The central point of this paper is to show that the entro
ascribed to a localized physical system by different observ
can differ, even when both observers describe the region
taining the system with the same resolution. We exhibit t
in a particularly simple context, considering the entropy
an object in flat space as seen by an inertial or a Rin
observer. Note that we take the spacetime to be exactly
and explicitly ignore any possible gravitational effects fro
the objects we discuss. We will return to this point in Sec.
In this section, we give a general argument suggesting
the entropy measured by the Rindler observer will
bounded byEacc /T and strongly arguing for this result in th
limit of a large number of internal states. HereEacc is the
energy associated to the object by the Rindler observer aT
temperature seen by this observer. In the following sect
we give some more detailed calculations for the case
single-particle excitations of free Bose or Fermi fields.

From the inertial observer’s point of view, the natur
vacuum state is the Minkowski vacuumu0M&, and we de-
scribe the excitation of this vacuum corresponding to
presence of some object~in an undetermined microstate! by
the density matrix

rM5
1

n (
i 51

n

u1M ; i &^1M ; i u, ~2.1!

where theu1M ; i & denote Minkowski one-object states d
scribing then possible microstates of our object. The entro
assigned to the object by the inertial observer is then as u

SM52Tr rM ln rM5 ln n. ~2.2!

But what entropy will a Rindler observer assign to th
object? Note that the answer isnot given by 2Tr r ln r
wherer is the density matrix corresponding torM from the
Rindler observer’s point of view. This2Tr r ln r would in-
clude in addition a contribution from the background of th
mal acceleration radiation that the Rindler observer may
wish to ascribe to the localized object. One way to define
entropy of the object from the Rindler observer’s point
view is to ask what entropy is carried out of the visib
Rindler wedge when the object crosses the Rindler horiz5

Thus, the appropriate Rindler notion of entropySacc carried
by the object is thedifferencedS between the entropy in th
visible wedge when the object of interest is present and w
it is not. SimilarlyEacc5dE is the corresponding differenc
in Killing energies. We repeat that we work in the appro

5The terms ‘‘visible’’ and ‘‘invisible’’ Rindler wedge will always
be used in the context of what is in causal contact with our cho
Rindler observer. Of course, the entire spacetime is visible to
inertial observer.
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mation where gravitational back reaction is neglected and
particular, in which the horizon is unchanged by the pass
of our object.

We therefore first consider the thermal density matrixrR0
which results from tracing the Minkowski vacuum
u0M&^0Mu, over the invisible Rindler wedge:

rR05Trinv isibleu0M&^0Mu. ~2.3!

This describes all information that the Rindler observer c
access in the Minkowski vacuum state. We wish to comp
rR0 with another density matrixrR1 which provides the Rin-
dler description of the staterM above, in which one objec
~in an undetermined microstate! is added to the Minkowski
vacuumu0M&. The density matrixrR1 is hence

rR15Trinv isiblerM5Trinv isible

1

n (
i 51

n

u1M ; i &^1M ; i u.

~2.4!

We would like to compute the difference in energy

dE5Tr@H~rR12rR0!#, ~2.5!

and entropy

dS52Tr@rR1ln rR12rR0ln rR0#, ~2.6!

whereH is the Hamiltonian of the system and, in both cas
the sign has been chosen so that the change is positive w
rR1 has the greater value of energy or entropy. The entr
of each state separately is well known to be divergent@11#.
However, there is no reason to expectdS to be ill-defined in
our context. Assuming that the object has some modera
well-defined inertially-measured energyEinertial and is well
localized, the energy measured by the Rindler observer
also be reasonably well-defined and the differen
rR1ln rR12rR0ln rR0 will have negligibly small diagonal en
tries at high energy so that the above trace will exist. In ot
words, we may computedS by first imposing a cutoffL,
computing the entropy (S0 ,S1) and energy (E0 ,E1) of the
two states (rR0 ,rR1) separately, subtracting the results, a
removing the cutoff. We will see that the cutoff dependen
is trivial in the approximation used below.

Let us make the simplifying assumption that the obje
represents a small perturbation on the initial thermal Rind
density matrix rR0; that is, rR15rR01dr, where ‘‘dr
!rR0.’’ One expects this approximation to hold forne2E/T

@1, in which case~on average! there are already many ob
jects similar to ours present inrR0. In particular, this ap-
proximation should hold in the limit of largen with fixed
E/T. A somewhat more careful argument for this approxim
tion was explained to us by Mark Srednicki and is given
the Appendix.

