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Dynamic Emission Baffle Inspired by Horseshoe Bat Noseleaves

Yanqing Fu

(ABSTRACT)

The evolution of bats is characterized by a combination af k&y innovations - powered flight
and biosonar - that are unigue among mammals. Bats still dotpeengineered systems in both
capabilities by a large margin. Bat biosonar stands out $aalility to encode and extract sensory
information using various mechanisms such as adaptive Wwatmcontrol, dynamic sound emis-
sion and reception, as well as cognitive processes. Dueethitfinly integrated and sophisticated
design of their active sonar system, bats can survive in taognd dense environments using just
a few simple smart acoustic elements. On the sound emissienssgnificant features that distin-
guish bats from the current man-made sonar system are teevainint shapes of the noseleaves.
Noseleaves are baffles that surround the nostrils in batsnaisal pulse emission such as horse-
shoe bats and can undergo non-rigid deformations largegénimuaffect their acoustic properties
significantly. Behavioral studies have shown that these mew¢s are not random byproducts, but
are due to specific muscular action. To understand the ymagnbhysical and engineering prin-
ciples of the dynamic sensing in horseshoe bats, two expeatahprototypes ,i.e. intact noseleaf
and simplified noseleaf, have been used. We have integrateditjues of data acquisition, in-
strument control, additive manufacturing, signal prosegsairborne acoustics, 3D modeling and
image processing to facilitate this research. 3D model®fdshoe bat noseleaves were obtained
by tomographic imaging, reconstructed, and modified in tlggal domain to meet the needs of
additive manufacturing prototype. Nostrils and antergaflwere abstracted as an elliptical outlet
and a concave baffle in the other prototype. As a referenciec@ar outlet and a straight baffle
designed. A data acquisition and instrument control sy$iesrbeen developed and integrated with
transducers to characterize the dynamic emission systeunstcally as well as actuators for recre-
ating the dynamics of the horseshoe bat noseleaf. A conicaldnd tube waveguide was designed
to couple the loudspeaker to the outlet of bat noseleaf andlgied baffles. A pan-tilt was used
to characterize the acoustic properties of the deformiogppypes over direction. By using those
techniques, the dynamic effect of the noseleaf was repextland characterized. It was suggested
that the lancet rotation induced both beam-gain and beatnwithnges. Narrow outlet produced
an isotropic beampattern and concave baffle had a significaetvariant and frequency-variant
effect with just a small displacement. All those resultst ¢ight on the possible functions of the
biological morphology and provided new thoughts on the eegling device’s design.
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Chapter 1

Introduction

This chapter introduces the principles and advantagesdiahbiosonar compared with the man-
made sonar, provides detailed discussions of the emisanegeption dynamics of the biosonar
system and delivers the goals and approach of the currezdncs

1.1 Bat Biosonar & Engineered Sonar

The evolution of bats is characterized by a combination ofkkey innovations, powered flight and
echolocation, which are uniqgue among mammals [1, 2, 3].

Due to their flight ability, bats are distributed almost aleo the world except for polar regions
and small remote islands. Their food varies from small itsséx large vertebrates [4] and their
habitats range from narrow dense forests to large opentddSe6]. Lots of attention have been
directed toward to how they perceive the information of ¢hdsgferent types of environments as
well as how they acquire food in challenging circumstanedsich casts light on solutions for
similar engineering problems. For example, researchemrted that the nectar-feeding bats have
developed highly mobile tongues to reach deep within themaohr flowers to obtain nectar [7]. It
was found that the nectar-feeding bats can change the sizehape of their tongues dynamically,
which could serve as a model for miniature liquid harvesbtob

Other than food acquisition problems, a volume of studie® lieeen done regarding echolocation
of bats [8]. Not all bats have the ability of echolocationn&oof the bats rely on vision or passive
sensory methods [9], i.e. they get the information by makisg of the sound emits from the
surroundings. Even though for the active sensing bats, lhof them echolocate the same way.
The active sonar system consists of emitters (mouth oritg)sind receivers (two ears). Many of
the echolocating bats produce the ultrasound in the lagmit, the sound from the mouth or nose
and use the external ears to receive the echoes. Informatodriained by analyzing the echoes to
get the target properties, such as distance, angle anadejtQ, 11, 12, 13]. The size of mouth or
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the nostrils and the ears do not differ much from the wavelenthey used. The ears of bats, for
example, do not exceed a few centimeters in length [14] wthiesmallest received wavelengths
are still a few millimeters [15, 16]. Hence, the minimum oaltietween ear size and wavelength
does not fall below 10'. In contrast to this, technical sonar arrays are typicall§ @r even 1000
times larger than the wavelength they operate on [17, 18, 19]

Even though the echolocating bats have those simple biosteraents and small size-to-wavelength
ratio, the performance of their sonar systems outperfomtthirent state-of-art engineering sonar
systems in a variety of ways [20].

First of all, depending on the sensory needs, echolocatitgydan actively control the parameters
of the emitting sound, such as intensity, duration, bantwahd repetition rate [21, 22]. It
was pointed out that during the final stage of the bat huntoiyity, the sound repetition rate
increased [23] and can reach to 220 Hz [24]. The superfasidaal muscle enables them to do so
[25]. Accompanied with a high repetition rate, the pulseation was decreased [26]. Those robust
call design and waveform diversity in bats could be usedaxctirrent radar and sonar systems to
assist tasks such as autonomous navigation and targaficktss [27].

Second, echolocating bats have a mature spatial oriemtabdity regardless of the relatively
wide sonar beam they used. Operation in a regime where deideeexceeds wavelength by
two or more orders of magnitude allows engineered sonar adar rsystems to gather sensory
information on the environment through scans with narroanbarrays [28, 29]. In their very
different size-to-wavelength regime, bats are very posdiged for this paradigm. Indeed, bats
used comparatively wide beamwidth with reported valuegiranfrom 28° to 80° (full width at
-6 dB) [30, 31, 32, 33, 34, 35]. For example, in the greaterdsiree bat, the -6 dB beamwidth is
48° elevation and 46° azimuth [32]. Yet, despite their wigarns, bats are able to navigate and
pursue their prey in structure-rich natural environmer8§, B7, 38, 39]. Take greater horseshoe
bat for example, it was found that the bats could detect ecfroen the fluttering insects even in a
cluttered environment [40].

At last, the effectiveness and efficiency of the man-madeusbighly depend on the current tech-
nology [41, 42] while biosonar has more flexibility. For exalm in the man-made sonar, the
properties of the transducers influence the waveforms thagmte [42].

In the process of time, bats have developed a sophisticate sonar system to survive, which
need to be better understood and then utilized to improveuhent engineering sonar systems or
design them from the ground up.

1.2 Horseshoe Bat Biosonar

According to their time-frequency structure, the emisgpaises can be divided into two compo-
nents: constant frequency (CF) and frequency modulation) (Hdrseshoe bats are FM-CF-FM
[43, 44] and high duty cycle echolocators [16]. In those jsdsind emission and reception hap-
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pens at the same time, thus they need to separate the caislapeks in frequency. The sound they
emit from the nostrils (rather than from mouth) consistdoéé parts, a short frequency modulated
(FM) upward sweep at the beginning, a long constant frequ&t¢ part and a brief FM down-
ward sweep at the end. In the greater horseshoe bat, theefreguange of the sound they emit
is 60 kHz-80 kHz (2nd harmonic). The morphology and acoudstictions of the ear and noseleaf
are associated with those echolocation features.

