
A Prototype Assistance Manager

for the

Simulation Model Development Environment

by

Valerie L. Frankel

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

APPROVED:

Osman Balci, Chairman
Department of Computer Science

Richard E. Nance
Department of Computer
Science

H. Rex Hartson
Department of Computer
Science

July 27, 1987
Blacksburg, Virginia

A Prototype Assistance Manager

for the

Simulation Model Development Environment

by

Valerie L. Frankel

Osman Balci, Chairman
Computer Science

(ABSTRACT)

The Assistance Manager, one of the tools of the Simula-

tion Model Development Environment (SMDE), is required to

provide assistance to a user during the process of model

development. This thesis describes the research effort to

prototype the SMDE Assistance Manager.

Requirements are set forth and a design is established

for the Assistance Manager prototype. The implementation is

described, and the Assistance Manager is shown to provide a

highly flexible interface between the user and the database

of assistance information.

Assessment criteria are established, and the prototype

is evaluated. Results of the evaluation indicate that the

Assistance Manager incorporates the characteristics

considered desirable in online assistance systems, and

serves as a basis for future enhancement and development.

TABLE OF CONTENTS

1. 0 INTRODUCTION

l.l The SMDE Research Project

l

1

l
4

l.1.1
l.1.2

SMDE Architecture •.
The SMDE Toolset

1.2 Problem Statement 6

2.0 LITERATURE REY:IEW AND SCOPE OF RESEARCH

2.l Background

8

8

. 3. 0

2.2 Classification of Help Systems 10

2.3 Issues in User Interface and Help System Design .14

2.3.l How Many Levels of Help Should Be

2.4

Available? • • . • • . • • . . . • . l6
2.3.2 Should the User or the System Decide

When Help is Required? ••..••.•. 17
2.3.3 What Factors Should Be Considered in the

Textual Composition of Online Assistance? 17
2.3.4 How Can Online Assistance be Provided ·

Easily and Efficiently by Programmers? .. 18

Survey of Some Existing Help Systems . . 19

2.4.1 BROWSE • . • . • • • • • •.. . 19
. l9 2.4.2 AT&T Unix HELP Facility ••....

2.4.3 ICNHELP..... . .•.•.
2.4.4 SIGMA . . •
2.4.5 ZOG •••••..•.••...•••
2.4.6 TNT

• • 2 0
• 20

• • 21
. 2l
• 21
• 22

• 2 2

2. 4. 7 SARA
2.4.8 HELP: A Question Answering System •••
2.4.9 ACRONYM......... • ..
2. 4. l 0 DOMAIN/DELPHI • • • • • . • • 2 2
2.4.11 UC: The Unix Consultant•. • • 2 3

DESIGN AND IMPLEMENTATION OF THE PROTOTYPE • 2 4

3.1 Motivation: Factors in the Design of the Assistance
Manager . • • 24

3.1.1 Characteristics of Effective Online Assistance 25

3.1.2 Assistance Manager Design Objectives and
Requirements • 27

3.2

3 .1. 3

3.1.2.1
3.1.2.2

Design Objectives
Functional Requirements

Prototyping as a Design Strategy ..

Hardware/Software Environment

3.3 Components o~ the Assistance Manager

3.3.1
3.3.2
3.3.3
3.3.4
3,3.5
3.3.6

Introduction to the MDE
Tutorial .•..
Glossary

Local (Tool-Specific) Help.
Comment Facility

Programmer Assistance

3.4 Implementation Considerations ...

4.0 EVALUATION OF TH~ PROTOTYPE ..

4.1 Assessment Criteria

4.2 Evaluation of the Criteria .

4.3

4.4

Design Alternatives

Design Limitations

. 27
. . 30

. 31

32

• 3 4

35
• • 3 8
• • 4 3
• • 4 7

51
51

. . 56

59

59

• • • 5 9

• • • 6 5

• 67

4.5 The Choice of INGRES as a Database Management
System • . . • • • • • . • . • • • 68

5. 0 §.!!~~ARY AND CONCLUSIONS .

5.1

5.2

Summary

Recommendations for Future Research

5.3 Conclusions

BIBLIOGRAPHY

70

70

. 71

• 7 3

75

AP~~N~!_~ l

APP~N~.!.~ 2

Y:!.T~

75

83

84

Figure 1.1.1.1

Figure 3.3.1

Figure 3.3.2

Figure 3.3.3.l

Figure 3.3.3.2

LIST OF FIGURES

SMDE Architecture

Assistance Manager Tool Menu

Invoking the Assistance Manager through an

3

. 36

SMDE Tool • • • • . ..••..••• 37

The Introduction to the SMDE Component of
the Assistance Manager ••.••••.•• 39

Searching for a phrase within the Introduc-
tion to the SMDE • • • .•••. 40

Figure 3.3.2.1 The Tutorial Component of the Assistance
Manager • • 42

Figure 3.3.3.1 Glossary Main Menu (left) and Glossary

Figure 3.3.3.2

Figure 3.3.4.1

Figure 3.3.4.2

Figure 3.3.5.1

Figure 3.3.6.1

Figure 3.3.6.2

Figure 3.3.6.3

Lookup Menu (right) . 44

Glossary Browse Menu 46

Example Demonstrating Help Frame Feature of
Local Help. • • • • • ..•.•••••. 49

Example Demonstrating the "Explain" Feature
of Local Help • . . • . . • . 50

Comment Form (right) ..••.•

Programmer Assistance Main Menu (right)

52

53

Example of Interaction to Add Documents to the
Documents Directory • • • • . 55

Quick Reference Guide Window (right) . . • • . 62

ACKNOWLEDGMENTS

The author wishes to acknowledge her chairman, Dr.

Osman Balci, for his invaluable assistance and total

commitment to the research project, and in particular, to

his role as advisor and professor. Acknowledgment is also

extended to Dr. Richard E. Nance for many valuable insights

and critiques of the work described in this thesis. In

addition, I wish to thank Bob Moose, Lynne Barger, and Joe

Derrick for the technical support they provided as members

of the MDE Research Project; Dr. Rex Hartson for serving on

my committee; and the entire faculty and staff of the

Computer Science Department for the productive years I spent

in close contact with them.

This thesis is dedicated to my husband, Jay, who has

always supported me completely and never doubted my ability

to persist despite what seemed at times to be insurmountable

odds. His love and patience have been the guiding forces of

my life.

1.0 INTRODUCTION

1.1 The SMDE Research Project

The use of computer-based models is an activity used to

solve problems in all areas of business, government, industry,

and the military. As the problems grow larger, become more

complex, and require accurate solutions more rapidly than

ever before, the model development process itself requires

computer assistance throughout its entire life cycle [Balci

1986].

Research is ongoing at Virginia Tech to prototype a

Simulation Model Development Environment (SMDE) which would

automate the model development process, thereby reducing the

cost of development and increasing the quality of resulting

models.

The objectives of the SMDE, as stated in [Balci 1986],

are to

(1) offer cost-effective integrated support continuously
throughout the entire life cycle of model
development,

(2) improve the model quality by effectively assist-
ing in the quality assurance of the model,

(3) significantly increase the efficiency and
productivity of the project team, and

(4) substantially decrease the model development time.

1.1.l .§MDE Architecture

The four-layer architecture of the SMDE is depicted in

1

Fig. 1. The hardware and operating system reside at Layer O.

For the SMDE prototype, a Sun workstation running the Unix*

operating system provides the Layer O base.

Layer 1, the Kernel Model Development Environment

(KMDE), integrates the SMDE tools into the programming envi-

ronment. The KMDE provides databases, communication and

run-time support functions, and a kernel interface.

Layer 2, the Minimal Model Development Environment

(MMDE), provides a comprehensive toolset considered minimal

for the development and execution of a model. It is basic

in the sense that the set of tools enables modelers to work

within the bounds of the MMDE without significant

inconvenience, and general in the sense that the toolset is

generically applicable to all types of abstract modeling

tasks.

The outermost layer, Layer 3, is the highest layer of

the environment which is based upon a particular MMDE. In

addition to the toolset of the MMDE, it incorporates tools

that support specific applications and are of special

interest within a particular project.

An SMDE tool is integrated with other tools and the

programming environment through the kernel interface. The

provision for this integration is indicated in Fig. 1 by the

opening between Project Manager and Text Editor.

*Unix is a trademark of AT&T Bell Laboratories

2

Functions

Hardware and
Operating System

Source
Code

Manager

Electronic
Mai 1

Interfac System

Fig. 1.1.1.1 The SMDE Architecture

3

MOE

1.1.2 T_he §!'1DE Toolset

The SMDE provides a comprehensive set of tools that is

considered minimal for the development and execution of a

model. A brief description of these tools is given below.

The Project Manager responds to queries about project

status and due dates, triggers messages and reminders, records

the progress of the project, and administers the project

database.

The Premodels Manager administers the premodels database

containing earlier developed and tested models, submodels or

model components, and provides information on previous

modeling projects.

The Assistance Manager administers the assistance data-

base, provides tutorial assistance, gives definitions of

technical terms, and explains details of tool usage.

The Command Language Interpreter is capable of invoking

all SMDE tools through an extensible and human engineered

interface.

The Model Generator supports the modeling process by

guiding a modeler through model definition, model specifica-

tion, and model documentation. It also provides assistance

in model qualification.

The Model Analyzer diagnoses the model specification

created by the model generator and assists in verification

of the communicative model.

4

The Model Translator trans lat es the model specification

into an executable code after the quality of the specifica-

tion is assured by the model analyzer.

The Model Verifier assists in verification of the

programmed model by creating a cross-reference map,

supplying dynamic analysis tools such as traces, breaks, and

system snapshots, and incorporating diagnostic measures

within the source program.

The Source Code Manager, assumed to be provided within

or by the programming environment, translates the source

code into a machine representation and performs its

execution.

The Electronic Mail System, al so assumed to be provided

by the programming environment, is necessary for

communication among the people involved in the project.

The Text Editor is expected to be included within the

programming environment. It is required for general text

preparation, including technical reports, user manuals, and

system documentation.

The multiplicity of the SMDE tools forces increased

attention to be focused on a uniform, flexible assistance

system that is responsive to user errors and assistance

requests. The Assistance Manager is required to address

this need, and the research described in this thesis

directly concerns the design and implementation of a

prototype Assistance Manager.

5

1.2 Problem Statement

The Assistance Manager, one of the essential components

of the Simulation Model Development Environment, is required

to provide help on the use of an SMDE tool, and to perform

other assistance tasks for the modeler or tool developer

[Ba l c i 19 8 6] •

Because the SMDE is a general purpose environment that

can support a variety of modeling and simulation

applications, it is not unreasonable to expect that it may

'"" be used by people with widely different backgrounds and

expertise. It is even conceivable that the SMDE may be used

by an analyst who has no prior computer experience at all.

For a modeler to work productively and confidently within

the SMDE, great care must be given to design an interface

that is integrated with an online assistance system. This

system, to be effective, is required to be constantly

available, easy to use, and sensitive to the user's current

state. Furthermore, these requirements must be met by a

help system that does not dominate the user 1 s interactions

within the environment. It must be flexible enough to

accommodate varying levels of user expertise, and should be

accessible from any tool in the SMDE. Because the SMDE

is an open-ended environment, the help system must be gene-

ral and flexible enough to be easily incorporated into

existing tools, as well as included with new tools which

6

may be added to the environment later.

No existing help system can meet all these require-

ments. Current help systems available for general use are

add-on systems designed to operate independently of the

system under study. They lack the flexibility and context

sensitivity necessary for use with the SMDE.

This thesis is put forth to develop a prototype

Assistance Manager, based on sound principles of human-

computer interaction and help system design, which meets the

requirements listed above.

7

2.0 LITERATURE REVIEW AND SCOPE OF RESEARCH

2.l Background

A help system, as referred to in this thesis, is

designed to aid a user in using some software facility.

This aid may be offered in the form of command assistance,

error recovery, online documentation, or computer-aided

instruction. The assistance may be separate from the system

on which help is offered, or it may be integrated closely

with the system architecture.