We therefore approximatedS by Taylor expanding around
rR0,

n
e

6-3
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dS'2TrFdr
d~r ln r!

dr Ur5rR0G
52Tr@dr~11 ln rR0!#52Tr@dr ln rR0#, ~2.7!

where in the last step we use the fact that TrrR15Tr rR0.
Now recall that the initial density matrix is thermal,rR0
5e2H/T/(Tr e2H/T); as a result

dS'2Tr@dr~2H/T!#

5
Tr@~rR12rR0!H#

T
5

dE

T
, ~2.8!

where we have again used Tr(dr)50. This key result is
independent of any cutoff.

This result can also be understood on the basis of clas
thermodynamic reasoning. The initial configurationrR0 rep-
resents a thermal equilibrium. We wish to calculate
change in entropy in a process which increases the energ
an amountdE. Whatever the nature of the object that w
add, this cannot increase the entropy by more than it wo
have increased had we added this energy as heat. Sinc
consider a small change in the configuration, the first l
yields

dS,dSmax5
dE

T
. ~2.9!

We see that the process of adding a small object satur
this bound, at least to first order in small quantities. W
should expect that if we relaxed the assumption that the
ject represents a small change in the configuration, the re
ing dS will satisfy but no longer saturate the integrated v
sion of this bound.

We have found that the entropies ascribed to the locali
object by Minkowski and Rindler observers behave in qu
different ways. From the point of view of the Minkowsk
observer, entropy and energy are independent; the objec
have an arbitrarily large entropy with fixed energy if it h
sufficiently many internal states. On the other hand, from
point of view of the Rindler observer, entropy and energy
linked in a very general way by the bound~2.9!. As we will
see in the examples in the next section, the Rindler entr
for ‘‘highly entropic objects’’ will be much smaller than th
inertial entropy.

Note that since it arises from a trace over the invisi
Rindler wedge, this restriction is generally correlated w
the presence of a horizon, to which we might want to ass
a geometric entropy. Thus, this reduction in the ascribed
tropy is important for a complete understanding of attem
to violate the generalized second law using such highly
tropic objects, as reviewed in the Introduction. We will retu
to such issues in Sec. IV.

III. CALCULATIONS FOR FREE FIELDS

We now explore two concrete examples to illustrate a
elucidate the general discussion above. We consider a sy
of n free Bose or Fermi fields, and calculate the entropy
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objects described, from the inertial point of view, by a sing
particle density matrix uniformly distributed over the diffe
ent fields. Thus the inertial observer assigns the object
entropySinertial5 ln n in each case.

A. Bosons

For a system ofn free bosonic fields, the Minkowsk
vacuum can be recast in terms of the Rindler data as
following entangled state@17#:

u0M&5)
i 51

n

)
j

~12e2v j /T!1/2e2(v j /2T)ai jL
† ai jR

†
u0Rindler&.

~3.1!

Here i labels the different fields,j labels a complete set o
modesujL ,ujR of positive Rindler frequencyv j for each
field, and the labelsR and L refer respectively to the righ
and left Rindler wedges. Each modeuiL ,ujR of the i th field
has an associated annihilation operatoraiL ,aiR which anni-
hilates the Rindler vacuumu0Rindler& and satisfies a standar
commutation relation of the formaa†2a†a51. The tem-
peratureT associated with the uniformly accelerating o
server of interest is given byT5a/2p5k/2p wherea is the
observer’s proper acceleration andk is the surface gravity of
the boost Killing fieldj that is normalized on our observer
world line.

Similarly, the annihilation operatoraiM for a Minkowski
modeuM of the i th field can on general principles@17# be
expressed in the form

aiM 5(
j

@~uM ,ujR!~ai jR2e2v j /2Tai jL
† !

