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Abstract 

This thesis presents a technique for synthesizing weighted four-bar linkages to produce a 

specified resisting force or torque. 

Historically, mechanism force synthesis has assumed that output positions must always be 

associated with prescribed forces. This results in the loss of design parameters. 

Applications which do not require a specified output position benefit from the design 

method presented in this thesis. 

This thesis presents two significant contributions to the field of kinematics. First, it 

contains a full development and demonstration of the use of integrated force constraints 

to develop position constraints for linkages. Second, it presents the development and use 

of inverse-mechanical-advantage sensitivity as an evaluation and design tool. 

The mathematical derivation of a novel synthesis technique is presented in full detail. 

Also presented is a complete and robust design method for force-generating linkages that 

has been implemented in software, tested in hardware design, and adopted by industry. 

The closed-form-equation-based synthesis technique developed herein provides the 

designer with a graphical representation of an infinite solution set to the force generation 

problem. Associated sensitivity, static and dynamic analyses allow the designer to 

quickly evaluate each solution.
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Chapter 1, Introduction 

1.1 Background and Motivation 

The focus of this research is the synthesis of planar four-link mechanisms to 

satisfy specified input torque curves. The research was performed under a contract with 

Nautilus with the specific intent of providing algorithms and software to assist designers 

in developing linkages suitable for exercise equipment. I chose not to divorce Nautilus 

from the content of this thesis because the direction and goals presented herein are more 

easily understood in that context. The techniques developed for synthesis and analysis 

presented are not reduced in importance or general applicability because of the specific 

application. The synthesis techniques developed within this thesis have applications in 

process machinery, including mixers, presses and engaging mechanisms, and in nonlinear 

control actuation, as well as in exercise equipment. In particular, current research 

includes an examination of the feasibility of replacing the variable mechanical advantage 

cams employed in compound bows with linkages or other mechanisms. 

Nautilus exercise equipment is noteworthy in its design. In addition to the 

stringent specifications placed on durability and “feel”, Nautilus equipment seeks to 

provide a more efficient workout by tailoring their designs to the user’s ability to exert 

force. The nondimensional strength curve is a measurement of the user’s ability to exert 

force over the range of motion of an exercise. Our ability to exert force is dependent on



the strength and geometry of the muscle groups and skeletal structure involved. While 

the strength of the muscle groups varies widely between individuals, human structural 

geometry is relatively similar (Lieber, 1992, Thompson, 1973, Schneck, 1990, and 

Harrison, 1970). If the strength curve of each person is normalized with respect to some 

reference force (typically the maximum over the range), the resulting nondimensional 

curve will be approximately the same for the majority of people; this curve is the 

nondimensional strength curve. 

A 

Actual Strength Curve 

Force 

  \ Yj in Work 

Constant Force 

  

Displacement   
Figure 1-1, How a Tailored Resistance Increases Work



In strength exercise equipment the optimal workout is given by the machine that 

matches the user’s ability to exert force at each position throughout the range of motion. 

If a constant resistance (e.g. a weight) is used throughout the range of motion, the 

resistance must be limited to the minimum force the user can exert over the range. In this 

case less work can be done. Work is the area under a curve relating force and 

displacement, and the reduction in work is graphically illustrated in Fig. 1-1. The non- 

dimensional curve of the resisting force of the machine is called the resistance curve. 

The fundamental goal of this research is to design linkage-based exercise machines with 

resistance curves that closely resemble the non-dimensional strength curves for the 

exercises. 

In nearly all of the original Nautilus equipment the variable resistance curve was 

provided by a weight lifted by the user through an intermediate wrapping cam. A picture 

of a typical wrapping cam is shown in Fig. 1-2. The concept behind this mechanism is 

relatively simple; if a constant torque is applied to the cam, then the tension in the chain 

must vary with the radius of the cam to maintain static equilibrium. Conversely, a 

constant tension may be applied to the cam through the chain, and a cam-radius- 

dependent nonlinear torque must be applied to resist it. For more than twenty years the 

cam-based equipment has been the signature product of Nautilus. It is the shape of the 

cam, which sometimes resembles a nautilus shell, that gives the company its name. 

Until recently, all Nautilus cams were synthesized using graphical techniques. 

Research contracted by Nautilus from 1992 to 1994 led to an analytical cam synthesis



technique using conjugate geometry. This work is well documented in two papers and a 

Ph.D. dissertation (Tidwell, et al. 1992, 1994, and Tidwell 1995). 

  

Figure 1-2, Wrapping Cam Mechanism, courtesy Tidwell (1995) 

Although Nautilus anticipates continued success with their cam-based, 

selectorized “Next Generation” line of equipment, they have recently introduced a new 

line of equipment whose nonlinear mechanical advantage is based on linkages. This new 

linkage-based equipment line has been given the trade name “Power Plus”. 

1.2 Linkages Versus Cams, Advantages and Disadvantages 

Linkages have several inherent advantages over cams. This has led Nautilus to 

venture into this new field. However, the choice of linkages for the new product line is 

not without disadvantages. In this section, I will enumerate these qualitative differences. 

The current Nautilus line, the “Next Generation” line, uses wrapping cams 

(wrapped by either roller chains or Kevlar reinforced rubber belts) and a selectorized



weight-stack. A selectorized weight-stack is made up of a set of rectangular weight plates 

that ride vertically on a pair of linear bearings. A pin is used to select (hence the term 

selectorized) the load weight by locking some number of weights above into a single unit. 

Selectorized weight stacks are common in gym quality strength machines. The 

selectorized weight stack is an integral part of the machine. 
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Figure 1-3, The Nautilus “Power Plus” Linkage Concept 

In the most recent line of Nautilus strength equipment, the “Power Plus” line, the 

mechanism which provides a nonlinear mechanical advantage is a four-bar linkage. The 

general schematic for this mechanism is shown in Fig. 1-3. The Power Plus line is said to 

be plate loaded equipment, rather than selectorized. A horizontal post at the end of the 

linkage allows barbell-style weight plates to be added for resistance. One advantage of 

plate loading equipment is that the resistance weights are not integral parts of the 

machine; one set of weights can be used on many machines.



The linkage-based Power Plus line has two distinct sets of advantages over the 

cam-based Next Generation line: (1) advantages of linkage-based action over wrapping 

cams, and (2) advantages of plate-loading equipment over selectorized. 

Linkages have certain advantages over cams as force and torque transmitting 

mechanisms. The most important consideration is a reduction in cost. Manufacture and 

assembly of linkages is relatively straightforward, requiring only cuts of designed lengths 

and machining each end to accommodate a bearing or bushing. Cam manufacture 

requires special NC milling operations with multiple passes -- a relatively expensive 

proposition in equipment and labor. 

Another important issue in choosing between a linkage and a wrapping cam is on- 

site maintenance. For a cam wrapped by a roller-chain, grease or some other lubricant 

must be applied periodically, whereas a linkage can use permanently sealed and 

lubricated bearings or inexpensive self-lubricating bushings. For belt-wrapped cams, 

slight misalignment within the mechanism can cause the belt to rub against the edge of 

the cam or the frame of the machine. This rubbing leads to greatly increased belt wear. 

Such misalignments are frequently caused by deformations due to non-symmetric weight 

loading. Nautilus believes that the linkage based equipment will be considerably more 

durable and require much less field maintenance. 

Feedback from initial testing of linkage-based designs has confirmed another 

advantage of linkages over cams -- improved feel. Feel is a subjective variable that is 

very important in the exercise equipment market. In part, feel is known to be related to



small vibrations in the action of the machine. Linkages have improved feel over chain- 

wrapped cams because, as the sprocket picks up each chain link, the velocity of the link 

changes from straight line motion to the circular motion of the sprocket. The result is a 

discontinuity in the link motion -- an impact. These impacts effect the feel of the 

machine. Belt-wrapped cams have a different problem. The stiffness of the rubber belts 

have been improved by Kevlar reinforcing, but, particularly at high loads, the belts 

undergo a certain amount of deformation at the beginning of each stroke. This results in a 

“spongy” feel, and, more importantly for our purposes, in a change in the resistance curve 

of the machine. Linkages can generally be designed to be relatively stiff under the 

maximum loading, which eliminates much of the elastic feel of the machine. 

Linkages are not without their disadvantages. While cams and linkages both 

produce nonlinear forces, linkages are limited in their ability to match a prespecified 

resistance curve. A cam can match a desired output curve exactly because its radius can 

be varied at every design point, giving the designer the ability to match the specified 

resistance curve at an infinite number of intermediate position in the range of motion.’ 

Because linkages only have a finite number of parameters that can be varied, they can 

only match a generally prescribed output resistance curve at a limited number of points. 

An examination of mathematical constraints applied to force-generating linkages is 

included in Chapter 2. This property of linkages means that, in the general case, no 

  

"In general, cam designers need to be concerned with discontinuities in the displacement and its 

derivatives, giving rise to the famous Kloomok and Muffley cam displacement curves (Mabie 

and Reinholtz, 1987, pp. 79-90), we can be reasonably certain that with a very smooth curve (like 

a strength curve) discontinuities are not significant.



linkage will ever be a solution to the specified resistance curve over the entire range. By 

selecting only a limited number of exact points on the curve the designer is able to find a 

number of linkages that satisfy the prescribed output in an approximate sense. 

Another potential disadvantage of linkages is that, given sufficient internal 

compressive load, the coupler link might buckle. The closed-form linkage synthesis 

method presented in this thesis does not provide a direct method to ensure that the linkage 

solution will have a tensile or compressive coupler link. Buckling will only occur in the 

presence of relatively large internal compressive forces, although the required force 

decreases as the length of the coupler link increases. We ensure that the linkage is not in 

danger of a buckling failure by providing an analysis of the internal stress in the coupler 

link as part of the synthesis package. 

A more general discussion of cam verses linkage selection can be found in 

Shooter (1995). However, the use of linkages is not the only advantage that the Power 

Plus line has over the Next Generation line. There is also the issue of selectorized verses 

plate-loading weight resistance. 

Surprisingly, the weight stack is one of the most expensive components of the 

Next Generation equipment. The weights are usually ten or twenty pound steel plates. 

Each weight plate must have three holes drilled through the top surface, two for the linear 

bearings and one for the center connector post. An intersecting hole must be drilled on 

the front surface for the pin. Nautilus paints each weight plate with multiple coats. The 

raw material, machining, painting, and linear guide rails are all very expensive. By



selling the weights separately, not only is the manufactured cost of the machine reduced 

considerably, but the shipment weight is reduced, resulting in additional savings. 

Selecting the type of mechanism that is correct for the application is the first step 

to any synthesis. This process is called type synthesis. In solving any prescribed 

nonlinear force or torque problem, the designer must first consider type synthesis. 

Linkages, cams, noncircular sprockets, nonlinear springs and other devices are all 

possible solutions. If the choice of a linkage has been made, other issues remain to be 

resolved. In particular, the choice of the number of links (four-bar or Watt-type six-bar 

for example) and the synthesis method (closed-form, numerical or optimization) must be 

made. This thesis presents the closed-form synthesis of a four-bar linkage for force- 

transmission in detail, with only brief discussion of optimization and synthesis of other 

linkage types. Before we begin detailed examination of the synthesis method, we will 

review certain prerequisite topics in standard kinematics. 

1.3 General Tools Required for Kinematic Force Synthesis 

Certain basic kinematic topics are essential to the synthesis method presented in 

this thesis. They are reviewed here for completeness. 

1.3.1 Position Analysis of Planar Four-Bar Linkages 

In general, the position analysis of mechanisms is a nonlinear problem with 

multiple solutions. The analysis equations are nonlinear because the variables of interest 

are contained within transcendental terms in the governing relationships. One excellent



method for solving the governing position equations for a four-bar linkage is presented in 

Mabie and Reinholtz (1987, appendix one). Their method is reproduced here with some 

variation. 

Im 

| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 

Re 
     VISS SSL LL LL LLLL LLL LS 

Figure 1-4, Standard Four-Link Mechanism 

In this section and throughout this thesis all vectors are represented in the 

complex plane, thus 

lL =Le'®. (1.1) 

A powerful technique for solving closed-loop mechanisms is to sum the vectors which 

describe the loop, a process called loop closure. For the standard four-bar linkage shown 

in Fig. 1-4, loop closure gives 

L+h=h+h, (1.2) 

Le’? +Le' =1,+1,e'*, (1.3) 

10



or, employing the Euler identity 

l, sin(@,)+1,sin(@,)=1,sin(@,) (imaginary part ) (1.4a) 

l, cos(0,)+1,cos(@,)=1,+1,cos(@,) (real part ). (1.4b) 

In the position analysis problem, all of the link lengths are known, and the input angle, 0, 

is specified. This gives two equations in the two unknowns, 93 and @;. Next we isolate 

the term involving one of the unknown angles on one side of each of Eqs. (1.4). Then we 

square the equations and add them together. After some manipulation, the result can be 

shown to be of the form 

Esin(@) + Fcos(@)+G =0, (1.5) 

where @ is the other unknown angle (0; if we isolated @,; for example). The values for E, 

F and G for a standard four-bar linkage are 

E, = 21,1, sin(9, ) | (1.6a) 

F, = 21,1, cos(@, )— 21,1, (1.6b) 

G,=1,' +1, +1,’ -1,° — 211, cos(8,) (1.6c) 

EF, =-21,1, sin(@, ) (1.6d) 

F, = 21,1, — 21,1, cos(0, ) | (1.6¢) 

G, =1,' +1,’ +1,’ - 1,’ - 21,1, cos(0, ) (1.6f) 

Equations like (1.5) appear frequently in engineering problems. In many cases a 

numerical solution is sufficient. In this case, because we have set out to develop closed- 

11



form equations, we must employ a trigonometric identity. One possibility is the tangent 

half-angle identity, which is given by’: 

  

  

Q 
tan| — |=t, 1.7 an( 5 (1.7) 

1-2? 
g)= , 1.8 cos(@) la (1.8) 

2t 
in(@) = . 1.9 sin(@) 7p (1.9) 

Substituting Eqs. (1.8) and (1.9) into Eq. (1.5) gives 

_ #2 

Af =) +A4 -|+G=0, 
1l+t 1+t 

or (G—F)t? +2Et+(G+F)=0. (1.10) 

    

Solving for ¢ using the quadratic equation and applying Eq. (1.7) results in a closed form 

expression for 0: 

  

—F+ 2 2 72 

0-200 E+ — G } (1.11) 

Equation (1.11) provides some interesting insights into four-link mechanisms. 

When the term under the radical, the discriminant of the polynomial, is negative, i.e. 

E°+F’-G’ <0, (1.12) 

  

? Most calculus books (Swokosky, 1983, Calculus with Analytic Geometry, Prindle, Weber & 

Schmidt, Boston, for example) give the tangent half-angle identity as 

6\_ 1-cos(@)___ sin(@) 

tol 5 ~ sin(@) ~—«:1+cos(6) 

parametric form shown is more powerful. 

which can be shown to be equivalent. In many cases the 

12



the linkage cannot assemble for this value of @2 (the vector loop cannot be closed with the 

given link lengths). In the case where the discriminant is equal to zero, the mechanism is 

at a singular or “dead” point (Mabie and Reinholtz, 1987, p. 21). We would expect that 

the above equation would give four solutions for a given value of 8... Two would arise 

from the solution of the quadratic equation for t and two would arise from the double- 

valued inverse tangent function. Only two solutions are physically possible, however, 

because the equations always give a pair of repeated solutions. The two valid solutions 

indicate different closures or branches of the linkage (Mabie and Reinholtz, 1987, pp. 20- 

29, 572). Another useful point can be made regarding the inverse tangent function. 

Although computers and calculators will in general return default angles between -180° 

and +180° for the inverse tangent function (quadrant checking usually requires a more 

advanced function), the default for the inverse tangent function combined with the two 

roots the quadratic will capture both solutions. Therefore our solution to the position 

loop closure equations can be given by: 

~E,+é JE, + F? -G, 
0,=2-a"| a toy, +E WG: , (1.13a) 

G,-F 

_ _ 2 2 2 

a= 2-un| E,~SyE, +E ~G, } (1.13b) 
G, — F, 

where the default inverse tangent is used and € = +1 or -1 is used to indicate the closure. 

Note that for the correct closure for both angles, the two expressions must use opposing 

roots of the quadratic equation. 
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Once the position analysis of the linkage has been accomplished, linear 

relationships for the velocities and accelerations can be found by taking derivatives of Eq. 

(1.3) with respect to time, respectively: 

idle’? +i6,Le =i8,Le , (1.14) 

and —0,Le'? +i8, Le? —6,7Le + i0,L,e =—-0,7l,e'* + i0,1,e , (1.15) 

where an over dot indicates differentiation with respect to time. 
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Figure 1-5, Standard and Inverted Frames of Reference 

1.3.2 Inversion 

In kinematics, relative motion many be equivalently measured in any frame of 

reference. Valid reference frames can be fixed or moving. This powerful idea is 

frequently applied through the concept of inversion. Inverting a four-link mechanism 

involves viewing the mechanism as though either the driving link (input) has changed or 

the fixed link has changed or both. From a mathematical perspective, a change in the 

driving link means that some angle other than @ in Eq. (1.3) will be treated as given. 
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Operations similar to those presented in section 1.3.1 can be used to solve for the 

remaining unknowns. 

The other type of inversion, viewing the mechanism as though one of the moving 

links is fixed, can be accomplished by establishing a moving reference frame attached to 

the link. Mathematically, the result is, at each position, the mechanism must be translated 

and rotated such that the objective link remains fixed with respect to the new reference 

frame. For example, suppose we wish to examine the mechanism (shown in Fig. 1-5) 

such that link three remains fixed. Initially we have 

Le? +Le°" =1, +1, , (1.16) 

where @;, denotes the initial angle of the third link. If we allow the linkage to rotate such 

that link three has rotated by an amount A@;, then in the non-inverted frame of reference 

the loop closure equation is 

Le? + Le?) 7 4 16, (1.17) 

However, in the inverted reference frame link three does not appear to move 

i(@) -463) 1845 Le + el = Lei 2%) 4 1 ells A0) | (1.18) 

This is a case where the power of the complex exponential form becomes very apparent, 

because rotation operations can be accomplished by simple multiplications. 

1.3.3 Burmester Point Pairs 

The key to the synthesis method presented in this thesis is the use of Burmester 

theory. Burmester theory is used to solve multiple precision point synthesis problems in 
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closed form. The actual mathematical operations involved in the application of 

Burmester theory to our specific application are presented in detail in Chapter 3. A 

powerful feature of Burmester theory is that it results in a system of equations for the 

design parameters with an extra unknown. Because the number of unknowns exceeds the 

number of equations by one, the result is an infinite set of potential solution linkages. By 

iterating over the unknown variable, a family of solutions can be found in closed form. 

By displaying this solution set graphically, we are able to give the designer a powerful 

tool to aid in selecting the best solution. 

  

DISTT TTI PV OTTO 
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B) Links have been removed, A) A family of solution linkages 
leaving pivots 

C) Burmester curves show 
the family of Burmester point 
pairs for the solutions 
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Figure 1-6, Burmester Point Pairs



The graphical result which is used to display the infinite solution set is also part of 

Burmester theory. First, we imagine that the ground link of each solution has been scaled 

to the same length and oriented to the same angle. Next, we allow the infinite set of 

solution linkages to be superimposed over one another. Finally, we erase the links from 

this image leaving only the revolute joints at the intersection of links two and three and 

links three and four. The resulting pairs of points are called Burmester point pairs 

(Sandor and Erdman, 1984). Each point in the pair lies on a locus of points which 

represents the possible pivot locations of a solution to the precision point synthesis 

problem. By plotting the loci (the Burmester curves) of solution points, the designer is 

given an excellent perspective on the relative geometry of the solutions. Figure 1-6 

demonstrates the graphical Burmester result. 

1.3.4 D’Alembert’s Principle (Virtual Work) 

D’Alembert’s principle, or the principle of virtual work, is both simple and 

powerful. The principle is based on Newton’s Third Law, but is derived by allowing a 

virtual displacement to occur. Virtual displacements are time independent, but they must 

satisfy all kinematic constraints. The nature of kinematic constraints are such that the 

vector dot product of the constraint forces with the virtual displacements, summed over 

the bodies involved, is zero. The simplicity of virtual work, therefore, 1s based on hiding 

the constraint forces (Meirovitch, 1970). For a planar mechanism, a method of analysis 

using virtual work is presented by Mabie and Reinholtz (1987, pp. 421-422). 

ST -60,+ > F 55, = ¥ ma, 55, + ¥ 1,0, -59,, (1.19) 
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where T and F are external forces and torques, summed over i, the index of bodies. In 

our particular case, the dynamic forces and the weights of the links are assumed to be 

negligible with respect to the applied static load weight. Because our analysis is for 

purely static forces, the virtual displacements given above are the same as true differential 

displacements. If we take the result and divide by dt, we have 

ST -@,+ DF -¥,=0, (1.20) 

where, because we are considering a Static case, the velocities are virtual. They are used 

because they reflect the kinematic constraints efficiently. Not only is this equation useful 

in force analysis, it also shows that force generating mechanisms can be synthesized using 

kinematic velocity constraints. If we further assume that the mechanism in question is a 

linkage, and that only opposing planar input and output torques are applied to the 

mechanism then the result is 

TD iy — Toys yyy = 0. (1.21) 

This is a most useful and interesting result. The mechanical advantage, pt, which is 

usually defined as a force or torque ratio, may sometimes be expressed as velocity ratio, 

in this case 

pat = Gin (1.22)   
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Figure 1-7, Transmission Angle 

1.3.5 Transmission Angle 

The transmission angle of a four-link mechanism is defined as the interior angle 

between the coupler and the output link. This angle is shown as 7 in Fig. 1-7. 

Transmission angles are generally considered to a be a good measure of the ability of the 

linkage to transmit force (Mabie and Reinholtz, 1987, pp. 21-22). If the mass and inertia 

of the coupler link are significantly smaller than the magnitude of the transmitted forces, 

then the coupler can be treated as a two-force member. Internal forces can only be 

transmitted axially by a two-force member. We can see that for transmission angles near 

90°, the force is most efficiently transferred from the coupler link. When the 
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transmission angle reaches 0 or 180°, the mechanism is unable to transmit force; it is at a 

dead point (see 1.3.1 above). 

In our case, because we are synthesizing for a prescribed force ratio, analysis of 

transmission angles is redundant. They are mentioned here because previously many 

works have treated force in a synthesis problem as a constraint of the transmission angle 

of the solution. In the method we are discussing, however, a poor transmission angle 

might be desirable, if a large input force is prescribed. 

Transmission angles also reflect important information about the internal forces 

which are developed within the coupler link. Because our approach does not guarantee 

what is generally considered to be acceptable transmission angles, we must analyze the 

internal forces in our linkage solutions to ensure that these forces remain within 

acceptable limits. 

1.4 Review of Literature 

The kernel of this thesis, the closed-form synthesis method presented in chapter 3, 

represents a significant divergence from the majority of the work in the area of synthesis 

of force-generating linkages. However, a number of references are provided in this 

section in the general area of synthesis for force-generation and related topics in order to 

provide the reader with an understanding of the current state of the art. In addition, a few 

influential references are discussed in depth. 
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We can see from many published applications that designing linkages for force (or 

torque) transmission is not a new concept. An obelisk at Luxor was lowered using a four- 

bar linkage for its transport to Paris in 1831. The maximum load during the lowering 

process was reduced to 43 percent of the obelisk's weight (Hartenburg and Denavit, 

1964). Another common example of force generating linkage mechanisms is in toggle 

linkages, like those shown in Goodman (1965). Midha, et al. (1984) discuss student 

solutions to the synthesis of a mechanism for a punch. One of the specifications is that 

the developed mechanisms have acceptable mechanical advantage characteristics at a 

given output position. Nathan (1985) produces a constant force parallelogram four-bar 

linkage using a spring actuator. Okada (1986) develops a stretch mechanism using 

pulleys, springs and a spreading linkage. | 

Force and velocity are related through the principle of virtual work. Because of 

this, most of the previous work in linkage synthesis for force is viewed as synthesis for 

higher-order derivatives of position. This type of synthesis is called order synthesis in 

Sandor and Erdman (1984). Because time is replaced by the time-dependent geometric 

variable such as input link rotation, kinematitians tend to think of synthesis for velocity 

as synthesis for two Infinitesimally Separated Positions (ISP) of displacement. Similarly, 

acceleration would be viewed as synthesis for three ISPs. The designation for standard 

position synthesis is Finitely Separated Positions (FSP). In linkage synthesis, only a 

limited number of positions may be satisfied exactly. Therefore, ISP synthesis for 

velocity consumes the available precision points at twice the rate of ordinary FSP 
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synthesis. Of course we can synthesize for a combination of ISP’s and FSP’s as long as 

the maximum number of available precision points is not exceeded. Order, or ISP, 

synthesis has a long history in kinematics. Important works include: Freudenstein (1956), 

Sandor and Erdman (1984), Brown and Mabie (1971), Urion (1971), and Schaefer and 

Kramer (1979). The synthesis technique presented within this thesis represents a subtle 

but significant departure from ISP synthesis; one which is considerably more useful for 

our application. Like many applications, ours places a constraint on the velocity or force 

ratio between the input and output links of the mechanism. However, unlike most force- 

generating linkage solutions, the output position of the linkage is not a specified function 

of the input. Rather than synthesizing for ISP’s, we can integrate the force constraint to 

form an energy constraint and make direct use of synthesis for FSP’s. The result is a 

synthesis technique that makes more efficient use of the available precision points. 

Linkage synthesis accounting for force transmission and dynamics effects on the 

applied torque and time response of the linkage, is known as dynamic synthesis. A 

summary of the early work in dynamic synthesis is presented in Star (1974). In this work, 

Star is careful to define dynamic synthesis as being distinct from order synthesis and 

transmission angle synthesis. Dynamic synthesis does not place any dynamic 

requirements on the initial kinematic synthesis. After a mechanism has been synthesized 

to meet kinematic constraints, its dynamic properties are analyzed. If they are found to be 

insufficient, the designer hopes to find a better solution through another iteration of the 

kinematic synthesis. This technique relies heavily on the speed of digital computers. 
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According to Star’s definitions, the synthesis technique presented herein falls more 

correctly under the heading of “synthesis to meet inertialess force transfer properties.” 

