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CHAPTER  5.  WEDGE-SHAPE DIELECTRIC WAVEGUIDE

BOUNDED BY CONDUCTING PLANES

5.1  INTRODUCTION

Dielectric waveguides with conducting boundaries have important applications at

microwave, millimeter wave, and optical frequencies.  They are used as low-loss

transmission media, as elements of integrated circuit devices, and in a variety of other

devices such as polarizer, mode analyzer, and mode filter.  Propagation characteristics of

planar optical waveguides with metal boundaries have been studied by many researchers

[12]-[13], and [15].  The investigation of waveguides involving both planar and curved

boundaries is more complicated and has been carried out using experimental and numerical

techniques.

In this chapter, attention is focused on a wedge-shape waveguide consisting of two

conducting plane boundaries with the interior of the wedge partially filled with a dielectric

material. The remaining portion of the wedge interior is free space or is occupied by

another dielectric material of lower dielectric constant.  The dielectric-free space boundary

is assumed to be circularly cylindrical.  A special case of this waveguide corresponding to

a wedge angle of 180o, that is a semi-circular rod backed by a conducting plane, has been

examined before [16].

It is the aim of this chapter to present a comprehensive analysis of wedge-shape dielectric

waveguides bounded by conducting planes and with arbitrary wedge angles.  Propagation

properties of guided modes are studied.  Field solutions, dispersion relations, cutoff

conditions, and conductor and dielectric losses are examined.  The analysis presented here

reveals that these wedge-shape waveguides support only TE and hybrid HE- and EH-type

modes; thus, TM modes do not exist.  Dispersion characteristics and normalized dielectric
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and conductor loss coefficients for several lower-order modes and several wedge angles

are presented.

5.2  FIELD SOLUTIONS AND CHARACTERISTIC EQUATIONS

Let us consider a wedge-shape dielectric waveguide bounded by two conducting planes at

ϕ = 0 and ϕ = ϕo.  The dielectric region 0 < ϕ < ϕo  consists of a core of radius a and

relative permittivity εr1 and a cladding of relative permittivity εr2 < εr1.  For microwave and

millimeter wave applications, the cladding is usually air with εr2 = 1, but for application at

optical frequencies it consists of some dielectric material.  Both core and cladding are

assumed to be homogeneous, isotropic and nonmagnetic with permeability µo.

Furthermore, the cladding and the conducting planes are assumed to extend to infinity in

the radial direction.  Figure 5.1 illustrates the geometry of the waveguide.  A cylindrical

coordinate system (r,ϕ,z) is chosen and propagation of electromagnetic fields along the

positive z-direction is considered.  The time and z-dependences of fields are assumed to be

as ej(ωt-βz), where β is the axial propagation constant and ω is the angular frequency.  This

term, which is common to all field components, is dropped from the solutions.

To determine the field solutions in the region 0 ≤ ϕ  ≤ ϕo, it suffices to solve the wave

equation for the axial components, then calculate transverse components and impose the

appropriate boundary conditions.  At first, solutions corresponding to perfect conducting

planes and lossless dielectrics are obtained.  Conductor and dielectric losses will be

calculated using perturbation techniques.  Field solutions in this wedge-shape dielectric

waveguide have the same mathematical form as those of a complete circular dielectric

waveguide, but will be subject to additional boundary conditions at ϕ = 0 and ϕ = ϕo.

These additional boundary conditions require that axial and radial components of the

electric field vanish at ϕ = 0 and ϕ = ϕo. For guided modes, the propagation constant β
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Figure 5.1 Geometry and coordinates for a wedge-shape dielectric waveguide

bounded by conducting planes at ϕϕ = 0 and ϕϕ = ϕϕo.
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lies in the range ko(εr2)
1/2 < β < ko(εr1)

1/2 where ko = 2π/λ; λ being the free-space

wavelength.  The solution of wave equation for axial field components Ez and Hz, which

are bounded everywhere and represent guided modes, are summarized as [115],

Ez =  A1Jν(ur)cos(νϕ +ϕo), r < a              (5.1a)