On the reception side, the general shape of ear could beapied as a truncated conical
horn [45, 46, 47], the dimension of the ear is correlated Withemission frequency [14] and the
local features, such as flaps in the pinna wall, tragus anttagus in the pinna rim, folds between
the pinnae [48, 49, 50], play an important role in beamfogni@bviously, the pinna itself deter-
mines interaural level differences (ILD) and the ear’s gty to echoes [51, 52, 53, 54, 55, 56].
Object discrimination experiment [57], prey capture perfance experiment [58] and numerical
simulation [59] all showed that the tragus aids the verticahlization of the bat. Removing the
flap in the pinna wall induces a decrease of the directiorfatmmation, which indicates that the
present of the flap improves the spatial information [60]eiliEthe small ridges in the pinna wall
and the skin folds between the pinnae have a narrowing effettie beampattern [61, 62].

While one can find ears in all bats, noseleaves are found asewssgal large and diverse bat fami-
lies such as Old World leaf-nosed bats (Hipposideridaeyy Werld leaf-nosed bats (Phyllostomi-
dae) and horseshoe bats (Rhinolophidae) [63, 64, 65]. Inrdegtey horseshoe baliinolophus
ferrumequinur)y the complex noseleaf consists of three distinguishet$ g&6, 67] (Figure 1.1):

1) lancet, located right above the nostrils and has sevemnas in it;
2) sella, a protrusion extending from the lancet plane;
3) anterior leaf, a horseshoe-shaped plate closely ardwnivb nostrils.

Like the ear, the dimension of the noseleaf is correlatetl thié emission frequency [68], which
indicates that the noseleaf is related with acoustic fonctiA behavior study demonstrated that
if the upper part of the noseleaf was covered with petroleeliy, jthe beampattern became not
smooth [32]. This case is hard to explain whether the nobededf has impact on the beampattern
as there are hairs in the noseleaf surface. But direct evidemawed that the noseleaf is a kind of
functional structure: bending the lancet back increasedséntical beamwdidth [69]. Moreover,
numerical simulation showed that the furrows in the lancét@ as resonators, which resulted in
a narrower sonar beam [70, 71, 72, 73]. The sella and theianteaf also has the function of
focusing the sonar beam [71, 74].

All'in all, the horseshoe bat has a sophisticated activerssystem with complex sound diffraction
structures.
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1

(b)

Figure 1.1: Noseleaf morphology of the greater horseshoéRtanolophus ferrumequinuym a)
photograph of a noseleaf (frontal view), b) rendering of gitel noseleaf model. The different
noseleaf parts are: 1) lancet, 2) sella, 3) anterior leaf.

1.3 Dynamic Biosonar System Features

It was still unclear which factor contributed to the high foemance of biosonar, but it was hy-
pothesized that the high performance was at least due toatse dynamic periphery of their
sophisticated sonar systems. The sonar systems in batthé@ars and noseleaves, are not static
features and they can undergo non-rigid deformations.

The pinna movements were first discovered in the greateebbog batRhinolophus ferrume-
quinun) [75]. Some of the bats hold their ears fixed in the spaceiveléd their head position,
but others move them in various ways, such as the greateedtays bat mentioned before. Other
than independent movement, the ears also move simultage®sse movements are controlled
by ear muscles [75]. One group of the muscles enable thenagadion of the ear, the other group
is in charge of non-rigid deformation. The maximum disptaeat of the ear tip was more than
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4 mm, which is comparable with the wavelength of the condtagfuency (80 kHz) component
of the emit sound. More interestingly, the ear alternatirayements were closely related to the
sound emission [76, 77, 78, 79, 80]. When bats are interestddngs close by, one ear moves
forward and the other ear moves backward rapidly while emgitthe buzz pulse, which is highly
consist. If the ear movements were disabled by cutting theeseand muscles, the obstacle avoid-
ance performance of the vertical target localization déggdawhile the ability of the horizontal
target localization remained intact [81]. Further, nuro@rsimulation showed that during the non-
rigid deformation sequences, the sensitivity of the mabelof the beampattern remained almost
constant. On the contrary, the sensitivity of the side lotmedased [82]. A smart reception dy-
namic baffle was designed based on all those acoustic efiéth® ear structures [83]. When
implemented the local ear features (ridges, incision tragius) into an obliquely truncated cone
separately, there was no significant effect on the beampatié one combined all those local
features, stronger sidelobes appeared, which quangitatgreed with the simulation results and
indicated that the local ear features have a higher degregstém integration [50]. In addition, it
was suggested that the biomimetic dynamic sound recepéfite lhad a significant time-variant
effect [84].

Later, similar non-rigid dynamics were also observed oneifméssion side. The structures asso-
ciated with the noseleaf, such as lancet and anterior leafindergo non-random motions with
specific muscular control [85]. Those motions are not a bgpco of physiological activities, the
bats can actively control the motion and switch it on an of, [87]. The lancet can bend forward
and recover backward during the sound emission period (Eif2a,b). The maximum rotation of
the lancet can reach to 12° and the average linear displatevas less than 1 mm. As the lancet
was bent, sidelobes were generated at low frequencies wdidn’t has a big effect on the beam-
pattern at high frequencies (Figure 1.2c) [86, 73]. Comparill the lancet, the anterior leaf of
the noseleaf can twitch inward and forward, thus changiegtirvature of the horseshoe-shaped
plane (Figure 1.3) and finally diffracting the outgoing way@7]. The average distal and proximal
displacement of the anterior leaf was around 0.4 mm. Evemgihdhe displacement was small, it
was notable compared with the size of the noseleaf and thesemiwavelengths (4 mm-6 mm).
A biomimetic prototype was developed in order to reprodingedamission dynamics observed in
bats [88, 89, 90].

Up to now, many details of emission dynamics still have to lheracterized to better understand
the principle behind those dynamic features.
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Figure 1.2: Deformation pattern and numerical study of Hmecét of the greater horseshoe bat
(Rhinolophus ferrumequinyma) high-speed video recording sequences of lancet mavering
time window of the emission pulse period and lancet motigrsimulation results of the lancet
bending effect on the beampattern. Reproduced from [86].
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Figure 1.3: Deformation pattern of the anterior leaf of tlieager horseshoe baRljinolophus
ferrumequinugt a) anterior leaf motion detected by laser, b) anteriof te&ch motion pattern,

¢) simultaneous sound pressure, anterior leaf movementityebnd displacement measurements.
Reproduced from [87].
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1.4 Evidence for Dynamic Effects

The dynamic system features could have an influence on thestcdunction: many evidences
showed that bats can change their emission beamwidth umdliirc circumstances to control
their field of view [91, 92, 93, 94, 95, 96]. Adaptive beamwiiaiontrol was observed both in
the Vespertilionid batd\yotis daubentonjiand horseshoe batRlIginolophus ferrumequinum nip-
pon) [91, 93]. When those two kind of bats approached the preywillth of the emission beam
increased compared with the initial hunting phase. By doimgtise bat can increase the prey
capture performance. In the case of prey escaping, the hattitlshave the chance to recapture
the prey due to the larger field of view. In the Vespertiliobats, by lowering the emit frequency,
the beamwidth got wider [91]. Since the Vespertilioind batsit the sound from the mouth, by
changing the size of mouth, the beamwidth also changed P&, for the horseshoe bats, they
didn’t change the frequency in their buzz phase [93], whigbgested that the horseshoe bats
implement other methods to change the beamwidth. Sincecilw@Wwidth depends on the relation-
ship between the wavelength and the aperture size [97] aldaiiseshoe bats emit the ultrasound
from the nose, it was hypothesized that changing the cuwatithe noseleaf could induce the
beamwidth change, which needs experimental verificatiohvahdation.

