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(ABSTRACT)

Vlasov°s one-dimensional structural theory for thin-walled open

section. bars was originally developed and used for metallic elements.

The theory was recently extended to laminated bars fabricated from ad-

vanced composite materials. The purpose of this research is to provide a

study and assessment of the extended theory. The focus is on flexural and

torsional-flexural buckling of thin-walled, open section, laminated com-

posite columns. Buckling loads are computed from the theory using a linear

bifurcation analysis, and are compared to available experimental data.

Also, a geometrically nonlinear beam column analysis by the finite element

method is developed from the theory. Results from the nonlinear com-

pression response analysis are compared to limited available test data.

The merits of the theory and its implementation are discussed.
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Nomenclature

(x,y,z) Cartesian coordinate system

(n,s,z) Curvilinear coordinate system

(s) Contour coordinate, along the contour

(X,Y,Z) Principal Cartesian coordinate system

(n*,s*,z*) Convected curvilinear coordinate system

W (z) Bar axial displacement of the centroid

U (z), V (z) Bar lateral displacements of the pole

Q (z) Bar rotation about the pole

r (s) Distance between a generic point and the pole
along the normal direction

q (s) Distance between a generic point and the pole
along the tangential direction

8 (s) Angle between the Cartesian x-axis and the
tangent at a generic point

Ü (s) Sectorial area

P Pole

C Centroid

A Generic point in the cross-section on
the contour

(xp, yp) coordinates of the pole P

Nomenclature ix



EZ, TZS Shell strains at middle surface
EZ, Fzq Shell curvatures at middle surface
pn, ps, pz Distributed shell loads

T , T , T Line shell loadsx y z

m , m , m Equivalent bar loadsx y w

N Axial compressive force through the centroid

Mx, My Bending moment about the x·axis, y-axis

T, Twisting moment about the z-axis

Ts, Tw, Mw Saint Venant twisting moment, warping torque,
warping moment

Vx, Vy Transverse shear force in the x—direction,
y-direction

SX, Sy, Sw Moduli-weighted first moments of area

I , I , I Moduli·weighted second moments of areaxy xx yy

Iwx, Iwy Moduli-weighted cross moment of sectorial area

Iww Moduli-weighted second moment of sectorial area
HS, HC, Hq Material coupling due to bending and twisting

JG Moduli-weighted torsional stiffness ·

R Radius of gyration of the cross-sectionP about the polar axis represents
coupling between bar resultants

K , K Radius of curvature about the x-axis, y-axis;X Y represents coupling between bar resultants

K A dimensionless parameter, represents couplingw between the bar resultants

Nomenclature x



.

‘In space and flight vehicles, composite materials are used exten-

sively because of high strength and stiffness to weight ratio. These

composite structures are very effective in weight-saving; the most com-

monly used structural elements are bars, panels, and cylindrical shells.

It has been recorded in the literature [1] that the one-dimensional bars

are the most under-investigated, and under-developed area in the field

of composite structures. By comparison, research work on composite

plates, panels and shells is extensive. Such apparent inbalance is related

to the concept that laminated composites are basically multi-dimensional,

and their properties can only be utilized zh: multi-dimensional struc-

tures. For example, composite I-sections are often analyzed as

assemblages of laminated plates. This is particularly true in local effect

problems, such as local buckling.

As demand for thin-walled structures has increased, demand on

analysis has grown as well. Analytical solutions by elasticity are by

no means accessible. Mathematically two-dimensional theories offer less

accurate but workable solutions for plates and shells. For built-up

structures, however, applications of two-dimensional theories are com-

plex, thus high in computational cost. They can be justified in detailed

investigations for critical design. One-dimensional analysis, on the
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other hand, offers a cruder but simpler mathematical model and analysis

when it is possible. Potentially, it is beneficial for preliminary design.

Vlasov°s theory, developed in the middle of the century by the late

V. Z. Vlasov [2, 3, 4], is a modified bar theory for thin-walled open

sections. An extended Vlasov's theory has been developed for thin-walled

laminated composite open-section bars, by Bauld and Tzeng [5]. The pur-

pose of this research is to implement this one-dimensional theory for

global buckling problems. The general buckling equations, derived from

the extended theory, are presented but not solved in the original paper.

Finite element models are developed to solve the buckling equations. Re-

sults of the analysis are compared with available experimental data.

Merits of the extended theory and the analytical model are then assessed.

Global buckling is taken to be elastic. Loading on the structure

is restricted to a compressive end load, passing through the centroid.

The composite bars under investigation are assumed to have stresses lower

than the failure stress of the material system. The overall material be-

havior of the beam column is therefore linear elastic. In the topics on

buckling, the bar will be referred to as a beam column where appropriate.

Later in this chapter, the historical review will be presented. The

first part will be on the isotropic bar theories. Materials are selected

in relevance to recognition of the problem of flexural torsional coupled

instability and investigations on this problem. Emphasis will be on the

development of relevant structural theories, specifically Vlasov°s the-

ory. The second part of the historical review is on laminated composite

bar theory, the extended Vlasov°s theory. The composite structural theo-

ries on plates and shells will be mentioned for completeness. The overview
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of these composite structural theories is a topic in its own right, and

will not be attempted here.

In Chapter 2, Vlasov°s theory and the extended theory will be

formally presented. Chapter 3 will contain linear bifurcation analysis,

and Chapter 4 nonlinear analysis. In Chapter 5, available experimental

data will be compared to the nonlinear anaylsis results, which will be

followed by a discussion section. Chapter 6 will be made up of conclu-

sions and recommendations for further research.

Thin-walled open section bars have been historically developed as ,

weight-saving structural members. They are used ‘u¤ provide» additional

flexural rigidity to the structural assembly. The geometric character-

istic of these bars is that the cross-sectional dimension is much smaller

than the longitudinal dimension, and the thickness is in turn small com-

pared to the cross-sectional dimension of the bar. Beams, columns, and

beam columns are bars subjected to flexural loading, compressive loading,

and a combination of flexural and compressive loading, respectively. When

a thin-walled structure is compared to a solid structure with both

structures having the same flexural rigidities, the thin-walled structure

employs much less material per unit length. Thus, thin-walled structures

are cost effective. The open section configurations, however, have small

torsional stiffnesses.

As the aerospace industry expanded early in this century, thin-

walled open-section bars have played a great part. Very early in airplane
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design, thin-walled bars have been used to strengthen and stiffen skin

panels. In additional to the weight saving and cost saving factors, the

open section allows easy access for inspection. The most widely used

thin•walled open sections are prismatic because of ease of manufacturing.

Anisotropic materials, specifically fiber-reinforced plastics, were

being used in structural applications around the middle of the century.

The mechanics of these composite structures are much more complicated than

their metallic counterparts. While techniques for the analysis of me-

tallic thin-walled open section bars were relatively well developed by

then, there were no specialized theories to include the complex nature

of the material properties of composite bars until much later.

The one-dimensional bar theory was developed along two separate

paths, flexure and torsion. The engineering theory of flexure of beams

was developed in the middle to late eighteenth century by D. Bernoulli,

L. Euler, and C. A. Coulomb [6]. The essence of the theory is the ap-
D

proximation that cross sections remain plane in bending and the

Bernoulli-Eulerian approximation of proportionality of the curvature to

the bending moment. That is, the resistance to flexure is entirely due

to the extension and contraction of the longitudinal filaments.

Using the general equations of elasticity developed in the 1820°s

by Navier, Cauchy, Poisson, etc., Saint-Venant (1855-6) presented sol-

utions to torsion and flexure of beams. He solved the pure torsion problem

by the semi-inverse method. In Saint-Venant°s torsion solution the state
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of strain consists of a simple twist about the axis of the rod combined

with an axial displacement that varies over the cross section. but is

uniform along the axis. The variable axial displacement causes the section

to warp.

Saint-Venant torsion and Euler-Bernoulli beam theory are inadequate

when there is flexural deformation as well as torsional deformation. As

the coupled deformations were studied at the turn of the century, the need

for special bar theories became apparent. Potentially, the state of pure

flexural buckling and pure torsional buckling should. be recovered as

special cases. Related research works were primarily conducted in the

area of lateral stability, which differs from flexural torsional stabil-

ity by the way of loading. While lateral instability is caused by end

moments, flexural torsional instability is caused by a compressive axial

force.

In general beam theory, the flexural rigidity of a beam cross sec-

tion depends on the engineering properties of the material as well as the

geometry of the section. The second moments of area, the geometric fac-

tors, are evaluated for principal axes through a characteristic point,

the centroid, of the section. Special bar theories require higher moments

of the area and identify more characteristic points in the cross section.

The characteristic points are the centroid, the shear center (referred

to as the pole by Vlasov), and the torsion center. The definitions of

these characteristic points will be given in the following text. Real-

ization of these characteristic points are of prime importance in the

development. In the following historical review, attempts are made to
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point out the major research that is relevant to V1asov‘s bar theory for

thin-walled open sections.

Instability of bars of thin-walled open sections was first recog-

nized by Michell [7] and Prandtl [8] in 1899, who independently solved

for the lateral stability of rectangular section. The warping effects

were not considered in either of their solutions. In 1906, Timoshenko

[9] experimentally studied I-beam sections subject to torsion in. which

axial normal stresses arise as well as shear stresses due to axial con-

straint at the fixed end. A third-order differential equation for the

angle of twist was derived. The formulation was the first of its kind

to include the out-of-plane deformation of the section in the context of

lateral buckling.

The work of Timoshenko did not conclude the research in this area,

because the solution was not for general cross sections. The second stage ·

of the related research was highlighted 'by the effort to define the

characteristic points in general cross sections. Efforts were made to

isolate flexural response from torsional response. In 1909, Bach [10]

carried out a series of experiments on channel sections. The compressive

axial load which passed through the centroid caused torsional deformation

in addition to bending. Consequently, it was proposed that such a phe-

nomenon was associated with the asymmetric nature of the section. Twelve

years later, Eggensschwyler [11] and Maillart [12], in 1921, pointed out

that the centroid was not the only characteristic point of the section.

The shear center was defined, a point through which the load passes to

cause flexure but no torsional deformation, and methods were derived to

determine such point in a cross section. This definition was by no means
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generally accepted until much later. In 1926, Weber [13] developed an

energy method to find the location of the shear center. A method of de-

termining the normal stresses arising from torsion was presented for

various simple sections. He further proved that the shear center and the

torsion center coincide in cases where lateral displacements were accom-

panied by twisting deformation. The torsion center was defined as the

point about which the whole cross section rotated. It was not until 1933

when Duncan [14] derived an exact formula for the coordinates of the shear

center for very thin-walled cross sections. In 1927, Bernshtein [15]

studied. the out-of-plane. deformation in cross sections of open bridge

trusses, and called such phenomenon "deplanation". This term remains the

standard Russian term for warping.

The first studies of torsional buckling are due to Wagner [16] in

1929. They were followed by a series of research efforts to study and

quantify the torsional behavior. Equations were derived to determine the

critical forces for torsional instability of bars. In the same text, the

idea of the law of sectorial area was introduced. Wagner assumed that at

instability, the shear center coincides with the torsion center.

Ostenfeld [17] in 1931 noted that the assumption pursued by Wagner is true

only for bars with double symmetry. In 1936, Bleichs [18] used the energy

method to derive a set of differential equations for instability. In the

same year, Vlasov [2] presented a similar law of sectorial area. In the

following year, Kappus [19] proposed additional equilibrium conditions

to amplify Wagner's analysis. Meanwhile, Lundquist and Fligg [20] deter-

mined the position of the center for rotation for the critical load. The

theories developed up to that period were criticized by Vlasov [4, p.466]:

l
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...(the theories so developed for thin-walled sections)
started from the law of plane sections and replaced the normal
stresses in the cross section by their resultant, taken as a con-
centrated force applied at the centroid. As a result of this sub-
stitution the last term in one of the equations, the equilibrium
of the beam under rotation about the longitudinal axis does not
contain the longitudinal force. This led to the loss of one of the
three roots of the corresponding solving equation and gave for the
two other incorrect results.......

Vlasov went on to publish his collection of work which, according

to the following statement by Nowinski [21], has had profound influence:

In 1940, Vlasov published his book containing a comprehensive
study of the equilibrium, stability, and vibration of open
sections, and which, basically, determined the development of the
Russian school on the subject......

Vlasov's equations were derived by variational principles by

Dzanelidze [22] three years later. In 1945, Timoshenko [23] unified the

engineering theories of bending, torsion, and stability of open bars prior

to that year.

Vlasov was credited for the first complete solution for thin-walled

bars with arbitrary open section [24, p. v; 25, p. 26]. The fundamental

differential equations and the derivations are also associated with

Bleich [18], Chwalla [27], Goodier [28,29], Kappus [19], Kindem [30],

Timoshenko [23, 31], Umanski [32, 33] and others. The development of

special bar theories for thin-walled sections did not end with Vlasov°s

theory by any means, but for the relevance in this review it is not nec-

essary to cover these readers are referred to various research papers on

the history of this subject [21, 34, 35].
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The development of a special theory for thin-walled laminated com-

posite bars is not so clear-cut as its isotropic counterpart. The research

is compounded by lack of understanding of the nature of advanced fiber-

reinforced composites. The stress-strain constitutive equation for lami-

nated composites are considerably‘ more complex than Hooke°s Law. A

bending moment applied to a bar does not necessarily lead to pure flexure.

Likewise, a compressive end load may give rise to bending and twisting

in addition to compression. The studies of micromechanics, in which the

material system is treated as anisotropic and non-homogeneous, relates

the engineering properties of the components in the system to the averaged

properties of the system. The geometry of the unit cell is a dominant

factor. In macromechnics, the material system is considered to be

anisotropic but homogeneous. The derivation of the stress—strain

constitutive equations is often dependent on the type of structural the-

ories used. Plate and shell analyses are most frequently employed [36].

Flat laminates were initially examined because of their geometric

simplicity. A basic set of constitutive relations so developed, known

as classical lamination theory [37, 38], allows some insight into the

effects of anisotropy on the stress-strain constitutive equations.

Classical lamination theory serves not only as a structural theory for a

special case of flat laminates, it is often used as the basis for more

complicated plate analyses. There are three assumptions in classical

lamination theory, and they are listed here for completeness. The laminate

is assumed to be thin and consist of perfectly bonded laminae; the bonds
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are assumed to be infinitesimally thin and shear rigid; and it is assumed

that normals to the middle surface remain normal to the deformed middle

surface (Kirchhoff assumption). Also, the through-thickness strain is

assumed to be zero. For more general analyses of laminated plates,

readers are referred to Ambartsumyan [39], Ashton and Whitney [40], and

Lekhnitskii [41].

The first analyses of laminated shells are credited to Dong and et

al [42], Reissner and Stavsky [38], and Ambartsumyan [43]. These com-

posite shell theories contain coupling terms that are complex. Kinematic

coupling due to the general curved geometry is well studied in the general

shell theory for isotropic material systems. Different approximations to

the kinematic coupling terms lead to a variety of shell theories. Such

shell theories are often extended to include material coupling of lami-

nated composites. The latter adds onto the already complicated analyses.

Bert and Francis [1] present a very detailed historical review on com-

posite structural theories.
A

In general, materials with multi-dimensional properties are best

utilized in multi-dimensional structures. The development of composite

bar theories has been hindered by common interpretation of the above

concept. In the paper by Bauld and Tzeng [5], the extended Vlasov's theory

is presented. The extended theory embeds the classical lamination theory

in the analysis, hence it includes the two-dimensional properties of

laminated composite to some extent.

Introduction And Historical Review 10



h 2.0 EXTENDED VLASOV°S THEORY

2.1 INTRODUCTION

Vlasov's theory encompasses a great amount of detail, and the

overall view of the theory is complex [24, p. v]. Historically, the theory

was developed for the purpose of solving buckling problems. There are

linear formulations for stress, deflection analysis, and a nonlinear

formulation for bifurcation point and limit point buckling analyses. In

terms of applications, Vlasov°s theory has been adopted for elastic bars,

plastic bars, open cross section bars, and closed cross section bars.

The extended Vlasov°s theory by Bauld and Tzeng [S] deals with open

cross section laminated composite bars. As in the isotropic Vlasov°s

theory, there are linear and nonlinear formulations.

In this chapter, the essential features of the extended. V1asov°s

theory are presented. The emphasis, as stated in the previous chapter,

is on elastic buckling of prismatic open section laminated composite bars.

The contrast between Vlasov°s and the extended theory will be addressed

in context. As an intermediate step to solve the buckling problem,

cross-sectional properties have to be known. Computer codes developed

to compute these quantities will be presented later in this chapter.

The main difference between Vlasov°s theory and the general_Euler-

Bernoulli beam theory is that the former employs more general kinematic

assumptions, which are summed up in the law of sectorial area. Vlasov's

theory accounts for contribution of warping to stresses as well as out-

Vlasov°s Theory 11



of-plane displacement.1 These assumptions will be discussed in the fol- ‘

lowing text. Vlasov [2] showed that pure bending and pure torsion of

thin-walled bars are special cases of the more general theory, and the

assumption the plane sections remain plane is a special case of the law

of sectorial area [4, pp. 21-26].