More recent work in this area includes Rigelman and Kramer (1988). 

Other synthesis work has attempted to address force transmission issues by 

designing either for transmission angle or for mechanical advantage. Important works 

include: Shoup and Pelan (1971), Gupta (1977), Midha, et al. (1984), Barker and Shu 

(1988), and Ogot and Gilmore (1991). None of these works attempt to synthesize 

linkages for force properties independent of output position. 

One way in which input forces for linkages are designed is the process of 

equilibration or linkage balancing. This standard technique constrains the synthesis only 

based on kinematic considerations. Dynamic effects are considered afterward by adding 

mass to links in order to change their inertia (Ogawa and Funabashi, 1969, Hockey, 1972, 

and Harmening, 1974), or by designing sub-unit mechanisms, either cams (Benedict et 

al., 1971) or springs and dampers (Benedict and Tesar, 1970, and Matthew and Tesar, 

1977), to eliminate the dynamic effects. Although equilibration has little direct technical 

similarity to the synthesis technique presented here, it is related to our problem in three 

distinct ways: 

1. Equilibration, particularly by sub-unit mechanisms, represents a significant and 

popular alternative to our technique. 

2. The object of linkage balancing is usually to eliminate fluctuations of the input 

torque. It is sometimes called input torque balancing. In our case we are designing 
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for some specific nonlinear input torque; we might say our problem is a type of input 

torque unbalancing. 

3. The method we are designing has an application in linkage equilibration. A linkage 

designed by our techniques could be used in series with an unbalanced linkage in 

order to smooth the input torque. This is similar to the work of Yong and Zhen 

(1989). The result would be a Watt type six-link mechanism (see chapter 6). 

A few references discussing analytical methods for synthesizing force generating 

linkages have a more direct relationship to the method presented in this thesis. In his 

classic work on linkage synthesis, Tao (1964) uses integration of an expression of 

conservation of energy over the path of action. Tao’s work is particularly significant in 

that it presents a synthesis technique for which force is considered independent of 

position. Although Tao does not develop a full solution, his presentation of the problem 

and solution outline follow the same approach adopted here. Hall (1961) poses a similar 

problem as an exercise in his book. Gustavson (1968) develops analytical tools for 

synthesizing a four-bar mechanism for torque ratios at two positions by differentiating 

Fruedenstien's equation. 

Extensive work on force system synthesis has been done by Roth and his students. 

Their work began by examining open loop kinematic chains (manipulators) (Roth, 1989, 

and Raghavan and Roth, 1989) and continued in closed loop chains (Huang and Roth 

1994, 1992, 1990). In particular, Huang and Roth (1990) examine the number of 

precision points which constrain the design parameters of a closed-loop planar linkage to 
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a finite number of solutions. Their analysis is unusual in that force constraints can be 

considered independent from position constraints. A similar analysis is presented in 

section 2.2 of this work. 

It is worth noting that this work is not the first attempt to generate linkages for the 

specific application of resistance-profiled exercise equipment. Bokelberg and Gilmore 

(1990) synthesize a four-bar mechanism for variable mechanical advantage with a linear 

spring as a resistance. However, they formulate their problem such that the number of 

available design parameters is significantly less than employed here. In addition, and 

more importantly, rather than employing a closed-form technique, they use numerical 

techniques. A numerical solution has two advantages over closed-form techniques: (1) 

the number of precision points can be increased by one, because unlike Burmester theory, 

numerical analysis can solve the implicit system of equations that has been constrained to 

a finite number of solutions, and (2) the analytical development is significantly 

simplified. The drawback of a numerical solution is that it results in only one solution, 

rather than a family of solutions. This drawback makes finding acceptable designs 

difficult. The result is that closed-form synthesis is the more robust technique. 

Burmester theory is used to synthesize for the problem that is not completely 

mathematically constrained by the selected precision points. This allows Burmester 

theory to generate an infinite set of possible solutions. If an increase in the number of 

precision points by one (to a completely constrainted problem) seems desirable, we need 

not turn to numerical methods. The total solution set to a completely constrained 
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problem can be found by using two Burmester synthesis’s whose precision points overlap 

expect for one. The solution to the totally constrained problem is the intersection of the 

two solution sets. 

Another technique that is often employed in mechanism design is optimization. 

Optimization is a process of refined iteration. Optimization is powerful because it 

requires only analysis calculations rather than the typically more complicated synthesis 

calculations. Designs are compared against one another using a cost function, whose 

definition depends on the characteristics that the designer finds attractive. Works that 

employ optimization to find force-generating linkage and mechanism design include 

Benedict and Tesar (1970), Hamid and Soni (1971), Bagci and Rieser (1984), Okada 

(1986), and Ogot and Gilmore (1991). Some discussion of the development of a solution 

to this particular design by optimal methods is included in Chapter 6, “Other Synthesis 

Cases”. 

Mechanisms other than linkages can be used to provide nonlinear mechanical 

advantage. In particular certain papers have dealt with the use of cams to provide 

nonlinear forces, either for mechanical advantage or linkage balancing (Benedict, et al., 

1971, Okada, 1986, Yong and Zhen, 1989, Freudenstein and Chen, 1991, Tidwell, et al., 

1994 and 1992, and Tidwell, 1995). A series of important and influential works are by 

Tidwell. Tidwell, et al. (1994, 1992) develop analytical tools for synthesizing wrapping 

cam mechanisms that generate exact input to output force ratios. Many features of this 

linkage synthesis technique are analogous to similar features presented in the wrapping 
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cam synthesis development. Tidwell generates cam profiles by applying integrated force 

ratio constraints to conjugate geometry equations (the “constitutive” equation for cam 

action). Similarly, we will apply integrated force ratio constraints to loop closure 

equations (which govern linkage action). In order to accommodate the two directions of 

input torque application, counter-clockwise and clock-wise, Tidwell defines two cases for 

wrapping cam synthesis, open and crossed configurations. If we assume (arbitrarily, but 

without loss of generality) that the output chain is picked up on the extreme right of the 

machine, then clock-wise (opposing) rotation of the input is accomplished when the line 

of the connecting chain crosses the center line between the cam and the sprocket. This 

case is called a crossed-chain wrapping cam. The standard open or uncrossed 

configuration results in clockwise input rotation. In the analytical synthesis of the cam, 

the crossed configuration introduces a factor of minus one into the equations. For 

linkages, we have an analogous effect for a counter-rotating linkage, wherein a factor of 

minus one is introduced with respect to the standard co-rotating case. 

Although these references establish a basis for our technique, no existing work 

directly or fully addresses the issues of force synthesis independent of output position. 

This work has immediate application to the design of exercise equipment, compound 

bows, balancing devices and other equipment. A novel synthesis technique is developed 

in the following chapters. 
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Chapter 2, Problem Definition and Constraints 

2.1 Kinematic Model and Variable Definitions 

The primary goal of this research is to develop methods for designing weight- 

loaded linkages to produce specified static resistance curves. The immediate application 

of this work is to exercise equipment, where the resistance curve produced by the linkage 

must be a good match to the physiologic strength curve for a given exercise. 

In selecting a configuration for the planar linkage, we must recognize that a 

tradeoff exists between design simplicity and obtaining an accurate resistance curve. 

Increasing the number of design parameters by increasing the number of links, offset 

angles, etc., allows the resistance curve to match the strength curve exactly at a greater 

number of precision points. Unfortunately, increasing the number of design parameters 

also increases the design complexity, manufacturing cost and the difficulty of developing 

closed-form synthesis equations. In most cases a four-link mechanisms have been found 

to yield acceptable resistance curves with reasonable design effort and mechanical 

complexity. Design methods for more complex linkages can be developed using the 

general approach outlined in this thesis. 

Two cases exist for the synthesis of planar four-link mechanism, namely, a 

weighted-grounded-link case and a weighted-coupler-link case. The models for these 

cases are developed in the following subsections. 
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2.1.1 Four-Link Weighted Ground Link Case 

A schematic of the weighted-grounded-link mechanism is shown in Fig. 2-1. The 

four-bar mechanism transfers a nonlinear load to the input link, J;,, from a constant 

weight at the end of the output link, Jy. The synthesis goal is to match the 

nondimensional resistance curve of the mechanism, R, to the nondimensional strength 

curve of the user, S, over the range of motion of the exercise, angle P. 

| 
| 
| 
| 
| 
| 
| 

im 

  

  

Figure 2-1, Standard Weighted-Grounded-Link Model 

The strength curve is determined experimentally and is usually based on 

measurements of the static force that a user can apply at each angle B. Note that the input 

link of the four-bar linkage may be direct user input, or it may be driven through a 

secondary input. A typical situation where this occurs involves the transmission of the 

applied force through an intermediate linkage used for body guidance purposes. This is 
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addressed as a subset of Watt six-bar linkage problems in Chapter 6. In either case the 

functional relationship between S and B must be known before synthesis can begin. 

In the derivations in this thesis, we will assume that the measured force is the 

perpendicular component of the force applied to the input handle. This assumption is 

based on the way in which the data 1s typically taken. In some cases the measured force 

might be horizontal, for example. To deal with such a case, we would simply transform 

the data through a trigonometric relationship, as shown in Fig. 2-2. 

F.,, endicuar( B) = sin(B) ° Frorizontat(B) (2. 1) 

The strength curve is nondimensionalized with respect to some characteristic 

force, typically the maximum 

/ 
force encountered over the range / »\ 

LZ 
of motion. Our goal is to match F horizontal 

F perpendicular 

      the nondimensional resistance 

curve of the mechanism with the 

nondimensional strength curve. 

The resistance curve is defined   

as the inverse of mechanical 
Figure 2-2, Horizontal Applied Force 

advantage of the mechanism, 

that is, the ratio of the 

perpendicular input force to the weight load 
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R= V = yas. (2.2) 

From this point on, any reference to the strength or resistance curves will be assumed to 

be to the nondimensional forms. 

The strength curve is usually determined by suitable measurements on a specially 

designed test apparatus. To determine the proper set up for the test apparatus, the range 

of motion for the input, B, and the length of the input handle, Jj,, must be selected. These 

values are determined based on the optimal physiologic motion. In this thesis, it will be 

assumed that 8, R(B), and 1;, are preselected inputs. 
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Equivalent Scaled 
Linkage     
Figure 2-3, Equivalent Rotations and Scalings 

Figure 2-1 shows the design parameters for our problem. The input and output 

offset angles are 6;, and Oy, respectively. The definition of the “input” and “output” of 

31



the model are based on the use of the machine as exercise equipment with the user as the 

input. In addition to these offset angles, link lengths, J; through /, and 1, and a ground 

link orientation angle ¥ (see Fig. 2-3) are assumed to be the unknown. This gives a total 

of eight design parameters. 

Note that the user input angle, B, is defined to be the sum of the input angle and 

_ the input offset, 6. + 6,. Similarly, the sum of the weight arm angle, ®, and the output 

offset, Ow, is the output angle, 64. 

We can simplify our synthesis by considering some properties of a mechanical- 

advantage generator. The overall mechanical advantage of the mechanism may be 

considered as being comprised of three components: (1) the mechanical advantage given 

by the ratio of the length of the input lever arm to the length of the output lever arm (a 

constant); (2) the effect of the change in the torque at the output brought about by the 

weight moving through the gravitational field (a function of ® only); and (3) the 

mechanical advantage of the four-bar mechanism (a function of @)). Notice that the 

mechanical advantage function is independent of the scale and orientation of the linkage. 

The angle that the ground link makes with the horizontal, y, can be set arbitrarily without 

changing the functional relationship between input and the output link motion. If all links 

of the four-bar are rotated by y the mechanical advantage of the four-bar remains the 

same. The mechanical advantage due to the moving weight remains the same if the offset 

angles are adjusted to maintain the same start angles (relative to gravity) for Band ®. We 
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take advantage of this fact by deriving the synthesis equations for the non-rotated case (y 

= 0) and allowing the synthesized linkage to be rotated as desired. This is shown in Fig. 

2-3. Our linkage can be scaled arbitrarily, so we define the dimensionless parameters L, 

to be non-dimensional link lengths given by: 

L=2yn=1..4 (2.3) 
1 

Therefore, for our synthesis, L; is set to unity without loss of generality. Once a linkage 

with acceptable geometric and force properties has been synthesized, the actual scale is 

set by the designer with a free choice of l). 

2.1.2 Four-Link Weighted-Coupler-Link Case 

The schematic diagram for the weighted-coupler case is shown in Fig. 2-4. Again 

we know one linkage parameter, li,, and we know the desired resistance curve, R(B). We 

have the same eight design parameters as in the previous section. Here the sum of the 

weight arm angle, ®, and the output offset, Ow, gives the coupler angle, 03. 

Unlike the weighted-grounded-link case, however, the scale and rotation cannot 

be changed arbitrarily. The weighted-coupler case resembles a path-generator linkage in 

this way. The similarities of the weighted-grounded-link case and the weighted-coupler 

link case to function-generators and path-generators will be explored in greater detail in 

Chapters 3 and 4. Subsection 2.2.2 below shows that our inability to separate rotation 

and scale allows us to theoretically match a greater number of precision points than for 

the weighted-grounded-link case. 
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Figure 2-4, Standard Weighted-Coupler Model 

2.1.3 Strength Data Issues 

Strength data is gathered at a series of discrete points. Usually a strain gage or 

load cell is used to measure the static force exerted by the user. This produces a good 

estimate of the force exerted during motion, since all Nautilus strength training 

equipment is designed for slow-speed movements. It has been suggested that the use of a 

dynamic tests might result in data which is more true to the application in exercise 

equipment. However, once dynamic effects become significant in the exercise, no simple 

machine can tailor resistance to the user’s strength. Also, dynamic tests have never 

yielded repeatable data in practice. Ongoing investigations may overcome these 

problems. 
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The strength tests result in a set of discrete data points, which is not sufficient for 

our purposes. Because we intend to match an integrated constraint at each position, we 

must choose between either a polynomial fit to the data or some point to point method of 

integration. For a point to point method, one choice would be to integrate a cubic spline 

that has been fit to the data. However, we choose a polynomial fit with least squared 

error. This type of fit has four advantages over a cubic spline fit: 

1. Exercise physiology indicates that true strength curves are continuous and relatively 

smooth (Lieber, 1992). A low degree least-square-polynomial curve fit has the 

advantage of naturally eliminating some experimental noise that might exist. 

A polynomial fit is continuously, rather than piecewise, integrible over the angular 

range. 

Least-square polynomial fits can be applied to multiple-valued data. This is 

significant because multiple data sets can be combined to give a fit with greater 

Statistical accuracy. 

Statistical analysis can be performed on a least-squares curve fit. The statistical 

significance of the coefficient of the highest degree term can be found using an F 

distribution (Hogg and Ledolter, 1992). Usually the polynomials we use are of 

sufficiently low degree that this is not an issue. 

The matrix method is one approach to implementing a least-square polynomial 

curve fit. Let x be the column vector of abscissa points for the data, and y be the column 

vector of ordinate points for the data. Next, define 
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X=[x9 xt x", (2.4) 

In this expression the exponentiation is performed by element, and x is defined to be the 

degree of the polynomial. The vector of coefficients, b, who’s polynomial minimizes the 

sum of the square of the error between the data ordinates and the function, is 

b=(x?x)-xy. (2.5) 

2.2 Number of Mathematical Solutions 

This section examines the governing mathematical equations for both the 

weighted-grounded-link and the weighted-coupler cases. This will allow us to determine 

the limiting numbers of precision points for which we can synthesize. This is similar to 

the general work in Sandor and Erdman (1984, pp. 133-135), and to Huang and Roth 

(1990). 

2.2.1 Four-Link Weighted-Grounded-Link Case 

We begin with the loop-closure equations for position and velocity for the 

weighted-grounded-link mechanism shown in Fig. 2-1 

Le'®? + Le’ =1+ Le’, (2.6) 

i8, and iw, Le? +iw,Le' =iw,L,e*. (2.7) 

We know from virtual work (for the static mechanism with massless links) that 

F-1,-@,-W-v"y=0, (2.8) 
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where v", is the y component of the velocity of the weight. Substituting in for v”, in 

terms of the output link rotation gives 

F-1-@,-W-1, -@,-cos(®) =0. (2.9) 

Isolating F/W, which is the definition of the resistance function, we have 

_ 1, -@,-cos(®) 

* 
(2.10a) 

L. , QW, 

R-l, 
or Os _ in (2.10b) 

@, I, -cos(®) 

mach Ge WA we thee 

Dividing Eq. (2.8) through by @>» and substituting the-result into Eq. (2.12) gives 

j L,:R-l ; 
iL,e'? +iT,L,e% = j—+ ——in_ giMs . x 

: L, -cos(®) 
(2.11) 

where I[,,=@,/@2. Therefore, the equations that govern the mechanical-advantage 

generator shown in Fig. 2-1 are 

Le?) + Le =14 Le™, (2.12a) 

L, -R- lin id, iL,e(F 9) 4 iT Le —j——4 ing 
; “ 1, -cos(@, —@,, ) 

(2.12b) 

These represent four scalar equations at each precision point (two real and two 

imaginary). For each value of B, we know a corresponding value of R from the strength 

curve data. Therefore, there are six unknown scalar design parameters: Ly», L3, L4, Gin, Oy, 

and J. There are three unknown variables which are functions of B: 03, 6, and I3. At 
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each precision point, we will add four new scalar equations, but only three new scalar 

unknowns (the variables which are functions of theta). 

The excess of unknowns over equations is reduced with the addition of precision 

points. We conclude that the number of degrees of freedom in the solution decreases 

with the addition of precision points. The results of this analysis are summarized in Table 

2.1. Recall that the number of free parameters that we actually have available is 

increased by two, because our ability to scale and rotate the resulting linkage has not been 

included in this analysis. 

Table 2.1, Number of Possible Solutions for the Weighted-Grounded-Link Case 
  

  

  

  

  

  

    

Number of Number of Number of Max number of | Number of 

precision pts. scalar scalar free parameter | solutions 

in R equations unknowns choices 

1 4 9 5 (c0)° 

2 8 12 4 (co)* 
3 12 15 3 (co)* 

4 16 18 2 (co)? 

5 20 21 1 (co) ' 

6 24 24 0 Finite           
  

(superscript numeral indicates the number of infinities or degrees of freedom) 

At this point, we could use a system of 24 transcendental scalar equations with 24 

unknowns for our synthesis. It is unlikely that a set of equations explicit in our design 

parameters exists for such a complicated system. We could use a numerical routine to 

find a solution, but the solution may be poorly conditioned and may yield complex values 

for any design parameter, for example. We choose to solve the system of equations 

corresponding to four precision positions. This approach leads to a closed-form solution 
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to the synthesis equations. It also provides the designer with a family of solutions from 

which to select a promising design. The method of solution employed in Chapter 3 uses 

four precision points in R, and one free parameter choice, J,,. The result is a locus of pivot 

locations representing one infinity of solutions. 

2.2.2 Four-Link Weighted-Coupler-Link Case 

Analysis of the weighted-coupler case shown in Fig. 2-4 is similar to the method 

employed above. This case differs from the previous one in that the mechanism cannot 

be freely scaled or rotated. Again, we begin with the loop closure equations for position 

and velocity 

Ine!?2 + [e's = helt + lye! , (2.13) 

and Wal e982 + i@glye!? = iwglye!™ . (2.14) 

Applying virtual work (for the static mechanism with massless links) results in an 

equation similar to Eq. (2.10), except that for this case the location of the weight is given 

by 

5” = Je! 4) lls) (2.15) 

The y component of the time derivative is 

vy =Inl izle Fishy), (2.16) 

Substituting in for v", in Eq. (2.10) 

F +l, -@2 — W -Im{i@alne"® +i@ylyes*)) =0, (2.17a) 
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or F. lin . > —-W. Wl, cos(@> ) -W. Wl, cos(43 - 6) =Q. 

Isolating F/W, the definition of the resistance function we have 

R= Wlq cos(O2)+ Wl, cos(63 -6,,) 

lin @2 
  

? 

or 3 R-];, —l, cos(@> ) 

@, lycos@;—0,) 

Dividing Eq. (2.16) through by @; and substituting in Eq. (2.20) results in 

ile! +1 —t_ et 2 cos| 2) Le!®3 = iT gle! . 

Ly cos(0 ~ 6.) 

The governing equations are 

Ipe!(B-9n) 4 pfs = He + IyelDs , 

ilyel(b-Pn) +i R lin — 1, cos(B - Gin ) eis = iP ylyel® 
ly cos(63 - Oy) - 

(2.17b) 

(2.18a) 

(2.18b) 

(2.19) 

(2.20a) 

(2.20b) 

Again, we have four scalar equations at each precision point. There are eight unknown 

scalar design parameters: 1), J, 13, 14, Oin, Ov, and l,. We also have three unknown 

variables which are functions of B: 03, 0, and I. Again, at each precision point we will 

add three new scalar unknowns. The results of the analysis are summarized in Table 2.2. 

Table 2.2, Number of Possible Solutions for the Weighted-Coupler Link Case 
  

  

  

  

          

Number of Number of Number of Max number of | Number of 

precision pts. | scalar scalar free parameter | solutions 
inR equations unknowns choices 

1 4 11 7 (c2)’ 
2 8 14 6 (c0)® 
3 12 17 5 (co)” 
4 16 20 4 (c0)*     
  

40



20 23 co 

24 26 oo 

28 29 oo 

32 32 0 Finite 

Notice that, although we have gained two precision points compared to the 

  

previous case, we have lost our two hidden free parameters: scaling and rotation. A 

closed-form synthesis method for this case is developed in chapter 4. 

2.3 Design Constraints 

The primary objective of our design problem is to closely match the strength 

curve with the resistance curve. A number of less quantitative design considerations, or 

constraints, are also imposed in the final analysis of the design. In many cases a design 

which has a perfectly acceptable resistance curve must be rejected due to other 

considerations. Seven design constraints common in the Nautilus design work are 

summarized below: 

1. In general, the design should fit a standardized frame. Nautilus uses a number of 

standardized frames for their equipment. The design linkage should remain within 

the plane of the frame throughout the range of motion for safety considerations. The 

grounded pivots of the linkage should be located near convenient anchoring locations. 

If the linkage does not fit one of the standardized frame geometries, a new frame 

design will be required. This results in additional design work, additional expenses 

on fabrication, such as new welding fixtures, and a new item to be keep in inventory. 

In many cases, this would be prohibitively expensive. 
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2. Because the linkage-based Power Plus line is relatively new, many linkages may need 

to be suitable for retrofit into existing equipment. For example, an existing machine 

with a belt-wrapped cam might have an unacceptable number of failures due to belt 

wear. A linkage design would not only need to met the specific frame already in use, 

it would also have to meet the existing pivot positions. If an acceptable linkage can 

be designed, an in-field retrofit might be possible. 

3. Strength of materials issues require that the maximum axial stress within the coupler 

link and the bearing stresses at the ground pivot be kept at acceptable levels. 

Procedures for analysis of the static stresses are developed in Chapter 3 and Chapter 

4. 

4. The lengths of the links may be unacceptable. Links which are too short can cause 

interference and are difficult to machine. They might lead to dangerous pinch points 

if exposed. They also have higher internal stresses. Longer links (in particular in the 

scaleable case where the size of the linkage has been increased to avoid stress 

problems) are likely to violate frame constraints and require more material. Also, as 

the length of the link increases, so does its mass. Because our synthesis assumes 

massless links, this could have a negative impact on the performance of the design. 

5. The load weight should be kept as low as possible within the machine throughout the 

range of motion. The load weight will be a significant portion of the total weight of 

the machine for high-end (strong) users. As the height of the load weight increases, 
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the center of gravity of the machine rises, making it less stable. Large vertical strokes 

of the weight can be dangerous if the weight is dropped from the top of the stroke. 

6. Horizontal motion of the load weight does not theoretically effect the input force (no 

work is done). However, because some dynamic effects will come into play, large 

side-to-side motions of the weight are unacceptable. They affect both the accuracy of 

the resistance curve and the stability of the machine. 

7. The geometry of the linkage may lead to clearance problems. Links of the actual 

linkages do not have to match the kinematic link models. They can, for example, be 

bent to allow clearance as long as the geometry of the pivot points remains the same. 

However, for any tube size, there is a maximum radius bend Nautilus can produce 

with its tube-bending machines. 

It is difficult for a design to meet all of the design constraints and simultaneously match 

the desired resistance curve. Therefore, it is vitally important that the designer have 

maximum flexibility in selecting alternate solutions. 

The approach adopted here gives the designer a number of options for arriving at 

an acceptable design. Our closed-form weighted-grounded-link synthesis technique is 

very robust, because it allows the designer to make a number of intelligent free choices 

while still yielding an infinite set of solutions to choose from. Should these solutions 

prove inadequate, the designer has an option to synthesize a weighted-coupler linkage as 

an alternative. 
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If neither of these cases is acceptable, we have other alternatives, discussed in 

Chapter 3. In particular, because the resistance curve has been arbitrarily 

nondimensionalized with respect to the weight, we can reduce the resistance curve while 

maintaining its shape and then synthesize again. Such a reduction is geometric. That is, 

the change in the design resistance curve can be accomplished by multiplying by a scalar 

less than one. For example suppose that the maximum a user can lift over the range of a 

“preacher curl” exercise is 100 pounds. [If the linkage is synthesized with no reduction 

factor, the appropriate weight load on the output link of the machine is 100 pounds. If a 

reduction factor of 0.9 has been applied during the synthesis, than a weight of 100 / 0.9 

pounds should match the strength curve of the user. Note that an increase in the 

resistance curve (multiplication by greater than 1) is discouraged for three reasons: (1) it 

increases the stroke length of the output thus violating a design criteria, (2) motion 

through an increased stroke makes the nonlinearity of the weight angle (cos(®)) more 

pronounced, and (3) reducing the amount of weight a user can lift on a machine has a 

negative psychological impact. 

We have concluded our preliminary investigation of this synthesis problem. We 

now have all of the tools required to develop our synthesis technique.