1.5 Obijectives and Approach

From behavioral study point of view, acoustic function @ tioseleaf could be obtained by directly
investigating the live bat unless the experimental sulgjecperates sustainability. In order to make
the problem easy to handle, experimental approach was used.

The objectives of this research are (Figure 1.4):

1) design a dynamic emission baffle based on the horseshoessleaf;
2) design an experimental setup which can continuouslyrabitite baffle;
3) investigate acoustic effects of the dynamic emissiofidbahd

4) understand how biology sonar system works and give itsigto the engineering sonar design.
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1.6 Chapter Outline

The remaining parts of the thesis are arranged as follows:

Chapter 2describes the designed emission prototypes, the datasatmuisetup and the digital

signal processing techniques.

Chapter 3presents the static and dynamic characterization of theseom baffle.

Chapter 4discusses the principles behind the experimental results.

Engineering

Applications

Chapter 5summarizes the current research and suggests the futesechgirections.



Chapter 2

Methods

Two prototypes were proposed, i.e. intact noseleaf andlsimpseleaf, based on the biological
morphology of the greater horseshoe lRiifholophus ferrumequinym

In order to allow the prototypes to mimic the correlated h#drabetween the sound emission and
the dynamic baffle motion, an automated experimental seagdesigned.

Both the time domain and frequency domain signal processethods were used to investigate
the dynamic effect of the prototypes.

2.1 Reproduction of Noseleaf

The biomimetic prototype designed here was in an attemptasepve the original features of the
noseleaf. To meet this need, digital image processing adiiaelmanufacturing methods were
adopted.

The studied intact noseleaf model came from the greaterebboe batRhinolophus ferrume-
quinumn), which was captured in caves near Jinan, Shandong, Chiha [86

In an effort to get the physical replica of the noseleaf, tbikowing manufacturing procedure
(Figure 2.1) was implemented:

1. the uCT (Skyscan 1072) was used to get the digital model fhenfresh died bat, the width of
the noseleaf is 1 cm and the heightis 2cm;

2. the noseleaf was cut through the mid-plane and the rightaa mirrored to get the symmetric
noseleaf (software: Zbrush), thus the acoustic effect@gymmetric structure was eliminated;

3. the surface of the symmetric noseleaf model was smoo#wdtivare: Zbrush) in order to get
rid of the roughness effect;
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4. the noseleaf was fabricated through additive manufexggeechnique (Objet Connex 350, serial
number 35019) by using elastic material (Objet TangoBlaekFullCure980).

As mentioned before, the width of the noseleaf is about 1 ci¢hwis hard to handle. In order
to allow more freedom to manipulate the noseleaf, the pyptosize was scaled two times than
the original size of the noseleaf. Correspondingly, theregted frequency range one should look
into was 30 kHz to 40 kHz on the ground of size-frequency i@aship [68]. On the contrary, the
thickness was not scaled since it was believed that thertbgsof the material plays no role in the
acoustic function [98].

(a)l (b) |

width

Figure 2.1: Digital model and physical replica of noselefahe greater horseshoe b&Hinolo-
phus ferrumequinujn a) original digital model, width 1 cm, height 2cm, b) symnesmooth
model, c¢) physical elastic noseleaf of (b) generated bytaedmnanufacturing (scaled 2x). The
dashed line in (a) indicates the cut plane for mirroring tightrhalf of the noseleaf to get the
symmetric noseleaf. All were presented in the frontal view.

height

2.2 \Waveguides

Since the available ultrasonic loudspeaker (Ultra Sounglided S56 with Ultra Sound Advice
S55 amplifier) had a larger dimension of sound source (dien®stm) than the narrow nostrils, a
conical horn and circular tube waveguide was brought up tkenag@ this dimension difference.
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The conical horn was always attached to the loudspeakempdithef conical horn next to the loud-
speaker is called "mouth” and the narrow outlet far away ftbmloudspeaker is called "throat”.

Different kinds of waveguide were tested to investigategibemetry effect on the gain and pattern
of the on-axis far-field frequency response:

1. conical horn of different axial lengths (4 cm, 10 cm, 15 cdifferent throat diameters (3 mm,
7mm) and fixed mouth diameter 5cm were used to investigatesticceffect of the horn axial
length and throat diameter;

2. conical horn and circular tube waveguide with differemtrhaxial lengths and tube lengths (total
horn axial length and tube length is 20 cm, Figure 2.2), fixethhmouth diameter 5cm, throat
diameter 7 mm and tube diameter 7 mm were used to study aceffsict of the ratio between the
horn axial length and tube length.

A calibrated microphone (Biel and Kjeer 4138-1/8pressure-field microphone with @&l and
Kjaer NEXUS 2690-A-0S1 1-channel Microphone Conditioning Aifrgr) was placed in the far
field (1 m away from the loudspeaker) to measure the frequessponse of the waveguides.

The desired conical horn and circular tube waveguide is tieevehich can maintain a sufficient
signal-to-noise ratio as well as produce a smooth (no biggpead valleys) on-axis far-field fre-
guency response.
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Figure 2.2: Cross-section of the tested waveguides: theguade consists of a conical horn and
a circular tube, the mouth diameter of horn was always fixethéodiameter of the loudspeaker
membrane (5 cm), the arrows indicate the sound radiati@ctuin of the loudspeaker. Different
combinations of horn and tube were tested in the experimenhiorn length 4 cm, tube length
16 cm, b) horn length 7 cm, tube length 13 cm, c) horn lengthniltabe length 9 cm, d) horn

length 15 cm, tube length 5cm, e) horn length 20 cm. Horn mdiatimeter: 5 cm, throat diameter:
7 mm, tube diameter: 7 mm. Horn length was measured in thédirégtion.
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2.3 Baffle Curvature

Different than the biomimetic prototype, the bioinspireaffle prototype developed here was to
simplify the complicate structure of the noseleaf while iimportant functional features of the
noseleaf were preserved.

The basic geometry of the bioinspired baffle prototype wativaied by the biological morphology
of the nostrils and anterior leaf. Attentive examinatiomnokeleaf of the greater horseshoe bat
(Rhinolophus ferrumequinymhowed that the nostril cross-section is not circularolvig narrow

in the radial direction (diameter0.5 mm) and wide in the orthogonal direction (diameter 3 mm)
with curve transition (Figure 2.3b). Additionally, It wasund that the shape of the baffle closely
surrounding the nostrils, which is called anterior leafnéther convex nor straight but concave
(Figure 2.3c).

Based on the above observations, an elliptical outlet (mejar length 15 mm, minor axis length
1 mm, approximately 12 mfrarea, Figure 2.4b) was constructed to mimic the narrow ihagter-
ture. The outlet flanged with concave baffles (width 15 mmgtler20 mm, Figure 2.4d) was used
to model the anterior leaf.

