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Abstract

The need to publish and disseminate data continues to grow. Administrators of large-scale

educational assessment should provide examinee microdata in addition to publishing assess-

ment reports. Disclosure avoidance methods are applied to the data to protect examinee

privacy before doing so, while attempting to preserve as many item statistical properties as

possible. When important properties like differential item functioning are lost due to these

disclosure avoidance methods, the microdata can give off misleading messages of effective-

ness in measuring the test construct. In this research study, I investigated the preservation

of differential item functioning in a large-scale assessment after disclosure avoidance meth-

ods have been applied to the data. After applying data swapping to protect the data, I

attempted to empirically model and explain the likelihood of preserving various levels of dif-

ferential item functioning as a function of several factors including the data swapping rate,

the reference-to-focal group ratio, the type of item scoring, and the level of DIF prior to data

swapping.
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Chapter 1

Introduction

1.1 Significance of Research Study

To address the significance of this research study, it is important to acknowledge that the idea

was developed from a combination of topics applied during the apprenticeship component of

the doctoral program and research conducted through the Center for Disclosure Avoidance

Research at the United States Census Bureau (USCB).

Several reasons explain why this research study is important and significant. First, there

is a need for data privacy. The advancement of technology has increased the capability

to disseminate data and, unfortunately, the potential for its users to abuse the data by

identifying individuals whose information was collected. Whether the data were disseminated

through microdata or tabular statistics, a user could link his or her own set of information

1
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or some level of prior knowledge of the population to it in order to identify individuals

with unique characteristics. The purpose of data privacy is to preserve the “rights of an

individual” by keeping his or her “information about him or herself from others” (Assembly

of Behavioral and Social Sciences, 1979). In the context of educational assessment data,

examinees of a particular race, gender, or disability, or examinees needing some sort of

testing accommodation can be targets of data intrusion when these groups are small in size.

Disclosure avoidance techniques are essential to protect the privacy of these individuals.

Second, there is need to preserve statistical properties in disseminated data. When it

comes to data produced from educational assessments, that need still exists. Administrators

of large assessments attempt to report findings of students’ performances, item analysis,

and, if possible, publish microdata containing records of individual responses. In regards

to publishing data, administrators too wish to preserve some or all of the item analysis

properties while preserving students’ privacy. Prior to administration, assessment items are

constantly tested for forms of bias like differential item functioning (DIF). DIF, in a short

explanation, is a variety of statistical tools used to identify items that exhibit a significant

difference in its performance when stratified by a characteristic of the examinees. A more

formal definition of DIF is provided in the next chapter. When there is a significant difference

in an item’s performance by a factor not a part of the test construct, the need to allow

accommodations is pivotal to provide fairness to subsets of examinees that need it (Camilli,

2006). Despite trial testing and past analysis that suggest otherwise, an item can show signs

of DIF in any year that it is used. With that said, it is important to address that assessment
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administrators should preserve the presence of DIF through data dissemination.

Finally, there is a need to investigate how upholding data privacy affects the ability to

preserve statistical properties. This research study looks at one combination by investigating

how DIF detection is affected when disclosure avoidance techniques are applied to education

data. Currently, little to no research exists that explains the how these protection methods

impact statistical measures of item bias. In government statistical journals, there are publi-

cations that investigated ways to preserve various statistical properties. For example, Nayak

et al. (2011) extended the idea by Massell and Funk (2007) of their use of multiplicative

noise masking to show that perturbed cell totals (that is, marginal frequencies altered to

preserve privacy) are unbiased estimates of the original totals since they are symmetrically

distributed. They found that moments and correlations from “noise-perturbed” data can

“unbiasedly recover” the same moments and correlations found in the original data (Nayak

et al., 2011). In education measurement journals, popularly published articles explored how

various student accommodations or demographics affect item performance. For example,

Bolt and Ysseldyke (2006) used DIF analysis to explore how a read-aloud accommodation

affects item performance in mathematical versus a language arts assessments to detect per-

formance differences due to accommodations. They identified DIF items in both types of

assessments, and that the accommodation “did not allow for perfectly comparable measure-

ment on either assessment” for which they defined as “measurement incomparability” (Bolt

and Ysseldyke, 2006, p. 348). It is important to note that identifying the effect of testing

accommodations is not the only type of DIF that one could test for, and that gender and
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ethnicity DIF are more popularly tested factors. Nevertheless, the research in this disserta-

tion will benefit the topic of DIF by uniquely addressing how methods to protect examinee

privacy before disseminating the data can impact DIF.