1~uM ,ujL !~ai jL 2e2v j /2Tai jR
† !#, ~3.2!

where (u,v) is the Klein-Gordon inner product. For simplic
ity we might suppose that we choose a modeuM with no
support on the invisible Rindler wedge~say, the left one! and
for which (uM ,ujR) is well modeled by a delta function; w
will return to the general case later in the subsection.
particular, this simplification means that the Rindler fr
quencyv of uM is reasonably well defined.6 For such a case
the above Bogoliubov transformation becomes

aiM 5
1

A12e2v/T
~aiR2e2v/2TaiL

† !, ~3.3!

where the normalization ofaiM is fixed by the commutation
relation. Here the Rindler operators refer to the one relev
pair of Rindler modes.

SinceaiM acts in the Hilbert space describing only thei th
field, it is convenient to describe the action ofaiM on the
vacuumu0iM & for this particular field alone. One sees that t

6If the object is well localized and located near our Rindler o
server at some time, thenv is also the frequency measured by th
inertial observer.
6-4
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properly normalized Minkowski one-particle state is given
terms of an infinite number of Rindler excitations

aiM
† u0iM &5~12e2v/T!(

k
e2kv/2TAk11uk,k11& i ,

~3.4!

whereuk,k11& i denotes the state of fieldi havingk Rindler
excitations in the right wedge andk11 Rindler excitations
in the left wedge. Here we consider only the factor in t
Hilbert space that describes the modes appearing in
~3.3!.

Thus, if we return to our Minkowski density matrix

rM5
1

n (
i 51

n

u1M ; i &^1M ; i u

5
1

n (
i 51

n

~aiM
† u0M&^0MuaiM !, ~3.5!

tracing over the invisible Rindler wedge will give the desir
result. A short calculation gives

rR1
diag5Trinv isiblerM5~ev/T21!

1

n (
i

NirR0 , ~3.6!

whererR0 is the original density matrix corresponding to th
Minkowski vacuum,rR05Trinv isibleu0M&^0Mu, and Ni de-
notes the number operator for thei th field. The superscrip
diag indicates that we have written only the diagonal part
rR1 in the standard basis, which the reader will shortly se
all that contributes todE and dS below. One can check
explicitly that rR1 is properly normalized so that its trace
1.

The change in the density matrix is thusdr5rR12rR0.
As in the previous section, we assume that this chang
small, so that we can compute the change in entropy bydS
52Tr„dr(11 ln r)…. For noninteracting particles, th
Hamiltonian isH5( iNiv, so the average change in ener
is

dE5v TrS (
i

Nidr D 5
v

12e2v/T
. ~3.7!

This result is already of interest. Note that forv@T and
under the conditions of footnote 6, one findsdE5Einertial
'v. On the other hand, forv!T the background of object
in the thermal bath leads to an amplification reminiscent
the effect of stimulated emission.7

On the other hand, the change in entropy is

dS52Tr@dr~11 ln rR0!#

52TrFdrS 11C2
vN

T D G5
dE

T
, ~3.8!

7Interesting comments on the emergence of the Rindler ther
fluctuations can be found in@18#.
06400
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where in the second step we used thatrR0 is thermal~i.e.,
rR05Ce2H/T, whereC is a c-number!; and in the final step
we use Trdr50. It is clear that Eqs.~3.7! and~3.8! depend
only on the diagonal part ofrR1 since the other factors in th
trace are all diagonal.

This expression obviously saturates the bound provi
by the second law of thermodynamics in agreement with
general arguments of Sec. II. The results are independen
the number of speciesn due to the fact that bothdE anddS
are linear indr, while dr is a normalized average ove
terms in which each field is changed independently. Thus
large n the Rindler observer will ascribe a much small
entropy to the object.

Finally, let us return to the case where more than one p
of Rindler modes contributes to Eq.~3.2!. SincerM is qua-
dratic in aiM , this leads to two sums over Rindler operato
in Eq. ~3.5!. However, sinceNi and (11 ln rR0) are diagonal
in the standard Rindler Fock basis, inspection of Eqs.~3.7!
and~3.8! shows that only the corresponding diagonal part
rM will contribute todE anddS. This diagonal part contains
only a single sum over modes, weighted byu(uM ,ujR)u2 or
u(uM ,ujL)u2. In the case where the Minkowski mode has
support in the left wedge~so thatu(uM ,ujL)u250!, the effect
is just as if each mode represented a separate field. Bu
have seen that the final result is independent of the num
of fields and, by the same logic, it is independent of t
weighting given to the various fields in Eq.~3.5!, so long as
rM is properly normalized. Thus we again obtain Eqs.~3.7!
and ~3.8!. In fact, it is clear that spreading the support ov
many modes only helps to justify our approximation as
increases the effective number of fields. In the more gen
case where the Minkowski mode function overlaps the inv
ible wedge, the quantitiesdE and dS will be reduced in
proportion to the probability that the object lies in the invi
ible wedge but one again findsdS5dE/T.

