
Polynomial Models for Systems Biology: Data Discretization
and Term Order Effect on Dynamics

Elena S. Dimitrova

Dissertation submitted to the faculty of the Virginia
Polytechnic Institute and State University in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy
in

Mathematics

Reinhard C. Laubenbacher, Chair
Christopher A. Beattie

John A. Burns
Pedro J. Mendes

August 1, 2006
Blacksburg, Virginia

Keywords: Discrete Modeling, Data Discretization, Finite Fields,
Polynomial Rings, Polynomial Dynamical Systems, Gröbner Bases, Systems

Biology, Biochemical Networks

i

Polynomial Models for Systems Biology: Data Discretization and Term
Order Effect on Dynamics

Elena S. Dimitrova

ABSTRACT

Systems biology aims at system-level understanding of biological systems,
in particular cellular networks. The milestones of this understanding are
knowledge of the structure of the system, understanding of its dynamics,
effective control methods, and powerful prediction capability. The complexity
of biological systems makes it inevitable to consider mathematical modeling
in order to achieve these goals.

The enormous accumulation of experimental data representing the ac-
tivities of the living cell has triggered an increasing interest in the reverse
engineering of biological networks from data. In particular, construction of
discrete models for reverse engineering of biological networks is receiving
attention, with the goal of providing a coarse-grained description of such
networks. In this dissertation we consider the modeling framework of poly-
nomial dynamical systems over finite fields constructed from experimental
data. We present and propose solutions to two problems inherent in this
modeling method: the necessity of appropriate discretization of the data and
the selection of a particular polynomial model from the set of all models that
fit the data.

Data discretization, also known as binning, is a crucial issue for the con-
struction of discrete models of biological networks. Experimental data are
however usually continuous, or, at least, represented by computer floating
point numbers. A major challenge in discretizing biological data, such as
those collected through microarray experiments, is the typically small sam-
ples size. Many methods for discretization are not applicable due to the
insufficient amount of data. The method proposed in this work is a first
attempt to develop a discretization tool that takes into consideration the is-
sues and limitations that are inherent in short data time courses. Our focus
is on the two characteristics that any discretization method should possess

ii

in order to be used for dynamic modeling: preservation of dynamics and
information content and inhibition of noise. Given a set of data points, of
particular importance in the construction of polynomial models for the re-
verse engineering of biological networks is the collection of all polynomials
that vanish on this set of points, the so-called ideal of points. Polynomial
ideals can be represented through a special finite generating set, known as
Gröbner basis, that possesses some desirable properties. For a given ideal,
however, the Gröbner basis may not be unique since its computation depends
on the choice of leading terms for the multivariate polynomials in the ideal.
The correspondence between data points and uniqueness of Gröbner bases
is studied in this dissertation. More specifically, an algorithm is developed
for finding all minimal sets of points that, added to the given set, have a
corresponding ideal of points with a unique Gröbner basis. This question is
of interest in itself but the main motivation for studying it was its relevance
to the construction of polynomial dynamical systems.

This research has been partially supported by NIH Grant Nr. RO1GM068947-
01.

iii

Dedication

To my parents, for their unending love and support.

iv

Acknowledgements

I first offer my gratitude to my advisor, Reinhard Laubenbacher, for his
mentoring and friendship. His tireless commitment to his work has been an
incredible source of inspiration for me. I am thankful for the opportunity
to be a student of his and for the continuous patience and encouragement I
have been receiving. In my future work as a researcher and student advisor,
my hope is to come close to the extremely high standards he has established
for me.

I thank the members of my committee, Christopher Beattie, John Burns,
and Pedro Mendes, for their insightful comments and questions about my
work.

I give special thanks to my friend and mentor, Abdul Salaam Jarrah, for
the time he dedicated to patiently guiding me through my work. Over the
years I have known him, I have come to greatly appreciate his brilliant mind
and generous nature. I doubt I will ever be able to repay him for all the help
he has given me.

I give warm thanks to the current and former faculty, staff, and graduate
students at the Virginia Bioinformatics Institute for providing an excellent
interdisciplinary working environment that has determined the course of my
future career. I especially thank Diogo Camacho, Autumn Clapp, Miguel
Colón-Vélez, Alberto de la Fuente, Edgar Delgado-Eckert, Ina Hoeschelle,
Stefan Hoops, John McGee, Ana Martins, Bharat Mehrotra, Pedro Mendes,
Dustin Potter, Wei Sha, Vladimir Shulaev, Brandy Stigler, Leepika Tuli,
Alan Veliz-Cuba, Paola Vera Licona, Jim Walke, and Dedra Wright. I also
thank Michael Stillman from Cornell University for his valuable contribution
to several research projects I have been part of.

I thank the professors at Virginia Tech and the American University in
Bulgaria who gave me the education and courage to pursue a doctoral degree
in mathematics. I am especially thankful to my undergraduate advisor, Oleg
Yordanov, without whom I would not have become a mathematician. I also
thank Martin Day, Alexander Ganchev, Peter Haskell, Peter Linnell, Stoyan
Nedev, and Charles Parry for being incredible teachers and mentors. I am
grateful to William Greenberg for helping me come to Virginia Tech.

Next, I give thank to my family, for without their love and support I
would not be here. I thank my parents who have thought me to believe in

v

myself, trusted my choices, and always been there for me whenever I was in
need. I thank my brother who had to grow up with his sister far away but
kept his heart open for me. I could not have asked for a more loving and
supportive family. I honor the memory of my grandfathers whose lives and
work never cease to inspire me.

Finally, I thank my friends, scattered all over the world, whose presence
in my life has made me the person I am now. I keep dear in my heart my
best friend, Nevena Hranova, for her unconditional love and understanding.
I thank Hardus Odendaal, who was so patient and supportive during the last
stage of my graduate studies, for the happiness he has given me. I am grateful
for the friendship of Katarina and Emery Conrad, Nikolay Kolev, Katerina
Kormousheva, Maria Laubenbacher, Samantha Lowell, Sequan, Elitza Sta-
noeva, and Svetla Todorova-Zlatkova.

vi

Contents

1 Introduction 1

1.1 The “System Level” of Systems Biology 2

1.2 Role of Mathematical Modeling in Systems Biology 3

1.3 Mathematical Modeling and the S. cerevisiae Oxidative Stress
Project . 5

1.3.1 Biological Motivation 5

1.3.2 Top-down Mathematical Modeling of Oxidative Stress
Response . 6

2 Discrete Models for Systems Biology 7

2.1 Boolean Networks . 8

2.2 Bayesian Networks . 9

2.3 Cellular Automata . 10

2.4 Logical Models . 11

3 Polynomial Models over Finite Fields 13

3.1 Concepts from Commutative Algebra and Algebraic Geometry 14

3.1.1 Gröbner Bases . 14

3.1.2 Monomial Ideals . 16

3.1.3 Ideals of Points . 18

3.2 Polynomial Dynamical Systems 20

3.3 An Algebraic Approach to Reverse Engineering 21

3.3.1 Algorithm for Model Selection (for one time course) . . 23

3.3.2 Reverse Engineering Dependency on Monomial Ordering 24

3.3.3 Reverse Engineering Dependency on Data Discretization 25

vii

4 Gröbner Bases for Ideals of Points 27
4.1 Motivation . 27
4.2 Existence of a Solution . 28
4.3 Cancellation of Monomial Ordering Effect on Gröbner Basis

Computation . 29
4.3.1 Elimination of Initial Terms through One Point Addition 29
4.3.2 Elimination of Initial Terms through Multiple Point

Addition . 32
4.4 Nonexistence of Solution for a Fixed |W | 35
4.5 Conclusion . 36

5 Discretization of Time Course Data 37
5.1 Introducton . 37
5.2 Method . 40

5.2.1 Discretization of One Vector 41
5.2.2 Discretization of Several Vectors 42

5.3 Algorithm Summary . 45
5.4 Algorithm Complexity . 46
5.5 Inconsistencies in the Discretized Data 47
5.6 Requirements on the Number of States 48
5.7 Preservation of Dynamics . 48
5.8 Discretization in the Presence of Noise 48

5.8.1 Noiseless data . 49
5.8.2 Adding noise to the data 49
5.8.3 Results . 50

5.9 Conclusion . 50

6 Example: Data Discretization and Reverse Engineering of a
Simulated Gene Regulatory Network 51

7 Discussion and Future Work 57

viii

List of Figures

2.1 A state-transition diagram for a Boolean network. 9

2.2 A directed acyclic graph. 10

2.3 A pattern obtained with a simple cellular automaton: Pascal’s
triangle of binomial coefficients, reduced modulo 2. From [26]. 11

2.4 Temporal relationship between variable x and its image X. . . 12

3.1 Staircase of monomial ideal I = 〈x2y4, x3y3, x5y〉. 17

3.2 A Gröbner fan of an ideal. 19

4.1 Monomial staircases of the initial ideals of I, (m,n) → xmyn.
(A) in1(I) = 〈x, y2〉 (B) in2(I) = 〈x2, y〉. 29

4.2 Monomial staircase of in1(I) ∩ in2(I) = 〈x2, xy, y2〉. 30

5.1 Dendrogram representing the SLC algorithm applied to the
data of Example 5.2.1. The column on the right gives the cor-
responding Shannon’s entropy increasing at each consecutive
level. 42

5.2 The complete weighted graph constructed from vector entries
1, 2, 7, 9, 10, 11. Only the edge weights of the outer edges are
given. 43

6.1 Plot of the numerical solution of (6.1) with initial condition
(G1(0), G2(0), G3(0), G4(0), G5(0)) = (1, 1, 1, 1, 1). 54

6.2 Top: Wild-type time course generated by solving numerically
the ODE system (6.1) for t = 0, . . . , 10 with initial condi-
tions (G1(0), G2(0), G3(0), G4(0), G5(0)) = (1, 1, 1, 1, 1). Bot-
tom: Corresponding discrete point time course. 55

6.3 Trajectories formed by the discretized wild-type time courses
[73]. 56

ix

6.4 (A) Wiring diagram of (6.1); (B) Wiring diagram of (6.2). . 56

x

List of Tables

6.1 Relationships among the five genes of the A-Biochem-generated
artificial gene network. 52

xi

Chapter 1

Introduction

Abstractness, sometimes hurled as a reproach at mathematics, is its chief
glory and its surest title to practical usefulness.

E.T. Bell

The current work does not propose a model of a biological system, nor
does it introduce a new modeling method, and in general the theory and algo-
rithms it presents can be used outside of any modeling framework. However,
it was clearly motivated by the desire to study the structure and dynamics
of biological systems using the techniques of mathematical modeling. We
believe that we have contributed to the improvement of the set of tools avail-
able to the modeler and therefore feel the need to share our faith in the value
of mathematical modeling in biology, and especially in systems biology.

Technological advances in the life sciences have triggered an enormous
accumulation of experimental data representing the activities of the living
cell. This in turn caused a paradigm shift in biology, resulting in its “moving
from being a descriptive science to being a quantitative science” [1]. The
emergence of systems biology is part of this paradigm shift. Its goal to study
entire biological systems through perturbing them on the molecular level and
accurately measuring their response can only be realized with the help of pre-
cise and powerful technology. Thus, the movement of biology to quantitative

1

science opens a two-way street: technology causes quantitative development
in biology but the resulting development in the biological sciences requires
continued technological developments and increases the need for improved
communication between biologists and mathematicians.

1.1 The “System Level” of Systems Biology

Biology is the science of life: it is concerned with the characteristics and
behavior of organisms, their origin, and how they interact with each other
and the environment. This enormously broad scope has naturally created
different levels at which biology studies life – from the atomic and molecular
scale of biochemistry and molecular genetics to the level of entire populations
in population biology.

The study of life has become an interdisciplinary enterprise in which many
academic fields participate by applying their already existing tools and creat-
ing new ones to study various biological objects. This way, biology has given
rise and become part of fields like biophysics, biomathematics, and bioinfor-
matics. When in the 1950s L. von Bertalanffy, W. R. Ashby, and others [2]
founded the field called systems theory, it was only natural that it eventually
found its application in the development of systems biology. For various rea-
sons this did not happen quickly, though. Over a half-century ago, N. Wiener
suggested that living organisms be viewed as systems governed by feedback
control [3]. Wiener attempted to found a new discipline – “cybernetics” – for
the study of such systems. His ideas generated some excitement in the social
sciences in the 1950s, only to fade away soon after, although not disappear
completely. At the beginning of the twenty-first century, Wiener’s vision has
returned, thanks to a great extend to the work of Hiroaki Kitano [4].

Today, only a few years later, Systems Biology is an emergent field that
has been ascribed various definitions due to its extremely dynamic develop-
ment and the large scope of topics it encompasses. As the name suggests, the
field aims at system-level understanding of biological systems. What does it
mean to understand at the “system level”? First, it has to be stipulated that
in the present work the focus will be on biological systems at the cell level,
without claiming that it is disconnected from the other levels of organiza-
tion. Unlike molecular biology which focuses on molecules, such as sequences
of nucleotide acids and proteins, systems biology’s focus is on systems that

2

are composed of molecular components. The essence of a system lies in its
dynamics that cannot be described merely by enumerating the components
of the system. Therefore, systems biology performs a shift from molecular
characterization to understanding of the functional activity of a biological
system. This is not to give support to the claims that the so-called reduc-
tionist approach (the detailed study of individual elements of the system) to
biology must always fail, either because of nature’s redundancy and complex-
ity, or because we have not understood all the parts of the processes. It is
probably misleading to believe that only system structure, such as network
topology, is important without paying sufficient attention to the diversity
and functionality of the components. Both the structure of the system and
its components play indispensable role in forming the dynamics of the sys-
tem as a whole. But, while biologists have always known that a protein must
function within the context of the whole cell, it has only recently become
possible to obtain data about this functional level [5].

