CHAPTER 5. WEDGE-SHAPE DIELECTRIC WAVEGUIDE
BOUNDED BY CONDUCTING PLANES

5.1 INTRODUCTION

Dielectric waveguides with conducting boundaries have important applications at
microwave, millimeter wave, and optical frequencies. Theye used as low-loss
transmission media, as elements of integrated circuit devices, and in a varaherof
devices such as polarizer, mode analyzer, and mode fit@pagation characteristics of
planar optical waveguides with metal boundaries have been studredryresearchers
[12]-[13], and[15]. Theinvestigation of waveguidasvolving both planar and curved
boundaries is more complicated and has been carried out using experimentahandal
techniques.

In this chapter, attention is focused on a wedge-shape wavegoitgsting of two
conducting plane boundaries wittie interior of the wedgpartially filled with a dielectric
material. Theremainingportion of the wedge interior is free space or is occupied by
another dielectric material of lower dielectric constant. The dielectric-free space boundary
is assumed to be circularly cylindrical. A speciase of this waveguide corresponding to

a wedgeangle of 186 that is a semi-circularnd backed by a conducting plane, heen

examined before [16].

It is theaim ofthis chapter to presentcamprehensive analysis wedge-shape dielectric

waveguides bounded by conducting planes and with arbitradge angles. Propagation
properties of guided modes are studieffield solutions, dispersion relations, cutoff
conditions, ana¢onductorand dielectric lossesreexamined. Thanalysispresented here

reveals that these wedge-shape wavegudpportonly TE andhybrid HE- and EH-type

modes; thus, TM modes dmt exist. Dispersion characteristics and normalized dielectric
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and conductorloss coefficient for severallower-order modes anseveral wedgeangles

are presented.

5.2 FIELD SOLUTIONS AND CHARACTERISTIC EQUATIONS

Let usconsider a wedge-shape dielectric waveguide boubglaslo conducting planeat

¢ = 0and¢ = ¢,. The dielectric region 0 ¢§ <¢, consists of aore ofradius a and

relative permittivitye,; and a cladding of relative permittivigys < €. Formicrowave and
millimeter wave applications, theladding is usually air witla,, = 1, but forapplicationat
optical frequencies it consists of some dielectric materiabth coe and cladding are
assumedto be homogeneous, isotropic and nonmagnetic wagrmeabiliy .
Furthermore, theladding andhe conductig planes areassumedo extendto infinity in
the radial direction. Figur®.l illustrates the geometry of the waveguide.cylindrical
coordinaé system(r,9,z) is chosen and propagation of electromagnetields along the
positive z-direction is considered. The time and z-dependences of fieblssamed to be
as &P wherep is the axid propagation constamnd w is the angulafrequency This

term, which is common to all field components, is dropped from the solutions.

To determineghe field solutionsin the region & ¢ < ¢,, it sufficesto solve the wave
equation for theaxid componentsthen calculate transverse components and impose the
appropria¢ bounday conditions At first, solutions corresponding perfect conducting
planes and lossless dielectriare obtained. Conductor érdielectric losseswill be
calculated usingperturbation techniquesField solutionsin this wedge-shape dielectric
waveguide havehe same mathematical form alsose of a completecircular dielectric
waveguide, butill be subjectto additional boundary conditiors ¢ = 0 and¢ = ¢..
These additional boundary conditions requinet axid and radial componentsf dhe

electric field vanishtap = 0 andp = ¢,. For guided modes, the propagation congtant
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Figure 5.1 Geometry and coordinatesfor a wedge-shape dielectric waveguide

bounded by conducting planes ap = 0 and¢ = ..
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lies in the range Keo)" < B < ko(e1)"? where k = 2mA; A being the free-space
wavelength. The solution of wave equation daral field components Eand H, which

are bounded everywhere and represent guided modes, are summarized as [115],

E, = AJ(ur)cospd + ), r<a (5.1a)
= AK,(wr)cos@d + ¢o), r>a (5.1b)
H,= B, (ur)sinpd + ¢o), r<a (5.2a)