    =  A2Kν(wr)cos(νϕ +ϕo), r > a   (5.1b)

Hz = B1Jν(ur)sin(νϕ + ϕo), r < a                          (5.2a)

                = B2Kν(wr)sin(νϕ + ϕo), r > a              (5.2b)

where Jν is the Bessel function of the first kind, Kν is the modified Bessel function of the

second kind, A1, A2, B1 and B2 are amplitude coefficients, ν is the azimuthal number, ϕo

is a constant phase term, and

u = ko (εr1
 -β2)1/2                 (5.3a)

w = ko (β2 - εr2)
1/2                                  (5.3b)

with β = β/ko is the normalized propagation constant.  The transverse field components

are readily obtained by substituting (5.1) and (5.2) into

Et = (j/qi)[ωµoaz ×× ∇∇z Hz - β∇∇z Ez]          (5.4a)

Ht = (-j/qi)[(ω εo
 εri) az ×× ∇∇z Ez + β∇∇z Hz]              (5.4b)

where qi = ko
2εri

 - β2 with i =1 and 2 corresponding to the core and cladding regions,

respectively.  The results for transverse field expressions are summarized in (B.9)-(B.12),

in Appendix B.
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The waveguide under consideration has three boundaries; ϕ = 0, ϕ = ϕo , and   r = a.  The

first two are conducting boundaries and the tangential components of the electric field (Ez

and Er) must vanish on them.  The third is a boundary between the core and cladding at

which the tangential components of both electric and magnetic fields must be continuous.

Imposition of boundary conditions at r = a; namely, continuity of Ez, Eϕ, Hz and Hϕ at r =

a, results in a characteristic equation which is identical in format to that of a complete

circular dielectric waveguide.  The results is expressed as [115],

(η1+η2)( εr1η1+εr2η2) = (νβ)2(V/UW)4     (5.5)

where

η1 = J′ν(U)/[U Jν(U)]              (5.6a)

η2  = K′ν(W)/[W Kν(W)]   (5.6b)

and U = u a, W = w a, and V2 = U2 + W2 = (ako)
2(εr1-εr2).  The boundary condition at ϕ

= 0 results in cos(ϕo ) = 0 with the solution expressed as

ϕo = lπ + π/2, l an integer        (5.7)

Consequently, the ϕ-dependence of fields are as sin(νϕ) for Ez, Er, Hϕ, and as cos(νϕ) for

Hz, Eϕ, and Hr.  The boundary condition at ϕ = ϕo leads to sin(νϕo) = 0.  Hence, νϕo =

mπ; m being an integer, and thus ν must obey the following relation,

ν = mπ/ϕo                        (5.8)

5.3  GUIDED MODE SOLUTIONS

5.3.1  TE and TM modes

When ν = 0, from (5.1), (5.4), and (5.7),it is concluded that Ez = Er = Hϕ = 0, that is, TM

modes cannot exist.  For TE modes, on the other hand, the field components are Hz, Eϕ,

and Hr, none of which is subject to boundary conditions at ϕ = 0 and ϕ = ϕo.  The TE
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mode solutions for any arbitrary value of ϕo are identical to those of a complete circular

dielectric waveguide with the only difference that here fields are confined to the region 0 ≤

ϕ ≤ ϕo , while for the complete circular dielectric waveguide they exist in the entire region

0 ≤ ϕ ≤ 2π.  The characteristic equation for TE modes is obtained from (5.5) with ν = 0.

The result is

J1(U)/[U J0(U)] + K1(W)/[W K0(W)] = 0              (5.9)

The cutoff condition for TE modes is expressed as J0(Vc) = 0, which is obtained from

(5.9) in the limit of W → 0.  Here, Vc = (akoc)(εr1-εr2)
1/2 is the normalized cutoff

frequency.