1.2 Role of Mathematical Modeling in Sys-

tems Biology

As one moves from the “micro-” to the “macro-” scale of biology, it is in-
teresting to notice that mathematics has increasingly well-established ap-
plications, with population biology being one of the oldest area in math-
ematical biology. On the other end of the spectrum is molecular and cell
biology, to which mathematics has found application only a few decades ago.
This (inevitable) collaboration is greatly due to the advances in technol-
ogy that created high-throughput measurements that require computational
and analytical tools in order to be utilized. An example of the impact of
mathematics on molecular biology is the sequencing of the three billion base
pair human genome, achieved through sequencing hundreds of thousands of
smaller randomly overlapping contiguous genetic segments [6]. In order to
arrange these segments in the biologically correct linear order, one must com-
pute the overlap probability among segments. After having assembled the
bits of the genome and obtaining the correct linear sequence, one must then
find the genes, the short, scattered regions of DNA which code for currently
unknown proteins. This is a highly complicated mathematical problem of

3

pattern recognition and biological cryptology that earned mathematics an
undeniably important role in the post-genomic era of biology.

Perhaps the most significant application of mathematics in biology is the
mathematical modeling of biological processes. To the biologist, mathemat-
ical modeling offers a research tool, “commensurate with a new powerful
laboratory technique,” if it is used appropriately and with its limitations
recognized [7]. In systems biology, using knowledge from molecular biology,
one can propose hypotheses that explain a system’s behavior and these can
be used to mathematically model the system. Models are then used to pre-
dict how different changes in the system’s environment affect the system and
can be iteratively tested for their validity [8].

To the mathematician, biology is the next great challenge that is going
to be a continuous source of motivation and advancement, similar to the way
mathematics has and will benefit from its involvement with physics [9]. It is
very likely that biology will stimulate the creation and development of en-
tirely new areas of mathematics and contribute to the progress of the already
exiting ones. In this process of mutual benefit between biology and mathe-
matics, systems biology plays a significant role. One of the main reasons is
its multivariate nature. “You have to be looking at multiple variables simul-
taneously and how they interact with one another, rather than any specific
single variable in isolation,” Douglas A. Lauffenburger, professor of biological
engineering at Massachusetts Institute of Technology, says about systems bi-
ology and establishes mathematical modeling as a natural tool to fulfill this
requirement. Another reason for the need of modeling in systems biology is
that the wide range of scales on which systems biology operates – from one
pathway to a collection of pathways, from one cell to many cells interacting –
requires a high level of generalization. Mathematical models provide general-
ization through abstraction – a gene regulatory network is described in terms
of equations. If differential equations are used, for example, their structure
and the values of the parameters establish a relationship to a particular gene
network. One of the values of the mathematical models is that their for-
mal study allows us to investigate generic properties and test hypotheses.
Perhaps equally importantly, the modeling process itself “teaches” us a lot
about the functional activity of the system and the dynamic interactions of
its components.

4

1.3 Mathematical Modeling and the S. cere-

visiae Oxidative Stress Project

This systems biology project is a collaboration between the Laubenbacher,
Mendes, and Shulaev labs at the Virginia Bioinformatics Institute. It is
funded by the NIGMS under grant number RO1 GM068947-01 and has par-
tially supported the current dissertation. It is briefly presented here as an
example of a mathematics-systems biology project and as being a major
source of motivation for the work presented in the subsequent chapters.

1.3.1 Biological Motivation

The yeast Saccharomyces cerevisiae, also called brewer’s or baker’s yeast, is a
single cell eukaryotic microorganism. It is one of the simplest eukaryotes but
many essential cellular processes are conserved between yeast and human.
Many yeast proteins have been shown to be functionally interchangeable
with their homologous human proteins. Yeast is easy to culture and ma-
nipulate genetically and biochemically, and there is vast knowledge for this
organism at the physiological, genetic, and molecular levels. Consequently,
S. cerevisiae is widely used as a model system to understand the molecular
mechanisms of oxidative stress response [10].

Oxidative stress is a harmful condition in a cell, tissue or organ caused by
reactive oxygen species (ROS) or other molecules with high oxidative poten-
tial. All aerobic organisms are exposed to ROS. ROS such as the superoxide
anion, H2O2, and the hydroxyl radical are generated in the course of nor-
mal aerobic metabolism or after exposure to radical-generating compounds.
ROS can cause wide-ranging damage to macromolecules, including proteins,
lipids, DNA and carbohydrates. ROS have been recognized as important
pathophysiologic components of a number of diseases, such as Alzheimer’s
disease [11], diabetes [12], and cancers [13]. To protect against oxidant dam-
age, cells contain effective defense mechanisms including enzymes and low-
molecular-weight compounds [14]. Oxidative stress occurs when the forma-
tion of oxidants exceeds the ability of antioxidant systems to remove them.
These ROS and the corresponding cellular defense systems have been studied
extensively in S. cerevisiae [15].

This project studies the kinetics of the S. cerevisiae response to oxidative

5

stress induced by cumene hydroperoxide. Since one of the main objectives of
the project was to create mathematical models of biological systems, the two
modeling teams, Laubenbacher and Mendes research groups, participated in
the experimental design. This was to assure that the data collected would be
of the appropriate type, amount, and format for the models of the oxidative
stress response system that they were going to build.

1.3.2 Top-down Mathematical Modeling of Oxidative
Stress Response

The goal of the project is to develop new techniques to construct integrative
mathematical models of biological systems and focuses on the yeast Saccha-
romyces cerevisiae oxidative stress response as an example. The two research
teams working on it use different modeling frameworks but have both adopted
the so-called top-down or reverse engineering method for model construction.
This method builds a model from observation of the system in response to
specially designed perturbations. In this project the observations are mea-
surements of concentrations of biomolecules recorded at predetermined time
intervals, resulting in time courses of experimental data. The starting point
of the modeling process is the system (the observations) and the result is a
model.

The Laubenbacher group has developed methods to create top-down mod-
els of biological systems using discrete mathematics. The group has de-
veloped a new modeling approach for gene regulatory networks from DNA
microarray data, based on the framework of discrete dynamical systems in
which each variable can take on a finite number of states. Using techniques
from computational algebra, a method to reverse-engineer biochemical net-
works has been constructed. It is introduced in [47] and is also discussed in
Section 3.3. The current dissertation presents results that were motivated by
the requirements of this modeling approach and can be considered part of it.

The Mendes group has developed methods based on (continuous) non-
linear dynamics to create top-down models of biological systems. They use
ordinary differential equations for the modeling of biochemical networks as
continuous systems. This approach is based on chemical kinetics theory [16].

6

Chapter 2

Discrete Models for Systems
Biology

As discussed in the previous section, mathematics is becoming a key player
in the emerging field of systems biology. In the long history of collaboration
between biology and mathematics, systems of ordinary differential equations
(ODE) have been established as the most common modeling framework. This
is due to the well developed mathematical theory behind ODE models and
certainly to the large number of biological modeling projects completed suc-
cessfully using ODEs. A well know example is the Michaelis-Menten ODEs
from 1913 that describe the kinetics relationship between substrate concen-
tration and enzyme concentration when the concentration of enzyme is much
less than the concentration of the substrate (see [17] for a current derivation).

Mathematical modeling in systems biology is no exception. For gene reg-
ulatory networks, for instance, the most common approach to the modeling
of dynamics is to view a gene regulatory network as a biochemical network
of gene products, typically mRNA and proteins, and to describe their rates
of change through a system of ODEs. An example is [18].

Then why do we claim that discrete models are necessary and useful in
biology? Inside cells, biochemical reactions are at the lowest level discrete
events in which individual molecules and enzymes are brought together for
oxidation, reduction, hydrolysis, catalysis, etc. [19]. Given current measure-
ment technology, however, it is impractical to measure whole-genome expres-
sion levels at single-molecule resolution. For this reason, large numbers of
cells are pooled together and mRNA is removed from the population as a

7

whole. Nevertheless, due to the small amount of data about gene regula-
tory networks, there are good reasons to choose variable discretization into a
small number of levels. There is increasing evidence that certain types of gene
regulatory networks have key features that can be represented well through
discrete models [20]. For example, it seems reasonable that for many genes,
transcription occurs in one of a small number of states, perhaps low/high,
off/low/high, low/medium/high, off/low/medium/high, etc., and that the
level of transcription of a gene does not smoothly interpolate between these
states but rather these states approximate transcriptional equilibria main-
tained by the cell through its gene regulatory network [19].

But, as observed in [47], continuous and discrete modeling approaches
might not be as far apart as it appears. It is useful to keep in mind that
most ODE models cannot be solved analytically and that numerical solutions
of such systems involve the approximation of the time-continuous system by
a time-discrete one. Furthermore, when validating an ODE model using mi-
croarray data it is often necessary to utilize thresholds for continuous concen-
trations. The connection between an ODE system and an associated discrete
system that captures information about the continuous dynamics has been
formalized in [21].

Next we present briefly several discrete modeling frameworks that have
found application in systems biology. In Section 3 we give a more detailed
description of another one, polynomial models over finite fields.

2.1 Boolean Networks

Boolean networks were first used in the life sciences in the 1960s, when Stu-
art Kauffman introduced them to model regulatory networks as switching
networks [53]. Boolean network models have the advantage of being more
intuitive than ODE models and might be considered as a coarse-grained ap-
proximation to the network. They differ from ODE models in that time is
taken as discrete and gene expression is discretized into only two quantitative
states, as either present or absent.

A Boolean network G(V, F) is a set V = {v1, . . . , vn} of vertices repre-
senting nodes of the network, together with a collection F = (f1, . . . , fn) of
Boolean functions assigned to each node. A Boolean function is a function of
the form f : Bk → B where B = {0, 1}. The simulation of the transition of

8

Figure 2.1: A state-transition diagram for a Boolean network.

the system from state to state is represented in the form of a directed graph
like the one on Fig. 2.1.

Each vi represents the state (expression) of gene i, where vi = 1 represents
the fact that gene i is expressed and vi = 0 means it is not expressed. The
list of Boolean functions F represents the rules of regulatory interactions
among the genes. That is, any given gene transforms its inputs (regulatory
factors that bind to it) into an output, which is the state or expression of
the gene itself. All genes are assumed to update synchronously in accordance
with the functions assigned to them and this process is then repeated. The
artificial synchrony simplifies computation while preserving the qualitative,
generic properties of global network dynamics [22].

2.2 Bayesian Networks

Bayesian networks are a type of probabilistic graphical models. They rep-
resent joint probability distribution of a set of variables with explicit inde-
pendency assumptions. Bayesian networks are used for, among other ap-
plications, inferring casual dependencies between genes in gene regulatory
networks with the goal of estimating the posterior probability of chosen fea-
tures being inherent in the network, given the data [23].

A Bayesian network (G, θ) is a representation of a joint probability distri-
bution, where G is a graph and θ a probability distribution. G is a directed
acyclic graph, such as the one on Fig. 2.2, where vertices correspond to
network random variables.

9

Figure 2.2: A directed acyclic graph.

These variables can be continuous or discrete. Directed edges correspond
to dependencies between variables. θ describes a conditional distribution for
each variable of the network, given its “parents” as defined by the relations
in G. Together they capture the conditional independence relations between
the variables.

2.3 Cellular Automata

Cellular automata were introduced in the 1940s by Stanislaw Ulam, who was
studying crystal growth, and John von Neumann, working on self-reproduction
in biology [24]. In the 1970s, John Conway’s “Game of Life” [25], a two-state,
two-dimensional cellular automaton, became widely known. In 1982 Stephen
Wolfram published the first of a series of papers [26] systematically inves-
tigating a very basic class of cellular automata, which he terms elementary
cellular automata. The unexpected complexity of the behavior of these sim-
ple rules led Wolfram to suspect that complexity in nature may be due to
similar mechanisms.

A cellular automaton is a discrete model that consists of an infinite, reg-
ular grid of cells, each in one of a finite number of states. The grid can be
in any finite number of dimensions. Time is also discrete, and the state of a
cell at time t is a function of the states of a finite number of cells (called its
neighborhood) at time t− 1. These neighbors are a selection of cells relative
to the specified cell, and do not change. Every cell has the same rule for
updating, based on the values in this neighborhood. Each time the rules are
applied to the whole grid a new generation is produced. See Fig. 2.3 for an
example of a pattern constructed by a cellular automaton.

10

Figure 2.3: A pattern obtained with a simple cellular automaton: Pascal’s
triangle of binomial coefficients, reduced modulo 2. From [26].

Among other applications in systems biology, cellular automata are used
to model reaction-diffusion systems [27] and biological cells [28].

2.4 Logical Models

In 1973 René Thomas introduced a detailed logical description of the mech-
anisms governing transcriptional regulation, including the effects of DNA
domains such as promoters, initiators, terminators, and the concepts of ge-
netic dominance and recessivity [30]. His logical framework was successfully
applied to various gene regulatory networks playing a role in Arabidopsis
thaliana [31] and Drosophila melanogaster [32].

Logical models use discontinuous variables and functions with limited
number of values, often only two. To each variable one tries to attribute as
few distinct values as there are qualitatively distinct levels. This emphasizes
the essential qualitative features of the system at the expense of kinetic and
mechanistic details. For example, if the biological role of a certain protein is
to turn on a specific gene, one may consider that the protein is either present
of absent, with the gene respectively on or off.

In its simplest form, a logical description associates a logical variable x
with each element of the system. The variable takes value 1 when the real
value exceeds a threshold value θ, and 0 otherwise. The state of the system
can thus be described by a logical vector (x, y, z, . . .) , called a state vector.
The evolution of the system is carried out by logical functions X,Y, Z, . . .

which are based on the interactions among the variables in such a way that a
function takes value 1 for the conditions in which the corresponding variable
tends to value 1 or remains at 1 [29].

In the classical logical description, time is introduced “synchronously”

11

Figure 2.4: Temporal relationship between variable x and its image X.

by the next value (x, y, z, . . .)t+1 for each value of the vector (x, y, z, . . .)t.
In kinetic logic, time is introduced through an “asynchronous” sequential
description [30]. Let function X represent the state, on or off, of a gene, and
variable x represent the presence or absence of the gene product. If the state
of the system is such that the gene is switched on, i.e. X changes from 0 to
1, its product will be synthesized and, after a time delay tx, it will reach its
threshold concentration and x will change from 0 to 1. Similarly, when the
gene is switched off (X changes from 1 to 0), the product will decay or be
diluted out and, after another time delay tx̄, it will drop below its threshold
concentration and x will switch from 1 to 0 (Fig. 2.4).