Currently, the standard practice is to include some

form of online assistance with an interactive system. From

the user's point of view, the major differences in these

help systems are in the kind of help offered, and the

mechanisms used to access the information.

Many researchers who characterize their work as "online

help" consider their design in terms of users recovering

from errors. These systems are concerned with context

sensitivity; i.e., how the system can find out enough about

what the user was doing to explain the problem and offer

adv ice. People who characterize their work as "onl ine docu-

mentation" typically think of making reference material

available to the user on request [Walker 1986].

When the amount and depth of information needed to

start using a system is more than can be addressed by a help

system, online tutors can be used. Tutors have the advan-

8

tage of offering a new user a safe, restricted environment

where he can learn and subsequently test his knowledge. A

familiar example of an online tutorial is the "learn"

command available on many Unix systems [Kernighan and Pike

1984).

Most older help systems, and some current ones, are

add-on systems: software facilities that are separate and in

addition to the system being used. Easily maintained and

updated, the major disadvantage is that the user 1 s current

task must be interrupted while the user searches through

online files to find the particular piece of information he

seeks. Such systems are little more than online reference

manuals.

With the advent of personal computers, computing became

accessible to a diverse population. Interactive systems

became more widespread and no longer could intuition and ad

hoc methods suffice to design help systems. Help began to

be integrated: developed around -- and not in spite of

the software system itself. Examples of integrated help

systems are systems that base their user interface on menus

with well-described choices [Bergman 1985).

At first, this 11integrated 11 help was nothing more than

the incorporation of 11user-friendly 1' features. Indeed,

much early research on computer help systems dealt with user

interface design [Mozeico 1982; Relles and Price 1981;

9

Robertson et al. 1981; Relles 1979; Sondheimer and Relles

1982).

Obviously, the two domains overlap a great deal. A

well-designed interface can alleviate the need for an

outside help command. However, recent research [Bergman

1985; Bramwell 1983; Butler and Kennedy 1985; Estrin et al.

1986; Nakatani 1986) tends to treat help systems as distinct

from user interface issues.

2.2 Classification of Help Systems

A lack of consistent terminology has hampered any uni-

versally accepted classification of help systems. Fenchel

[1982) suggests as a first step in developing a taxonomy of

interactive assistance a classification into four distinct

types of assistance information:

1) expert systems - systems that attempt to give

the advice that would typically be given by an

expert human,

2) tutorials - lesson-based assistance demonstrating

the use of the software system/tool. The emphasis

of a tutorial is on teaching, not on the user 1 s

present situation.

3) peer assistance - a collection of anecdotal

information provided by previous users of a soft-

ware system which reports bugs, describes special

features, and explains functionality of a system.

10

This may consist of "how-to" information, 11cheat-

sheets11, and bullet in-board style notices organized

in a single location to enable browsing by users.

4) contextual/command help - help that enables a user to

request a specification of commands that are avail-

able in the current context of use. With command

help, the user is asking for help at the operating

system level. The command takes arguments that

specify and refine what it is that the user is asking

for help about. Contextual help implies that the

system has some information about the user's current

state, and can use this information to help display

the most relevant information.

With the advances in online assistance and

technological advances such as workstations and personal

computers, help systems may defy attempts at being placed

into any of the categories listed above. In fact, Fenchel 1s

third category may be omitted as a true help system

category, insofar as it seems to admit only facilities for

collecting user comments.

Sondheimer and Relles [1982] construct a taxonomy by

classifying help systems according to the following four

categories:

1) access method - the way users can construct

or enter requests for assistance,

11

2) data structure - the manner in which different

portions of assistance information are related

to each other,

3) software architecture - how assistance requests

and their responses are communicated among a user,

an operating system, application programs, and the

assistance database, and

4) contextual knowledge - how much information is

retained about the assistance environment, including

the user, the application, and the tasks being

performed.

Borenstein [1985], asserting that 2, 3, and 4 are

primarily implementation considerations, suggests a user-

oriented taxonomy of online help across the three general

dimensions of

1) help access, including access mechanisms,

2) help presentation, and

3) integration - the degree to which the various

help features are uniformly available in all

potentially relevant contexts.

Although Borenstein's classification is made from a more

user-oriented perspective, he omits from his classification

such basic user-oriented help features as error diagnostics,

prompting messages, and interface paradigms. These latter

features play an important role in the usability and learna-

bility of any system.

12

Bergman et al. [1985] extend Sondheimer and Relles'

classification to include user-interface related features,

thereby providing a workable classification scheme for a

variety of technologies and systems. Their classification

includes the following three extensions:

1) add-on versus integrated help - whether the help

information is an integral part of the interface or

whether the help is offered in addition to and

instead of the information normally provided by

the interface,

2) solicited versus unsolicited help - whether help is

provided only as the result of an explicit request

for help by the user, or whether the help system uses

its own criteria to provide help, even in the

absence of a request, and

3) specified versus unspecified help - whether

the system requires the user to specify what

information is needed, or whether the user

may make a non-specific request.

It is worth repeating that most help systems will

probably never be perfectly categorized into any one

classification. Rather, they will be hybrids, incorporating

features of several. The challenge is to develop a well-

balanced, consistent design that incorporates those features

which have been shown to be successful.

13

2.3 Issues in User Interface and Help System Design

Even the best help system would be useless without a

wel 1 designed interface. In addition, requirements for the

help system may in large part determine the user interface.

For this reason, basic principles of interface design must

be explored.

User interface design is more accurately termed art

than science. Often, there is no 11right 11 answer, or no

scientific basis to justify one choice over another.

However, empirical studies can provide guidance for the

designer.

The designers of the Xerox STAR system [Smith et al.

1982], who pioneered user interface mechanisms like icons

and windows, advocate consistency and simplicity throughout.

Mechanisms should be used in the same way wherever they

occur. Different modes of interaction, in which input may

mean one thing in one mode and something entirely different

in another, are to be avoided.

Some researchers [Yestingsmeier 1984] advocate early

user involvement in interface design, maintaining that users

can best describe their needs and expectations from a

system. Others [Blake 1986] assert that blindly implementing

user preferences can be disastrous. In command naming

behavior, for example, users chose high frequency, general

commands, inconsistent command arguments, and relied too

14

heavily on their memory [Blake 1986].

Other user interface issues which have relevance in

the design of online assistance are: (1) the use of menus

[Hodgson and Ruth 1985], (2) designing systems which mini-

mize user errors [Norman 1983], (3) choice of input

mechanisms [Card et al. 1978], (4) window layout and design

[Gait 1985; Bly and Rosenberg 1986], and (5) 11soft-machine 11

interfaces [Nakatani 198 3].

Research has been done on issues in help system design

as well [Connally et al. 1985; Houghton 1984]. More often

than not, researchers have started from scratch, only to

11rediscover 11 the basic paradigms. Borenstein [1985] warns

that the greatest problem affecting builders of help systems

is lack of knowledge of what has already been done. Anyone

who wishes to implement a help system must study past and

present systems to avoid making common mistakes.

Relles and Price [1981] identify several questions that

inevitably arise when considering the development and use of

online assistance:

* How many levels of assistance should be available

(i.e., novice, casual user, expert, etc.)?

* Should the user or the system decide when assistance is

necessary?

* What factors should be considered in the textual

composition of online assistance?

* How can online assistance be provided easily and

15

efficiently by programmers?

The following sections explore recent research which

addresses these issues.

Schneider [1982] asserts that user sophistication with

a software system can be characterized by five levels:

parrot, novice, intermediate, expert, and master, and that

user assistance information should be factored accordingly.

However, many widely used help systems offer users the same

depth of information, regardless of the user's expertise

(IBMCMS*Help [IBM1983] andVAX/VMS**Help [DEC1980] are

two better known examples). The Unix system offers two

dimensions: syntactic help (e.g., if a command is entered

with no arguments) and semantic help (via the "man"

command), although the same text is presented to users of

all levels of expertise. These systems are little more than

online reference manuals. It is important to consider the

level and amount of information presented to avoid

submerging the user in irrelevant information or information

buried so deep it is difficult to find. User sophistication

can be classified into various learning stages [Schneider

1982] and software can be designed to accommodate

*IBM/CMS is a trademark of International Business Machines
Corporation ·

**VAX/VMS is a trademark of Digital Equipment Corporation

16

these stages [Mozeico 1982] by providing multiple entry

points; each designed to facilitate movement from one stage

of learning to the next by selectively presenting help

information.

2.3.2 §hQQ19 ih~ User or the §y~i~~ When tl~lP is
Required?

Most systems are equipped to respond to a user's

explicit request for help, but one notable exception is the

Interlisp DWIM (Do What I Mean) facility [Teitelman 1984].

When Interlisp encounters incorrect input, it invokes DWIM

to diagnose and suggest a correction. The user must still

approve DWIM's suggestion, but the system has taken the

initiative to provide help. Another example of system

initiated help is command completion [Walker 1986]. The

user types a few characters, and the system displays the

full name once it is unique.

The implementers of TNT (Tutor aNd Trainer), however,

elected to leave the initiative to the user, rather than

second-guessing what the user wanted [Nakatani et al. 1986].

In a series of laboratory experiments, users found such system

behavior irritating and distracting.

2.3.3 ~h~i f~~12£~ §h2Ql9 Q~ ~Qg~i9~£~9 in the r~~1Q~1
Composition of Online Assistance?

Borenstein [1985] surprisingly found that the most

important determining factor in the "goodness" of a help

system is the quality and nature of the texts it presents.

17

In addition, it is generally agreed that the composition of

help texts be separated from the design and implementation

of the system, and should preferably be done by a technical

writer.

A related issue concerns the reading level of text

presented. One study [Roemer and Champanis 1982] found that

subjects prefer a fifth grade reading level for tutorials

presented in an interactive environment. Other findings

[Houghton 1984] bear out that the most sensible approach to

designing help text is to use the simplest possible

language, avoiding information overload, and anthropomorphi-

zation.

2.3.4 How Can Online Assistance Q~ f£QYiQ~Q ~~~ilY ~ng
Efficiently gy Programmers?

Providing good assistance, like providing good documenta-

tion, is an unpleasant chore for most programmers. Ideally,

the person who incorporates and maintains assistance infor-

mation in a program should be able to do so with minimal

effort and disturbance to that program's design [Sondheimer

and Relles 1982]. A centralized assistance processor that

interprets requests against an assistance database offers a

more consistent environment for users and eliminates redun-

dancy for programmers [Relles and Price 1981; Relles et al.

1981].

18

2.4 Survey of Some Existing Help Systems

This section surveys a cross-section of some

experimental and real-life help systems. No attempt is made

to be comprehensive, but a sampling is presented here to

give an idea of the variety of approaches that have been

taken to provide online assistance. Noteworthy features,

advantages and disadvantages of these systems arErliscussed.

2 . 4 • 1 ~BQ~§.~

BROWSE [Bramwell 1983), an online manual system for

the Berkeley Unix System, is a compact system that makes

good use of dumb terminals. It combines menus and keyword

searching capabilities. Primitive windowing is performed by

dividing the screen into two 11-line displays. Keywords are

sought by searching a file containing brief descriptions of

documents in the database. It is a stand-alone system, and

therefore cannot provide any context-dependent help. It is

compact, conceptually simple, and relatively easy to extend.

2.4.2 AT&T Unix System HelQ Facility

The AT&T Unix System "Help" Facility [Butler and

Kennedy 1985) consists of the five commands "help",

"starter", ''glossary", "usage", and "locate", each of which

can be accessed at the command level, or by progression

through a set of menus. Like BROWSE, it provides an inter-

face between the user and system documentation. It contains

a facility (helpadm) whereby system administrators can add

information and modify the help database. Implementers

19

rely heavily on input from both experienced and

inexperienced Unix users to decide what to include in the

help system. The system is primarily menu-driven, but the

information is packed so densely that conceptually, the

menus are never more than three layers deep.

2. 4. 3 ICNHELP

ICNBELP (Integrated Computer Network Help) [Stoddard et

al. 1985] is designed as a summary, or mini-reference

system, for experienced users who know what they are looking

for, but need memory refreshers on exact command usage.