B. Fermions

For noninteracting fermions the calculation proceeds i
very similar fashion. The Minkowski vacuum written as a
entangled state is now

u0M&5)
i

)
j

~11e2v j /T!1/2e2(v j /2T)bi jL
† bi jR

†
u0Rindler&,

~3.9!

where the only changes from before are that theb operators
are fermionic withbb†1b†b51, and the associated chang
in sign in the thermal normalization factor.

As for the boson field, working to first order indr makes
dE and dS independent of the number of speciesn. As a
result, we may taken51 to evaluate the linearized resul
Though the linearized approximation is in general valid on
for large n, this does not prevent us from calculating th
linearized result forn51 and using it to correctly comput
the largen result. Similarly, since only the diagonal part o
dr will contribute we will also obtain the correct result~for
an object whose wave function vanishes in the invisi
wedge! by supposing that our Minkowski mode overlap

al
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only a single pair of Rindler modes. The associated Bogo
bov transformation then takes the form

bM5
1

A11e2v/T
~bL1e2v/2TbR

† !. ~3.10!

For a single field, the Rindler description of th
Minkowskian one particle state is simply

bM
† u0M&5u1,0&Rindler , ~3.11!

with one particle in the visible wedge and none in the inv
ible wedge. The properly normalized density matrix is ju
rR15u1&^1u. Hence, the change in the Rindler density m
trix dr is

dr52~11e2v/T!21~ u0&^0u2u1&^1u!, ~3.12!

and the change in energy for a noninteracting system of
citations is

Tr~Hdr!5
v

11e2v/T
. ~3.13!

In general, one now findsdE,Einertial so that dS
!Sinertial for large n. When the assumptions of footnote
hold andv@T, one also findsdE5Einertial'v, but for v
!T, the background thermal bath of fermions leads to
suppressionof the Rindler energy. Said differently, the a
pearance of an object from the inertial point of view c
sometimes correspond to the disappearance of an object
the Rindler observer’s thermal bath.

Sincedr is traceless, one again findsdS5dE/T, saturat-
ing the bound provided by the first and second laws.

IV. DISCUSSION

We have argued that inertial and accelerated obser
naturally ascribe different values to the entropy of a localiz
matter system in flat Minkowski space, even if the system
fully visible to both observers and the observers describe
system with the same resolution. Certainly, the observ
measure a differentdS when the localized system is intro
duced or removed, and so must use different values w
considering a thermodynamic accounting of such proces
The results support the suggestions of@12# that entropy,even
of ordinary matter systems, is a very subtle concept in gen
eral relativity or quantum field theory in curved spacetim

What is surprising from the point of view of@12# is that
our effect occurs even when the observers agree on theen-
ergyof each microstate. Our effect is in some sense due
‘‘mixing’’ between the object considered and the therm
background seen by the Rindler observer. In particular,
argued that when the number of microstatesn satisfies
ne2E/T@1 the entropy assigned to our object by the acc
erated observer isdS5dE/T. Note that in this regime a
thermal ensemble ofdistinguishableparticles would diverge,
as each new particle would add an entropy lnn@E/T. Thus,
statistics plays an important role and one cannot rely on
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intuition built from the study of distinguishable particles.
The above sections provided general arguments as we

explicit calculations for free fields. It is clear that the gene
arguments apply equally well to static observers in the pr
ence of a black hole or a cosmological~e.g., de Sitter! hori-
zon, and that the free field calculations would take a fo
that is essentially identical. Our general arguments are q
similar to those of@16#, and our observer dependence
entropy provides an important physical mechanism beh
such arguments. We note that the theorem derived in@16#
applies rigorously in the context considered here in wh
the temperature and the location of the horizon are held c
stant and the dependence on any cutoff is trivial.