The formalism introduced by Thomas was later refined to include mul-
tilevel variables and used to study feedback loops, e.g. circular chains of
interaction [29]. These loops can be classified into two categories based on
the number of negative (inhibitory) interactions in the loop: if this number
is even, the loop is positive, and if the number of negative interactions is
odd, the loop is a negative feedback loop. Thomas found that a positive
feedback loop is a necessary condition for the existence of multiple steady
states, while a negative feedback loop with two or more elements is a neces-
sary condition for stable limit cycles [29]. Biologically this means that cell
differentiation is based on positive feedback loops, and homeostasis (stability
to small perturbations) is based on negative feedback loops [33].

12

Chapter 3

Polynomial Models over Finite
Fields

Constructing functions that fit exactly a given collection of points has long
been a topic of interest in mathematics, statistics, and engineering, with
cubic splines and power series being among the most common techniques
for fitting points in Rn. Since typically there are many functions that fit
a set of points, the specific application determines which one provides the
“best” fitting. For example, for many computer graphics uses where a smooth
fitting curve is required, cubic splines are usually the optimal choice due
to their ease of control. For some applications, however, it is necessary
to describe all functions fitting a data set. Over an infinite field, this is
possible only if some additional restrictions on the type of fitting functions
are specified, such as whether they are polynomial or exponential, (piecewise)
continuous, smooth, have certain derivatives, etc. This work concerns itself
with polynomial functions vanishing on a set of data points. Given a finite
set of points V ∈ kn, where k is a field, we consider all polynomials in
k[x1, . . . , xn] that vanish on the points in V . In Section 3.1.3 the construction
of these polynomials will be discussed together with the fact that they form an
ideal in k[x1, . . . , xn]. Such ideals are fundamental for solving interpolation
problems in numerical analysis [34], they are used in coding theory [35] and
algebraic statistics [36].

13

3.1 Concepts from Commutative Algebra and

Algebraic Geometry

This chapter introduces some basic terminology and facts from commutative
algebra and algebraic geometry. The selection and organization of the mate-
rial is determined by its need for the understanding of the results in Section
4 and is neither the complete nor traditional way of introducing the topics in
it. For a comprehensive introductory treatment of the subject some excellent
sources are [40], [41], and [42].

3.1.1 Gröbner Bases

The main motivation behind introducing Gröbner (Standard) Bases is that
the remainder of long division of multivariate polynomials is not unquietly
determined in general. It depends on the ordering of the polynomial terms
(monomials). This is not an issue in univariate division where there is a
unique monomial ordering and the division of polynomial f by polynomial g
proceeds by dividing the highest power of the variable in g into the highest
power in f . In other words, the one-variable monomials are ordered using
degree ordering:

· · · ≻ xm+1 ≻ xm ≻ · · · ≻ x2 ≻ x ≻ 1.

With multivariate polynomials, however, there is more than one way of
ordering their monomials and thus carry out long division. Consider, for
example, the polynomials f = x2 and g = x2 +xy2 ∈ Q[x, y]. The remainder
of dividing f by g is −xy2 or x2, depending on whether we choose the initial
monomial of g to be in(g) = x2 or xy2.

Next we discuss the possible monomial orderings and how they impact
polynomial division.

Monomial Ordering

A polynomial in k[x1, . . . , xn] is a linear combination of monomials of the form
xα = xα1

1 · · ·xαn
n over k, where α is the n-tuple exponent α = (α1, . . . , αn) ∈

Zn
≥0. For many purposes, it is necessary to be able to arrange the terms in a

polynomial unambiguously in some order. This requires a total ordering on

14

the monomials, i.e. for every pair of monomials xα and xβ, exactly one of
the following must be true:

xα ≺ xβ, xα = xβ, xα ≻ xβ.

Taking into account the properties of the polynomial sum and product op-
erations, the following definition emerges.

Definition 3.1.1 A monomial ordering on k[x1, . . . , xn] is any relation
≻ on Zn

≥0 satisfying:

1. ≻ is a total ordering on Zn
≥0.

2. If α ≻ β and γ ∈ Zn
≥0, then α + γ ≻ β + γ.

3. ≻ is a well-ordering on Zn
≥0, i.e. every nonempty subset of Zn

≥0 has a
smallest element under ≻.

One of the most popular monomial orderings is the lexicographic ordering
which is analogous to the ordering of words in dictionaries and under which
x2 ≻lex xy2. Another one is the graded lexicographic ordering which orders by
total degree first, then “breaks ties” using the lexicographic ordering. Under
graded lexicographic ordering, xy2 ≻grlex x2.

A monomial ordering can also be defined by a weight vector ω = (ω1, . . . , ωn)
in Zn

≥0. We require that ω have nonnegative coordinates in order for 1 to
always be the smallest monomial. Fix a monomial ordering ≻σ, such as ≻lex.
Then, for α, β ∈ Zn

≥0, define α ≻ω,σ β if and only if

ω · α ≻ ω · β, or ω · α = ω · β and α ≻σ β.

For example, weight vector ω = (3, 1) orders the monomials of polynomial
g = x2 + xy2 in the same way as the lexicographic order, while ω′ = (1, 1)
performs the same monomial ordering as the graded lexicographic ordering.

Ideal Membership Problem

Another problem with multivariate polynomial division is that when divid-
ing a given polynomial into more than one polynomials, the outcome may
depend on the order in which the division is carried out. Let f, h1, . . . , hm ∈
k[x1, . . . , xn] be polynomials in the variables x1, . . . , xn. The so-called ideal

15

membership problem is to determine whether there are polynomials h1, . . . , hm ∈
k[x1, . . . , xn] such that

f =
m

∑

i=1

hifi.

To state this in the language of abstract algebra, we define

I = 〈f1, . . . , fm〉 =
{

∑

hifi | h1, . . . , hm ∈ k[x1, . . . , xn]
}

.

The polynomials in I form a so-called ideal in k[x1, . . . , xn] since they are
closed under addition and multiplication by any polynomial in k[x1, . . . , xn].
We ask whether f is an element of I. In general, even under a fixed monomial
ordering, the order in which f is divided by the generating polynomials fi

affects the remainder r{fi}(f). Therefore, r{fi}(f) 6= 0 does not imply f /∈ I.
Moreover, the generating set {f1, . . . , fm} of the ideal I is not unique but a
special generating set G = {g1, . . . , gt} can be selected so that the remainder
of polynomial division of f by the polynomials in G performed in any order
is zero if and only if f lies in I: rG(f) = 0 ⇔ f ∈ I. A generating set
with this property is called a Gröbner basis and its precise definition will
be given as Definition 3.1.3 after introducing the notion of initial ideals.
Here we point out that Gröbner bases provide an algorithmic solution to the
ideal membership problem and the Buchberger algorithm [43] is designed to
compute a Gröbner basis for any ideal other than {0} and a fixed monomial
ordering.

3.1.2 Monomial Ideals

Gröbner bases are a key concept in computational algebra. Their theory re-
duces questions about systems of polynomial equations to the combinatorial
study of monomial ideals.

Definition 3.1.2 An ideal I ⊂ k[x1, . . . , xn] is a monomial ideal if there
is a subset A ⊂ Zn

≥0 such that I = 〈xα | α ∈ A〉, i.e. consists of all polynomi-
als which are finite sums of the form

∑

α∈A hαxα, where hα ∈ k[x1, . . . , xn].

16

Figure 3.1: Staircase of monomial ideal I = 〈x2y4, x3y3, x5y〉.

Staircases of Monomial Ideals

A monomial xβ is divisible by xα exactly when xβ = xα ·xγ for some γ ∈ Zn
≥0,

which is equivalent to β = α + γ. The set
{

α + γ | γ ∈ Zn
≥0

}

consists of the exponents of all monomials divisible by xα. This allows us
to visualize the monomials in a given monomial ideal. For example, the
exponents of the monomials in I = 〈x2y4, x3y3, x5y〉 ⊂ k[x, y] can be drawn as
the union of the integer points in three translated copies of the first quadrant
in the plane, as in Fig. 3.1. Such plots are called staircases of monomial
ideals.

A special kind of monomial ideal is the initial ideal of an ideal I 6= {0}
for a fixed monomial ordering. It is the ideal generated by the set of initial
monomials (under the specified ordering) of the polynomials of I:

in (I) = 〈in(f) | f ∈ I〉 .

The monomials which do not lie in in(I) are called standard monomials.

Definition 3.1.3 Fix a monomial ordering. A finite subset G of an ideal I
is a Gröbner basis if

in(I) = 〈in(g) | g ∈ G〉 .

17

A Gröbner basis for an ideal may not be unique. If we also require that
for any two distinct elements g, g′ ∈ G, no term of g′ is divisible by in(g),
such a Gröbner basis is called reduced and is unique for an ideal and a term
ordering, provided the coefficient of in(g) in g is 1 for each g ∈ G.

The Gröbner Fan of an Ideal

Over a quotient polynomial ring
k[x1, . . . , xn]/ 〈xp

1 − x1, . . . , x
p
n − xn〉 with |k| = p, there are pn monomials

and thus, pn! possible monomial orderings. A fixed ideal, however, has only
a finite number of different reduced Gröbner bases. Informally, the reason is
that most of the monomial orderings only differ in high degree and the Buch-
berger algorithm for Gröbner basis computation does not “see” the difference
among them. For many applications the appropriate choice of a monomial
ordering for computing the Gröbner basis of an ideal is unclear, while its
impact is essential. Consequently, one may want to consider all reduced
Gröbner bases of a given ideal I. This is equivalent to studying the different
initial ideals because the monomial initial ideals of I are in bijection with the
marked reduced Gröbner bases of I. A marked Gröbner basis is a set of poly-
nomials which is a Gröbner basis with respect to some monomial ordering
with the initial term of each polynomial being distinguished.

A combinatorial structure that contains information about the initial ide-
als of an ideal is the Gröbner fan of an ideal. It is a polyhedral complex of
cones, each corresponding to an initial ideal, such as the Gröbner fan in Fig.
3.2.

For details on the Gröbner fan and its computation see, for example, [44].
For the purposes of the current work it is enough to know that there are algo-
rithms based on the Gröbner fan that enumerate all reduced Gröbner bases
of a polynomial ideal. An excellent implementation of such an algorithm is
the software package Gfan [45] that we have used extensively in our work.

3.1.3 Ideals of Points

Given a set of points, it is often necessary to find all the polynomials that
vanish on it. Such a set of polynomials forms an ideal of points defined as
follows.

18

Figure 3.2: A Gröbner fan of an ideal.

Definition 3.1.4 Let V = {p1, . . . , pm}, where pi = (ai1, . . . , ain) ∈ kn.
Then we set

I(V) = {f ∈ k[x1, . . . , xn] | f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V } .

It can be shown that I(V) is an ideal of k[x1, . . . , xn]. It is called the ideal

of points in V .

To see that I(V) is indeed an ideal and to obtain an algorithm for com-
puting such ideals, first notice that the ideal Pi of all polynomials that
vanish on a single point pi = (ai1, . . . , ain) ∈ kn contains the ideal I =
〈x1 − ai1, . . . , xn − ain〉. But this ideal is maximal with respect to inclusion
(see [40], Proposition 9 on p. 198 for a proof) in the sense that any ideal J

containing I is such that either J = I or J = k[x1, . . . , xn] and therefore

Pi = 〈x1 − ai1, . . . , xn − ain〉 .

The intersection of all ideals Pi is an ideal itself and contains exactly the
polynomials that vanish on the points in V :

I(V) =
m
⋂

i=1

Pi.

19

Intersections of ideals can be computed algorithmically (see [40], p. 185).
For the results presented in the Section 4, it is essential to notice that the

number of standard monomials in in(I) is equal to the number of points in
V . This result is presented in the following proposition.

Proposition 3.1.5 Let I = I(V) be the ideal of the points in V = {(a11, . . . , a1n), . . . ,
(av1, . . . , avn)} ⊂ kn. The number of standard monomials in any in(I) is
equal to the number of points in V .

Proof: Let I be an ideal of the polynomial ring k[x1, . . . , xn] with I =
⋂r

i=1 Ii,
where Ii are pairwise comaximal (meaning Ii+Ij = k[x1, . . . , xn] for all i 6= j).
By the Chinese Remainder Theorem,

k[x1, . . . , xn]

I
∼=

∏ k[x1, . . . , xn]

Ii

.

k[x1, . . . , xn]/I is isomorphic as a k-vector space to Span(xα | xα /∈ in(I))
(see [40], p. 229, Proposition 4). Hence so is k[x1, . . . , xn]/in(I) and thus
k[x1, . . . , xn]/I ∼= k[x1, . . . , xn]/in(I). If I is an ideal of points, then Ii =
〈x1 − ai1, . . . , xn − ain〉 are comaximal (without assuming that k is algebraically
closed), and therefore

k[x1, . . . , xn]

in(I)
∼=

∏ k[x1, . . . , xn]

〈x1 − ai1, . . . , xn − ain〉
. (3.1)

The dimension of the left-hand side of (3.1) is the number of standard mono-
mials of I and the dimension of the right-hand side is the number of points
in V . Therefore, the two are equal. �

3.2 Polynomial Dynamical Systems

In this section we explore time-discrete multistate dynamical systems. These
systems constitute the modeling framework of the reverse engineering method
developed for gene regulatory networks from DNA microarray data in [47],
which will be outlined next in Section 3.3.

Definition 3.2.1 Let X be a finite set. A finite dynamical system of
dimension n is a function F = (f1, . . . , fn) : Xn → Xn with fi : Xn → X.

20

By requiring that the cardinality of the set X be a power of a prime
number, one can impose on X the structure of a finite field. This structure
determines the only type of functions fi that need to be considered. The
following theorem ([48]) characterizes functions over finite fields.

Theorem 3.2.2 Let k be a finite field. Then every function f : kn → k is a
polynomial of degree at most n.

The reverse engineering method of [47] is interested mostly in the case when
k is a finite field of cardinality p, i.e. k = Fp, and thus the polynomials fi are
in the quotient ring R = k[x1, . . . , xn]/ 〈xp

1 − x1, . . . , x
p
n − xn〉. As a result,

they are polynomials in n variables with coefficients in k and the degree of
each variable is at most equal to p − 1.

