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Because of the Unruh effect, accelerated and inertial observers differ in their description of a given quantum
state. The implications of this effect are explored for the entropy assigned by such observers to localized
objects that may cross the associated Rindler horizon. It is shown that the assigned entropies differ radically in
the limit where the number of internal statasbecomes large. In particular, the entropy assigned by the
accelerated observer is a bounded functiom.dBeneral arguments are given along with explicit calculations
for free fields. The implications for discussions of the generalized second law and proposed entropy bounds are
also discussed.
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[. INTRODUCTION allowed entropy ofany system, be it black hole, matter, or
other.

The interaction of thermodynamics with gravitation has Our aim in this paper is to explore a new relation between
been a subject of intense interest since the discovery of bladkorizons and entropy, which we believe is relevant to the
hole entropy{ 1] and Hawking radiatiof2]. The geometrical discussion above. We will show that the entropy associated
entropy associated with black hole horizons is thought towith a simple localized matter system in flat and otherwise
provide an important clue to the quantum structure of spaceempty space is not an invariant quantity defined by the sys-
time, and many attempts have been made to parse the corem alone, but rather depends on which observer we ask to
sponding riddle. The approach most reminiscent of ordinaryneasure it. An inertial observer will assign the usual, naive
statistical mechanics attempts to identify a collection of mi-entropy given by the logarithm of the number of internal
crostates whose counting reproduces this entropy. Despitgates. However, an accelerated obsefwdio sees the ob-
some successes, particularly in the context of string theorject immersed in a bath of thermal radiatjonill find the
[3], we are still far from having a concrete understanding ofobject to carry alifferentamount of entropy. Note that in the
these states in the regime where the classical geometricabntext we will consider both observers are able to describe
description of a black hole is a good approximation to thethe object with the same degree of precision; the issmetis
underlying physicgand we do not aim to improve this situ- that our object is partially hidden behind the Rindler horizon.
ation in the present paper It is of course well known that the inertial and Rindler

Other authors have tried to extend black hole entropy tmbservers already ascribpe a different entropy to the
more general principles. In particular, the conjecture that thélinkowski vacuum, as this is a thermal state with divergent
relation between entropy and area extends to any event hentropy[11] from the Rindler point of view. Considering
rizon (for example, to acceleration horizons in flat spdt@s  both this fact and the background structures necessary for
been recently championed by Jacob§éhand by Jacobson standard discussions of thermodynamics, Wald has argued
and Parentanf5] who studied the associated first law of for some timg 12] (see also the last part pt3]) that entropy
thermodynamics.An interesting output of this line of rea- is an extremely subtle concept in general relativity—even for
soning is the suggestidd] that horizon entropy arises be- ordinary matter systems—and that we still lack the proper
cause gravitys thermodynamicgor a special case thergof framework for a general discussion. Our results are in com-
Adopting an alternative approach, a number of authorsplete agreement with this philosophy and may be considered
[7—-10] have argued that the consistency of the second law o next small step in pursuit of this goal. In particular, we now
thermodynamics with a black hole entropy related to the are&earn that the observer dependence of entropy is far more
of the event horizon yields a general principle restricting thethan a simple shift of the zero point. What is perhaps surpris-

ing from the point of view of{12] is that the observers can
disagree on the entropy of a localized object even when they
*Email address: marolf@physics.syr.edu assign the same energy to all of its microstates.
"Email address: dminic@vt.edu The fact that an accelerated observer does not measure the
*Email address: S.F.Ross@durham.ac.uk usual naive entropy for an inertial matter system clearly has
YOther work with this theme includd$] and references therein. important consequences for thermodynamic discussions, and
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our motivation for investigating these questions is closelylaw when one drops a sing®&,;>E,p,;/ T object(or a small
related to recent explorations of such issues. Let us thereforumber of such objecksnto a black hole in otherwise empty
recall the recent progre$$4,15 in clarifying issues related space. But there remains a final wrinkle to sort out: what if
to the 2nd law as raised {T—10]. To review the basic ques- we measure the flux of such objects being radiated from the
tion, suppose one considers a black hole of temperdfure black hole and then arrange to beam our objects into the
and massM. Classically, a masM black hole will absorb  black hole at a higher rate? Or, suppose we place the black
any small object placed nearbyif an object (obj) carries  hole in a reflecting cavity, let it reach equilibrium, atieen
energy E,p; into the black hole the associated increase insend in another object with more thafevi’T internal states?
black hole entropy will bed S=E,,;/T by the first law. But Since the density of such objects in equilibrium may al-
what if the small object itself has more entrofyy,; than  ready be high, this may require us to assume extremely weak
Eopbj/T? Then such an absorption would violate the generalinteractions. But this is not a problem in principle, and in the
ized 2nd law. _ present work we focus on the case of free fields. In the limit