Chapter 3, Weighted-Grounded-Link Synthesis Method 

3.1 Massless Links and Static Force Transfer 

Before beginning to discuss our synthesis, we will examine the nature of two key 

assumptions. Our justification for these assumptions is based on the Nautilus equipment 

application. Nevertheless, it is believed that these assumptions will apply directly to 

many other problems, or will at least provide a good starting point for force-based linkage 

design. 

The first assumption is that the effect of the link masses on the input force is 

negligible relative to the effect of the load mass. We know that the validity of this 

assumption depends on the exercise being performed and on the strength of the user of 

the machine. Certain exercises, like the seated leg press which use the large muscles of 

the leg and buttocks, have larger load weights. Other exercises which use the smaller 

muscle groups, like bicep curls, neck exercises, and wrist abduction, have lower load 

weights. For low-end users of these machines (users who lift small weights), link masses 

and inertias may be significant. 

Even though our assumption may be in jeopardy, it would be difficult to account 

for these masses in a closed-form synthesis procedure, since the link masses depend on 

the as yet unknown link lengths and shapes. Our alternative is an analysis of the effect of 

the link masses on the static resistance curve. This analysis is developed in Chapter 5. If 
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the analysis reveals that the masses do have a significant negative impact on the 

performance, then we do have alternatives. One is equilibration of the design linkage 

using balancing masses. 

Our second assumption is that the dynamic forces are small compared to the static 

forces. In the case of an exercise machine, the magnitude of the dynamic effects are 

controlled by the manner in which the user performs the exercise. Our assumption is 

validated by proper use of the exercise machine. Nautilus recommends that exercises be 

performed in a slow, smooth manner. Again, we can look at the validity of this 

assumption using an analysis performed after the fact. This analysis is developed in 

Chapter 5. 

This assumption is extremely important in the Nautilus application because 

dynamic effects depend on the trajectory (time-motion relationship) of the input. This 

input trajectory is not well defined in the case of our application. We have little recourse 

for detrimental dynamic effects, because these are user dependent. 

3.2 Integrating Force Constraints 

In this and the following sections, we will synthesize a weighted-grounded-link 

four-bar by integrating the force constraints to develop a functional relationship between 

the input and the output. We select four precision points and invert the mechanism. The 

inversion of the problem is a body-guidance of the input arm through four positions. One 

infinity of solutions to the synthesis problem are found using standard Burmester theory. 
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The inverted solutions will be mapped back into non-inverted space in order to plot the 

Burmester curves. 

We begin our examination of this method by reviewing the integration of force 

constraints to form position constraints. We will look at two general problems before 

examining the problem specific to our application. 

Im 

| 
| 
| 
| 
| 
| 
| 
| 

Tout        
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Figure 3-1, Constant Torque Resistance 

3.2.1 The General Problem -- Constant Torque Resistance 

A general force generating linkage problem is the one shown in Fig. 3-1. In this 

case, the desired applied torque, 7;,, is a prescribed function of a constant resisting 

torque, 7,,;,. The resistance curve is given by 

n(@,)= 2s), 
out 

(3.1) 
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From virtual work we can find a relationship between 7;,, and Toy; 

(3.2) 

If the mechanism is assumed to be static at each position in the motion, then a virtual 

displacement is equivalent to an actual displacement. If we integrate this equation over 

some range of motion, from an initial position to some final position, we have 

8, 6, 

I, T, dO, = i, T_,d@,. (3.3) 

Because 7,,; is a constant, we can pull it out of the integral on the right hand side. 

Dividing both sides by T,,;, and moving the constant under the integral we are left with 

  

6, 8» T,, _ £92 
9 404 = J. r dé, = Jo. Rd@, . (3.4) 

If we know R as a function of 02, then we can evaluate the definite integral on the right 

hand side after choosing a reference angle, 0,.. The final result is a functional 

relationship between 6, and 0, 

9,(8,)= i, RdO, +0, = A,(0,)+0,, . (3.5) 

where Ap(6,)=["" Rd®, . (3.6) 

We call Ar the area under the resistance curve. Assuming we know one reference angle 

in 6, corresponding to an angle in 62, we can transform our force generation problem into 

a problem whose constraint is a functional relationship between the output and the input. 
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Designing a linkage to meet this constrained functional relationship is a standard problem 

in kinematics. It can be solved using standard synthesis techniques. The resulting 

linkage is called a function generator. It is for this reason that we call force-generating 

linkages whose resistance is on a grounded link a mechanical-advantage generator. 

3.2.2 The Linear Torsion Spring Problem 

This technique can be applied to other types of problems. A linkage whose 

resistance is provided by a linear torsional spring is shown in Fig. 3-2. If the torsional 

spring constant is ky, and the unstretched angle of the spring is =, then the torque on the 

output link is 

out 
=k,(0,-£). (3.7) 

If in this case we nondimensionalize the resistance curve with respect to the torsional 

stiffness of the spring, R =T;,/kr, then we can use a similar process to find a relationship 

between @, and @2 

8, 0, _ 

J Ti,d0 ~ J. ky (6, - =)d0, ° (3.8) 

6, O4 _ 

92, Ra@, ~ J. (9, 7 =)d6, ° (3.9) 

6, " 9 
Ag = & -=f6,],. » (3.10) 

2 I, t 

0. (3.11) 6,’ — 250, -(2A, +0,,? — 250, | 

An explicit equation in @, as a function of @, can be found using the quadratic equation 
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0,(0,)=S4 JE +0,” -256, +2A,(0,). (3.12) 
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Figure 3-2, Linear Torsional Spring Resistance 

The function is double valued because both positive and negative rotations of @, about = 

store energy in the spring. 

3.2.3 The Load Weight Problem 

Our standard synthesis problem, the weighted-grounded-link four-bar mechanism 

is shown in Fig. 3-3. We will use the same technique applied above to transform the 

problem into a function generator. To retain the maximum number of precision points, we 

want to constrain as few unknowns as possible along the way. From virtual work we 

have 
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T,, -5B+W-ds" =0. (3.13) 

    VSS LLL ASP PLS LLL LALA L LS 2 

Figure 3-3, Standard Weighted-Grounded-Link Model 

We make the same argument for actual verses true differentials as above. Integrating 

both sides 

[7 -4B =[W-ds,". (3.14) 

From our model we have 

s,” =l, -sin(®). (3.15) 
y 

Substituting the force on the input link times its length for the input torque, and 

recognizing that the weight, W, is a constant, we have 

| F1,dB = WJ ds,” =w[s,"-s,*]. (3.16) 

Dividing through by W and recognizing that /;, is a constant leaves 

Ln | (Ay): 4B = 1,(sin(®)- sin(®,)), (3.17) 
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sin® =-#. A, +sin®, (3.18) 
w 

The value for J;, is given. The value for Ar is known for each precision point in B. If we 

select values for the two parameters, /w and ®,, we are left with a functional relationship 

between ® and B 

(8) = sin“ [sin D, + (0)]. (3.19) 

Expecting the designer to select the length of the weight arm, Jw , and the weight 

reference angle, ®,, is not unreasonable. The designer will frequently have a range of 

acceptable values for these parameters based on other design constraints. A note about 

this equation: the inverse sine is multi-valued function. We will assume that the weight 

remains on the right hand side of the output pivot (i.e. ® remains between -90° and 90°). 

This allows us to use the default for the inverse tangent function. We may do this without 

loss of generality because all solutions in which ® remains between 90° and 270° have 

mirror image solutions in the other range. 

Before synthesis is attempted, the designer should check to see if the total work, 

given by the area under the resistance curve, is feasible for the given parameters. If not, 

Eq. (3.19) will result in a complex number for ®. Total work output can never exceed the 

work done in moving the weight from its lowest point to its highest point, as constrained 

by the output link length. The maximum height is reached when ®= 90°. 
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sin@® -j>4, +sin@ , (3.20) 
l 
w 

This results in a bound on the minimum value of J, for a given value of ®,. Or, 

alternatively, it results in a bound on the maximum value of ®, for a given value of l,. 

Ap max’ 4 
L, 2 ane (3.21a) 

sl lin @, Ssin l- Rmax (3.21b) 

If R is everywhere positive, Armax is the value of Ag at the maximum value of B. 
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Figure 3-4, Function Generator 

We have succeeded in converting the prescribed mechanical advantage synthesis 

problem into a standard function generation synthesis problem by developing a functional 

relationship between the input link and the output link. This is shown pictorially in Fig. 

3-4. 
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3.3 Transformation to Body-Guidance Space by Inversion 

Any of the function generators developed in section 3.2 can be synthesized with 

four precision points using Burmester theory. Although the following is applicable to all 

of the cases, we will examine our standard case, the weighted-grounded-link four-bar, 

throughout the remainder of this chapter. 

Four precision point position synthesis is a well documented, standard kinematic 

synthesis problem (see for example, Sandor and Erdman, 1984). Burmester theory was 

developed to solve body-guidance type linkage synthesis problems. In order to take 

im (Two Positions) 
{ 
| 
| 

| 
| 

‘ 

Standard Frame 

  

Figure 3-5, Inverted Function Generator 
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advantage of this synthesis 

method, we must first invert our 

function generator. The 

inversion maps the function 

generation synthesis problem 

into an equivalent body 

guidance synthesis problem. 

In the inverted frame of 

reference, we choose the weight 

arm to be the ground link. We 

orient the inverted mechanism 

such that the weight arm lies



along the rea] axis, and what was the grounded output pivot becomes the origin. Figure 

3-5 shows how two positions in the function generation (non-inverted) space map to the 

body guidance (inverted) space. Now our goal is to synthesis a linkage dyad (two link 

series pair) which guides a body attached to the input arm through the four precision 

points. Proper definition of a body guidance problem requires that we know the position 

vector of a point on the body at each precision point. We must also know the change in 

orientation of a line on the body between each precision point. The convenient point on 

our body is the location of what was the input grounded pivot in function generation 

space. The input arm is a convenient line on our body. If we define D, as the vector 

which locates the point at precision point n, and a, as rotation of the body between 

precision point n and the first precision point, then 

_ 

D, = Lei?) = el) nal...4, (3.22) 
n 

a, =(B, -®,)-(B,-@,), n=1...4. (3.23) 

3.4 Four Position Body-Guidance Synthesis (Burmester Theory) 

Now that the problem has been mapped to a standard, four-precision-point, Body- 

Guidance problem, we may apply Burmester theory. Burmester theory in linkage 

synthesis was first implemented on the computer by Fruedenstein at Columbia University 

in the 1950s (Sandor, 1993). An excellent reference on the method is the text by Sandor 

and Erdman (1984). 
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Figure 3-6, Body Guidance Solution Dyad 

3.4.1 Matrix Formulation of Loop Closure 

Figure 3-6 shows a standard body-guidance problem at two precision positions, n 

and 1. Vectors M and Z are a solution dyad at the first precision point. We can write a 

loop closure equation from position one to positionn,n=2...4 

— ~ —_ _ 

6, —Zei — Me” =-Z-—M, (3.24) 

where 6,, is the vector which locates our reference point with respect to its position at the 

first precision point. Note that the link M undergoes pure rotation between precision 

points because it is attached to a grounded revolute joint. Also, Z is attached to the body, 
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and so it rotates by the same amount as the body between precision points. Based on our 

knowledge of the body’s motion 

6, =D, -D, =e) — ef), (3.25) 

It is convenient to express Eqs. (3.24) in matrix form 

e'¥2 -1 ei] 5, 
| | M| |. 

e% 1 e&® 1]. [=] 6, |. (3.26) 
_ 

Z 
ev4 Jy eis _] 

Equation (3.26) represents a system of six scalar equations (three vector 

equations) with seven scalar unknowns. The seven scalar unknowns are the real and 

imaginary parts of M and Z, and yw... wy. We expect that one infinity of solutions 

should exist (that is, the system has one mathematical degree of freedom). We can 

eliminate the two vector unknowns by recognizing that in order for solutions to exist, one 

vector equation must be linearly dependent on the other two. This can be easily shown by 

modifying Eq. (3.26) to the form 

e¥2-1 e&®—-1 §6,||M]| [0 

i
l
 

3 || Z |=] 0}. (3.27) evs —] ei —] 

ev —1 e% 1 §, 11-11 |0 

If the matrix on the left hand side were invertible, then no solution could exist, because 

this would imply that -1 = 0. Therefore, the matrix must be singular. By expressing this 

result in terms of the determinate of the coefficient matrix, we can eliminate the vector 

unknowns from our equations: 
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ev2 {ei _] Q
l
 

to
 

det} e”?-1 e-1 6, II ©
 (3.28) 

i
 

rs
 evs —] el —] 

3.4.2 Solving the Quasi-Loop-Closure Equation 

If we expand the determinate in Eq. (3.28) about the first column, which contains 

the three remaining unknowns, we have: 

Ae”? +A,e +A,e +A, =0, (3.29a) 

_ e'%3 —_— 1 5, 

A, =det| ~ |, (3.29b) 
es] 6, 

> ei” —] 5, 

A, =—det| |, (3.29c) 
e*_]1 6, 

- ei” —1 5, 

A, =det| |, (3.29d) 
es_—] 6, 

A, =-A, -A,-A,. (3.29e) 

We call Eq. (3.29a) a quasi-loop-closure equation, because it has the same mathematical 

form as loop closure, only with complex coefficients. The standard approach to solving 

this equation is presented in Sandor and Erdman (1984). Their approach is formulated in 

the context of a computer program which might be implemented in FORTRAN or C. We 

offer the following alternative approach which takes advantage of the capabilities of 
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current mathematical software, like MathSoft Mathcad® or Mathematica®. These 

packages have significantly greater ability to deal with complex vectors. 

Each of the complex coefficients acts to rotate the corresponding term. If will 

look at them as magnitudes and rotation operations, we can combine the rotation with the 

existing exponent. Thus 

A, =A, el*el4)), (3.30) 
n 

and the quasi-loop-closure equation becomes 

Aye + A,e' + Ae + Ae =0, (3.31a) 

Q,=V, +arg(A, }, (3.31b) 

Q,=y,+arg(4,), (3.31) 

Q, =y, +arg(A,), (3.31d) 

QQ, = arg(A,). (3.3 1e) 

We have converted the quasi-loop-closure equation into an actual loop closure equation. 

As we index through the values of angle y2, we can solve for yw; and yy, using the 

technique described in section 1.3.1. The nonlinear transcendental nature of Eq. (3.31a) 

leads to a quadratic equation in one of the two unknowns. This means that for each value 

of W%, there are two solution dyads. The solution dyads can be found from Eq. (3.26) 

3_ (e'¥: _ 1)5, _ (e'vs _ 1)5, (32a) 

(IYO = 
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5, —(e'” — 1)Z 
M= 

ev2 | 
(3.32b) 

3.5 Transformation to Non-Inverted Solution Space 

The solution vectors M and Z are expressed in the inverted (body guidance) 

frame of reference. The real axis of the non-inverted frame is coincident with the ground 

link, and its origin is at the grounded pivot of the input. To express the solution vectors 

in the non-inverted frame requires a rotation and negation. Recall that the solution 

vectors are expressed at the first precision point. The non-inverted solution vectors, M’ 

and Z’, are given by 

Z’ =-Z-e'* (3.33a) 

M’=-M -e'* (3.33b) 

We now have an infinite solution set of pairs M’ and Z’, two for each value of YW. In 

function generator space, the coupler link vector is M’, and its base is located by Z’. 

The locus of solutions can be viewed by plotting the Burmester point pairs that 

correspond to the coupler pivot locations. The corresponding Burmester point pairs are 

given by 

P=Z’, (3.34a) 

and P,=Z’+M’, (3.34b) 

where the origin of the complex plane is the input pivot of the ground link. The output 

pivot of the ground link is given by (1,0). 
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3.6 Solution Interpretation and Analysis 

A number of issues need to be clarified with respect to the synthesis method 

presented above. In section 3.2 we derive a functional relationship between the input and 

output angles. In each of the cases we assumed that the input torque is applied in a 

positive z sense. This is consistent with a co-rotating linkage. However, for the counter- 

rotating case, the input torque is applied in a negative z sense. This does not effect our 

synthesis method, it simply introduces a sign of minus one in the calculation of Ap. 

While this might seem to indicate that Ar would be negative, recall that now the linkage 

is rotating in the clockwise direction. Each precision point will be smaller than the 

previous one. When we perform the definite integration, the negative sign introduced by 

rotation cancels the negative sign from the torque. Ar remains positive. We expect this 

because a negative Ar would means that the weight is lowering during the stroke. 

The solution control variable, yw, has physical meaning. In body-guidance space, 

it is the rotation of the fixed link in the dyad between the first and second precision point. 

In function-generator space, it is the change in angle of the coupler link between the first 

and second precision point. We will make use of this fact in selecting appropriate ranges 

over which to iterate (see 3.7.3 below). 

Solving for solutions to the synthesis problem requires solving an intermediate 

loop-closure problem. Because the solutions to the loop-closure equation are the roots of 

a polynomial of degree two, there is no guarantee that, for any value of YW, yw; and yy are 
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not complex. Complex values for these angles are not physically meaningful solutions. 

The only way to verify that a given value of y does not give complex results is to check 

it and see. 

The problem we are attempting to solve is a difficult one. Although our goal is to 

match a force curve, we are synthesizing for precision points in the integral of our 

constraint. We can verify that the solution linkage has a resistance curve that matches our 

design criteria through a static force analysis. Like all body-guidance synthesis problems, 

the solution to the mathematical equations produces is not guaranteed to meet the 

constraints we have placed on it in a physically meaningful way. Problems of this type 

are called defects. 

3.6.1 Solution Defects and Rectification 

Solutions to linkage synthesis problems can exhibit three major types of defects 

(Mabie and Reinholtz, 1987). These defects are Grashoff defect, order defect, and branch 

defect. Grashoff defect exists when the input link is not a crank, that is, it cannot rotate 

360° without reaching a dead point. Grashoff defect only exists for applications that 

require a fully rotating input. Order defect exists when the guided body travels through 

all of the precision points, but in the wrong order (1-3-2-4, etc.). Branch defect is the 

most common type of defect. In a branch defective linkage, the mechanism can never go 

through all of the precision points. Branch defective linkages satisfy all of the 

mathematical equations governing the synthesis, and they can be assembled such that the 

linkage satisfies each individual precision point. Nevertheless, the synthesis equations do 

62



not guarantee that the linkage with the synthesized design parameters will satisfy all of 

the precision points in the same physical closure. Linkages with branch defect have one 

or more precision points that lies in the opposite closure from the one that satisfies the 

first precision point. 

Branch defect and order defect immediately invalidate the solution. Grashoff 

defect eliminates the solution if the application requires a fully rotating input crank. 

There is no recourse for solutions which exhibit defects; they must be discarded. 

Confirmation of the existence of a defect requires only simple analysis. Position 

analysis of one closure of the solution at the precision points will show that at least one 

precision point is not reached by a branch defective linkage. Linkages with Grashoff 

defect will fail to assemble (see Eq. (1.12)) over some range of input angle. And, of 

course, order defective linkages will exhibit paths whose sequence is incorrect. 

The process of removing defective solutions from the solution set is called 

rectification. There are two simple methods for rectification that require no more 

analysis than we have already derived. In one method, the computer that is performing 

the synthesis can analyze each solution as it is generated. Solutions with defects are 

flagged, and they are not displayed as part of the Burmester curves. This is a 

computationally cumbersome method. The other method is manual. The designer selects 

a solution linkage from the set that may or may not have defects. The computer performs 

an analysis of the solution, and if the solution exhibits a defect, the designer discards it 
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and begins again. The choice between these methods depends on the tradeoff between 

computational time and designer competence. 

3.6.2 Analysis of the Resistance Curve 

The accuracy of the fit of the resistance curve of the solution linkage to the 

desired curve must be checked for every potential solution. The theoretical resistance 

curve of the solution is found using simple static force analysis. For the weighted- 

grounded-link case we know that 

i 
R(p) = -—- cos(®(B)) , (3.35) 

as shown in section 2.2.1. Position analysis of the linkage must be performed over the 

range of B using the governing loop closure equation 

Le!) + Lei = 14 Lie?) (3.36) 

Once the position analysis is completed, solving for the ratio wz / a is a linear problem. 

A form of the velocity loop-closure equivalent to what we have derived previously is 

* cos(P+O,) -L,cos(6, | Oy, ee , cos(B ~ 6, ) 

L,sin(®+6,) —L,sin(@ oA L, sin(B- 6, ) 

vo | cos(P+6,) —L, sel \; cos(B — 6, ) 

| , (3.37) 

or , (3.38) 
L,sin(®+6,,) —L, sin(9;) L, sin(B- 6, 

Q@, 

We now have sufficient information to calculate the resistance curve of the design over 

the range of the user input angle.



3.6.3 Analysis of Coupler and Bearing Stress 

Once a design is found that is free from defects and has an acceptable resistance 

_ curve, link forces and bearing loads should be checked. Although we cannot calculate the 

Stresses since we do not know the cross sectional area of the links or the maximum load 

weight which might be applied to the weight arm, we can calculate the 

nondimensionalized forces which give rise to these stresses. If the nondimensionalized 

(with respect to W) coupler force is F;, then, summing moments about the fixed pivot of 

the input link, we have 

R-1,, — Fyl, sin(@, -6,)=0, (3.39a) 

L 
or F, ain! (3.39b) 

"1, sin(@, -@;) 

A positive sign for F; indicates tension; a negative sign for F3 indicates compression. 

Notice in Eq. (3.39b) how the scale of the linkage (/2) effects the magnitude of F3. In this 

application the lengths of the links are typically small, and the magnitude of the forces are 

relatively low compared to the stiffness of the members. Because of this, we need not be 

concerned about the coupler buckling under compression. For other applications a 

separate analysis would need to be performed. 

The magnitudes of the nondimensionalized bearing forces, B;, and B,,,, are found 

by summing the forces on the two grounded links 

Rie® + F,e +B, =0, (3.40a) 

  

B,, = y(R sin(B)— F, cos(0,))” +(Rcos(B)+ F, sin(0,)) , (3.40b) 
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and ~i- Fe’ +B, =0, (3.41a) 

  

Byy = |(F,c0s(8,)) + (F,sin(,) +1)" (3.41b) 
a 

If the solution linkage passes all of our litmus tests -- no defects, acceptable 

resistance curve, small magnitude internal forces -- then the linkage will need to be 

evaluated based on the more subjective criteria laid out in section 2.3. The best design 

will likely be a compromise between the many design criteria. 

3.7 Design Tactics and Example Problem 

Because of the many design constraints, a premium has been placed on giving the 

designer the maximum flexibility in this synthesis method. With this flexibility has come 

a large number of decisions the designer must make. The designer must choose four 

precision points, the weight arm length, the weight arm start angle, and the range of the 

iteration variable, yw. These choices will result in one infinity of solutions, two at each 

YW, to choose from. Even when the final choice of the design has been made, the designer 

must still decide on the scale and orientation of the solution. This flexibility for the 

designer is powerful, but only when the designer understands the underlying principles of 

the synthesis. 

3.7.1 Choosing Precision Points 

The ability to freely choose four precision points is the most power tool that the 

designer has in finding solutions with acceptable resistance curves. Because this tool is 
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so useful, we do not recommend an automated method like Chebyshev spacing (Mabie 

and Reinholtz, 1987) for selecting the precision point locations. Instead we suggest that 

the designer use active manipulation of the precision point spacing to try to improve the 

design. 

Starting with a fairly even spacing is typically a good idea. The designer might try 

to cover areas in which the resistance curve changes shape rapidly with denser spacing. 

Sometimes it is useful to place precision points near the ends of the range in f, in order to 

enforce the total energy transfer to the weight. 

If solutions seem to be exhibiting poor resistance properties over a specific region 

of the range, the local resistance properties can be greatly improved by placing two 

precision points relatively close together in the troublesome region. Of course, this limits 

the designer’s ability to control other portions of the curve. 

3.7.2 Choosing the Weight Start Angle and Arm Length 

®, and the corresponding value of f, are reference angles, and may be chosen 

arbitrarily. The most sensible choice is to make f, the start angle, because the designer is 

more likely to be able to choose a corresponding ®, based on other design considerations. 

The weight angle corresponding to an arbitrary user input angle is not as well defined by 

the problem. 

In general the designer should choose as long a weight arm length as possible, and 

a start angle as near to zero as possible. A slightly negative choice is better than slightly 

positive one, because the weight is moving up (for always positive resistance curves), and 
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so will remain in the linear region for more of the motion. By selecting a longer weight 

arm, the designer has restricted the change in @ to as small a value as possible, and one 

which is near to zero throughout its range. This makes the torque applied to the weight 

arm as linear as possible. Sometimes, the shape of the curve is so radical that the design 

can benefit from the sine function introduced by varying ® over the range of motion. In 

these special cases, the weight arm should start at a more negative angle. It is almost 

never acceptable for the weight arm to come close to the singular positions -90° and 90° 

during its motion. 

In many cases, the length of the weight arm is constrained to some maximum 

length to keep the overall machine compact for safety. In such cases the designer needs 

to be aware of the limiting value of ®, for this value of l,,, given by Eq. (3.21b). The 

designer should try to avoid start angles that are near this limit. Otherwise the linkage 

will be approaching a singular value near the top of its stroke. 

3.7.3 Choosing the Solution Range 

The solution range is determined by the range of values chosen for yw. If the 

entire locus of solutions is'to be displayed, yw must vary from 0 to 360° in infinitesimal 

steps. The Burmester curves of the full solution set are likely to be located far away from 

the pivot points for some ranges of wy. Since the computer screen is scaled to map the 

entire set, it may be difficult to see the solutions which have the best geometric 

properties. Also, the full solution set will likely contain at least some values of YW for 
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which y3,4 are complex. After making an initial scan of the full solution set, the designer 

should “zoom in” on those ranges of y which have promising geometric properties. 

Recall that variable y is the change in angle of the coupler link between the first 

precision point and the second precision point. This physical meaning for the variable 

gives us some insight as to where useful ranges of y2 might exist. The magnitude of y2 

should be on the same order of magnitude as the change in the input arm. Consider a 

synthesis in which the second and third precision points in B differ by less than 1°. It is 

conceivable that a good design would have a small value of yw, perhaps a degree or two. 