Definition 3.2.3 If the set X for a finite dynamical system is a finite field,
then F is called a polynomial dynamical system and often X is denoted
by k to distinguish it as a finite field.

3.3 An Algebraic Approach to Reverse Engi-

neering

In their paper, [47], Laubenbacher and Stigler propose a new modeling ap-
proach that describes a regulatory network as a polynomial dynamical sys-
tem. The method is further developed in [49]. A gene regulatory network
is a collection of genes that interact with each other, thereby governing the
rates at which the genes in the network are transcribed. The objective of the
method is to discover regulatory relationships among the nodes in the net-
work from discrete data. The next paragraph contains an outline of this pro-
cess of reverse-engineering for building polynomial dynamical systems given
time courses of discrete data. The algorithm constructs the set of all poly-
nomial dynamical systems for the data and then uses a minimality criterion
to select one system from the set. A unique feature of this method is the
ability to construct all polynomial dynamical systems that satisfy the given
time courses. This is not done via enumeration, but rather it is accomplished
by way of Gröbner bases, discussed in Section 3.1.1.

Let the finite field k be the set of possible states of the nodes of the
network and let f : kn → kn be a polynomial dynamical system of dimension

21

n. Then f can be described in terms of its coordinate functions fi : kn → k,
for i = 1, . . . , n. That is, if x = (x1, . . . , xn) ∈ kn is a state, then f(x) =
(f1(x), . . . , fn(x)). The reverse-engineering problem of interest is, given one
or more time courses of state transitions generated by a biological system
with n varying quantities, choose a polynomial dynamical system f : kn → kn

which fits the data and “best describes” the biological system. It is assumed
that a set of state transitions of the network is given in the form of one or
more time courses of network states

s′1 = (s′11, . . . , s
′
n1), . . . , s′m = (s′1m, . . . , s′nm)

s′′1 = (s′′11, . . . , s
′′
n1), . . . , s′′r = (s′′1r, . . . , s

′′
nr)

...

satisfying the property that, if the unknown transition function of the net-
work is f , then

f(s′i) = s′i+1, i = 1, . . . ,m − 1

f(s′′j) = s′′j+1, j = 1, . . . , r − 1

...

Unless all state transitions of the system are specified, there will be more
than one network that fits the given data set. Since this much information
is hardly ever available in practice, any reverse-engineering method has to
choose from a large set of possible network models. First, the space of all
networks that are consistent with the given time course data is computed.
Then a particular network f = (f1, . . . fn) is chosen that satisfies the following
property:

For each i, fi is minimal in the sense that there is no non-zero polynomial
g ∈ k[x1 . . . xn] such that f = h + g and g is identically equal to zero on the
given time points.

The above criterion for model selection is analogous to the problem of
excluding the terms of fi that vanish on the data. The advantage of the poly-
nomial modeling framework over a finite field is that there is a well-developed
algorithmic theory that provides mathematical tools for the solution of this
problem.

22

3.3.1 Algorithm for Model Selection (for one time course)

Input: A time course of network states s1, . . . sm ∈ kn and expression
levels a1, . . . , am ∈ k.

Output: All polynomial functions f ∈ k[x1, . . . , xn] such that f(sj) =
aj for all j = 1, . . . ,m such that f does not contain component polynomials
that vanish on the time course .

Step 1. Compute a particular polynomial f0 that fits the data.
There are several methods to do this, Lagrange interpolation being one of
them. [47] uses the following formula, based on the Chinese Remainder The-
orem:

f0(x) =
m

∑

j=1

ajrj(x),

with the polynomials rj defined as follows. Let 1 ≤ i 6= j < m. If si 6= sj,
then find the first coordinate l in which they differ. Define

bij(x) = (sjl − sil)
p−2(xl − sil)

for every i 6= j. For all i 6= j, define

rj(x) =
m−1
∏

i=1

bij(x).

It can be easily verified that this polynomial does indeed interpolate s1, . . . sm.

Step 2. Compute the ideal I of all functions that vanish on the data.
Notice that if two polynomials f, g ∈ k[x1, . . . , xn] such that f(sj) = aj =
g(sj), then (f − g)(sj) for all j. Therefore, in order to find all functions
that fit the data, we need to find all functions that vanish on the given time
points. As discussed in Section 3.1.3, those functions form an ideal of points
and can be computed algorithmically.

Step 3. Reduce the polynomial f0 found in Step 1 modulo the ideal I.
That is, write f0 as f0 = f + g with g ∈ I and f being minimal in the
sense that it cannot be further decomposed into f = f ′ + h with h ∈ I. In

23

other words, g represents the part of f0 that lies in I, and that therefore is
identically equal to 0 on the given time course. All possible functions that
interpolate the time course are obtained in the form f + g, where g runs
through all elements of I.

In the next two sections we present two problems that the reverse-engineering
method described above faces.

3.3.2 Reverse Engineering Dependency on Monomial
Ordering

The first problem originates from Step 2 of the reverse-engineering algorithm
in Section 3.3.1: finding all polynomials that vanish on a set of points. This
is equivalent to computing the ideal of these points and as we saw in Section
3.1.3, computation of an ideal of points boils down to intersection of ideals.
There is a well-known consequence of the Buchberger Algorithm, originally
presented in [37], for their computation. More efficient ways are the BM-
algorithm in [38] and the modular BM-algorithm [39]. For an ideal I ⊂
k[x1, . . . , xn], the output of these algorithms is a finite set of polynomials
g1, . . . , gs ∈ I that generate I:

I = 〈g1, . . . , gs〉 =
s

∑

i=1

higi,

where hi ∈ k[x1, . . . , xn]. The existence of a finite generating set for any
polynomial ideal is guaranteed by the Hilbert Basis Theorem. The generating
set, however, is not unique. The type of generating sets called Gröbner
bases, discussed in Section 3.1.1, possesses some nice properties but their
computation depends on the choice of monomial ordering. For different
monomial orderings the resulting Gröbner bases may vary greatly. In the
same way, the computation of a Gröbner basis for an ideal of points also
depends on the choice of monomial ordering. In Section 4 we present results
on the relationship between the points in a set V ⊂ kn and the number of
reduced Gröbner bases/monomial ideals for I(V).

24

3.3.3 Reverse Engineering Dependency on Data Dis-
cretization

The second problem lies in the data preprocessing stage. Since gene expres-
sion data are real numbers (represented by computer floating point numbers),
the first step in any reverse-engineering algorithm using discrete models must
be to discretize these numbers into a finite (typically small) set of possible
states. Obviously, the way in which one discretizes the data plays an impor-
tant role in what model one obtains. The first important choice is the number
of discrete states allowed, the choice of p in the above algorithm. A major
challenge in discretizing biological data, such as microarray experiments, is
the typically small samples of data. Many methods for discretization are not
applicable due to the insufficient amount of data. In Section 5 we present a
first attempt to develop a discretization tool that takes into consideration the
issues and limitations that are inherent in short time courses. Our focus is on
the two characteristics that any discretization method should posses in order
to be used for dynamic modeling: preservation of dynamics and information
content and noise inhibition.

25

26

Chapter 4

Gröbner Bases for Ideals of
Points

4.1 Motivation

The Buchberger algorithm computes the reduced Gröbner basis of a polyno-
mial ideal with respect to a prescribed monomial ordering. The appropriate
choice of a monomial ordering may be dictated by the application, as it is
the case with the reverse lexicographic and elimination orderings which play
an important role in elimination theory [46]. In other cases, however, there
is insufficient information to make this choice.

Example 4.1.1 Let f = x2 ∈ F3[x, y]/ 〈x3 − x, y3 − y〉. Consider comput-
ing the minimal form of f with respect to the set of points V = {(2, 0), (0, 1)} ⊂
F2

3.
The minimal form of f is such that there is no non-zero polynomial g ∈
I(V) with f = h + g. This means that it should not be divisible by any poly-
nomial in I = I(V) = 〈x − 2, y〉 ∩ 〈x, y − 1〉. To assure that, one takes the
minimal form of f to be the unique remainder of f obtained after dividing f

in some order by the generators of G(I), the reduced Gröbner basis of I. The

result f
G(I)

is called the normal form of f with respect to G(I) and it may
depend on the term ordering under which G(I) was computed.
The ideal of points I has two distinct reduced Gröbner bases:

G1(I) =
{

x − y + 1, y2 − y
}

and G2(I) =
{

x2 + x, y − x + 2
}

27

which give two different normal forms for f :

f
G1(I)

= −y + 1 and f
G2(I)

= −x.

In the above example the two minimal forms of the polynomial look quite
different and applications, such as the reverse engineering in [47] that uses
polynomial dynamical systems for modeling, strongly depend on selecting
the minimal form of a polynomial. Typically, it is hard to determine which
monomial ordering to use. Instead of making an arbitrary choice, we propose
a method of overcoming this computational artifact. It finds all possible
minimal sets of additional points W to be added to V so that I(V ∪W) has
a unique Gröbner basis (i.e., each Gröbner basis is universal).

4.2 Existence of a Solution

Given a set of points in kn, the number of reduced Gröbner bases that
the ideal of these points has is not obvious in general. For the two triv-
ial cases, when only a single point is given, V1 = (a1, . . . , an) ∈ kn, and
when we have all the points, Vkn = kn, it is clear that the ideals of points
have unique Gröbner bases: G(V1) = {x1 − a1, . . . , xn − an} and G(Vkn) =
{xp

1 − x1, . . . , x
p
n − xn}. The number of Gröbner bases in the intermediate

cases is not so apparent. A set of nine points in F3
3, for example, can yield

a single Gröbner basis or as many as twelve Gröbner bases, depending on
which points exactly are taken. From the second trivial case, when all points
in kn are given, it is clear that it is always possible to add enough points
to the given ones in V and obtain a single Gröbner basis: simply add the
rest of the points, kn \ V . In principle, one can also remove points from the
given set in order to change the number of Gröbner bases and again, remov-
ing many enough would eventually produce a single Gröbner basis. In the
current work, however, we do not consider this possibility due to our motivat-
ing application: each point in the given data set carries valuable information,
which may cost hundreds of dollars, as in the case of microarray experiments.
Not utilizing it would mean deliberately ignoring useful information. For this
reason, the rest of the work is concerned only with the question

Given a set of points V such that I(V) has more than one

Gröbner basis, what minimal subsets W ⊂ kn \ V can be added to

V so that I(V ∪ W) has a unique Gröbner basis?

28

Figure 4.1: Monomial staircases of the initial ideals of I, (m,n) → xmyn.
(A) in1(I) = 〈x, y2〉 (B) in2(I) = 〈x2, y〉.

4.3 Cancellation of Monomial Ordering Ef-

fect on Gröbner Basis Computation

In this section we present an approach to eliminating the effect of different
monomial orderings on the computation of the Gröbner basis of an ideal of
points through adding points to the set of given points. The approach is
based on excluding the polynomials whose leading monomials under some
ordering cause the existence of multiple initial ideals (and consequently –
multiple Gröbner bases) by adding points at which they do not vanish.

4.3.1 Elimination of Initial Terms through One Point
Addition

We begin by showing how to find, if it exists, a single point which, when
added to the set of given points, yields an ideal of points that has a unique
Gröbner basis. The method can be generalized to adding more than one point
with the same purpose as will be demonstrated in the subsequent section.
We use the ideal of points from Example 4.1.1 for illustration and summarize
the result in Lemma 4.3.1.

Consider again the ideal of points I from Example 4.1.1. The initial ideals
corresponding to the two reduced Gröbner bases are given on Fig. 4.1.

29

Figure 4.2: Monomial staircase of in1(I) ∩ in2(I) = 〈x2, xy, y2〉.

in1(I) =
〈

x, y2
〉

and in2(I) =
〈

x2, y
〉

.

It is straightforward to see that if W ⊂ F2
3 is such that J = I(V ∪W) has a

unique Gröbner basis and thus in(J) is the same for any monomial ordering,
then

in(J) ⊆ in1(I) ∩ in2(I) =
〈

x2, xy, y2
〉

.

The monomial staircase of in1(I)∩in2(I) is given on Fig. 4.2. Notice that
in1(I)∩in2(I) contains exactly one standard monomial more than in1(I) and
in2(I): x and y, respectively. Therefore, in order for x, y /∈ in(J), the new
ideal J should not contain any polynomials f with in(f) = x or y with respect
to any monomial ordering. To eliminate such polynomials, it is necessary to
add point(s) to V at which these polynomials do not vanish. Recalling that
the number of standard monomials in the initial ideal of an ideal of points is
equal to the number of points over which the ideal is constructed, it follows
that at least one point should be added to V in order to eliminate monomials
x and y from in(J) (equivalently, make x and y standard monomials of J)
and thus obtain in(J) = 〈x2, xy, y2〉. In general, it is possible that V is
such that adding a single point, W = {(a1, a2)}, would not yield an ideal
I(V ∪ W) with a unique Gröbner basis for any a1, a2 ∈ F3. In such a case,
while monomials x and y should still be eliminated from the initial ideal of
J , other monomials would also have to be selected from in(I).

Let us assume that there is a point (a1, a2) ∈ F2
3 such that for each f ∈ J

with in(f) = x or y with respect to some monomial ordering, f(a1, a2) 6= 0,

30

and attempt to find it. Any function that can have x as an initial term under
some monomial ordering is of the form

f1 = k11x + k12y + k13y
2 + k14,

where the coefficients k1j ∈ F3. Such a function can have as non-initial terms
only terms that are not divisible by x. The reason is that otherwise no
monomial ordering would produce in(f1) = x since that would imply that 1
is not the smallest term. Another condition on the functions f1 is that they
are in the ideal of points I = I(V) and so must vanish on the points in V .
Similarly, a function with y as an initial term under some monomial ordering
should be of the form

f2 = k21y + k22x + k23x
2 + k24

and also vanish on the points in V . Without loss of generality, assume
that x and y’s coefficients are 1 and solving f1(2, 0) = 0 = f1(0, 1) and
f2(2, 0) = 0 = f2(0, 1) for the coefficients kij, gives all six polynomials that
are in J and have x or y as an initial term under some monomial ordering:

f11 = x + 2y + 1, f12 = x + y + y2 + 1,

f13 = x + 2y2 + 1, f21 = y + x2 + 2, (4.1)

f22 = y + x + 2x2 + 2, f23 = y + 2x + 2.