A prismatic bar with a thin-walled cross section is considered a

cylindrical shell whose generator is parallel to the longitudinal axis

of the bar. The z-axis is taken to be parallel te the lengitudinal axis

of the bar. The intersection ef the shell middle surface and the

z=constant cross-sectional plane defines the contour of the cross sec-

tion. The contour is a curve in the cross section of the bar which may

er may not be smooth. There can be sharp corners and junctions along the

contour. A section of the contour that lies between two junctions or

between a junction and an end (a free edge) is called a branch. Thus, a

branch is a segment ef the contour in which the contour is a smooth curve.

The cylindrical shell segment defined by the branch and the length of the

bar is called an element of the bar. The thickness of the bar can be

different for each element, and it can indeed be a function of the contour

within a branch. When the cross section is divided inte branches, the

1 "...a thin-walled beam with an open section is closely allied te the
warping of its sections. For these thin-walled beams cannot be studied
by the methods of the elementary bending theory of beams, since these
methods are based on the hypothesis ef plane sections,.....",Vlasov
[4, p. 466].
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discretization is based on the contour lines. If the thicknesses of these

branches are included, there will be areas of overlapping at the merging

junctions. This geometric inaccuracy is small and can be disregarded [24,

p. 5].
1

In Figure 1 on page 14 a thin-walled open section prismatic bar is

shown. The bar is represented by traces of the middle surface, and the

thickness of the bar is not shown explicitly. The contour at a constant

value of z is marked, and the curvilinear coordinate system at a generic

point on the contour is shown.

The essence of the linear theory is to relate bar forces to bar

displacements through the governing constitutive equations. The theory

treats a thin-walled open section bar at two levels: a two-dimensional

cylindrical shell theory for the individual elements, and a one-

dimensional bar theory for the collection of elements. In the extended

theory [5], elements are modelled as plates. In the following text, el-

ements will be referred to as shells or plates where appropriate. The

duality allows a simple analysis of arbitrary prismatic open—sections in

one dimension and, at the same time, retains the capability of detailed

stress analysis. The schematic description of the analysis can be found

in Figure 2 on page 15. The governing constitutive equations that relate

bar forces and bar displacements can be regarded as the theme of Vlasov's

theory. They are obtained through a series of steps: namely, kinematic

considerations, shell resultant · bar displacement equations, and equiv-

alent bar forces. The presentation of Vlasov°s theory in this chapter will

follow the above sequence.
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Figure 1. General form of a thin-walled open section prismatic bar
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Figure 2. Schematic description of the extended V1asov°s theory
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The stress-strain relationship for composite material element can

be very involved if curvature effects are included. In the extended the-

ory, elements of the cross section are modelled as plates so that clas-

sical lamination theory can be used. In the following presentation, the

treatment of thin shell elements is adopted. Curvature effects in the

kinematics and other areas are fully accounted for, except in the shell

constitutive relationships. The curvature effects are assumed to have

negligible influence on the latter so that classical lamination theory

can be used.

In general, the governing constitutive equations are rather cum-

bersome to be used directly. The principal form, the simplest form of

the governing constitutive equations, is associated with two principal

coordinate systems and three characteristic points in the cross section.
i

The principal coordinate systems consist of a principal Cartesian and a

principal contour coordinate system. The three characteristic points are

the centroid, the principal pole, and the principal contour origin. They

will be discussed at the end of the chapter.

2.2.1 KINEMATICS

A cross section is shown in Figure 3 on page 17. The profile of the

section is shown as contour C in the figure. The general outline denotes

the plane in which the contour lies. The contour coordinate system is

defined within a typical cross section by s, the arc length along the

contour, the pole P, and coordinates r(s) and q(s) of a generic point A

at s on the contour C. The origin of s (s=0) is called the contour origin
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and the positive sense for s along the contour can be arbitrarily se-

lected. The position of the point (xp, yp) for the pole may also be ar-

bitrarily selected. Let
€

denote a unit vector tangent to the contour at

A with a positive sense in the direction of increasing s. Let $’be a unit

normal vector to C at A such that (?1,§,z) constitutes a right-handed

orthogonal system. The angle between the positive x-direction and s is

denoted by 9. The position of point A on the contour is given by Y(s) and

§(s) in Cartesian coordinates. In the contour coordinates, position of

point A on the contour relative to the pole is given by r(s) along the

S-direction and by q(s) along the §-direction. It is shown by Gjelsvik

[24, pp.8-9] that the contour coordinates satisfy the following kinematic

relations:

q (2-1)
r gg- + gg- = 1 (2.2)

a·%g = 1 (2.3)

= cos8 (2.4)

= sin8 (2.5)

in which "a°° denotes the radius of curvature of the contour at A.

Bar displacements are designated by U(z), V(z), and W(z) in the x-,

y-, and z-direction, respectively. Displacements U and V refer to lateral

displacements of the pole and W is the longitudinal displacement of the

centroid. Rotation of the bar about the z-axis through the pole is denoted

by Ö(z), where Ö is positive counterclockwise when viewed down the posi-

tive z-axis. These bar displacements are shown in Figure 3 on page 17.

Shell displacements of the middle surface in the Ü-, ls-, and z-directions
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are denoted by ü(s,z), v(s,z), and wIs,z), respectively. In general, shell

variables with an overbar designate middle surface quantities.

There are three characteristic points in the cross section associ-

ated with principal coordinate systems. The first point is the centroid

which is taken as the origin of the Cartesian coordinate system. The

second point is the principal pole, or shear center. The third point is

the principal contour origin. These three points, along with the principal

directions for the x- and y-axes, result in the simplest form for the

governing constitutive equations for the bar. More detail on, principal

coordinates will be presented later in this chapter.

Four basic kinematic assumptions are cited in the original paper

by Vlasov [2]:

· •
The thin-walled bar of open section can be considered as a shell of

rigid section. The contour is allowed to deform out of the plane,

but the projection of the contour onto the plane remains the same

during deformation.

• The shear strain, TLZ, of the middle surface is zero in each element.

• Each element behaves as a thin plate following Kirchhoff°s assumption

of straight lines normal to the middle surface remaining normal during

deformation.

• The normal stress oss is assumed small compared to the axial stress

ozz.
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The first assumption is complementary to the plane sections remain

plane assumption in Euler-Bernoulli beam theory, but a relaxation of the

latter. This assumption allows the out-of-plane deformation to be taken

into account. The second assumption is known as the Vlasov assumption,

. and is the cornerstone for this formulation. The concept of sectorial

area, the warping function, which is associated with the out·of-plane

deformation, is derived from this assumption. Kirchhoff°s assumption

from the plate and shell theory is invoked, so that the through·thickness

strain, cn, vanishes. At the same time, the through—thickness normal

stress Gun is considered small compared to the axial normal stress, ozz.
Although. the two conditions are contradictory, they are generally ac-

cepted. The last of the four assumptions is similar to beam theory where

all transverse stresses are assumed negligible with respect to the axial

normal stress. Again, assuming css and ss both vanish is contradictory

in Hooke°s Law.

Consider a rigid body displacement of a generic cross section of

the bar given by the components U(z) and V(z) of the pole plus a rotation

Ö(z) about the pole axis. For a small rotation angle Ö, the middle surface

shell displacements €(s,z) and are related to the bar displacements

and rotation by (see Figure 3 on page 17),

;1(z,s)= U sin9 - V cos9 ·· Ö q (2,6)

v (2,5) ä U cos9 + V sinß + Ö I
· (2-7)

Under the Vlasov assumption, the shear strain at middle surface is zero,

@$:%+%:6 (2.6)
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The displacement V in Equation (2.7) is substituted in the Vlasov°s as-

sumption (Equation 2.8), and the latter is integrated with respect to s

using Equations (2.4) and (2.5) to get

E (z,s) = w(z) - u'(z) 2 - v'(z) § — 1»'(z) 5 (2.9)

where the prime means differentiation with respect to z and

Ä = IC r(s) ds (2.10)

The last term on the right-hand side of the equation for
w”is

the

out—of-plane warping contribution to the axial displacement. The quantity
Üris

called the sectorial area because it can be interpreted as twice the

area swept by a vector with one end fixed at the pole and whose opposite

end moves along the contour. In Figure 4 on page 22 a vector FX is shown

to move a distance ds along the contour C. The contribution to the

° sectorial area by the small contour segment ds is equal to twice the area,

dA, swept out by FA. For a complicated section with multiple branches,

the sectorial area is continuous at a junction, but may not be continuous

as a function of the global monotonic increasing contour coordinate (s).

An example section is shown in Figure 5 pn page 23. In the upper diagram,

the sectorial area at the generic point A is plotted along the contour.

In the lower diagram, the sectorial area is plotted as a function of the

global monotonic increasing contour coordinate (s). The number shown next

to each branch is used to indicate the order in which s covers the con-

tour. The quantity Ü is also called the contour warping function, since

the product of Ü”and the twist per unit length §° determines the out-of-

plane component of the axial displacement.
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From Flugge°s cylindrical shell theory [46, pp.122, 211, 212], the

middle surface strain-displacement relations are

g = E ;=zBz z 2Bz
.. 2-

Bs + a u Rs
aS2 a Bs (2°ll)

- -
’

2- - ---2222.xzs_
Bz + Bs Ksz Bz Bs 2a (Bs B2)

2 = 2 - J-2
zs sz 2a sz

If Equations (2.6), (2.7), and (2.9) for the shell displacements

in terms of the bar displacements are substituted in the relations for

Es , is , and YES above, it will be seen that these strain measures vanish.

Thus, the two twist curvatures FSZ and Ezs are the same. The non-zero

shell strains in terms of bar displacements are

EZ = w' - u" 2 - v" § · <1>" 5 (2.12)

EZ = U" sin8 - V" cosü · Ö" q (2.13)

nzs — msz Ö (2.14)

The stress-strain relationship is simply Hooke's law for elastic

isotropic Vlasov°s theory. Laminated plates with general lay-ups allow

coupling between bending and extension. Analysis of such composite lami-

nates is complex. If the composite lay-up is restricted to a mid-plane

symmetric type, coupling between bending and extension is eliminated. The

justification of this restriction is not academic, but practical. Also,

for a thin cylindrical shell, the factor n/a in Flugge°s theory is neg-
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lected with respect to unity in the definitions of the shell resultants

in terms of the stresses, and in the parallel surface strain measures.

Consequently, the constitutive equations for flat laminates and thin

shells are the same. The notations for classical lamination theory are

adopted from .Jones [44, pp.l47-172]. The simplified equations are as

follows:

Nz A11 A12 A16 az

NS = A21 A22 A26 ss (2.15)

Nzs
A61 A62 A66 Xzs

Mz D11 D12 D16 Kz

Ms = D21 D22 VD26 '°s (2*6)

Mzs D61 D62 D66 zzzs

Of the above six plate resulants, three of them (NS, NZS, Ms) are

reactive. By definition, there are no deformations associated with reac-

tive resultants. The deformations corresponding to reactive plate re-

sultants are denied through the kinematic assumptions. Thus, they do not

appear in the strain energy. The values for the resultants, NS, NZS, and

Ms, are not determined from the consitutive equations. Rather, the reac-

tive forces must be determined from the equilibrium equations.2 They have

2 Alternatively, the linear theory can be derived from the variational
principle. The generalized reactive forces will appear in the bound-
ary conditions.
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to be known in the stress and deflection analysis. Readers are referred

to Gjelsvik [24, p.18] for detailed discussion on the reactive forces.

Through the classical lamination theory constitutive equations, the

active laminate force resultants N2, Mz, Mzs can be expressed directly

in terms of laminate properties Aij,
Dij

and derivatives of the plate

displacements.

At this point, the active shell resultants can also be expressed

in terms of bar displacements through the kinematics. Hence, the shell

resultant - bar displacement equations are

_ I_I|—_|!-_I_

NZ —
All

(W U x V y §° w) (2.17)

MZ = B11 (B" Sina - v" Cosa - ¢" q) - 2 B16 ¢' (2.18)
Mzs = B61 (U" sine - v" cesa - é" q) - 2 B66 é' (2.19)

These shell resultants, active and reactive, are related through

the general shell equilibrium equations [46, pp.204-206]. The shell

equilibrium equations are as follows,

EQ 29 ii - -8sS+3zz+aS
pn_0

ps = 0

%t;-z + ägsz + pz = 0 (2.20)

. N - N + ·§sz = 0zs sz a _

SM GM =QZ 0

QS = 0
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in which pn, ps and pz are external loads per unit middle surface area

of the shell acting in the E-, Q-, and z-directions, respectively. These

equilibrium equations can be integrated to determine the reactive shell

resultants if active shell resultants NS, MS, Msz are known functions of

s and z. There are basically two types of external loads acting on the

bar, the distributed traction, and concentrated line load acting along

junctions. The concentrated point load is a special case of the latter,

and is not discussed separately. In Vlasov°s theory, there are no body

forces. In Figure 6 on page 28, a finite segment of the bar is shown.

Both the reactive shell resultants and external loads are shown. The

quantities Tx, Ty, and TZ denote x-, y-, and z-direction external force

intensities, respectively, that are distributed along a junction.

Vlasov°s Theory 27



N M —
v S S

Nszdz

Figure 6. Reactive shell resultants and external loads acting on a
finite segment of a bar

V1asov's Theory 28



The relationships between bar forces and shell resultants are ob-

tained by computing the virtual work of shell resultants acting on the

cross section. The virtual work expression is an integral over the contour

of the shell resultants times their conjugate virtual displacements. To

achieve the equivalency, virtual shell displacements are written in terms

of virtual bar displacements and then substituted into the virtual work

expression. The virtual work expression can then be interpreted as bar

forces times virtual bar displacements. In this manner Gjelsvik

[24, pp.23-24, 29] shows the bar forces are given by

N = I N dsz
— 3

n Vx = J (x Egz - ägz sin8) ds — my
— BNVy = f (Y EEZ + ääz cos8) ds + mx

Mx = [ (NZ Y + Mz cos8)dsMy

= - I (NZ x - Mz sin8) ds _

T = f (Ü ääz + q ääz) ds - mw — I (MSZ + Mzs) ds

Mw = - j (NZ Ä + Mz q) ds

The shell resultants and the bar forces are shown in Figure 7 on page

30. The quantity Mw, shown by a three-headed arrow :h1 the figure, is

called the bimoment or warping moment. This warping moment is statically

equivalent to zero force and moment; it has no point of application [24,

pp.25, 36]. It is an additional bar force unique to thin-walled bars.

It has dimensions of force times length square.
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The external shell loads can also be replaced by equivalent external

bar loads. The external shell loads and external bar loads are shown in

Figure 8 on page 32, respectively. Equivalency between these two sets of

load distributions is accomplished through the principle of virtual work.

The strain energy per unit axial length of the bar is US, where

2 us = JC (Mz EZ + Mz EZ + MZS Ezs + Msz ESZ) ds (2.22)
When the shell strain — bar displacement relations (Eq.2.12-2.14) are

substituted in this equation, the strain energy becomes

2 US = N w' + My U" - Mx V" + Mw Q" + TS Q' (2.23)

in which the bar forces N, Mx,My, and Mw are as defined in Section 2.2.3,

and
TS = - JC (MZS + Msz) ds (2,24)

The quantity TS is called the Saint Venant torque. It is a portion of the

total torque T. The total torque T is written as the sum of Ts and Tw,

where Tw is called the warping torque. The strain energy expression shows

that bar force N, bending moments Mx and My, the bimoment, Mw, and the

Saint·Venant torque TS are active bar forces. Bar shear forces Vx and Vy

and the warping torque Tw are reactive bar forces. The active bar forces

are functions of the active shell resultants. The active shell resultant

- bar displacement Equations (2.17-2.19) are substituted in the bar force

- shell resultant Equations (2. 21, 2. 24) to get the governing constitutive

Vlasov's Theory 31



Y

E

V
Y .

.

‘

IP Vx

myt

,
X

lu
X

Il

Figure 8. External bar load resultants

Vlasov°s Theory 32



equations for the bar. Written in matrix form, these governing

constitutive equations are

IN A -Sx Sy Sw 0
WII—Mx -Sx Ixx IXY Ixw HC V

11 = -s 1 1 1 -11 11" 2.25Y Y YX YY YW S ( )
I!Mw -Sw Iwx Iwy Iww Hq Q

1: 0 11 -11 11 GJ «1'
s c s q

Coefficients in the matrix are defined by contour integrals. They are

A = J All ds

Sx = I A11 y ds

Sy = J A11 x ds

Sw = f All w ds

1xy = J ( A11 2§ - 1111 sinü 6656 1 ds
-2 2

Ixx = f ( A11 y + D11 cos 6 ) ds

1 =1(A 22+11 sin29)ds (226)yy 11 11 °

Ixw = Iwx = f ( All wy + D11 q cos8 ) ds

Iyw = Iwy = I ( All wx - D11 q sin8 ) ds
_ -2 2.Iww—f (Alla: +Dl1q )ds

HS = 2 I DI6 sin8 ds

HC = 2 f Dlö cos9 ds

Hq = 2 J D16 q ds

GJ = 4 J D66 ds
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The elements in the coefficient matrix in Equation (2.25) are de-

termined in terms of the geometry of the cross section and material

properties as shown in Equations (2.26). As modulus-weighted section e

properties they are defined as area, A; first moments of area, Sx and

Sy; second moments of area, Ixx, Iyy, and IXY ; first moment of sectorial

area, Sw; cross-product moments of area, Ixw and Iywg second moment of

sectorial area, Iww; and torsional stiffness, GJ. The terms Hs, HC, and

Hq reflects twisting and bending coupling due to the anisotropy of lami-

nated composites.