1.2 Research Study Questions

The objective of this paper was to study the likelihood of preserving uniform DIF in an

item after using data swapping as a disclosure avoidance technique to protect the data. In

investigating this objective, three specific research questions were answered.

1. What is the rate at which uniform DIF is preserved in dichotomous and polytomous

items after applying data swapping protection to the data?

2. Is there an association between the likelihood of preserving uniform DIF, the data

swapping rate, the item scoring, the reference-to-focal group ratio, and the severity of

the DIF originally detected?

3. Can the association between the likelihood of preserving uniform DIF, the data swap-

ping rate, the item scoring, the reference-to-focal group ratio, and the severity of the

DIF originally detected be explained using a generalized linear model?

The first question will be addressed using several sets of two-way contingency tables that

analyze the behavior of item DIF before and after data swapping, with the sets of contingency

tables being distinct by item scoring. The second research question will apply the frequencies
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from these tables to tests of association and measures of correlation. The reader should

understand that the results from these methodologies will reflect the relationship between

DIF found before versus after data swapping since the data swapping rate, item scoring,

and reference-to-focal group ratio are fixed factors. Generalized linear models, namely the

cumulative logit model, will be used to address the third question.



Chapter 2

Literature Review

2.1 Differential Item Functioning

Creating assessments that do not bias against subgroups of examinees is the key (American

Educational Research Association, 1999), and so DIF analyses are statistical procedures used

to measure such “item bias” in “assessment instruments” (Anderson and DeMars, 2002).

When examinees from different subgroups of a population have a different probability of

answering an item correctly “after being matched on the ability of interest”, that item

is said to be affected by DIF (Clauser and Mazor, 1998). Items that are cited as being

affected by DIF are reviewed by test developers and testing experts to determine what

revisions are needed for that item (Camilli, 2006). This is so that all examinees with the

same ability level, regardless of age, gender, ethnicity, learning or physical disability, or

6
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testing accommodation have an equal likelihood of earning the same score on every item.

The purpose of assessments is to measure “construct-level differences” only without any

additional bias due to the demographics of the examinees (Kamata and Vaughn, 2004). To

apply DIF methods, the sample is first divided into a reference group and a focal group

stratified by matching ability level groups. Customarily, the stratification is based on, but

not limited to, the total test score used. The reference group refers to those examinees

with no special accommodation, condition, or characteristic in which no bias is assumed

to be against or for them. The focal group, however, contains those examinees with such

special situations where their responses are compared to examinees from the reference group.

When a significant difference in the likelihood of performance for an item exists between the

reference and focal groups for at least one stratum, DIF is said to be present in the item.

This DIF is dependent on the assumption that the matching criterion used is a true measure

of examinee ability. If this fails, Clauser and Mazor (1998) define the detected impact as

“item impact” rather than DIF.

The DIF of an item can be explained in one of two ways. One way involves a difference

in performance that is independent of ability level. More specifically, differences in perfor-

mances exist at a particular ability level but there exists a commonality in the performance

across all ability levels. This phenomenon is described as uniform DIF (Holland and Thayer,

1988; Camilli, 2006), and there are several DIF methods that can be used to detect this.

These are described later in Chapter 2.3. Alternatively, DIF detection can be explained as

a function of item performance and examinee ability levels. Not only are the odds ratios
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distinct at different ability levels for an item, but there exists an increasing or decreasing

trend in these odds ratios. This is an example of nonuniform DIF, and the concern is that

the level of DIF is more or less severe at particular ability levels.