But let us also recall thdL6] argues that the generalized of 3 |arge black hole, the problem reduces to the study of a
2nd law will in generalbe satisfied when the system outside Rindler horizon in flat spacetime. The equilibrium state is
the black hole can be described by quantum field theory if,st the Minkowski vacuum which, however, appears ther-
curved spacetime. Though issues of divergences and bagkaly excited to uniformly acceleratdie., Rindlej observ-
reaction prevent this from being a rigorous proof, it is at leasfgg
highly suggestive. If correct, then there are two logical alter- pere the observer dependence of entropy becomes cru-
natives. Either objects witB,,;>Eop;/T cannot existin any  ¢ja|. We find that inertial and Rindler observers dot as-
consistent quantum field theoryn curved spacetime or  ¢ripe the same amount of entropy to our object. Inertial ob-
some quantum effect must intervene to increase the entropyervers ascribe an entropy equal to the logarithm of the
of the final state. number of internal states, as expected. However, in the limit

The latter conclusion was recently argued14,15. The  \yhere the number of internal statesis large, a Rindler
main point was that fo>E/T either(i) thermally produced gpserver ascribes only an entroBy..= E.../T,3 suggesting
objects macroscopically indistinguishable from that WhiChconsistency of the second lAwhen such an object crosses
one is attempting to insert into the given black hole will play the event horizon. Thus, a consequence of our observer de-
an important role in the thermal atmosphere of this blackyendence of entropy is that allowing an object to fall across
hole, or (ii) the object of interest will be unable to freely an event horizowill plausibly respect the generalized sec-
penetrate this black hole’s thermal atmosphere. There is gnd |aw from the point of view of the accelerated observer
large overlap between the two cases; for example, the pregno remains outside of the horizon, no matter how many
ence of similar objects in the thermal atmosphere can causgternal states the object carries. However, our analysis stops
the new object one introduces to experience a repulsive pregnhort of being a proof for reasons related to the unresolved
sure. Such an effect might come either through an expliciissyes with[16]; these are discussed further in the conclud-
interaction or through statistical effedts.g., the Pauli exclu-  jng section.(The inertial observer, on the other hand, never
_sion principlg}. T_his repulsive pressure can prohibit our ob- |gges sight of the object, so there can be no question of a
ject from falling into the black hole. violation of the second law from their point of view.

In the case where our objecanfreely penetrate the ther- e will give a general argument for this observer depen-
mal atmosphere]15] suggested how quantum effects could gence of the entropy in the next section. Our argument relies
still alter the final state. The point is that, as me_ntp_nedsimmy on general points about thermodynamics and the re-
above, the thermal atmosphere must contain a significanjtion of entropy to statistical ensembles. We will see that the
number of such objects. This is argydd] by com_puting the  Rindler observer ascribes an entroBy..= Eacc/T to the
free energyF op;=Eop— TS Of such an object at the opject whenever it represents a small perturbation on the
Hawking temperaturd and finding thatFp; is negative.  thermal state, which in particular will be true in the limit of
Since the vacuum has zero free ener@ge., a greater 3 |arge number of microstates. Section Il then fleshes out the
amoun}, at temperatur@ our objects are more likely to exist getailed calculations in the case of free boson and free fer-
than not. _mion fields. In particular, the relation between the Rindler