= BKy(wr)sinvd + d,), r>a (5.2b)

where J is theBessel function ofhefirst kind, K, is themodified Bessel function of the
second kind, A A, B; and B areamplitude coefficientsy is theazimuthal number, ¢,

is a constant phase term, and

U=k (€1 B2 (5.33)

w=ko (B?-£)" (5.3b)

with B = B/k, is thenormalizedpropagation constant. The transveiisil components

are readily obtained by substituting (5.1) and (5.2) into
E. = (i/a) [, x O, H, - BO, B, (5.4a)
He= (-j/a)[(weoen) a; x O, E, + B0, H,] (5.4b)
where ¢ = k& - B* with i =1 and 2 corresponding to tleere and cladding regions,

respectively. The results for transvefis@l expressions arseummarized ir{B.9)-(B.12),

in Appendix B.
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The waveguide under consideration has three bound@re$, ¢ =¢,, and r =a. The

first two are conducting boundaries and the tangential components of the diedti(E;
and E) mustvanish onthem. The third is a boundary between ¢bee and cladding at
which the tangential components of both electric andneatg fieldsmust be continuous.
Imposition of boundary conditions at r =r@mely, continuity of E E;, H, and H at r =

a, results in a characteristic equatihich is identical informat to that of a complete

circular dielectric waveguide. The results is expressed as [115],

(N1+N2)( EaNs+een2) = V- B (V/UW)* (5.5)
where

n.= Jy(U)/[U J,(V)] (5.6a)

N2 = K'y(W)/[W Ky(W)] (5.6b)

andU=ua, W=wa,and °¥ U+ W = (ako)*(e.-€). The boundary condition gt

= 0 results in cosf, ) = 0 with the solution expressed as

0o = IT1+ 102, | an integer (5.7)

Consequently, th¢-dependence dfelds are assin(vp) for E, E, Hy, and as cosf) for
H,, By, and H. The boundary condition &t = ¢, leads tosin(vd,) = 0. Henceyd, =
m1;, m being an integer, and thusnust obey the following relation,

vV = mri/d, (5.8)

5.3 GUIDED MODE SOLUTIONS

5.3.1 TE and TM modes

Whenv = 0, from(5.1), (5.4),and (5.7),it is concluded that E E = Hy = O, that is, TM
modes cannot existFor TE modes, on the othkand, thefield components are HE;,

and H, none ofwhich is subject to boundary conditions¢at= 0 and$¢ = ¢,. The TE

105



mode solutions foany arbitrary value ofp, areidentical tothose of a completeircular

dielectric waveguide with the only difference that here fields are confined to the region O

¢ < ¢,, whilefor the completeircular dielectric waveguide they existtie entire region
0< ¢ < 2. The characteristic equation for TE modes is obtained Eo%) with v = 0.

The result is

J(U)[U J(U)] + Ke(W)[W Ko(W)] = 0 (5.9)

The cutoff condition for TE modes is expressed @€.)) = 0, which isobtainedfrom
(5.9) in thelimit of W — 0. Here, V = (akoo)(e1-€2)"? is the normalized cutoff

frequency.

5.3.2 Hybrid HE and EH Modes
Whenv # 0, all sixcomponents ofields exist andthe modes aré&ybrid. They are
classified as HEand EH corresponding tavo distinct solutions of (5.5). Thehybrid

mode designation is based on #agne criterion introduced [d215]. These modesyhen

exist, will be identical to odd modes in a complete circular dielectric waveguide for integer

values of v only. Whenv is non-integer, the modessume distributions different from
circular waveguides. Some special cases considered for more detailegamination.
Cutoff conditions for HE and EH modes are obtained f(brf) in thelimit of W - 0.
The results are summarized as

€2Ved(Vo)-(Exten)(v-1)a(Ve)= 0, for HE, modes (5.10a)

J(Ve) =0, for EG modes (5.10b)
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5.4 SPECIAL CASES

54.1¢,=T

Whené, = 11, the waveguide is semicircular, and from (58F m = 1, 2, 3 ... is obtained.
The hybrid modes of circular dielectric waveguidee even andodd HEand EH modes;
where even anddd correspond tap-dependences as co¢) and sin(vp) for E,
respectively. This even amdid designation is arbitrary because it depends orchbee
of field component. For &emicircular waveguidehe ¢-dependence of Ecan only
assumethe form sin(vg), implying thatthe modes are addd HE and EH types. The

fundamental mode of this waveguide is;H&ith zero cutoff frequency.

5.4.2 ¢o=102

When¢, = 1W2,v =2m = 2, 4, 6 ... Ithis caseonly odd hybrid modes of HE,, and
EH.mp types such as BE HE.;, EHyi, EHag, etc...,can exist. The fundamental mode of
this waveguide is thus no longdre HE; mode. It is, in fact, T&z mode with a

normalized cutoff frequency of \= 2.405.