Access to help is hierarchical by means of menus, and is

patterned after the VAX/VMS help utility. As such, it is

more interesting for what it is intended to do than for how

it does it. Surveys after the first 5 months of use found

that merely making an online help system available does not

necessarily change the patterns of users already satisfied

with printed documentation.

2 • 4. 4 §.1.QM~

The he 1 p fa c i 1 it y for the SIG MA me s sage s er v i c e

[Rothenberg 1979] consists of online access to reference

materials and a Tutor which provides lessons and exercises.

If commands are erroneously entered, the system guides

the user to help correct the error. If more detailed

description is needed, the user can request the next level

of help. It incorporates many features that were rarely

found in early help systems, like context-sensitive help, a

20

spelling correction algorithm, Flash and Status windows, and

tutorial exercises in a "protected" environment. A weakness

is that the same text base is used for composition of both

the written and online information. It seems the major

concern of the imp 1 emen tors in this respect is how to

present hardcopy text in a manner suitable for online

display.

2. 4.5 ~QQ

The ZOG system [Robertson 1981] is not a help system in

the sense defined in this thesis, but an approach to man-

machine communication. A ZOG system is based entirely on

menu navigation, as is its help system. The main disadvan-

tage is its size and complexity: in real-life applications,

building a ZOG "net", a network of highly integrated menus

and scripts, can be impractical.

2 • 4 • 6 .±'.N.±'.

TNT (Tutor aNd Trainer) [Naka tani 19 8 6] represents an

attempt to break from traditional online tutoring techniques

by using a voice simulator to do nearly all prompting. Its

main disadvantage is a lack of "unobtrusiveness" as it often

offers help and prompts before a user is ready.

2.2. 7 §~B~

SARA (System ARchitect's Apprentice) [Estrin et al.

1986] is an integral help system which keeps the state of

the user's interaction to provide context-sensitive help. By

making use of a context-free grammar and the current parse

21

state, the assistance processor gives timely and specific

diagnostic help.

2.4.8 HELP: Question Answering System

HELP: A Question Answering System [Roberts 1970] is

one of the first help facilities to allow unconstructed

natural language input. Keywords are extracted from a

request and matched against designated portions of a

documentation file.

2.4.9 ACRONYM

ACRONYM [Borenstein 1985], yet another help facility

for the Unix system, is a research prototype intended not to

break new ground, but to consolidate and integrate existing

techniques. A single assistance database can be accessed

via a number of independent mechanisms. Emphasis is placed

on quality help texts. The author claims that the system

would be improved by including tutorials, multiple levels of

explanation, special information for experts, customization

of information and references to external sources of help.

2.4.10 DOMAIN/DELPHI

DOMAIN/DELPHI [Orwick et al. 1986] retrieves and displays

documentation in a networked workstation environment.

DELPHI incorporates a graphical, menu-driven user interface,

and operates on a library metaphor. Users can browse through

a table of contents or conduct a search for a document by

topic. One of the most important considerations in the

22

design was extensibility. A limitation of the system is

that there is no context-sensitive help, although this is

included in future research objectives.

2.4.11 _QC: Th~ Unix Consultant

UC: The Unix Consultant [Chin 1986) is a natural

language computer system that advises the user in the Unix

operating system. The user can ask UC to produce plans for

doing things in Unix, obtain online definitions of Unix

terminology, and get help debugging problems. The system,

while slow, demonstrates that natural language may

eventually be practical from an implementation standpoint.

However, results reported in [Borenstein 1985) cast doubt on

the usefulness of natural language in a help system.

23

3.0 DESIGN AND IMPLEMENTATION OF THE PROTOTYPE -- -- --
This chapter studies in detail the design and implemen-

tation of the Assistance Manager for the SMDE. The first

part of the chapter discusses factors in the design of the

Assistance Manager and the goal which guided the design.

Section 3.2 gives an overview of the hardware and software

environment in which the Assistance Manager is developed

and where it is used. Section 3.3 describes the

components which comprise the Assistance Manager package,

and Section 3.4 summarizes details of the implementation.

3.1 Motivation: Factors in the Design of the Assistance
Manager

Before embarking on the design of the Assistance

Manager, an in-depth literature review serves to

identify relevant issues in the design of online assistance.

Questions such as "Why is online assistance necessary for

the SMDE?11 , 11What will the Assistance Manager be expected to

do?", and ''What design strategy will work best? 1', need to

be addressed. The results of this literature review are

reported in Chapter 2.

The research survey also identifies characteristics

considered important for successful online help systems.

Section 3.1.1 explores these characteristics. Section 3.1.2

discusses the design requirements, and Section 3.1.3

explains our choice of prototyping as a design strategy.

24

3.1.1 Characteristics of Effective Onlin~ Assistance

A review of the literature has helped to identify

characteristics that are associated with successful

assistance systems [Relles et al. 1981; Smith et al.; Walker

1986; Sondheimer 1982]. The characteristics are listed

alphabetically below:

Completeness of textual material is required if the

user is to have faith in the assistance system. Incomplete

help can be as bad as no help at all, leaving the user

frustrated and confused as to what action to take.

Consistencv is important both in accessing help and in

the conventions used to present help text, prompts, and

diagnostics. Assistance should be requested in a similar

manner in all of the interactive programs that make up a

1 arger system.

Context sensitivity refers to the system's ability to

provide help relevant to the current situation. This

implies that the system is keeping track of the user's

current state of interaction. The main importance of con-

text sensitive help is that the user does not have to deal

with information that is irrelevant or inapplicable.

Expandability enables future growth for an open-ended

environment. Related to expandability is maintainability.

It is a must that the system be easily updated to keep the

help texts current and complete.

25

Flexibility implies that different levels of user

expertise are accounted for in the presentation, composi-

tion, and access of help information. The system should be

terse enough for more experienced users, yet simple enough

for beginners to quickly become confident in their use of

the system.

Understandability is achieved by use of clear, concise

language, use of technical terms only when necessary, and

the judicious use of such display features as highlighting

and white space to demarcate related pieces of text.

1II!..QQ.t.£l!..§.i~~I!.~..§...§. refers to the ability to request

assistance without interrupting the task at hand. Too often,

the user must explicitly save his state and then restore it

after help is obtained. Unobtrusiveness also deals with the

way help is accessed. Help should be immediately available,

but not noticed until needed.

We have included the characteristics above in the

requirements for the SMDE Assistance Manager. Many are

"common sense" in nature, and it is intuitively obvious why

these characteristics would be considered desirable. In

spite of this, few if any help systems demonstrate all of

these traits in more than a cursory way. The reasons for

the lack of commitment vary from a failure to recognize the

importance of online assistance, to insufficient resources

for their design and implementation. By recognizing their

importance early in the design phase, these features can be

26

used to guide design decisions.

The most direct benefit derived from these characteris-

tics is in the encouragement the user feels for using the

help system and making progress in the task at hand.

3.1.2 Assistance Manager Design Objectives and Requirements

The Assistance Manager is one of the basic tools required

for the development and execution of a model in a Simulation

Model Development Environment. Its fundamental requirements

as outlined in [Balci 1986], are to

1) administer the assistance database,

2) provide information on how to use an SMDE tool

or CLI (command language interpreter) command,

3) provide the definition of a technical term encountered

in documentation and communication, and

4) provide tutorial assistance as appropriate.

This section expands and elaborates on these fundamental

requirements.

3.1.2.1 Design Objectives

The overall goal of the Assistance Manager is to

provide effective and efficient transfer of assistance

information to a user of the SMDE. "Effective" means

accurate information is provided which is relevant to the

user's needs. "Efficient" implies that if the user is

involved in interaction with the SMDE, the switching of

27

tasks or modes in the process of seeking help is

unnecessary. The objectives identified below are

intended to meet the overall goal of providing effective and

efficient transfer of assistance information.

goal, the Assistance Manager is required to:

To meet this

1) Provide general information for beginning system

users~ Such information would serve to acquaint new

users with the environment, and establish a context

for subsequent learning.

2) Provide detailed and specific help on the use of an

SMDE tool or CLI command.

3) Provide for definitions and example usage of technical

terms encountered in documentation and communication

within the environment.

4) Provide tutorial assistance for users of the environ-

ment. The tutorial should give the user a protected

arena for limited experimentation with a tool's

features.

5) Provide help that is constantly available and

immediately accessible. There should be methods

to temporarily suspend interaction with the Assistance

Manager, or save the current display for future

reference. The user should not be required to

step through an artificial protocol or syntax to

access immediate assistance,

6) Provide help that is unobtrusive; i.e., messages or

28

prompts that are only visible when required or asked

for.

7) Provide a help system that is flexible enough to

accommodate experience users as well as novice or

casual users.

8) Provide context-sensitive help wherever possible.

:The system should use all available information on

the user's state and avoid placing the burden on

the user.

9) Provide appropriate methods of access to the help

information, Initiative, mechanisms, and complexity

of access should vary according to task and type of

user.

10) Provide a straightforward and systematic method for

tool developers (application programmers) to build

help into tools which may be added to the environment.

11) Administer the assistance database by serving as an

interface between the user or programmer and the

database contents.

12) Provide help that is available in a consistent

manner from any tool within the environment.

13) Be easily maintainable and expandable. This is

critical in order to accommodate the tailoring and

updates that are inevitable in a large software

environment. Updates should be enforced in a

29

manner which helps enforce database integrity and

consistency.

3.1.2.2 Functional Requirements

The functional requirements of the Assistance Manager

are broken down into two categories: requirements from the

modeler's point of view (user interface) and requirements

from the point of view of a developer wishing to include

help in a software tool (programmer interface). A

modeler within the SMDE has access to four functional compo-

nents of the Assistance Manager: Introduction to SMDE,

Glossary, Tutorial, and Local Help.

The Introduction tQ the SMDE gives beginning informa-

tion for new users, providing a context for subsequent

learning. It lists the components of the environment and

their features. It differs from a tutorial in that it tells

"what", not "how".

The Q1Q~~~£Y gives technical definitions and defini-

tions of terms specific to the environment.

The Tutorial gives detailed instructions on the tool's

useand may be used for limited experimentation with the tool.

The Loc~l fi~lQ is available through any SMDE tool. It

explains a tool's features and provides assistance for

recovery in the event of user error.

The Assistance Manager requires a programmer interface

to enable tool developers to include help with their code.

30

The second category of functional requirements, Programmer

Assistance, is necessary for adding and updating help

scripts, tutorials, documents and definitions to the

assistance database.

3.1.3 Prototyping as~ ~esi.9.!l Strategy

A software prototype is a functionally incomplete model

of a proposed system, built to demonstrate feasibility or

explore potential requirements [Church et al. 1986]. Proto-

typing has been used most frequently to gain an

understanding of user requirements, and has recently become

a technique of interest in designing software systems. The

prototype may be built quickly, placed into use, and studied

to see where design flaws are evident.

Typically, the prototype lacks a full complement of

functions. Concerns of efficiency and elegance take second

place to the concern of bringing up the system quickly.

Prototyping is the design technique of choice for the

entire tool set of the SMDE, and in particular, the

Assistance Manager. By building the Assistance Manager

quickly, we create a testbed to evaluate such features as

its functional components, user interface, and its methods

for help development and integration by application

programmers. This proves extremely useful in an

environment, such as ours, where we have yet to grasp the

limits of the technology we are using in development. It

31

may be impossible in some instances to determine the

feasibility of a design decision until an attempt is made to

implement that feature with our hardware/software

configuration. If the designer has insufficient knowledge

of the system 1 s capabilities, then it js difficult to

specify features that can actually be implemented. In the

case of the Assistance Manager, the solution of the design

problems went hand in hand with the analysis of the hardware/

software capabilities.

3,2 Hardware/Software Environment

Before describing the prototype of the Assistance Mana-

ger, several essential aspects of the hardware and software

configuration should be pointed out. The architecture of

choice for the prototyping of the SMDE, and in particular

the Assistance Manager, was a SUN 2/160UC* color workstation

running a Berkeley 4.2 based Unix operating system. The SUN

is a 2 MIPS machine consisting of a 16.67-MHz MC68020

microprocessor with a 16.67-MHz MC68881 floating-point

coprocessor, a 380MB Fujitsu Eagle disk subsystem, a 1/4-

inch cartridge tape subsystem, 4MB of main memory, a 19-inch

color monitor with a resolution of 1152 X 900 pixels, a

*SUN 2/160 is a trademark of Sun Microsystems, Inc.