As a control to the model baffle, circular outlets with di#fat diameters (2 mm,6 mm and 10 mm,
Figure 2.4a) and elliptical outlet flanged with straightflesf of different axial lengths (10 mm,
20 mm, Figure 2.4c) were constructed.

The width of baffles was the same as the major axis of elliptiadet (15 mm).

A conical horn (axial length 10 cm, mouth diameter 5 cm andahdiameter 1 cm) and nonuniform
tube (length 5 cm) waveguide was used to couple the loudspeaki the baffles. The mouth of the
conical horn was connected with the loudspeaker and thattkras interfaced with on end of the
tube (circular cross-section, diameter 1 cm), the otheloétite tube had an elliptical cross-section
(major axis length 15 mm, minor axis length 1 mm), where tHédmwere attached perpendicular
to the major axis. The whole assembly was mounted on a pamniil (FLIR Motion Control
System PTU-D48E), which scanned 180° horizontally (azime®0° to 90°, elevation: 0°) with
3° angular resolution.

A calibrated microphone (Biel and Kjeer 4138-1/8pressure-field microphone with &&l and
Kjeer NEXUS 2690-A-0S1 1-channel Microphone Conditioning Aifigr) was placed in the far
field (1 m away from the loudspeaker) to measure the radigdtern of the outlets and baffles.

The radiation pattern was used to figure out which outlet gaonwill give an omnidirectional
beampattern, which baffle dimension will produce obviousnygattern change and how the baffle
shape as well as baffle angle changes the far-field radiasittarp.
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(@) (b)

(c)

H

Figure 2.3: Nostril and anterior leaf cross-section of theater horseshoe baRljinolophus fer-
rumequinunt a) rendering of a digital noseleaf model, the dashed hdéeates the position to get
the cross-section of the anterior leaf, b) cross-sectighehostril, ¢) cross-section of the anterior
leaf, the arrows indicate the sound radiation directiorhefriostril.
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(a)K [10 Y,

1 mm

20 mm

(b) 3

Figure 2.4: Tested sound outlets and simplified dynamicéaiffbtotypes: a) planar outlet with
circular cross-section (frontal view), b) planar outletmelliptical cross-section (frontal view), c)
baffle with straight flanks mounted on an elliptical outleti¢sview), d) baffle with concave flanks
mounted on an elliptical outlet (side view). The circuladatliptical outlets have cross-sectional
areas ofr 79 mm? and approximately 12 mhrespectively. Both the straight and concave flanks
have the same width 15 mm. The dashed lines indicate the sglaiaf the baffle opening (shown
here is a semiangle of 60°).

2.4 Prototype Manufacturing

The manufacturing process of the biomimetic prototype vasve before.

The bioinspired baffles, including the outlets, were madeapier. By squeezing the circular outlet,
one can get the elliptical outlet.

During the initial testing stage, the waveguides were mdgmper. Once the desired dimension
was set, the waveguide was machined from the Aluminum byguSNC method.
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2.5 Actuation Mechanisms

Different actuation configurations were applied to the piyjies based on the available actuators
and the experimental feasibility. Both prototypes were aetd by the same actuation mechanism:
point actuation.

For the biomimetic prototype, two linear actuators (Filigel2-1) were used to deform the nose-
leaf. One actuator was used to bend the lancet while the wihgused to move the anterior leaf
through thin rod.

The maximum speed of the linear actuator is 23 mm/s, maxintuwkesis 30 mm and maximum
side force is 40 N. The linear actuator weights 34 grams [99].

For the bioinspired baffle, angle template was used to dé@terthe static bending angle and a
single actuator (Hitec digital servomotor HS-225BB Mightynif was used to move the baffle
continuously through thin rod too.

The maximum speed of this actuator is 548nd maximum torque is 0.5 Nm. The weight of the
actuator is 27 grams [100].

2.6 Acoustic Measurements

The implemented experimental setup had the following céipab: signal generation and propa-
gation, data acquisition, prototype orientation and @auoa All those functions were integrated
into a single automated setup (Figure 2.5).

The loudspeaker (Ultra Sound Advice S56, diameter 5cm withal&ound Advice S55 ampli-
fier) sent out the linear-frequency modulated chirp sigdatdtion 2ms, 10 kHz-100 kHz, gated
by raised-cosine flanks), which traveled through the wankgwas modulated by different pro-
totypes and a calibrated microphone i{Brand Kjeer 4138-1/8 pressure-field microphone with
Bruel and Kjaer NEXUS 2690-A-0S1 1-channel Microphone Conditigiimplifier) captured the
signal in the far-field about 1 m away from the loudspeakee fidtorded signal was digitized by
a PXI data acquisition system (National Instruments PXd&3lchassis with PXle-6356 X series
multifunction data acquisition card) at a sampling rate bfHz and resolution of 16 bits.

In the biomimetic noseleaf setup (Figure 2.6), the two lireeduators (Firgelli L12-1) were housed
in an enclosure below the waveguide (horn axial length 10woyth diameter 5 cm, throat diam-

eter 7 mm, tube length 10 cm, tube diameter 7 mm) and behinuobeleaf, thus the acoustic parts
and electrical parts were not influence each other. The eakelas fixed on an artificial head

consisting of a Styrofoam hemisphere, which allows for iitgtof the noseleaf, blocks actuator

noise and directs reflections away from the noseleaf [88, 89]

In the bioinspired baffle setup (Figure 2.7), one end of the t{iube length 5 cm) had a circular
cross-section (diameter 1 cm), which was interfaced withdbnical horn (axial length 10 cm,
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mouth diameter 5 cm and throat diameter 1 cm). The other emadei an elliptical cross-section
(minor axis length 1 mm, major axis length 15 mm), which wasged with different designed
baffles.

In both cases, the whole setup was mounted on a pan-til{felniR Motion Control System PTU-
D48E), which provided 180° azimuth and 120 ° elevation stcagrange with a rotation step size of
1° or 3°. Three repeated acoustic measurements were cautdéor each prototype conformation
to establish repeatability and reduce measurement naisegh averaging.

data — ultrasonic
computer | |acquisition loudspeaker
card ] l
waveguide

!

—_  |dynamic
preamplifier ~[<~——|microphone C( emission [ ~——
prototype

—| actuator

ultrasound

pan-tilt unit

Figure 2.5: Typical components of the acoustic measuresnsatind generation and propagation,
data acquisition, prototype orientation and actuation.
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Figure 2.6: Experimental setup for characterization ofdiieamic noseleaf: 1) ultrasonic loud-
speaker, 2) conical waveguide, 3) Styrofoam, 4) noselagli(E 2.1c), 5) linear actuator, 6) frame,
7) pan-tilt unit.
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Figure 2.7: Experimental setup for characterization of digaamic baffles: 1) dynamic baffle
(shown here is a straight baffle, Figure 2.4c), 2) conicalegaide, and 3) ultrasonic loudspeaker
mounted on a 4) pan-tilt unit.
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2.7 Signal Processing

Different signal processing approaches were used to deaisethe dynamic noseleaf and baffle.

For the dynamic noseleaf experiments, the frequency doreaponse was obtained by applying
a fast Fourier transform with 2048 points to the time domainals.

For one selected frequency from 30 kHz to 40 kHz, the gaine@bne particular frequency over
the scanning space (-90°-90° azimuth, -30°-90° elevatesplution: 3°, linear scale) were used
to describe the radiation pattern (2D beampattern) of tiferdnt noseleaf configurations (Fig-
ure 2.8).