5.4.3 ¢, =1Un, n an integer > 2
In this case, fron§5.9) wehavev = mn. Generallythe larger thevalue of nthe smaller
the number of modes that can Iseipported by theyuide for thesame frequency of

operation. The fundamental mode of all guides Witk 1/n, n = 2, 3, 4..., is the TE

5.4.4 Arbitrary ¢,

For thegeneral case of arbitrady, such thatv is not aninteger, with the exception of
TEo, modes, thefields are described bfessel and modified Bessel functions rafn-
integer orders. As agxample, we considéne case ofp, = 2r/3. From(5.8),v = 3m/2
where m=0, 1, 2. For m= 0, wéhave v = 0 and the modes are {E For m = 1y =

3/2 and the field solutions involve the following functions
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J,(ur) = (ur) = (2fwr)*sin(ur)/(ur) - cos(ur)] (5.11a)

Ky(wr) = Kgp(wr) = (2wr) 2 (1 + 1/wr)e" (5.11b)

To determine the characteristic equatignandn, as defined ir{5.6a) and (5.6b) arf@st
calculated. Using (5.11a) and (5.11b) in (5.6a) and (5.6b), yields

n.= [1/(1-UCot(U))]-3/(2) (5.12a)
and
N2 = - 1/(1+W) - 3/(2W) (5.12b)

Now, combining(5.5), (5.12ajand (5.12b), the characteristic equation Hgbrid modes
with v = 3/2 is obtained. Letting W» O in theresulting characteristic equation, the

corresponding cutoff conditions are obtained as
V. Cot(Vc) = €n-€)/(2¢,), for HE modes (5.13a)
V. Cot(Vc) = 1, ¢#0, for EH modes (5.13b)
In summary, fronthe examination of above cases it is concluded thanhumber, types,
and properties of modes supported by a wedge-siapeguide are dependent upon the
wedge angle ¢, with the exception of T& modeswhich always existabove their

respective cutoff frequencies for an arbitrgyandall their propagation properties (but

the conductor loss) are independend of
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5.5 WAVEGUIDE LOSSES

In practical situations the conductinglls have finite conductivitgnd dielectric materials
have complex permittivity withsmall imaginary parts, with the implication that
propagating modes suff@ower losses. Theseskesmay becalculated using standard

perturbation techniques.

5.5.1 Conductor Loss
The attenuatiomoefficienta,., due to conductor loss, is obtained frag= R./2P, where
P is the power dissipated per unit lengthteg conducting boundaries and P is plogver

flow. P is calculated as [116]

FrC:(1/2)I%_[ kM ds = RJ: (H, 3+ M, 0) dr (5.14)
Sc

2 is the surface resistance of each conduatiatyper wnit length, J

where R = (wu/20)
is the surface curremtensity, and Srepresents the surface of conductingls per unit

length of waveguide. The power flow, P, is obtained from

P= (1/2)Re_af ( ExH*).ds= (1/2)]3 J: ( E Ho* - Ep H¥)rdrdd (5.15)
Sw

where § is cross sectional area of the wedge waveguide. The results for R, ane P

given by (B.21) and (B.22), respectively, in Appendix B.

5.5.2 Dielectric Loss
The attenuatiorcoefficient oy, due todielectric losses, is obtained frooy = Rq /2P,
where R, is the powedissipatedoer unitlength ofthe dielectric materials and P is the

power flow given in (B.16). Ris obtained from

109



Pa=(1/2) I os[EBds = (1/2j: J: 04((E; BH+E, B+E,rdrdd (5.16)
Sw

wher gy is the conductivity of th dielectric and equaley; in the coe and gy, in the

cladding. The expression for ¥ given by (B.23), in Appendix B.

5.6 NUMERICAL RESULTS AND DISCUSSION

Propagation properties)cluding axid propagation constant, cutdfequency conductor
loss, dielectric loss, and frequency ramgr single-modeoperation are evaluated for the
fundamental mode of several wedge-shape dielectric waveguidés camitducting
boundaries. A typical value &.25is chosen for thalielectric constanh of the core
material(g,1), and thecladding is assumed be air withe,= 1. To male the resultdess

parameter specific, the following normalized quantities are defined:

Normalized frequency: ako = at(HeEo) M (5.17)
Normalized propagation constant:  WBHK.>-£.2)/(£1-€12) (5.18)
Normalized conducto loss: T 0= (adp/R)ac (5.19)
Normalized dielectrcc loss “ag = (Llog)ag (5.20)

The normalizedoropagation constams calculatedby solving the characteristic equation
(5.5) using numerical techniques. Figure 5.2 illustratariatiors of normalized
propagation constant versunormalized frequenc for the fundamental modes of
waveguides with wedge argh, = 11, 21/3, andr/n; n= 2. For the firstwo values ofp,

the fundamental mode is the first HE type mode, whereals,fot/n; n> 2, Tk, is the
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Figure 5.2 Normalized propagation constant,b, versus normalized frequency ak,,

for the fundamental modes of wedge-shape dielectric waveguide Wwib, = 1, 2173,
and 1/n; n = 2, and with g4 = 2.25, anl €, = 1. The fundamental modes fo these

values d ¢, are HE;;, HE32,,, and TEy,, respectively.
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Table 5.1 Single-Mode Frequency Range For Different Wedge Angles.