Suppose now that the black hole were to come to equ'“benergyEacc of the object and the inertially measured energy

rium (say, if placed in a small reflecting cavityvith its g s calculated for a well-localized object. With the
thermal atmosphere. Such an equilibrium state would contaigroper normalization oE ..., and in the IMItE; e iia<T,

a significant flux of objects directed toward the black hole.
But since there is equilibrium, it must be that similar objects———
are also radiated from the black hole at a significant rate. s, g (the energy measured by taecelerated observiis
Referencd15] argues that this will be the case even for largey,q KiIIinsctcanergy associated with the boost symmedrfi.e.. the
Eopj/T due to the fact that the entroff,; has been as-  Ringler time translation The associated temperatuFés given by
sumed even larger. T=«/2m wherex is the surface gravity of. As usual, the normal-
This effect appears to be sufficient to protect the secongbation of ¢ cancels so tha,./T is independent of this choice.
“Either the second law for black holes in the limit of a large black
hole, or the “stationary comparison” second law for asymptotic
>Though classically such a black hole will haVe=0. Rindler horizong5].
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one findsE,..= Einertial @S One would expect. However, for mation where gravitational back reaction is neglected and, in
larger T the answer can be rather different. We close withparticular, in which the horizon is unchanged by the passage

some discussion in Sec. IV. of our object.
We therefore first consider the thermal density maiiy
Il. ENTROPY AND OBSERVERS which results from tracing the Minkowski vacuum,

|Om)(Owm|, over the invisible Rindler wedge:
The central point of this paper is to show that the entropy

ascribed to a localized physical system by different observers
can differ, even when both observers describe the region con-

taining the system with the same resolution. We exhibit this ) ) _ )
in a particu|ar|y Simp|e context, Considering the entropy OfThlS describes all information that the Rindler observer can

an object in flat space as seen by an inertial or a Rindlefccess in the Minkowski vacuum state. We wish to compare

observer. Note that we take the spacetime to be exactly flatro With another density matrigg; which provides the Rin-

and explicitly ignore any possible gravitational effects fromdler description of the statgy above, in which one object

the objects we discuss. We will return to this point in Sec. IV.(in an undetermined microstates added to the Minkowski

In this section, we give a general argument suggesting thatacuum|Oy). The density matrixg, is hence

the entropy measured by the Rindler observer will be

bounded byE,../T and strongly arguing for this result in the 1"

limit of a large number of internal states. Hefg, is the pRlzTrinuisibIepM:Trinvisibleﬁ 2 [y i Ly si]-

energy associated to the object by the Rindler observeirand =1

temperature seen by this observer. In the following section,

we give some more detailed calculations for the case of

single-particle excitations of free Bose or Fermi fields. We would like to compute the difference in energy
From the inertial observer’s point of view, the natural

vacuum state i.s t_he Minko_wski vacuuf@,), and we de- SE=TIH(pr1— Pro) ], (2.5

scribe the excitation of this vacuum corresponding to the

presence of some obje@h an undetermined microstatby

the density matrix

Pro= TTinyisiblel Om){Om] - (2.3

(2.9

and entropy

> amiiN il 2.1

=1

12 0S= —Tt[praIN pr1~— proIN PrRol. (2.6
Pm=H :

whereH is the Hamiltonian of the system and, in both cases,

scribing then possible microstates of our object. The entropyPr1 has the greater value of energy or entropy. The entropy

assigned to the object by the inertial observer is then as usuflf €ach state separately is well known to be divergéaj.
However, there is no reason to expé&to be ill-defined in

Sy=—Trpulnpy=Inn. (2.2)  our context. Assuming that the object has some moderately
well-defined inertially-measured ener@y,e tia; and is well
But what entropy will a Rindler observer assign to thislocalized, the energy measured by the Rindler observer will
object? Note that the answer it given by —Trplnp  also be reasonably well-defined and the difference
wherep is the density matrix corresponding pg, from the  Pr1IN pri—prolN pro Will have negligibly small diagonal en-
Rindler observer’s point of view. This Trp In p would in-  tries at high energy so that the above trace will exist. In other
clude in addition a contribution from the background of ther-words, we may computéS by first imposing a cutoffA,
mal acceleration radiation that the Rindler observer may notomputing the entropyS,,S;) and energy &o,E;) of the
wish to ascribe to the localized object. One way to define théwo states fro,pr1) Separately, subtracting the results, and
entropy of the object from the Rindler observer’s point of removing the cutoff. We will see that the cutoff dependence
view is to ask what entropy is carried out of the visible is trivial in the approximation used below.
Rindler wedge when the object crosses the Rindler hofizon. Let us make the simplifying assumption that the object
Thus, the appropriate Rindler notion of entradBy.. carried ~ represents a small perturbation on the initial thermal Rindler
by the object is thelifferencesS between the entropy in the density matrix pro; that is, pri=pro+ dp, where “op
visible wedge when the object of interest is present and wherf pro-” One expects this approximation to hold foe &7
it is not. Similarly E,..= SE is the corresponding difference >1, in which casgon averaggthere are already many ob-
in Killing energies. We repeat that we work in the approxi- jects similar to ours present ipgo. In particular, this ap-
proximation should hold in the limit of large with fixed
E/T. A somewhat more careful argument for this approxima-
5The terms *“visible” and “invisible” Rindler wedge will always ~tion was explained to us by Mark Srednicki and is given in
be used in the context of what is in causal contact with our chosefhe Appendix.
Rindler observer. Of course, the entire spacetime is visible to the We therefore approximatgS by Taylor expanding around
inertial observer. PRo:
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objects described, from the inertial point of view, by a single-
p= pRO} particle density matrix uniformly distributed over the differ-