5.3.2  Hybrid  HE and EH Modes

When ν ≠ 0, all six components of fields exist and the modes are hybrid.  They are

classified as HE and EH corresponding to two distinct solutions of  (5.5).  The hybrid

mode designation is based on the same criterion introduced in [115].  These modes, when

exist, will be identical to odd modes in a complete circular dielectric waveguide for integer

values of  ν only.  When ν is non-integer, the modes assume distributions different from

circular waveguides.  Some special cases are considered for more detailed examination.

Cutoff conditions for HE and EH modes are obtained from (5.5) in the limit of W → 0.

The results are summarized as

εr2VcJν(Vc)-(εr2+εr1)(ν-1)Jν-1(Vc)= 0,    for HEνp modes (5.10a)

Jν(Vc) = 0,             for EHνp modes                (5.10b)
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5.4  SPECIAL CASES

5.4.1  ϕϕo = ππ

When ϕo = π, the waveguide is semicircular, and from (5.8), ν = m = 1, 2, 3 ... is obtained.

The hybrid modes of circular dielectric waveguide are even and odd HE and EH modes;

where even and odd correspond to ϕ-dependences as cos(νϕ) and sin(νϕ) for Ez,

respectively.  This even and odd designation is arbitrary because it depends on the choice

of field component.  For a semicircular waveguide, the ϕ-dependence of Ez can only

assume the form sin(νϕ), implying that the modes are of odd HE and EH types.  The

fundamental mode of this waveguide is HE11 with zero cutoff frequency.

5.4.2  ϕϕo = ππ/2

When ϕo = π/2, ν = 2m =  2, 4, 6 ...  In this case only odd hybrid modes of HE2m,p and

EH2m,p types such as HE21, HE41, EH21, EH41, etc..., can exist.  The fundamental mode of

this waveguide is thus no longer the HE11 mode.  It is, in fact, TE01 mode with a

normalized cutoff frequency of Vc = 2.405.

5.4.3  ϕϕo = ππ/n, n an integer > 2

In this case, from (5.9) we have ν = mn.  Generally, the larger the value of n the smaller

the number of modes that can be supported by the guide for the same frequency of

operation.  The fundamental mode of all guides with ϕo = π/n, n = 2, 3, 4..., is the TE01 .

5.4.4  Arbitrary ϕϕo

For the general case of arbitrary ϕo such that ν is not an integer, with the exception of

TE0p modes, the fields are described by Bessel and modified Bessel functions of non-

integer orders.  As an example, we consider the case of  ϕo = 2π/3.  From (5.8), ν = 3m/2

where m = 0, 1, 2 ...  For m = 0, we have  ν = 0 and the modes are TE0p.  For m = 1,ν =

3/2 and the field solutions involve the following functions
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Jν(ur) = J3/2(ur) = (2/πur)1/2[sin(ur)/(ur) - cos(ur)]             (5.11a)

Kν(wr) = K3/2(wr) = (π/2wr)1/2 (1 + 1/wr)e-wr (5.11b)

To determine the characteristic equation, η1 and η2 as defined in (5.6a) and (5.6b) are first

calculated.  Using (5.11a) and (5.11b) in (5.6a) and (5.6b), yields

η1 = [1/(1-UCot(U))]-3/(2U2)             (5.12a)

and

η2  = - 1/(1+W) - 3/(2W2)                        (5.12b)

Now, combining (5.5), (5.12a) and (5.12b), the characteristic equation for hybrid modes

with ν = 3/2 is obtained.  Letting W → 0 in the resulting characteristic equation, the

corresponding cutoff conditions are obtained as

Vc Cot(Vc)  = (εr1-εr2)/(2εr2),     for HE modes (5.13a)

Vc Cot(Vc)  =  1, Vc ≠ 0,        for EH modes   (5.13b)

In summary, from the examination of above cases it is concluded that the number, types,

and properties of modes supported by a wedge-shape waveguide are dependent upon the

wedge angle ϕo with the exception of TE0p modes which always exist above their

respective cutoff frequencies for an arbitrary ϕo and all their propagation properties (but

the conductor loss) are independent of ϕo.
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5.5  WAVEGUIDE LOSSES

In practical situations the conducting walls have finite conductivity and dielectric materials

have complex permittivity with small imaginary parts, with the implication that

propagating modes suffer power losses.  These losses may be calculated using standard

perturbation techniques.