A solution whose Y value is on the order of 100° or -100° will rarely be useful in this 

case. One the other hand, if B2 - B; is, say, 50°, a good design’s coupler might rotate by 

+20° in the first part of the motion and by -20° during the last part of the motion resulting 

in a Y% of O°. Our argument is based on the premise that radical motions of the coupler 

relative to the input link are likely to be unacceptable, but that the coupler can have large, 

unpredictable motions over large ranges of B. 

3.7.4 Avoiding Defective Regions 

If the manual method of defect rectification is being used by the designer, then it 

is important to remember that local regions on the Burmester curves tend to have the 

same defects. It should also be noted that defect problems in the two solutions generated 

by the alternative signs of the quadratic equation in the synthesis calculations are 

unrelated. The two solutions might have the same defect or they might not. If a defective 
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design is encountered, there are three options: (1) select YW values moving away from the 

defect until a non-defective region is reached, (2) try the other solution for the current 

value of y% or (3) modify the synthesis parameters (precision point location, etc.). 

3.7.5 Alternatives for Difficult Problems 

Some problems are difficult by nature. The resistance curve might be radically 

shaped. The ground pivot locations might be constrained because the design is a retrofit 

to an existing machine (constraining the ground pivot locations takes away or ability to 

scale and rotate the solution linkage freely). The starting position of the weight might be 

such that the top of the weight stroke is near the singular position. These and other 

problems can make the synthesis methods we have developed frustrating. There are three 

last resort alternatives which we can turn to: 

1. Wecan reduce the design resistance curve by a scalar multiplication which retains the 

curves shape, R = €R, where € > 1. This will result in less angular motion of the 

weight arm and hence a more linear problem (see 3.7.2 above). Recall that this 

geometric reduction will be canceled by increasing the load weight. 

2. Try a weighted-coupler linkage synthesized according to the method presented in the 

next chapter. 

3. Use a Watt six-bar or other, more complex, linkage. Elementary synthesis of Watt 

six-link mechanisms is discussed in Chapter 6. 

4. If the resistance curve of the linkage is marginally acceptable, and all other design 

criteria are met, a method of post-synthesis “tweaking” is possible. In chapter 5 a 
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sensitivity analysis is developed. Judicious variation of parameters, to which the 

analysis confirms the design is most sensitive, can lead to an improved resistance 

curve. 

Another alternative is optimization. The groundwork for an optimal synthesis method is 

discussed in Chapter 6. 

3.7.5 Example -- Synthesis of a Compound Rowing Machine 

A compound rowing machine provides a workout for a compound muscle group 

in the upper back. This group is usually a difficult one to target with an exercise 

machine. A summary of the solution and intermediate values in the synthesis are given 

below. The solution, as it would appear in a Mathcad program, is also included in 

Appendix A. 

e The input link given for the design has a length of 1.018 m (40.1 in). The discrete 

data points for the strength curve are given in Table 3.1. 

e A least-square polynomial curve fit of order three is used to determine the proper 

functional relationship between R and P. 

R = 0.263B’ —1477B’ + 2.7688 — 0.73 

e We choose the length of the weight arm to be J, = 1.143 m (45 in) and the weight start 

angle to be ®, = 5°. Table 3.2 summarizes the chosen precision points and the 

corresponding values for Ar and ® (found by transforming the problem into a 

function generator). 
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The known values in the matrix formulation of the Burmester problem are given in 

Table 3.3. 

The coefficients of the quasi-loop-closure equation are given in Table 3.4. 

One portion of the infinite solution set is shown in Fig. 3-7. The Burmester curves 

are for the positive closure of the quadratic equation over the range of y = 5.5° to 

25.5°. 

The solution we have chosen is YW = 15.5°. We choose a scale of J; = 0.203 m (8 in) 

and a rotation of vy = 165°. The design parameters for the solution are given in Table 

3.5. The solution linkage is shown in Fig. 3-8. 

Analysis shows that the linkage has good resistance curve. The internal coupler force 

and fixed pivot bearing loads are also acceptable. These are shown in Figs. 3-9, 3-10 

and 3-11. 

Table 3.1, Strength Data, 
Compound Row 

  

  

  

  

  

  

  

  

  

        

Input Angle, Strength 
B (deg) Data, S (%) 

60 85.75 
65 88 
70 92.5 
75 96.5 
80 97.25 
85 98 
90 98.75 
95 100 
100 100 
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Table 3.2, Precision Points 

  

  

  

  

            

  

  

  

    

Precision B (deg.) Ar (deg. %) ® (deg.) 
Pt. 

1 60.5 42.7 5.38 
2 85 2332 26.73 
3 93 3124 34.97 
4 98 3623 40.59 

Table 3.3, Body Motion 

Precision 6 (in) a (deg.) 
Pt. 
2 0.102+0.356i 3.149 
3 0.176+0.479i 2.915 
4 0.236+0.557i 2.290         

Table 3.4, Quasi-Loop- 
Closure Coefficients (x 10°) 
  

A; = 1.05 -0.51i 
  

A, = -9.34 + 4.641 
  

A; = 16.6 - 8.331 
      Ay = 8.36 + 4.201 
  

Table 3.5, Solution Design Parameters 

  

1; = 0.203 m (8.00 in) 
  

I, = 0.509 m (20.04 in) 
  

1; = 0.281 m (11.07 in) 
  

lg = 0.675 m (26.58 in) 
  

lin = 1.019 m (40.10 in) 
  

ly = 1.143 m (45.00 in) 
  

65n = 7.27° 
  

6, = 5.33° 
      ¥ = 165.00° 
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Chapter 4, Weighted-Coupler Synthesis Method 

4.1 How This Problem Differs 

Chapter 4, like Chapter 3, develops synthesis techniques for a class of linkages 

that may be useful in force-generating mechanism applications. This chapter examines 

four-link mechanisms whose load is located on the coupler link. 

In the last chapter we saw that the synthesis of linkages whose input force is 

prescribed as a function of position, with the resistance provided on the grounded output 

link, were related to standard function generator problems. Consider qualitatively the 

version of the synthesis problem in which the resistance is a load weight on the coupler 

link. Assume that we will employ a similar method to the one employed previously. 

That is, we integrate the static force over the range of motion. In doing so, we are 

expressing the principle of conservation of energy; that the work applied to the handle 

will be conserved through a change in gravitational potential energy of the weight. This 

means that for each position of the input handle, the weight must have changed in height 

by a predetermined amount. Therefore, the path that the weight takes in gravitational or 

imaginary direction is predetermined. A standard kinematic synthesis problem is to move 

a point on the coupler through a path constrained in both the x and y directions. For this 

reason we call this type of synthesis one-dimensionally constrained path generation. The 

relationship between standard synthesis and related force generation problem is 
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summarized in Table 4.1. Special modifications to the standard kinematic synthesis 

problems, in particular, modifications in which one or more constraint has been removed, 

are discussed by Reinholtz, et al. (1987). 

Table 4.1, Relationships Between Force Generating 
Synthesis and Standard Synthesis Problems 

  

Force Generation Related Standard Synthesis | How Force Generation Differs 
Problem Problem 
  

  

  

Grounded-Link Function Generator of Order | Zero-th Order Derivative 
Resistance Two (both position and first Unconstrained 

derivative constrained) 
Coupler-Link Path Generator Real Axis Motion (motion 
Resistance normal to the gravitational       direction) Unconstrained 
  

4.2 Integrating Force Constraints 

As with grounded-link resistance synthesis, we will assume that the linkage is 

massless with negligible dynamic effects. We will take advantage of the principle of 

conservation of energy by integrating the force constraints. In this case, the integrated 

force constraint will allow us to prescribe the motion of the coupler link through four 

precision positions. We will not need to invert the linkage to form a body guidance 

problem; our guided body will be the weight arm attached to the coupler link. One 

infinity of solutions to the synthesis problem will be found and displayed using standard 

Burmester theory. 

4.2.1 The Track-Mounted Linear Tension-Compression Spring Problem 

A linkage whose resistance is provided by a track-mounted linear tension- 

compression spring is shown in Fig. 4-1. The slider attached to the upper end of the 
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spring is massless. It allows the spring to slide freely in the real axis direction, meaning 

that forces are only developed in the imaginary direction. If the spring constant is k, the 

unstretched length of the spring is /, and the coupler point to which the spring is attached 

is located by a vector s , then the force on the coupler output link is 

F., = ki(h-1, —Im(3)). (4.3) 

LLL// {/ 

    
Figure 4-1, Track-Mounted Linear Spring Resistance 

Defining s, to be to be the imaginary part of s , and applying virtual work 

-_ 

T,, 60, +ik(h—-1, — s,)-65 =0, (4.3a) 
> 

in 

7,50, +k(h-1, -s, )6s, =0. (4.3b) 
y 
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Suppose that in this case the resistance curve is nondimensionalized with respect to k, 

then recalling that the system is static and integrating, we have 

    

i T,d9, + f"k(h-1, ~s,)és, =0, (4.4a) 

8, T,, do h ] , s,” vy _ 0 4 4b 

J. k »+{( — » sy |2 - 9 —";s (4.4b) 

s? os? 
A, +(h-I,)s, —(h-1,)s,, —=- += =0, (4.4c) 

5,” ~2(h-I,)s, — (2A, —2(h-I,)s,, +5,,7) = 0. (4.4d) 

We can solve for the motion of the pivot in the imaginary direction using the quadratic 

equation 

  

s, =(h-1,)+y(h-1,) +5,,? -2(h-1,)s,, +24,(82) (4.5) 

This function is double valued for the same reason that the torsional spring displacement 

in section 3.2.2 was double valued. The spring can store energy through either tension or 

compression. Taking our knowledge of the location of the spring attachment point into 

account 

s, =L, sin(@,)+1, sin(®), (4.6a) 

or @ = sin( S=hent)) (4.6b) 

—_ ini @ 

and ®, = sin” (2.4) (4.6c) 
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If the coupler link is to be a body guided through space, then we have established the 

change in its orientation between precision points. Recognizing that Le’? , the end of 

link 2, locates a point on the body, we could synthesize a linkage at four precision points 

using Burmester theory. 

4.2.2 The Load Weight Problem 

Consider our standard synthesis problem shown in Fig. 4-2, the weighted-coupler 

four-bar mechanism. As usual, we apply virtual work 

T,, -68+W-6s" =0, (4.7a) 

JT, -dB=[W-ds,”. (4.7b) 

The previous steps are identical to those in Section 3.2.3. Here they begin to differ, 

because 

s,” =1 sin(B—6,,)+ ly -sin(®). (4.8) 

Once again, 

B sy” wo w w J, FénaB = W | 64s," = w[s,”-s,,"]. (4.9) 

However, 

1, | , (Ff): 4B =1,(sin(®) - sin(®,)) + 2,(sin(B-6,,)-sin(B, -6,,)), (4-102) 

sin® = = A, +sin®, + 2 (sin(B -6,,)—sin(B, -@,,)), (4.10b) 
w w 

(8) = sin {sina + * -Ap(B)+ 2 [sin( —6,,)—sin(B, — 6, } .  (4.10c) 
w Ww 
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We have established a relationship that is a function of the user input angle, B. This can 

be used to calculate changes in orientation of the coupler link between precision points. 

im 

| 
| 
| 
| 
| 
|     

Figure 4-2, Standard Weighted-Coupler Model 

Again we stipulate that the default value of the inverse sine be used without loss 

of generality, because of the nature of mirrored solution pairs. 

Notice that this equation has more unknowns than the analogous equation for the 

weighted-grounded link case given by Eq. (3.19). To solve the explicit equation in @, the 

designer must make three free-parameter choices, namely, Jz, l,,, and Gin. Notice also that 

the free-parameter choices here accomplish the same physical purpose as the choice of Ly, 

in the analogous weighted-grounded-link problem. Along with ®,, these choices exactly 

locate the weight in the real-imaginary plane at the reference input angle. For this reason, 

the weighted-coupler case may be less powerful than the weighted-grounded-link case. In 
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the weighted coupler case two additional up-front parameter choices are required to 

accomplish the same task. 

Certain values of the free-parameters that the designer is choosing could result in 

complex results for ® at a precision point. This occurs when the linkage is incapable of 

raising the load weight sufficiently high to provide the requisite energy storage given by 

the area under the resistance curve. An analysis of the bounds placed on each of the 

parameters by the others would be useful for the designer. The development of this 

analysis is similar to the one presented in Chapter 3. Here the analysis is complicated by 

the additional variables and by the interaction between the area under the resistance curve 

and sine of the input angle terms. In the weighted-grounded-link case we could be sure 

that critical value occurred when Apr reached its maximum. Here the bounds must be 

checked over the full range of B. To ensure real valued ® 

sin(®)  =12 A, +sin®, +2 (sin( -6,,)—sin(B, -6,,)). (4.11) 
w w 

The expression can be used to bound Jy, J2, and ®, in terms of the other selections. 

  

I ; ; 
1,2 nx] lt (sin(6 -6,,)—sin(B, —9,,)) +1, Ap , (4.12a) 

L . 
if 1-4 R -sin® 

l, < min ~ (4.12b) 
B (sin(B -6,,)— sin(B, —6,,)) 
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@,< sin ~ * A, - 2 (sin( —6,,)—sin(B, —9,, )| , (4.12c) 

In view of the requirement that these bounds be evaluated over the range of B, we suggest 

an alternative. Rather than evaluating these expressions, the designer can select values 

for the control variables, and then check the values of ® that result from equation (4.10c). 

If any of the values of @ are found to be complex, then one or more of the variables could 

be adjusted in light of the above bounds (@, or /, decreased, 1, increased) until the values 

of @® are all real numbers. 

Im     Position 2 
f 

| 
|. 

| 
| 
| Position 1 
| 
| 
|    

Figure 4-3, Resulting Body-Guidance Problem 

We have succeeded in converting the one-dimensionally constrained path 

generation problem into a standard body guidance problem. We know the motion of one 

point on the body (coupler link) and the change in orientation of the body as a function of 

the input angle, as seen in Fig. 4-3. 
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4.3 Four Position Body-Guidance Synthesis (Burmester Theory) 

Burmester synthesis is applicable to each of the cases examined above. This 

section is presented from the perspective of synthesis for a weight loaded coupler. In 

Section 4.2.3 we derived an expression for the rotation of the coupler link as a function of 

the user input angle. Combined with the knowledge of the motion of the input side pivot 

on the coupler link, this is the essential information for a Burmester-based synthesis of 

the linkage. Unlike the weighted-ground-link case, no inversion is necessary. 

A point is located on the body by 

> 

D, = 1,e'(O--%) | (4.13) 

Knowledge of the motion of this point is important because it forms on leg of our loop- 

closure equation between the n™ precision point and precision point 1. Recall from 

Chapter 3, and in particular from Fig. 3-6, that we require six known variables to solve 

for one infinity of linkages which satisfy four precision points exactly. We need the three 

vectors that locate the point of interest at the second, third and fourth precision points 

with respect to the first precision point 

6,=D,-D,= pe (ce 6%!) n=2...4. (4.14) 

We also need the change in orientation between the same precision points 

a,=@,-@,,n=2...4. (4.15) 
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The synthesis using Burmester theory is exactly the same for this case as it was for the 

weighted-ground-link case. Equations (3.26) through (3.32) are invoked to solve for two 

values for Z and M for each value of Wr. 

Because in this case the mechanism was not inverted, the solution vectors do not 

need to be mapped back from an inverted reference frame. Let P through P, be the 

vectors which locate the four pivot points (starting with the grounded input pivot, and 

progressing clock-wise around the linkage) for each solution at the first precision point. 

Table 4.2 gives the relationship between the solution vectors and the pivot points. A plot 

of these four points gives a graphical display of the solution. In particular, points P, and 

P,, which are functions of y2, are the Burmester point pair. 

Table 4.2, Solution Pivot Locations in the Real-lmaginary Plane 

  

) 

Pivot | P P, P 

we
 

-
 

  

  | = Location | origin (0+0i) 1,e{Pr-Fn) P,-Z P,         

4.4 Solution Interpretation and Analysis 

Most of the restrictions associated with the weighted-grounded-link case also 

apply to this synthesis. The synthesis is derived for a co-rotating linkage. Counter- 

rotating linkages can be designed by introducing a negative sign in the virtual work 

relationship which is then negated by the fact that the precision points occur in a 

decreasing order. Two solutions for the guiding dyad can be found for each precision 

point because the governing synthesis equation is of degree two. For some values of y 
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there is no acceptable physical solution to the synthesis because the solution to the quasi- 

loop-closure equation is complex. Real valued solutions can have Grashoff, order and 

branch defects which make them unacceptable. 

As before, solutions which match all precision points are not guaranteed to be 

useful. Between the precision points the linkage is likely to deviate from the desired 

function. This deviation is intensified because the fundamental design criteria, force 

generation, is a function of the derivative of the position curve used in the synthesis. 

Even linkages that pass this strict requirement can be made unacceptable by their internal 

forces and bearing loads. 

One design consideration of note has changed. The physical interpretation of the 

solution contro] variable, y, is no longer related to the coupler rotation. Because in this 

case no inversion was necessary to establish a body-guidance problem, yY is still 

associated with rotation about a grounded pivot, as shown in Fig. 3-6. In this synthesis, 

Y is the change in @, between the first and second precision point. 

4.4.1 Analysis of Resistance Curve 

Once a solution has been found on the Burmester curves that has good geometric 

properties, and no defects, the theoretical resistance curve of the solution linkage must be 

calculated. We used virtual work in section 2.2.2 to develop an expression for the 

resistance curve for this case 

Os.» cos(0, -8,). (4.16) 
@, |; 

R(B)= -cos(B —6,,)+ 
in in 
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The force analysis requires prior position (@;) and the velocity (@3/q@,) analysis to be 

performed on the linkage. Position and velocity ratios are found as a function of input 

position by loop-closure 

i(B-6 in ) Le + Le = Le + Lele), (4.17) 

O, -1 
l, +6@,) -l,cos(@, L, —6,, nd | cos(P+6,) —l,cos(@,) | cos(B ) | 4.18) 

On| l,sin(®+0,,) —-1,sin(0,) L sin(B —@,,) 
QO, 

as has been shown previously. Calculation of the resistance curve of the design over the 

range of the input angle is performed by the computer. Evaluation as to whether the fit of 

the curve is acceptable is the responsibility of the designer. This differs from optimal 

synthesis in which the computer is both the calculator and the evaluator. 

4.4.2 Analysis of Grounded-Link and Bearing Stress 

The final critical check of our synthesized linkage is the magnitude of the forces 

developed within the mechanism. This is the final check of the solution linkage. For a 

more detailed analysis, the accuracy of our assumptions would need to be verified based 

on procedures laid out in Chapter 5. The designer could also evaluate the impact of 

assembly tolerancing on the design’s performance. This analysis is also laid out in the 

same chapter. However, we consider these analyses to be post-processing issues, whereas 

the analysis of forces is an integral and required part of a good synthesis package. 

Complete stress analysis relies on the designers knowledge of the shapes and cross- 

sectional area of the links, and on the likely applied loads. Our analysis provides the 
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designer with the key element to the stress analysis, an evaluation of nondimensionalized 

forces which give rise to the stresses. Unlike the weighted-grounded-link case, it is the 

grounded output link which is a two force member, not the coupler. Because of this, the 

bearing force at the output and the internal force in link 4 are the same. They are found 

based on static sum of the moments on the coupler link about the input-side coupler pivot 

F,L, sin(@, + @,)+1, cos(®)=0, (4.19a) 

or Fo fe £0883 = Oy) (4.19b) 
I, sin(@,+@,) 

and Bo =| (4.19c) 

  

Following standard notation, a positive sign for Fy indicates tension. As before, the size 

of the linkage (J,/l3) effects the stresses. But this time, the designer has no ability to 

adjust the linkage scale directly. 

The nondimensionalized bearing forces at the input is found by summing forces 

on link three to determine the force at the input-side coupler pivot, and then summing 

forces on link two to find the force of interest 

  

F,-i- Fe =0, (4.20a) 

iRe®+B —F,=0, (4.20b) 

B, =i+ F,e* —iRe” (4.20c) 

B, = y(F.cos(8,) + Rsin(B))’ +(1- Reos(B)+ F, sin(0,))° (4.204) 
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This concludes the techniques of closed-form synthesis developed to design 

planar four-link mechanisms for force generation. In the next section, we will present an 

example of the techniques developed in this chapter applied to the synthesis of a 

weighted-coupler-link force-generating linkage. The chapters following this will present 

some important post-processing analyses, some alternative linkages and synthesis 

methods, a summary of the work completed to date, and some suggestions for further 

research. 

4.5 Example Problem 

An example mechanism is synthesized to meet the input force requirements 

specified below. The solution as it would appear in a Mathcad program, is also included 

in Appendix B. 

e The input link given for the design has a length of 0.889 m (35 in). The discrete 

strength data points are given in Table 4.3. 

e A least-square polynomial curve fit of order three is used to determine a functional 

relationship between R and f. 

R = 3.265B° —12.826B* + 16588 — 6.072 

e Wechoose the length J, = 0.889 m (35 in), /2 = 0.254 m (10 in), the weight start angle 

to be ®, = -15°, and the input offset angle 6, = 55°. Table 4.4 summarizes the 
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chosen precision points and the corresponding values for Ar and ® which allow us to 

complete :body-guidance synthesis. 

The known values in the matrix formulation of the Burmester problem are given in 

Table 4.5. 

The coefficients of the quasi-loop-closure equation are given in Table 4.6. 

One portion of the infinite solution set is shown in Fig. 4-4. The Burmester curves 

are for the negative closure of the quadratic equation over the range of YW = -1.25° 

through -15°. 

The solution we have chosen is W = -2.5°. The design parameters for the solution are 

given in Table 4.7. The solution linkage is shown in Fig. 4-5. 

Analysis shows that the linkage has good resistance curve. The internal coupler force 

and fixed pivot bearing loads are also acceptable. These are shown in Figs. 4-6, 4-7 

and 4-8. 

Table 4.3, Strength Data 

  

  

  

  

  

  

  

  

  

        

Input Angle, Strength 
B (deg) Data, S (%) 

50 80 
52 85 
54 90 
56 93 
58 95 
60 98 
62 99 
64 99.5 
66 100 
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Table 4.4, Precision Points 

  

  

  

  

          
  

  

  

  

    

Precision B (deg.) Ar (deg. %) ® (deg.) 
Pt. 

1 50.5 40.34 -14.73 
2 52 165.4 -13.88 
3 58 711.8 -10.05 
4 65 1400 -5.11 

Table 4.5, Body Motion 

Precision é (in) a (deg.) 
Pt. 
2 0.017+0.261i 0.849 
3 0.017+1.308i 4.684 
4 -0.1214+2.521i 9.625         

Table 4.6, Quasi-Loop- 

Closure Coefficients (x 10°) 
  

  

  

      

A, = 13-31 

A; = -7+1 

A3 = 2-0.42i 

Ag = -94+21 
  

Table 4.7, Solution Design 

Parameters 

  

1; = 0.0734 m (2.89 in) 
  

J, = 0.254 m (10.0 in) 
  

1; = 0.328 m (12.9 in) 
  

lz = 0.0457 m (1.80 in) 
  

lin = 0.889 m (35 in) 
  

ly = 0.889 m (35 in) 
  

  

      
Gin = 55° 

6, = -160.6° 
y= -116.6° 
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Chapter 5, Post Processing: Sensitivity and Force 

Analysis 

5.1 Applications of Sensitivity Analysis 

In the previous chapters we have considered the motivation for synthesizing force 

generating linkages, and have developed closed-form synthesis methods. Our synthesis 

methods were based on the assumption that the links are approximately massless, and that 

the dynamic forces are small compared to the static forces. In this chapter, we develop 

analysis techniques that will allow us to determine the sensitivity of our solution to design 

parameter variation, verify the validity of our assumptions, and possibly even improve 

upon our design. 

Following synthesis, an analysis can be performed to evaluate the sensitivity of 

the design to parameter variation. This analysis will enable us to evaluate the sensitivity 

of the design to manufacturing tolerances, and give us the ability to “tweak” our design. 

We will see in Chapter 6 that this sensitivity analysis can also be useful as part of an 

optimal synthesis approach. 

The sensitivity of the linkage to design parameter variations will be expressed in 

the form of influence coefficients. An influence coefficient is the partial derivatives of 

the output with respect to a design parameter. In our case, the output of interest is the 

resistance curve of the linkage. Therefore, the influence coefficient, Kis given by 
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OR 
K,=—, 

q og 
(5.1) 

where q is one of the eight design parameters, 12, 13, 14, 11, Qin, Ov, ly or 7. The change in 

the resistance curve due to a small parameter change is 

AR =k ,Aq. (5.2) 

Influence coefficients can also be applied to concurrent changes in multiple parameters 

AR = YK, Ag, + DY K yg, 49:Ag;» (5.3a) 
i jo 

or, ignoring higher order paired terms 

AR =}, Aq; - (5.3b) 

For the problem at hand, influence coefficients can be calculated using closed-form 

equations. The shape of the influence coefficient function, evaluated over the range of 

the input angle, B can be a useful design tool. It gives the designer valuable information 

about how changes in the design variables impact the resistance curve. 

In order to properly evaluate the influence coefficients, we must first decide how 

the partial derivatives are to be taken. For our application, the length of the input link and 

the range of the user input motion are given. Therefore it is essential that changes in the 

parameters not effect the user input angle, B. 

op ——=0 5.4 24 (5.4) 
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Also, the input arm length, J;, will not be allowed to vary. Imagine that the user input arm 

is fixed in space, and then image how a change in one design parameter, holding all 

others constant, will effect the shape of the linkage. Note that only changes in one 

parameter, 6;,, will effect @,, because B is not allowed to vary. We can also see this from 

the definition of @, 

a0, 9 2 =~" (g-6,)=-1. 5.5 
6, 20, (B-9,) ©») 

in 

It should also be apparent that changes in 1, and 0, will effect none of the four-bar 

linkage angles, although they will certainly effect the resistance curve. 