ent fields. Thus the inertial observer assigns the object an
==Ti[8p(1+Inpro)]=—Tr dplnprel, (2.7 entropy S eriiai=IN N in each case.

o(pinp)
op

5S~ — Tr{ Sp

where in the last step we use the fact thapdy=Tr pgo.

A. Bosons
Now recall that the initial density matrix is thermalgg o ) .
—e "T/(Tre MM} as a result For a system ofn fre.e bosonic fields, _the Minkowski
vacuum can be recast in terms of the Rindler data as the
8S~—Tr Sp(—HIT)] following entangled statgl7]:
Tr{(pri—pro)H] 6E o Tt
- T - ?’ (2'8) |OM>:i];[1 H (1_e_wj /T)1/28_(wj/ZT)aijLainl0Rind|er>-

where we have again used i) =0. This key result is (3.1

independent of any cutoff. _ _ Herei labels the different fields, labels a complete set of
This result can also be understood on the basis of classw,’aﬂodesujL ,ujr Of positive Rindler frequencyo; for each
thermodynamic reasoning. The initial configuratiag, rep-  field, and the label®R and L refer respectively to the right
resents a thermal equilibrium. We wish to calculate theyng eft Rindler wedges. Each modg ,Ujg Of theith field
change in entropy in a process which increases the energy Was an associated annihilation operaigr,a;g which anni-
an amountSE. Whatever the nature of the object that we pjjates the Rindler vacuum®gin i) and satisfies a standard
add, this cannot increase the entropy by more than it wouldymmutation relation of the formal—ata=1. The tem-
have increased had we added this energy as heat. Since Weratyre T associated with the uniformly accelerating ob-
consider a small change in the configuration, the first lawserer of interest is given by=a/2m= x/2m wherea is the

yields observer’s proper acceleration ards the surface gravity of
SE the boost Killing field¢ that is normalized on our observer’s
85S< 8Sa=—" (2.9 Worlq I?ne. o _ .
T Similarly, the annihilation operata;,, for a Minkowski

. . f the ith fiel | principldd7
We see that the process of adding a small object saturat(g(%orlgss'\"egin tﬁel forln‘:d can on general principldd.7] be

this bound, at least to first order in small quantities. We
should expect that if we relaxed the assumption that the ob-

ject represents a small change in the configuration, the result- au= 2 [(Uyw,Uujr)(ajjr—€" “’i’ZTaiTjL)
ing 6S will satisfy but no longer saturate the integrated ver- ]
sion of this bound. + (U, U ) (ag _e—wj/ZTaiTjR)]’ (3.2

We have found that the entropies ascribed to the localized

object by Minkowski and Rindler observers behave in quitg,here (U,v) is the Klein-Gordon inner product. For simplic-
different ways. From the point of view of the Minkowski ity we might suppose that we choose a magg with no
observer, entropy and energy are independent; the object C&Qpport on the invisible Rindler wedgsay, the left ongand
have an arbitrarily large entropy with fixed energy if it has ¢q, which (Uy »UiR) is well modeled by a delta function; we
sufficiently many internal states. On the other hand, from th§yj| return to the general case later in the subsection. In
point of view of the Rindler observer, entropy and energy arg,articular, this simplification means that the Rindler fre-
linked in a very general way by the bouf@9). As we will  qyencyw of uy, is reasonably well definétiFor such a case
see in the examples in the next section, the Rindler entropye apove Bogoliubov transformation becomes
for “highly entropic objects” will be much smaller than the
inertial entropy.