Same technique was used to characterize the static berftlot @& the baffles but for 1D beam-
pattern (azimuth: -90° to 90°, elevation: 0°, resolutioh.dB scale, Figure 2.8d).

Root-mean-square (rms) differences between beam-gaingooflifferent baffle positions were
computed to study the baffle bending effect (using amplguaiea dB-scale).

For dynamic baffle experiments, the envelopes of the timeagiosignal (duration 250 ms) in dif-
ferent spatial position (elevation: -60°-+30°, azimutlf, fesolution: 1°) were extracted using
Hilbert transform to get the time-variant signature (Fegar9). Those envelops were also normal-
ized with the overall maximum in order to see the systematierénce.
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Figure 2.8: Signal processing for radiation pattern: a)ju@eg time domain signal was trans-
formed into b) frequency domain by using Fourier transfofon,one selected frequency (black
vertical straight line in (b)) from 30 kHz to 40 kHz, the gaimsvplotted over full scanning space
(azimuth: -90° to 90°, elevation: -30° to 90°) to get the c)l@ampattern or just over the horizon-
tal space (azimuth: -90° to 90°, elevation 0°, red horizdimta in (c)) to get the d) 1D beampattern.
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Figure 2.9: Signal processing for the dynamic concave bafifie one selected frequency from
30kHz, 40kHz and 50 kHz, the envelope of time domain datae(biya), (b), (c)) was extracted
by using Hilbert transform and plotted over position (exé&npg) 30°, b) 0°, ¢) -60°) to get the d)
time variant signature. Inset in (b) shows the detailed lepespattern.
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Results

In the greater horseshoe bat, the sound they emit consiBtpfency from 60 -80 kHz. Since the
prototype was scaled twice than the original size, so thdietifrequency range was from 30 kHz
to 40 kHz.

3.1 Waveguide Geometry

Overall, the throat diameter had larger effect on the os-&ati-field pressure response than other
waveguide parameters (conical horn axial length, tubetilgng

The increase of the horn axial length and the throat diamedsfound to have a increase effect on
the average on-axis far-field pressure (Figure 3.1). For &dal length horn, the average pressure
gain was the same (31 dB SPL) in both cases (throat diametem,3 mm) while for 10 cm axial
length horn, the average pressure gain of the 7 mm throatwasnhigher (6 dB SPL) than the
3 mm throat horn. Based on those findings, the throat diamétkedorn was fixed to 7 mm.

In the case of horn axial length, tube length and the ratiovden them (fixed mouth diameter:
5cm, throat diameter and tube diameter: 7 mm), all thosenpetexs didn’t have big effect on
the on-axis far-field pressure amplitude (Figure 3.2, 3.8). 3But the short horn (axial length
10 cm) had higher peaks and valleys than the rest (Figur&3L2,

Although the present of the conical horn and circular tubgegaide did result in a significant
drop in the sound pressure level (by about 20 dB), the wavegstill provided reasonable signal-
to-noise ratio (around 20 dB).

23
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Figure 3.1: Effect of throat diameter for different hornaXengths on the on-axis far-field pres-
sure: conical horns with the same mouth diameter (5 cm)emifft throat diameters (blue: 7 mm
and magenta: 3 mm) and various horn axial lengths (b: 4 cnf) cml d: 15 cm) were tested. The
inset (a) shows the horn cross section and the arrows irdilbatsound radiation direction of the
loudspeaker. The red solid line and dashed line shows tluspmaker and noise pressure response
respectively. Interested frequency (30 kHz-40 kHz) range marked by black dashed line.
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Figure 3.2: Effect of waveguide horn axial length on the ais-dar-field pressure: conical horn
and circular tube waveguides with the same mouth diamet@nj5throat diameter (7 mm), tube
length (8 cm) and different horn axial lengths (magenta: 4graen: 10cm, blue: 15cm) were
tested. The inset shows the conical horn and circular tulvegvade cross section and the arrows
indicate the sound radiation direction of the loudspedRed solid line and dashed line shows the
loudspeaker and noise pressure response respectivelyedted frequency range (30 kHz-40 kHz)
was marked by black dashed line.
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Figure 3.3: Effect of waveguide tube length on the on-axidiédd pressure: conical horn and cir-
cular tube waveguides with fixed mouth diameter (5 cm), thd@meter (7 mm), horn axial length
(10cm) and different tube lengths (magenta: 4 cm, green: ,&tme: 12 cm) were tested. The
inset shows the conical horn and circular tube waveguidgscsection and the arrows indicate the
sound radiation direction of the loudspeaker. Red soliddime& dashed line shows the loudspeaker
and noise pressure response respectively. Interestacefiegrange (30 kHz-40 kHz) was marked
by black dashed line.
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Figure 3.4: Effect of horn axial length and tube length ratmthe on-axis far-field pressure: two
different conical horn and circular tube waveguides wite fame mouth diameter (5cm) and
throat diameter (7 mm) were tested (blue: horn axial lengtmdtube length 16 cm, ratio 0.2;
magenta: horn axial length 15cm, tube length 5cm, ratio Bi&e just shows two examples of
Figure 2.2). The top inset shows the conical horn and cirdulze waveguide cross section and
the arrows indicate the sound radiation direction of thelépeaker. Red solid line and dashed
line shows the loudspeaker and noise pressure responsxtiesly. Interested frequency range
(30 kHz-40 kHz) was marked by black dashed line.



Yanging Fu Chapter 3. Results 28

3.2 Lancet Bending

It was shown that the deformations of the lancet didn’'t haveiaus effect on the beampattern
(Figure 3.5) in most of the frequencies. In few frequendiesiding the lancet narrowed the beam-
pattern.

Take 38 kHz of repetition (b) for example, as the lancet wad vem 0° to 5°, the azimuth -6 dB
beamwidth kept almost unchanged (21°) and elevation -6 @nladth got narrower (51°-33°).

Meanwhile, the max beam-gain difference between the uppgkition and the bending stage of
the lancet was around 1 dB over the entire beampattern.

Experiment repetitions of the biomimetic prototype wasioto share qualitatively common fea-
tures (Figure 3.5). All beampatterns were dominated by alolaé and as the frequency increased,
the lobe narrowed in the azimuth direction.

0 amplitude [linear scale]

Figure 3.5: Beampatterns at various bending stages of thedaadseplica: for each experimental
repetition (a and b), the lancet was bent from 0° to 5° in sté@s, frequencies range from 30 kHz
(corresponds to 60 kHz in bats) to 38 kHz (corresponds to Z6ikHbats) in steps of 4 kHz. Ex-

periment setup was showed in Figure 2.6 and signal proagsséthod was showed in Figure 2.8.
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3.3 Outlet Geometry

It was observed that the narrow direction of the elliptiaatlet produced an omnidirectional beam-
pattern compared with the circular outlet.

The diameter of the circular outlet had influences on thesuresgain as well as the beamwidth of
the beampattern (Figure 3.6). The increase of the circuidetodiameter did result in the increase
of the on-axis far-field pressure amplitude (Table 3.1). &bthe studied diameter cases (2 mm,
6 mm and 10 mm), the maximum pressure gain difference was 7RIB B) dB SPL, 6 dB SPL,
7dB SPL, 8dB SPL 7 dB SPL for 30 kHz-40 kHz (2 kHz steps) respelgt On the other hand, the
increase of the circular outlet diameter led to a narrowanggattern. Take 34 kHz for example,
the -6 dB beamwidth was 102°, 72°, 69° for 2mm, 6 mm and 10 moular outlet respectively.