The methods used to detect DIF items vary. Kamata and Vaughn (2004) described

how the Mantel-Haenszel Test (Holland and Thayer, 1988) is a popular contingency-table-

based methodology for a dichotomously-scored item to detect a significant difference in the

proportion of examinees who correctly answer that item. These authors also described the

logistic regression method (Swaminathan and Rogers, 1990) which creates item-response

theory models for both groups for an item (Kamata and Vaughn, 2004). These models

represent the likelihoods of answering an item correctly by group and eventually create an

inferential test statistic that measures the difference in their curves to determine if one

group has higher or lower chances of performing well for that item. Another methodology

called the SIBTEST (Shealy and Stout, 1993) compares the weighted difference in an item’s

performance between the focal and reference groups and divides this difference by the item’s

overall standard error. A slight advantage of this procedure is said to help identify and remove

DIF items to produce a subset of remaining test items that are free of DIF. Regardless of

which DIF methodology is used, one should explore his or her analyses with caution since

DIF analysis is sample-size based. Groups with large sample size ratios pose a high risk

for Type I error (Meyer et al., 2004; Wang and Su, 2004). This is primarily because the

standard errors for the responses are significantly different.

The popularity of DIF has led to numerous publications that analyzed various types of
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DIF over several large-scales assessments. Cohen et al. (2005) detected 22 of 29 DIF items

that biased against ninth grade students with learning disabilities on the 2003 reading version

of the Florida Comprehensive Assessment Test using the likelihood ratio test. Elbaum (2007)

also compared overall test scores and item analysis for students with learning disabilities ver-

sus those without on the Stanford Achievement Test. Additionally, Elbaum (2007) examined

how the read-aloud accommodation improved scores when offered to learning-disability and

non-learning-disability students. The study identified several DIF items favoring those using

the read-aloud accommodation which resulted in “improved performance scores” regardless

of possessing a learning disability (Elbaum, 2007).

The usage of DIF methodologies has also led researchers to investigate how well they

perform under special conditions. For example, (Aguerri et al., 2009) studied how one

methodology can “erroneously” identify items for DIF when its assessment contains a small

number of items. More specifically, the authors discovered that test analysts should be

cautioned of creating short assessments containing items with high levels of discrimination

and difficulty. A simulation study by Woods (2008) showed how non-normal distributions

in examinee ability levels can affect the Type I error rate in one DIF methodology. (Meyer

et al., 2004) examined how one DIF methodology, which is commonly used to compare large

reference and focal group sizes, can still be used on polytomous items in which the focal

group contains as little as seventy-six examinees.

Several literature reviews have become popular tools to understand the dynamics of DIF.

Zumbo’s description of the “generations of DIF” (2007) explains how DIF has evolved since
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its emergence in the late 1980s. He described how the first generation as one that emphasizes

the need and importance in assessment evaluation, the second generation as a period of

popularizing DIF statistical methods involving contingency tables and regression models,

and the third generation as the “praxis of DIF” (Zumbo, 2007) to which the state of DIF is

present in. Penfield and Lam (2000) described the distinction between statistical DIF and

substantial DIF. They described statistical DIF as DIF detected through statistical methods

and substantial DIF as the “non-target constructs” that are the cause of the DIF detection

(Penfield and Lam, 2000). Finally, Williams (1997) warned researchers not to equate item

bias with DIF detection as being one and the same since item bias is investigated as a result

of detecting DIF in an item.

2.2 Testing Accommodations and DIF

A student’s learning process and the process of how a student demonstrates knowledge of

what was learned are interdependent. The No Child Left Behind Act of 2001 (NCLB, 2002)

mandated test developers to redesign the conditions of their testing environments and assess-

ments in an effort to “measure student knowledge and skills in a content area” independent

of a student’s subgrouping (Cox et al., 2006). Doing so requires test administrators to pro-

vide various testing accommodations to its examinees. By definition, an accommodation is

a “change in the testing environment, procedures, or presentation that does not alter what

the test measures or the comparability of test scores” (Kim et al., 2009). In all, providing
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testing accommodations for students that need it brings “balance to the testing process”

and “improves the accessibility of the test items” (Finch et al., 2009).