Note that since it arises from a trace over the invisible ay=——=(ar—€
Rindler wedge, this restriction is generally correlated with Ji—e o
the presence of a horizon, to which we might want to assign
a geometric entropy. Thus, this reduction in the ascribed erwhere the normalization d;y is fixed by the commutation
tropy is important for a complete understanding of attemptg€lation. Here the Rindler operators refer to the one relevant
to violate the generalized second law using such highly enpair of Rindler modes.
tropic objects, as reviewed in the Introduction. We will return ~ Sincea;y acts in the Hilbert space describing only itie
to such issues in Sec. IV. field, it is convenient to describe the action &f, on the

vacuum|0;y, ) for this particular field alone. One sees that the

—w/ZTaiTL , (33)

IIl. CALCULATIONS FOR FREE FIELDS

We now explore two concrete examples to illustrate and 8if the object is well localized and located near our Rindler ob-
elucidate the general discussion above. We consider a systes@rver at some time, then is also the frequency measured by the
of n free Bose or Fermi fields, and calculate the entropy ofinertial observer.

064006-4



NOTES ON SPACETIME THERMODYNAMICS AND THE . . . PHYSICAL REVIEW D 69, 064006 (2004

properly normalized Minkowski one-particle state is given inwhere in the second step we used thag is thermal(i.e.,

terms of an infinite number of Rindler excitations pro=Ce "'T, whereC is a c-numbex, and in the final step
we use Tiop=0. It is clear that Eqs(3.7) and(3.8) depend
T —(1_a-olT —kol2T only on the diagonal part gfg, since the other factors in the
ajy|0im)=(1—e e vk+1|k,k+1);, . R1
i Oine) = )Ek | )i trace are all diagonal.
(3.9 This expression obviously saturates the bound provided

. ) . by the second law of thermodynamics in agreement with the
where|k,k+1); denotes the state of fielchavingk Rindler  general arguments of Sec. II. The results are independent of
excitations in the right wedge arld+ 1 Rindler excitations  ine number of speciasdue to the fact that bothE and S
in. the left wedge. Here we consider only the fact.or i|_1 thegre linear in Sp, while 8p is a normalized average over
Hilbert space that describes the modes appearing in Eqerms in which each field is changed independently. Thus for

(3.3. ) ) ) ) i large n the Rindler observer will ascribe a much smaller
Thus, if we return to our Minkowski density matrix entropy to the object.
n Finally, let us return to the case where more than one pair
oy= E S FVENEvET of Rindler modes contributes to E(B.2). Sincep,, is qua-
M™ e T A dratic ina;, , this leads to two sums over Rindler operators

N in Eq. (3.5). However, sinceéN; and (1+In pgp) are diagonal

S (al,|0 }(Oulans) 3.5 in the standard Rindler Fock basis, inspection of E§s?)

& CIMIEMAEMICIM ' and(3.8) shows that only the corresponding diagonal part of

pwm Will contribute to SE and 6S. This diagonal part contains

tracing over the invisible Rindler wedge will give the desiredonly a single sum over modes, weighted |ify, ,ujR)|2 or
result. A short calculation gives |(um ,uj)|?. In the case where the Minkowski mode has no
support in the left wedgéso that|(uy ,u;)|*=0), the effect

is just as if each mode represented a separate field. But we
have seen that the final result is independent of the number
of fields and, by the same logic, it is independent of the
wherepg is the original density matrix corresponding to the weighting given to the various fields in E(.5), so long as
Minkowski vacuum, pro= TrinuisiblelOm){Om|, and N; de-  p,, is properly normalized. Thus we again obtain E@7)
notes the number operator for thth field. The superscript and(3.9). In fact, it is clear that spreading the support over
diag indicates that we have written only the diagonal part ofmany modes only helps to justify our approximation as it
pr1 in the standard basis, which the reader will shortly see isncreases the effective number of fields. In the more general
all that contributes toSE and 8S below. One can check case where the Minkowski mode function overlaps the invis-
explicitly that pr, is properly normalized so that its trace is ible wedge, the quantitie$E and S will be reduced in

1. proportion to the probability that the object lies in the invis-

The change in the density matrix is thdp= pri— pro- ible wedge but one again find$S= 6E/T.