32

pointing device called a mouse, and a connection to the

Ethernet network which enables high speed file transfer to

and from other University computing systems.

The most important ingredient of the user interface is

the 19-inch bit-mapped display screen. Because every screen

pixel can be turned on and off, the SUN has an excellent

ability to present visual images. Much of the work done for

this thesis deals with this feature of the system; i.e., the

user interface capabilities.

The user communicates with the SUN by keyboard input.

In addition, he may use the mouse to point to or select

locations on the screen. The system provides continuous

feedback as to where the mouse is pointing by displaying a

cursor on the screen. Virtually any material that is

displayed on the screen can be pointed at and treated as

input.

The user views the environment through a display

consisting of rectangular "windows". Windows are self-

contained work areas and are analogous to sheets of paper on

a desk top. They can be overlapped on the screen,

effectively increasing the user's working space.

Windows may be resized, "closed" or collapsed to a

small figure commonly called an icon, and subsequently

"reopened".

viewing.

Within a window, text may be scrolled for

33

Each window corresponds to a different task or aspect

of the user's environment. A user can switch back and forth

between tasks, which is of great value when the tasks are

related in some way, Thus, a user may be editing a file on

one window, running a program in another, checking a file

listing in yet another, etc. The SUN's window management

system takes care of updating the display image, tracking

user input, and similar concerns.

One technique heavily used throughout the system is the

use of menus, Menus facilitate context switching between

tasks because the user does not have to remember a command,

Rather, he may use the mouse to select one of a finite set

of options on a menu. Often, the menus are "pop-up",

appearing only as a result of pressing a button on the

mouse. This allows for conservation of screen space and a

high degree of unobtrusiveness, Menu options are frequently

selected by a software "button", a button-like image over

which the user can position the mouse cursor and "select" by

pressing a button on the mouse.

Without the hardware and software configuration just

described, it would have been impossible to design an

Assistance Manager which could hope to embody the desirable

character is tics described in Section 3.1.1.

3.3 Components of the Assistance Manager

This section illustrates in detail the components

34

designed to meet the functional requirements of the SMDE

Assistance Manager which were outlined in Section 3.1.2.2.

The Assistance Manager may be run as an independent

tool by invoking it through the Unix shel 1 (Fig. 3.3.1), or

it may be invoked by selecting from a pop-up menu available

on any other SMDE tool (Fig. 3.3.2). In the latter case,

the Assistance Manager is spawned as a separate process. By

enabling access to the Assistance Manager at the Unix com-

mand level, a user may learn about the SMDE without actually

entering it.

Once the Assistance Manager has been invoked, a user

may use the mouse to select any of its components. Because

each component is a process in itself, it is possible to run

any number of them simultaneously. When not in use, the

component may be collapsed into an icon to conserve screen

space. The architecture of the Assistance Manager is shown in

Appendix 2.

3.3.1 Introduction to the §MDE

The Introduction to the SMDE is intended to provide

general information for beginning users of the environment.

It discusses SMDE tool features and uses. In this sense, it

may be considered as the online documentation component of

the Assistance Manager, although it makes no attempt to

serve as a reference manual. The Introduction gives

references for the curious user who wishes to find out more

about the concepts and methodology that underlie the SMDE.

35

1-rj
I-'·

LQ

w

w

I-'

:i::a
Ul
Ul
I-'·
Ul

w rt
O'\ Pl

::l
()
(1)

Pl
::l
Pl

:.Q
(1)
Ii

1-3
0
0
I-'

:s:
(1)
::l
i::

desun'I. a .out

@
Intro

to IIDE

Tutor

MDE

Introduction to the Model Develop11ent Environaent (MDE)

Tutorial for the MDE Tools

Glossary of Technical

Updating the HELP Database

Reporting &ugs and Making About the Environaent

tTj
I-'·

lQ

w
w
N

en H
:3:~
t:l <:
t,::10

1-:l I-'·
0
0 lQ
I-'

rt ::r
(1)

:i,,
(/)
(/)

w I-'·
-.J (/)

rt
Pl
(l
(1)

Jll
-~
Pl

tQ
(1)
1-,

rt ::r
1-,
0
i::

tQ ::r
Pl

intro
intro.c

am . icon mbox
calendar mde
desun"I. mkdir screendunps
desun'k cd work

help .c
help.a
help .qc
images

eader .qc include
desun"I. moddef
MENU1 INSTALL routine entere
MENU2-INSTALL routine entere
MENU2A INSTALL routine enter
MENU2B-INSTALL routine enter
MENU2C-INSTALL routine enter
MENU2D-INSTALL routine enter
MENU2E-INSTALL routine enter
MENU3 INSTALL routine entere
MENU4-INSTALL routine entere
MENU1-SHOW routine entered
elp routine entered,
ssistance Manager selected

Tutorial
model def init i on

model query

model update

The interface to the Introduction consists of two

viewing windows and one control panel (Fig. 3.3.1.1). One

viewing window is provided for text, and another is provided

for the table of contents of the text being viewed, Both

viewing windows may be scrolled up or down by using the

mouse, and either window may be further split into multiple

views of the same text.

The control panel allows the user to select a topic

from the table of contents for display, or to search for a

particular topic (Fig. 3.3.1.2). A "Show Documents" button

is provided to return the user to the top level table of

contents, which lists all chapters available for viewing.

An exit button is provided to leave the Introduction. (The

user can also exit, if he wishes, by using the standard

pop-up menu on the tool border stripe.)

The Assistance Manager provides the mechanism by which

documents are updated or added to the documents database.

The document writer develops and formats the text for dis-

play using a text editor and/or formatter. Once the text is

in a displayable format, the writer adds the document to the

documents database by accessing the Assistance Manager and

selecting "Programmer Assistance''.

further explored in Section 3.3.6.

3,3,2 Tutorial

This feature will be

The Tutorial component, like the Introduction to the

38

>rj
I-' ·
._q

w
w

'='
f-'

:i,, f-3
CJ) ::i--
CJ) (1)
I-'·
CJl H
rt ::::i
p., rt
::::i
0 0
(1) p_,

:s: 0
p., rt
::::i I-'·
p., 0
._q ::::i
(1)

rt w 0
\.0

rt
::i--
(1)

CJ)

:s:
t:l
t:x:l

n
0
8

'd
0
::::i
(1)
::::i
rt

0
Hi

rt
::i--
(1)

@
Intro

to liDE

Tutor

6.lossary

MOE Assistance Manager

Jntroduct1on to the Model Develop11ent Env1rorment (MOE)

Tutor1

Glossa

Updati

··•·"' I
view a docuwent, enter selection fr0111 Table of Docunents

Selection:

TABLE OF D0Cl.»'1ENTS

Model Generator

1--rj
I-'·

t.Q

w
w
r-'

N

rt C/)
0 (D

Pl
rt ti
::,'O
(D ::,'

I-'·
C/) :::l
8: t.Q
t1
t:rJ H)

0
ti

Pl

1-rj
::,'

0 ti
Pl
(fl
(D

::8
I-'·
rt
::,'
I-' ·
:::l

rt
::,'
(D

H
:::l
rt
ti
0
p,,
s::::
0
rt
I-'·
0
:::l

@
Intro

to MDE

Tutor

Giin

Pr ogr.l llMU'
AssistAnct:

~IDE Assistance Manager

Introduction to the Model (MDE)

Tutor1

Glossa

Updati

! [1] Hansen, Robert H. (1984), lRE MODEL GDIERATOR:
--·.-: DIT

Of lRE MODEL DEVELOPMDIT DIVIRONMDIT, VPI Technical Report N

CS84008-R, Blacksburg, VA.

Nance, Richard E. (1981), lRE CONICAL MElRODOLOGY, VPI Technic

Report No. CS81003- R.

string or phrase to be located.

0 .

1 .

2.

THE MODEL GENERATOR

SL111Tiary

Descript i on

References

SMDE component, is made up of an interface and a database of

documents. The documents, however, will differ considerably

from the type used in the Introduction. Whereas the Intro-

duction tells what the SMDE is all about, the Tutorial deals

with how to use the SMDE tools.

The interface to the Tutorial consists of a viewing

window and a control panel (Fig. 3.3.2.1). The viewing

window displays either a list of available tutorials or the

text of a tutorial which the user has selected. The text in

the viewing window may be scrolled up or down using the

mouse, and may be further split to allow multiple views of

the text.

The control panel consists of a status prompt and

buttons which allow the user to list all available

tutorials, search for a string, phrase, or topic in the

text, or exit from the Tutorial. The Tutorial runs as a

separate process, and may be invoked either from the top

level Assistance Manager menu or from an SMDE tool. When

not in use, it may be exited or closed to an icon to

conserve screen space.

Ideally, the Tutorial is run in a window alongside the

tool of interest, giving the user step-by-step instructions

on how to proceed. This approach gives the interactive

behavior necessary for effective tutoring, yet removes the

burden of interaction from the Tutorial itself.

The Tutorial for an SMDE tool should be created by the

41

.i::,.
['-.)

:s:

w
w
['-.)

t-3
Pl ::::r' ::s (D
Pl

I.Q t-3
(D s::

rt
0

I-'·
Pl
f-'

n
0
8 ec
0
::s
(D
::s
rt

0
H1

rt
::::r'
(D

:i,,
en
en
I-'·
en
rt
Pl
::s
0
(D

@
Intro

to MD[

Tutor

Gglossary
-
-

Pro9r.ia111tr
Ass i st.incc

MDE Assistance Manager

Introduction to the Hodel Development Envlron11ent (HDE)

Tutorial for the

Glossary of Techn

Updating the HELP

Reporting &ugs an

THE MODEL GENERATOR
TIJTORIAL

(To receive maximum benefit from the use of this tutorial,
you should run the model generator in an adjacent window.)

The purpose of the model generator is to help you define a
model in a form that can be analy zed and represented in a con-
sistent manner.

There are several things to note about the menu that appears
in the window. There are three items you may select:

model definition - define a model
model query - find out about a model in the database
model update - add to or change an existing model

In addition , there is a smaller area at the bottom of the window
where error messages and prompts are displayed.

Note the boxed question mark: this is a button that allows
you to run some of the utilities provided by the Assistance
Manager. To see the possible choices, position the mouse cursor
on the box, and press the rightmost button. The current selec-
tion appears with a check mark. To use any of these utilities,

in progress : Model Generator Show utorials

tool developer or someone else who is knowledgeable in the

use of the tool. The text of the tutorial is prepared with a

text editor and/or formatter. Once the tutorial is in a

suitable format, it is added to the tutorial database in a

manner similar to that used for the Introduction documents.

3.3.3 Glossary

The Assistance Manager provides a glossary feature

which can be used to find the meaning of a technical term or

a term which has a definition specific to an application.

The glossary runs in its own window and interfaces directly

to the glossary database. Like the other functions which

can be chosen from the Assistance Manager menu, the glossary

may also be invoked from a tool within the SMDE and runs

independently of the calling process. When not in use, it

may be exited or collapsed to an icon to conserve screen

space.

As shown in Fig. 3.3.3.1, a user calling the glossary

is confronted by a window containing a status area and a

menu of possible activities in the glossary.

selects an option using the mouse.

The user

The lookup option provides direct access to a term in

the glossary. If the user selects lookup, the menu is

replaced by a new menu (Fig. 3.3.3.1) which first prompts

far the term in question, and then displays its definition

and an example of its usage or meaning. If the term is not

43

1-rj
I-'·

LO

w
w
w
t---'

t-t G)
0 I-'
0 0
;;,;' U)
C ui
'"d PJ

ti
3: I<:
(1)
::l 3:

PJ
I-'· - ::l

C
'd :S:

.i:,. '"d (1)

.i:,. (1) ::l
ti

ti -
I-'· tr

LO 0 ::r rt-
rt- rt-

0

I-'
(1)
Hi
rt-

PJ
::l p,

G)
I-'
0
U)
U)

PJ
ti
I<:

GLOSSARY/Main Menu MENU 1

BROWSE

LOOKUP

Choose a glossary option.