Among the points in F2
3 \ V , only (a1, a2) = (0, 0) and (2, 1) are such that

none of fij vanishes on (a1, a2). By inspection, one can verify that indeed
these two points are the only ones that, added separately to V , generate an
ideal of points with a unique Gröbner basis. Notice that depending on which
point is added to V , a different Gröbner basis is produced but in either case
the initial ideal is 〈x2, xy, y2〉.

The above reasoning can be generalized for an ideal of points over any
finite field, as in the following lemma. In the example, m = n = 2, V =
{(2, 0), (0, 1)}, M = {x, y}, F consists of the polynomials in (4.1), and
(a1, a2) = (0, 0) or (2, 1).

Lemma 4.3.1 Let k be a finite field and V ⊂ kn be a set of points for which
I = I(V) has initial ideals in1(I), . . . , inm(I) in the polynomial ring
R = k[x1, . . . , xn]/ 〈xp

1 − x1, . . . , x
p
n − xn〉. Suppose that the number of stan-

dard monomials in each inj(I) is one less than this number in
⋂m

i=1 ini(I).

31

Let M be the set of monomials xαi that are standard in
⋂m

i=1 ini(I) but not
in inj(I) for some j. Finally, let

F = {f ∈ R | f(p) = 0 ∀ p ∈ V and in(f) = xαi ∈ M for some monomial ordering} .

Then I(V ∪ {(a1, . . . , an)}), ai ∈ k, has a unique Gröbner basis if and only
if for any f ∈ F , f(a1, . . . , an) 6= 0.

4.3.2 Elimination of Initial Terms through Multiple
Point Addition

Lemma 4.3.1 is useful for illustrating the principle of eliminating initial mono-
mials through adding points but for larger examples it would be often neces-
sary to include more than one extra point to eliminate the effect of monomial
ordering and obtain a single Gröbner basis. The following is a generalization
for these cases.

Theorem 4.3.2 Let

F = {f ∈ R | f(p) = 0 ∀ p ∈ V and in(f) = xαi ∈ M for some monomial ordering} .

Over R, F contains finitely many polynomials. For a set of points W ⊂ kn\V
to be such that I(V ∪ W) has a unique Gröbner basis, W must satisfy

1. F ∩ I(W) = ∅;

2. the number of points in W ,
|W | = (number of standard monomials in

⋂m

i=1 ini(I)) – (number of
standard monomials in in(I)).

Proof: The first condition guarantees that for each f ∈ F , there is at least
one point p in W such that f(p) 6= 0 and so f will not be in I(V ∪W). The
latter condition follows from Proposition 3.1.5. �

Although these two conditions are both necessary and sufficient, gener-
ating W by explicitly finding the polynomials in F is impractical since the
number of polynomials can easily be in the hundreds for larger examples.
Another problem with applying the above approach directly is in actually
finding the points in W that satisfy the two conditions, especially since we
want to be able to find all such minimal sets W . For small fields, such as

32

the one of Example 4.1.1, checking all possibilities is an option but for larger
fields this would be computationally inefficient. We present an algorithm for
finding the sets of points in W . The algorithm is based on the fact that
Gröbner bases solve the ideal membership problem and can be used to de-
termine whether a polynomial is an element of an ideal. The Gröbner bases
computation can be carried out with respect to whichever monomial ordering
is efficient for the particular algebra software package of choice.

Method for finding W . Recall that each polynomial in F has as a leading
term under some monomial ordering one of the terms xαj to be eliminated
from in(I(V ∪ W)). For a fixed term xαj , what are the polynomials f that
have in(f) = xαj under some monomial ordering? Clearly, they should be of
the form

xαj +
∑

βj

cβj
xβj , (4.2)

where cβj
∈ k and xαj ∤ xβj . Additionally, in order for cβj

to be the leading
term under some ordering, some combinations of other terms should not
be permitted. For example, over k[x, y], xy cannot be the leading term of
polynomial f = xy + x2 + y2 because under any monomial ordering, in(f)
is either x2 or y2. Therefore, we should require the following condition on
the terms xβj from (4.2). Let αj = (αj1, . . . , αjn) and βl

j = (βl
j1, . . . , β

l
jn).

Consider all sets of n terms {β1
j , . . . , β

n
j } such that |βl

j| = |αj| for each l =
1, . . . , n and αjl < βl

jl. Require that if cβl
j
6= 0 for some l, then cβm

j
= 0 for

some m 6= l. This, together with (4.2), generates the set of all polynomials
with leading term xαj under some monomial ordering. For each term αj,
denote this set by Fαj

.

We now proceed to finding the points in

W = {(a11, . . . , a1n), . . . , (as1, . . . , asn)}

where s = |V ∪ W |. Fix a convenient monomial ordering. Let G be the
Gröbner basis of I = I(V). Let Ii = I({(ai1, . . . , ain)}), the ideal of polyno-
mials that vanish on point (ai1, . . . , ain) ∈ W , with Gi being the Gröbner basis

of Ii. Hence Gi = {x1 − ai1, . . . , xn − ain}. If for all f ∈ Fαj
⊂ F , f

Gi
6= 0

for some i and j, then f /∈ Ii for some i and so f /∈
⋂s

i=1 Ii = I(W) which

means that F ∩I(W) = ∅. In the calculation of Fαj

Gi
below, ai1, . . . , ain ∈ k

33

are kept symbolic and the remainder Fαj

Gi
is obtained as a function of them

and the cβj
’s by consecutively dividing Fαj

by xl − akl. Therefore, for each
Fαj

⊂ F , one should consider the system of equations






















Fαj
(x1, . . . , xn)

G
= 0

Fαj
(a11, . . . , a1n)

G1

= 0
...

Fαj
(as1, . . . , atn)

Gt

= 0

(4.3)

and find all subsets of points Sαj
=

{

Sαji

}

with

Sαji = {(a11, . . . , a1n), . . . , (as1, . . . asn)} ⊂ kn

that make (4.3) inconsistent, selecting t as large as necessary. For each αj,

select i such that
∣

∣

∣

⋂

αj
Sαji

∣

∣

∣
= s. Take W =

⋂

αj
Sαji.

Outline of the algorithm for finding W :

Input: V ⊂ kn, I = I(V) with multiple distinct Gröbner bases, G a
Gröbner basis of I with respect to some convenient monomial ordering, M

and F as defined in Lemma 4.3.1.

Output: W ⊂ kn \ V such that I(V ∪W) has a unique Gröbner basis.

1. Determine s = |W |. Denote W = {(a11, . . . , a1n), . . . , (as1, . . . , asn)}.

2. For each i = 1, . . . , s, generate

Ii = I({(a11, . . . , a1n)})

and its Gröbner basis

Gi = {x1 − ai1, . . . xn − ain}.

3. Let Faj
= {f ∈ F | in(f) = xaj ∈ M .

4. For each Faj
, find the set of points Saj

that makes system (4.3) incon-
sistent.

5. Choose W = ∩Saj
.

34

4.4 Nonexistence of Solution for a Fixed |W |

As it was mentioned in Section 4.3.1, the second condition of Theorem 4.3.2
is not always possible to satisfy. In other words, given a set of points V ⊂ kn

with an ideal I = I(V) which has distinct initial ideals in1(I), . . . , inm(I)
with respect to some monomial orderings, it is not always true that there
exists a subset of points W ⊂ kn \ V with

|W | = (number of standard monomials in
⋂m

i=1 ini(I))
– (number of standard monomials in in(I))

such that in(I(V ∪ W)) = ∩m
j=1inj(I). In the light of Proposition 3.1.5

this may seem surprising but the following simple counterexample is a good
illustration of the fact that the right-hand side of the above equation is only
a lower bound.

Example 4.4.1 Let R = F3[x, y]/ 〈x3 − x, y3 − y〉 and V = {(0, 0), (1, 1), (2, 2), (0, 1)}.
I = I(V) has two Gröbner bases

G1(I) = {x2 − y2 − x + y, xy − y2 − x + y, y3 − y},

G2(I) = {x3 − x, xy − x2, y2 − x2 + x − y}

and so the initial ideals of I are

in1(I) =
〈

x2, xy, y3
〉

and in2(I) =
〈

x3, xy, y2
〉

.

Let J = in1(I)∩ in2(I) = 〈x3, xy, y3〉. Since both in1(I) and in2(I) have four
standard monomials while J has five, one may expect that there is a single
point (a, b) ∈ k2 \ V such that

in(I(V ∪ {(a, b)})) = J.

However, by inspection one can verify that none of the five points in k2 \ V
satisfies the above equality. In fact, I(V ∪ {(a, b)}) has two Gröbner bases
for any a, b ∈ k.

To solve this problem, one cannot simply add more points to W . From The-
orem 3.1.5 we know that adding a point results in increasing the number of
standard monomials by one and this may potentially increase the number

35

of distinct initial ideals for the ideal and consequently – the number of its
Gröbner bases. To avoid that, we choose another monomial xγ1 that is in
all ini(I) and “on the verge” of the monomial staircase and add to the poly-
nomials to be eliminated the ones that can have xγ1 as a leading term. If
still no solution exists, choose another xγ2 and so on. As demonstrated in
Section 4.2, there is an upper bound on the number of terms xγj that need
to be added to obtain a single Gröbner basis for the ideal of points.

4.5 Conclusion

The proposed method provides an algorithm for determining the minimal
sets of data points to be added to a given set of points in order for the ideal
of points of the new set to have a unique Gröbner basis. Mathematically, the
theoretical grounds of the method establish a relationship between sets of
points in kn and number of reduced Gröbner bases/initial ideals of the ideals
of points over k[x1, . . . , xn]/ 〈xp

1 − x1, . . . , x
p
n − xn〉, which can be thought of

as a measure of their dependence on the choice of monomial ordering.
In applications, this means being able to tell an experimentalist what

additional experiments to perform in order to provide data that can be used
for generating a model independently of the effect of monomial ordering
selection, or, alternatively, generate extra simulated data points with the
same purpose.

36

Chapter 5

Discretization of Time Course
Data

5.1 Introducton

Discretization of real data into a typically small number of finite values is
often required by machine learning algorithms [50], data mining [51], dis-
crete dynamic Bayesian network applications [52], and any modeling algo-
rithm using discrete-state models. Binary discretizations are the simplest
way of discretizing data, used, for instance, for the construction of Boolean
network models for gene regulatory networks [53, 54]. The expression data
are discretized into only two qualitative states as either present or absent.
An obvious drawback of binary discretization is that labeling the real-valued
data according to a present/absent scheme generally causes the loss of a large
amount of information. Discrete models and modeling techniques allowing
multiple states have been developed and studied in, e.g., [47, 55]. In order
to place the further discussion in a general context we give a definition of
discretization [19]:

Definition 5.1.1 A discretization of a real-valued vector v = (v1, . . . , vN) is
an integer-valued vector d = (d1, . . . , dN) with the following properties:

1. Each element of d is in the set 0, 1, . . . , D − 1 for some (usually small)
positive integer D, called the degree of the discretization.

2. For all 1 ≤ i, j ≤ N , we have di ≤ dj if and only if vi ≤ vj.

37

Without loss of generality, assume that v is sorted, i.e. for all i < j,
vi ≤ vj. Spanning discretizations of degree D are a special case that we
consider in the current work. They are defined in [19] as discretizations that
satisfy the additional property that the smallest element of d is equal to 0
and that the largest element of d is equal to D − 1. Given v = (v1, . . . , vN),
there is a large variety of scheme to obtain a discretization that is consistent
with the above definition. Here we present two simple ways that are often
used as a starting point in more complicated methods.

Equal Interval Width (EIW) divides the interval [v1, vN] into k equal sized
bins, where k is user-defined. Another simple method is Equal Frequency
Intervals (EFI) which places N/k (possibly duplicated) values in each bin
[50]. Any method based on those two approaches would suffer from problems
that make it inapplicable to the type of biological data we work with. EIW
is very sensitive to outliers and may produce a strongly skewed range [56].
In addition, some discretization levels may not be represented at all which
may cause difficulties with their interpretation as part of the state space of a
discrete model. In fact, for the method that we propose, we assume that for
each integer a with 0 ≤ a ≤ D− 1, there is an entry di of d such that a = di.

On the other hand, EFI depends only on the ordering of the observed
values of v and not on the relative spacing values. Since distance between
the data points is often the only information that comes with short time
courses, losing it is very undesirable. A shortcoming, common for both EIW
and EFI, as well as for most other discretization methods, is that they require
the number of discrete states, k, to be user-provided. We discuss later why
this is impractical.

A number of entropy-based discretization methods deserve attention.
An example of those is Hartemink’s Information-preserving Discretization
(IPD). It relies on minimizing the loss of pairwise mutual information be-
tween each two real-valued vectors (variables). The mutual information be-
tween two random variables X and Y with joint distribution p(X,Y) and
marginal distributions p(x) and p(y) is defined as

I(X; Y) =
∑

x

∑

y

p(x, y)log
p(x, y)

p(x)p(y)
.

Note that if X and Y are independent, by definition of independence p(x, y) =
p(x)p(y), so I(X; Y) = 0. When modeling regulatory networks and having as

38

variables, for instance, mRNA, protein, and metabolite concentrations, the
joint distribution function is rarely known and it is often hard to determine
whether two variables are independent or not. In fact finding these answers
is a primary reason for regulatory network modeling. Therefore, computing
mutual information and basing discretization on its pairwise minimization is
inapplicable.

As pointed out earlier, a major challenge of discretizing biological data is
the small number of data points. For example, about 80% of microarray time
series experiments are short: 3–8 time points [57]. For the case of such small
samples of data, many statistical methods for discretization, such as [58], are
not applicable due to the insufficient amount of the data. For example, the
sample size may be insufficient to estimate distributions. We acknowledge
this problem and present a method that is specifically designed to work with
a small number of data points and does not make ungrounded assumptions
about their statistical properties.