As in the previous section, we assume that this change is
small, so that we can compute the change in entropy®y
=—Tr(ép(1+Inp)). For noninteracting particles, the

Hamiltonian isH=3;N:w, so the average change in energy ~ FOr noninteracting fermions the calculation proceeds in a
is very similar fashion. The Minkowski vacuum written as an

entangled state is now

S|

) 1
pglfg:TrinuisiblepM:(ewlT_1)ﬁ Z Nipro. (3.6

B. Fermions

SE=wTr

w

2i Niép) - 1—67“’”—. (37) |0M>:1_i[ 1:[ (1+e_wj /T)1/29_(wJ/ZT)b;erbrjR|ORindler>-
This result is already of interest. Note that foe-T and (39
under the conditions of footnote 6, one find&=E; ¢ tial
~w. On the other hand, fab<T the background of objects
in the thermal bath leads to an amplification reminiscent o
the effect of stimulated emissidn.

On the other hand, the change in entropy is

where the only changes from before are thatltwperators
fre fermionic withb b'+b'b=1, and the associated change
in sign in the thermal normalization factor.

As for the boson field, working to first order ifp makes
SE and 8S independent of the number of speciesAs a
8S=—Tr ép(1+Inpge)] result, we may taken=1 to evaluate the linearized result.
Though the linearized approximation is in general valid only
for large n, this does not prevent us from calculating the
linearized result fon=1 and using it to correctly compute
the largen result. Similarly, since only the diagonal part of
op will contribute we will also obtain the correct resufor

’Interesting comments on the emergence of the Rindler therman object whose wave function vanishes in the invisible
fluctuations can be found i18]. wedge by supposing that our Minkowski mode overlaps

_ ok 38
_Ty (')

1+c- N
=

= —Tr[ op
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only a single pair of Rindler modes. The associated Bogoliuintuition built from the study of distinguishable particles.
bov transformation then takes the form The above sections provided general arguments as well as
explicit calculations for free fields. It is clear that the general

by = 1 (b, +e- 92Tl (3.10 arguments apply equally well to staﬁc observer; in the_ pres-
lte @ ence of a black hole or a cosmologicelg., de Sitterhori-

zon, and that the free field calculations would take a form
For a single field, the Rindler description of the thatis essentially identical. Our general arguments are quite

Minkowskian one particle state is simply similar to those of[16], and our observer dependence of
entropy provides an important physical mechanism behind
bl |0m)=11,0Ringler: (3.1)  such arguments. We note that the theorem deriveflL&

applies rigorously in the context considered here in which
with one particle in the visible wedge and none in the invis-the temperature and the location of the horizon are held con-
ible wedge. The properly normalized density matrix is juststant and the dependence on any cutoff is trivial.
pri=|1)(1]. Hence, the change in the Rindler density ma- |n the black hole case, the resds= SE/T would apply
trix dp is to any static observer and would in general differ from the
T entropy assigned by a freely falling observer. It is therefore
Sp=—(1+e )7 H(|0)0|—[1)(1]), 312 interesting to return to the discussion of attempts to violate
. ) ) the generalized second lalive., including horizon entropy
a_nd _the c_hange in energy for a noninteracting system of e>15y dropping an object witm>e®'T microstates into a black
citations Is hole. Suppose first that the object begins far away and that
we work in asymptotically flat space. Then the object will
(3.13 begin in a region of space thatmet in thermal equilibrium
with the black hole and where the effective local temperature
vanishes. Here a static observer measures the object to have
In general, one now fiNdSSE<E;,eria SO that §S  entropy Inn since there is no thermal bath. On the other
<Siertial fOr large n. When the assumptions of footnote 6 hand, as the object approaches the black hole horizon one
hold andw>T, one also findSE=E;. a1~ ®, but foro  expects that it enters a region which(isearly at thermal
<T, the background thermal bath of fermions leads to aequilibrium at the black hole temperatufeas described by
suppressiorof the Rindler energy. Said differently, the ap- the distant static observer. If the object acts like a free fleld,
pearance of an object from the inertial point of view canwe have seen that at this point the static observer can ascribe
sometimes correspond to the disappearance of an object fropmly an entropyS=E/T to the object. Thusf nothing else