The acoustic effect of the elliptical outlet behaved défarthan the circular outlet (Figure 3.7).
Beampattern measured along the minor axis (1 mm) of the iellipputlet showed almost an
isotropic beampattern=(120°), the minimum gain change is 4 dB SPL and maximum gaingda
is 7dB SPL within 120°. In contrast, beampattern measuredgathe major axis (15 mm) was
highly directional (within 60°). Take 34 kHz for examplegtk6 dB beamwidth was 39° for major
axis (15 mm) and 164° for minor axis (1 mm).

Beampattern measured along the 3 mm minor axis had a simttarpaf the 1 mm minor axis, but
had a slightly higher (3 dB) on-axis far-field pressure ampht In contrast, on-axis beam-gains
of the 15 mm major axis and 1 mm minor axis were the same forexduiencies.

The omnidirectional beampattern is the one we want sinceeifittached a baffle around it, the
beampattern can be easily changed and any change in the dtamys due to the baffle effect.

In the following, the results shown were measured along tm®mnaxis (1 mm) of the elliptical
outlet.

Table 3.1: Influence of the circular outlet diameter on theagis far-field pressure (dB SPL) for
different frequencies

diameter (mm), 30kHz | 32kHz | 34kHz | 36 kHz | 38kHz | 40 kHz
2 34 31 34 35 37 38

6 39 38 38 40 41 44

10 41 41 40 42 45 45
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Yanging Fu
(c) 34 kHz

(a) 30kHz
50 40 30 20 10 50 40 30 20 10

50 40 30 20 10
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Figure 3.6: Influence of circular outlet diameter on the beatterns: a) 30 kHz, b) 32kHz, c¢)
34kHz, d) 36 kHz e) 38kHz, f) 40kHz. Circular outlets with e@ifent diameters (green: 2 mm,
magenta: 6 mm, blue: 10 mm) were tested. Signal processitigpohevas showed in Figure 2.8.

(c) 34 kHz

Wk\
50 40 30 20 10 50 40 30 20 10

50 40 30 20 10

(d) 36 kHz (e) 38kHz @ (f) 40kHz
- | T\Goo \
- 15mm
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50 40 30 20 10 50 40 30 20 10
gain [dB SPL]

Figure 3.7: Influence of elliptical outlet on the beampatsera) 30 kHz, b) 32 kHz, c¢) 34 kHz, d)
36 kHz e) 38 kHz, f) 40 kHz. Elliptical outlets with the samejaoraaxis (red: 15 mm) and different
minor axises (black: 3mm, cyan: 1 mm) were tested. Signatgesing method was showed in

Figure 2.8.
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3.4 Baffle Geometry

For the same amount of static baffle angle change, the 2 cne baifl a narrower beampattern and
higher on-axis far-field pressure gain change than the 1 ¢fie ba

In terms of the 1 cm baffle, as the baffle semiangle was chamged 60° to 30°, the beampat-
tern remained almost constant in low frequency and got namr high frequency (Figure 3.8 ,
Table 3.2). The maximum -6 dB beamwidth change was 35° fol-884dnd on-axis far-field pres-
sure amplitude remained almost constant (maximum diffsxevas 1 dB SPL for all frequencies,
Table 3.3).

In terms of 2cm baffle, as the baffle semiangle was changed &@fiio 30°, the beampattern
got narrower for all frequencies (Figure 3.8, Table 3.2)e Timximum -6 dB beamwidth change
was 42°for 38 kHz and on-axis far-field pressure value irsgddor every frequency (maximum
difference was 4 dB SPL for 38 kHz, Table 3.3).

In summary, the 2 cm baffle produced more beampattern chhagdfie 1 mm in terms of beamwidth
and amplitude.

Table 3.2: Influence of the baffle dimension on the -6 dB beattiw(°) for different frequencies
(beampattern was measured along the minor axis of theiedlifiutlet)

baffle length (cm), baffle angle (°)] 30kHz | 34 kHz | 38 kHz
1 30 53 50 40
1 60 59 71 85
2 30 37 28 28
2 60 58 54 70

Table 3.3: Influence of the baffle dimension on the on-axidiédd pressure (dB SPL) for different
frequencies (beampattern was measured along the minoofakis elliptical outlet)

baffle length (cm), baffle angle (°)] 30kHz | 34 kHz | 38 kHz
1 30 36 35 39
1 60 35 34 38
2 30 40 39 40
2 60 38 36 36
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Figure 3.8: Beampattern effects due to the length of thegsttdnaffle: different baffle lengths (b,

1cm; ¢, 2cm) and different baffle semiangles (blue: 60°, B84) were tested at various frequen-
cies: 30kHz, 34 kHz, 38 kHz. The dashed lines indicate thaa®gte of the baffle opening (inset
a, shown here is a semiangle of 60°). Experiment setup wageshim Figure 2.7, beampattern
was measured along the minor axis (1 mm) of the ellipticalebuSignal processing method was
showed in Figure 2.8.

3.5 Static Characterization of Straight Baffle

The median of the rms-difference depended on the bendinlg ahthe straight baffle linearly.

The median rms-difference between repeated measurenfethis lseampatterns associated with
the 90°-open angle was found to be 2.8dB (Figure 3.9, 0°)chvinas regarded as the system
noise level for the all tested cases.

Over the angular bending distance of 60°, the rms differdretereen the beampattern gains in-
creased monotonically from a base (measurement noisd)28€B to 6 dB, this relationship
was found to be approximately linear (linear regressiomiedian rms difference versus angular
difference:r?=0.97, regression slope: 0.6%) (Figure 3.9, Table 3.4).

The increasing on-axis pressure and narrowing beamwitibtefssociated with the rotation of the
flanges accounts for the increasing rms-difference. Talkei24or example (Figure 3.9(c)), as the
flap was rotated, the on-axis pressure gain was changed 28 $PL to 39 dB SPL (Table 3.5)

and the -6 dB beamwith was changed from 119° to 30° correspgnad baffle opening angle 90°

and 30° respectively (Table 3.6).
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Table 3.4: Influence of the bending angle on the median ro@nnsguare difference for 2cm

straight baffle
bending angle (°) median [minimum, maximum] rms-difference (dB)
0 2.8[2.3, 3.3]
10 3.0[2.4, 3.7]
20 3.5[2.9, 4.6]
30 3.9[3.4,4.5]
40 4.413.7,6.2]
50 5.2[3.9, 6.5]
60 6.0 [4.5, 8.2]

Table 3.5: Influence of the bending angle on the on-axis &a-firessure response of 34 kHz for
2 cm straight baffle

bending angle (°) on-axis far-field pressure response of 34 kHz (dB)
30 39
40 37
50 35
60 33
70 34
80 33
90 32

Table 3.6: Influence of the bending angle on the -6 dB beanmatid4 kHz for 2 cm straight baffle

bending angle (°) -6 dB beamwidth of 34 kHz (°
30 30

40 51

50 69

60 84

70 100

80 101

90 119
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Figure 3.9: Beampattern effects due to static bending oftiiagght baffle: a) reference opening
angle was 90°and bending angle varied, b) root-mean-sgaare@lifference between beampatterns
produced by a 90°-reference and a tested opening anglensidiifferences were computed with
averaging over 21 frequencies ranging from 30 kHz to 40 kHztéps of 0.5 kHz as well as over
angle, black straight line shows the linear regression eeitwhe bending angle and the median
(blue dot) of the rms difference, slope 09, coefficient of determination? = 0.97, ¢) example
beampatterns shown are for a frequency of 34 kHz of diffebaffte opening angles: 90°(black),
80°(blue), 70°(green), 60°(cyan), 50°(magenta), 409(r80°(purple). In the box-and-whisker
plots, the whiskers denote the location of the minimum andimam, the edges of the box the
first and third quartiles, and the horizontal line the medid&xperiment setup was showed in
Figure 2.7, beampattern was measured along the minor amimlof the elliptical outlet. Signal
processing method was showed in Figure 2.8.
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3.6 Static Characterization of Concave Baffle

The beampatterns associated with the bending concave befil@aved very different from the
straight baffle flaps.