Wedge Angle Fundamental Single-Mode
(9o) Mode Frequency Range
ako= a6YPoto)Y

L1 HE; 0.626< ak, < 2.151

213 HEs12,1 0.914< ak, < 2.151

2 TEo: 2.151<ak, < 2.501

W3 TEo1 2.151< ak, < 3.832

4 TEo: 2.151< ak, < 4.937

fundamentamode. Only the HE mode of waveguide witth, = 1Tt has a theoreticaero

cutoff frequencybut asis evident from Figures.2 this modeexhibits a practidacutoff

value of ak, = 0.6261.

To determinethe frequency rangéor single-modeoperation, the cutoffrequency of the
second modés needed. Fowaveguides withp, = Tt and 273, the second mode TEy;

with a cutoff normalized frequency ak,. = 2.151 while for waveguides witlp, = 1U/n; n

= 2, 3, and4, the second modes are HBEHE3;, andTE,, with cutoff frequencies foako.
= 2.501, 3.832, and 4.93iespectively. Tablé.1 summarizs the single-mode frequency
range for the abovealues ofwedge angle. Theaximum possible frequency range for
single-moa@ operatia that can be obtained for a wedge-shape waveguglanited to the
cutoffs of TEy; andTEy, modeswhich is2.151 < ak, < 4.937. This is achieved wheno
other modeslying betweenTEy; andTEy;, modes, can be excited. Thus, compdoed

hollow circular waveguide fowhich the single-mode frequency range 1.841 < ak, <

2.151 [116], wedge-shape waveguides can be operated at higher frequenciehavemay
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larger dimensionsFor frequencies larger thatD0 GHz, the diameter oftellow circular
waveguide becomes excessivstgall The use of wedge-shape waveguitey relax this

limitation.

Figures 5.3, 5.4, and 5.5 show variatiof normalizedattenuatio coefficiens a. ard agq
versus normalized frequentor the fundamental modes of waveguides withdgeangle
$o, =T 2173 andr/n, n = 2. It is noted that the attenuati@urves in thesefigures exhibit
similar behaviors. Near cutbffrequenciedoth conductoand dielectric loscoefficients

rise sharply, reaching a aamum and leveling off above the cutoffs foak, > 5.

Examination ofthe actual conductor attenuatiooefficienta,, revealshat the conductor
loss depends on the wedaegled, in two ways; (i) directlyproportionalto ¢,* through
the powerflow givenby (B.16) and (ii) implicitly through the dependencefadlds on ..
The dielectric loss coefficiery, on the othehand, might be influenceby the wedge
angle onlythrough the dependencefadlds on ¢,. For thespecial casof ¢, = T/n, n an
integer, the dielectric losses of all modesiadependenof the wedge angle, while their
conductor losses arsimply inverselyproportionalto ¢,. Thisis becausdor this special
case theazimuthal numbewn is an integer and moddields, when they exist, are
independent of the wedgangle For TEy modes, thisproperty is maintained for
waveguides with arbitrary wedge angles. Accordinglg, dij curvein Figure 5.4 can
also be usedo evaluate thelielectric loss ofTEy; modes whe ¢, = 11, 2103, or ary

arbitrary value.

113



140 0.016
oy
120 1 L0.014
EE
o L0.017
-0.0 1
80
; L0.008
60 -
-0.006
_q_:l, o
L0.004
e L0.002
I:I J I i T T T {]
] 5 10 15 20 25 30

Figure 5.3 Variations of normalized attenuation coefficients of conductar a., and

dielectric, ag4, versus normalized frequency,ak,, for the HE;; mode in a wedge-

shape dielectric waveguide wit ¢, =11, and €, = 2.25, anl g, = 1.
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Figure 5.4 Variations of normalized attenuation coefficients of conductar a., and
dielectric, ag4, versus normalized frequency,ak,, for the HE3, 1 mode in a wedge-

shape dielectric waveguide wit ¢, = 2173, ard €, = 2.25, anl g, = 1.
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Figure 5.5 Variations of normalized attenuation coefficients of conductar a., and

dielectric, ag, versus normalized frequencyak,, for the TE;; mode in a wedge-shape

dielectric waveguide wih ¢, = 1Un; n an integer, ard €, = 2.25, am €, = 1.
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