In the beginning of this chapter, the principal coordinate system

was mentioned. When in use, the principal coordinate system allows sim-

plification. of the governing constitutive equations. The first moments

and the product second moments vanish. The only non-zero moduli-weighted

terms are area A, second moments of area, Ixx, Iyy, and Iww, torsional

stiffness GJ, and the H•terms.

For bars that are made up of regular cross·ply lay-ups, D16 is zero.

Thus all H-terms are also zero. In such a special case, the principal

coordinate system and the material lay-ups allow complete diagonalization

of the constitutive equations. For isotropic materials, the principal

coordinate system alone can faciliate the diagonalization. Transformation

of an arbitrary coordinate system to the principal coordinate system can

simplify the constitutive equations. Transformation laws for the cross-

sectional properties are discussed in Gjelsvik [24, pp.46-56], and they

allow the cross-sectional properties, computed in one coordinate system,

to be expressed in a different coordinate system. In this context,

transformation into the principal coordinate system is of utmost inter-
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est. In the principal contour system, the origin is referred to the

principal origin, and the location of the principal pole is the shear

center. The principal Cartesian system has the origin at the centroid with

the x- and y- axes aligned with the principal axes. The transformation

laws for cross-sectional properties can be found in Appendix A.

For completeness, the remaining bar reactive forces Vx, Vy, and Tw

are recorded below.

WM

v -s 1 1 1 -11 v"'X Y XY YY WY S mY

=
_ _ MI _ _Vy SX Ixx Ixy Iwx HC U mx (2.27)

_
IIITw Sw Iwx Iwy Iww Hq Ö mw

~
QM
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In Gjelsvik [24] and Bauld and Tzeng [5], the equilibrium equations

are derived from principle of virtual work. The derivation is systematic

and consistent. On the other hand, it can also be done from a free·body

diagram consideration. with some intuition. In the free-body diagram

consideration, a finite segment of the bar is considered, and bar forces

are required to be balanced by external bar loads. Bar forces, external

bar forces, and their points of application are shown in Figure 9 on page

37. Six equations can be obtained; three from forces in three orthogonal

directions and three from moments about three orthogonal axes. The seventh

equation is associated with moment of the moment about the longitudinal

axis, and is generally not~ expected. This higher-order equilibrium

equation has no counterpart in Euler-Bernoulli beam theory, yet it is the

theme of the extended V1asov's theory. The seven equilibrium equations

for the bar are

N'+¤=o

V ° + v = 0 .
x x

V ' + v = 0
Y Y

M '
— V + m = 0 (2.28)x y x

1~1'+v +m =o
Y X Y

T' + t = 0

M'+T-T +m =0w s w
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The reactive bar forces can be eliminated from ]Equation (2.28),

giving four equilibrium equations. These four equations correspond to

axial deformation, two lateral deformations, and rotational deformation.

They are .

N° + n = 0

MX" + vy + mx' = 0
. (2.29)

My" - Vx + my' = 0 '

Mw" - TS' - t + mw' = 0

If the governing constitutive Equations (2.25) are substituted in

the linear equilibrium Equations (2.29), the order of the system can be

clearly seen as fourteen. Therefore, seven boundary conditions are needed

at each end of the bar. At each end, one boundary condition corresponds

to axial compression, four to flexure about two axes, and two to torsion

about the z-axis. The warping effects raise the number of torsional

boundary conditions by one. The boundary conditions are listed below as

dual pairs, bar forces and displacements (or their derivatives). One

quantity in each pair has to be known or prescribed.

Axial force N ; axial displacement W

Bending moment Mx ; rotation about x-axis V°

Shear force Vx ; lateral displacement U

Bending moment My ; rotation about y-axis U'

Shear force Vy ; lateral displacement V

Torque T ; rotation about z-axis {

Warping moment Mu ; first derivative of rotation Q'
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The nonlinearity in the nonlinear theory presented in Gjelsvik

[24, pp.170-184] and Bauld and Tzeng [5] is due to geometric consider-

ations. The bar is assumed to remain linear elastic.

The difference between the linear theory.... and a nonlinear
theory lies in the form of the equilibrium equations used.......
In the linear theory it is tacitly assumed that the deformations
are too small to seriously affect the results obtained. In the
nonlinear theory the equilibrium equations are written for the de-
formed bar. These equations contain product terms of force and
displacements, and consequently result in a nonlinear theory, even
if the remainder of the theory is linear... [24, pp.l7l].

To assess the effects of force resultants in the deflected state,

a new coordinate system is needed. Coordinate systems for the deflected

state can be related to coordinate systems for the undeflected state

through kinematic considerations. To define a new coordinate system for

the deflected state, deflection must be examined. The deflections can be

° broken down into two components: displacements and rotations of the cross

section and warping deformation of the cross section. As mentioned before,

warping deformation consists of contour warping and thickness warping.

From the kinematic assumption, projection of the cross section onto the

flexural plane is required to be the same as the undeformed cross section.

In the first component, the cross section displaces and rotates but

remains plane. The section can be considered as a rigid disk, and this
V

plane section will be referred to as the flexural plane. A new Cartesian

coordinate system will be referred to this flexural plane. In Figure 10

on page 40 two Cartesian coordinate systems and the bar forces in the

flexural plane are shown. This new Cartesian coordinate system (x,y,z)
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Vlasov°s Theory 40



will have the same origin and orientation as the principal Cartesian co-

ordinate in the undeflected state. The latter is renamed as the fixed

Cartesian coordinates (E,n,C). The bar forces are assumed to follow this

new Cartesian coordinates: shear forces Vx, Vy, and torque T follow the

pole, and bending moments Mx, My, and axial force N follow the new axes.

Similarly, a new contour coordinate system is introduced for the

deflected state. This new coordinate (n*,s*,z*) is identified with mate-

rial points which follow the deflected and warped cross section. While

the reference contour coordinate (n,s,z) is located in the flexural plane

along the projected contour. In Figure ll on page 42, the two contour

coordinate system are shown. The s*- and Z*'&XiS are not parallel to their

conjugate s- and z-axis; the change in directions is a result of combined
l

twisting and warping effects. The kinematic assumptions, Vlasov's and

Kirchhoff°s, ensure that the new contour coordinate is orthogonal. The

shell resultants follow the (n,s,z) coordinate system, and they are called

the convected shell resultants.
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Three additional assumptions [24, pp.174-177] are invoked in the

nonlinear theory:

•
In the transformation from the (n*,s*,z*) to the (n,s,z) coordinate

system, second-order terms, that is, product terms in the stresses

and displacements need only be considered for the convected axial

stress ¤ZZ*.

•
The active convected shell resultants, NZ, Mz, and M25, are expressed

in terms of the shell displacements by the same equations as in the

linear theory.

•
The reactive convected bar forces are related to the active convected

bar forces by the same equations as in the linear theory.
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ÜThe first assumption allows a relatively simple analysis by neg-

lecting effects of shear stresses off the middle surface. As a result

of the first and second assumptions, only one active convective shell

resultant Mzs is allowed to have a second-order term. The third assumption

is an approximation to simplify the buckling analysis.

The first assumption requires that only 022* be considered. The

022* stress projects onto the flexural plane giving rise to 022, 0Zn, and

ozs. The relations given by Gjelsvik are

Q„. = · Q' Q Q„*
ozs = Q' ( r + n )

022* · (2.30)

ozz = °zz*

From the definition of shell resultants, these additional stresses

lead to second—order terms in shell resulants. These additional shell

resultants are

Nzs = Q' ( r NZ — MZ )

Qz = Q' q NZ (2.31)

Mzs = <1>' (r mz - %ll NZ)
11

These second-order terms are associated with twisting and warping; and

they vanish when there is no twisting. These second—order shell terms lead

to second-order terms in the bar shear forces and bar torque when they

are substituted into the definition of the bar forces in terms of the

shell resultants. (See Equations (2.21) and Equations (1.41) in Reference

24 p. 24.) The total convected shear forces and torque consist of reactive

parts plus second order terms. On the basis of the third assumption for

the nonlinear theory, the reactive parts are related to active convected

bar forces by the same equations of the linear theory; that is, by the
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fourth , fifth, and seventh equations in Equations (2.28). Hence, the

total convected shear forces and torque are

=
_ I _ I _

Vx My my + Ö ( yp N Mx )

V = M ' + - Q' N + M 2.32
Y X mX ( XP

Y
) ( )

*r=1· -M'—m +<I>°(AR2W° —K1 U"-K1 V"-KI <I>°°+H§°)
s w w p y yy x xx w ww ¢

in which the underlined terms are the second order terms, and

R2= 1IA @2+ 2+IÄll)d
p T 11 q ll S

D1 — 2 2 ll .Ky = E--f [All x (r + q + ATT) + 2 r D11 s1n6] ds
YY

D (2.33)_ 1 — 2 2 11 _
Kx —

I f [A11 y (r + q + A11) 2 r D11 cos8] ds
XX

K = L1 [A $@2+ [asw 1W 11 q 11 ll q _
H = J 4 D d¢ r 16 s

The quantities Rp , KX ,Ky , and Kw defined by Equations (2.33) are

new modulus weighted cross-sectional properties required in the nonlinear

theory with respect to the linear theory. The term Rp is the modulus

weighted polar radius of gyration of the cross section about the pole

axis. Quantities Kx and Ky have units of length, Kw is dimensionless.

For simplicity, the principal coordinate system is adopted here.

Through the principle of virtual work, bar forces in the fixed (£,n,£)
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coordinate system can be related to convected bar forces in the convected

Cartesian coordinate system (x,y,z). The relations are [24, pp.178·179]:

N =N-v u'—v v'U: X X
_

-
IV; — Vx Vy Q + N U (2.3a)

Vn=vy-vx«1»+Nv'

= '- '—r1u'-Mv'-vv+v¤(T); T + N (yp U xp V )
x y X Y

The last two terms in the first equation are usually small, and

hence neglected, for columns in which the axial force is dominate and the

shear forces are small [24, p. 179].

The principal of virtual work is used, as described in the linear

theory, to obtain the following equilibrium equations for the bar forces

in the fixed coordinate system:

I :0(N); +(¤)C
V ' + = Q (2.35)z Vs

I :0Vn + vn
I :0(T); +(’¤)C

In Equations (2.35) the distributed load intensities along the

fixed coordinate directions are denoted nc, vg, vu, and tc. It is assumed
that there are no applied distributed moment loads along the Z-, ¤-di-

rections and that the applied loads maintain fixed directions but follow

the deformed bar. Under moderate rotations of the flexural plane it is

assumed nC=n, v:=vx, vn=vy, and t =-vx(V + exQ) + vy(U - eyQ), where ex

ev are the distances from the pole along the x- and y-directions to the

locations of v and v .
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Equations (2.34) are substituted into Equations (2.35) to eliminate

the bar forces in the fixed coordinate system. Then the convective bar

forces are eliminated from the resulting equations via Equations (2.32)

to obtain
‘

N' + n = 0 (2.36)

My' + G Nxl" · [N (U + yp —I·)’1'
- vx = 0 (2.37)

MX' - (§ My)" + [N (V · xp §)']' + vy = 0 (2.38)

TS' - Mw" + [N (yp U — xp
V)‘]'

- Mx U" - My V"

+ [§' (A Rpz W' - Kylyy U" - KxIxxV" — Kwlww §" + H¢ §')]'
- (vx ex + vy ey) Ö = 0 (2.39)

in which third order terms are neglected.

The boundary condition set—up is very similar to the linear theory,

except_that the bar forces are now referred to the fixed Cartesian coor-

dinate system. To express the boundary conditions in terms of the con-

vected bar forces, Equation (2.32) has to be used.

In order to solve the equilibrium equations, coefficients in. the

matrix of the governing constitutive equations (2.23) should be known.

If these cross-sectional properties in the principal coordinate system

are known, then the principal form of the governing constitutive equations

can be used.

In general, the cross·sectional properties in a set of coordinate

systems can be found and transformed into another set of coordinate sys-

tems. These transformation laws are purely geometrical, details are
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listed in, Appendix A. There are two distinct groups of transformation

laws: one concerns the change from one Cartesian coordinate system to

another, the second group concerns the transformation from one contour

coordinate system to another. ’

Basically, calculations can be carried out in an arbitrarily chosen

Cartesian coordinate system, and an arbitrary contour coordinate system.

An arbitrary pole and an arbitrary contour origin are defined. The cross

section is sub-divided into branches. The cross-sectional properties, in

terms of line integrals, are then evaluated for each branch and summed.

Details are described in Sub-section 2.6.1 in the context of input data

file for Computer Code VLASOV. The principal system, which consists of

three unknown parameters, namely location and orientation of the princi-

pal Cartesian coordinate system, location of the principal pole, and lo-

cation of the principal contour origin, can now be defined. Quantities

associated with the principal coordinate system are denoted with starred

superscripts. The calculation process consists of three steps. The

equations which appear in the description of these three steps are ob-

tained from Equations (A1-A9) in Appendix A.
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In step one, the location of the centroid, which is the origin of

the Cartesian system, is found through the following expressions (cf.

Figure A1 in Appendix A):

Sy Sx
T Y. = T

<2·‘·°>

The orientation of the principal Cartesian coordinate is determined by

the angle a which is associated with zero product moment of area IXY. The

angle a is given by

2 (I - x y A)
tan 2a = TT'*2xyT'g'2"* (2-Al)

(Iyy - xcA)
(Ixx

yCA)

Once the principal Cartesian coordinates are known, the cross-sectional

properties Ix¥x4, Iyßye, Ixaw, Iynw and the coordinates of the principal

pole (X;-v,Y°;a=) can be obtained as step two. Coordinates of the principal

pole are

x* - x*+*
_

I , *

_

*- I 9: ·P P x*x* P P y«y

The first moment of the sectorial area Sw must be transformed, or re-

computed, with respect to the principal Cartesian axes, principal pole,

and the original contour origin O. The principal contour origin can then

be found from

S—·*
= - 4*. 2.43A ( )

where EB; represents the sectorial area defined by points P*, 0 and 0*. _

Although Equation (2.43) determines the sectorial area U6; , it does not

locate the principal contour origin 0*”directly. To find point 0* a trial

and error' procedure is required. Different trial points for 0* on the
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contour are selected and the sectorial area for each trial pcint is com-

puted. The correct trial point is the one for which the sectorial area

equals 53; . Actually, there may be many points on the contour which yield

a sectorial area Ü;} , and consequently, any of these points may serve

as the principal contour origin.

The transformation method presents two major problems. First, the

the trial and error procedure described in Section 2.6 to locate the

principal contour origin is cumbersome and difficult to implement, be-

cause the sectorial area is in general only a piecewise continous function

of the contour coordinate.

Second, the second moment of sectorial area in the principal coor-

dinate systems cannot be found at the outset of the calculation because

. the principal coordinate systems are not known. The transformation law

for the principal second moment of sectorial area was found to be unstable

in numerical computations. It is highly sensitive to the original choice

of arbitrary pole and arbitrary Cartesian coordinates. The transformation

law for Iwékis as follows,

xwa = xw - xxx += Axpz - xyy =·= Aypz - swz / A (2.44)

All of the four terms on the right-hand side depend on the coordinate

system. The term on the left-hand side, the principal second sectorial

moment of area, was found to be small compared to any of the four terms
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on the right. Subtraction of comparable quantities lead to loss of

signifiance. There is no apparent cure for such computational dead-lock.

The computer code VLASOV' was written to take advantage of the

transformation laws, and at the same time to by·pass the second problem.

In the computer codes, the transformation laws are invoked in a number

of stages under different restrictive conditions. Each stage is associ-

ated with re-computation of selected cross-sectional properties so that

crucial information on the coordinate systems is obtained. In the first

computation, both the contour and Cartesian coordinate systems are arbi-

trary. The Cartesian origin, contour origin, and pole are also arbitrary.

The computation is carried out on A, Sx, Sy, Ixy, Ixx, and Iyy only. From
these section properties, the location of the centroid and the orientation

of the principal Cartesian coordinate system can be found. The principal

second moments of area are obtained from transformation laws. It is

followed by the second computation which involves lux and Iwy. The coor-

dinates of the principal pole can then be determined. The third computa-

tion is on Sw, and a subroutine is called to locate the principal contour

origin. In the fourth computation, the coordinate systems are principal

systems and the characteristic points are also principal points. The only

quantities computed in this step are the second moment of sectorial area

Iww and the H-terms by definition.

In the latest version of VLASOV (VLASOV2), the code continues after

the line integrals and the principal systems are found. Geometry of the

section is expressed in the computed principal system, and the former is

used as input for the successive computation for the required line inte-

grals to ensure consistent yet accurate results. For the second moment
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of sectorial area, the last three terms in the transformation law should

be identically zero.