5.5.1  Conductor Loss

The attenuation coefficient αc, due to conductor loss, is obtained from αc = Plc /2P, where

Plc is the power dissipated per unit length of the conducting boundaries and P is the power

flow. Plc is calculated as [116]

     Plc = (1/2)Rs

Sc

∫ Js 2 ds = Rs
0

∞∫ ( Hz 2 + Hr 2) dr                          (5.14)

where Rs = (ωµo/2σ)1/2 is the surface resistance of each conducting wall per unit length, Js

is the surface current density, and Sc represents the surface of conducting walls per unit

length of waveguide.  The power flow, P, is obtained from

P = (1/2)Re
Sw

∫ ( E×H* ).ds = (1/2)
0

ϕ∫
0

∞∫ ( Er Hϕ* - Eϕ Hr*)rdrdϕ            (5.15)

where Sw is cross sectional area of the wedge waveguide.  The results for P and Plc are

given by (B.21) and (B.22), respectively, in Appendix B.

5.5.2  Dielectric Loss

The attenuation coefficient αd, due to dielectric losses, is obtained from αd = Pld /2P,

where Pld, is the power dissipated per unit length of the dielectric materials and P is the

power flow given in (B.16).  Pld is obtained from
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Pld =(1/2)
Sw

∫ σd E 2 ds = (1/2)
0

ϕ∫
0

a∫ σd(Er 2+Eϕ 2+Ez2)rdrdϕ   (5.16)

where σd is the conductivity of the dielectric and equals σd1 in the core and σd2 in the

cladding.  The expression for Pld is given by (B.23), in Appendix B.

5.6  NUMERICAL RESULTS AND DISCUSSION

Propagation properties, including axial propagation constant, cutoff frequency, conductor

loss, dielectric loss, and frequency range for single-mode operation, are evaluated for the

fundamental mode of several wedge-shape dielectric waveguides with conducting

boundaries.  A typical value of 2.25 is chosen for the dielectric constant of the core

material (εr1), and the cladding is assumed to be air with εr2 = 1.  To make the results less

parameter specific, the following normalized quantities are defined:

Normalized frequency:                       ako = aω(µoεo)
1/2                                              (5.17)

Normalized propagation constant:      b = (β2/ko
2-εr2)/(εr1-εr2)   (5.18)

Normalized conductor loss:           αc = (aϕo/Rs)αc    (5.19)

Normalized dielectric loss:           αd = (1/σd)αd                                           (5.20)

The normalized propagation constant is calculated by solving the characteristic equation

(5.5)  using   numerical   techniques.   Figure  5.2   illustrates   variations   of    normalized

propagation constant versus normalized frequency for the fundamental modes of

waveguides with wedge angle ϕo = π, 2π/3, and π/n;   n ≥ 2.  For the first two values of ϕo

the fundamental mode is the first HE type mode, whereas for ϕo = π/n; n ≥ 2, TE01  is  the
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Figure 5.2  Normalized propagation constant, b, versus normalized frequency, aako,

for the fundamental modes of wedge-shape dielectric waveguide with ϕϕo = ππ, 2ππ/3,

and ππ/n; n ≥≥ 2, and with εεr1 = 2.25, and εεr2 = 1.  The fundamental modes for these

values of ϕϕo are HE11, HE3/2,1, and TE01, respectively.
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Table 5.1  Single-Mode Frequency Range For Different Wedge Angles.