00, 00, 00, 00, _ 
0. oc. a a =0 (5.6) 

w Ww Ww w 

  

It seems likely that changes in the other five parameters will effect 6; and @, as well as 

effecting the resistance curve directly. 

The partial derivative of the resistance curve should be a function of the partial 

derivatives of the link lengths, angular velocity ratios and angles. -The angular velocity 

ratios are in turn functions of the link lengths and the linkage angles. Finally, the linkage 

angles are functions of the link lengths and the input angle as given by loop-closure. The 

particulars of these computations are provided in full detail in Appendix C. Appendices 

D and E show closed-form Mathcad computations of the influence coefficients for the 

weighted-grounded-link case and the weighted-coupler-link case, respectively. 
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Influence coefficients have long been used in statistical analysis of the error 

generated in mechanisms. Dhande, in particular, has been a proponent of this approach 

(Dhande and Chakraborty, 1973, Dhande, 1974, Dhande and Chakraborty, 1975, Dhande 

and Chakraborty, 1978, and Mallik and Dhande, 1987). The tolerance or uncertainty of a 

manufactured variable generally has a statistical meaning (typically three standard 

deviations on the normal curve). Based on this, we can apply an uncertainty analysis to 

our linkage, using influence coefficients. The basic law of propagation of uncertainty is 

given by the following equation (Beckwith and Marangoni, 1990) 

U,=1)>.(U,K;) . (5.7) 
; 

where U is the (statistical) uncertainty in the parameter. The number of standard 

deviations implicit in the uncertainty must be the same for all variables. Using this type 

of analysis, we can place statistical bounds on the error in the resistance curve due, for 

example, to manufacturing tolerances. 

Sensitivity analysis can also be used as a tool in design. Recall that our closed- 

form synthesis method is only able to satisfy constraints in the integrated resistance curve 

at four precision points. It is conceivable that, for a given problem, none of the 

synthesized linkages (those that satisfy exactly four precision points) will produce an 

acceptable resistance curve. There may be a linkage nearby, one that does not satisfy four 

precision points, that does have an acceptable resistance curve. We can use our 

sensitivity analysis to find linkages which are near a solution linkage that have improved 
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properties. In particular, the influence coefficients that we have calculated clearly 

demonstrate which parameters have the greatest local impact. If there is a problem in one 

small section of the range of motion, then the parameter whose influence coefficient is 

maximum in that range can be “tweaked” slightly to improve the design. 

The process we have just discussed is really a manual form of optimization. The 

designer assesses the error in the design, chooses a variable to change, and then changes 

the variable and evaluates the results. This gives an indication of how the influence 

coefficients might be valuable in an optimization routine. 

     33 Fag 

g2 

   -Foy 

  

Foy 
“Fig 
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Figure 5-1, Free Body Diagram, Mabie and Reinholtz (1987), p. 414 
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5.2 Extended Force Analysis 

Critical to our synthesis were two assumptions: the assumption of massless links, 

and the assumption of negligible dynamic forces. Using the techniques developed below, 

the validity of the assumptions for a given linkage can be examined. In this section we 

develop post-synthesis methods for examining the effects of link masses and of dynamic 

forces. 

5.2.1 Static Effect of Massed Links 

To determine the static effect of link masses, we will ignore for a moment the 

effect of the load mass, and then add its effect in afterwards using the principle of 

superposition. Consider the static free-body diagram of the linkage shown in Fig. 5-1. 

The static force analysis of this linkage is performed using the matrix method from Mabie 

and Reinholtz (1987, pp. 413-418). The matrix relationship between the vector of input 

torque and pivot bearing forces and the vector of applied static forces is given by 
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-1 0 1 0 0 0 0 O O|| F,, 0 

0 8 -!l 0 1 0 0 0 0 O}] F,, —M, g 

yy Tr —Mny Torx 0 0 0 O I1/| Fy, 0 

) 0 —1 0 1 0 0 0 0} | Fy, 0 

0 0 0 —1 0 1 0 O O}-| F,. |=|—-m,g |, (5.8) 

0 0 Toy rr Nay Nx 0 0 O} | Fa, 0 

0 0 0 0 —1 0 1 O O|| Fy. 0 

0 0 0 0 0 —1 0 1 O}} Fy, —m,g 

| 0 0 0 O tg, Tax Tay Tur Of [Tin | | 0 |           
where: 7,,, locates the mi" pivot (grounded input pivot is number one; counting clockwise 

around the linkage) from the n'" link’s center of mass; Fj is the joint force between link 7 

and link j, acting on link j; m, is the mass of link k; T,,, is the input torque required to 

hold the linkage at a static position in the presence of massed links. We are interested 

only in the effect of the link masses on the applied force 

M. 

F", = pi (5.9) 
in 

  

This can be calculated directly for each position in the linkage 
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(5.10) 

We have a closed-form expression for the applied force required to balance the 

static effect of the link masses at each position in the linkage motion. Plots of these 

forces as a function of input link motion may be sufficient to reach our goal, evaluation of 

the massless link assumption. The designer may instead wish to see the effect directly on 

the (dimensionalized) resistance curve of the machine. Clearly, the relative effect of the 

link masses will be maximized when the load weight is minimum. We suggest 

calculating the effect on the resistance curve at both the maximum and minimum load 

weights for the machine 

  

  

M 

R" amin —~R+~ - 

W nax 

M. 
R™ armax _p+F in 

W. 
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A sample of these calculations for the weighted-grounded-link design is presented in 

Appendix F. The linkage analyzed is the example from chapter 3. 

If the mass of the links has a significant effect on the design’s resistance curve, we 

can design an equilibration system which counters the effect of the link masses. This can 

be accomplished by either selectively adding mass to the linkage, or by designing a sub- 

unit mechanism (see Chapter 1). 

A situation of particular importance occurs when the required force at the handle, 

to balance the static effect of the link masses, is negative. This means that if the load 

weight is removed, and no force is applied to the handle, the mass of the links will cause 

the linkage to rotate, bring the weight arm up. This may be a dangerous situation in our 

application. In such a case the linkage will certainly have to be equilibrated. 

5.2.2 Dynamic Effects and Trajectory Selection 

For our application the design linkage is clearly not static while in operation, and 

our assumption of static operation may put our final design in jeopardy. In the application 

to strength exercise equipment we had no recourse because the input trajectory (time 

dependent motion of the input) is unknown for our application. For other applications in 

which the input trajectory is well defined, we could have synthesized using optimization 

techniques taking into account the dynamics of the linkage. If the design is synthesized 

using the techniques presented in Chapters 3 and 4, then it is advisable to investigate 

possible dynamic effects on the design performance. 

104



In our application the input trajectory is unknown. In order to investigate the 

dynamic performance of a design linkage, we must assume a time dependent function for 

the input motion. There are a number of possible trajectories we could assume. For 

example, assume that for the proper motion in a given exercise, the stroke should take ¢, 

seconds to complete. Further, let us assume that it is useful for the motion to be broken 

into f parts over the time interval. Perhaps during the first fraction (1 /f) of the motion 

the input handle undergoes a constant angular acceleration, a, starting from rest, and 

during the last fraction it undergoes an equal and opposite angular acceleration bringing 

the handle to rest at precisely the final position in the motion. Based on these 

assumptions, the angular velocity of the input link must be 

QO, = [oat = [7 oud, ‘fy <t<tJ1- y,), (5.12a) 

or Q, = Ore t. <r<t(1- YJ. (5.12b) 

The angle of the handle is 
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t t. 

[a tdt, o<r<'/, 
pa _f _ tf ' Qt, t. (i-} 

B B, =| @,dt =; iF a tdt + |, j dt, fstsell 

  We tdtes (OM cael ale _ i a tdt + |p 7 arty iy (t, —1)dt, (1 

OT
 

lA IA
 

  

  

(5.13a) 

at ig Oo<rs% 0? T= Ff 

1 —t.+2ft t. 
or B=s pea (APF) p, Jp stsi(i- ¥,), (5.13b) 

2 

_ 1-f4 lf Seems Ales, s(t-¥) —t +at.-t—| at. ——— |+ 6, tili- <tst 
2 c c f? B, c Vs c 

But at ¢ = t,, B must equal f, Therefore 

ot? 4B = 8B. (5.14)   

f? 

This gives the following expression for the constant angular acceleration in terms of the 

range of the link motion, the total time, and the fraction of time during the acceleration 

and deceleration 

(B, -B,)f? | a= ay (5.15) 

We will use this type of trajectory as an example in calculating dynamic effects. A more 

complete analysis for this application would require laboratory investigation of typical 

trajectories for the intended exercise. 
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After position analysis has been applied to our design linkage at each position in 

the input, we can evaluate the angular velocities of the coupler and output links using the 

linear velocity analysis derived previously 

° J _ ; cos(@,) —I, el | ; cos(0, O.. (5.16) 

w,| |1,sin(@,) —I,sin(6,) 1, sin(9, ) 

In a similar fashion, beginning with Eq. (1.15) in chapter 1, we can derive relationships 

for the angular accelerations of these links 

—w,'1, sin(6,)+a,1, cos(6,) 

-@,'l, cos(@,)— a1, sin(@, )— @; 1, cos(8,)—@,/, sin(8,)| | -@,°1, cos(@,)— a4, sin(6,) 

—a, l, sin(9,)+,1, cos(0,)— @, 1, sin(O, )+ a1, cos(8,) 

(5.17a) 

: sin(@,) 1, sin(@,) Ke J _ ; cos(6,) —H, we | ° , . ' oe 7 : mn: 

l,cos(@,) —L,cos(@,)| |@,| | d,sin(@,)  —l,sin(6,)| |,’ | | —-L sin(@,) , L cos(8,) ° 

(5.17b) 

a.) |-4 sin(@,) J,sin(@,) | {[l,cos(@,) —I,cos(@,)] [w,2] 1, cos(@,) , {4 sin(@,) 

"| - | l,cos(@,) I, ne (| sin(@,) —l, oe . |. ° * ee ‘| l, cos(8, ) | 

(5.17c) 

We now have the complete velocity and acceleration for the linkage as a function of time. 

We will derive the dynamic effects for the weighted-grounded-link case as an 

example, with the trajectory, velocity and acceleration analyses derived above. Because 

the load weight will effect the location of the center of mass of the output link, we must 

either rederive the matrix equations for the modified center of mass, or make use of the 

matrices derived in the previous section and account for the effect of the load weight 
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using superposition. Following the second alternative, we begin by only examining the 

dynamic resistance curve for the link masses. We use the matrix formulation derived 

above the only difference being an augmentation of the applied force vector to account 

for the dynamic “inertial forces” 

M74 42, 

—mM,§ ~ MQ oy 

1,0, 

—M34,3, 

Left Hand Side of Eq. (5.8)=| —m,g —m,a 

1,0, 

(5.18) 
gay 

TM 4G 4, 

—M,8 _ m,a 

—I,0, 

ady     
This expression can be evaluated for the input torque. Then the resistance curve for the 

link masses is 

DM 
_ T in 

LW 
in 

R™   (5.19) 

The superscript D indicates that the quantity under consideration involves dynamic 

effects; the superscript M indicates that only the link masses are being considered. 

For the weighted-grounded-link case, the acceleration of the load weight is given 

by the second time derivative of its position vector (Superscript w indicates the vector 

involves the load weight) 

a" (Se) 1 (oy +a, (5.20) 
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The equivalent “inertial force” is given by -(W/g) a”. Applying virtual work to the 

mechanism we have 

  

{Ean or Wor 4 PM a, =0, (5.21a) 
g 

“\i(oe —ia,)e“).(l,i@,e)- WI,w, cos(®)+F"l,,@, =0, (5.21b) 
g 

WI,? [Meee + W1,@, cos(®) = F?" I... , (5.21c) 

D 

R’ = Pea hs (a +cox() , (5.21d) 
W [,@» & 

where the superscript W indicates that the quantity is being considered includes only the 

effect of the load weight. Applying superposition to obtain the total dynamic resistance 

curve gives 

l l DM R? = {os (ee cos)} 7 “a (5.22) 
in® > g in 

  

We have now established the effect which the dynamics of the motion will have on the 

resistance curve of the machine for some assumed trajectory. Part of Appendix F is 

devoted to calculating the dynamic effects on the same linkage examined in the section 

above. 
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Chapter 6, Other Synthesis Cases 

6.1 Enumeration of Cases 

In this chapter we will examine some interesting types of force-generating 

linkages and an alternative method for synthesizing them. We will look at some very 

strange linkages with multiple types of resistance applied at multiple points. These 

linkages are not particularly useful in our specific application of strength exercise 

equipment. Yet, coupled with the added mathematical complexity, they have additional 

design parameters. This makes them candidates for some more sophisticated applications 

requiring a greater number of precision points to be met. We will also look at the Watt 

Six-Bar linkage, an important case. We will see that we already have the tools to 

synthesize linkages of this type. Finally we will turn our attention to synthesis by 

optimization. This extremely powerful method seems to be where the future of synthesis 

for force generation lies. This chapter offers an overview of the breadth of mechanisms 

and techniques available for force generation in linkage design. 

6.1.1 Four-Link Mechanism with Multiple Weight Locations 

In chapter 3 we examined force-generating four-bars whose resistance was 

provided by a load weight on the grounded link. In chapter 4 we examined force- 

generating four-bars whose resistance was provided by a load weight on the coupler link. 

What about four-bars with a load weight on both the coupler and grounded links? What 
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about four-bars with load weights on all three moving links? Such multiply weighted 

linkages is the topic of this section. Figure 6-1 shows a four-bar linkage with a load 

weight on each of the moving links. Adding load weights to multiple links complicates 

our synthesis. The justification for doing this is the addition of more possible precision 

points. 

  
Figure 6-1, Triple-Weighted Four-Bar Linkage 

To prove that the number of achievable precision points has increased, we will 

perform an analysis like those in section 2.2. Two of the three governing equations for 

this linkage will come from loop-closure, the other equation will come from virtual work. 

The loop-closure equations for position and velocity are 

L,e'(F 9) +1,e =Le* +1,e , (6.1) 

and io,le') +ia,Le =iw,l,e™. (6.2) 
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Applying virtual work to the static mechanism 

T,, 5B + W, 55"? + W, -65"° + W, 65" =0, (6.3a) 

FI,,@, —W,1,.@, cos| B-0,, —0,,, )+-.. 
2 2°w2 2 (B 2) (6.3b) 

-W,(1,@, cos(B -@,,) + 1,30; cos(@, — 6,,,)) — W,l,,4@, cos(9, - 0,4) = 

F=W, “2-cos(B - 0, — Py. +. 

or m (6.3c) 

o{benp-nylar cos(@, ase mT, cos(O, - 6,4) 
in in in 

where I, = @, / @2. If we define the nondimensional resistance curve to be R = F / W,, 

and the nondimensional load weights to be W = W,,/ W,, then we have 

. (6.4) 

Wi{ AeosB-0,,) +27 cos(0, -6,.) Ber, cos(0, -9,,,) 
in in 

The force-generation of this linkage obeys 5 scalar equations at each precision point: 

vector position equation Le’? On) y Le =Le* +1,e, (6.5a) 

: ’ i(B-6;,) iO, _ iO, vector velocity equation Le +I,Le° =I,Le“, (6.5b) 

R=W, “*2-cos(B - 6, ~9 49 +. 

scalar force equation " (6.5c) 
Ty L, l,3 La W, 7 cosB - 9,,)+ 7° Ts cos(@, -6,,;) toe, cos(0, —4,,,) 

There are three knowns: B, R, and J;,, There unknown design parameters: Oj, 0,2, OQw3, 

Oya, Lw2, lw3, ba, La le, Ls, la %, W,, and W,. There are four additional unknown variables 
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for every precision point: I3, I4, 63, @,. We start at the first precision point with 5 scalar 

equations and 18 unknowns. With each additional precision point we add 5 equations, 

but only 4 unknowns. Therefore, our mathematical analysis shows that the design is not 

constrained to a finite number of solutions until 14 precision points are reached. It should 

therefore be possible to synthesize triple-weighted four-bar linkages to match an input 

force curve more precisely. 

tim 

| 
| 
| 
| 
| 
| 
|     

Re 

Figure 6-2, Four-Bar Linkage with Multiple Resistance Types 

Two important points about the above linkage must be made. First, the closed- 

form synthesis methods are probably intractable for problems of this complexity. We 

must either choose a large number of free parameters to reduce the problem to a 

manageable size for developing closed-form equations or attempt to solve a large system 

of simultaneous transcendental equations. The designer can usually make use of a few 
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carefully selected free parameters to improve the chances of developing good solutions. 

Assigning a large number of free parameters simply to generate closed-form solutions is 

counterproductive. The best method for synthesizing a linkage of this type is probably 

either optimization or some other numerical approach. Second, designs of this type will 

not be useful for the Nautilus application. It is unreasonable to ask the user to determine 

the proper weights to be placed at each location based on decimal ratios found in the 

synthesis. 

6.1.2 Four-Link Mechanism with Multiple Resistance Types 

Chapters 3 and 4 addressed the synthesis for load weight resistance and also 

presented a partial development for constant torque and spring resistance. It is also 

possible to intermix a variety of resistance types in one linkage. Let us examine, as an 

example, the weighted-coupler, grounded-torsional-spring linkage shown in Fig. 6-2. 

The loop closure equations are the same as those for the previous case, Eq. (6.5a) and Eq. 

(6.5b). Derivation of the governing force equation starts with virtual work 

T, 5B +W-65" + F -50, =0, (6.6a) 

Fl,,@, — W(I,@, cos(B-@,)+1,@, cos(6,-6,))+k;(Z-0,)@, =0, (6.6b) 

Fl,, = W(1, cos(B -@,)+1,I° cos(@, -@,,)) +k, (0, -E)P,, (6.6c) 

where kr is the torsional spring constant, and = is the unstretched spring angle. If the 

nondimensionalized resistance curve, R, is given by Fl, / kr, then we have the following 

governing equation: 
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R= W Beas p-0,)+2er cos(O, -8.)}+(, -E\V,, (6.7a) 

Wl 

k, 

  where W= in (6.7b) 

In this case our knowns are , R, lin, and kr. Our unknown parameters are ©, Gin, Ay, lw, Ly, 

lo, 13, l4x%, and W. Again, we have five equations at each precision point, and each 

precision point introduces four new unkowns: TI;3, I% 03, 0;. The governing 

mathematical equations limit this mechanism to a maximum of 10 precision points. 

This linkage also might be useful where an application calls for extremely 

accurate matching of the resistance curve. As-with the previous linkage, more 

sophisticated synthesis methods need to be brought to bear to make full use of this design. 

6.1.3 Two-Degree-of-Freedom Five-Bar Under Gravity Load 

Planar mobility or number of degrees of freedom is one of the very first topics 

addressed in most elementary kinematics texts. Mabie and Reinholtz (1987); for 

example, deal with this topic on page 11 of the introductory chapter to their text. 

Students of kinematics quickly realize that a four-link closed-loop chain connected by 

revolute joints is a single degree of freedom mechanism called a four-bar linkage. 

Additional links can be added to form single-degree-of-freedom mechanisms if they have 

multiple loops. But a five-link single-closed-loop chain is shown to be a two-degree-of- 

freedom mechanism. In this section we will show how a weighted five-bar linkage can be 

used as a single-input force-generating mechanism. 
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Figure 6-3, Double-Weighted Five-Bar Linkage 

The planar five-bar mechanism, shown in Fig. 6-3, can also be used to generate a 

prescribed, nonlinear, input force. Of course the mechanism isn’t truly single-degree-of- 

freedom in the kinematic sense. Yet, under the influence of gravity the linkage will sag to 

seek a minimal gravitational potential energy configuration. Analysis at each point in the 

motion of the input link could be performed by an iterative process. For each point in the 

input motion, the input link could be treated as static. The rest of the links now comprise 

a four-bar linkage that could be analyzed completely by allowing one link angle to vary 

and applying our standard four-bar position analysis. The potential energy of the linkage 

could by calculated at each position, and the minimum would indicate the final closure 
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position for the linkage. For synthesizing mechanisms like this one, we suggest that an 

optimization routine be used for the synthesis with a numerical solution for the resistance 

curve. 

Mechanisms like the one shown in Fig. 6-3 might be useful in applications where 

the input force changes dramatically over the range of motion. Qualitatively, if Ws is the 

larger of the two load weights, then it will tend not to move very much initially and so 

link 5 will appear to be fixed for much of the motion. If link 5 is approximately fixed, 

then the remaining four links will move much like a four-bar mechanism. When the 

remaining four links reach a position such that the approximate four-bar linkage is at a 

dead point in its motion, then link 5 will be forced into motion. The result is a sudden 

large increase in the required applied force. 

6.2 A Special Case -- The Watt Six-Bar Linkage 

Any number of links can be included in a kinematic chain to form complicated 

force generating mechanisms. There are also other possible joints, such as prismatic, and 

the resulting linkages could be spatial as well as planar, as discussed by Huang and Roth 

(1994). In this section we turn our attention to a particularly important multi-link, multi- 

loop, planar chain, the Watt six-bar linkage. As we will see, we have already developed 

the tools required to synthesize a mechanism of this type. This mechanism is also 

important to our specific application in exercise equipment. 
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Figure 6-4, Watt Six-Bar, Body Guidance, Mechanical Adv. Generator 

6.2.1 As a Series Body-Guidance, Mechanical Advantage Generator 

  

The technique we have developed for four-bar synthesis assumed that the input 

force would be applied to the grounded link of our four-bar mechanism. This seems 

reasonable for many exercises which target a single joint: bicep curls (elbow), tricep 

extension (elbow), leg extension (knee), leg curls (knee), bench press (shoulders), etc. 

But, many exercises require more complicated path motion. These include abdominal 

crunch (spine), squats (knees and hips), leg press (knees and hips) etc. If the path for the 

exercise motion is known, then a body-guidance four-bar linkage can be synthesized to 

match the path of the exercise using the same techniques we have already developed. 

Then, if the applied force (strength curve) is known, then one of the grounded links of the 

body-guidance four-bar can be used as the input link to a force generating four-bar 

linkage. 
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This series chain of two four-bar linkages form a special kind of linkage called a 

Watt six-bar linkage. A series body guidance, mechanical advantage generator chain is 

shown in Fig. 6-4. The body-guidance linkage is synthesized without regard for the force 

transmission properties that it will exhibit. It simply matches the motion of the exercise. 

The second linkage is used to develop the required resistance function. The body- 

guidance linkage is synthesized first, using Burmester theory, or some other synthesis 

technique. The second step is to modify the desired resistance curve R, generated as a 

result of the force transmission properties of the body-guidance four-bar. Suppose we 

call the torque on link 4 required to keep the mechanism in a static position Toy; By 

virtual work 

  

T,,0,+F-¥,, =0, (6.8a) 

or Ty =, (6.8b) 
O, 

F _ 
~Tay? Vin 

Ty __|FI and a = ——_— RR. (6.8c) 
Ww QO, 

We must also determine a transformation between the input angle to the first four-bar and 

the input angle to the second four-bar using loop-closure position analysis of the first 

four-bar. Once we have these expressions, then we can synthesize the force-generating 

four-bar by recognizing the equivalent variables in the new problem. These variable 

changes are summarized in Table 6.1. The synthesis method is exactly the same as laid 

out in Chapter 3. We have considered the case in which the second linkage is a 
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mechanical advantage generator. The second linkage can also be designed as a weighted- 

coupler-link four-bar in a completely analogous way. 

Table 6.1, Change of Variables for Synthesis 
  

  

  
  

              

Variable R B 6, xX I; lo I3 ly lin 

from ch. 3 

New F _ 0, Bint Xe Is IF I, Ig ls 

variable T=] Vin 

IF 
R evaluated as 

O,:-l, 

a function of @4       
It is worth noting that the second linkage in this chain may be freely scaled and 

rotated as long as these rotations are absorbed into the offset angles at the input and 

output. 

6.2.2 As a Double Force Generator 

Another important possibility for a Watt six-bar linkage is the series double 

function generator. In this linkage, the first of the series four-bars is a mechanical 

advantage generator, and the second is either a mechanical advantage generator, or a 

weighted-coupler four-bar. These linkages are shown in Fig. 6-5 and Fig. 6-6 

respectively. Unlike the previous case, both linkages are synthesized to deal directly with 

force transfer issues. This linkage is particularly useful in circumstances where the 

synthesized four-bars (as found by methods in chapters 3 and 4) are unable to accurately 

follow a specified resistance curve. A number of problems may cause our previous 

techniques to be inadequate. The resistance curve could be too radical and could exhibit 

120 

 



too many points of inflection. In this case we want to smooth the resistance curve with 

the first linkage. The required resistance could develop forces that are too large for the 

output weight arm or start angle, or it could result in internal forces which are too large. 

In these cases we want the first linkage to reduce the resistance curve. Recognizing an 

intermediate goal (smoothing, reducing, etc.) for the resistance curve, we can prescribe a 

torque on link 4 of the first linkage. If we call this nondimensionalized torque curve Toy; / 

W, then we can develop a function-generation problem for the synthesis of the first 

linkage 

-T,, 50, + FI, 5B =0 (6.9a) 

Tuy(04—04, )= | , FL, 5B (6.9b) 

9, -lnAe +4, (6.9¢) 
oO 

We now have a standard function generator between the input and output of the first 

linkage. The first linkage can be synthesized for four positions using the Burmester 

theory developed in chapter 3. After the linkage has been synthesized, a change in 

variables analogous to that described for the body guidance, mechanical advantage 

generator above, can be used to transform the synthesis of the second linkage into one of 

our standard problems. 
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This technique could be applied to a third series mechanical advantage generator 

(an eight-bar), in the same way. In fact, the process of adding series four-bar mechanisms 

can go on indefinitely. But obviously this has practical limits. 

  

  

SUSSALALL APSA SPALL PPSAS PAPAS OPS? 