Another common discretization technique is based on clustering [59]. One
of the most often used clustering algorithms is the k-means developed by
[60]. It is a non-hierarchical clustering procedure whose goal is to minimize
dissimilarity in the elements within each cluster while maximizing this value
between elements in different clusters. Many applications of the k-means
clustering such as the MultiExperiment Viewer [61] start by taking a random
partition of the elements into k clusters and computing their centroids. As a
consequence, a different clustering may be obtained every time the algorithm
is run. Another inconvenience is that the number k of clusters to be formed
has to be specified in advance. Although there are methods for choosing “the
best k” such as the one described in [62], they rely on some knowledge of the
data properties that may not be available.

Another method is single-link clustering (SLC) with the Euclidean dis-
tance function. SLC is a divisive (top-down) hierarchical clustering that
defines the distance between two clusters as the minimal distance of any two
objects belonging to different clusters [59]. In the context of discretization,
these objects will be the real-valued entries of the vector to be discretized, and
the distance function that measures the distance between two vector entries
v and w will be the one-dimensional Euclidean distance |v − w|. Top-down
clustering algorithms start from the entire data set and iteratively split it un-

39

til either the degree of similarity reaches a certain threshold or every group
consists of one object only. For the purpose of data analysis, it is impracti-
cal to let the clustering algorithm produce clusters containing only one real
value. The iteration at which the algorithm is terminated is crucial since it
determines the degree of the discretization, and one of the most important
features of our discretization method is a built-in termination criterion.

SLC with the Euclidean distance function satisfies one of our major re-
quirements: very little starting information is needed – only distances be-
tween points. In addition, being a hierarchical clustering procedure it lends
itself to adjustment in case that clusters need to be split or merged. It may
result, however, in a discretization where most of the points are clustered
into a single partition if they happen to be relatively close to one another.
This negatively affects the information content of the discrete vector (to be
discussed later). Another problem with SLC is that its direct implementa-
tion takes D, the desired number of discrete states, as an input. However, we
would like to choose D as small as possible, without losing information about
the system dynamics and the correlation between the variables, so that an
essentially arbitrary choice is unsatisfactory. These two issues were addressed
by modifying the SLC algorithm: our method begins by discretizing a vector
in the same way as SLC but instead of providing D as part of the input,
the algorithm contains termination criteria which determine the appropriate
number D. After that each discrete state is checked for information content
and if it is determined that this content can be considerably increased by
further discretization (to be discussed later), then the state is separated into
two states in a way that may not be consistent with SLC. We point out that
although the discretization method we propose uses clustering as a tool to
distribute the data points among the different states, it is not the same as
data clustering and pursues different objectives.

5.2 Method

The method assumes that the data to be discretized consist of one or several
vectors of real-valued entries. It is appropriate for applications when there
is no knowledge about distribution, range, or discretization thresholds of the
data and arranges the data points into clusters only according to their relative
distance with respect to each other and the resulting information content.

40

The algorithm employs graph theory as a tool to produce a clustering of the
data and provides a termination criterion.

5.2.1 Discretization of One Vector

Even if more than one vector is to be discretized, the algorithm discretizes
each vector independently and for some applications this may be sufficient.
The example of such a vector to keep in mind is a time course of expression
values for a single gene. If the vector contains m distinct entries, a complete
weighted graph on m vertices is constructed, where a vertex represents an
entry and an edge weight is the Euclidean distance between its endpoints.
The discretization process starts by deleting the edge(s) of highest weight
until the graph gets disconnected. If there is more than one edge labeled
with the current highest weight, then all of the edges with this weight are
deleted. The order in which the edges are removed leads to components,
in which the distance between any two vertices is smaller than the distance
between any two components, a requirement of SLC. We define the distance
between two components G and H to be

dist(G,H) = min{|g − h| | g ∈ G, h ∈ H}.

The output of the algorithm is a discretization of the vector, in which each
cluster corresponds to a discrete state and the vector entries that belong to
one component are discretized into the same state.

Example 5.2.1 Suppose that vector v = (1, 2, 7, 9, 10, 11) is to be discretized.
The corresponding SLC dendrogram that would be obtained by SLC algo-
rithms, such as the Johnson’s algorithm [63], is given on Fig. 5.1.

The discretization process starts by constructing the complete weighted
graph based on v which, for the case of Example 5.2.1, corresponds to iter-
ation 0 of the dendrogram (Fig. 5.2). Having disconnected the graph, the
next task is to determine if the obtained degree of discretization is sufficient;
if not, the components need to be further disconnected in a similar manner
to obtain a finer discretization. A component is further disconnected if and
only if both 1. and 2. below hold:

1. The minimum vertex degree of the component is less than the number
of its vertices minus 1. The contrary implies that the component is a

41

Figure 5.1: Dendrogram representing the SLC algorithm applied to the data
of Example 5.2.1. The column on the right gives the corresponding Shannon’s
entropy increasing at each consecutive level.

complete graph by itself, i.e. the distance between its minimum and
maximum vertices is smaller than the distance between the component
and any other component.

2. One of the following three conditions is satisfied (“disconnect further”
criteria):

(a) The average edge weight of the component is greater than half the
average edge weight of the complete graph.

(b) The distance between its smallest and largest vertices is greater
than or equal to half this distance in the complete graph. For the
complete graph, the distance is the graph’s highest weight.

(c) Finally, if the above two conditions fail, a third one is applied:
disconnect the component if it leads to a substantial increase in
the information content carried by the discretized vector.

The result of applying only the first two criteria is analogous to SLC
clustering with the important property that the algorithm chooses the ap-
propriate level to terminate. Applying the third condition, the information
measure criterion may, however, result in a clustering which is inconsistent
with any iteration of the SLC dendrogram. This criterion is discussed in ??.

5.2.2 Discretization of Several Vectors

Some applications may require that all vectors in a data set be discretized
into the same number of states. For example the approach adopted in [47]

42

Figure 5.2: The complete weighted graph constructed from vector entries 1,
2, 7, 9, 10, 11. Only the edge weights of the outer edges are given.

imposes such a requirement on the discretization. The way we deal with
this is by first discretizing all vectors separately. Suppose that for N vec-
tors, the discretization method discretized each into m1,m2, . . . ,mN states,
respectively. Let m = max{mi | i = 1, . . . , N}. Now find the least possible
k = pn such that m ≤ k. Finally, discretize all variables into k states in the
same way that was described for the discretization of a single vector into the
required number of states.

Discretizing the entries of a real-valued vector into a finite number of
states certainly reduces the information carried by the discrete vector in the
sense defined in [64]. In his paper, Shannon developed a measure of how
much information is produced by a discrete source. The measure is known
as entropy or Shannon entropy. Suppose there is a set of n possible events
whose probabilities of occurrence are known to be p1, p2, . . . , pn. Shannon
proposed a measure of how much choice is involved in the selection of the
event or how certain one can be of the outcome, which is given by

H = −
n

∑

i=1

pi log2pi.

The base 2 of the logarithm is chosen so that the resulting units may be
called bits. In our context the Shannon entropy of a vector discretized into
n states is given by

H =
n−1
∑

i=0

wi

n
log2

n

wi

,

43

where wi is the number of entries discretized into state i. An increase in
the number of states implies an increase in entropy, with an upper bound of
log2n. However, we want the number of states to be small. That is why it
is important to notice that H increases by a different amount depending on
which state is split and the size of the resulting new states. For example, if
a state containing the most entries is split into two new states of equal size,
H will increase more than if a state of fewer entries is split or if we split the
larger state into two states of different sizes.

To see that splitting a given state into two states of equal size results in
maximum entropy increase, consider a vector whose entries have been divided
into n states, one of which, labeled with 0, contains w0 entries. As a function
of w0, the entropy is given by

H(w0) =
w0

n
log2

n

w0

+
n−1
∑

i=0

wi

n
log2

n

wi

. (5.1)

Suppose that we split state 0 into two states containing m and w0 − m

entries, respectively, where 0 < m < w0. This will change only the first term
of the right-hand side of (5.1) and leave the summation part the same. It
is easy to verify that h(w0) = w0

n
log2

n
w0

achieves its maximum value over
0 < m < w0 at m = w0/2. Therefore, splitting a state into two states of
equal size maximizes the entropy increase.

As explained in the previous section, the information measure criterion
is applied to a component only after the component has failed the other
three conditions. Once this happens, we consider splitting it further only
if doing so would provide a very significant increase of the entropy, i.e. if
the component corresponds to a “large” collection of entries (recurring en-
tries are included since all entries have to be considered when computing the
information content of a vector). In our implementation a component gets
disconnected further only if it contains at least half the vector entries. Unlike
with the other criteria, if a component is to be discretized under the infor-
mation condition, the corresponding sorted entries are split into two parts:
not between the two most distant entries but into two equal parts (or with
a difference of one entry in case of an odd number of entries). This is to
guarantee a maximum increase of the information measure.

In Example 5.2.1, the two components that were obtained by removing
the edges of heaviest weight both fail the “disconnect further” conditions. If

44

the discretization process stopped at this iteration, vector d = (0, 0, 1, 1, 1, 1)
would have Shannon entropy 0.78631. Having most of the entries of v dis-
cretized into the same state, 1, reduces the information content of d.

Suppose discretization of v continues according to SLC, i.e., without
enforcing the fourth condition of “disconnect further”. The next step is to
remove the edges of highest weight until a component gets disconnected. This
yields the removal of the four edges of weights 4, 3, 2, and 2, respectively, to
obtain d = (0, 0, 1, 2, 2, 2). The Shannon entropy of the new discretization
of v is 1.43534. Still half of the entries of v remain at the same discrete
level, now 2, which does not allow for a maximal increase in the information
content of d. If instead discretization proceeded by applying the information
criterion to the bigger component, the resulting discretization becomes d =
(0, 0, 1, 1, 2, 2) with Shannon entropy 1.58631, as opposed to the previous
entropy of 1.43534.

As illustrated by the example of discretizing vector v = (1, 2, 7, 9, 10, 11),
the proposed discretization algorithm produces a discretization which is con-
sistent with the definition given above, keeps the number of discrete states
small, and maximizes information content over traditional SLC.

5.3 Algorithm Summary

An implementation of the algorithm is available from the authors at
http://polymath.vbi.vt.edu/discretization.

Input: set Sr = {vi | i = 1, . . . ,m} where each vi = (vi1, . . . , viN) is a
real-valued vector of length N to be discretized.

Output: set Sd = {di | i = 1, . . . ,m} where each di = (di1, . . . , diN) is
the discretization of vi for all i = 1, . . . ,m.

1. For each i = 1, . . . ,m, construct a complete weighted graph Gi where
each vertex represents a distinct vij and the weight of each edge is the
Euclidean distance between the incident vertices.

2. Remove the edge(s) of highest weight.

45

3. If Gi is disconnected into components CGi

i1 , . . . , CGi

iMi
, go to 4. Else, go

to 2.

4. For each CGi

ik , k = 1, . . . ,Mi, apply “disconnect further” criteria 1-3. If
any of the three criteria holds, set Gi = CGi

i1 and go to 2. Else, go to 5.

5. Apply “disconnect further” 2c. If this criterion is satisfied, go to 6.
Else, go to 7.

6. Sort the vertex values of CGi

i1 and split them into two sets: if |V (CGi

i1)|
is even, split the first |V (CGi

i1)|/2 sorted vertex values of Gi = CGi

i1 into
one set and the rest – into another. If |V (CGi

i1)| is odd, split the first
|V (CGi

i1)|/2 + 1 sorted vertex values of |V (CGi

i1)| into one set and the
rest – into another.

7. Sort the components CGi

i1 , k = 1, . . . ,Mi, by the smallest vertex value
in each CGi

i1 and enumerate them 0, . . . , Di−1, where Di is the number
of components into which Gi got disconnected. For each j = 1, . . . , N ,
dij is equal to the label of the component in which vij is a vertex.

5.4 Algorithm Complexity

Given M variables, with N time points each, we compute N(N − 1)/2 dis-
tances to construct the distance matrix so the complexity of this step is
O(N2). The distance matrix is used to create the edge and vertex sets of the
complete distance graph, containing N(N − 1)/2 edges. This can also be ac-
complished in O(N2) time. These edges are then sorted in decreasing order,
so that the largest edges are removed first. A standard sorting algorithm,
such as merge sort, has complexity O(N logN) [65]. As each edge is removed,
the check for graph disconnection involves testing for the existence of a path
between the two vertices of the edge. This test for graph disconnection can
be accomplished with a breadth-first search, which has order O(E + V) [66],
with E the number of edges and V the number of vertices in the component.
In our case this translates to complexity O(N2). Edge removal is typically
performed for a large percentage of the N(N − 1)/2 edges, so this step has
overall complexity O(N4). The edge removal step dominates the complexity
so that the overall complexity is O(MN4) to discretize all M variables. While

46

this is the theoretical worst-case performance, because of the heuristics we
have added the typical performance is significantly better.

5.5 Inconsistencies in the Discretized Data

One of our objectives is to introduce a discretization method suitable specif-
ically for time courses of data. The algorithm is more general and can be
applied to any collection of data points disregarding their order. If, however,
the time courses are to be fitted by a deterministic dynamical system, as
is the case with most reverse engineering methods, the order of the points
becomes important. If any of the input time courses contain consecutive
points (d1, . . . , dN) → (a1, . . . , aN) and (d1, . . . , dN) → (b1, . . . , bN), then we
should require that aj = bj for all j = 1, . . . , N . Even if the experimental
data satisfy this requirement, the discretization may create inconsistencies.
To obtain a usable time course while at the same time discretizing consis-
tently, several approaches are possible. One is to coarsen the discretization
by merging discrete states. Although this would certainly solve the inconsis-
tency problem, it would also reduce the information content of the discrete
data. The approach that we adopt is to split as many times as necessary the
discrete states of the problematic point (d1, . . . , dN). The state to split first
is naturally the one containing the two most distant consecutive real values.
Assuming that the analog time course data are consistent, discretization-
induced inconsistencies are handled in the following way:

In the discretized time course, find all points (d1, . . . , dN) for which there
are at least two distinct points (a1, . . . , aN) and (b1, . . . , bN) that immediately
follow point (d1, . . . , dN) anywhere in the time course. For each (d1, . . . , dN):

1. For each dj find all real values xj,i that were discretized into state dj,
sort them, and re-index them.

2. Let dmax
j = max{|xj,i+1 −xj,i|} and let (xj,left, xj,right) = (xj,i+1 −xj) for

which |xj,i−1 − xj,i| = dmax
j .