Tr(Hép)= ————.
( P) 1+e—w/T

the Rindler observer’s thermal bath. occursthe second law will indeed have been violated. The
Since p is traceless, one again findS= SE/T, saturat- important point, however, is that this will occiweforethe
ing the bound provided by the first and second laws. object reaches the horizon itself. Thus, one expects that the

generalized second law is protected by the same mechanism
that protects the ordinary second law. In the present case, one
expects to see a large flux of objects radiated by the black
We have argued that inertial and accelerated observetsole as, inverting the above argument, movement of highly
naturally ascribe different values to the entropy of a localizecentropic objects from the warm near-horizon neighborhood
matter system in flat Minkowski space, even if the system isnto the cold region of space will dramatically increase the
fully visible to both observers and the observers describe thentropy.
system with the same resolution. Certainly, the observers The effect is similar to attempting to send a low frequency
measure a differenéS when the localized system is intro- photon (with two internal statésinto a hot cavity which is
duced or removed, and so must use different values wheotherwise at equilibrium—many more photons will emerge.
considering a thermodynamic accounting of such processeSending in a larger flux of photons does not help as a beam
The results support the suggestiong 1] that entropyeven  with N photons does not in general have entrdpin 2 un-
of ordinary matter systemss a very subtle concept in gen- less the photons are well separated, but well-separated pho-
eral relativity or quantum field theory in curved spacetime. tons will never overpower the large outward flux. This latter
What is surprising from the point of view ¢fL2] is that effect is also important for AdS black holes which can be at
our effect occurs even when the observers agree omrithe equilibrium with the entire spacetime.
ergy of each microstate. Our effect is in some sense due to a As with [16], this result suggests that the generalized sec-
“mixing” between the object considered and the thermalond law holds whenever the region outside the black hole is
background seen by the Rindler observer. In particular, welescribed by standard quantum field theory, regardless of
argued that when the number of microstatessatisfies whether one imposes bounds of the forms suggested in
ne ¥'T>1 the entropy assigned to our object by the accel{7-10]. However, both stop short of being proofs because
erated observer i$S=JE/T. Note that in this regime a
thermal ensemble afistinguishableparticles would diverge,
as each new particle would add an entropysE/T. Thus, 8And thus falls freely so that the energy is constant in the test
statistics plays an important role and one cannot rely on angbject approximation.

IV. DISCUSSION
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they do not trace the actual dynamical changes as an objegt= —Tr(plnp) is —1 times the ordek term in the expan-
falls through the horizon. The absorption of the object by thesjon of Trp'™¢=Tr pec'"*.

black hole will change both the temperature and the size of | et us now compute the entropy pki1. We note that this

the horizon. Since a Change of the horizon size in some Sen%%nsity matrix is an average Df[erms, each identical tpRO
implies a change in the “location” of the horizon, any proof except that the density matrix describing a certain subsystem
built without a detailed theory of quantum gravity would has been changed. The average is over the label telling us

likely require careful assumptions as to the treatment ofyhich subsystem has been changed. Thusigif takes the
modes near the horizon which, by themselves, lead to a diprm pgy= ®"_,A, then we may write

vergence in the total entropy Tr p In p of the thermal bath

seen by the accelerated obserygt]. For a finite (as op- 1

posed to infinitesimalprocess, careful consideration would PRI= Z A®---®AQBRA®---©A  (Al)
need to be given to nonequilibrium issues. Some analysis of

the effect on the horizon was reported [i], but further  here again the indeixtells us where to place the factBr
progress in this direction would be of use. It is straightforward to see that for integer<n we have

Tr pr=[Tr(AKIB) I Tr(A " K+ O(1/n), (A2
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But TrA=TrB=1. So we have
APPENDIX: EVALUATION OF &S FOR LARGE n Trpri=[1+€Tr(BInA)][1+e(n—1)Tr(AInA)]
Since 8E is exactly linear indp, justification of our ap- ~1+e[TI[(B—A)INA]+nTr(AInA)].  (A4)

proximation requires only showing th&S takes the form L .
(2.7) for largen. This can be argued through a standard trick,  Reécognizingn Tr(AInA) as—1 times the entropy Opo,
from statistical mechanics.One notes that the entropy it follows that

8S=—Ti(B—A)INA]l=—Tréplnpry,  (A5)

We thank Mark Srednicki for explaining this argument to us. ~ where in the last step we have again used\Fr@)=0.
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