Figure 6-5, Watt Six-Bar Linkage, Double Mechanical Advantage Generator 

  

SAALL LALA LS LAL DLL 
  

Figure 6-6, Watt Six-Bar Linkage, Mechanical Advantage Generator, Weighted- 
Coupler 
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6.3 Ground Work for Optimization 

Optimization is a very powerful synthesis technique. An excellent introductory 

reference for optimization is Reinholtz (1983). Rather than deriving closed form 

synthesis equations, optimization relies on simple closed-form or numerical analysis. 

Optimization can be used to search for solutions that meet prespecified design objective 

and constraint requirements. This differs from standard numerical techniques, which 

solve the governing equations at specified precision points and generate one solution. 

Multiple iterations of the analysis allow the computer to evaluate each design and search 

for the optimal. 

6.3.1 Development of a Cost Function 

The first step to the optimization process is to develop a cost function used to 

judge competing designs. For the cost function in force-generating linkages we suggest 

the sum of the square of the error between the desired resistance curve and the resistance 

curve of the current design. The sum is evaluated at many points between the maximum 

and minimum value of the user input motion 

V= D(RB)— Rac (B)) . (6.10) 

Squaring the error assures that negative and positive error are penalized equally, as well 

as penalizing a small range of large error more than a large range of small error. Notice 

that we have said nothing about requiring that the resistance curve be analyzed for 
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massless links, nor for static forces. Optimization allows us to synthesize many 

mechanisms that would be difficult in closed form. Some salient advantages of 

optimization-based design are listed below: 

1. Synthesis of mechanisms with massed links is possible. We suggest that a constant, 

the mass per unit length of the kinematic link vector, be used. 

2. Synthesis for dynamic forces is possible. This is particularly important for 

applications with well defined input trajectories. Dynamic motion synthesis also 

allows us to introduce new types of resistance components, dashpots, for example. 

3. Synthesis for more complex linkages and multiple resistance applications. 

In addition to using the cost function to fit the desired resistance curve, we could also 

penalize linkages for high manufacturing cost, or for excessively long links, for example. 

Many optimization algorithms enforce additional constraints through the use of penalty 

functions. 

6.3.2 Penalty Functions 

Penalty functions can be used to enforce inequality constraints for example. 

Typically a penalty function is zero for designs which do not violate the constraint and is 

a large value for designs which violate the constraint (sufficiently large such that a design 

which violates the constraint will never be optimal). The penalty function is added to the 

base cost function to find the total cost function of a design. For our specific application 

we anticipate that penalty functions might be used to enforce the following six inequality 

constraints on the design linkage: 
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The moving pivots of the linkage must remain within the frame of the machine 

throughout the range of input motion. The constraint is enforced as a minimum and 

maximum on the real and imaginary components of each moving pivot for each B 

analyzed. 

The load weight must remain above the intended floor for the machine. The 

constraint is enforced as a minimum value for the imaginary component of the vector 

locating the weight at each value of B. 

The grounded pivot must remain within a set distance of the frame of the machine for 

manufacturing. The constraint is enforced by calculating the minimum distance 

between each grounded pivot and the frame, and comparing this to a maximum 

allowable value. 

Link lengths cannot be either too long or too short. A maximum and minimum bound 

is placed on each link length. 

The maximum height of the weight should not destabilize the machine. At the 

maximum height of the weight, the total center of mass of the linkage system is 

calculated and compared to a maximum. 

The bearing and internal forces cannot exceed a preset value. The maximum over the 

range of B is calculated and compared to a maximum. Alternatively, the cross section 

of the links and maximum load weight could be design variables, and the actual 

stresses compared to a maximum. 
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These inequality constraints should be implemented such that the total cost function 

increases as the amount the constraint is violated increases. For example, 

0 c<O 
P= (6.11a) 

le8-c c20 

where C=X—~Xoncraint LOT a Maximum on x (6.11b) 

and C=Xonsraim ~X fOr aminimum on x (6.11c) 

The slope beyond the enforcement of the penalty function allows the convergence method 

to evaluate which direction in design parameter space will rectify the inequality 

constraint. 

6.3.3 Convergence Methods 

Synthesis by optimization is an iterative method. Starting with some initial 

design, chosen by the designer or at random, the cost function is evaluated. Then a 

direction in design space (the design parameters are being treated as a vector which 

indicates the current design in the space of all designs) is chosen based on either a pattern 

move or the gradient of the cost function. The gradient of the cost function (in the 

absence of penalty functions) would be 

VV =V>.(R(B)— Reser (B)) (6.12a) 
B 

W= 2 V(R(B)- Rysiea(B)) = > 2(R(B)— Ryesirea(B))V(R(B)). (6.12) 
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The direction of the gradient is the key here, because it determines the direction in design 

space which most decreases the cost. A step to the next design begins the next step in the 

iteration. 

A drawback to optimization is our inability to guarantee that a given design is a 

global minimum in the design space. The biggest advantage is its ability to deal with 

very complicated systems and multiple constraints. Optimization seems to be the best 

direction for further research into the synthesis of force generating mechanisms. 
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Chapter 7, Conclusions and Recommendations 

7.1 Summary 

This thesis has presented the full derivation of a technique for synthesizing force- 

generating four-link mechanisms. The kernel of the work is the use of an integrated 

virtual work relation to develop position constraints from force constraints. This 

synthesis technique is an efficient closed-form method for any application which requires 

prescribed input forces without corresponding output positions. The specific applicability 

of the work is demonstrated through frequent reference to the design of weighted linkages 

for strength exercise equipment. 

The content of this thesis is not simply a mathematical derivation. Because of the 

strong motivation for this work from a corporate sponsor, this thesis presents a 

framework for a\ total design package. Above all else, the closed-form synthesis 

techniques developed emphasize flexibility. Although resistance curves (the 

nondimensional ratio of the input force or torque to some characteristic value of the load 

over the range of input motion) are the dominant quantitative constraint on the design, we 

recognize that numerous qualitative constraints are also of great importance. We have 

discussed four significant ways in which the designer is given the needed flexibility to 

meet qualitative and quantitative constraints: (1) Burmester theory is used to generate 

infinite solution sets that maximize the available solution choices; (2) emphasis is placed 
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on making free parameter choices only when such choices would be intuitive to the 

designer; (3) separate analyses (for resistance curve, internal forces, static effect of 

massed links, dynamic effects, sensitivity to manufacturing tolerances) allow the design 

to assess the quality of many aspects of the solution; and (4) numerous design 

alternatives are provided including geometric reduction of the resistance curve, 

alternative linkages (weighted-coupler four-bar, Watt six-bar), and manual optimization 

using sensitivity analysis. 

7.2 Further Research 

This research has lead to numerous avenues for further research. Some of the 

more intriguing are outlined below. 

1. Strength curve and physiologic measurement techniques could be improved. The raw 

data for the strength curve for many exercises is usually either meager or relies on the 

intuition of experts. In particular, simple techniques for measuring dynamic, rather 

than static, strength curves could be useful. 

2. Closed-form synthesis techniques for complex force-generating linkages could be 

developed. Such techniques should emphasize synthesis for the maximum number of 

precision points with the minimum number of free parameter selections. If too many 

free parameters must be chosen in order to develop closed-form equations, then the 

major advantage of the increased complexity will be lost. Numerical solutions might 

be useful on an ad hoc basis. 
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Appendix A, Weighted-Grounded-Link Synthesis 

Program 

This appendix contains a MathSoft Mathcad® version 5.0 program. The program 

synthesizes weighted-grounded-link four-link mechanisms by the method developed in 

Chapter 3. The design synthesized is summarized as an example at the end of that 

chapter. Textual comments are in boldface. 
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Weighted-Grounded-Link Four-Bar Synthesis 

Mathcad model by: R. R. Soper, M. T. Scardina, P. H. Tidwell, C. F. Reinholtz 

Created on MathSoft Mathcad version 5 

Problem Setup 

degree :-=3 The degree of the polynomial fit to the input strength curve data 

Strength Curve Data: 

601 

65 

70 

75 

x=] 80 |-deg 

85 

90 

95 

| 100 |     
8 min = min(x) 

6 = maxX x) 
max 

N := length(x) 

m.=0..N- 1 

85.75 | 

88 

92.5 

96.5 

y ‘=| 97.25 |-% 

98 

98.75 

100 

| 100 |     
® min = 00 *deg 

@ = 100+deg 
max 

Discrete Data Points. A polynomial of 

degree "degree" will be fit to the data 

in order to develop a functional 

relationship 

These are the extents of the 

input data points. They are 

used as integration limits 

below. 

Setting up matrix operations 
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Curve Fitting 

k =1.. degree 

@ 8 

» =(xtx) -(xty) 

b= 

N
o
n
d
i
m
e
n
s
i
o
n
a
l
 

St
r.

 
C
u
r
v
e
 

(%
) 

  

[-0.73 

| 2.768 - k . : . 
S(B) ‘=by + a, b-B The nondimensional strength curve function 

-1.477 k 

| 0.263 

100 —— 

| > 

Le 

a 

95 4 

90 7 

> 

85 
60 65 70 75 80 85 90 95 100 

(Matrix Least Squares method, using the pseudo-inverse) 

Fills the qth column with the vectorized values of x k. 

LEAST SQUARE POLYNOMIAL COEFFICIENTS 

  

  

  

                    

User Input Angle, Beta (deg.) 

© Sample Data Points 
Polynomial Fit 

Figure A-1, Strength Curve Data 
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Input start angle and precision point locations: 

        

8 min | 60 

60.5-deg 60.5 . 
8, is the handle start angle. 8, - 

85-deg 85 a os sans 
B= B = “deg B , are four "Precision Points" in 

93-deg 93 the handle angle. 
98-deg 98 

8 max | 100 | 

5 0 | Ag is the area under 

42.665 the strength curve 

B 3 for the values of B 
q 2.332°10 

given above. This 

    

  

Ap [= S(B) d Ap= *deg-% : . R, , B) dB R~ | 4 404-102 is a nondimensional 
0 3 measure of the 

3.623°10 input work. 

| 3.823°10° 

Knowns: 1; :=40.1. The length of the handle. 

    

Free parameter choices: 1, :=45 The length of the weight stack lever arm 

and the start angle for the weight stack. 
® , '= S-deg 

5 

. ; 5.382 
1: synthesis Section , .,.,[!in4_ -sin(0,) 26.732 

q 1 4 0 ® = ‘deg 
w 34.966 

40.592 

| 42.98 |     
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Transformation to a four position body guidance problem: 

  

  

  

    
  

  

  

  

  

n=2..4 ‘n' is the number of the precision points. 

5 xe -(180-deg- ©.) _ ° -(180-deg- ©) 5 is a vector (complex valued). 
n 5 

0.102+ 0.356) 
0.176+ 0.479} 

0.236+ 0.557; 

a =P -B,+®,-, 0 

deg a is the relative rotation of an 

3.14 imaginary body between precision 

7915 points. 

2.29     
  

QUASI-LOOP-CLOSURE EQUATION 

€ -~1 6, 
Ay:=|] . A 4 =—0.009 + 0.005) 

1 -a@ 

e “-1 8, 
A's are complex valued vector 

iQ, coefficients in an equation 
Ags: ° -1 6, A 3 =0.017 ~ 0.008) resembling loop closure in y. 

i a4 
e -1 8, 

1 -a 

e *-18, 
Agel. A 4=—0.008 + 0.004; 

| Og 

e -1 4 

< _ _ sin 4: Ay =-Ag-A3-Ay A ; = 0.001 - 5.134°10 *j 
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Choose a range for iteration: 

iterating on y, yields a solution set of all 

four bar linkages which achieve the 

precision point values given above. 

Y 2 '=5.5-deg ,6.5-deg .. 25.5-deg 

Possible values of y, are 0 to 360 degrees. Each value will yield 

two solutions for the problem, a forward- and cross-closure solution. 

The second solutions may be viewed by changing the sign of the 

quadratic equation below. 

Solving the quasi-loop closure problem: 

ayaa) 3(ya)“warae(e 
r=. (Re( 1) + Im(A 1?) 12:5 (Re(a 9) + Im(A yy 

3: (Re( 3) +Im(A )) r4:=- (Re( 4) +Im(A J) 

A(y 2) a3 — rl? — 12° — 14? 4 2-11-12-cos (a aly 2) -Q 1) + 2-r1-14— 2-12-1r4-cos (a o(y 2) —Q 1) 

B(y 2) = 4-12-14-sin (a aly 2) -Q 1) 

C(y 2) =13°— rf? — 12? - 4? + 2-11-12-cos (a a(w 2) -Q 1) — 2-r1-14+ 2-12-14-cos (a a(y 2) -Q 1) 

  

| 2 SOLUTION SWITCHING: 
t(y _ Bly 2) r Bly 2) ~ 4A(y 2)-C(y 2) Changing the sign on the 

2 2. A(y 2) quadratic equation here will 
result in the second set of 

solutions. 
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© 4{v 9) =Batan(t{va)) +21 wal¥2) = 4(va) - are(A 2) 

  

  

T e valv ?) ~1 
(v2) =— Ya 

ZW) ‘= B4- T(v2)°6 
E 4 1( )-e Gy 7 SOLUTION DYAD vectors z 

v2 and M are the solution links to the 

body guidance problem. In 

body-guidance space, link Z is the 

5, - ‘ 2 1} 2(y 2) "rotating" link and link M is the 

M(y 2) = "fixed" link. 
| Wo 1 

Solutions to the function generation (mechanical advantage) synthesis problem are 

obtained by re-inverting the mechanism. 

1 i -® 

se Mprime(y 2) =-M(y 2) Zprime( y 2) .=- Z(y 2) € ' 

Links 2 and 3 correspond to links Zprime and Mprime respectively. 

La(v2) = (Re(2(w2))*+Im(Z(va))*) ——-La(va) = [Re(M(wa))?+ im(m(y))?) 
8 2(¥.2) are(Zprime(y 2) 0 3(¥.2) <are(Mprime(y 2) ) 
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Further research could pursue a full development of the synthesis of force-generating 

mechanisms using optimization techniques. Force-generating linkage synthesis by 

optimization techniques would allow linkages of increased complexity to be 

synthesized. Such linkages would be extremely useful in applications which demand 

very accurate matching of a prescribed resistance curve, or allow additional 

constraints to be met. 

The force-generating mechanisms examined in this thesis represent special sub- 

categories of standard kinematic synthesis problems, like those discussed in 

Reinholtz, et al. (1987). Further investigation may uncover other important 

applications that would benefit from a complete development of sub-category 

synthesis techniques. 
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BURMESTER POINT PAIRS 

X1(v9) La{y 2):205(8.2(v.2))  X2(¥2) La{y 2):c05(8 2{v.2)) +La(¥2)-08(0 3(¥2)) 

valve) =La(v2)sin(@a(v2))  ¥y2) =Laly2)s(@a{y2))~Ea(va)sin(0a(v9) 
  

0.5 T ] | | ] T T | T 

Im
ag

in
ar

y 

| 
| =a oa
 

    
  

“Input Coupler Pivots 
= Output Coupler Pivots 
© Ground Pivot 
© Ground Pivot 

Figure A-2, Burmester Curves 
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CHOOSING THE SOLUTION 

Choose a solution: W 7 = 15.5-deg 

Choose a rotation for the ground link: = := 165-deg 

Select the scale for the design: 1, :=8 

L,=1 I, =Lo(wo)1y 13 =L3(v)1y 

8 in =By~ 8 9(v2)~ x ®2(¥2) 8a(¥2)_ i- 

04: ag(|y¢ +13-e 

Oy :=84-9,+% 

| - 2 - - 2 
a= drei! P2l¥2) ae °alva) +Inllye P2l¥) ae *alya)| 

  

  

THE SOLUTION DESIGN PARAMETER Fixed links 
and angles for the scaled solution 

1,=8 15, = 40.1 6 i, = 7-268-deg xy = 165-deg 

1, = 20.042 1, =45 8 = 5.332 deg 

13 = 11.073 

14=26.577 
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Analysis Section 

Now the solution fourbar linkage is plotted: 

  

      

  

xy ’ X9 15-cos (8 a(¥ 2) +X) X4 1 ;-cos (x) Xin 1, ,,COS (B,) 

yy] \0/  \ya} \lysim(8.9(y 9) +x) ya] \ly-sin(y) Yin] \lin'sin(B,) 

x3\ _ [x2+13:008(8 3(v2) +2) Xout | [1 yr608(1) + Lycos (© ) 
¥3] y a+ 1zsin(6.3(y 9) +x) Y out | 1 ysin(® ,) +1 y-sin() 

Yo-Y] Y3-Y92 Y4-Y¥3 
m ‘= ms /=—_——— m4 /=———————_ 

1 2 3 
X9—X] X3-X9 X4-—X3 

_¥17 494 _Yin7 V1 _Yout7 14 
m4 ~————_ in Mout ~ 

X17 Xq Xin” *] Xout ~ *4 

Xy-—X X2-—X X4-X 
step1l ‘= 2} step2 ‘= 37? step3 ‘= 43 

10 10 10 

X17 %4 . _ Xin7 *1 —_ Xout ~ *4 
step4 = stepin :=———_—_ stepout ‘=————_—— 

10 10 10 

rangea ‘=X 1,X1+ Step] ..x5 rangec '=X3,X3+ step3..x4 rangee :=X1,X 1+ stepin..xi, 

rangeb ‘=X5,X9+ step2..x3 ranged ‘=X 4,X4+ step4..x, rangef :=x4,X4+ Stepout ...X oi¢ 

drawlinka(rangea ) ‘=m y: (rangea ~* 1) TY drawlinkc(rangec ) -= m 3° (rangec _ x3) +Y3 

drawlinkb( rangeb ) ‘= m5: (rangeb — x9) +Y2 drawlinkd(ranged ) ‘= m 4: (ranged —xX 4) +Y4 

drawlinke(rangee ) ‘= m;_° (rangee —X 1) +y] 

drawlink{ rangef ) ‘=m ,,,;° (rangef -xX 4) +y4 
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Figure A-3, Solution Linkage 

  

. indicate Closure & = +1 or -1 (the quadratic 
Force analysis E:=1 equation has two solutions, a "+" root and a “-" 

root) 

g -1.4 by :=By b -=B p. =® Yl '=y,, 4, '=%, Retaining precision 

point values 

k :=0,1..40 B, :=by+ k-deg 82 = B,- 8 in iterating 
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E3, =2lyl ysin(8 2, — 2-141 y-sin(x) Fa '=21y13:c0s (8 2, — 2-131 -cos(x) 

Ga ely? $197 4:1 77-147 - 215 65 \— 251 4-si in (0 3% a +13 +1, -14 - 214 1008(%1)-C0s | 2) ~ ‘I>: ysin()-sin 2, 

N3 | 2 2 2 k 
N2 .=-E2 +€& //E +{F -{G 6. :=2-atan | ———-— 

3, 3, $ 3,| ( 3,} 3,) 3, G3 -F3 
k k 

  

  

    
  

50 | l T l l l T 

_ _ 

z __ S ee 

s 

& —59--——— 4 

-~400 | i | i L | | 

60 65 70 75 80 85 90 95 100 

User Input Angle, Beta (deg.) 

Figure A-4, Theta 3 vs. Beta 

Eg =-21y1gsin(6 2, +2 glysin(y) Fg '=-21 yl gcos (2 2, + 2141 ,-cos (1) 

2 2 2 2 . : Gq slg tla tly 13 ~ Bgl eos (4)-c0s (8. | — 2171 y-sin(x)-sin(8 2 | 

N 
4, 

  

6, :=2-atan 
4. 

2 2 2 
N, =-E,+-€-/{E + (Fa) - (Ga) 

a 4. a 4,) (Fa, 4 G4-Fy, 
k k 
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Figure A-5, Theta 4 vs. Beta 
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Figure A-6, Function Generation 
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Calculate Resistance Curve, Internal Coupler 

Force and Pivot Bearing Forces 

] 
T 4 1 4-cos (8 4,) -1 3° COS ¢ 3, 2 15-cos (8 2, 

k w 
‘= : ‘=——-T , -cos(® 

k k 

|: 
Fo: in R, 

ody sin(® - 03 ) 
k 

  

Bin, (sin(6, - F300 (6 s)) + (Ros (B,) + F 3 -sin(6 3) 

Bout, = |e 3700s (2 3) + (F 3 ‘sin (8 3, + ‘\" 
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Figure A-7, Resistance Curve of the Soln 
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Figure A-8, Internal Coupler Force 
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Appendix B, Weighted-Coupler Synthesis Program 

This appendix contains a MathSoft Mathcad® version 5.0 program. The program 

synthesizes weighted-coupler four-link mechanisms by the method developed in Chapter 

4. The design synthesized is summarized as an example at the end of that chapter. 

Textual comments are in boldface. 
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Weighted-Coupler-Link Four-Bar Synthesis 

Mathcad model by: R. R. Soper 

Created on MathSoft Mathcad version 5 

Problem Setup 

degree =3 The degree of the polynomial fit to the input strength curve data 

Strength Curve Data: 

re] 

52 

54 

56 

x =| 58 |-deg 

60 

62 

64 

66     
9 min > min x) 

6 = max x) 
max 

N :=length(x) 

m:=0..N- 1 

301 

85 

90 

93 

98 
99 

99.5 
| 100     

8 min = 20 *deg 

0 = 66 -deg 
max 

Discrete Data Points. A polynomial of 

degree "degree" will be fit to the data 

in order to develop a functional 

relationship 

These are the extents of the 

input data points. They are 

used as integration limits 

below. 

Setting up matrix operations 
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Curve Fitting (Matrix Least Squares method, using the pseudo-inverse) 

k := 1.. degree Xo 71 

—_ 

oa () Fills the k*" column with the vectorized values of x *. 

-1 

b= (xx) (xTy) LEAST SQUARE POLYNOMIAL COEFFICIENTS 

6.072 

_ 16.58 S(B) :=by + 2. b:B The nondimensional strength curve function 

-12.826 k 

| 3.265 

  100 — 

, 

  

LZ 
90 uy   

  85 / 

No
nd

im
en

si
on

al
 

St
r.

 
Cu

rv
e 

(%
) 

  80                     75 
50 52 54 56 58 60 62 64 66 

User Input Angle, Beta (deg.) 

© Sample Data Points 
~~ Polynomial Fit 

Figure B-1, Strength Curve Data 
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Input start angle and precision point locations: 

8 min 

50.5-deg 

52-deg 

58-deg 

65-deg   8 

  

  

  

  

        

Knowns: 1, 

  max | 

'=35 

  

| 50 

50 

52 

58 

65 

| 66 

5 

deg 

  

S(B) dB 

Free parameter choices: 

ly -= 35 

6 5, = 55-deg 15 :=10 

®, :=- 15-deg 

B > is the handle start angle. By- 
B 4 are four "Precision Points" in 

the handle angle. 

AR= 

  

oO 

40.341 

165.379 

711.781 

1.4°10° 

| 1.5910" | 

The length of the handle. 

  
*deg-% 

The length of the weight stack 

lever arm, input link length, input 

offset angle and the start angle 

for the weight stack. 
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Ag is the area under 

the strength curve 

for the values of 8 

given above. This 

is a nondimensional 

measure of the 

input work.



synthesis Section 
  

  

    

  

  

  

    
  

  

  

  

  

[15 

-14.73 
1; 1 acin| i . 2 /.: . ~13.881 

e, = asin 7 AR, tsin(%o) + (sin (By - 8 in) ~ sin(B, - 9 in)) o= deg 

w w -10.046 

—§.105 

The four position body guidance problem: 4.384 | 

n.=2..4 'n' is the number of the precision points. 

i -(-@. . i -B 5 is a vector (complex valued). 
5 =Iye ( in) 5 Pn ' 6 

n n 

0.017+ 0.261; 

0.017+ 1.308} 
-0.121+4 2.521) 

a= ® a7 ®, at, 

deg a is the relative rotation of an 

0.849 imaginary body between precision 

4.684 points. 

9.625       

QUASI-LOOP-CLOSURE EQUATION 

1 -& 

e °-1 5, 
Ay =|]. A 5 =0.013 — 0.003) 

1 -a 

e 4-4 54 

A's are complex valued vector 

iO, coefficients in an equation 
Ay ° -1 6 A 3 =-0.007 +0.001j resembling loop closure in y. 

[a 

e *-1 5, 
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€ ae | 5, —4, 

Ags A 4 = 0.002 - 4.157*10 *j 
i "Og 

e ~1 54 

A 177A 9-A3-Ag A 1 = 0.009 + 0.002) 

Choose a range for iteration: 

YW. =-1.25-deg,-1.5-deg..-15-deg _Iterating on y, yields a solution set of all 

four bar linkages which achieve the 

precision point values given above. 

Possible values of y. are 0 to 360 degrees. Each value will yield 

two solutions for the problem, a forward- and cross-closure solution. 

The second solutions may be viewed by changing the sign of the 

quadratic equation below. 

Solving the quasi-loop closure problem: 

Q, = arg(A 1) Q a(v 2) =Wot arg (A 2) 

5 5 

12:5 (Re(a 9) +Im(A »)*) 

r4:=(Re(a g)?+tm(a 4)*) 

rl .=- (Re(a 1) + Im(A 1) 

:3:=(Re(a 3)+1m{a 3)*) 

Ay 2) es 12 — 4? + 2-r1-12-cos (a a(v 2) ~Q 1) + 2-rl-r4— 2-12-r4-cos (a aly 2) -~Q 1) 

Bly 2) := 4-12-14-sin (a a(y 2) -~Q 1) 

Cly 2) 213? — 1? — 2? — 14? + 2-r11-12-cos (2 aly 2) -Q 1) — 2-11-144 2-12-14-cos (a a(y 2) —-Q 1) 
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| 2 SOLUTION SWITCHING: 

(yo) = “Bly 2) ~ Bly 2) ~ 4A(v2)Clva) Changing the sign on the 
  

  

  

2. A(y 2) quadratic equation here will 

result in the second set of 

solutions. 

Q aly 2) = 2-atan (t(y 2)) +Qy vw aly 2) =Q aly 2) - arg(A 2) 

i -w4(W2) 

Tv2) = i Wo 1 

ay) =-——*# Ta) ¥e__ 
; E 4 yoy (. Gy i SOLUTION DYAD Vectors z 

(v 2} and M are the solution links to the 

body guidance problem. In 

body-guidance space, link Z is the 
. 5, - (. 2 1} 2(y 2) Moet ee and link M is the 

(v2) == 
e — 1 

Zprime(y 2) =~ Z(y 2) Mprime(y 2) =~ M(y 2) 

Links 3 and 4 correspond to links Zprime and Mprime respectively. 