3. Let Dmax = {dmax
j | j = 1, . . . , N}. Split state dj that contains values

xj,left and xj, right for which xj,right − xj,left = Dmax
j . Re-label states

accordingly.

Repeat until no inconsistencies are present.

47

5.6 Requirements on the Number of States

While for some applications any number of discretization states is acceptable,
there are some cases when there are limitations on this number. For example,
if the purpose of discretizing the data is to build a model of polynomials over
a finite field as in [47], then the number of states must be a power of a prime
pn since every finite field has such a cardinality. Our method deals with this
problem in the following way.

Suppose that a vector has been discretized into m states in the way de-
scribed above. The next step is to find the smallest integer k = pn such that
m ≤ k. This value for k gives the number of states that needs to be obtained.
Since the discretization algorithm yielded m clusters, the remaining k − m

can be constructed by sorting the entries in each cluster and splitting the one
that contains the two most distant entries with respect to Euclidean distance.
The splitting should take place between these entries. This is repeated until
k clusters are obtained.

This approach has a potential problem. For instance, if a vector got
discretized into 14 states and the total number of distinct entries of the vector
is 15, then k = 16 cannot be reached. In this case the two closest states could
be merged together to obtain 13 states. In general it may not be desirable
to reduce the number of states because this results in loss of information.
We choose to increase the number of states unless it is impossible, as in the
above example.

5.7 Preservation of Dynamics

As mentioned above, the discretization algorithm is designed to preserve
the dynamic features of time course data. Due to limited knowledge of the
dynamic features of real biochemical networks, the validation of our method
is best done with a simulated network, as demonstrated in Section 6.

5.8 Discretization in the Presence of Noise

In the example from Section 6 no noise is added to the time courses gener-
ated from the artificial gene network. Noise, however, is naturally present in
biological data and in microarray data in particular [70]. Although there are

48

various techniques which increase the accuracy of the microarray measure-
ments, the data inevitably contain errors due to the probabilistic characteris-
tics of the detection process, from sample extraction and mRNA purification
to hybridization and imaging. Consequently, it is crucial to study how the
proposed discretization algorithm performs in the presence of typical levels
of noise in the experimental data.

5.8.1 Noiseless data

To study the effect of noise, we considered two types of data. We used gene
expression measurements generated for a study of rat cervical central nervous
system development [71]. The data consist of nine expression measurements
for each gene: cervical spinal cord tissue was dissected from animals in em-
bryonic development at days 11, 13, 15, 18, and 21 and at postnatal days
0, 7, 14, and 90. We selected 18 genes whose nine-point time courses have
statistical variance of more than 1. Although the data likely contain some
noise, here we assume that the measurements are perfect and we add noise
of known proportion and distribution assuming it is the only noise in the
data. The purpose is to work with data which have the properties of real
microarray time courses. The second data set is an artificial ten-point time
course on 30 “genes”. The values are randomly generated real numbers in
the range [0, 20] with statistical variance greater than 10.

5.8.2 Adding noise to the data

Two types of noise are added to the data at the same time: overall and
point-specific [72]. The overall noise is added by sampling from a normal
distribution with zero mean and a standard deviation equal to 12.5% of the
standard deviation of each gene. The point-specific noise is simulated by
adding noise to each time point sampling from a different normal distribu-
tion with zero mean and standard deviation equal to 12.5% of the standard
deviation of the particular time point value. Thus, the total proportion of
added noise amounts to 25%. For each gene 100 noise containing replicates
were generated and discretized.

49

5.8.3 Results

For each gene, we compare the way the original noiseless time course was
discretized to the discretization of the noise-containing replicates. We count
the number of noise-containing replicates that got discretized exactly the
same as the original noiseless time course. For the gene expression data from
[71], 78.72% of all the 18 × 100 noise-containing replicates were discretized
exactly as their corresponding noiseless original. This number is significantly
higher for the randomly generated data of variance 10 or higher: 93.8% of
all the 30 × 100 noise-containing replicates were discretized exactly as their
corresponding noiseless original. The big difference between the two results
can be explained by the different statistical variance of the original data in
the two cases. Only 5 out of the 18 genes in the expression measurements
time course in [71] have variance greater than 10 while the “genes” in the
simulated time course had variance of at least 10 with average variance of
34.5. Since the higher the variance of a time course, the better the chance
of more distinct and easier to detect discrete states, the discretization of the
data with higher variance not surprisingly showed more robustness in the
presence of noise.

5.9 Conclusion

The method presented is particularly suitable for the discretization of short
multivariate time courses, since it preserves a large degree of information
about dynamic features and ensures data consistency, without making un-
grounded assumptions about the data and their source. It thus provides
a valuable tool for any application that requires discretization of contin-
uous data when the number of discrete classes that best fits the data is
unknown. An important advantage of using the discrete states determined
by the method is that a significant portion of the noise is absorbed in the
process.

50

Chapter 6

Example: Data Discretization
and Reverse Engineering of a
Simulated Gene Regulatory
Network

In this section we demonstrate how the data discretization method presented
in Section 5 can be applied for the reconstruction of a gene network. Since
data from real gene networks are limited, we chose to test the methods on an
artificial gene network. We used the A-Biochem software system developed
by P. Mendes and his collaborators [67]. A-Biochem automatically generates
artificial gene networks with particular topological and kinetic properties.
These networks are embodied in kinetic models, which are used by the bio-
chemical network simulator Gepasi [69] to produce simulated gene expression
data. We generated an artificial gene network with five genes G1, . . . , G5 and
ten total input connections using the Albert-Barabási algorithm [68]. The
relationships among the genes are given in Table 6.1. Gepasi uses a con-
tinuous representation of biochemical reactions, based on ODEs. With the
parameters we specified, Gepasi generated the following ODE system that

51

Gene Activator Inhibitor
G1 G1 G3

G2 G1 G3

G3 – G1, G3, G5

G4 – G3

G5 G1, G3 –

Table 6.1: Relationships among the five genes of the A-Biochem-generated
artificial gene network.

represents the network:

dG1

dt
=

0.01
(

1 + G1(t)
0.01+G1(t)

)

0.01 + G3(t)
− G1(t)

dG2

dt
=

0.01
(

1 + G1(t)
0.01+G1(t)

)

0.01 + G3(t)
− G2(t)

dG3

dt
=

10−6

(0.01 + G1(t))(0.01 + G3(t))(0.01 + G5(t))
− G3(t) (6.1)

dG4

dt
=

0.01

0.01 + G3(t)
− G4(t)

dG5

dt
=

(

1 +
G1(t)

0.01 + G1(t)

)(

1 +
G3(t)

0.01 + G3(t)

)

− G5(t)

Analyzing the dynamics of the ODE system, one finds that it has two
stable steady states (of which only the first is bio-chemically meaningful):

S1 = (1.99006, 1.99006, 0.000024814, 0.997525, 1.99994)

and

S2 = (−0.00493694,−0.00493694,−0.0604538,−0.198201, 0.0547545).

As [47] demonstrated, the performance of their algorithm dramatically im-
proves if knockout time courses for genes are incorporated. Genetic knockout
is the process of replacing a specific gene with an inactive or mutated allele.
For this reason we supplied seven time course of 11 points each: two wild-
type time courses and five knockout time courses, one for each gene. The first

52

wild-type time course is generated by solving the ODE system numerically
for t = 0, 2, 6, . . . , 20 with initial conditions Gi(0) = 1 for all i = 1, . . . , 5.
Fig. 6.1 shows a plot of the numerical solution of the ODE system with these
initial conditions.

The second time series is generated like the first one but this time with
t = 0, 1, . . . , 10 and initial conditions (G1(0), G2(0), G3(0), G4(0), G5(0)) =
(1,−1,−0.6,−1, 0.5). (We emphasize that we are including the steady state
S2 in order to show that the discretized data preserve information about the
dynamics of the ODE system.) One can simulate a gene knockout in Gepasi
by setting the corresponding variable and initial condition to zero. In this
case, the time points from each of the seven time courses constitute the
input vectors. The discretization algorithm chose a state set of cardinality
5 and, based on the discrete data, the reverse engineering method of [47]
generated the discrete model F = (f1, f2, f3, f4, f5) : F5

5 → F5
5 with coordinate

polynomials

f1 = 2x2
52x5x

2
12x2x

2
1 + 2x5x

2
3 + 2x5x1x2x12x5x3 + x5 + x2

2x1x
2
3 + 2x2

1 + x1x32x
2
3 + 2x3

f2 = 2x2
52x5x

2
3 + x5x12x2x1 + x5x3 + x5 + x2 + x4

1x1x
2
3x

3
3

2x2
1x1x3 + 2x2

3 + x1 + x3

f3 = x3x
2
1 + 2x3x1x5x3x

2
5x3 (6.2)

f4 = 2x2x12x1x
2
32x2x4 + x1x4 + x2x3 + 2x1x32x2x1

x3
4 + x3

3x
2
3 + 2x4

f5 = 2x4x5x12x4x
2
12x4x

2
3x4x5x4x32x4 + 2x2

5x1x
3
1 + 2x1x

2
3

x3
3x

2
52x5x1x

2
1 + x1x3 + x5x32

Now we compare the dynamics of the two models. First, the discretization
maps steady state S1 of the ODE system to the fixed point FP1 = (4, 4, 1, 4, 2)
of F and steady state S2 to the fixed point FP2 = (0, 1, 1, 1, 0) of F . The
time course produced by solving the ODE system and converging to S1 is
given in the top part of Fig. 6.2.

The corresponding discrete points from the time course in the bottom part
of Fig. 6.2 form a trajectory that ends at FP1 (Fig. 6.3). The discrete model
trajectory can be superimposed over the discretization of the continuous one,
illustrating the matching dynamics of the two models. The same can be
observed for the second steady-state S2 that is mapped to fixed point FP2.

53

Figure 6.1: Plot of the numerical solution of (6.1) with initial condition
(G1(0), G2(0), G3(0), G4(0), G5(0)) = (1, 1, 1, 1, 1).

Further evidence of the ability of our method to retain information in the
data is the fact that the reverse-engineering method in [47] can extract most
of the information about the wiring diagram of the network. This can be
seen by comparing the inferred diagram with the diagram of actual direct
interactions in Fig. 6.4.

54

Figure 6.2: Top: Wild-type time course generated by solving numer-
ically the ODE system (6.1) for t = 0, . . . , 10 with initial conditions
(G1(0), G2(0), G3(0), G4(0), G5(0)) = (1, 1, 1, 1, 1). Bottom: Corresponding
discrete point time course.

55

Figure 6.3: Trajectories formed by the discretized wild-type time courses [73].

Figure 6.4: (A) Wiring diagram of (6.1); (B) Wiring diagram of (6.2).

56

Chapter 7

Discussion and Future Work

In this work we considered two aspects of polynomial modeling over finite
fields for systems biology: dependence on monomial ordering and data dis-
cretization. We propose techniques to systematically deal with these issues
which improve the quality of the model, making it independent of the specifics
of Gröbner basis computation and increasing the amount of information ex-
tracted from the available data.

The relationship between points in kn and the number of Gröbner bases
of their corresponding ideal of points is of interest by itself even outside of
the context of any modeling application. Nevertheless we emphasize that our
main goal was similar to that of [74]: to measure the amount of data nec-
essary for obtaining a correct polynomial model generated with the method
in [47]. The model “correctness” we addressed, however, is not measured
directly by how well the model reflects the actual network but rather by
how few unsupported by the data assumptions we make while generating the
model. Since choosing a monomial ordering is most often such an assump-
tion, eliminating the necessity for it improves the model correctness in this
sense.

Especially for the application of the method to the reverse engineering
algorithm in [47], we would like to investigate how the normal form of a
given polynomial model changes when taken with respect to different reduced
Gröbner bases. A powerful tool in this research would be the Gröbner fan
of the ideal of points (see Section 3.1.2) in which every cone corresponds to
a marked reduced Gröbner basis. It would probably be beneficial to study
how the position of the cones on the Gröbner fan are related to the normal

57

form of the polynomial model under consideration.
The data discretization method presented in this dissertation has several

novel features. It uses Shannon’s information criterion to determine clusters,
identifies the optimal number of clusters for a given data set, and eliminates
inconsistencies in the discrete time courses. It is particularly suitable for the
discretization of multivariate time courses, since it preserves a large degree
of information about dynamic features and ensures data consistency. It thus
provides a valuable tool for any application that requires discretization of
continuous data when the number of discrete classes that best fits the data
is unknown. An important advantage of using discrete states is that a sig-
nificant portion of the noise is absorbed in the process. The experiments we
carried out make us confident that for data that discretize into a relatively
small number of states and that contain a degree of noise common to many
biological data, the majority of the noise is absorbed into the discrete states.
We do not, however, recommend using the method whenever a large amount
of data is available. In this case, a statistical method, such as [58], that can
take advantage of the statistical properties of the data may be more appro-
priate. Our method assumes no knowledge of these properties and therefore
cannot utilize this information. Another situation when virtually any dis-
cretization technique may not produce useful results is in the case when one
or several of the system variables change much more rapidly than the rest.
In light of the discussion in Section 5.5 it is clear that in order to avoid in-
consistencies in the discretized data, one may need a very large number of
discrete states which may be a disadvantage for the modeling process.

58

Bibliography

[1] Whitmarsh, J. (2005). The Need for Mathematics in Biomedical Re-
search. Presentation in the Joint Mathematics Meeting of the AMS and
the MAA, AMS Special Session on Mathematical Sciences Contributions
to the Biomedical Sciences II.

[2] von Bertalanffy, L. (1968). General System Theory: Foundations, Devel-
opment, Applications, New York: George Braziller.

[3] Wiener, N. (1948). Cybernetics, Cambridge, MA:MIT Press.

[4] Kitano, H. (2002). Systems Biology: a Brief Overview. Science, 295, pp.
1662–1664.

[5] Vidal, M., Furlong, E.E.M. (2004). From OMICS to Systems Biology.
Nature Reviews, Genetics 2004.

[6] Percus, J. (2001). Mathematics of Genome Analysis, Cambridge Univer-
sity Press.

[7] Murray, J.M. (2001). Mathematical Biology, Springer-Verlag.