Browse through a list of terms
in the glossary.

Look up a specific te1111
in the glossary.

Leave the glossary.

desun¼ dunpscreen glossary .sc

I\

Glossary / Lookup MENU 2A

RETURN
Enter te1111: ..

EXAMPLE:

wish to look up in the glossary.

:

contained in the glossary, a message to that effect is

displayed. The status area instructs the user on window

use. At this level, the user may return to the main menu,

exit the glossary, or collapse the glossary into an icon.

The user who wishes to browse through the glossary may

select the browse option from the glossary main menu. A

screen appears which is considerably more complex, in

keeping with the more advanced functionality provided (Fig.

3.3.3.2). This window contains a display area, a control

panel, a viewing area, and a status area.

By default, the first ten terms in the glossary appear

immediately in the display area. The user selects "Forward"

or "Backward" to view additional terms. To display a term's

definition, the user positions the mouse cursor over the

term and selects by depressing the first button on the

mouse. The term is highlighted in reverse video and the

definition is displayed in the viewing area. Subsequent

selections from the display area cause the previous defini-

tion to be overlaid by newly selected ones.

If the user wishes to examine related terms, the

control panel button labeled "Related Terms" may be

selected. The Glossary prompts the user to enter a term for

which related information is sought. If any related terms

exist in the database, these will appear in the display area

and may then be selected for definition.

45

hj
I-'·

LQ

w
w
w
N

G)
I-'
0
Ul
Ul
PJ
t-;
i.<:
tJj
t-;
0

""' Ul
(j\ ro

,..,.
"" ro
:::i

1GLOSSARV/Main Menu

BROWSE

LOOKUP

Browse through a list of terms
in the glossary .

Look up a specific term
in the glossary.

Leave the glossary .

abstract model

analytical model

descriptive model

dynamic model I\

numerical model

[Forward)

dynamic model

physical model

prescriptive model

static model

steady state model

transient model

[Related Terms) [Return J

A model which describes time-varying relationships .

By choosing the 11Jump 11 option, · the user may be

positioned at an arbitrary location in the Glossary. This is

a useful feature for moving around quickly when the Glossary

contains many terms. The user is prompted to enter a term

or letter of the alphabet. Once provided, the terms are

listed beginning at this alphabetical location.

The status window keeps track of th~ user's interaction

and provides terse instructional messages. At any time, the

user may return to the Glossary main menu, collapse the

Glossary into its icon representation, or exit.

The Glossary contents are updated and expanded through

the Programmer's Assistance component of the Assistance

Manager.

3.3.4 Local (Tool-Specific) Help

Local Help refers to help available within a tool

running in the SMDE. Such help is accessible in a uniform,

consistent manner and meet the requirements of flexibility,

expandability, unobtrusiveness, context-sensitivity,

consistency, and maintainability. The Assistance Manager

provides the means for this by giving tool programmers the

ability to include a help package directly in their code.

Once inside an SMDE tool, the user may access help in

any of three ways. Via a button selection from the tool

window, the user may choose f ram a pop-up menu to go to the

Introduction to the SMDE, Tutorial, or Glossary (Fig.

47

3.3.2). Once the selection has l:een made, a new window

appears and the Assistance Manager component runs in it

independently of the tool which invoked it.

A user's interaction with a tool is typically driven by

panel items which allow the user to select options and enter

text. Help for these functions is enabled by positioning

the mouse cursor over the panel item and depressing the

middle mouse button. A small pop-up window appears inside

the tool window with an explanatory or instructional message

(Fig. 3.3.4.1). The window remains visible until the user

selects "Done" from the help frame, at which time it

disappears.

Each tool window contains a small status area where

error diagnostics and messages appear. A "Help-on-Tap"

feature is provided via an "Explain" button which is

displayed when an error message or prompt occurs. Selecting

the 11Explain 11 button results in detailed instructions or

explanations of error conditions and why they may have

occurred. The button may be selected repeatedly for

progressively more detailed information (Fig. 3.3.4.2). The

button does not appear on the screen unless there is text

displayed in the status window.

The features just described are achieved through a

comprehensive set of modules which the tool programmer

includes in his application code, Once the package is

included, the programmer needs to make specific information

48

hj
1--'·

I..'.'.)

w

w
.i,.

I-'

t-lt'Ij
0
() Pl
Pl :3
I-' "d

I-' ::r: (1)
(1)
I-' t::J
"d (1)

:3
0
(/J

rt
.i,. ti
I..O Pl

rt
1--'·

lQ

::r:
(1)
I-'

"d
hj
ti
Pl
:3
(1)

hj
(1)
Pl
rt

ti
(1)

0
Hl

desun'4 am menu
desun'4 tstpkg
MENUl INSTALL routine entered
MENU2-INSTALL routine entered
MENU2A INSTALL routine entered
MENU2B-INSTALL routine entered
MENU2C- INSTALL routine entered
MENU2D-INSTALL routine entered
MENU2E-INSTALL routine entered
MENU3 INSTALL routine entered
MENU4-INSTALL routine entered
MENUl-SHOW routine entered
G02FR1 routine entered
ey for db is 6.
ey for db is 7 .

Use the mouse to select this option. A new
screen appears which will al l ow you to find
out about models already defined and stored
in the database.

model query

model update

1-rj
r-'·

l.Q

w

w

N

0 tx:I
H'l X

Pl
t-i8
0 'O
0 r-'
Pl rD
r-'

t:)
::r: (D
(D 8
r-'0
'O ::l

(/l

rt"
Vl H
0 Pl

rt"
r-'·
::l

l.Q

rt" ::r
(D

=
tx:I
X
'O
r-'
Pl
r-'·
::l
=

1-rj
(D
Pl
rt"

H
(D

LEVEL 0: Enter the name of the model :

car

Enter the names of submodels the model
is decomposed into at level 1 and identify
the ones at the base le vel:

Submodel Name(s) :

••> ti re

.. , '""
•·> brake

.. , ,,.,~,,,,,,

•·> gears

store return

Answer must bey or n.

At the base level? (y or n) model:

y

y he model
and identify

n

? At the base level? (y or n)

y

y

n
[Explain)

?

store return

y indicates that this submodel is at the base level .
This submodel

available to the help package. Although this results in

extra code for the application programmer, this code is

nevertheless straightforward and easy to implement.

The text for the help messages and error explanations

will be prepared independently of the application program,

and must be stored in the help database. Apart from the

composition of the help scripts, this task will be automated

and is further described in Section 3.3.6.

3.3.5 Comment Faci1_i ty

A comment option is included in the prototype to record

user observations and suggestions (Fig. 3.3.5.1). The

comments are stored in the help database along with the

user's name, date, and the tool in use at the time the

comment was made. This facility will provide a means to

track user satisfaction with the Assistance Manager, and

will also be useful for reporting 11bugs 11 in the design or

implementation.

3.3.6 Programmer Assistance

Programmer Assistance deals with updating and

maintaining the help database, and the use of the help

package in an application program. Unlike the other compo-

nents of the Assistance Manager, Programmer Assistance is

available only to developers who have access authorization

for its use, and is only available through the top-level

Assistance Manager menu (Fig. 3.3.6.1).

51

hj
f-'·

I.Q

w
w
Vl

I-'

n
0
§
(D

Vl :::i
N rt

hj
0
ti
8

rt
0

'd

ti
f-'·

I.Q
::r'
rt

MDE Assistance Manager

@ Introduction to the Model Development Environment (MDE)
Intro

to 11D[

Tutor Tutorial for the MDE Tools

G~osi~ Glossary of Technical Terms

Pro9r.u11Mr
Assist<lncc

$ Updating the HELP Database

IF-:1 .. "t ,~ Reporting Bugs and Making Comments About

MOE C()'t1MENT FORM

Enter your ccmnents on the form below. Use the <TAB> key to move
between fields.

Name: O Date:

Tool :

cmnent:

IF YOU NEED MORE ROOM, USE ANOTHER COMMENT FORM.

ress <ESC> and type "APPEND" to add, "EXIT" to quit.

Help Append(control_F) Exit

1-Ij
1--'·

I.Q

w

w

O'I

f--1

'""d
H
0

I.Q
H
Pl
§
(D
H

::i,,
[/J

Vl [/J

w 1--'·
[/J
rt
Pl
::1
()
(D

:s:
Pl
1--'·
::1

:s:
(D
::1
i::

rt
0

'tJ

H
1--'·

I.Q ::r
rt

Enter your authorization below .

ACCESS CODE: 99
::l~=======;;,;;,=================!!lop111ent Env1ronment (MDE)

Intro
to IIDE

Tutor

GMlossary
-

ProgrAMMr
ASS ist,\l' ICf:

Tutor1al for the MDE Tools

Gloss ary of Techn1cal Terms Docunents :

Tutorials :
Updating the HELP Database

Glossary:

Reporting Bugs and Making C011U1ents About

Diagnostic:

Help :

Refe ren ce

Prograrrmer Assistance

lit Add Updating Documents for the Introduct1on to MDE

D Delete

lit Add Updat1ng Tutorials

D Delete

lit Add Updating Terms in the Glossary

D Update

lit Add Updat1ng Diagnostic Messages

D Update

lit Add Updat1ng HELP Text
Update

App11cat1on Interface QUICK REFERENCE Gulde

When a user selects Programmer Assistance from the

Assistance Manager menu, a pop-up frame appears and prompts

for an access code. If an incorrect code is entered, the

tool denies access and the frame disappears. If the code is

a valid authorization code, the pop-up frame disappears, and

a new tool window appears which lists the options available

under Programmer Assistance (Fig. 3.3.6.1).

The options allow the user to add or delete from the

tutorials and documents databases, and to add, delete, and

update the glossary definitions, diagnostic messages, and

help scripts in the help database.

Adding and deleting tutorials for the Tutorial and

documents for the Introduction to the SMDE are handled

similarly. Once the user selects the specific option, tbe

Programmer Assistance window is overlaid by a new window

which prompts the user for document name and location (Fig.

3.3.6,2). The documents are moved to the appropriate

directory and the Table of Contents is updated.

Updating the glossary, diagnostic, and help script

databases is accomplished by a direct interface to the

database. The programmer may retrieve text for update or

add new material at any time, although in most applications

this would be done only after the tool developer had

completed testing and debugging of his design. Invoking

either the add or update option results in the replacement

of the current screen by a new screen which is tailored fo~

54

'Tj
I-'·

I.Q

w
w
O"I

N

t:l t:Ij
0 >:
0 PJ

8
8 '"d
(D t-'
::l (D
rt
Ul 0

J-t,
t:l
1-'·H
Ii ::l
(D rt
0 (D
rt Ii

lJl 0 PJ
lJl Ii 0

"< rt
I-'·
0
::l

rt
0

:i,,
p_,
p_,

t:l
0
0

8
(D
::l
rt
Ul

rt
0

rt
::r'
(D

desun'4 am menu
desun'4 O -

• II

To ADD a new docl.lTient to the Introduction to MOE, you must have two
files. One file contains the formatted docl.lTient, and the other contains
a table of contents for the docl.lTient. (See the ProgranJ11er's Guide for
a precise description of these files .)

If you wish to continue, type GO.
> GO

Enter a name for the docl.lTient (up to 20 characters).
> Model_Analyzer

Model_Analyzer will be entered into the Table of Docl.lTients.

Enter the full pathname of the file containing the formatted docunent.
DOCU\1ENT FILE> /usr/frankel/toprint

Enter the full pathname of the file containing the table of contents for
the docl.lTient.
TABLE OF CONTENTS FILE > /usr/frankel/toprin t

Preparing to copy docunent and update table of contents
Type QUIT if you wish to cancel now, or type GO to continue.
>O

the feature chosen.

The ''Reference'' button on the Programmer Assistance

screen can be selected to view a Quick Reference guide (Fig.

3.3.6.3). The Quick Reference guide will be displayed in a

new window suitable for viewing and scrolling text. This

feature is provided as a quick lookup for syntax and usage

of the high level procedure calls of the help package. A

programmer who is developing an application for the SMDE can

use the Reference as a memory refresher and avoid resorting

to written documentation.