5 5 

L4(w) = (Re(M(w2))* + Im(M(y 2))*] 13(v.2) = (Re(Z(w2))” + 4m(2(y 9))*) 
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BURMESTER POINT PAIRS 

I <lye ‘(By -® in) P2(y 2) =P1+ Zprime(y 2) 

1s(v a) = (Re(P3(v))® = im(P3(v3))*). 

P3(y 2) = P2(y 9) + Mprime(y 9) 

(v2) =are(P3(v 2)) 

  

~~ fae b 

      
  

“6 

© Input Coupler Pivot 
“& Output Coupler Pivot 
* Output Coupler Pivot 
© Input Grounded Pivot 

Figure B-2, Burmester Curves 
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CHOOSING THE SOLUTION 

Choose a solution: ¥2‘*~2:>42 

1y=1y(¥2) 3 =Ia(W2) Lg =la(v2) x= x(¥2) 

Oy = arg (Zprime( y 2)) - 9, 

  

THE SOLUTION DESIGN PARAMETERSFixed links 
and angles for the solution 

1, = 2.893 li, = 35 0. = 55-deg y =-116.302 “deg 

ly =10 ly =35 0 y =—160.567 «deg 

13 = 12.926 

14 = 1.795 
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Analysis Section 

Now the solution fourbar linkage is plotted: 

  

  

    

xy -() x4 = X3 - Re(P2(y 9)) X4 _ Re(P3(y 9)) 

yi] \o yo} \Im(P1) y3]  |lm(P2(y )) y4]  \Im(P3(y 9) 

Xin _ 1, ,;cos (B,) X out _ 1 5-cos (B, — @ in) + 1 w'cos (®,) 

Yin | in'sin(B, ) Y out I y-sin(B, - 0 in) + 1 ysin (® 1) 

im 72771 23742 24793 1744 vin V1 

X27 *] | X3— X90 | X4- %3 | X1— %4q m Xin” *1 

Y out ~ Y2 _ _ _ 
™ out on step] = > step2 a step3 = on 

X47 %4 _ Xing *4 _ Xout ~ *2 
step4 = 10 stepin ‘= stepout = 10 

rangea =X ,,X 1+ stepl..x5 

rangeb '=X4,X7+ step2..x3 

drawlinka(rangea ) ‘=m 1: (rangea -xX 1) +Yy 

drawlinkb(rangeb ) := m4: (rangeb - x9) +y9 

drawlinke( rangee ) ‘= m;,° (rangee —xX 1) +Y1 

drawlinkf{ rangef ) ‘= m oy4° (rangef - x9) +y9 

rangec :=X3,X3+ step3..x4 

ranged :=x4,X4+ step4..x 

rangee ‘=X 4,X 1+ Stepin.. xi, 

rangef :=x4,X9+ Stepout ..X 94 

drawlinkc(rangec ) := m 3 (rangec _ x3) +Y3 

drawlinkd( ranged ) :=m 4 (ranged —xX 4) +Y¥4 
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Figure B-3, Solution Linkage 

  

Force analysis _«.- 

k .=0,1..32 
k 

B =by+ oe 

Indicate Closure & = +1 or -1 (the quadratic 
equation has two solutions, a "+" root and a "-" 

root) 

p_‘=® Yl c=y Y2_:=x_ Retaining precision 
g g m m m m . 

point values 

8 2, '= B.- Bin iterating 
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By =21y1ysin (8 2 — 2:14:1y-sin(y) F 3 =21 yl 300s (2 2, — 2:14-14-cos(x) 

2 2 2 2 . . 
G3 12 +13 +1, ~l4 ~ Bly'l yoos(4)-c0s (8p \ ~ Zyl y-sin(x)-sin(8 » | 

  

  

    
  

N3 
_ 2 2 2 i k N3 “By +8 |(E3) + (F 3] - (S3,) @4 :=2-atan| ——~— 

k k k k k G 37 F 3 

k k 

~160 T T I rT T I I 

—165|- es 
o _—. —— 

8 ee 

<-170/- __ eee | 
3 ee 
i oo 

175 - 

180 | t l l | l | 

50 52 54 56 58 60 62 64 66 

User Input Angle, Beta (deg.) 

Figure B-4, Theta 3 vs. Beta 

Eg '=- 2-1-1 4-sin (2 2, + 2-141 ,-sin(y) Fa '=- 2-1-1 4-cos (8 2,1 + 2-141 ,-cos(x) 

2 2 2 2 . . 
Gq lo +1g°+1, -13 ~ By eos(x)-cos (8. | — 211 y-sin(x)-sin(@ 9 | 

  Ng 
2 2 2 k 

N, :=-Ey +-€ //E +{F -~{G 6,4 '=2-atan |———— 
4, 4, «|| 4, ( 4, ( 4, 4, G —F 

4 4, 
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User Input Angle, Beta (deg.) 

Figure B-5, Theta 4 vs. Beta 
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— Solution Motion 

© Precision Points 

Figure B-6, Output Angle vs. Beta 
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Calculate Resistance Curve, Internal Coupler 

Force and Pivot Bearing Forces 

[*) fet “al a 
5 = [Belt Jere “COS — 

lw cos (® 

4 Bout, := |F k 13 sin(83 +8 4) ou =| 4, 
  

  

in = (Ps (24) Al)» [ (1m (h)) asta) 
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© Original Str. Data 

User Input Angle, Beta (deg.) 

Figure B-7, Resistance Curve of the Soin 
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Figure B-8, Internal Coupler Force 
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Figure B-9, Bearing Forces 
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Appendix C, Derivation of Influence Coefficients 

This appendix summarizes the derivation of closed-form equations for the 

influence coefficients. The influence coefficients are the partial derivatives of the 

resistance curve with respect to each of the design parameters. Use of the influence 

coefficients for sensitivity analysis is discussed in Chapter 5. Appendices D and E are 

MathSoft Mathcad® programs which calculate the influence coefficients for the 

weighted-grounded-link case and the weighted-coupler-link case respectively. 

C.1 Partial Derivatives of the Linkage Angles 

C.1.1 Partial of 03 with Respect to the Design Parameters 

Loop-closure gives us the following closed-form equations for 0; 

  0, = Pan } (C.1a) 
3° 43 

where N, =-E, +€JE, +F/ -G,’. (C.1b) 

The values of E3, F; and G; are given in 1.3.1. They are modified here to account for 

rotation of the ground link, v 

E, = 21,1, sin(@, )— 21,1, sin(z) (C.2a) 

F, = 21,1, cos(@, )— 21,1, cos(x) (C.2b) 
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G, =,’ +1, +1,’ -1,° - 211, cos(6, )cos(y) — 21,1, sin(@, )sin(y) (C.2c) 

The eight design parameters which can vary are 1, 13, 14, 1;, Gin, Oy, ly and y. Let g denote 

one of these design parameters, then 

  

  

  

    

    

0 2G,-F,) af Nn, 
—6, - 3 = } (C.3) 

09° (G,-F,) +N, |G, -F 

This is equal to 

— F. 
26 =H, — (a) ws (2° ) . (C.4a) 
oq G,-F,\ oq) (G,-F,) oq 

2 

where H,= AGF) (C.4b) 
N, +(G,-F;) 

Furthermore, define 

gt, B+ F-o, 4 
_ ON, 0 Og oq oq 

3 = BY =~ 57 Bs 1 (C.5) 

q q lz, + EF) -G; 

0 1 N 0G, OF 
So —0,=H I,)- ; +3 ||, (C.6) oq 3 ate 3) aol Og } 

It only remains to find the partials of £3, F'3 and G3 with respect to each of the parameters. 

With these and Eq. (C.6), we can find the partial derivative of 6; with respect to any 

parameter. 

JE, 
lo: 
? al, 

  = 21, sin(0, ) (C.7a) 
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OF: 
Fl , = 21, cos(9, )   

< = 21, — 21, cos(@, )cos(y)— 21, sin(@, )sin(7) 
2 

  

OE = 21, sin(@, )— 21, sin(7) al, 
  

OF = 21, cos(0, ) — 21, cos( 7) al, 

aG, 
al, 
  = 21, 

OE, 
=0 

al, 
  lg: 

  

  

  Li: 

OF, 
— = -2], cos 7, , cos(Z) 

OG, 

dl, 
  = —21, — 21, cos(@, )cos(x) — 21, sin(@, )sin(x) 

= = —21,1, cos(, )   

in 
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(C.7b) 

(C.7c) 

(C.8a) 

(C.8b) 

(C.8c) 

(C.9a) 

(C.9b) 

(C.9b) 

(C.10a) 

(C.10b) 

(C.10c) 

(C.1 1a)



OF, 
  

  

  

30 21,1, sin(, ) 

OG, , ; ae ~21,l, sin(@, )cos(y) + 21,1, cos(@, )sin(x) 

OE, OF, 0G 6: 3 3. 3 0 

00, 00, 00. 

  (this justifies our expectation that 00; = 0, see Chapter 5) 

    

06, 

ly: JE, _ OF Ws _9 
" dl, al, al, 

  

e 
(this justifies our expectation that +=(0, see Chapter 5) 

w 

  

OE 
x: = -21,1, cos(x) 

OF. . 
we = 21,1, sin(x) 

= = 21,1, cos(8, )sin() — 21,1, sin(@, )cos(z) ra 
  

C.1.2 Partial of G4 with Respect to the Design Parameters 

The derivation here is analogous to that for 93 above. 

  6,= 2an"( Ns } 
G, -F, 

where N, =-E, -€VEZ+F? -G, . 
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(C.11b) 

(C.11c) 

(C.12) 

(C.13) 

(C.14a) 

(C.14b) 

(C.14c) 

(C.15a) 

(C.15b)



E, = 211, sin(v)— 21,1, sin(@, ) (C.16a) 

F, = 21,1, cos(7) — 21,1, cos(@, ) (C.16b) 

G,=1, +1,° +1,’ -1,’ — 211, cos(x)cos(@, )— 21,1, sin(y)sin(@,) — (C.16c) 

After manipulations analogous to those above, we have 

    

  

  
  

O 1 N 0G, OF. —6,=H I,)- ‘ 4$_2 4 |] (C.17a) 
dq * era ‘) (G, nr oq og } 

2 

with H, 2 AG.) (C.17b) 
N, +(G,-F,) 

aN, a ge Geen FG, S| and I,=—4+=-“ Ff, - 4 4 (C.17c) 
rr [zy +F, - G,P 

The solution to these equations also reduces to the partial derivatives of each of E4, Fu, 

  

  

  

and G4. 

ba: Jes _ 91, sin(0,) (C188) 
dl, 

Ft =a, cos(@, ) (C.18b) 
al, 

os = 21, — 21, cos(@, )cos(z) — 21, sin(@, )sin(x) (C.18c) 
2 

OE 

* ~=0 C.19 
al, (C. 19a) 
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aE, 
li: 
4 dl, 

  = 21, sin(x) — 21, sin(0, ) 

OF, = 21, cos(x) — 21, cos(0, ) 
dl, 

  

ay = 21, cos(x) 

  

= = 21, — 21, cos(@, )cos(y) — 21, sin(@, )sin(z) 1 

OE, 

00, 
in 

  = 21,1, cos(0, ) 

OF, 

00, 
in 

  = —21,1, sin(@, ) 

P+ = 211, sin(0, )eos()+ 2h, c09(0,)sin(z) 
in 

. JE, _ OF, _ AG. _, : 30, 30, 96 w w w 
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(C.19b) 

(C.19c) 

(C.20a) 

(C.20b) 

(C.20b) 

(C.21a) 

(C.21b) 

(C.21c) 

(C.22a) 

(C.22b) 

(C.22c) 

(C.23)



  (this justifies our expectation that = 0, see Chapter 5) 
Ww 

JE, OF, 9G, _, (C.24) lw: =-—4t-= 
ad, oa, al, 
  

(this justifies our expectation that os = 0, see Chapter 5)   

w 

  x: OF 21,1, cos( 7) (C.25a) 

os = ~21,1, sin(z) (C.25b) 

(C.25c) “1 = 21,1, cos(0,)sin(z)—2ls, sin(8, )eos() OX 

C.2 Influence Coefficients for the Weighted-Grounded-Link Case 

From velocity analysis, we have that 

oO, _ -1 
So, _ cos(@,) —I,cos(0, I cos(6, | 262) 

; l,sin(@,) -J,sin(@,)| | 2, sin(@,) 

  

—l,sin(0,) 1, cos(6,) 
@ 

or Ye, ~ =I, sin(9,) 1, cos(0,) |" cos(@2) (C.26b) oy, —I,1, cos(@, )sin(@,) +151, cos(@, )sin(@, ) | 1, sin(@, ) 
2 

Therefore, we have 
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o /, _4 sin(@; )cos(®, )- cos(,)sin(9. ) | (C27) 

From our analysis in Chapter 2, we have 

R =f al Os 
‘wil, o, 

in 

cos(®), (C.28) 

where the subscript g will denote that the variable is for the weighted-grounded-link case. 

Substituting in Eq. (C.27) for the angular velocity ratio 

_ 1b | sin(@;)cos(8, )— cos(@, )sin(9, ) cos(0, -@,) 29) 

* Il, | cos(@,)sin(@,)—cos(@, )sin( 4—9,,)- ; 
0,) 

  R 

For simplification, we define 

  

R, =m,—£, (C.30a) 
& 

LL, where m, = cos(O, -6,,), (C.30b) 
in“4 

n, =sin(@,)cos(@, )—cos(@, )sin(@, ), (C.30c) 

d, =cos(@,)sin(@,)—cos(@,)sin(@,). (C.30d) 

The influence coefficients are defined as the partial derivative of the resistance curve with 

respect to each of the design variables, g = l2, 13, lg li, 9in, Q, ly, x. Furthermore, the 

partial of d, and ng with respect to each of the design parameters will be 

      (C.31a) 
od —_ [sin(@ 4 ) sin(@ 3 ) + cos(6, )cos(O 3 )| [ Og oq 

30, 96, 
og 
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and 

and 

L3: 

la: 

Li: 

  

on 00 
Re = [sin(6,)sin(@, )+cos(0, )cos(@, )| a »q * Bin, 

  
  

_ | 
06, 5 =|[sin(@,)sin(,) +040, Joos, J} (14 } 

in 

  

  
  

  

  
  

  
  

  

  

00, 

ox 
  

  

OR, R, on, R, dd 
£=—.—£__!.—£_R tan(6,-6,) 

wy n, w% d, OH 

C.3 Influence Coefficients for the Weighted-Coupler-Link Case 
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(C.31b) 

(C.3 1c) 

(C.32) 

(C.33) 

(C.34) 

(C.35) 

(C.36) 

(C.37) 

(C.38) 

(C.39)



From Eq. (C.26) above, we have that 

O /, _4L ee ea (C.40) 

l, | cos(@,)sin(@,)—cos(@,)sin(@,) | 

From our analysis in Chapter 2, we have 

R, == = cox(0,)+-* 2 col), (C.41) 
in in 2 

where the subscript c will denote that the variable is for the weighted-coupler case. 

Substituting in Eq. (C.40) for the angular velocity ratio 

  

. LL, |e cos(0,-6,). (C.42) 
l,l, | cos(@,)sin(@, )—cos(@, )sin(@, ) 

  

R.=A +B, (C.43a) 

where A, = = cos(0 5 ) ; (C.43b) 

B. =m, 7 (C.43c) 

Ll, m, = cos(8, -@,,), (C.43d) 
in'3 

n, = sin(O, )cos(@, )—cos(@, )sin(@, ), (C.43e) 

d, =cos(@,)sin(@, )—cos(@, )sin(@, ). (C.43f) 
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Again, we need the partial derivative of the resistance curve with respect to each of the 

design variables, g = 

of the design parameters will be 

and 

and 

13: 

ly: 

Ih: 

  

    

% = sn, )in(@,)+c00, ooo, J} { “F} 

  

_ | 
00, y [sin(@ ,)sin(@, )+ cos(@, )cos(@, )]- aq 
  

> qd # Gin, 

    

on | | 
06, at sin(@,sin(,)+ 040, Joos, {14 36 

in 

          

        

      

      

    

  

  

OR, A, B. B, on. B, dd 00, c _ *'c c <.—<——*£.—<“_ B ta 6, —0 a, l lL n, a, d. a, n(@. a, 

OR. BB. on. B. aa o@ (ne <,—<__<*.__*_ B tan(@, —@ ; dl, L, Nn. Al, d. dl, c an( 3 w) dl, 

OR. B. on. B. ad oe f=-—£.—£ _£,__<§_ PB ¢ 0, 6 ; A, on, , d, A, an(0s — 9.) dl, 

OR, _B, on, B, ad oe c <-—S——£.—<—B t 6, -@ 3 

ol, n, dl, d, 0 1 an(@. °) al, 

OR On, B, ad 00; <= A, tan(@,)+—*:-—*-—*.— + _ B, —@ 06, <tan( MT 36, 4, 00, °— @s~ 9) 06, 

e = B, tan(@, -0,,) 

OR, _ B, 

al, 1, 

177 

lo, 13, la, Li, Oiny Ov, Ly, X. The partial of d, and n, with respect to each 

(C.44a) 

(C.44b) 

(C.44c) 

(C.45) 

(C.46) 

(C.47) 

(C.48) 

(C.49) 

(C.50) 

(C.51)



  
OR. —B. on. Be Ode pe tan(0, -6,,) 
Ox nN. ox d, OX 

| 

00, 

ox 
  (C.52) 
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Appendix D, Sensitivity Analysis, Weighted-Grounded- 

Link Case 

This appendix contains a MathSoft Mathcad® version 5.0 program. It calculates the 

sensitivity of the weight-grounded-link linkage to variations in the design parameters. 

The model analyzed is the design solution from Appendix A. Textual comments are in 

boldface. 
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Sensitivity Analysis, Weighted-Grounded-Link Case 

Created on MathSoft Mathcad version 5, by R. R. Soper 

Design Parameters and Range of Motion Information 

1, := 20.042 13:=11.073 14 :=26.577 1,:=8 jy :=40.10 1, :=45 

6 in ‘= 7.268 deg Q w :=5.332deg X= 165-deg E ‘=] 

B , :=60-deg 

Start and Final Angle of the User Input Arm 

B ¢ = 100deg 

Br-By 

60 
  k =0,1..60 BL =Bot -k 82 =B,- 8 in 

Analysis of the Motion of 63: 

E3, 21 yl ysin(@ 2 — 2-1-1 ,-sin(x) F4 ‘= 21y13:¢0s (° 2, — 2-141 cos (x) 

G3 1p +147 4147-14 - 21/1 ,-cos(x)-cos (8 2, - 21511 ysin(x)-sin(8 2 

  2 
2:-(|G2 —-F 

( 3, 3) 

Na =Ba,r8,|(Ba)* (F3,)'- (93) a (Gs _F, + (N; \" 
k k k 

  

N 
3, 

G3 -—F 
3, 3 

6. :=2-atan 
3, 
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User Input Angle, Beta (deg.) 

Figure D-1, Motion of Theta 3 

Analysis of the Motion of 64: 

Eq =-2ylgsin (8 2 + 21 gl y-sin(y) 

Gq 1p + 1g tly ?- 137 - 2191 4-08 (y)-cos (8 2, — 2-1 q1 y-sin(y)-sin (2 2, 

  

2:(G, -F,\" (G4,- Fa) 
  

_ 2 2 2 Na Ean 8 (Bale (Fa) (64 k k Hy, = 

N4 
84 ‘= 2-atan G . 

k _ 

4. 4. 
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2 2 
G, -F +{N (G4,-Fa) + (Na) 

Fg '=-21y1 g-cos (2 2, +21 yl y-cos (x)
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Figure D-3, Resistance Curve 

182 
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User Input Angle, Beta (deg.) 

Figure D-2, Motion of Theta 4 
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Calculate Partial Derivatives of 63 with Respect to q 

E3d1, = 21 ysin(@ 2, F3d1, := 2:1 3:cos (8 2, 

G3d1, := 2-14 ~ 2:1 ,-cos (8 2,)e08(%) ~21 ysin(@ 2,):sin(a) 

o(E 3 B3dl, + F3 -F3dl, G3 -Gadl,) 

(sy Pay Ca) k 

1 N3, 
63d1, '=H 3 -| ———__-Bd1, - —_——_ -(G3d1, - F3d1,) Partial Derivative of 03 wrt I, 

kK) G3 -F3. (G3, - F3)’ 

    I3d1, ‘=-E3d1 + 

E3d2. = 2-15-sin (8 2, — 2:1, -sin(y) F3d2, :=2-19-cos (2 2 — 2-1,-cos(x) 

  
  

_ B(E3 -E3d2, + F 3 -F3d2,- G3 6342.) 
G3d2,:= 213 [3d2, 1=- E342, + k k k 

2 2 2 

[ay Fay (3 

1 N3 93d2, :=H 3 || ————-I3d2, - K___.(G3d2 - F3d2,)| Partial Derivative of 03 wrt | 
k 3) G3 -F 2 k 3 37°38 (G3, -F3) 

E3d3, ‘=0 F3d3 =0 G3d3, =-214 

E3 -B3d3, + F 3 -F3d3,- G3 (34) 
k 

(ay (Fay ay 
(Fs 3d3 =~ E3d3 +     
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N3 1 k 03d3, =H 3 | ———-I3d3, - -(G3d3,- F3d3,)| Partial Derivative of 63 wrt, 
k) G3 -F3 G,-F,)* k k ( 3 3, 

E3d4 '=-2-13-sin(x) F3d4_ :=-2-14:cos(x) 

G3d4, '=-2-11 - 2-19:cos (8 2,) e084) — 2-15-sin (2 2,) sin(x) 

-(E. -E3d4 + F 2 -F3d4 - G2 -G3d &( 3. 4. 3, k 3, 4) 

(3) (Fa)*- (09) 
N 3 

63d4, :=H3- —! aa - ———..(G3d4,- F3d4, ) Parital Derivative of 63 wrt, 

© "k/G3-F3 0 * (a, -F3)? . k k ( 3 3,) 

  I3d4, '=- E3d4 +   

E3d5, °=- 2:1 9:1 3-cos (2 2, F345, = 2:1 9:1 3'sin (8 2, 

G3d5, =-21 pl ysin(@ 2,) C08(4) + 21 19-008 (8 2,):sin() 

E- (E3 “E3d5, + F 3 -F3d5,- G3 -G3d5) 

2 2 2 E3\°+/(F -(G (Pa) + (Fay (93) 
N3 

63d5, =H 3° —_+ __1345, - kK (G3d5, — F3d5,) Parital Derivative of 83 wrt din 

k| G3 -F3 G2 -F,\? k k ( 3, 3,) 

k 
    I3d5, '=-E3d5,+ 

E3d8 =- 2:1 3'1y-cos(x) F3d8 °= 2-137] y'sin(x) 

G3d8, :=2-15-1 1-cos (8 2,) sin) — 2151 ysin(@ 2,) 2084) 
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k 

ea) (Fa) (Oa) 
N 3 

63d8, =H3- | ag ~ ——+—.(G3ag - F3d8, | Parital Derivative of 63 wrt x 

© "k)G3-F3 0 * (g, —F3)? . k k ( 3 3,) 

gE: (FE 3 B3d8 + F 3 -F3d8,— G3 Gada) 
    13d8, ‘=- E3d8_ + 

Calculate Partial Derivatives of 64 with Respect to q 

E4d1, °=-2-14:sin (8 2, F4d1, :=-2-14-cos ¢ 2, 

G4d1, = 2-14-21 y-cos (2 2,)e08(4) — 2-1 ;-sin (2 2,) sin) 

gE. (F 4 BAd) + F 4 Fadl, G 4, 6441, 
  
  

I4d1, =-E4d1 — 

Ba) + (Pa) ~ (S4)" i 4,) 4 4 

1 N4 
04d1, =H 4° ——— Id], - ——_+—.(G4d}, - F4d1,) Partial Derivative of 64 wrtl, 

k|G, —F 2 4 4 G, -F 
k k ( 4 4,) 

E4d2 :=0 F4d2 :=0 G4d2 -=-213 

-[E, -E4d F , -F4d2, — G, -G4d £ (Bg BAd2, + F 4 FAd2,— Ga GAd2 | 
  
  14d2, = - B4d2, - 

2 2 2 Iles) Pa)? 4) 
1 N4 

04d2, =H 4," G.oF ——— (G4d2, - F4d2 ) Partial Derivative of 64 wrtl, 
4 *4 G, -F ck (G4- Fa) 
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E4d3 = 2-1 y-sin(y) - 2-1 zsin(6 2, F4d3, := 2-1 y-cos(x) — 2:1 9-cos (8 2, 

g- ( 4 BAd3, + F 4 F4d3,— Gq: G4d4) 
    

_ _ k G4d3=214,  14d3, -=-B4d3, - 
2 2 2 

E + {F -{G {Pa} (Fa) (9 
1 N4 64d3, =Hy- ‘14d3, - “—-(G4d3,- F4d3,)] Partial Derivative of 4 wrt!, 

k}Gq4—Fa4 G4-F,\ k k ( 4 4,) 

EAd4 = 21 gsin(y) — F4d4, *= 2-1 g-cos(x) 

G4d4 := 2:1, - 219-cos (8 2,) 008) — 21 5-sin (2 2,):sin() 

g- (F 4 BAd4 + F 4 Fad4,— G4: G4d4) 
14d4, = -B4d4 

(ea) (Fa) (04) 
N 

4, 

    

1 14d4 — 04d4, =H y- a: 
k - 2 404 (G 4, F 4,) 

-(G4d4 — F4d4,)|  Parital Derivative of 64 wrt, 

E4d5, = 2-1-1 4-cos (8 2, F4d5, := 2:19'1 g-sin (2 2, 

G4d5, :=- 2:1 y-15-sin (8 2,) e0sx) + 2-14-15-cos (8 2,)°sin(a) 

g- (E 4 BAUS, + Fg FAd5,— Ga G4d5,) 
14d5, ‘= -E4d5, - 

|(e4)* (Fa) (64) 
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N 4 

e4d5, =H: + 1445, - ——+—-(G4d5,- F4d5,)| _Parital Derivative of 64 wrt din 
k}Gq4-Fa G4 -F,\’ 4 (G4 -Fa) 

F4d8 i= 2141 cos (x) F4d8, =-21 41 1'sin(y) 

G4d8 := 21/1 -cos (2 2,):sin() — 2151 4-sin (8 2,} e0sx) 

g- (F 4 BAd8, + F 4 -F4d8, - G 4, 0498) 

|(P4)** (Fa)*- (64)? 
N 4 

4d8 ‘=H 4° —_! _t4ag — ————. (Gada, - F4d8 Parital Derivative of 64 wrt y 
k1Gg-Fy, *“ /g,-F,\ k k ( 4 4,) 

  

  

14d8, '=-E4d8 - 

Caiculate Influence Coef. for Weighted-Grounded-Link Case 

d_ :=cos (8 4,)'sia (8 3, — cos (8 3,) sin (2 4, n:=sin (3 3 “cos (9 2, — cos (8 3,)'sin (8 2,) 

Influence Coefficient: dR/dl , 

R, Ky et oondl ddl - tan (8 4 - 8 w} Od, 
k k 
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Figure D-4, Influence Coefficient, 12 

influence Coefficient: dR/dl , 

dd2, := (sin(6 4)sin (2 3, + Cos (8 4,) 008 (8 3,) | (8342, - 6442, } 

nd2,:= (sin (2 3, -sin (2 2 + cos (8 3, “cos (8 2) -(0342,) 

R, R, 

  

    
  

Ky '=—nd2, — -dd2, - R,tan (8 4-98 w} 0402, 
k on d k 

k k 
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Figure D-5, Influence Coefficient, 13 
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Influence Coefficient: dR/dl , 

dd3, := (sia (8 4, -sin (8 3, + COS (8 4,):°08 (2 3,) |} (0343, - 6443, ) 

nd3,°= (sin (2 3,)°sin (° 2,) + COS (8 3,):€08 (8 2,) | (8343,) 

  

      

« Fas — Naas — R -tan (2 - 6 )-0443 — X 
3. n k d k R. 4. w k 1 4 

k k 

3.2 | | T j | T l 

3/7 ee ae — 

e a oN‘ 
s ao oN 

e280 ~\ 4 
O 
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Figure D-6, Influence Coefficient, 14 

Influence Coefficient: dR/dl , 

dd4, := (sin (8 4,)°sin (8 3, + Cos ¢ 4,)008 ¢ 3,)| (9344, — 04d4,) 

nd, := (sin ¢ 3,)'sin (2 2,) + Cos ¢ 3,):208 (2 2,)\-(8344,) 

Anda, nd4, — —dd4, - R tan 

k qd. 