Two input files, one on material properties and the other on geom-

etry, are required to run this code. The material input contains elastic

moduli in two directions, the principal Poisson°s ratio, shear modulus,

and thickness, orientation and sequence of each layer. Since the theory

for analysis is restricted to mid-plane symmetric laminates, only half

of the lay-up is needed. In the geometry input, the contour is represented

by straight line elements. Each of these elements are specified by their

end points. Curved profiles can be approximated by a series of straight

line elements. The order in which the end points are specified dictates

the direction of the local contour. The end points are given in an ar-

bitrary Cartesian coordinate system. All this information has to be

stered in a connectivity matrix and a coordinate matrix in the input file,

from which the code generates a junction connectivity matrix. The latter

is used to ensure that the value of the sectorial area is matched at every

junction in the cross section. An example can be found in Figure l2 on

page S3. The data file is supplied by the user. A cross section is sub-

divided into branches by the user, and the nodes labelled. As the first

part of the data file, the user identifies the branches (first column)

with the end nodes, and writes in the connectivity matrix. In the row

below the "connectivity" the first number'°Y'denotes the branch number.

The second and third numbers denote the node numbers of the end points.

The second part of the input is on the coordinates of these nodes in the
V

arbitrary Cartesian coordinate system, and the location of an arbitrary

pole. In the row below the "coordinates" the integer denotes the node
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CHANNEL SECTION (ANGLE PLY 19.00)
---•-NUMEL= 3 NNODE= 4-·--·CONNECTIVITY ‘

1. 1 2
2. 2 3
3. 3 4

COORDINATES
1. 1.25000000O 0.62500000O
2. 0.000000000 0.62500000O
3. 0.000000000 -0.62S000000
4. 1.25000000O ·0.62S000000

ARBITRARY POLE
0.000000000 0.000000000

Y

Branch 1

Node 2 Node l
(0.0,0.625) (1.25,0.625)

l
N
.¤ 130

*‘
U
C
m
La
In

Branch 3

Node 3 Nodea
(0.0,-0.625) (1.25,-0.625)

Figure 12. An example of geometric input to Code VLASOV2
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number. The second and third numbers are the x- and y-coordinates of the

node in the arbitrary Cartesian coordinate system.

The required moduli-weighted line integrals are evaluated in each

branch and summed for the cross section. In each branch, the line inte-

grals are evaluated in a local coordinate n. The local coordinates are

assigned to have a range from -1.0 to 1.0. Linear transformation from

global coordinates to local coordinates allows a standard limits of in-

tegrations for all branches.

There are two output files: one on the new coordinates of the cross

section in the principal Cartesian. coordinate system and, one on the

cross-sectional properties. The latter contains values of the fourteen

cross-sectional properties; location of the centroid :h1 the arbitrary

Cartesian coordinate system in the input, rotation of the the principal

axes; and location of the principal pole with respect to the centroid in

the principal coordinate system.

The code is written to give the users a variety of input choices.

In the case of poor input choice, only the efficiency of the code is af-

fected, but not the accuracy of the solution. The flow chart can be found

in Figure 13 on page 55. Geometry of the cross section is sub-divided into

branches and described in the input data file by the user. The main pro-

gram calls the subroutine KONST. The latter calculates cross-sectional

properties with respected to the specified coordinate systems. The coor-

dinates of the cross section in the principal coordinate sytems are also

computed. The subroutine is called again after coordinate transf-

ormations, and the entire process is repeated. The above procedure is

stopped when the the change the quantity Iww between successive calcu-
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MAIN PROGRAM

INPUT DATA FILE
Read geometry of
cross-section.

V-- 5000 LL=1,6
I Main body loopI ‘ ‘
: I cALL xomsr {, I Calculate theL line integrals.I Call two other °
I subroutines.
:

I Yes
I Check tolerance.
I No
IL ---- RESET

Shift Cartesian
for successive
computation.

OUTPUT FILE 06
Output principal
section properties

OUTPUT FILE 07
Output geometry
in the principal
coordinates

Figure 13. Flow chart of code VLASOV2
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lations is smaller than a prescribed tolerance. Alternatively, the com-

putation is aborted when the tolerance is not observed after six

successive calculations.

Code ISOKON is the counterpart of VLASOV, but for the isotropic

cross sections. It has a program structure similar to that of code VLASOV,

but ISOKON was developed prior to VLASOV. In ISOKON, the input material

properties are considerably simpler, and the section properties are not

moduli—weighed. For consistent evaluation of the section properties,

ISOKONZ should be used, as in the case of VLASOV2 for laminated composite

sections.
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3,9 LINEAR EIFURCAIIQN A§AL!§I§

§rl..§IAßlLlIX.EQQAIlQN§

The nonlinear equilibrium Equations (2.36-2.39) contain products

of derivatives of the bar displacements and bar resultants. These

equations can be written in terms of the displacements and their deriva-

tives by using the governing constitutive equations to eliminate the bar

resultants. In this chapter and the next, the bar is referred to as a

beam column. The four equations are as followsz

A W" = 0 (3.1)

IIII _
III _

n n g1yy U HS 6 Ixx (6 V + 2 6 V'" + 6 V"") - (3,2)
HC (3 §' Q" + Q Q'") - [ A w' (U' + yp Q') ]' = 0

Ixx
VIIII

+ HC Un
+ 2

§• UvnUnu)'HS

(3 Q' ö" + 6 Q'") - [ A w' (V' - XPQ') ]' = 0

VIII + HS UIII ÖH _
[ Awl(1xx

- Iyy) U" v" - HC 6' U" - Hs 6' v" —
Q! A R 2 I _ II _ II _ I!

=[ (
P w IYYKY U Ixxxx V xwwxw 6 + H¢ 6*)]* 0

The criterion for linear bifurcation is that there exists a de-

flected configuration infinitestimally close to the straight undeflected

equilibrium form. The equilibrium Equations (3.1-3.4) can be separated

into prebuckling equations and buckling equations by means of perturba-

tion method, in which the displacements are perturbed about some equi-

librium state. When terms of the same order are collected, a set of
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prebuckling equilibrium equations and a set of' buckling equations are

obtained. The same technique is applied to the associated boundary con-

ditions. The expansion on displacement is

U UO U1
V = V6 + V1 (6.s)-
W W W

’
o 1

· Q QO Q1

The first column on the right—hand, side in the above equation,

written in the vector form as H9, satisfies the original nonlinear equi-

librium equations; the second column ill contains small perturbations

about U9.

To faciliate bifurcation analysis, physical assumptions have to be

made to allow the occurrence of bifurcation. The prebuckling equations

obtained from asymptotic expansion are nonlinear. The column is assumed

to be loaded by a concentric end load only, acting through the centroid.

The lateral displacements and rotation remain zero until the applied end

load reaches the bifurcation level. Thus, the prebuckling state is actu-

ally a problem in linear analysis and can be summarized as

U O .o
VO = 0 (3.6)
WO -Pz/A

QO 0

where P is the compressive end load.

An additional assumption invoked in the Bauld and Tzeng paper allows

decoupling of material response. The lay-ups of composite beam columns

are restricted to orthotropic regular cross-ply. The Dlö term in the
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constitutive equation vanishes. Therefore, HS, HC, and. Hq ‘terms are

identically zero. It is, however, felt that such an assumption has no

theoretical basis. It is merely made for mathematical convenience. In the

bifurcation analysis, the prebuckling state is undeflected and the end

load induces no bending nor twisting resultants. The existence of coupling

between bending and twisting at this point is irrelevant. At the

bifurcation point, the column can follow the secondary path in the load-

deflection space; the lateral displacements and rotation are no longer

zero on the secondary path. The material coupling causes the deformations

to interact; but under pure compression in the prebuckling state, it has

no influence on the response. The above assumption will be addressed at

the end of the chapter.
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For the equilibrium state of pure axial compression, the stability

equations are
‘

A w" = 0
1

I UIIII _
HS §I!! + P (UI!

+ y §!!)
= 0W 1., 1.. 1 " 1 ew

Ixx V + HC Q + P (V - x Q') = 0
1 1 1 P 1

I ÖIIII + H UIII _
H VIII + P R 2 _ Öl! + P UI! _ VII

= 0“"°1 S1 °1
( P )1 (YP1 XP1)

and the associated homogeneous boundary conditions at each end of the bar

are

A wl' = 0 or wl = 0
_ I! _ I _

- = =Ixxvl HCQI P (V1 xpQ1) 0 or V1' 0
_ II! _ II __ I

=
_ A

Ixxvl HCQI P V1 0 or V1 — 0
> II _ I

=
y

=IYYUI HSQ1 + P (U1 + ypQl) 0 or U1 0
III _ II I

= =IyyUl HSQI + P V1 0 or U1 0
II I

= =IwwQl + HqQl 0 or Q1' 0

III I! I! ! _

IwwQl + HCVI HSUI + GJ Q1
2 I I I

_ _

P (Rp Q1 xpvl + yPUl ) — 0 or Q1 — 0

I
In the eigenvalue problem only the trivial solution exists for the

axial displacement due to buckling (W1 = 0). Thus the buckling mode con-

sists of U1, V1, and Q1. Assuming a solution of the form
4

U = Cu exp (Xzi)

V = CV exp (Xzi) (3·8)

Q = C¢ exp (Xzi)
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where i = •ftl—, results in the following homogeneous set of equations

for constants Cu, CV, and C¢.

I
X2

- P 0 H Xi - P y C
YY S P u

0 IXXXZ - P -HCXi +P xp

XIIVCV]

: 0
H Xi · P y -H Xi + P x I2 X2+ JG — PZR

Cs p c p ww P ¢

(3.9),

Nontrivial solutions for the coefficients Cu, CV, and C¢ in

Equations (3.9) require the determinate of coefficients to vanish, which

leads to a twelfth degree polynomial in X. The twelve roots for X from

the characteristic polynomial are used in the usual mnner to construct a

general solution for U1, V1, and il in terms of twelve arbitrary con-

stants. Then, prescribing the appropriate six homogeneous boundary con-

ditions at each end of the beam column leads to an eigenvalue problem for

the axial compressive load P. The lowest eigenvalue for P is the critical

(buckling) load. This customary analytic method to compute the critical

load was not used because of the lengthy algebraic manipulations involved.

Instead a simplified, but restrictive, analytic method was programmed in

code BUCKEQ. In addition, the general eigenvalue problem given by

Equations (3.7) with the associated homogeneous boundary conditions was

solved by the finite element method. The matrix eigenvalue problem for

the buckling loads obtained from the finite element method was programmed

in code LBIFUR. The codes BUCKEQ and LBIFUR are discussed in Section 3.3.

The remainder of this section is devoted to a discussion of the simplified

analytic method used for code BUCKEQ.
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A simplified analytic solution of the stability Equations (3.7) and

the associated boundary conditions is based on the boundary conditions

in flexure and torsiou are correlated. For example, correlated clamped

end conditions are U1 = U1'= V1 = V1' = §1= <I>1'= O. Under these assump—

tions, however, the stability equations are still coupled since the

centroid and shear center do not in general coincide (xp# 0, ypaf 0).

In the completely uncoupled problem xp and yp are zero (double

symmetric section) in addition to the H-terms being zero. Let PX, Py, and

Pt denote the buckling loads for flexural buckling about the x-axis,

flexural buckling about the y-axis, and torsional buckling about the z-

axis, respectively, for the completely uncoupled problem. These uncou-

pled buckling loads are 2 I
P = n xx

x , 2
(hx L)

‘ 2 I
p =L...Xä. (3.10)Y (Hy L)

1 nz IwwP. = w[·+z*+ GY I
p (Kt L)

in which KXL, KYL, and KtL are effective column lengths for flexural

buckling about the x- and y-axes, and for torsional buckling about the

z-axis, respectively. See Figure 14 on page 63 for values of KX, Ky, and
2Kt for some classical end conditions. The non-zero values of X in

Equations (3. 9) for the completely uncoupled problem are

X2 = P / 1x xx
(2 = p / 1 (3.11)

Y YY
2 _ 2_

X — (Pt Rp GJ) / IW
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Correlated End Conditions Effective Length Factor

1. Both ends fixed Ki = 0.50

u5=o uj'=o
Uk=0 uk'=o

2. One end fixed, the other simply supported _ Ki = 0.70

¤5=o u5'=o
Uk=0 Mk=0

3. One end fixed, the other on roller which Ki = 1.00
is normal to the deflection

u5=o uj'=o
Vk=0 uk'=o

4. Both ends simply supported Ki = 1.00

Uj=0 Mj =0
Uk=0 Mk=0

5. One end fixed, the other free Ki = 2.00

Uj=o uj'=o
Vk=0Mk=0Ki

are the boundary coefficients, i=x, y, and t

Uj : general displacement at support j

Vj : general transverse force at support j

Mj : general moment at support j

7
Figure 14. The boundary coefficients
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which, after eliminating PX, Py, and Pt via Equations (3.10), become

X2 = u2 / (KX L)2

xz = I2 / (Ky L)2 (3.12)

X2 = nz 1 (Kt L)2

For correlated end conditions the numerical values of KX, Ky, and Kt are

the same. Thus X is the same value for flexureand torsion for correlated

end conditions.

With xp and yp non-zero and the H-terms equal to zero, a solution

of the form of Equation (3.8) is possible with the non-zero values of X

given by

X = w / (K L) (3.13)

where

V K = KX = Ky = Kt (3.14)

for correlated end conditions. With the value of X known, the vanishing

of the determinate of coefficients in Equations (3.9) leads to

Rpz (Py · P)(Px — P)(Pt - P) — P2 xpz (Py - P) -
P2 ypz (Px · P) = 0

(3.15)

In which PX, Py, and Pt are given by Equations (3.10). Equation (3.15)

is the characteristic equation for the buckling loads in the simplified

analysis. The buckling modes are

ul El

Q1 1
(3.16)
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where A, B, C, and D are arbitrary constants and

g = .ÄL.Xp-
1 P - P

Y (3.17)
S = Äp-2 Px - P

If Equations (3.16) are substituted in the boundary conditions, then three

identical sets of four homogeneous equations are obtained for constants

A, B, C, and D [24, p. 192].

” In each computer code, the section properties are required. Efforts

have been made to format the output of code VLASOV in such a way that it

can be directly read as input to codes BUCKEQ and LBIFUR. For flexibility,

boundary conditions, and length of the beam can either be read interac-

tively or from a separate data file. Three sets of boundary conditions

are needed; one for flexural supports in the X-direction, one for the

flexural supports in the Y-direction, and one for the torsional supports.

It is assumed that each of the boundary condition sets are independent

for LBIFUR, but flexural and torsional boundary conditions must be cor-

related for BUCKEQ.

The buckling loads in BUCKEQ are computed as roots to the charac-

teristic polynomial given by Equation (3.15). In the general case where

there is no axis of symmetry, the polynomial is of third degree. For each

axis of symmetry, the degree of the polynomial reduces by one. For two

axes of symmetry, the solution corresponds to lowest value of the uncou-
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pled loads. For the asymmetric section the roots to the cubic polynomial

were obtained by the Newton-Raphson method rather than by using the exact

formula. The initial guess is taken as the lowest of the uncoupled

buckling loads, and this was found to be efficient. The existence of the

solution corresponds to buckling in a combined flexural-torsional mode.

In the case where the polynomial diverges, the lowest of the uncoupled

buckling loads is taken as the load for bifurcation.

In LBIFUR, the section is discretized into a number of short-beam

elements. The degree of discretization is specified by the user in the

input; for simplicity, all the short-beam elements have the same length.

The global elastic and geometric stiffness matrices are assembled. The

boundary conditions, in form of restrained degrees of freedom at the ends,

are imposed; the two global stiffness matrices are reduced accordingly.

The analysis is followed by calling a packaged routine EIGZF on the
l

International Mathematics Subroutine Library (IMSL). In addition to the

buckling load, the eigenvectors can also be obtained.

The two computer codes give results very close to each other. For

LBIFUR, the higher computational cost is offset by a more detailed sol-

ution which contains the eigenvectors. The flow chart of BUCKEQ can be

found in Figure 15 on page 67. The parameter NSYM, the number of axes

of symmetry present in the cross section, is specified by the user. In

the case where there are two axes of symmetry, the uncoupled loads are

calculated. The lowest value of the uncoupled loads is determined, and

the analysis is completed. In other cases, it is followed by iterations

to find the flexural-torsional coupled load.
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INPUT FILE Input pn _
S€CtiOI'1 pI‘Op€I't1€S05
Interactive input

INPUT FILE on boundary
O9 conditions

No
Yes

K Calling subroutine
for asymmetric

1
I CALL DSOLVE I

Calling subroutine

I CALL ssoLvE I ääätfgäbly
SY“““°tri°

Calling subroutine
for monosymmetric

·

section

°UTP“ggFILE Uncoupled loads,
and Buckling load

Figure 15. Flow chart for computer code BUCKEQ
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To verify the assumption that the H-terms can be neglected, a finite

element code (LBIFUR) has been written to compare the results with H-terms

and the results without H-terms. The eigenvalue solution is much more

difficult in the presence of these H-terms. The characteristic polynomial

is complex, and so are the eigenvalues. It was found that the two results

for laminated composite cross section of general lay-ups are very close,

the approximation is good. In the case of lay-ups with strong angle-ply

characteristics, where the H-terms take up sizable values, the approxi-

mation is still very good. Thus discarding the H-terms allows a sim-

plistic eigenvalue analysis which involves an algebraic polynomial of

order three. Analytic results can be found in Chapter 5, with quantitative

results on five example sections.