When not in use, the Programmer Assistance window may

be collapsed to its icon representation to conserve screen

space.

3.4 Implementation Considerations

The Assistance Manager consists of approximately 4500

lines of documented code. The vast majority of this code is

written in the C Programming Language [Kernighan and Ritchie

1984], but some parts dealing with file and directory mani-

pulation were written using the Unix shell, sed, and awk

[Kernighan and Pike 1984].

Window features were programmed using the SunView

application package, which consists of high 1 ev el routines

to create visually communicative interfaces and manage the

window system [Sun Microsystems 1986a].

Databases were created using the INGRES database

56

I • •

w Docunents:

w
O"I

w Tutorials:

IO
C
I-'·
0 Glossary :
;;,;'

:::0
(1)
t-h
(1)

Diagnostic:

H
(1)
:::l
0
(1) Help:

V,
--.J GJ

C
I-'·
@' Reference

I-'·
:::l
0.,
0

(T
0

'"d

H
I-'·

;:J"
(T

ot Add
Delete

ot Add
Delete

ot Add
Update

ot Add
Updat e

ii(Add
0 Update

Prograntner Assistance

Updating Docut11ents for the Introduction to MDE

Updating Tutorials

Updating Terms in the Glossary

Updating Diagnostic Messages :

Updating HELP Text

Application Interface QUICK RE

APPLICATION INTERFACE
QUICK REFERENCE GUIDE

NOTE: This guide is intended for quick reference only . For detailed
usage instructions, see PROGRAMMER'S GUIDE TO USING LOCAL HELP.

HEADER FILE:
The file "/usr/frankel/work/include/help.h" ""1st be Uinclud-
ed AITER the SunView linclude files in your source code.

EVENT HANDLER:
This 1"USt be specified when a panel window is created by
passing an additional attribute to the WINDOW_CREATE rou-
tine.

vindov _create (base_fra111e 1 PANEL,
help_event_proc, 0);

PANEL_EVENT_PROC,

ESCAPE TO THE ASSISTANCE MANAGER FROM TOOL WINDOW
Acco"'Plished by including a call to

install...JJ(_ite• (panel, row, col)
Panel panel;
int row, col;

PANEL_CLIENT_DATA ATTRIBUTE
Data you provide for each panel ite•. See the GUIDE for de-

management system [Sun Microsystems 1986b]. EQUEL (Embedded

QUEry Language)/C, made up of extensions to the C Programming

Language, was used for retrieval of information for display on

the screens [Sun Microsystems 1986c]. The tools used for

storing comments and adding data to the help database were

developed using the INGRES/FORMS Application Package [Sun

Microsystems 1986d].

INGRES is a relational database management system

implemented on top of the Unix operating system. As a

relational system, INGRES incorporates a high degree of data

independence and the possibility of providing a high level

and entirely procedure free facility for data definition,

retrieval, update, access control, support of views, and

integrity verification [Stonebraker et al. 1976].

The EQUEL/C preprocessor enables an application program

to run as the front end process to the database. It has the

effect of embedding INGRES in a general purpose programming

language such as C.

58

4.0 EVALUATION OF THE PROTOTYPE ---
A prototype of a software system is a functionally

incomplete model of a proposed system, built to demonstrate

feasibility or explore potential requirements of a design.

The objective of the research described in this thesis is

to design a prototype Assistance Manager for the SMDE which

prov ides effective, ef f ic ien t transfer of information to a

user. The prototype represents one possible approach to

solving the problem. Evaluating the prototype includes the

consideration of how well alternative designs would have

addressed the problem under study.

Church et al. (1986] state that two questions are of

interest when a software prototype is evaluated:

* Is the design concept feasible?

* Is the prototype software an adequate basis for

further development?

In this chapter, the prototype of the SMDE Assistance Mana-

ger is assessed and evaluated. The evaluation is a design

level evaluation only, and is not intended to be exhaustive.

4.1 Assessment Criteria

The criteria used for assessing the prototype

Assistance Manager are derived from the design objectives of

Section 3.1.2.1. These er i ter ia are presented in Table 4.1.

4.2 Evaluation of the Criteria

The test-bed for studying the design of the Local Help

component of the Assistance Manager is a previously ptoto-

59

Primarily
Provided For

ITEM

1

2

Objective

Provide general information
for new users.

Modeler

X

Provide help for an SMDE tool. X

3 Provide definitions of techni- X
cal terms.

4 Provide tutorial assistance. X

5

6

7

8

9

Provide constantly available,
and immediately accessible
help.

Provide help that is unobtru-
sive.

X

X

Provide help that is flexible X
enough for all levels of user.

Provide context-sensitive help. X

Provide appropriate access
mechanisms.

X

Tool
Developer

X

X

X

X

X

X

10 Provide systematic methods for X
tool programmers to build help
into SMDE tools.

11 Provide help that is available X
in a consistent manner from

12

13

one tool to another.

Serve as an interface between
user and the Assistance Mana-
ger database.

Provide easy methods for update
and expansion of the Assistance
Manager database.

X

Table 4.1 Assessment Criteria

60

X

X

typed version of one of the SMDE tools: the Model

Generator. The code for the first several screens of the

Model Generator was revised to contain calls to the

Assistance Manager interface routines. The other com-

ponents were prototyped as separate processes and integrated

at the top level later. By experimenting with the compo-

nents individually, and also, after they were integrated

into a single package, we are able to analyze how well the

design meets the assessment criteria. Theseresults are

reported below.

Objective 1: Provide general information for new users

The Introduction to §MDE provides general information

for new users or anyone else who is curious about the SMDE.

This information is accessible in such a way that one may

invoke it from the Unix command level; therefore, one need

not enter the environment to learn more about it.

Objective 2: Provide help for an SMDE tool One of

the most important objectives of the Assistance Manager is

satisfied by incorporating help access mechanisms directly

within the tool. These mechanisms make up the 1Q£~1 fi~l~

component of the Assistance Manager.

Objective 3: Provide definitions of technical terms --

Definitions of technical terms may be found in the Glossary

along with example usage and related information.

Objective 4: Provide tutorial assistance The

1~iQ£i~l component of the Assistance Manager provides an

61

interface to tutorials for potentially any tool or topic of

interest.

Objective 5: Provide constantly available, immediately

accessible help -- Help is always "active" in the sense

that the user need only select a button to access it. The

panel buttons are an integral part of the SMDE user inter-

face, and consequently appear on every tool screen. Their

functionality has been expanded to let them be used to

request help at any time.

Objective 6: Provide help that is unobtrusive -- The

interface design has been done so that the user doesn't

"see" the Assistance Manager until he "looks'' for it. Help

windows pop up and then disappear, and any Assistance Mana-

ger screen may be closed or moved to an unobtrusive location

on the screen. The context of the user's task is preserved.

Objective 7: Provide help that is flexible enough for

all levels of users -- Diagnostic messages and prompts can

be requested in progressively greater detail at the discre-

tion of the user. (It should be noted that although the

Assistance Manager makes it straightforward for the tool

designer and technical writer to give this flexibility, it

is ultimately their responsibility to make use of this

capability.) In addition, the Assistance Manager provides

the Tutorial and Introduction iQ ~~DE for general use, and

provides more specific levels of detail in 1.Q.£§.1 fi.~112 and

62

the Glossary. The focus has been to accommodate the modeler

who uses the environment frequently, providing a greater

level of detail and general information only on request.

Objective 8: Provide context-sensitive help:

Context-sensitive help has been achieved wherever

applicable. (Note that the focus of the Introduction to

SMDE and the Tutorial, as well as the QlQ§.§.~f.Y in most uses,

preclude context-sensitivity as defined in the objectives.)

The calls to the Assistance Manager through 1ocal HelQ are

"hard-wired" into the functions of the panel items

themselves. It is always possible to determine the user's

state and task in this implementation, allowing for a high

degree of context sensitivity.

Objective 9: Provide appropriate access mechanisms -

Access to the Assistance Manager is designed around its

intended use. When it is serving as tutor or for general

information, it is accessible from the Unix command level or

from a button on a tool screen. All components except Local

HelQ may be accessed directly or sequentially by top-level

menu. Local HelQ, as expected, is accessible only through a

specific tool.

Objective 10: Provide systematic methods for tool

programmers to build help into SMDE tools -- This objec-

tive is obtained by giving programmers access to a library

of routines and definitions which are included as header

files and function calls from within application code. (The

63

functions and header files may only be accessed through the

C Programming Language.)

Objective ll: Provide help that is available in a

consistent manner from one tool to another The same

library that meets Objective 10 ensures that access to the

Assistance Manager database will be consistent across all

applications. The centralized control maintained by the

library guarantees uniformity in the user interface.

Objective 12: Serve as interface between user and the

Assistance Manager database -- The Assistance Manager data-

base is only accessible through Assistance Manager

mechanisms. Updates and additions to the database can only

be made after authorization has been granted by the system

administrator. This is enforced by restricting database

modifications to users who supply the appropriate access

code once the Programmer Assistance tool has been invoked.

Objective 13: Provide easy methods for update and

expansion of the Assistance Manager database -- All database

updates may be made through the Programmer Assistance compo-

nent of the Assistance Manager. Through a series of prompts

and menus, authorization is verified, and the update proceeds

through a controlled series of data entry "forms" -- screens

that are customized for a particular data entry operation.

Data already present in the database may be edited or

deleted, and new data may be added by the same conventions.

64

4.3 Design Alternatives

Among the possible alternatives to the design of the

Assistance Manager, two in particular appear most reasonable

and are considered here. A commercially available add-on

system could have been adapted for use with the SMDE. Such

a system can incorporate excellent help texts and complete-

ness of information; however, major disadvantages exist. A

lack of context-sensitivity is painfully evident. Because

an add-on system has no mechanism for tracking the user's

current state of interaction, it cannot use such information

to provide timely and appropriate assistance. Another

disadvantage is the lack of unobtrusiveness. A user has no

choice but to interrupt this present task and go off to

request help through a separate mechanism. Although it is

possible to step through a hierarchy of progressively more

specific information, the information may be accessed in one

vrny only; namely, through a top-down approach to the topic

under study.

An add-on system could have met the requirements for

expandability and maintainability, but fails in the area of

flexibility since the same help text is presented to all

users.

A second alternative to the design of the Assistance

Manager was a completely menu-based system. A menu-based

system potentially offers more of the desirable

65

characteristics than an add-on system. A degree of context

sensitivity could be provided by using a network such as the

one described in [Robertson et al. 1981]. Consistency is

obtained by providing access to help in the same manner

across the entire system. The texts of the menu-based

system can be prepared so that they are complete and under-

standable, and asking for help can be as easy as pointing to

an item on the menu and clicking a button.

One disadvantage to the menu-based system is the lack

of flexibility. As in a commercially available help

package, any user, no matter how experienced, must page

through a hierarchical organization of information until the

specific information is located. The system forces the user

to think structurally rather than contextually. The result

is that a quest for assistance is often put off simply

because the user is faced with the distracting and time-

consuming task of stepping through the menu interface.

Although menus are used extensively throughout the

Assistance Manager prototype, no menu is ever more than two

layers deep. The menus are often "pop-up", and can be

bypassed altogether. Most importantly, menus are

restricted to the components of the Assistance Manager where

a user is more likely to "browse" for information, such as

the Glossary and the top-level Assistance Manager menu. For

a user who needs immediate and specific help within an SMDE

tool, the Local Help features provide this access without

66

ever forcing the user to make menu selections.

4.4 Design Limitations

As was expected, the prototyping process exposed some

minor flaws in the design, as well. The Glossary component

is somewhat cumbersome, and could benefit from some stream-

lining in its interface. The 11 lookup 11 feature is of

questionable value, since the same functionality is provided

through the 11browse 11 feature.

Text displayed in the Tutorial and Introduction to SMDE

viewing windows is somewhat difficult to read. Experimenta-

tion with different font styles and sizes would be

beneficial. Maximum benefit could be gained from these

components if they included more text location and retrieval

features, similar to the capabilities of the DOMAIN/DELPHI

system [Orwick et al. 1986]. The Tutorial could feasibly

be somewhat context-sensitive if, when invoked from an SMDE

tool, it began execution in the tutorial for the calling

tool.