K4 = 4 - 0,,\-04d4 _ ow) tes k 
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Figure D-7, Influence Coefficient, 11 

Influence Coefficient: dR/d 6,, 

dd5, = (sin (8 4, sin (8 3, + cos (2 4,)"e08 ¢ 3,) | (9345,- 0445, 

nd5, ‘= (sin (8 3,)'sin (8 2 + COs (8 3.) e08 (8 2,) | (0345, + 1) 

  

    
  

K nds - ads — R-tan (8 —6 )-04d5 
Sx n kod k R 4. w k 

k k 
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Figure D-8, I. C., theta in 
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Influence Coefficient: dR/d 6,, Ko ‘= R-tan (2 4-9 w] 
k k 
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Influence Coefficient: dR/d y 

dd, := (sin (8 4, -sin (8 3, + cos (2 4,) 008 (8 3,) | (8348, - 0448, 

nd8, := (sin (8 3, -sin (8 2, + cos (8 3,):€08 (8 2,)\-(8348,) 

R, R, 

  

Kg = —nd8, - —-dd8,— R,-tan (8 4-8 w) 0408, 
k k 
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Appendix E, Sensitivity Analysis, Weighted-Coupler 

Case 

This appendix contains a MathSoft Mathcad® version 5.0 program. It calculates the 

sensitivity of the weighted-coupler four-bar linkage to variations in the design parameters. 

The model analyzed is the design solution from Appendix B. Textual comments are in 

boldface. 
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Sensitivity Analysis, Weighted-Coupler-Link Case 

Created on MathSoft Mathcad version 5, by R. R. Soper 

Design Parameters and Range of Motion Information 

1, °=20.042 13:=11.073) 14 :=26.577 1,:=8 13, :=40.1 1, :=45 

0 in (= 7.268deg 6, '=5.332deg y= 165-deg E:=] 

B , '=60-deg 

Start and Final Angle of the User Input Arm 

B ¢ = 100deg 

  k:=0,1..60 =p 4 f Po, = 
oo Pe Pot 82, Peo Fin 

Analysis of the Motion of 63: 

E3, =21zlysin(6 2, — 214-1 ,-sin(x) F3 =21y1 30s (8 2, — 213-1 ,-cos (x) 

G3 19° +147 4+1)7- 14’ - 2151 ,-cos(x)-cos (8 2) ~ 21511 ysin(q)-sin(8 2, 

  

  

2 (G3 —F 3)" 
_ 2 2 2 a k k, 

Na, Ba,18 (Bs) (Fa) (83) ma k k k /G, -F\2+(N,\2 
(Sa Fa) + (a) 

N 
3. 

G32 -F 
3. 3, 

6. :=2-atan 
3, 
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Figure E-1, Motion of Theta 3 

    
  

Analysis of the Motion of 64: 

Bq =-21y1 asin (8 2 + 2lglysin(g) Fg '=-21 yl g-cos (8 2, + 21 4:1 -cos (x) 

Gq S15 +14? +17 - 147- 21511 cos (x)-cos (8 2, — 2151 ysin()-sin(8 2, 

  

  

2 2 2 2 

k k k H, — k k 

2 2 
G, -F +{N 

Ny ( 4k 4,) ( 4,] 

6, =2-atan 
4. G,-F 

4 Ay 
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Calculate Partial Derivatives of 63 with Respect to q 

E3d1, '=2:13-sin (° 2, F3d1, := 2:1 3-cos (2 2, 

G3d1, ‘= 2-15 — 2-1,-cos (8 2,) e0s(x) — 2-14-sin (8 2,)sin(a) 

-(E, -E3d1, + F 3 -F3d1,- G3 -G3d (Eg Bad) + F 3 -F3dl,— G3, i) 

2 2 2 [(es)?+ a) (9) 
N3 

g3d1, =H, -| 131, _* .(G3d1, - F3d1,)| _Partial Derivative of 03 wrt |, 
K  “k} G3 -F3 G,-F,)\? k k ( 3, 3,) 

  di, ‘=-E3d1 +   

    

_ F(E3 -E3d2, + F 3 -F3d2,- G3 G32, 
G3d2 :=2-13 13d2, '=-E3d2, + k k k 

Fa) + (Fa) (Sa) || 3,) 3, 3 

1 N3 0342, = H3 || > 13d, - ——,.(6342,- F3d2,)| Partial Derivative of 63 wrt |, 
k _ 373 G3-F to & © (63,- Fs) 

E3d3 =O © F3d3, =O = G3d3.:=- 2:14 

g: (F3 #3d3, + F 3 -F3d3,- G3 -G3d4) 

(Fa) + (Fa) (a) 

_ k 
13d3 =- E3d3 +   
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N 3 
03d3, = H3- — + 1343, - —___*__.. (G3d3, - F3d3,) Partial Derivative of 63 wrtl, 

k/ G3 —F3 G3 -F3)’ k k ( 3, 3,] 

E3d4 .=-2-13-sin(x) F3d4, :=-2-13-cos(x ) 

G3d4, :=-2:11 - 2:17-cos (8 2,) 008 (4) ~ 21sin(8 2,) sin) 

g- (E 3 E304, + F 3 -F3d4,- G3 - G3a4) 

(a) (Fa) (Sa) 
N 3 

63d4, =-H3- _ naa - ——+—..(G3d4,- F3d4,) Parital Derivative of 63 wrtl, 

© "kG3-F3 0g, -F3)? . k k 3 3, 

  

  

13d4_ = F3d4 + 

E3d5, :=-2:19'13-cos (8 2,) F3d5, :=2-14'13-sin (2 2, 

G3d5,=-2-14:1 zsin(@ 2,) e084) + 2:1 y-15:cos (8 2,)-sin() 

k k 

ea) (Pay (Sa) 
N 

3, 

g: (E 3 E3d5, + F 3 -F3d5,- G 3,634) 
13d5, '=-E3d5, +   
  

_ 1 03d5, =H -| ————-I3d5, - -(G3d5,- F3d5, ) Parital Derivative of 63 wrt Qin 

k/ G3 —F3 G3 -F3) c %& — (S3,-Fa) 

E3d8, =-213:1,-cos(y) — F3d8, := 213-1 y-sin() 

G3d8_ = 2141 -cos (2 2,) sina) — 215-1 y-sin (6 2,|-€08(%) 

198



.(E_ -E3d8 + F 2 -F3d8 — G -G3d £(E3 & 3 F3d8,- G3. 4 

{[®3)°* (Fa) 3)? 

=H | ————I38, - —_——*—..(G3d8,- F3d8,)| _Parital Derivative of 03 wrt y 

13d8, ‘=. E3d8 +     

Calculate Partial Derivatives of 64 with Respect toq 

B4d1 :=-2-14-sin (8 2, Fadl, :=-2-14-cos (8 2, 

G4d1, = 2-14 - 2-1y-cos (2 2,) 208) — 21 ysin(@ 2,):sin() 

g- ( 4 EAdl, + F 4 Fadl, — G4 Gad i) 
    14d, -=-E4d1, - 

2 2 2 
E +{F -{G [Pay (Fa) (Oa) 

1 “4 e4d1, =H 4 | Idd, - ___~_.(Gad1, - F4di,)] Partial Derivative of 64 wrt 1, 
k{G4-Fy G,-F,\" k k ( 4 4,) 

E4d2 '=0 F4d2 :=0 G4d2, ‘=-213 

.(E, -E4d2 +F, -F4d2 - G, -G4d o (Ea a+ 4, 2. 4, 4) 
    14d2, = -E4d2, - 

2 2 2 Leal Fa) (64 
1 N4 - k ; : oat 0402, =H ouF Oe —S (G4d2,— F4d2,\) Partial Derivative of 64 wrt 1, 

4-04 (S 4 ~ F 4,) 

199



B4d3, := 2-1 -sin(y) - 21 9-sin (8 2, F4d3, :=2-14-cos(x) - 21 9-cos (8 2, 

g- (FE 4 BAd3, + F 4 F4d3,~ Gq: C403) 

(Fa) * (Fay (Sa) 
  

  

G4d3 =214 14d3 = E4d3, - 

N 4 
0443, ‘=H 4 - —_* 1443, - ——_+—.(G443,- F4d3 Partial Derivative of 64 wrtl, 

k)G4—-F4 G,-F,\* kk ( 4 4,] 

FAd4_ =2:] 4sin(x) F4d4_ ‘= 2:1 4-cos (x) 

G4d4 =2:1 - 2-1y-cos (8 2,) e084) — 2-15:sin (2 2,) sin(x) 

gE: (= 4 EAdd + F 4 Fadd — Gg G4a4) 
_ k 

14d4_ '=-B4d4 — 

2 2 2 
E +{F —{G 

( 4, ( 4, ( 4, 

  

  

N 4 

0444, = Hy: ‘14d4, — « (G4d4 - F4d4,)| _ Parital Derivative of 04 wrtl, 
k|Gy4 -F 2 4—-*4 G4 -F k k ( 4 4 

k k 

E4d5, := 2-1 9:1 4-cos (2 2, F4d5, := 21/1 g-sin (2 2, 

G4d5, :=-21 y-19-sin (2 2, -cos(Y) + 2:1 4-1 5:cos (2 2,)-sin(n) 

E- (= 4 EAd5,+ F 4 Fads, — G 4, 6405) 
_ k 

I4d5, =-E4d5 —- 

2 2 2 
E + {F —{G 

( 4,) ( 4, ( 4, 
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N 4 

64d5, =H 4° l 14d5, - ik. (G4d5, - F4d5, | Parital Derivative of 64 wrt @in 
k| G 4-F4 2 

A (G4 - Fa 
k 

EAd8 :=2-1 4-1 y-cos(x) F4d8, :=- 2-1 4-1)-sin(y) 

G4d&_ =2-] q'1 j'cos (8 2,)-sin) - 2-151 ysin(@ 2,)-e08(x) 

-(E, -E4d8 + F, -F4d8 — G, -G4d 5 (B4 Eada + Fg Pads, - Gy -G4d§) 
    148, '=-B4d8 

2 2 2 
E +{F -{G (Pa) * (Pay (94) 

1 N4 04d8, -=Hy- ‘14d8, - —_*—..(G4d8 - F4d8,)|_Parital Derivative of 04 wrt x 
k)G4-F4 G4-F,4\’ ce 4% (Ga Fa) 

Caiculate Influence Coef. for Weighted-Coupler-Link Case 

d. :=cos (2 4,)sin (8 3, — COS (2 3,)°sin (2 4,) n, = sin (2 4,) “COS (8 2,) ~ COS (2 4s (8 2,) 

influence Coefficient: dR/di , 

ddi, := (sin (8 4, ‘sin (2 3,) + COS (8 4,008 (° 3,) | (83dl, - e4d1, ) 

nd, ‘= (sin (8 4) (8 2) + COS (° 4,)"°08 (8 2)) (o4d1,) 

B 
k +—ndl- — “ddl, ~ Rytan (8 3-8 w) 0341, 
k an

a 
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Figure E-4, Influence Coefficient, 12 

influence Coefficient: dR/dl , 

dd2, ‘= (sin (8 4, ‘sin (8 3, + COS (2 4,008 (9 3,) | (0342, 6442) 

nd2, = (sin (8 4,)sin ¢ 2,) + COS (2 4,)"e08 (2 2,)\(0482,) 

By B k B, 
K5 ‘=—-nd2, — —-dd2, — B,-tan(/6 2 — 8,,,\-63d2, — — 
2 nd ddd Bytom (8 5, — Bw): 0342, — 

k k 
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Figure E-5, Influence Coefficient, 13 
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Influence Coefficient: dR/dl , 

dd3, := (sin (° 4,) sin (8 3, + COS (8 4,) 028 (8 3,))(0363,- 443, ) 

nd3,°= (sin (2 4, -sin (8 2, + COS (8 4,) 008 (8 2,)] (8443, 

B. B. k3 = nd}, - —*-dd3, — Btan (2 3-8 w} 0343, 
k k 
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Figure E-6, Influence Coefficient, 14 

Influence Coefficient: dR/dl 3 

dd4, := (sin (2 4,)°sin (8 3, + cos (2 4,)e08 (8 3,) | (8344, - 0444, ) 

nd4, ‘= (sin (8 4, “sin ¢ 2, + COS (2 4,) "008 (2 2,)] . (0404, | 

B B 
k k 

K, =— nd4, - —-dd4 — B-tan/6. —-— 6,,,\-63d4 
4 neg Mee Beta (0 3, Ow) 8304, 
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Figure E-7, Influence Coefficient, 11 

Influence Coefficient: dR/d 6,, 

dd5 k = (sin (8 4, ‘sin (8 3,) + COS (8 4,) “COS (2 3,)] . (0345, - 6445, | 

nd5 = (sin (2 4, ‘sin (8 2, + COS (8 4,) "008 (8 2,)} (0405, + 1) 

B k B k 
Ke '=—-nd5, — —-dd5,-— B.-tan/60. -— @...\-03d5, + A, -tan/@ 
Yon & kk ( 3, w| cok ( 2) 
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Figure E-8, I. C., theta in 

204
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Figure E-9, I. C., theta w 
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Figure E-10, Influence Coefficient, lw 
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Influence Coefficient: dR/d y 

dd8, := (sin (8 4,)sin (8 3, + cos (8 4,)° 00s (8 3,) | (0348, - 0448, ) ! 
nd8, ‘= (sin (9 4,)'sin (8 2, + cos (8 4,):008 (2 2,)) -(04d8,} 

  

      

B, B, Kg =—-nd8, — —-dd8, — B -tan (2 3-98 w} 0348, 
k on d k 
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Figure E-11, Influence Coefficient, Chi 
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Appendix F, Post-Processing: Analysis Programs 

This appendix contains a MathSoft Mathcad® version 5.0 program. It preforms a linkage 

analysis to verify the assumptions in the synthesis method. The analysis is preformed on 

the weighted-grounded-link design from Appendix A as an example. Textual comments 

are in boldface. 

207



Static Force Analysis: Effect of Link Masses 

Mathcad model By R. R. Soper, C. Marcuson, C. 

Stillings, E.K. Ko, Sanjay Dhande, and C. F. Reinholtz 

DATA INPUT 
(lengths in inches, angles in degrees) 

1, =8 — 1y:= 20.042 1g:=11.073 14526577 1, '= 40.1 

Oi, = 7-268deg = Ly =45 Oy = 5.332deg = yx, '= 16S-deg 

d:=40 Number of data points over the range of 6 

E:=1 Indicate closure, € = +1 or -1 

B min: =O0deg B wax:=100deg Range of Motion 

1 
loc ; = Distance between the grounded input pivot and the cg of | , 

l 
loc 5 = Distance between coupler pivot on the input side and the cg of | , 

J 
loc 3 = Distance between the grounded output pivot and the cg of | , 

$5, -Odeg Angle about grounded input pivot which locates the cg of | , with 

respect to I,'s kinematic vector 

6 32 -O-deg Angle about input side pivot which locates the cg of | , 

with respect to |,'s kinematic vector 

6 44:=0-deg Angle about grounded output pivot which locates the cg of! , with 

respect to I|,'s kinematic vector 
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w'=10 Weight of |, (in pounds) 

w3:=10 Weight of I, (in pounds) 

w,4=10 Weight of 1, (in pounds) 

W max:~ 300 Maximum load weight used on the weight arm (in pounds _) 

W min'=32 Minimum load weight used on the weight arm (in pounds) 

CALCULATIONS 

k :=0..d 

B max B min 

d 
B, =B mint k 

Standard Position Analysis 

6 ‘= —§. 
2. B, in 

E3, =21p1ysin(6 2, -2lglysin(y) Fy :=21y1 300s (2 2, — 21:1 y-cos (x) 

G3, =1y + 13 + l - ly - 2-151 j'c0s (x )-cos (9 2) - 2-151 ysin(z)-sin 6 2, 

_ 2 2 2 Na, s-B5°8 Ea) (Fay 3 Ny 
k k k 83 ‘= 2-atan | ———————_ 

k G3 -F 
3. 3, 

  

Bq =-21ylqsin (8 2, F2gly sing) — Fg :=-21y1 gos (8 2 + 21g] -cos(x) 

G4 =1y +14? +147 - 147 - 2:1 911 y-cos(y)-cos (8 2, -~ 21y1 ysin()-sin(6 2, 
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Ng 

2 2 2 k 
N, =-E, +-€: //E +{F ) ~ (Sa) 6, :=2-atan | ————— 

4. 4. al 4,) ( 4 4 4. G4 -Fy4 
k k 

Moving vectors which locate the pivots with respect to the centers of mass 

I i ‘(0 a+ 21) ' i 69. 
r5, :=-loc 7-e r55 1=15e +r 21, 1 22, 2 21, 

32, “loc ye 133 “lye +P32 

i-(o,+9 44) a 
r44 =-locze a 

k rag slge + Tag 

Matrix Method to solve for bearing forces and input torque 

1 0 -1 0 0 0 0 0 0] 

0 1 0 -1 0 0 0 0 0 

Im(r 94 | “Re(r 91 ) “Im/r 99 | Re(r 29 | 0 

0 0 1 0 -1 0 

    
A(k) =| 9 0 0 1 0 -1 

0 Im 32] - Re(r 32] - Im 335 Re(r 33 0 

0 0 1 0 1 0 0 

0 0 1 0 1 0 

0 0 0 Im 43,) - Re(r 43,) Im(r 44.) - Re(r 44,) 0 

9] 

- WwW 2 

B.=|-w3 C(k) :=(A(k)) |B T,:=C(k), Effective torque on input link 
due to link masses 

ty Normal force at end of 

_w AF, '= —* input handle due to link 

‘ lin masses 

| 0     
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‘ 6)- ae 
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Caiculate the Resistance Curve 

k 

r3 - 14'sin(6 4) “Lysin (0 3. Iy'sin(6 

A Fo 
  ARV. C= 

A mun) 
R ‘= 

mk WwW min 

A 

User Input, Beta (deg.) 

Figure F-1, Change in Input Force 

F   
Ww max 

T4 1 4-cos (2 4, -13-cos (° 3, “| 1 5-cos (9 ly 

R= T 4-008 (8.4 - 8 y) 
lin k k 

The change in the resistance curve due 

to the link masses 
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Actual resistance curves 
including effects of link 

masses and load weight 

Rimax, “2, + 4R max R min, = R,+ AR min 

  

      

1.25 —] | l ] I T T 

z= __ 1.2 | = 
oO a 

—— a 

ae ~ oS 
a ™ 

ae N 
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R with min load 

R with max load 

R as designed 

Figure F-2, R with Effect of Link Masses 
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Dynamic Force Analysis 

Mathcad model By R. R. Soper 

  

Establish the probable input trajectory o=4 The motion time and 

f:=5 number of time segments 

Calculations 

to 2 Constant angular 

j'=1,2..50f t =—j ais (B max~ B min)’ @ 15625 acceleration and 

50f (f—1)-t2 deg deceleration of the 
c first and ft" time 

segments 

L:=1,2..50 (Phase 1) . 

2 
a5 = 5 =a Oty 

2. 4. : pb ni 

input trajectory over the three 

M :=50,51..(f- 1)-50 (Phase 2) significant phases: acceleration, 
stable and deceleration phases 

_ . 2-t, -f-t 
a5 =0 ate 1 +t wi M c 

M ° 2 FF, By =e 2 +B min 

N =(f- 1)-50,(f- 1)-50+ 1..50f (Phase 3) 

a5 '=-G Wy ‘=a(t.-t 2N nu ( c N) > 1- rf 
2 (ty) 2 2 

By , HOt oh Ot ® +B min 
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Standard Position Analysis 

0 2. = B. - 8in 

P3 =2-] a1 3°sin (8 2] — 2-1 31 ysin(x) F 3, ‘=9.] al 3°COS (8 2 — 2] 3)! pcos (x) 

Gs =1y 41g +147 - 14? - 21g] y-cos(x)-cos (8 2 — 2151 ysin(q)-sin(6 2 

  

N _ 2 2 2 3. 

Na, =-B3,+8:|(Fs) * (Fs) - (53, @3 '=2-atan | ———— 
63,7 F3, 

Bg =-21ylgsin (8 2 +2lglysin@y) Fy =-21yl4cos (8 2 + 2-141 ,-cos(y) 

Ga =1y° +1 4° +1,7-147- 2415/1 ,-cos(x)-cos ¢ 2 ~ 2151 rsin(x)-sin(8 2 

  
N4 

N4q =-Bg +-& | (By) (Fa) (G4)° @ 4, ‘= 2-atan| ———— 
j j j j j j G4-Fy4 

Velocity and Acceleration Analysis 

w 4) ly: cos ¢ 4.) -] 3°COs (8 3\\ 15: cos (2 2 

“@ 2 

03 “ \lasin(a) -1ysin (6 3 lzsin(02) j 

a 4, - 1 4-sin (8 4] 13-sin (8 3 “1 I 4-cos (8 4) -13-cos 0 3. , \(° 4) 

a 3, - 1 4-cos (8 4 -1 3° COS (8 3 Lgsin( 4. -13-sin 6 3 , (® 3 \" 

j 
-| 9°Cos (2 2 | -] 2. sin (8 2 

+   
2 

“{@ + Oo 
-] 9°sin (2 2 ( 2] ] 9° cos (2 2 2 

L 
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Moving vectors which locate the pivots with respect to the centers of mass 

. i (82,40 21) 
P21, ‘=-loc 1° 

_ i (3,46 32] 
"32 ‘=-loc 9:e 

i (84+ a4) 
rag (=-loc +e J 44 3 

Accelerations of the link cgs 

_ 2 «. 

a 92. =| (0 2 ~ 1a 2 rar 
J J J J 

a og =| (0 4) ~ i -a 4/44 
J J J J 

  _1 2 2 
In :=— ‘ly 12 386.09 

WwW 

ly -1. "3 | ; 
12 386.09 

I 1 3 2 

4°12 386.09 * 

r22, “Ize +21, 

i 03. 

133 =lye 7 +139 
J J 

raz slge  ' +144 
J J 

4 93. =| (0 3) ~ i -o 3 |r32 tI9-e 
J J J J 

109 2. 
" (02) Frag 

J J 

Calculate mass moment of inertia for 

the links. This assumes | = 1/12 (mass) 

(kinematic length) 2. If true inertias are 

known, they can be assigned here. 
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Calculate the dynamic effects of the link masses 

  

1 0 -1 0 

0 1 0 -1 

Int 21,] “Re(r 21 ) “Imr 22 Re(r 22. 

j j J 

0 1 0 -1 0 

AG) = ° 0 0 1 0 -1 

0 Im 32) - Re(r 32) - Imi 33) Re(r 33) 0 

J J J J 

0 1 0 1 0 

0 0 1 0 1 

Im 43 “Re(r 43 | Inyr 44 “Re(r 44 

J J J J 

- w - 

wo 
- W —_ — a 

2” 386.09 ( 22,] 

“Iga 

  . = W 

B(j) : 3~ see celm(a gs | 

386.09 Cj) = (AG@) | BG 
“T303 

w4 T Dm = CO), Effective torque on input 
. aa500*(* et. link due to dynamic link 
386.09 j mass effects 

WwW 

-wW 4- —— I 
4°” 386.09 ( e4, 

“Tyo 4     
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Figure F-5, R with Dynamic Effects 
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