Linear Bifurcation Analysis 68



In the buckling analysis the column is assumed to remain straight

and untwisted in prebuckling. At a certain load level, the column exhibits

non-zero lateral displacements and twist. For a concentric axial load, a

perfectly straight column, and no bending · extension coupling, an equi-

librium state of pure compression is theoretically possible. However, the

reality of even carefully conducted tests and high-quality manufacturing

cannot guarantee absolute perfection. Hence, unavoidable imperfections

initiate bending and/or twist of the column to occur even at low a axial

load level. The purpose of this chapter is to present solutions to the

nonlinear equilibrium equations with small imperfections initiating lat-

eral deflection and twist.

Two standard nonlinear two-point boundary value solvers, DVCPR in

IMSL and PASVART [SS] by Computer Sciences Corporation, have been used

to try to solve the nonlinear equilibrium Equations (3.1-3.4). Both

routines use the finite difference method with variable step size, and

very similiar input formulation. In each case, the nonlinear equations

are replaced by nonlinear algebraic difference equations and solved by

Newton's method. The nonlinear equations are put into the following form

E: = F ( 2 , Lgz) ) A < 2 < B
(4.1)

G = G ( §jA) , QXB) ) = 0
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where vector ye is the N-dimensional generalised displacement vector, and

the end points of the one-dimensional domain are denoted A and B. The

boundary conditions at A and B are formatted in the boundary condition

matrix G. The original higher order system of differential equations is

replaced by a number of first-order differential equations by defining

new dependent variables. The order of the system remains the same but the

number of differential equations increases. Codes DVCPR and PASVART re-

quire the matrix

[J} = läfwl 1,3 = 1,2,.....N 1*+-2)
J

to be computed for Newton°s method. The determinant of matrix [J] is the

Jacobian of the functions Fi(’U). Unfortunately, the absence of the lower

order derivatives of W, U, V, and Ö in Equations (3.1-3.4) means the

vanishing of some columns in matrix [J]. Thus, the Jacobian is zero and

Newton°s method breaks down. Theoretically, if the equations are

integrable, terms such as W", U", V", and Ö" can be treated as basic

variables. However, the mechanics of the present problem do not give

consistent boundary conditions to the equations in the newly defined

variables. Therefore, the nonlinear equations have to be solved by other

methods. In the following section the finite element formulation and its

implementation will be described and discussed as a means to solve the

nonlinear Equations (3. 1-3.4).
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In the finite element method the nonlinear ordinary differential

equations (3. 1-3. 4) are reduced to a set of nonlinear algebraic equations

of the form
(4.3)

in whichQ denotes the vector of nodal displacements, [KL] is the linear

portion of the global stiffness matrix, [KNL] is the nonlinear portion

of the global stiffness matrix, and!} is the nodal force vector. For

prescribed values of the applied loads, Equation (4.3) is solved for the

displacements by the Picard iteration. The iterative scheme is based on

[KL + KNL (gk) ] @+1
= L k = 1,2,.....N (4.4) ·

in which Qk is the kg]; iterate of a sequence that, hopefully, converges

to the solution Q. Equations (4.4) are a linear set for Q__k+l if Qlk is

‘

known. The initial iterate Q1 is assumed: either it is assumed to be the

solution obtained at the last load step, or it is assumed to be zero.

Convergence is defined in the numerical computations if the magnitudes

of each corresponding element in two successive iterates Q?-1 and Q_N

differ by less than a prescribed error tolerance.

In Figure 16 on page 72, a two-noded beam-column element is shown.

There are seven degrees of freedom per node. The large number of degrees

of freedom per node imposes indirect restrictions on the interpolation:

the order of the interpolation functions is related to the number of de-
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grees of freedom in an element. Thus, elements of large number of nodes

are not desirable. For three-noded elements, for example, the interpo-

lation polynomials have order twenty one. It is felt that comparable de-

tails can. also be achieved by refining the mesh with large number of

two-noded elements.

The fourteen degrees of freedom in the two-noded element can be

identified as four distinct groups. Displacement W at each node associates

with the axial deformation. The quantities U and U' (at each node) asso-

ciate with flexural displacements in the x-direction and V and V° flexural

displacements in the y-direction. The fourth group containing Ö and Ö'

is related to the torsional deformations. For the axial displacements,

the interpolation is linear,

2 WW (Z):
Nil

$1 W1 (:..5)

where h is element length and z is a local coordinate. For each of the

three remaining groups, the U°s, V°s and Ö°s take on the same interpo-

lation form of Hermitian cubics;

U.
V

’“
N=1 l ”l

2 3 2
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where the displacement vectors U and U- are
~

~1

l U (z)
1

U = V (z)*‘\

Q (2)

(:..7)

U.1
U. = V.·u. 1

Q.1

The derivation of the element stiffness matrix begins with the

variational form of the nonlinear equilibrium equations. Each of the four

equations is multiplied by a separate test function and integrated over

the domain of a typical element (ze < z < 28+1). Then integration by parts

is performed such that the highest derivative on W that appears is the

first derivative, and the highest derivatives on U, V, and Q that appear

are second derivatives. At this point the variational equations and as-

sociated boundary conditions are complete. However, it is necessary ‘to

obtain the iterative form of the stiffness matrix per Equation (4.4) and

not the actual stiffness matrix per Equation (4.3). Thus, the iterative

form of the variational equations are obtained by a quasi-linearization

process.

As an example of this quasi·linearizatio¤. process, consider the

nonlinear term
^ n n•

I1 = J (U V Q )dz
Ze

in which U(z) denotes the test function. This term is integrated by partsto get 2 Z11 = - J *1<v' 6**%* + v** 6** G') dz + v· 6··’ü| *1
Za Ze
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The nonlinear terms in V and { are replaced by the iterative form

11 - -%-12*1
11v1‘>·1<»1"’1>"‘ü' + (<Pk)"(Vk+1)°Ü'° + <v1‘>"<¤1*1>"Ü’

dz .6. IZe+1
ze

in which the superscript k denotes the k;h_ iterate and superscript k+1

denotes the 1:+1;; iterate. The kg iterate is assumed to be known. When

the 1:1:}; and k+1;; iterate of a dependent variable are equal the exact

value of that variable, then an integral such as I1 is equal to its exact

value. The iterative form of the variational equations obtained from the

nonlinear equilibrium equations by the process just described are shown

in Figure 17 on page 76. To save on writing, the 1:;;; iterates are written

with an overbar, and the k+1§; iterates are not superscripted in the

figure. Also the boundary terms are not explicitly shown, but are indi-

cated by the letters B.C. in brackets.

The finite element representations of the displacement field,

Equation (4.5) and (4.6), are substituted into the iterative form of the

variational equations and explicit integrations over the element's length

are performed. The linear portion of the element stiffness matrix is

written in the partitioned form

1Kll1L [Kl21L

[Kl L =
111211 L 1K221L

in which each of the partitioned matrices are 7x7 and IKZIILT = [KIZYL-
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The 7x7 partitioned matrices are shown in Figure 18 on page 78. The re-

maining stiffness elements, which originate from the nonlinear terms are

given in Appendix B.

A computer code FEMNL was written to implement the iterative finite

element solution described in Section 4.2 . The flow chart of FEMNL can

be found in Figure 19 on page 81. The input data is read in through three

different units, and will be discussed in Section 4.3.1. The main program

can be divided into two parts. The first part consists of establishing

connectivity in the domain and computation of shape functions and their

derivatives. To establish connectivity in the one-dimensional domain,

two connectivity matrices are generated. The latter are used internally

in the computer code. Subroutine SHAPE computes shape functions and their

derivatives numerically at various Gaussiwn points. The second part

consists of an iterative scheme, and a subroutine INCORE is called re-

peatedly from the main program. Within INCORE two subroutines, COEFF and

STIFF, and two IMSL subroutines, LINVZF and VMULFF, are called. COEFF is

used to calculate the stiffness terms that depend on the last iterate,

and assemble the element stiffness matrix. The stiffness terms that depend

on the last iterate are called nonlinear coefficients. STIFF is used to

assemble the global stiffness matrix and impose the boundary conditions.

LINVZF is for inversion and VMULFF for multiplication. Together they are

used to implement the iterative scheme. At each load level, the iteration

procedure is repeated until the number of iterations reaches a predeter-
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MAIN PROGRAM

INPUT FILE O4
Output file from
VLASOV2

I
INPUT FILE O5

Finite element data
input

INPUT FILE O9
Interactive load
input.

TO csurmfr
ICONN & ICONN2

Connectivity matrices

I CALL SHAPE I I
I To generate the shape

functions and theirativcs
To obtain solution
point at each load.

Figure 19. Flow chart of code FEMNL
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SUBROUTINE INCORE

~

· CALL COEFF
I cALL STIFF‘

To assemble global
stiffness matrix

MATRIX EF
To obtain force
vector

I CALL LINVZF II
To invert global
stiffness matrix

CALL COEFF
CALL STIFF

I CALL VMULFF I To obtain updated
displacement vector.

Yes

To check tolerance
on displacements.No

Yes

To exit after five
iterations.

No

Figure 19 ..concluded
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mined limit, or when the tolerance on displacements is observed. In all

but the first iteration, the nonlinear coefficients are computed prior

to the assembly process. In the first iteration, nonlinear coefficients

are assigned zero values.

The computer code requires three different sources of input for the

analysis. The cross-sectional properties, which are essential in Vlasov°s

theory, are required. As before, the output from VLASOV2 can be used di-

rectly; data are read in through input unit 04. The second source of

input contains finite element data and is read in through unit 05. A

typical data file can be found in Figure 20 on page 84. The data file

contains three control parameters: length of the domain (mesh), the re-

strained degrees of freedom, and the tolerance of displacements in the

solution. The control parameters are NPRNT, NEM, and NBDY which indicate

the amount of details to be included in the output, the number of elements

to be used in the domain, and the number of restrained degrees of freedom,

respectively. Control parameter NPRNT'will be discussed in Section 4.3.4.

The third source is on loading: the initial load, the increment size, the

number of increments, and the type of load imperfection. The first three

load parameters can control the analysis to be carried out at a single

load level as well as in a scaled range. The fourth load parameter will

be discussed in the forthcoming section on Loading and Boundary Condi-
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TEST RUN ON SPECIMEN G3 ---NONLINEAR INPUT
2 2 13

18·°°°

‘\
controll parameters

2
3 length of

Q the domain

restrained degrees

16 of freedom
17
18
19
20
2l‘·
°°‘’g tolerance of

the displacements

Figure 20. Nonlinear finite element data file input
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tions. This data file is read interactively so as to allow a quick

turn-around.

In the assembly process, the nonlinear coefficients have to be

evaluated to allow the computation of the element stiffness matrix, then

the global stiffness matrix. The nonlinear coefficients are obtained from

the previous iterates and are evaluated at four Guassian points in every

element. The element stiffness matrix is then obtained by four-point

Guassian integration. It is followed by an assembly routine to give the

global stiffness matrix. The values of nonlinear coefficients are gener-

ally different in each element and they change after each iteration, the

assembly process has to be repeated in each iteration to update the ele-

ment stiffness matrix.

The concentric axial compressive load acting alone cannot drive the

nonlinear solution process. An imperfection must be present to cause

lateral deflections. To faciliate the nonlinear solution, there are three

options available. One is to introduce eccentricity into the end load,

which will cause non-zero moment resultants. The moments give rise to the

displacements associated with flexure. The second is to introduce small

distributed load along the length of the specimen. The distributed load

will cause bending and/or torsion of the bar which will interact with the
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axial load through the nonlinear terms. The third option is to prescribe

an initial imperfection in the shape of the column. For this approach,

the imperfection is usually taken geometrically in form of a buckling mode

shape along the length. Of the three methods available, the second method

was the easiest method to implement. The geometric imperfection is complex

since the formulation will have to be changed to describe the new geom-

etry. The introduction of the distributed load does not involve new in-

terpolation functions or any other kind of major re-structuring. The

result will be discussed in the following chapter.

The distributed load is given a small value compared to the axial

compressive load. Both loads are included in the element force vectors,

which are assembled into the global force vector. The distributed load

magnitude and axial load are increased proportionally. The nonlinearity

portion of the load vector (last term in Equation (2.39)) 15 neglected

in the iterative scheme.

Once the assembly process is accomplished, boundary conditions are

applied. The rows and columns in the global stiffness matrix that are

associated with the specified degrees of freedom are eliminated. The

corresponding force terms in the global force vector are removed as well;

these terms can be calculated directly after the assembled equations are

solved. The order of both the global stiffness matrix and the global force

vector are reduced as a result.

Seven boundary conditions are needed at each end of the beam column.

In the case of clamped conditions at both ends, seven essential boundary

conditions are prescribed at one end. At the other end, the natural

boundary condition, or the axial compressive force, that associates with
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Seven boundary conditions are needed at each end of the beam column.

In the case of clamped conditions at both ends, seven essential boundary

conditions are prescribed at one end. At the other end, the natural

boundary condition, or the axial compressive force, that associates with

the axial displacement is prescribed in additional to six other essential

boundary conditions.

The size of the output from FEMNL can be controlled in the input

file. The amount of details is governed by the integral input value of

NPRNT (1-3): a higher value of NPRNT leads to more lengthy output.

The output basically consists of a title, cross-sectional proper-

ties of the beam-column, details of discretization, and iteration re-

sults. The results of iteration at each load level consist of the current

displacement vector, and the difference of the same vector between two

iterations. Based. on the current values of the displacements, a force

vector is computed and compared to the actual force vector. The comparison

provides a cross-check to the solution.

4,4 QIS§Q§§IQ§

The solution method in the nonlinear analysis is complex. While the

iterative procedure at specified load level is automatic, the choice of

load level and load increments has to be made by the user. From experi-

ence, a nonlinear analysis should be conducted, after linear bifurcation
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analysis, in two separate runs. In the first run, the buckling load from

linear bifurcation is used as a first estimate to the range of load level

for iteration. The buckling mode should be noted from the linear

bifurcation analysis so that the distributed load can be selected to

trigger displacements that are associated with the buckling mode. Large

and regular load increments are used starting from a small value up to

the bifurcation load. The results at these regular intervals form an

overall picture of the loading history. The buckling load, in this

analysis, is defined as the lowest load at which one or more displacements

become large. Near the buckling load, the global stiffness matrix is

singular or near—singular therefore the displacement vector takes on

large or unpredictable values. Beyond the buckling load, results are un-

stable and significant changes in displacements are observed in succes-

sive iterations. To acquire a better estimate of the buckling load, the

nonlinear analysis should be conducted with small load increments start-

ing from some load level lower than the buckling load (estimated in the

first run).

At the present time, estimation of the buckling load is not auto-

matic; the results of a nonlinear analysis have to be plotted manually.

Close to the buckling load, the displacements become excessive. This is

usually accompanied by large changes in the displacement vector in suc-

cessive iterations. Furthermore, at load level higher that the buckling

load, the calculated force vector shows sizable discrepancies from the

assembled force vector. This suggest instability of the system beyond the

buckling load. The results of the nonlinear analysis will be presented

in the next chapter.
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To determine the credibility of the linear bifurcation analysis and

the nonlinear analysis, the results of the two analyses are compared to

available experimental data.

Two sources of experimental data on global buckling of thin-walled

laminated composite beams with open cross section were used. The first

source is from published data in the literature. It is found that very

few experimental data are available in the area of torsional-flexural

buckling of laminated composite columns. Of the existing data, exper-

imental investigations tended to be conservative and restrictive. The

second source is from the work of Tyahla [S2].

A paper by Chailleux et al [S3] includes eight specimens of flat

rectangular laminates. A11 specimens are symmetric and there are angle-

ply lay-ups, cross-ply lay-ups and unidirectional lay-ups. Two fiber

systems, glass and boron, and two matrix usystems, resin epoxy and

aluminium, are used in combination. The geometry of these specimens are

the simplest possible for beam columns. However, analyses of these

specimens is not possible, because there is insufficient data on the en-

gineering properties of the fibers and matrices. As a point of interest,

the authors discussed in some length on the use of Southwell plots to

determine the buckling loads of composite beam columns and plates.
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Lee and Hewson [54] conducted tests on unidirectional channel

sections for global and local buckling. The local buckling test data and

results will not be discussed in this text. The matrix system used was

Araldite MY753/HY9S6 from Ciba-Giegy. Glass and carbon fibers were used

to make up two groups of specimens. These channel sections have various

lengths and flange-to-web ratios (the width of the web is kept constant).

A typical section is shown in Figure 21 on page 91. Lee and Hewson at-

tempted to correlate these two parameters based on the test results. Also

included in the paper are the analytical results from the linear

bifurcation analysis. The approach used in the paper [S4] is apparently

similar to that of Vlasov [4, p. 330; 24, pp. 185-189]. The distinction

lies in the way the section properties are being calculated. It will be

shown later in the chapter that these two methods yield significant dis-

crepancies. There are six glass fiber·reinforced specimens and twelve

carbon fiber·reinforced specimens. They are listed in Table 1 and 2, re-

spectively. In the tables, each specimen is assigned a specimen number

for identification (this identification may not be the same as one as-

signed in the original research papers). The flange-to-web ratio, the

length and the experimental buckling loads are also displayed.