A further limitation exists in providing button help

for some of the panel item types on a SunView window. A few

of these, such as slider and toggle types, are not

selectable by the mouse and have no mechanism to incorporate

help information.

Hands-on interaction with the prototype will

doubtlessly give further insight into the usefulness of the

67

Assistance Manager features. Programmer experimentation

with the Assistance Manager library of routines is necessary

to further evaluate its ease of use and flexibility.

Recommendations to this effect are discussed in Chapter 5.

In summary, however, the Assistance Manager prototype

demonstrates the desirable characteristics of online

assistance without the disadvantages inherent in more tradi-

tional forms of online help. The design concept is feasible

and provides an adequate basis for further development and

integration with future SMDE tools.

4.5 The Choice of INGRES as a Database Management System

The choice of a database management system (DBMS)

affects all SMDE tools which require the services of a DBMS.

The prototype of the Assistance Manager is useful as a

vehicle for testing our choice of INGRES, and of the

relational model in general, for the SMDE.

The two most important requirements for the DBMS used

by the Assistance Manager are portability and support for

variable length text fields. The portability requirement is

universal throughout the SMDE. The support for variable

length text fields is a requirement most evident within the

Assistance Manager, which relies almost exclusively on

storage and manipulation of text strings.

We find our choice of INGRES to be satisfactory for

the prototype of the Assistance Manager, although we

68

encountered some significant problems with the INGRES

software. The problems we faced were those typical of a

large software system ported to a new machine architecture

and operating system. Although we suffered several

setbacks, all implementation problems were eventually solved

with vendor support.

Performance problems exist with INGRES which may make

it undesirable for use in a final system; however, this

disadvantage must be weighed against the significant

advantages supplied by a good screen and forms manipulation

capability.

The relational model serves as an easy to understand

data model which enables the data to be conceptualized as

tables of text fields uniquely identified by integer keys.

It should be noted, however, that other data models (e.g.,

the hierarchical model) may have proved equally successful

in the implementation of the Assistance Manager.

69

5.0 SUMMARY AND CONCLUSIONS

5.1 Suamary

This thesis describes the features and capabilities of

the Assistance Manager for the Simulation Model Development

Environment and the research which justifies the design

methods and choices. This research has emphasized a single

goal: to prototype an online assistance system for the SMDE

which provides effective and efficient transfer of

information to a user of the system. Aspects of existing

help systems are examined, and research trends are explored

to see if they merit consideration in the system's design.

Decisions on system functionality and features are made on

the basis of how well they meet the characteristics

considered necessary for successful online assistance.

A classification of help systems is identified.

Desirable characteristics for online assistance systems are

identified and used as guiding principles for the design of

the Assistance Manager. Existing help systems are shown not

to provide all forms of assistance consistently to all

levels of user.

An effective method for composing and organizing

assistance and diagnostic messages is designed which auto-

mates the construction and maintenance of help scripts.

Thus, the composition of help text is separated from the

implementation of the help system. The Assistance Mana-

ger is prototyped, and the prototype is evaluated against

70

design alternatives. The Assistance Manager is found to

uphold and fulfill the design requirements to an extent

which justifies its continued support within the Simulation

Model Development Environment. The Assistance Manager meets

the design requirements by consistently providing help that

is constantly available, context sensitive, understandable,

unobtrusive, complete, and flexible, thereby (1) improving a

user I s understanding of a system, (2)minimizing the 1 ikel i-

hood of user errors, (3) reducing the amount of information

a user must remember to perform a task, and (4) enabling

users with widely different levels of experience to use the

same software system.

5.2 Recommendations for Future Research

Several areas related to the Assistance Manager deserve

further consideration. The first area of concentration

should be in constructing experiments to discover how well

the Assistance Manager responds to practical usage. Such

experiments might consist of giving users a progression of

tasks to perform within the SMDE, from simple to more

complex, and monitoring to what extent the Assistance

Manager is used. These experiments could help determine

whether the Assistance Manager effectively 11encourages 11

users to seek help from the assistance system.

A primary reason for prototyping is to create a basis

for further refinements. The prototype gives the developer

71

a means to experiment with new ideas while the system is

still evolving. The Assistance Manager must be judged with

a critical eye directed towards its user interface and

functionality. Suggestions must be made and, where

necessary, compromises reached. A case in point is the

status subwindow of a tool which is used to display prompts

and diagnostics. The window currently is placed on the

lower portion of the viewing area. This seems the most

natural placement for the status area during the design

phase. However, in practice, the status area falls just out

of the immediate visual range, resulting in missed

diagnostics and unheeded prompts. A better solution would

be to place the status window at the top of the tool, or to

flash the display momentarily.

Similarly, design alternatives may appear preferable

during the prototyping phase, but glaringly deficient when

put into practical use. Often these deficiencies will be

noticed only after the system has been used for some time.

Another aspect of the Assistance Manager which can benefit

from practical application is the programmer interface.

More data needs to be collected to determine what additional

components may be required to ease the burden on the

software system developer who must use the Assistance

Manager package. These questions can best be answered after

the interface routines have been exercised by applications

72

programmers.

A related issue concerns guidelines and automated sup-

port for help text composition and hard copy generation.

The Assistance Manager at present contains no facility to

integrate the database scripts to generate an organized user

manual. The report generation capabilities of INGRES are

useful for little more than producing a printed version of

the database contents.

Tools which could further ease the burden on script

writers include a spelling checker and a tool to automate

text formatting.

Perhaps one of the most obvious areas of enhancement is

the provision of some sort of system ii inte 11 igence ii, perhaps

in the form of an advice-giving expert system. Efforts to

provide such a feature could possibly detract from the

generality we have tried to maintain in the Assistance

Manager, in that expert system features are typically domain

specific. An alternative would be to add an expert-system

shell which could be tuned by the target application

developers.

5.3 Conclusions

The research clearly indicates that most online

assistance systems fall short of their potential despite the

current emphasis on systems that are human-engineered.

There has been little attempt on the part of implementors to

73

build on the past successes of others; designers have conse-

quently repeated many mistakes and been doomed to the same

failures.

Today's software and hardware technology can inspire

imaginative ways of integrating a sophisticated online

assistance package with a software system. Online

assistance should never have to be implemented in an ad-hoc

or post-hoc fashion.

Perhaps the most important question remaining for

software engineers is how to persuade the user to make use

of online assistance. The truest test of a help system is

whether it is used, and whether its use is an effective aid

to productivity.

74

Bim.IcmAHIY

Balci, O. (1986), "Requirements for Model Developnent
Environments," Computers and Operations Research 13, 1,
(Jan. - Feb.), 53-67.

Bergman, H. and J. Keen~Moore (1985), "The Birth of a Help
System," In Proceedings of the 1985 ACM Annual Conference,
(Denver, Co.), ACM, New York, N. Y., pp. 289-295.

Blake, T. (1986), 11The Art and Science of User Interface
Design," Tutorial Presented at the Conference on CHI 186
Human Factors in Computing Systems (Boston, Mass.,
Apr. 14-17).

Borenstein, N. S. (1985), The Design and Evaluation of Online
Help, Ph.D. Thesis, carnegie-Mellon University, Pittsburgh,

. Pa., Apr.

Bramwell, B. (1983), "BROWSE: An On-Line Manual and System
Witmut an Acronym, 11 ACM SI~ Asterisk ~, 4 (Apr.), 7-11.

Butler, T. and L. Kennedy (1985), "The AT&T Unix System Help
Facility, 11 Unix/World £, 6 (June), 81-83, 102 •

. Card, S. K., W. K. English, and B. J. Burr (1978), "Evaluation of
Mouse, Rate-Controlled Isometric Joystick, Step Keys, and
Text Keys for Text Selection on a CRT," Ergonomics 21,
8 (Aug.), 602-613.

carlson, P. A. (1983), "User-Programmer Dialogue: Guidelines for
Designing Menus and Help Files for Interactive Computer
Systems," NASA Technical Memorandum 84980, Goddard Space
Flight Center, Greenbelt, MD.

carroll, J. M. and C. carrithers (1984), "Training Wheels in a
User Interface," Communications of the ACM 27, 8 (Aug.),
800-806.

Chin, D. N. (1986), 'User Modeling in UC, the Unix Consultant"
In Proceedings of CHI 186 Human Factors in Computing
Systems, (Boston, Mass., Apr. 14-17). ACM, New York, N.Y.,
pp. 24-28.

Church, V. E., D. N. Card, W. W. Agresti, and Q. L. Jordan
(1986), "An Approach for Assessing Software Prototypes",
ACM Sigsoft Software Engineering Notes· 11, 3 (Apr.), 1-12.

75

Clark, I. A. (1981), 11Software Simulation as a Tool for Usable
Product Design, 11 IBM Systems Journal 20, 3 (Apr.), 272-293.

Connolly, T., A. Bradford, R. Grice, and J. Steipp (1985),
11Issues Concerning the Developnent and Use of Online
Inforrnation, 11 ACM SIGIXJC Asterisk 11, 1 (Jan.), 21-30.

Digital :Equipnent (1980), VAX/VMS Command Language User 1s Guide,
Digital Equipnent Coq:x:,ration.

Estrin, G., R. S. Fenchel, R.R. Razouk, and M. K. Vernon (1986),
11SARA (System Architects Apprentice): Modeling, Analysis,
and Simulation Su:i;::,pJrt for Design of Concurrent Systems/
IEEE Transactions on Software Engineering SE-12, 8 (Aug.),
293-311.

Fenchel, R. s. And G. Estrin (1982), 11Self-Describing Systems
Using Integral Help, 11 IEEE Transactions on Systems, Man
and Cybernetics 12, 2 (Feb.), 162-167.

Gait, J. (1985), 11An Aspect of Aesthetics in Human-Computer
Communications: Pretty Windows, 11 IEEE Transactions on
Software Engineering SE-11, 8 (Aug.), 714-717.

Hayes, P., E. Ball, and R. Reddy (1981), 11Breaking the Man--
Machine Communication Ba.rrier, 11 Tutorial: Software
Develoµnent Environments, IEEE Computer Society Press,
Silver Spring, r.t:i., 302-312.

Hodgson, G. M. and S. R. Ruth (1985), 11The Use of Menus in the
Design of On-Line Systems: A Retrospective View, 11 SIGCHI
Bulletin 17, 1 (Jan.), 16-21.

Houghton Jr., R. c. (1984), 110nline Help Systems: A Conspectus, 11

Communications of the ACM 27, 2 (Feb.), 126-133.

IBM (1983), VM/System Product CMS Primer, IBM Corporation.

Kernighan, B. W. and R. Pike (1984), The Unix Programming
Environment, Prentice-Hall, Englewood Cliffs, N. J.

Morland, D. V. (1983), 11Hurnan Factors Guidelines for Terminal
Interface Design/ Communications of the ACM 26, 7 (July),
302-312.

Mozeico, H. (1982), 11A Human/Computer Interface to Accommodate
User Learning Stages/ Communications of the ACM 25
2 (Feb.), 100-10 4.

76

Nakatani, L. H. (1983), "Soft Machines: A Philosophy of User-
Computer Interface Design, 11 In Proceedings of the an
183 Human Factors in Computing Systems, (Boston, Mass.,
Dec. 12-15), ACM, New York, N.Y., pp. 19-23.

Nakatani, L. H., D. E. Egan, L. W. Ruedisueli, et.al. (1986),
"TNI': A Talking Tutor 1N Trainer for Teaching the Use of
Interactive Computer Systems," In Proceedings of the CHI
186 Human Factors in Computing Systems, (Boston, Mass. ,
Apr. 14-17), ACM, New York, N. Y. pp. 29-34.

Norman, D. A. (1983), "Design Rules Based on Analyses of
Human Error, 11 Communications of the ACM 26,
4 (Apr.), 254-258.