In the black hole case, the resultdS5dE/T would apply
to any static observer and would in general differ from t
entropy assigned by a freely falling observer. It is therefo
interesting to return to the discussion of attempts to viol
the generalized second law~i.e., including horizon entropy!
by dropping an object withn@eE/T microstates into a black
hole. Suppose first that the object begins far away and
we work in asymptotically flat space. Then the object w
begin in a region of space that isnot in thermal equilibrium
with the black hole and where the effective local temperat
vanishes. Here a static observer measures the object to
entropy lnn since there is no thermal bath. On the oth
hand, as the object approaches the black hole horizon
expects that it enters a region which is~nearly! at thermal
equilibrium at the black hole temperatureT as described by
the distant static observer. If the object acts like a free fie8

we have seen that at this point the static observer can as
only an entropyS5E/T to the object. Thusif nothing else
occurs the second law will indeed have been violated. T
important point, however, is that this will occurbefore the
object reaches the horizon itself. Thus, one expects that
generalized second law is protected by the same mecha
that protects the ordinary second law. In the present case,
expects to see a large flux of objects radiated by the bl
hole as, inverting the above argument, movement of hig
entropic objects from the warm near-horizon neighborho
into the cold region of space will dramatically increase t
entropy.

The effect is similar to attempting to send a low frequen
photon~with two internal states! into a hot cavity which is
otherwise at equilibrium—many more photons will emerg
Sending in a larger flux of photons does not help as a be
with N photons does not in general have entropyN ln 2 un-
less the photons are well separated, but well-separated
tons will never overpower the large outward flux. This latt
effect is also important for AdS black holes which can be
equilibrium with the entire spacetime.

As with @16#, this result suggests that the generalized s
ond law holds whenever the region outside the black hol
described by standard quantum field theory, regardless
whether one imposes bounds of the forms suggested
@7–10#. However, both stop short of being proofs becau

8And thus falls freely so that the energy is constant in the t
object approximation.
6-6
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they do not trace the actual dynamical changes as an o
falls through the horizon. The absorption of the object by
black hole will change both the temperature and the size
the horizon. Since a change of the horizon size in some s
implies a change in the ‘‘location’’ of the horizon, any pro
built without a detailed theory of quantum gravity wou
likely require careful assumptions as to the treatment
modes near the horizon which, by themselves, lead to a
vergence in the total entropy2Tr r ln r of the thermal bath
seen by the accelerated observer@11#. For a finite ~as op-
posed to infinitesimal! process, careful consideration wou
need to be given to nonequilibrium issues. Some analysi
the effect on the horizon was reported in@5#, but further
progress in this direction would be of use.
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APPENDIX: EVALUATION OF dS FOR LARGE n

SincedE is exactly linear indr, justification of our ap-
proximation requires only showing thatdS takes the form
~2.7! for largen. This can be argued through a standard tr
from statistical mechanics.9 One notes that the entrop

9We thank Mark Srednicki for explaining this argument to us.
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S52Tr(r ln r) is 21 times the ordere term in the expan-
sion of Trr11e5Tr ree ln r.

Let us now compute the entropy ofrR1. We note that this
density matrix is an average ofn terms, each identical torR0
except that the density matrix describing a certain subsys
has been changed. The average is over the label tellin
which subsystem has been changed. Thus, ifrR0 takes the
form rR05 ^ i 51

n A, then we may write

rR15
1

n (
i

A^ •••^ A^ B^ A^ •••^ A ~A1!

where again the indexi tells us where to place the factorB.
It is straightforward to see that for integerk!n we have

Tr rR15@Tr~Ak21B!#k@Tr~Ak!#n2k1O~1/n!, ~A2!

since the number of terms having more than one factor oB
in the same subsystem areO(1/n). The standard trick is to
substitutek511e and take the coefficient ofe as (21
times! the entropy. This yields

Tr rR15@Tr@~11e ln A!B##11e@Tr„A~11e ln A!…#n212e.
~A3!

But TrA5Tr B51. So we have

Tr rR15@11e Tr~B ln A!#@11e~n21!Tr~A ln A!#

'11e@Tr@~B2A!ln A#1n Tr~A ln A!#. ~A4!

Recognizingn Tr(A ln A) as21 times the entropy ofr0,
it follows that

dS52Tr@~B2A!ln A#52Tr dr ln rR0 , ~A5!

where in the last step we have again used Tr(A2B)50.
ini
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