In Tyahla°s research [S2], thin-walled open sections of general

lay-ups were tested. The specimens were clamped at both ends, and sub-

jected to axial compression. Four specimens buckled in global modes and

were labelled as group two specimens. They consist of three channels and

one zee section. The lay-ups are eitherquasi-isotropic,or

[j45/;45/90/03]S . Details are listed in Table 3 in the same form as

described for Table 1 and Table 2. Experimental data available from the
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Channel Section bf
bw

Flange-to-web ratio = bf /bw
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bwFigure21. Cross sections of test specimens
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Table 1. Unidirecticmal Glass Fiber-Reinforced Channel Specimens

[54] .

SPECIMEN FLANGE/WEB LENGTH BUCKLING LOAD
NUMBER RATI0 IN INCHES IN POUNDS

(Mo¤E)*

Gl 0. 36 18. 504 1169. 1 (F)

0. 46 18. 504 2045. 9 (F)

G3 0. 52 18. 110 2877. 7 (F)

G4 15. 354 4451.4 (T/F)
G5 0. 85 15. 945 3821. 9 (T/F)

1. 03 17. 913 3282. 9 (T/F)

*”
F= FLEXURE F/T = FLEXURE AND TORSION
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Table 2. ÜI1id1.IBCtiOH81.-CBIb0I1 Fiber-Reinforced Channel Specimens

[54] .

SPECIMEN FLANGE/WEB LENGTH BUCKLING LOAD
NUMBER RATIO IN INCHES IN POUNDS

(M0¤E)*

C1 0. 17 9. 843 2383. 1 (F)

0. 17 13. 780 1641. 2 (F)
C3 0. 17 17. 717 966. 7 (F)

C4 0. 50 13. 780 6812. 1 (T/F)

C5 0. 61 13. 780 9644. 8 (T/F)

0.61 17.717 7104.3 (T/F)
C7 0. 61 21. 654 5283. 2 (T/F)

‘

O. 39 9. 843 11488. 3 (F)
C9 0. 39 13. 780 9015. 3 (F)

C10 0. 39 13. 780 5530. 6 (F)

C11 0. 83 13. 780 10004. 5 (T/F)

C12 17. 717 9240. 1 (T/F)

*F= FLEXURE F/T = FLEXURE AND TORSION
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Table 3. Graphite Fiber-Reinforced Specimens [52].

SPECIMEN LAY-UP FLANGE/WEB LENGTH EXPERIMENTAL
NUMBER RATI0 IN LOAD IN

INCHES POUNDS (MODE)*

Z-1 [j45/0/90]2S 1.0 19.00 7000.0 (T/F)
Channel

2-2 [i45/;45/90/03] 1.0 19.00 6830.0 (T/F)
Channel S

2-3 [i45/0/9012 12.00 9670.0 (T/F)
Channel S

2-4 [$45/0/90]2 15.00 6540.0 (F)
Zee S

* F=FLEXURE T/F=FLEXURE AND TORSION
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‘ tests include strain guage measurements at various stations along the

specimens; readings from displacement transducers at mid-span and

quarter-span; and readings from the crosshead monitor. These readings

were taken with instantaneous records in time and load level. The loading

history and gauge readings can be found in Appendix B.

The linear bifurcation analysis described in Chapter 3 was imple-

mented for the test specimens given in Table 1 to 3. Two computer codes

are used, BUCKEQ and LBIFUR. The Computer Code BUCKEQ computes the

bifurcation load as the lowest positive root to the characteristic

polynomial (Equation (3.15)), and in due course the buckling mode is

identified. In all cases, the predicted buckling modes agreed with the

experimental observation. In code BUCKEQ the H-terms are neglected and

the boundary conditions in torsion and flexure must be correlated (see

Section 3.2). The computer code LBIFUR is based on a matrix eigenvalue

analysis of a finite element representation of the stability boundary

value problem. In the code LBIFUR the boundary conditions do not have to

be correlated, and the H-terms are also neglected. However, a modified

version of the code LBIFUR was written which incorporates the H—terms.

The influence of the H-terms will be discussed later in this section.

In Tables 4 and 5 bifurcation results are listed alongside with the ana-

lytical results provided by Lee and Hewson, against the experimental re-

sults. It can be seen that the results by Lee and Hewson are in the same

range as the linear bifurcation results. The differences between the two
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Table 4. Buckling Loads for the Unidirectional Glass Fiber-

Reinforced Channel Specimens [54].

SPECIMEN EXPERIMENTAL ANALYTICAL ANALYTICAL
NUMBER LOAD IN RESULTS RESULTS

POUNDS (MODE)* (LEE-HWSON) (LBIFUR)

G1 1169.1 (F) 2967.6 1458.0
(+1S9%)· (+24.7%)

G2 2045.9 (F) 3777.0 2765.9
(+84. 6%) (+35. 2%)

G3 2877.7 (F) 4271.6 4015.3
(+48.4%) (+39.5%)

G4 4451.4 (T/F) 6969.4 6366.3
(+56.6%) (+43.0%)

G5 3821.9 (T/F) 6295.0 6690.6
(+64.7%) (+75.1%)

A

3282.9 (T/F) 6857.0 5971.4
(+109%) (+81.9%)

*I·'=FLEXURF. T/F=FLEXURE AND TORSION

•
% discrepancy with respect to experimental buckling load
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Table 5. Buckling Loads for the Unidirectional Carbon Fiber-

Reinforced Channel Specimens [54].

SPECIMEN EXPERIMENTAL ANALYTICAL ANALYTICAL
NUMBER LOAD IN RESULTS RESULTS

POUNDS (MODE)* (LEE-HEWSON) (LBIFUR)

C1 2383.1 (F) 2248.2 3159.0
(-5.7%) (+32.6%)

1641.2 (F) 1124.1 1611.8
(-31.5%) (-1.8%) ·

966.7 (F) 674.5 975.0
4

(-30. 2%) (-0. 9%)

C4 6812.1 (T/F) 13264.4 15123.0
(+94.7%) (+122%)

CS 9644.8 (T/F) 13938.9 18661.0
(+44.5%) (+93.4%)

7104.3 (T/F) 8992.8 11825.0
(+26. 6%) (+66. 4%)

C7 5283.2 (T/F) 7643.9 8362.3
(+44.7%) (+58.3%)

C8 11488.3 (F) 14613.3 20061.0
(+27.2%) (+74.6%)

C9 9015.3 (F) 9217.6 11216.0
(+2.2%) (+24.4%)

C10 5530.6 (F) 6295.0 7239.8
(+13.8%) (+30.9%)

C11 10004.5 (T/F) 18884.9 24688.0
(+88.8%) (+147%)

C12 9240.1 (T/F) 12814.8 15311.0
(+38. 7%) (+65. 7%)

* F=FLEXURE T/F=FLEXURE AND TORSION
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predictions are due to the different ways that are adopted in the calcu-

lation of cross·sectional properties. In Lee and Hewson, the method is

based on Timoshenko°s analysis [47, p.233]. The general discrepancies

between bifurcation loads and experimental loads are from -1.8% to +74.9%,

with an average of ·+30.7% for specimens that buckled in flexure; for

specimens that buckled in coupled flexural-torsional mode, the range of

discrepancies are from +41.0% to 146.8% with an average of 78%. The nu-

merical results from IBIFUR are given in Tables 4 and 5 and not from

BUCKEQ because the buckling loads computed from both codes are nearly the

same.

In Table 6 the buckling loads from code LBIFUR are compared to the

experimental data from Reference [52]. The discrepancies range from 41

to 56 percent with respect to the experimental buckling loads.

The results of the linear bifurcation are thought to be very un-

conservative as first approximations to the buckling loads. The

linearization process in ·the bifurcation analysis allows a relatively

simple analysis on one hand, but the mechanics of the problem is compro-

mised. A better approximation can be expected if the nonlinear nature of

the physical probelm is fully treated.

To complete the linear bifurcation analysis, the effects of the

H-terms are investigated. In the modified version of LBIFUR, the H-terms

are included. Specimens with off-axis lay-ups are chosen since the cou-

pling between the bending and twisting modes, thus the H-terms, is ex-

pected to be predominant. They are all channel sections with flange to

web ratio of unity and length of 19.0 inches. The comparision of analyt-

ical results from LBIFUR and the modified LBIFUR are presented in Table
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Table 6. Buckling Loads for the Graphite Fiber-Reinforced Channel

Specimens [52].

SPECIMEN LAY-UP EXPERIMENTAL ANALYTICAL
NUMBER LOAD IN RESULTS

POUNDS (MODE)* (LBIFUR)

2-1 [i45/0/90]2s 7000.0 (T/F) 9872
Channel (+41.0%)

2-2 [+*5/$*5/90/°3lS 6830. 0 (T/F) 12540
Channel (+83.6%)

2-3 [+45/0/9012 9670.0 (T/F) 15830
Channel S (+63.7%)

2-4 [i45/0/90]2 6540.0 (F) 10230
Zee S (+56.4%)
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Table 7. Comparison of Buckling Loads computed by neglecting the

H·terms (LBIFUR) and retaining the H·terms.

spzcmzu LAY-up ANALYTICAL ANA1.Y·r1cA1.
Numamz RESULTS RESULTS

[1,1611*012) (LBIFUR*)

Ä
12540 12691

A1 [16123 8101 8186
A2 [160128 13101 13255
A3 [:15128 17550 17732

* modified verision of LBIFUR to include the H·terms
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7. The first set of results are generated by the computer code BUCKEQ

which solves the characteristic polynomial (Equation 3.11) with the H-

terms being neglected. The second set of results are given by the modified

version of LBIBUR. It is found that the difference in the bifurcation load

is small, even for off—axis lay-ups. Thus, the procedure of neglecting

the H·terms in linear bifurcation is a good approximation as originally

given in Reference [5].

In Chapters One and Two, the Euler-Bernoulli beam theory on thin-

walled open sections has been critized. A diversion at this point aims

to confirm that Euler-Bernoulli beam theory is inadequate for thin-walled

open sections. To generate the relevant data, BUCKEQ is modified to ac-

commodate the plane sections remain plane assumption. The second

sectorial moment of area is reduced to zero. This quantity is the re-

sistance of the thin-walled section to warping, which contributes to the

overall torsional rigidity. Some results are obtained for the glass-

reinforced specimens for the purpose of illustration. In Table 8 results

from the modified BUCKEQ are presented in the E.B. Beam Theory column,

and are compared to results from linear bifurcation analysis (LBIFUR) and

experimental data. It can be seen that the predictions of the flexurally

buckled specimens are compatible to the results from LBIFUR, but are not

compatible for the torsionally buckled specimens. The rigidity to resist

warping in these thin-walled sections can be an order of magnitude higher

than the torsional stiffness, GJ. Thus, the total torsional rigidity as

a whole is underestimated. The prediction on flexural buckling is the

same as Vlasov°s linear bifurcation load; while prediction on flexural

torsional buckling are vastly different. If Euler-Bernoulli theory is
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Table 8. Buckling Loads for the Lee-Hewson Glass Fiber·Reinfo1·ced

Channel Specimens [54].

SPECIMEN EXPERIMENTAL ANALYTICAL E. B. BEAM
NUMBER BUCKLING LOAD RESULT THEORY °

IN POUNDS (LBIFUR)
(M0¤E)*

G1 1169. 1 (F) 1458. 0 1458. 0

2045. 9 (F) 2765. 8 2765. 9
G3 2877. 7 (F) 4015. 2 3283. 4

G4 4451. 4 (T/F) 6366. 3 2971. 4

3821. 9 (T/F) 6690. 6 2086. 5
3282. 9 (T/F) 5971. 4 1660. 5

* F=FLEXURE T/F=FLEXURE AND TORSION

° EULER-BERNOULLI BEAM THEORY
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used for thin-walled open section, over-design can be expected for

sections which buckle in the flexural torsional mode.

Output from the nonlinear finite element code can contain variable

amount of information. The basic, the least detailed, output contains the

numerical values of the cross-sectional properties, the length of the

domain, the degree of discretization, the tolerance specified on the

displacements, the restrained degrees of freedom, and the connectivity

in the domain. Second part of the output is given at each load level,

after each iteration. It contains the assembled force vector, the computed

force vector, computed displacement vector, and the change in displace-

ment vector due to each iteration. The computed force vector provides a

cross-check at each iteration point. In addition, information on the el-

ement stiffness matrix, and the global stiffness matrix at each iteration

point can also be printed.

The nonlinear analysis results are given in terms of the axial

displacement, lateral displacements, and the rotation. At the buckling

load, the displacements (or rotation) become excessive. For practical

purposes, the critical load is taken as the lowest load at which one or

more of the displacements (or rotation) change in order of magnitude.

At the present time, the buckling load has to be determined graphically.

The displacement solution is plotted against the compressive load, and

the buckling load is identified using the criterion above.
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Results of the nonlinear analysis can be found in Tables 9, 10 and

11. In these tables the nonlinear results are compared to the linear

bifurcation results, the experimental results, and other analytical re-

sults, if possible. The general discrepancies range from -9.1% to +99.9%.

The average is about 36%. The above figures are for specimens that buckled

in the coupled mode. The nonlinear analysis is unable to deliver solutions

for specimens that buckled in pure flexure or torsion. Compared to the

discrepancies between the experimental results and the linear bifurcation

results, which range from +4.1% to +146%, the discrepancies between the

experimental results and the nonlinear solution analysis, represent an

improvement of 15% to 60% with respect to the experimental buckling

loads. '

The nonlinear analysis has been conducted on six glass specimens

and twelve carbon specimens from Lee and Hewson, and four graphite spec-

imens from Tyhala. The patterns of result are very similiar: a typical

displacement curve would have a short linear portion, followed by a region

of decreasing slope; finally the slope becomes very small, and change of

displacement with respect to change of load becomes excessive. It is,

therefore, felt that presentations of all the nonlinear data are unnec-

essary. For illustration purposes, analytical solutions for three speci-

mens, GS , C12 and 2-2 are presented (see Figure 22 on page 108, Figure

23 on page 109, and Figure 24 on page 110, respectively). In these three

plots, displacements are plotted against concentric end load, up to the

buckling value. The plotted points are solution points from FEMNL, they

are joined by cubic splines. Results beyond this load, by definition,

are unstable and meaningless. It can be seen, in these three cases, that
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Table 9. Glass Fiber-Reinforced Channel Specimens [54] .

SPECIMEN EXPERIMENTAL ANALYTICAL ANALYTICAL NONLINEAR
NUMBER LOAD IN RESULTS RESULTS RESULTS

POUNDS (MODE) (LEE -HEWSON) (LBIFUR) (FEMNL)

G1 1169. 1 (F) 2967. 6 1458. 0
2045. 9 (F) 3777. 0 2765. 9

_

Ä =877·7 <F> 1
G4 4451. 4 (T/F) 6969. 4 6366. 3 5770. O

(+56. 6%) (+43%) (+29. 6%)

G5 3821. 9 (T/F) 6295. O 6690. 6 6100. 0
· (+64. 7%) (+ 75%) (+59. 6%)

3282. 9 (T/F) 6857. 0 5971. 4 5400. 0
(109%) (+81. 9%) (+64. 5%)
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Table 10. Carbon Fiber-Reinforced-Channel Specimens [54] .

SPECIMEN EXPERIMENTAL ANALYTICAL ANALYTICAL NONLINEAR
NUMBER LOAD IN RESULTS RESULTS RESULTS

POUNDS (MODE) (LEE -HEWSON) (LBIFUR) (FEMNL)

C1 2383. 1 (F) 2248. 2 3159. 0

_

E 1641.2 111 1124.1 1111.1

_

C4 6812. 1 (T/F) 13264. 4 15123. 0 8400. 0
(+94. 7%) (+122%) (+23- 3%)

CS 9644. 8 (T/F) 13938. 9 18661. 0 11500. 0
(+44. 5%) (+93. 5%) (+19- 2%)

7104. 3 (T/F) 8992. 8 11825. 0 7800. 0
(+26. 6%) (+66. 4%) (-1. 5%)

C7 5283. 2 (T/F) 7643. 9 8362. 3 4800.0
(+44. 7%) (+58. 3%) (*9. 1%)

11488.3 111 14613.3 20061.0

_

C9 9015.3 111 9217.6 11216.0

_

C10 5530. 6 (F) 6295. 0 7239. 8

_

C11 10004. 5 (T/F) 18884. 9 24688. O 20000. 0
(+88. 8%) (+146. 8%) (+99. 9%)

C12 9240. 1 (T/F) 12814. 8 15311. 0 9600. 0

(+38. 7%) (+65. 7%) (+3. 9%)
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Table 11. Graphite Fiber-reinforced Specimens [52].

SPECIMEN LAY-UP EXPERIMENTAL ANALYTICAL NONLINEAR
NUMBER LOAD IN RESULTS RESULTS

POUNDS (MODE) (LBIFUR) (FEMNL)

2-l [+45/0/90] 7000.0 9872 6500.0
Channel ZS (T/F) (41%) (-7. 1%)

z-z 6830.0 12540 8600. 0
Channel (T/F) (83.6%) (+25.9%)

2-3 [+45/0/90] 9670.0 15830 11400.0
Charmel 28 (T/F) (63. 7%) (+17. 9%)

2-4 [+45/0/90] 6540.0 10230
Zee 28 (F)
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the flexural torsional buckling phenomenon is driven by torsion: the onset

of buckling is dominated by torsion. This should be distinguished from

the case of pure torsional buckling which produces no lateral displace-

ments.