[8] Wolkenhauer, O. (2005). Mathematical Systems Biology, manuscript.

[9] Cohen, J.E. (2004). Mathematics Is Biology’s Next Microscope, Only
Better; Biology Is Mathematics’ Next Physics, Only Better. PLoS Biol
2(12): e439.

[10] Sha, W. (2006). Microarray Data Analysis Methods and Their Appli-
cations to Gene Expression Data Analysis for Saccharomyces Cerevisiae
under Oxidative Stress. Ph. D. Dissertation, Virginia Polytechnic Institute
and State University.

59

[11] Christen, Y. (2000) Oxidative Stress and Alzheimer Disease. Am. J.
Clin. Nutr., 71, pp. 621S– 629S.

[12] Maritim, A.C., Sanders, R.A., Watkins, J.B., 3rd (2003). Diabetes, Ox-
idative Stress, and Antioxidants: a Review. J. Biochem. Mol. Toxicol., 17,
pp. 24–38.

[13] Klaunig, J.E., Kamendulis, L.M. (2004). The Role of Oxidative Stress
in Carcinogenesis. Annu. Rev. Pharmacol. Toxicol., 44, pp. 239–267.

[14] Yu, B.P. (1994). Cellular Defenses Against Damage from Reactive Oxy-
gen Species. Physiol. Rev., 74, pp. 139–162.

[15] Jamieson, D.J. (1998). Oxidative Stress Responses of the Yeast Saccha-
romyces cerevisiae, Yeast, 14, pp. 1511–1527.

[16] Mendes, P., Kell, D.B. (1998). Non-linear Optimization of Biochemical
Pathways: Applications to Metabolic Engineering and Parameter Estima-
tion. Bioinformatics, 14, pp. 869–883.

[17] Briggs, G.E., Haldane, J.B.S. (1925). A Note on the Kinetics of Enzyme
Action, Biochem. J., 19, pp. 339–339.

[18] Yeung, M.K.S., Tegnér, J., Collins, J.J. (2002). Reverse Engineering
Gene Networks Using Singular Value Decomposition and Robust Regres-
sion. Proc. Natl. Acad. Sci., 99, pp. 6163–6168.

[19] Hartemink, A. (2001). Principled Computational Methods for the Vali-
dation and Discovery of Genetic Regulatory Networks. Ph. D. dissertation,
Massachusetts Institute of Technology.

[20] Filkov V., Istrail, S. (2002). Inferring Gene Transcription Networks: the
Davidson Model. Genome Informatics, 13, pp. 236–239.

[21] Lewis, J.E., Glass, L. (1991). Steady States, Limit Cycles, and Chaos in
Models of Complex Biological Networks. Int. J. Bifurcation and Chaos, 1,
pp. 477–483.

[22] Kauffman, S.A. (1993). The Origins of Order: Self-organization and Se-
lection in Evolution. Oxford University Press, New York.

60

[23] Friedman, N., Linial, M., Nachman, I., Pe’er, D. (2000). Using Bayesian
Networks to Analyze Expression Data. In 4th Annual International Con-
ference on Computational Molecular Biology (RECOMB 2000), ACM-
SIGACT.

[24] von Neumann, J. (1966). The Theory of Self-reproducing Automata, A.
Burks, ed., Univ. of Illinois Press, Urbana, IL.

[25] Gardner, M. (1970). The Fantastic Combinations of John Conway’s New
Solitaire Game “Life”. Scientific American, October 1970.

[26] Wolfram, S. (1982). Cellular Automata as Simple Self-Organizing Sys-
tems. Caltech preprint CALT-68-938.

[27] Weimar, J., Boon, J. (1994). Class of Cellular Automata for Reaction-
diffusion Systems. Phys. Rev. E, 49(2), pp. 1749-1752.

[28] Alber, M., Kiskowski, M., Glazier, J., Jiang, Y. (2002). On Cellular
Automaton Approaches to Modeling Biological Cells, IMA 134: Mathe-
matical Systems Theory in Biology, Communication, and Finance, p. 12,
Springer-Verlag, New York.

[29] Thomas, R., D’Ari, R. (1990). Biological Feedback, CRC Press, Boca
Raton, Ann Arbor, Boston.

[30] Thomas, R. (1973). Boolean Formalization of Genetic Control Circuits.
J. Theor. Biol., 42, p. 563.

[31] Mendoza, L., Thieffry, D., Alvarez-Buylla, E.R. (1999). Genetic Con-
trol of Flower Morphogenesis in Arabidopsis thaliana: a logical analysis.
Bioinformatics, 15, pp. 593–606.

[32] Sanchez, L., Thieffry, D. (2001). A logical Analysis of the Drosophila
Gap Genes. J. Theor. Biol., 211(2), pp. 115–141.

[33] Albert, R. (2004). Boolean Modeling of Genetic Regulatory Networks.
In: Complex Networks, Editors: Ben-Naim, E., Frauenfelder, H., Toroczkai,
Z., Springer-Verlag.

61

[34] Möller, M. (1998), Gröbner bases and numerical analysis. In Buchberger,
B., Winkler, F. eds, Gröbner Bases and Applications (Proceedings of the
Conference on 33 Years of Gröbner Bases), volume 251 of London Math-
ematical Society Lecture Notes Series, pp. 159–178. Cambridge University
Press.

[35] Sakata, S. (1998). Gröbner bases and coding theory. In Buchberger, B.,
Winkler, F. eds, Gröbner Bases and Applications (Proceedings of the Con-
ference 33 Years of Gröbner Bases), volume 251 of London Mathematical
Society Lecture Notes Series, pp. 205–220. Cambridge University Press.

[36] Robbiano, L. (1998). Gröbner bases and statistic. In Buchberger, B.,
Winkler, F. eds, Gröbner Bases and Applications (Proceedings of the Con-
ference 33 Years of Gröbner Bases), volume 251 of London Mathematical
Society Lecture Notes Series, pp. 179–204. Cambridge University Press.

[37] Buchberger, B. (1965). An Algorithm for Finding a Basis for the Residue
Class Ring of a Zero-dimensional Polynomial Ideal. Ph.D. Thesis, Univer-
sity of Innsbruck.

[38] Buchberger, B., Möller, H. M. (1982). The construction of multivari-
ate polynomials with preassigned zeros. In Calmet, J. ed., Proceedings of
the European Computer Algebra Conference (EUROCAM’82) (Marseille,
France), LNCS 144, pp. 24–31. Springer.

[39] Abbott, J., Bigatti, A., Kreuzer, M., Robbiano, L. (2000). Computing
Ideals of Points. J. Symbolic Computation, 30, pp. 341–356

[40] Cox, D., Little, J., and O’Shea, D. (1997). Ideals, Varieties, and Algo-
rithms, Springer-Verlag, New York.

[41] Adams, W. W., Loustaunau, P. (1994). An Introduction to Gröbner
Bases, Americal Mathematical Society, Graduate Studies in Math. Vol.
III.

[42] Eisenbud, D. (1995). Introduction to Commutative Algebra with a View
Towards Algebraic Geometry, Graduate Texts in Mathematics, Springer,
New York.

62

[43] Buchberger, B. (1985). In Bose, N. K. ed., Gröbner Bases: an Algorith-
mic Method in Polynomial Ideal Theory, chapter 6, pp. 184–232. D. Reidel
Publishing Co.

[44] Mora, T., Robbiano, L. (1988). Gröbner Fan of an Ideal. J. Symbolic
Computation, 6(2/3), pp. 183–208.

[45] Jensen, A. N. (2005). Gfan, a Software System for Gröbner Fans. Avail-
able at http://home.imf.au.dk/ajensen/software/gfan/gfan.html.

[46] Bayer, D., Stillman, M. (1987). A Theorem on Refining Division Orders
by the Reverse Lexicographic Order. Duke J. Math, 55, pp. 321–328.

[47] Laubenbacher, R., Stigler, B. (2004). A computational algebra approach
to the reverse engineering of gene regulatory net-works. J. Theor. Biol.
229, pp. 523–537.

[48] Lidl, R., Niederreiter, H. (1997). Finite Fields, 2nd ed., Encyclopedia of
Mathematics and Its Applications, vol. 20, Cambridge University Press,
New York.

[49] Stigler, B. (2005). An Algebraic Approach to Reverse Engineering with
an Application to Biochemical Networks. Ph. D. Dissertation, Virginia
Polytechnic Institute and State University.

[50] Dougherty J., Kohavi R., Sahami M. (1995). Supervised and Unsuper-
vised Discretization of Continuous Features. In Machine learning: Proceed-
ings of the 12th International Conference, San Francisco, CA. In Prieditis,
A. and Russell, S. (eds.): Morgan Kauffman.

[51] Han J., Kamber M. (2000). Data Mining: Concepts and Techniques,
Academic Press, San Diego, CA.

[52] van Berlo R., van Someren E., Reinders M. (2003). Studying the Condi-
tions for Learning Dynamic Bayesian Networks to Discover Genetic Reg-
ulatory Networks. SIMULATION, 79(12), pp. 689–702.

[53] Kauffman S.A. (1969). Metabolic Stability and Epigenesist in Randomly
Constructed Genetic Nets. J. Theor. Biol., 22, pp. 437–467.

63

[54] Albert R., Othmer H. (2003). The Topology of the Regulatory Inter-
actions Predict the Expression Pattern of the Segment Polarity Genes in
Drosophila melanogaster. J. Theor. Biol., 223, pp. 1–18.

[55] Thieffry D., Thomas R. (1998) Qualitative Analysis of Gene Networks.
In Proc. Pacific Symp. on Biocomputing, Singapore. World Scientific, pp.
77–88.

[56] Catlett, J. (1991). Megainduction: Machine Learning on Very Large
Databases, Ph. D. dissertation, University of Sydney.

[57] Ernst, J., Bar-Joseph, Z. (2006). STEM: a Tool for the Analysis of Short
Time Series Gene Expression Data. BMC Bioinformatics, 7, p. 191.

[58] Pe’er, D., Regev, A., Elidan, G., Friedman, N. (2001). Inferring Subnet-
works from Perturbed Expression Profiles. Bioinformatics, 17,pp. S215–
224.

[59] Jain, A., Dubes, R. (1988). Algorithms for Clustering Data, Prentice
Hall.

[60] MacQueen, J. (1967). Some Methods for Classification and Analysis
of Multivariate Observations. In Proceedings of the 5th Berkeley Sympo-
sium of Mathematical Statistics and Probability. Berkeley, CA. University
of California Press, 1, pp. 281–297.

[61] Saeed, A., Sharov, V., White, J., Li, J., Liang, W., Bhagabati, N.,
Braisted, J., Klapa, M., Currier, T., Thiagarajan, M., Sturn, A., Snuffin,
M., Rezantsev, A., Popov, D., Ryltsov, A., Kostukovich, E., Borisovsky,
I., Liu, Z., Vinsavich, A., Trush, V., Quackenbush, J. (2003). TM4: a
Free, Open-source System for Microarray Data Management and Anal-
ysis. BioTechniques, 34(2), pp. 374–378.

[62] Crescenzi, M., Giuliani, A. (2001). The Main Biological Determinants
of Tumor Line Taxonomy Elucidated by of Principal Component Analysis
of Microarray Data. FEBS Letters, 507, pp. 114–118.

[63] Johnson, S.C. (1967). Hierarchical Clustering Schemes. Psychometrika,
32, pp. 241–254.

64

[64] Shannon, C. (1948). A Mathematical Theory of Communication. The
Bell Systems Technical Journal, 27, pp. 379–423, 623–656.

[65] Knuth, D.E. (1998). The Art of Computer Programming, Vol. 3: Sorting
and Searching, 2nd edition. Reading, Massachusetts, Addison-Wesley.

[66] Pemmaraju, S., Skiena, S. (2003). Computational Discrete Mathematics:
Combinatorics and Graph Theory with Mathematica, Cambridge Univer-
sity Press.

[67] Mendes, P., Sha, W., Ye, K. (2003). Artificial Gene Networks for Ob-
jective Comparison of Analysis Algorithms. Bioinformatics, 19, pp. ii122–
ii129.

[68] Albert, R., Barabási, A. (2000). Topology of Evolving Networks: Local
Events and Universality. Phys. Rev. Lett., 85, pp. 5234–5237.

[69] Mendes, P. (1993). GEPASI: a Software Package for Modeling the Dy-
namics, Steady States and Control of Biochemical and Other Systems.
Comput. Appl. Biosci., 9, pp. 563–571.

[70] Hassibi, A., Vikalo, H. (2005). Probabilistic Modeling and Estimation
of Gene Expression Levels in Microarray. In Proc. IEEE Workshop on
Genomic Signal Processing and Statistics (GENSIPS).

[71] Wen, X., Fuhrman, S., Michaelis, G., Carr, D., Smith, S., Barker, J.,
Somogyi, R. (1998). Large-scale Temporal Gene Expression Mapping of
Central Nervous System Development. Proc. Natl. Acad. Sci. USA, 95,
pp. 334–339.

[72] Hatzimanikatis, V., Lee, K.H. (1999). Dynamical Analysis of Gene Net-
works Requires Both mRNA and Protein Expression Information. Metab.
Eng., 1, pp. 275–281.

[73] http://dvd.vbi.vt.edu

[74] Just, W. (2006). Reverse Engineering Discrete Dynamical Systems from
Data Sets with Random Input Vectors. Mathematical Biosciences Institute,
technical publication No. 52.

65

66

Vita

Elena Dimitrova was born in Sofia, Bulgaria to a family of engineers. Fol-
lowing high school, she attended the American University in Bulgaria, where
in 2001 she received a B.A. in computer science with a minor in mathemat-
ics. She continued her education at Virginia Tech, earning a M.S. in 2003.
Two years later she received a Ph.D. in mathematics for her work at the
Virginia Bioinformatics Institute at Virginia Tech. She has accepted the po-
sition of Assistant Professor of Mathematical Sciences and Adjunct Professor
of Genetics and Biochemistry at Clemson University. Elena is a member of
Society for Industrial and Applied Mathematics, American Mathematical So-
ciety, and Society for Advancement of Chicanos and Native Americans. She
is a Fellow of Project NExT, a program of the Mathematical Association of
America.

67