Testing accommodations vary, and they can range from reading test items to a student to

providing extra testing time. Nevertheless, testing accommodations are not meant to pro-

vide students with “an advantage”, but rather to give individuals with learning or physical

disabilities assistance so that their scores are comparable to those that do not require such

assistance (Cohen et al., 2005). Some testing accommodations are required to meet federal

standards such as the No Child Left Behind Act of 2001 (NCLB, 2002) and the Individuals

With Disabilities Education Improvement Act of 2004 that “challenge our education system”

(Salend, 2008). Others are not accommodations required by laws or act, but rather accom-

modations for students to perform at their best. Examples include creating an exam in a

different language for students born with English as their second language, allowing students

to voice respond to questions, or students needing assistance in writing their responses. But

regardless of the testing accommodation, these adjustments allow for students with a testing

disability to “meaningfully participate and demonstrate their skills and knowledge on tests”

(Ketterlin-Geller et al., 2007).

There are several examples of studies that have investigated various forms of accommo-

dation DIF. Finch et al. (2009) applied uniform and non-uniform DIF analyses to identify

several items that distinguished significant item performance between accommodated and

non-accommodated students with disabilities from grades three through eight. Kettler et

al. (2005) identified performance differences between students requiring versus not requiring
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testing accommodations due to disability. Also, Bolt and Ysseldyke (2006) examined how

the read-aloud accommodation identified several item performance differences. These types

of applied studies had three similar conclusions. First, they showed that item performance

differences due to accommodations are limited to particular grade levels and, thus, DIF

analysis can be applied to assessments at any grade level. Second, they concluded that item

performance differences due to accommodations can span over mathematics and reading as-

sessments. Finally, these studies identified items that favored students that did not use the

accommodation.

2.3 Statistical Methods to Test DIF

Several publications outline various methods that can detect DIF. Polytomously-scored items

require different DIF statistical tests. For example, logistic regression is a popular method-

ology for identifying item-performance bias. Proposed by Swaminathan and Rogers (1990),

this nonparametric technique detects uniform and nonuniform DIF. More recently, a stan-

dardized item bias test, or SIBTEST, that creates a statistic that is “based on the ratio of

weighted difference in proportion correct between reference and focal groups to its standard

errors” (Shealy and Stout, 1993; Clauser and Mazor, 1998). This procedure is said to be

just as robust as the logistic regression method even with relatively small samples sizes. For

more details on how these methods work, we refer to Clauser and Mazor (1998). For this

study, attention is given to the Mantel-Haenszel Test for dichotomously-scored items and
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the Mantel Chi-Squared Test for polytomously-scored items since they are commonly used

for these purposes (Clauser and Mazor, 1998). These methods are discussed below.

2.3.1 Statistical Methods for Dichotomously-Scored Items

An item is said to be dichotomously-scored when there are only two possible scores assigned

to every examinee’s response. Commonly, the two scores are zero and one where zero repre-

sents an incorrect response and one represents a correct response. With this scoring form,

the average of the scores for a dichotomous item is equivalent to the proportion of examinees

that gave a correct response. When separating the examinees into reference and focal groups,

one can calculate and compare the two averages as well as perform inferential methods that

determine whether the two averages show significance to conclude whether the type of group

that an examinee is in affects the likelihood of answering the dichotomous item correctly.

There are several inferential methods that can be used to detect DIF. The Mantel-Haenszel

Test is a nonparametric, inferential method proposed by Holland and Thayer (1988), to

analyze dichotomously-scored items for DIF. For large sample sizes and contingency table

cell counts, this test is “highly efficient for its statistical power” (Clauser and Mazor, 1998)

despite being sample-size dependent. This procedure is popularly used to test for uniform

DIF, but it is important to note that this is not the only procedure used for that purpose.