The linear response of W is distracting in the context of nonlinear

analysis. Such inconsistency can be traced back to the nature of the

nonlinearity in Vlasov°s theory. The latter does not cover all aspects

of the geometric nonlinearity. Thus the interactions, or geometric cou-

pling, of these displacements do not appear in the equilibrium equations.
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In extending Vlasov°s thin-walled open section bar theory to in-

clude wall constructions of mid-plane symmetric laminated composite ma-

terials, Bauld and Theng [5] have shown additional coupling terms exist

in the bar constitutive equations. These coupling terms are denoted by

HS, HC, and Hq, and depend directly on the normal moment-twist curvature

term B16 of classical lamination theory. The terms HS, Hc, and Hq in the

bar constitutive equations materially couple the bending and torsion of

the bar. Thus, in the linear theory for mid-plane symmetric laminated bars

it is possible to uncouple the bending and torsional equilibrium equations

as is the case in V1asov°s theory for isotropic bars.

The essential geometric nonlinearity included in Vlasov°s nonliner

theory is the coupling between twist and lateral deflections. Bauld and

Tzeng also include this geometric nonlinearity in the extended theory.

The nonlinear equations are the basis- for deriving the linear

bifurcational buckling equations. For the test specimens analyzed in this

thesis, the computed buckling loads were relatively unaffected by the

H·terms in the bifurcation buckling analysis with respect to including

them in the analysis. The linear bifurcation analysis is found to give

unconservative predictions of buckling loads. In the cases where buckling

loads from linear bifurcation analysis are compared to experimental
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buckling loads, the discrepancies range from -1.8% to +146%, and the av-

erage is about 60%.

It has been shown that Euler-Bernoulli beam theory predicts

buckling load poorly when the buckling mode is flexural·torsional cou-

pled. The assumption of plane sections remain plane does not include the

effects of warping thus the resistance to warping is not accounted for.

The resistance of the bar to warping provides additional torsional ri-

gidity, and is often of larger magnitude than the torsional stiffness GJ

of the bar. Failure to include this additional rigidity under-estimates

the buckling load where torsion plays a part in the buckling mode.

It should be pointed out that the extended theory also employs the

Vlasov assumption that the mid-plane shear strain is zero. Thus, the ex-

tended theory a priori neglects shear-extension coupling. Strictly

speaking a mid-plane symmetric laminate can have a nonzero value of A16

in classical lamination theory. The term A16 couples the normal axial

force resultant to the mid-plane shear strain. The term A16 is zero for

a balanced laminate (a laminate which has a -8 ply for every +8 ply).

Thus, the Vlasov assumption. is credible for a balanced and symmetric

laminate, but is perhaps a little less credible if the laminate is sym-

metric but unbalanced. All laminate lay-ups considered for study in this

thesis are of the balanced and symmetric type.

In the nonlinear analysis, initial imperfections are needed to

faciliate the nonlinear solutions. The nonlinear analysis gives solutions

on axial displacement, lateral displacements, and rotation at given load

level. The buckling load is taken as the lowest load value at which one

or more of the displacements (and/or rotation) become excessive. Results
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of the nonlinear analysis when compared to the experimental results give

discrepancies from -9.1% to +99.9%, with an average of 36%. At present,

the load vector is approximated in a linear fashion. In a fully nonlinear

solution the load vector as well as the stiffness matrix are functions

of the displacement vector. The performance of the nonlinear solution

should be improved by including the nonlinear portion of the load vector

in the iterative scheme.

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH

The nonlinear analysis gives good estimates of the buckling load.

It is, however, thought that a fully nonlinear theory would have wider

scope of application. A fully nonlinear theory should include all aspects

of geometric nonlinearity. In the present nonlinear theory, the axial

displacement response is always linear even when the beam column is dis-

placed laterally. This response is very much in contradiction with general

intutition. The fully nonlinear theory should reflect lateral displace-

ments in the response of axial displacement. In the fully nonlinear sol-

ution method, the nonlinearity in the load vector should also be included

in the iterative scheme to be consistent with Equations (2.36-2.39).

The variational method can be used to develop the fully nonlinear

theory. Such derivation can be started from kinematic assumptions on shell

strains. The derived equations would be consistent, and consistent

boundary conditions would also be obtained. In such a theory, pure flexure

buckling and pure torsional buckling should be recovered as special cases.
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To fully exploit the extended, Vlasov's theory and the extended

theory, the stress and deflection analyses should be developed for com-

posite bars. Comparison between experimental data, the extended Vlasov

theory, and Euler-Bernoulli beam theory for deflections and strains of

utmost interest. Potentially, experimental data could be used to estab-

lish creditability of the law of sectorial area over the assumption of

plane section remains plane for thin-walled open section bars. These two

analyses together with some failure criterion can be used to determine

the static ultimate strength of laminated composite mid-plane symmetric

bars. Furthermore, the investigation can be expanded to a larger scale

and applied to structures that are made up of bar members.

Finally, it would be desirable to develop a one-dimensional lami-

nated composite bar theory for closed sections which includes warping.

Structures such as wing boxes could be analysed in. a one-dimensional

manner for preliminary design. The simplicity of one-dimensional analysis

of complicated built-up structures makes it attractive for structural

optimization codes.
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’
Cross-sectional properties depend on the choice of Cartesian and

contour coordinate systems. Kinematic considerations allow for transfor-

mation of these cross-sectional properties when one or both of the coor-

dinate systems are changed without re-computation. Some of these

transformation laws are implemented in codes ISOKON2 and VLASOVZ for ef-

ficient evaluations while the others are not used because they pose se-

rious numerical problems.

Some of the cross-sectional properties are affected by change of

Cartesian coordinate system only. These include Sx, Sy, Ixx, Iyy, and

Ixy,The others are affected by change of the contour coordinate system

only; that is, a shift of the pole and/or the contour origin. Thus, the

transformation laws can be distinguished into two different groups by the

types of cross-sectional properties on. which they apply. The initial

Cartesian coordinates in the cross section are x and y, and the initial

contour coordinate system is given by arc length s, contour origin O, and

pole P. The cross-sectional properties are assumed to be known züx the

initial coordinate systems. The new coordinate systems are denoted by star

superscripts on the variables; that is, x*,
yfz sü, 0*, and

Pü
(See Figure

A1). The transformation laws relate the cross-sectional properties in the

new coordinate systems to the initial coordinate system.

In the first group of transformation laws the change is entirely

with respect to the Cartesian coordinate system; it is shown in the upper

diagram in Figure Al. The origin of the new Cartesian system has coor-
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dinates (xc, ye) in the unstarred system. And the angle of inclination

of the new Cartesian coordinate system relative to the unstarred Cartesian

coordinate system is ¤. The locations of the contour origin and the pole

remain the same. The first set of transformation equations are

‘
Sx* = (Sx · yc A) cosa - (Sy - xc A) sind (Al)

S
*

= (Sx - yc A) sine + (Sy - xc A) cosa (A2)

Y

2 2
I

* *
= (Ixx - 2 yc SX + yc A) cos a (A3)

x x

+ (I — 2 x S + x 2 A) sinza
YY ¢ Y ¢

— 2 (Ixy - yc Sy - xc Sx + xc yc A) sind cosa

2 . 2 (M)
Y Y

2 2
+ (I - 2 x S + x A) cos a

. yy c y c

+ 2 (IXY · yc Sy · xc Sx + xc yc A) sind cosa

I = (I - I - 2 y S + 2 x S + y
2

A · x
2 A) sina cosa (A5)

x*y* xx yy c x c y c c

+ (Ixy · xc SX - yc Sy + xc yc A) (coszc - sinza)

The second set of transformation equations is based on the change

of the locations of the pole and/or the contour origin, as shown in the

lower diagram in Figure A1. GE; denotes the sectorial area at 0*, with

respect to O and P. The second set of transformation equations are

Sw* = Sw · w0* A — (xp* - xP)(Sx - y0* A) (A6)

+<H-y>(S -'f,.,A>
P P Y 0
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1w*y = Iwy - wO* Sy - (xp* - xp)(Ixy - y0* Sy) (A7)

+(y,.·y)(I
·”¤'?;S)

P P YY 0 Y

I
*

= Iwx - w
*

SX - (x
*

- xp)(Ixx - y
*

Sx) (A8)
w x O p O

+ (yp,„, · yp)(1Xy — x0,., SX)

_ -— 2I
* X - Iww - 2 w

*
Sw + w

*
A (A9)

w w 0 0
2 —-— -2

+ (xp* · xp)
[Ixx

— 2 y0* Sx + y0* A]

+ ( — y )2
[I - 2 x S +-;-2

A]

- 2 (xp* - xp) [Iwx - wO* SX - y0* Sw + w0* yO* A]

+ 2 (yp* - yp) [Iwy - w0* Sy - xO* Sw + w0* xO* A]

— 2 (xp* - xP)(yp* • yp) [Ixy · x0* Sx - yO* Sy + x0* yO* A]
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In this appendix, experimental data on specimen 2-1, 2-2, and 2-A

are presented. The purpose of this appendix is to show how the exper-

imental data are utilized to determine buckling loads. The data points

are discrete points recorded in the experimental research; the lines

joining these data points are drawn for visualisation purpose only.

Two types of instrumentation were used in the testing: displacement

transducers and strain gauges. The positions of the monitors are shown

in Figure B1. Four available transducer readings and only three axial

strain gauge pairs (all at mid-span) will be presented here. The set up

of the displacement transducers (DCDT) were as follows,

•
DCDT1 : at mid-span, at the free edge of a flange.

•
DCDT2 : at mid-span, at the mid web.

• DCDT3 : at quarter-span, at the free edge of a flange.

•
DCDT4 : crosshead, the end shortening monitor.
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The strain gauges were set up as back-to-back pairs. For the channel

sections (2-1 and 2-2),

•
Gauge Pair 1, 2 : close to the free edge of a flange.

• Gauge Pair 11, 12 : close to the free edge of the second flange.

• Gauge Pair 21, 24 : at the mid web.

The strain gauges set up for for the zee section,

•
Gauge Pair 1, 2 : close to the free edge of a flange.

• Gauge Pair 9, 10 : close to the free edge of the second flange.

•
Gauge Pair 13, 16 : at the mid web.

The plots of load against displacement transducer readings, essen-

tially displacements, give similiar patterns. In each case, the loading

curve climbs with increasing load level; beyond certain load level, the

slope of the curve decreases with the load increment; at a higher load,

the slope diminishes and the displacement becomes large. Since flexural

deformations and twisting deformation are generally coupled, the overall

deformation of the beam column is difficult to visualized from the plots
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(Figure B2, B4, B6). Theoretically, the buckling load can be determined

from these loading curves; close examination reviews that such a method

is inconclusive and impractical.

The strain gauge readings are much more useful. No matter how the

specimen deforms, the buckling phenonemon is marked by excessive lateral

displacements and/or rotation. The buckling load is defined as the load

at which excessive curvature effects are recorded in the back·to-back

gauges. This method is found to be quite reliable, and was used to de-

termine the experimental buckling loads in Tyhala°s research.

The loading history of this specimen shown that there was an abrupt

disturbance during the experiment. The back—to·back gauges also recorded

such unexpected deformation, which rules out the possibility of faulty

DCDT monitors.
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In this appendix, the complete element stiffness is listed. The

linear terms in the element stiffness has been introduced in Chapter 4

and are written in short form as [Kij]L ; some linear terms are written

explicitly and are underlined for clarification.

[klu kl:. kls ku; kl: kl;kl'!L

L L L L L L
[ku kl:. kl} I<l!} KS klß kl'!

kl! kl l¢ Kl •• kl I1 kl lt kl vl] =

L l. L L L L
KK Ä

,<\
VI [<[ \c kl II k\ I1 |<\ [3 k[

[ALL]

Appendix C. Element Stiffness Matrix 133



Ä? 9?”54”A£]

[ku] = [ka: " 1;*
"’ 6

WF! dz + 4·RJ?'$€”5‘( A4-

+ He Ä?
·"(”$€"¤'z

*
R=1?"$‘<

WJ; + A

4,

4 m§§"¥!’5ä lt
RJ?

5€”5€’A;
+ RJ?" $€‘/1'Az + A y,1W'9€'5€’dz:]

[IQ;] = [A
jCü’·v, ?’) “'$‘:’$‘:’

ag

1;* "' Ö Re jälglyildlt

* 4- J1 "' 4
H=_1-älfqwä dä

·» mj; A

g: dl':

+ lr mj?"$£’s¢; A1, + 4 R» X? %"$?, A2

+ mj; sewaz + mj? M; de + Ay,
_j

Appendix C. Element Stiffness Matrix 134



[kg,] = Ä:AÄ(\74x,,?2‘9
w$?',<€'

J1]

[kg, kgg] =
Ä:lyyÄ€

}?”WJt kg; * A

Ä§"se’se az + 4 HsÄ 5%% 41
+ Hg

[K,. 1<,..]= [1,, T1 4*1611 AJ ~ A

4 Hs Ä¥’s«”% az
+ HsÄ¥

Ä i $€”$§"J1 kg

6 Hg

¤T%

* Hg Ä; WKIJI
··

kg

Tw G
JI *

‘*·
Hg

fälwä H?

* Hs Ä? 5?”%,'¤\1 +

HgAppendixC. Element Stiffness Matrix 135



A KM ä'

A V, *1,,) dz
J2 ’ K, Iyy jl

A J1

K. 1.,.

"’ AG dt

* H. J2 — K, ly, [ü"5€’%’o\z
*’ Hs J1 · K¤ lx;. XV" }€’$€'«,lz

U
· Km 1,,,,. 2

az - k,

A az
E

* Hs} C$’5?'$ä + =?"Y:’&) J?. — K,. L,.

A
A. K, L,,
R, X (<«°'%'YL’ + T/’?'{"&) A2
K., 2 H; ]?’5‘{’$&’ A1.]

Appendix C. Element Stiffness Matrix 136



s] = [A

$0

I; =- {TAI-lyilyiluh.

az — I<„ I„„

A
Q'A1"'

Rs I(V'$€'$€’* V’$€"$‘;)J2 · \<„ In IV"

K.
’·

R¤I?%’%’ az]

I:k·••1:I = ['H; I‘/1°%,'Az + A J1

* H„.I(€’$€’&' + §”se’z,)
az - kvlyy I¥'%”$€/az:]

[G,. B] = [H., I%"$i'¤\z - A xP At

*
H.«I(i'*€’€%'+ ¥”?'*äÖ¤l1 — |<» [xx I?

~· A ¤p‘TV·'%’%,'.¤,
‘· H.,

_I(?V¥’%' + ü' WS?.) A2 —K;‘*
H; I(V'$€'$‘,'+ '~7’S€"$ä\ Az

Az + 2 H;

IAppendixC. Element Stiffness Matrix 137



[kn] = [A j (GW y,¥')
°!€’$€’Aa.:j

[ks:. A _jTv'$‘;’5?’¤l1 -1** jf

l¤¤ AV' V1
%'”·‘*

+ 6 Hc j«i’%'#r’A1
*‘+“·]¥"%'#

·=‘=
*

‘+ ks J$'se”x· es
A);[kv]

Lw
as + 4 a„ j;'g”sq as

"' A

A1]

IL
"' 6 Re

jälülgl
J1 V

+ A- \&„j$”$€'$‘; A1. ·- 4 H,jf’5g"¢4 4;

A

L;
jV”$€$‘£”·‘1

+ G R«.j;'}Z_',?;' 41

4 H„
j‘f'

az

AAppendixC. Element Stiffness Matrix
138



[R.] = Ü XM

X? az A

X ’ä”*¢"·=\z * In
A, j‘;”ß£’r: dz + 4 “»

X? J1

Z Rsjäxg/8/ÄZ

+ 4- 4
X¥’5€"¤ä

Aw
'° AXWIEÄ/4iX

sa] de + 6 H;_X.€”$€'!‘g’6\z

*4 H6 X¥'%’% az + 4“¤X$"¢"'ä J4
"' J¥

“” *’
At ·» ‘\·H;

Xälgllg J1

+ A65; az «

¤»AppendixC. Element Stiffness Matrix 139



[K11], =
AEA

VV, W* *1V/Ü WWK I
At +A[K.,

O] = [‘ßXK"$€' Az * A YP
SWK,

WM ' Ü·xx’
HQ

[‘\7"K”K
At

Z§” fw?) A1. ·K1[K1

5] = [HLX WIKIJZ ' A Xp Az
+ Rs

X(¥’K'K'
+ S" $6%) az - K11 lu j §'$;"k 31;:]

[K1 4] = [Tg;} K'$‘{"
Az "' A dt

4 j(1·^· 1g’<g' + W K"K)«A=e — \<·1l1,„/SW' VÄKIJE
V,

At°

!<„ 11.,...
AC-€”K'K’

* WK" 4% *‘ 7-H¢ j 7Ö,%-/WJ?]