Wedge Angle

(ϕϕo)

      Fundamental

       Mode

   Single-Mode

   Frequency Range

     aako = aaωω(µµoεεo)
1/

     π     HE11 0.626 ≤ ako ≤  2.151

    2π/3     HE3/2,1 0.914 ≤ ako ≤  2.151

     π/2     TE01 2.151 ≤ ako ≤  2.501

     π/3     TE01 2.151 ≤ ako ≤  3.832

     π/4     TE01 2.151 ≤ ako ≤  4.937

fundamental mode.  Only the HE mode of waveguide with ϕo = π has a theoretical zero

cutoff frequency, but as is evident from Figure 5.2 this mode exhibits a practical cutoff

value of  ako ≈ 0.6261.

To determine the frequency range for single-mode operation, the cutoff frequency of the

second mode is needed.  For waveguides with ϕo = π and 2π/3, the second mode is TE01

with a cutoff normalized frequency of akoc = 2.151, while for waveguides with ϕo = π/n; n

= 2, 3, and 4, the second modes are HE21, HE31, and TE02 with cutoff frequencies of akoc

= 2.501, 3.832, and 4.937, respectively.  Table 5.1 summarizes the single-mode frequency

range for the above values of wedge angle.  The maximum possible frequency range for

single-mode operation that can be obtained for a wedge-shape waveguide is limited to the

cutoffs of TE01 and TE02 modes, which is 2.151 < ako < 4.937.  This is achieved when no

other modes, lying between TE01 and TE02 modes, can be excited.  Thus, compared to a

hollow circular waveguide for which the single-mode frequency range is 1.841 < ako <

2.151 [116], wedge-shape waveguides can be operated at  higher frequencies or  may have
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larger dimensions.  For frequencies larger than 100 GHz, the diameter of a hollow circular

waveguide becomes excessively small.  The use of wedge-shape waveguide may relax this

limitation.

Figures 5.3, 5.4, and 5.5 show variations of normalized attenuation coefficientsαc andαd

versus normalized frequency for the fundamental modes of waveguides with wedge angle

ϕo = π, 2π/3 and π/n, n ≥ 2.  It is noted that the attenuation curves in these figures exhibit

similar behaviors.  Near cutoff  frequencies both conductor and dielectric loss coefficients

rise sharply, reaching a maximum, and leveling off above the cutoffs for ako > 5.

Examination of the actual conductor attenuation coefficient αc, reveals that the conductor

loss depends on the wedge angle ϕo in two ways; (i) directly proportional to ϕo
-1 through

the power flow given by (B.16) and, (ii) implicitly through the dependence of fields on ϕo.

The dielectric loss coefficient αd, on the other hand, might be influenced by the wedge

angle only through the dependence of fields on ϕo.  For the special case of ϕo = π/n, n an

integer, the dielectric losses of  all   modes are independent of the wedge angle, while their

conductor  losses are simply inversely proportional to ϕo.  This is because for this special

case the azimuthal number ν is an integer and modal fields, when they exist, are

independent of the wedge angle.  For TE0p modes, this property is maintained for

waveguides with arbitrary wedge angles.  Accordingly, theαd curve in  Figure 5.4 can

also be used to evaluate the dielectric loss of TE01 modes when ϕo = π, 2π/3, or any

arbitrary value.
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Figure 5.3  Variations of normalized attenuation coefficients of conductor,ααc, and

dielectric,ααd, versus normalized frequency, aako, for the HE11 mode in a wedge-

shape dielectric waveguide with ϕϕo = ππ, and εεr1 = 2.25, and εεr2 = 1.



115

Figure 5.4  Variations of normalized attenuation coefficients of conductor,ααc, and

dielectric,ααd, versus normalized frequency, aako, for the HE3/2,1 mode in a wedge-

shape dielectric waveguide with ϕϕo = 2ππ/3, and εεr1 = 2.25, and εεr2 = 1.
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Figure 5.5  Variation s of normalized attenuation coefficients of conductor,ααc, and

dielectric,ααd, versus normalized frequency, aako, for the TE01 mode in a wedge-shape

dielectric waveguide with ϕϕo = ππ/n; n an integer, and εεr1 = 2.25, and εεr2 = 1.