From an rms-error base line of 2.8dB (identical to straighitl®), the rms difference between
beampatterns jumped to 5.7 dB within just a bending of 10§yfe 3.10). For larger bending
angles, the rms difference appeared to oscillate betwdeprs/as low as 4 dB (median value for
30°, Figure 3.10) and as high as 5.8 dB (median value for 4Q%yr€ 3.10).

The oscillations of the rms-difference were due to the pumieed sidelobes in the beampatterns
that were associated with the concave baffle (Figure 3.L0&sfthe baffle was bent, the location
of the sidelobes and the notches that separated them fromadhdobe were shifted, when the
directions of sidelobes and notches coincided, a largedifference resulted. Whenever the lobes
of the compared beampattern overlapped, the rms-differesas small.

Small-scale rotations (0° to 10° in steps of 2° or 3°) showed the transitions between similar
and dissimilar beampatterns within the bending were smasttvell (Figure 3.11). The distin-
guish difference was that the sidelobe in the beampattdrasged its angular position as well
as gain. Again, the relationship between rms differencesbemmding angle was approximately
linear (-=0.87, i.e., not quite as well linearly correlated as thaight baffle, Figure 3.11), but
this happened over a much smaller angular range of 10° gsigreslope 0.%8-, 4x the slope for
the straight baffle, Figure 3.10, Table 3.7). More impottand get the same rms-difference, the
straight baffle need to rotate<g(60°) larger than the concave baffle.

Table 3.7: Influence of the bending angle on the median ro@nnsguare difference for 2cm
concave baffle

bending angle (°) median [minimum, maximum] rms-difference (dB)
0 2.8[2.3, 3.3]
10 5.7[4.8, 6.5]
20 5.0[3.9, 5.5]
30 4.0[3.3,5.7]
40 5.8[4.8, 6.9]
50 5.5[4.5, 6.6]
60 4.4[3.5,5.1]
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Table 3.8: Influence of the small bending angle on the medyah mean square difference for
2 cm concave baffle

bending angle (°) median [minimum, maximum] rms-difference (dB)
0 2.8[2.3, 3.3]
3 4.4[3.8,5.2]
5 4.4[3.3,5.2]
7 5.0[4.0,5.8]
10 5.7[4.8, 6.5]
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Figure 3.10: Beampattern effects due to static bending oftineave baffle: a) root-mean-square
gain difference between beampatterns produced by a 96ferefe and a tested opening angle
(Figure 3.9a), all rms differences were computed with ayi@over 21 frequencies ranging from
30kHz to 40 kHz in steps of 0.5 kHz as well as over angle, b) gtaimeampatterns shown are for
a frequency of 34 kHz of different baffle opening angles: 39a¢k), 80° (blue), 70° (green), 60°
(cyan), 50° (magenta), 40° (red), 30° (purple). In the boa-ahisker plots, the whiskers denote
the location of the minimum and maximum, the edges of the bexfirst and third quartiles,
and the horizontal line the median. Experiment setup wasvatian Figure 2.7, beampattern
was measured along the minor axis (1 mm) of the ellipticalebuSignal processing method was
showed in Figure 2.8.
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Figure 3.11: Beampattern effects due to static bending ottmeave baffle over small angles
(0° to 10°). Root-mean-square gain difference between batierps produced by a 90°-reference
and a tested opening angle (Figure 3.9a). The referencengpangle was 90° for all conditions
(Figure 3.9a). Black straight line shows the linear regmesbetween the bending angle (from 3°to
10°) and the median (blue dot) of the rms difference, slo@e®0, coefficient of determination
r? = 0.92. The example beampattern plots show beampatterns fordsvi@nding angles relative
to the reference of (a) 3°, (b) 5°, and (c) 7°. All other expemntal and display parameters were
the same as Figure 3.10. Experiment setup was showed ineR2glyy beampattern was measured
along the minor axis (1 mm) of the elliptical outlet. Signabgessing method was showed in
Figure 2.8.

3.7 Dynamic Characterization of Concave Baffle

When the concave baffle was continuously actuated in synghwith the emission, a signature
was created that depended on time, frequency (30, 40, 50dd4zEll as direction (Figure 3.12).
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Take 40 kHz for example (Figure 3.12c,f), when the baffle weld fts position, the amplitude of
the time domain signal was constant along the time axis ariddsacross spatial direction. But
when the baffle was moved during the pulse, the amplitudeeofithe domain signal varied both
in the time axis and across direction. Moreover, the mage#of the lower range (-60° to -30°)
of dynamic case was higher than (more than 10 dB differenice $ame range of the static case.
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Figure 3.12: Example of a continuous time-variant sigretweated by motion of a concave baffle:
a) measurement direction relative to the baffle, b,c,d) ntades (envelope of the analytic signal)
of signal received from the dynamic baffle for frequencieb)d0 kHz, ¢) 40 kHz, and d) 30 kHz.
The static reference (opening angle 60°) are shown in e) Q0 WHI0 kHz, and g) 30kHz. The
baffle motion executed in this example ranged from -60° toiB@50 ms. Signal was measured
along the minor axis (1 mm) of the elliptical outlet. Signabgessing method was showed in
Figure 2.9.
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Discussions

4.1 Interpretation of Results

The waveguide dimension, i.e. the horn throat diametemtme axial length, plays an important
role in the acoustic performance of the waveguide.

The horn throat diameter controls the on-axis far-field gues response gain. For constant sound
intensity inside the horn, the larger the throat area (thgelathe throat diameter), the more power
it radiates according to sound power equals sound intetisigs the area relationship. Hence, the
higher on-axis far-field pressure gain for larger throatrditer.

The horn axial length mainly influences the on-axis far-flglessure response pattern. For short
horn, the sound reflects more inside the horn than the long tfmus less sound radiates from the
horn, which explains why shorter horn had high peaks an@éystihan the longer horn.

The geometry of the outlet, i.e. shape and dimension, detesthe on-axis far-field pressure
response as well as far-field radiation pattern.