[H1 sl = [:*+1, j
W, K, Ji *‘ O1-;

+ Rß
gig-,

*A;"%,’&,)

_ Xälg-/lg,
At ]

[(1 1,] = [Aeg K'K’Az -A"'
H;

S(¥'K’K.'*
§"F;;'K)¤\2. ' K-«l·«1$"k"9';’ Az]

[K1 -1]
KY Hy (WK} $‘,,’&& 1

+ H5 AWIWIÄI J2 'Kv‘

Kw L.„..
_1C¥”K'K’

+
?'K”K’$

Az *· 2 *1,6 .VÖ’K.'K,' Jh]

Appendix C. Element Stiffness Matrix 140



[:14,,] = [A V') °°S?K' e\‘e + A

K dy + A v, Sw Az
+ He X($’K¢g‘+ $"&’&) Av. — K, 1-,-,

Ax,
Rs AG SU?J1[K,

[1,,,,, A R; fw KS? Az
. L gl.,"'

Hs M- ' Kr T¤¤

4;
-

2 Hß

Hc av. ·· K,

He J1 · A x, J?

*
RsÄ€¥'&’S‘L’+

?"&’5é.3a+. ·Kr[K,

A

H,
§(v·<+.'se„’~

v'<¢,”+.) ae

¥'AppendixC. Element Stiffness Matrix 141



[kg kh- ks; ku ks< kas kv] =

[kan'-
kv-L kcal- kv-•L kiss'- ku., hwk-]

[ku kg; kg •• ks u kg ng, kt I3 kB *1-] 2

[kg; kg
QL

ks
¤oL

kg
uk

ks
ab kg rs'- ks ut;]

Appendix C. Element Stiffness Matrix 142



[K.] =[^[Ku

S;
$€”{€”¤lt]

[A.] = [AI - 1..; G
4- He S?

$@,5%
Az

"‘ H;. A

Yr[kwslm] = [|<«;" + A Sw
$‘é’Y;’

Az -1,..; E
9€"¢€"A2=]

[KJ = [KL*·
4 J1 + 4- J?

+
\4_,_

S; .. gr} §"3g vg}; + A Yr

d kd tn] = [ks
RL

+ A lxx J}

J1 * 4 Ji
VQ" 7;}* A vr J7;]

[K IL AJ: [K Ä + AÄ?[A

..] = [A -1.. Sw Am + 6 A. X€·'A'A.' AA
*4 H;. Ji ‘* 4

“<·
Sälysßß 4*

+A A Vp §w'A’A.'A{|

Appemlix C. Element Stiffness Matrix 143



[K. .1 = [*1 l‘W*¤«» W) “/Y 1‘;’ A2:]

[kw!k'[K.-,]

1,, fü·;g;q· az + 4, u,§;'1g'g·'„.,

+ A- Hg J?.
‘* J2

* HJ Ö Ä/IW J1, + Hs A

S Ku
;L ,1;]

YS
Ji J1

A[K.

km ku

11]
gogldl

4* fäifi/gilt

4 Hs
X;”K$‘;

J?. dz

* Ks .12]

I1. ‘J kw
1SL+

A jl-Volyßlä,/Az]

[K. A] =E11..Ä1%"5‘.;'.\z * 1,, ]¤7~"$§ KU. +6*4

H, .1%+411, .11

Appendix C. Element Stiffness Matrix M4



[ku y] = I;A_I(4ü’· xy?)
WWK

Az + A RQIi'[K,

A 411

~ ¤.§c;'s·,'»e'+ ;”ss'se>·^=¢ - K7 ty, I?’¢we'„I1:|

[ku 6] 2 [Ht I K"? M 4%

* H1I(¥'%’$€’+ §”$g’§{·)
4*6 — K; 1;; A:.]

[<•¤ {I 2 [LM A

H., CV I‘a”$Ü Az · K7 Hy 4%

·* Hs_I(V'§g';g'+ ?,'$g'V:) Aa — K; 1;; IV" %’}€’Jre
‘ Kw L„».„

I(¥'7a'%’+ $’$‘;"$<’)
dz + ZM I$’Iä’Y€'dz:I

[Hu 6] 2 A y,„Iw73’ $§'$é_’Aa - Ch,. 4%

A 4
M

TG I
kc %/ Y},,4‘*

K1 S CV" 4-+. - K; 1;; IV"
I%’$%.’

4%

Az + 2H»I€’¢‘6”$€’¤l—¤:I

Appendix C. Element Stiffness Matrix 1*5



[ku s] Az + A RQ Ä?

Q" 4;, + A 1; Az

+ Hcjcälg/%I* KY
färsäßg/A?

xp

Rs
Ä(¥’Y;’&'+

$'&’Sä) A1 — K)- 1)-)-

"’ *‘

Heü'*'

Hg. Ä J1 — K)- lx)-_ÄV"$€’$§,’11·;

‘\<«„-L.)-„ Äcäryi/‘ä'*
"’ 7-W Ä?%”$§’dz]

[Q, M] = EH;
Ä‘/=,”$‘«•'

Ji "’ A Y, gt

"
“·= Ä@’*‘¤"‘·=»'*

?"$ä’&\ J1

m] Jr ‘ A>‘p J? Ag

+ A., jcr¢„'·+„‘ 6- Je - 141-). jr M]

igllgfldz Agfljwg

He Av. - K, L,-, ÄW $%’$€,’Ae

+ Rs Ä(V' %’%’+ ~7' WS?.) A1 · K- 1-)-

kw

älgs/IKIÖAQAppendixC. Element Stiffness Matrix 146



[A Ä(K’ + Y, i') WWW Ü] l

[KR, 1-

4] [K,
AL

· 1,, ÄV" Y;
$f”A2

+ (Y HY. Ä? f{'$‘('Az

'*"·"\·-_Ä;”$i'$fAt ‘* Aä
+ Hz Ä; $€,'$¢(’Az + Hc A Y,

5
gflxféä

EQ, {Ä D4, ," — 1,, 6 Re Ä Az
J1

Hz Ä; 96’,”${’Az + Re _Ä¥”9?,
K’Jz

* A Y,

[A §<¤·~ Y,

A Äw'se,'s·;'„x·+. ·l„„Äi%"/ä"·¤:Ä

[:<„,„:Ä [K, I - 1Y„ SV”Y’J;" J1 + <»
Az + A'

AA YVÄW $2% JJ

[K, lm "' G H‘ Sälälkl Ai
·*A-Hz Ä«§"?„'9€, Az JE

A, X; swxaz + H¢ Ye

AwAppendixC. Element Stiffness Matrix 147



D4 ~]

gllzlldz kl!
st

w] Ü" Q
jäugl

WJ.! "' Ä- J!

gnyirl
kl}

Ä.

In Im A" de + 6

Re
f$’%"&

¤¤=
"’ Rs j;

$‘4”$§_'
At * Rs SE"

K,
7;’ J2

*• Z')
wg, Yi.,

A1.
il

ku

o\‘t Q Hs

J1 + 4 Rs Ja
Ajwmwaél

In !¤"M”«¤= ··
4 Rs

X¥'¥:’
se, az + 4

RsAppendixC. Element Stiffness Matrix 1;,8



dk * A

Ay, J1

+ A. K,

A Yp

Rs K¤ lu

A Az

* ¤«
"ls J2 · Ky hx

JE
Iwlkläl

Az

J:.

lwwmz az
ä" Si'

A Ef

UVK7'*

Hs Az · l<¤
ywiäl

Appendix C. Element Stiffness Matrix 1!•9



Ä?

AY? dz
“° “¤

Mp Ä'vT·’¢„'¢„’A= · (lXX·1«,—,3Äü··s»,_”sg ,4;
*’“~. ÄC?%'$ä”*

?”%’¢,\plzKklßßj

gvpug/[azL

HÖXCQI '*
qfqzl

Kx Hu ÄV"
Az +IMÄ?"'

He Ä kt

es] Ä:
He Ä$§,*F,;/A1 · A LYYÖÄU/l

S€,”$*„
Cl;

"’ Hs Ä(?"‘+'7‘X' *’ ?'?€—'&3 A:. · Kx IXX Ä?

A"'

K' ‘/q„"¢,,,)
„\>_

- K7

Kw "’

AzAppendixC. Element Stiffness Matrix 150



1. Bert, C. W., and Francis, P. H., "Composite Material Mechanics :
Structural Mechanics", AlAA_Qggrhg1, Volume 12, Sept 1974, pp.
1173-1186.

2. Vlasov, V. Z., "Novyi metod rascheta prizmaticheskikh balok iz
tongostennykh profilei na sovmestnoe deistvie osevoi sily, izgiba
i krucheniya" (A new method designing thin-walled prismatical
shells for combined action of an axial force, bending and torsion)

20 (2), 1936-

3. Vlasov, V. Z., (in Russian), Gos. Izdvo
Stroit. Lit., Moscow-Leningard, 1940.

4. Vlasov, V. Z., Ihig-walleg, Elestie ßeams, Office of Technical
Services, U.S. Department of Commerce, Washington 25, DC,
TT-61-11400, 1961.

5. Bauld, N. R., and Tzeng, L. S., "A Vlasov Theory for Fiber-
reinforced Beams with Thin-Walled Open Cross Sections", Igt. Q,
§gljgs_§;rge;gres, Volume 20, No. 3, 1984, pp. 277-294.

6. Love, A. E. H., A Irearise OQ the Mathemstical Iheory of

ßlestieity, Fourth Edition, Cambridge University Press, New York,
1944, pp. 3, 19, 365.

7. Michell, A. G. M., "Elastic Stability of Long Beams Under Trans-
verse Forces", Philgsgghiegl_Mgge;ine, Volume 48, 1899, pp. 298.

8. Prandtl, L., Kipperscheinungen. "Ein Fall von Instabilem
Gleichgewicht" Dissertion, Nurnberg, 1899.

9. Timoshenko, S., "Ob ustoichivosti ploskoi formy izgiba dvutavrovoi
balki (On the stability in plane bending of an I-beam)" lzyestiyg
§t, Petersburg Pglitehhnicheshggg igstiture IV-V, 1905-1906.

10. v. Bach, C., "Versuche uber die tatsachliche Widerstandsfahigkeit
von Balken", Y,D.1·Zeitschr;ft, Volume 53, No. 41, 1909; Volume
54, No. 10, 1910.

11. Eggenschwyler, A., "Uber die Festigkeitsberechnung von
Schiebetoren", Dissertion ETH-Zurich, 1921.

12. Maillart, R., "Zur Frage der Biegung", Sehwejgerjsehe
ßegzeirggg, Volume 77, 1921, pp. 195-197.

Bibliography 151



13. Weber, C., "Ubertragung des Drehmomentes in Balken mit
deppelflensehigem Querschnitt",,

Velume 6, 85, 1926-

14. Duncan, W. J., "The Torsion and Flexure of Cylinders and Tubes",
1444, 1932-

15. Bernshtein, S. A., "Opytnoe issledovanie raboty verkhnego poyasa
otkrytogo mosta" (Experimental study of the behavior of the upper
chord of an open bridge) In: Sbornik "Issledovanie napryazhenii
i deformatsii pri staticheskoi rabote mosta", No.60, Transpechat',
1927.

16. Wagner, H., "Verdrehung und Knickung von offenen Profilen,
Festsehrift",pp.

329, Kaferman, Danzig, 1929. (Translated in National Advisory
Committee for Aeronautics, Tech. Memo. 807, 1936.)

17. Ostenfeld, A., Meddelse No.5 Politecknisk Laeranstalt Laboratorium
for Bygningsstatik, Kopenhagen, 1931.

18. Bleich, F., and Bleich, H., "Bending Torsion and Buckling of Bars
Cempesed ef Thin

Wells",Engineering,(English edition, pp. 871), Berlin, 1936.

19. Kappus, R., "Drillknicken Zentrisch Gedrueckter Staebe mit offenem
Profil im elastischen Bereich" (Torsion and Flexure Buckling of
open section elastic bars due to concentrated load), Lufg 14 9,
444-457, 1937. (Translated in. National Advisory Committee for
Aeronautics Tech. Memo.851, 1938.)

20. Lundquist, E. E., and Fligg, C. M., "A Theory for Primary Failure
for Straight Centrally Loaded Columns", Ieenr_Een;n§§2i_Ne;ienei

, 1937-

21. Nowinski, J. L., "Theory of Thin-Walled Bars", Anniiee_Meeneniee
Beyieg, Volume 12, No. 4, April 1959, pp. 219.

22. Dzanelidze, G.J., "Variational Formulation of the Vlasov Theory
of Thin-Walled Rods", (in Russian), Erigl, Metn, Mekn., 7, 6, pp.
455-462, 1943.

23. Timoshenko, S., "Theory of Bending, Torsion and Buckling of
Thin-Walled Members of Open Cross-section", Q. Erangiin {net.,
Volume 239, No. 3, pp. 201-219; No. 4, pp. 249-268; No. 5, pp.
343-361, March 1945.

24- Gjelsvik, A-, Wiley, New Yerk,1981. ”
Bibliography 152



25- Kaehanev, L- M-, , University af
Waterloo Press, 1983.

26- Murray, N-
W-,rhree,Oxford Engineering Series, Oxford, University Press, New
York, 1984.

27. Chwalla, E., "Die Kipp-Stabilitat Geader Trager mit Doppelt
Symmetriseheul·Quersehnitt",Berlin,

1939.

28. Goodier, J. N., "The Buckling of Compressed Bars by Torsion and
Flexure"Bulletin,27,

1941.

’

29. Goodier, J. N., "Flexural Torsional Buckling of Bars of Open
Section Under Bending, Eccentric Thrust or Torsional Loads",

Bulletin 27,
1942.

30. Kindem, S.E., "Biegung Drehung und Knickung Gerader Stabe mit
offenem Profil im elastischen Bereich", Iepjre_Zgrleg, Trondheim,
1949.

· 31- Timoshenko, S- P-, MeGraw·Hill,
New York, 1953.

32- Umansky, A-
A-,Strhcturee(in Russian), Oborongiz, Moscow, 1939.

33. Umansky, A. A., "Normal stress in torsion of aircraft wing", (in
Russian) Iekhh, Ygrd, Elota, No. 12, 1940.

34. Barta, T. A., "On the Torsional·F1exural Buckling of Thin-walled
Elastic Bars with Monosymmetric open cross-section", In : Ihih;
wellgi_§rrherhree, Chilver, A. H., Ed., John Wiley & Sons, New
York, 1967.

35. Lee, G. C., "A Survey of the Literature on the Lateral Instability
of Beams", Welding Research Qghheil ßhlletih, No. 63 (Aug), 1960.

36. Timoshenko, S. P., and Woinowsky-Krieger, S., Iheory gf Rletee
ehg_§he11e, McGraw-Hill, New York, 1959.

37. Pister, K. S., and Dong, S. B., "Elastic Bending of Layered
Plates", Q. Ehg, Mech, Qiy., ASCE, October, 1959, pp. 1-10.

38. Reissner, E., and Stavsky, Y., "Bending and Stretching of Certain

Types of Heterogeneous Aeolotropic Elastic Plates", J, App;.
Meehr, September, 1961, pp. 402-408.

Bibliography 153



39- Ambartsunyan, S- A-, Technomic
Publishing Co., 1973.

40- Ashton, J- E-, and Whitney, J- M-, ,
Technomic Publishing Co., 1970.

41- 1-ekhnitskii, S-
G-,ßgey,Holden-Day Publishers, 1963. ·

42. Dong, S. B., Pister, K. S., and Taylor, R. L., "On the Theory of
Laminated Anisotropic Shells and Plates", Qguggel gf Aeggepece
Seiegeee, August 1962, pp. 969-975.

43. Ambartsumyan, S. A., "Theory* of Anisotropic Shells", NA§A_;II
E-118, May 1964.

44- Jones, R- M-, , MeGraw·Hi1l, New
York, 1975.

45- Davies, G- A- 0-, , Wiley,
London, 1982.

46. Flugge, W., §;;eeeee_ig_§he1le, Second Edition, Springer·Verlag,
New York, 1966.

47- Tinoshenko, S- P-, and Gere, J- M-, ,
McGraw-Hill, New York, 1961.

48. Brush, D. O. and Almroth, B. O., ßuegligg gf Bags, Rleees, ang

Shelle, McGraw·Hill, New York, 1975.

49- Reddy, J-
N-,McGraw·Hill,New York, 1984.

50- Oden, J- T-, McGraw-Hill,
New York, 1972.

51. Weaver, W. J., and Johnson, P. R., Eiggte Elemeges fg; Streetggal
Agelyeje, Prentice-Hall, 1984.

52. Tyahla S. T., "Failure and Crippling of Graphite-Epoxy Stiffeners
Loaded in Compression", Masters Thesis, Department of Aerospace
and Ocean Engineering, Virginia Polytechnic Institute and State
University, 1984.

53. Chailleux, A., Hans, Y., and Verchery, G., "Experimental Study
of the Buckling of Laminated Composite Columns and Plates", lnt.
Q. Meeh. §ei,, Volume 17, 1975, pp. 489-498.

54. Lee, D. J., and Hewson, P. J., "The Use of Fibre-Reinforced

Plastics in Thin-Walled Structures",

inBibliography 154



, ed- Richards, T- H-, and
Stanley, P. , Applied Science Publishers, Ltd. , London, 1979.

55. Lentini, M., and Pereyra, V., "An Adaptive Finite Difference
Solver for Nonlinear Two Point Boundary Value Problem with Mild
Bouudary Layers", , Volume lk,
1977, pp. 91-111.

Bibliography 155




	Batch381
	btd-001
	Batch391