O'Malley, C., P. Smolensky, L. Bannon, E. Conway, J. Graham,
J. Sokolov, and M. L. Monty (1983), "A Proposal for
User-centered System Ibcumentation, 11 In Proceedings of
the CHI 183 Human Factors in Computing Systems,
(Boston, Mass., Dec. 12-15) ACM, New York, N.Y. pp. 282-285.

Orwick, P., J. T. Jaynes, T. R. Barstow, L. S. Bohn (1986),
"DOMAIN/DELPHI: Retrieving Ibcuments Online," In
Proceedings of the CHI 186 Human Factors in Computing
Systems, (Boston, Mass., Apr. 14-17), ACM, New York,
N.Y., pp.114-121.

Price, L. A. (1981), "Using Off line Ibcumentation Online,"
SIGSOC Bulletin (ACM) 13, 15-20.

Price, L. A. (1982), "Thumb: An Interactive Tool for
Accessing and Maintaining Text," IEEE Transactions on
Systems, Man and Cybernetics 12, 2 (Feb.), pp. 155-161.

Relles, N. (1979), The Design and Implementation of User-
Oriented Systems, Ph.D. Thesis, University of Wisconsin-
Madison, Aug.

Relles, N. and L.A. Price (1981), "A User Interface for On-Line
Assistance, 11 In Proceedings of the 5th International
Conference on Software Engineering, (San Diego, Ca.,
Mar.) IEEE, Piscataway, N.J. pp. 400-408.

Relles, N., N. K. Sondheimer, and G. P. Ingargiola (1981), "A
Unified Approach to Online Assistance," Proceedings of
the 1981 National Computer Conference, (Ar 1 ington, Va.),
AFIPS Press, pp. 383-388.

77

Robertson, G., D. McCracken and A. Newell (1981), "The ZOG
Approach to Man-Machine Communication," Intl. Journal
of Man-Machine Studies 14, 461-488.

Roberts, R. (1970), "HELP: A Question Answering System," In
Proceedings of the 1970 Fall Joint Computer Conference,
(Arlington, Va.) AFIPS Press, pp. 547-554.

Roemer, J. M. and A. Champanis (1982), "Learning Performance
and Attitudes as a Function of the Reading Grade Level
of a Computer-Presented Tutorial," In Proceedings of
the Conference on Human Factors in Computing Systems,
(Gaithersburg, MD, Mar. 15-17), ACM, Washington D.C.
Chapter, :pp. 239-244.

Rothenberg, J. (1979), "Online Tutorials and Docwnentation
for the SIGMA Message Service, 11 In Proceedings of AFIPS
National Computer Conference 48, :pp. 863-867.

Schneider, M. L. (1982), "Models for the Design of Static
Software User Assistance, 11 In: A. Badre and BShneiderman
(editors), Directions in Human-Computer Interaction,
Ablex Publ. Co., pp. 137-148.

Shneiderrnan, B. (1984), "Resp::mse Time and Display Rate in
Human Performance with Computers," ACM Computing Surveys 16,
3 (July), 265-285.

Smith, D. C., C. Irby, R. Kimbal 1, and B. Verplank (1982),
"Designing the STAR User Interface, 11 ~, (Apr.),

242-282

Sondheimer, N. K. and N. Relles (1982), 'Human Factors and
User Assistance in Interactive Computing Systems: An
Introduction," IEEE Transactions on Systems, Man, and
Cybernetics SMC-12, 2 (Feb.), 102-106.

Standards and Guidelines Information Exchange Group, Toronto
(1985), "Online Documentation Development Guidelines,"
ACM SIG.OCC Asterisk 11, 1 (Jan.), 7-19.

Stoddard, M., K. Berkbigler, B. Wheat, and E. Peter (1985),
"User Behavior Upon Introduction of a Network Help
System, 11 SIGCHI Bulletin 16, 3 (Mar.), 25-31.

Stonebraker, M. , E. Wong, and P. Kreps (1976) , "The Design and
Implementation of IISGRES,11 ACM Transactions on Database
Systems 1, 3 (Sept.), 189-222.

Sun Microsystems (1986), SunView Programmer's Guide,
Sun Microsystems, Inc., Mountain View, CA, Feb.

78

Sun Microsystems (1986), SunView System Programmer's Guide,
Sun Microsystems, Inc., Mountain View, CA, Feb.

Sun Microsystems (1986), SunINGRES/Ebuel/C, Sun Microsystems,
Inc., Mountain View, CA, May.

Sun Microsystems (1986), Sunnrn:ES/ABF (Application-By-Forms)
User's Guide, , Sun Microsystems, May.

Teitelman, W. (1984), "A Display Oriented Programmer's
Assistant," In: Barstow, Shrobe, and Sandewall (editors),
Interactive Programming Environments, McGraw-Hi 11
Publishing Co., pp. 241-287.

Walker, J. (1986), "Online !X>cumentation and HELP Systems,"
Tutorial Presented at the Conference on CHI 186 ----
Human Factors in Computing Systems, (Boston, Mass.,
Apr. 14-17).

Yestingsmeier, J. (1984), ''Human Factors Considerations in
Developnent of Interactive Software," SIGCHI Bulletin 16,
1 (Jan.), 24-27.

79

Attention Patron:

Page 79 repeated in numbering

APPENDIX
PROGR.AivfMER'S GUIDE TO USING LOCAL HELP

1. Adding HELP to the User Interface
Any application programmer developing tools under Sun View Version 3.0 may automatically

include HELP with his program. All that is necessary is to "#include" the header files described
below, and to provide some additional information for the Sun View interface. Read or-. for details.

1.1. Providing Escape to the Assistance Manager
Somewhere in your main level routine, you must make provision for adding an item to allow

a user to escape to the Assistance Manager tools. This is enabled by including a call to the HELP
package. The correct syntax is:

instaJL-\M_item (panel, row, col)
Panel panel;
int row, col;

The item will subsequently appear on your panel window at the locations specified by col and row
(default col = 65, row =l). If you are using more than one panel, and you want to include the
item on other panels, then inata/L.Alvf_item must be called for each panel.

1.2. Header Files

There is one header file to include with your source code: (usually, the "#include" statement
for this file will be placed in your source file after the #include files necessary for Sun View)

#include "usr /frankel/work/include/help.h"
This header file contains the definitions and routines necessary to incorporate HELP for

panel items.

1.3. Additional Information for the Sun View Interface
The header file defines the data structures and procedures to be used for HELP, but you

must explicitly inform the Sun View Interface of the changes that will occur. Fortunately, this is a
simple matter involving few lines of extra code.

1.3.1. Changes in the Event Handling Mechanism
Because using HELP involves changing the way input from the mouse is handled, the default

paneLevenLproc must be replaced. This is done at the time you create the panel window, by
passing an additional attribute to the window_create routine as shown below:

window_create (baswrame, P AA'EL,
P ANEL.EVENT-PROC, heJp_evenLproc,

/* any other window attributes go here • /
O);

1.3.2. Storing Information with PANEL-CLIENT_DATA
When HELP wishes to work with one of your application's panel items, it needs information

on the type of item, the help message you want to display, etc. The only way HELP can get to
this information is for you to provide it explicitly. This is done with the PAA'EL_CLIENT_DATA
attribute of the paneLcreatt-item routine.

HELP expects you to store a pointer to a struct of type Item._data with each panel item you
create. The fields of this structure are filled in with information that HELP will need. An

79

example will help clarify this usage.

{

int iniLpanel() /* Example routine creating items on a panel. * /

inti;
lte1IL-data *my_data[2]; /* If we create two panel items, we need a*/

/* struct for each. * /

/* First, we must allocate storage for each structure. * /

for {i = O; i < 2; i++)
my_data[i] = (Ite!Il-data *) malloc (sizeof (Ite1IL-data));

/* Now, as each panel item is defined, set the data to be stored
* with each item. First comes an item. of type PANEL.BUTTON:
*/

my_data->help-..item_type = BUTTON; /* This can be BUTTON, MESSAGE,
* TOGGLE, CHOICE, or SLIDER.
*I

my_data->item_label.label = /* if label is an image, then a pointer
* to the image is assigned here -
*/

my_data->iteID-label.string = /* else if label is a string, then the
* string is assigned here.
*/

my_data->utype =/*either IMG-1ABEL if label is image, or
* STILLABEL if label is a string * /

my_data->texLkey = /* Integer value of help key as obtained from
* database (see below for descriptions.
*/

2. Updating the HELP Database to Contain Help Messages for Your Program
The instructions above add the necessary changes to the video display and user interface.

The task of composing help text and adding this text to the database must be done separately.
This section contains instructions to accomplish this task.

A:. you work with SunView to create the interface to your application, keep in mind that
you will be providing HELP for each panel item you display on the screen. You have already been
storing texLkeys with each item via the paneLclienLdata attribute. To develop and debug your
program, you can use dummy #DEFINE statements to #DEFINE integer values for these keys.
When the time comes to integrate the HELP text with your interface, you will replace the integer
constants you've been using with values that will actually index the HELP database.

When you are ready to add HELP text to the database, you can do so by running the A:.sis-
tance Manager inside the SunTools environment. You are presented with a menu of choices, from
which you should select "Programmer Assistance". The "Programmer A:.sistance" component of
the Assistance Manager allows you to add, delete, and update all the HELP databases for which

80

you have permission.
For adding the HELP text for your application, you will want to select the item labeled

"Updating Help Text". The next screen that appears puts you in direct access to the database.
HELP text is typed in the fields displayed. You should run the Assistance Manager now to
become familiar with these techniques.

Note that the field titled "MSGNUM" always appears with a value. The database automati-
cally updates and assigns these keys, guaranteeing that the number will be unique to your particu-
lar entry. These values will replace the dummy values you previously #DEFINED for your
texLkeys.

3. Error Diagnostics

If you are expecting some form of input from the tool user, then it is quite likely your appli-
cation must take into account error conditions. For example, the user may request access to a
non-existent file, or a protected database. For these occasions, it is strongly recommended that
your tool window contain a "message" area to display error messages and user prompts. If you
wish to include a separate panel for your message area, you can make use of the diagnostic pack-
age provided through the Assistance Manager to display diagnostics. A call to
insta/Lmessage_area after you've created the panel subwindow will intialize the display area for
you.

To display a particular message in the message area, use the procedure

errmsg (wi11-I1ame, string!, string2, errnum)
Panel wiil-llame;
char *string!, string2;
int errnum;

To display simple prompts, you can call errmsg with the name of the window message area,
and up to two strings (each with a maximum of 70 chars). If the errnum parameter is 0, the rou-
tine knows this is a simple prompt and will not attempt to access the database for diagnostic
information.

If, on the other hand, you wish to display diagnostics in response to a user error, string! and
string2 should be null, and errnum should be a key to a message in the diagnostic database.
(These integer keys are determined similar to the method used with HELP texLkeys. See the next
section for details.)

'When the diagnostic appears in the window, an "Explain" button also appears. Thus, you
may provide many levels of diagnostics in response to a user's selection of the "Explain" button,
from simple and concise to detailed and complex. Because these messages are linked together in
the database, you only need to call errm&g for the first message. The diagnostic package takes
care of the rest.

A routine

remove-message (will-Ilame)
Panel wiILI1ame;

is provided to erase the message display.

81

3.1. Updating the Diagnostics Database to Contain Diagnostics for Your Program
Just as when you updated the HELP database, you must update the Diagnostic Database via

the Assistance Manager. This time, you should select "Diagnostics" from the Programmer Assis-
tance second-level menu. You will have a direct access to the database, and the next key value
available for use will appear in the "errnum" field. (This will be the value you pass to the routine
errmag.)

82

APPENDIX 2: Architecture of the SMDE Assistance Manager

\ I
\ I

/
'

I

l
.

r

I
I

eJ e

I

I

SMDE
'lOOL

Assistance
Manager

- -
Diagmstics
Database

::::,0 -
)

--• -- -:,0 --(§] tabase

-

SWl7JDi
WINIXJWM11N11GEMEN1'
SYSTEM mvnaMNl'

--
<'

- - E;)UEL/C and POffolS
INl'ERFJ\CE 'ID

J\SSisrA?O:
Ml\NllGER
DATAB!\SES
UNDER~mMS

The vita has been removed from
the scanned document

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093