Again, larger outlet area resulted in a higher on-axis fldfpressure output. Meanwhile, the far-
field radiation pattern of the circular and elliptical otitheas governed by the following normalized
(with respect to the on-axis pressure amplitude) dirggtivinction [101, 102]:

in0~ /b2 cos? 2 in2
D(Q, Qb) _ 2J1 (ksind+/b%cos? p+a?sin? p)

ksinf \/b2 cos2p+a?sin?¢

whereq is the semi-minor axis anfdis the semi-major axis of the elliptical outlet, wher= b, the
equation reduces to the circular outlet cageis the first kind Bessel equatiofi.is the cone angle
(determines the beam direction measured with referend¢etodrmal to the outlet plane) ands
the azimuthal angle within the elliptical outlet plane (Fig 4.1a). Wherk/b2cos2¢ + a2sin?¢

is smaller than 1, the far-field radiation pattern is ommditonal and when it is larger than 1,
radiation pattern becomes narrow. Take an elliptical o@tlenor axis 1 mm, major axis 15 mm)

41
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for example, 34 kHz beampattern measured along the miner(axib2cos2¢ + a2sin2¢ = 0.3)

was more wider than beampattern measured along the mapikaxib2cos2¢ + a2sin2¢ = 5)
(Figure 4.1b), which is qualitatively agree with the expental results.

Since the elliptical outlet produced an omnidirectionahin@attern along the minor axis, if one
attached baffles perpendicular to the minor axis directlmpeampattern could be easily changed
and any change in the beampattern was due to the baffle chahigh, was showed in the experi-
mental results.

When either straight baffle or concave baffle was attacheckteltiptical outlet and if the attached
angle was changed, the corresponding acoustic impedarscalseachanged. Acoustic impedance
is a measurement of the sound radiation efficiency. It censistwo parts: real part is acoustic
resistance and imaginary part is acoustic reactance. Asaffle opening angle decreases (bending
angle increases), the throat acoustic resistance inaegd€8, 104]. Simulation results by using
modal propagation method [105, 106, 107] also showed timd kif trend (Figure 4.2). For a
constant velocity source, the acoustic power is propaatitmthe acoustic resistance [103, 108],
thus high acoustic resistance results in high radiationieffcy. Hence the root-mean-square(rms)
gain difference between reference angle (90°) beampadtaiirtested angle (30°-80° in steps of
10°) beampattern increases as the bending angle incréagas4.3).

On the contrary, the resonance effect of the concave bafiiplcates this relationship [109, 110],
thus the trend between the rms gain difference and the bgadigle of the concave baffle becomes
oscillated and continuously moving the concave baffle cbalk a dramatic time-variant effect.
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Figure 4.1: Governing equation and examples of the far-fiattiation pattern of the elliptical
outlet: a) governing equation of the elliptical outlet fagtd radiation patterry is the semi-minor
axis and is the semi-major axis of the elliptical outlet, is the first kind Bessel equatiofiis the
cone angle and is the azimuthal angle within the elliptical outlet plangebiptical outlet far-field
radiation pattern of 34 kHz, minor axis length 1 mm (red), onajxis length 15 mm (blue).
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Figure 4.2: Normalized acoustic resistance of conical lath different horn angles: 30° (red),

40°(green), 50° (blue), 60° (cyan), 70° (black), 80° (maggrd0° (purple). Inset shows the cross-
section of the conical horn, throat diameter 1 mm, horn le2gtm.
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Figure 4.3: Bending effect of the conical horn angle on thé-mean-square (rms) gain difference
between reference angle (90°) beampattern and tested(@0§t80° in steps of 10°) beampattern:
black straight line shows the linear regression betweerbémeling angle and the median (blue
dot) of the rms difference, slope 0'%, coefficient of determination? = 1. RMS beam-gain
differences of 21 frequencies ranging from 30 kHz to 40 kHgtaps of 0.5 kHz are in each box-
and-whisker plot.

4.2 Relevance to Bat Biosonar

It was observed that the bat nostrils are “comma-shapedthwnl narrow radially but wide tan-
gentially and can be approximated as elliptical shape. Teriar leaf was attached tangentially.
Hence, it can be hypothesized that the comma-shaped bailsiostate a near-field that is well
suited for illuminating the flanges of the anterior leaf amhte create strong effects when the
anterior leaf is deformed. It was also found that a bioireghiconcave shape creates pronounced
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time-variant signatures with just a small displacemergs(kaan 10°), which could be the function
of concave profile of the horseshoe bat anterior leaf. Botbelwo features enhance the dynamic
sensing in bat biosonar.

4.3 Relevance to Engineering

In engineering, the shape of horn loudspeaker is convex tansuially operates below 20 kHz.
Within this frequency range, the convex horn has higher sttouesistance compared with the
conical and concave horn [111].

While for the shape of the anterior leaf, when compared witlelotorn provides commonly
used in engineering (Fig. 4.4a) using a modal propagatiothadefor numerical estimation of
acoustic resistance [105, 106, 107], the concave baffls@®estion of show a resistance maximum
just above 80 kHz, which is about 30% higher than other tebtwds. This indicates that for
engineering device, it is possible to adopt the anteridrdbape if the device needs to operate in
the higher frequency.

Horn loudspeaker and other directivity device, such asmmatgis static in the local sense. For the
future design, dynamic features could be added to imprayel¢hection range as the time-variant
signature generated by the continuous movement of the certedfle.
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Figure 4.4: A horn approximation of the anterior leaf congoktio other horns: a) cross-sections of
the anterior leaf (thick line, circles) compared to Bessilr§, conical (squares), and exponential
(triangles) horns, b) numerical predictions of the acausgsistances (normalized by a plane wave
over the throat area of the horns) for the horn cross-sexgsbown in (a). The inset in (a) shows
the cutting plane through the anterior leaf that was usedtaiio the anterior leaf cross-section.



Chapter 5

Summary

5.1 Major Findings

Based on the biological morphology of the bat noseleaf, tvadbgbypes were designed. An auto-
mated experimental setup was used to measure the radiatitampof the two prototypes. Both
time domain and frequency domain signal processing metiveds used to analyze the experi-
mental data. By doing so, the following major findings wereieatd:

1. In the current experimental design, the rotation of tmedh (0°-5°) induced acoustic effects
with overall 1 dB beam-gain change.

2. The minor axis direction of the elliptical outlet prodsaamnidirectional radiation pattern in the
far-field.

3. For the straight baffle, the root-mean-square (rms) gdierence between reference angle
(90°) beampattern and tested angle (30°-80° in steps ofldgnpattern linearly depends on the
bending angle (reference angle-tested angle).

4. For the concave baffle, the rms gain difference betweamarte angle (90°) beampattern and
tested angle (30°-80° in steps of 10°) beampattern ossllas bending angle (reference angle-
tested angle) increases. But linearly increases as therggadgle increases from 0° to 10° in
steps of 2° or 3°.

5. To get the same acoustic gain change ( 6 dB rms differetiee}xtraight baffle need rotate six
times (60°) more than the concave baffle (10°).

6. Concave baffle produces a time-variant, frequency-vasigmature when rotating it continu-
ously.

48
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5.2 Suggestions for Future Work

To gain further insights into bisonar, the following coulel tone in the future:

1. Systematic experimental and numerical (finite elemerthath investigate the acoustic proper-
ties of convex, conical and concave baffle.

2. Correlate the time-variant signature with the frequevenyant root-mean-square (rms) gain
difference.

3. The model developed here is a one dimension model and asophésticated model could be
created. Individual and interact acoustic effect of thestesf model could be investigated.

4. Adding target and echo reception part in the experimeimviestigate the engineering aspect of
the whole echolocation system.
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