Table 2.1 represents a two-way contingency table summarizing the dichotomous scoring

of an item between the reference and focal groups with ability levels in the kth stratum.
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Table 2.1: Contingency Table of Symbolic Notation for a Dichotomously-Scored Item

Group 1 = Correct 0 = Incorrect Total
Reference n11k (N11k) n12k (N12k) n1+k

Focal n21k (N21k) n22k (N22k) n2+k

Total n+1k n+2k n++k

Thus, n11k, n12k, n21k, and n22k represent the frequencies and their expected values are

represented in the parentheses respectively. Under the null hypothesis, examinees should

have the same likelihood and odds of answering an item correctly regardless of the group

which he or she is from and the stratified matching criterion. Evidence suggesting otherwise

will become evident as the value of n11k deviates further away from its expected count N11k.

The observed test statistic formula takes the form

Q =

(∣∣∣∣∣ K∑
j=1

(n11j −N11j)

∣∣∣∣∣− 1
2

)2

K∑
j=1

V ar(n11j)

(2.1)

where

E(n11j) = N11j =
n1+jn+1j

n++j

,

and

V ar(n11j) =
n1+jn2+jn+1jn+2j

n++j(n++j − 1)
.

The distribution of this test statistic approximately follows a Chi-Squared distribution

with one degree of freedom. An item with an observed test statistic value above 3.841
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provides significant evidence at the five percent level of significance of DIF (5.024 is the

critical test statistic at the 2.5% level of significance and 6.635 is the critical test statistic

value at the 1% level of significance).

A measure of effect size for the Mantel-Haenszel Test is the odds ratio (Agresti, 2002;

Camilli, 2006). Using the notation in Table 2.1, the odds ratio is calculated as the ratio of

cross products. That is,

OR =

∑
k n11kn22k/n++k∑
k n12kn21k/n++k

. (2.2)

The construction of Equation (2.2) describes the magnitude of DIF towards the reference

group compared to the focal group where the value of one represents equivalent performance

on an item for the reference and focal groups. However, an odds ratio higher than one is

evidence of a higher item performance for the reference group and the result of DIF favoring

that group. An odds ratio less than one favors the focal group. This measure is typically

converted into a log-odds statistic used for categorizing DIF. This is explained at the end of

this subsection.

There are several conditions in which the Mantel-Haenszel Test would be the least useful

in detecting item DIF. Although simple in form and popular in application (Clauser and

Mazor, 1998), the test statistic formula for the Mantel-Haenszel Test is constructed to detect

differences in group item performances and not to detect trends in effect sizes within an

item. Hambleton and Rogers (1989) found that using this test for detecting nonuniform DIF
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results in a significant loss of statistical power. Other studies measuring the efficacy of the

Mantel-Haenszel Test have shown that behaviors such as small sample sizes and unusual

distributions in ability levels between groups can result in an increase in its Type I Error

(Meyer et al., 2004; Fidalgo et al., 2004). This has led to alternative measures to detect DIF

such as the logistic regression procedure (Swaminathan and Rogers, 1990), the Likelihood

Ratio Test (Thissen et al., 1988), and the Breslow-Day Test for non-uniform DIF (Camilli

and Shepard, 1994; Breslow and Day, 1980).

Another popular test to detect item DIF is the Breslow-Day Test (Penfield, 2003). Similar

to Mantel-Haenszel Test, this test statistic is sample size dependent and is of the same form

as Equation 2.1. Contrary to the Mantel-Haenszel Test, which detects uniform DIF, the

Breslow-Day Test detects nonuniform DIF. Nonuniform DIF can be alternatively described

in reference to item response theory. Specifically, uniform DIF items are said to differ

only by item difficulty between the two tested groups whereas nonuniform DIF implies that

performance is now a function of an item’s difficulty level, ability to guess, or an item’s

discrimination level.

The Mantel-Haenszel test statistic describes the magnitude of DIF, but it is difficult to

interpret. Thus, the Education Testing Service (ETS) has created an alternative method for

classifying this magnitude into ‘low’, ‘medium’, and ‘high’ levels of DIF using the estimated

odds ratio values. Recall that an odds ratio compares the probabilities between the reference

and focal students for an item. An item’s odds ratio value that is greater than one suggests

that the subjects in the reference group have a higher chance of performing well on that
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item, odds ratio values less than one suggest that subjects in the focal group perform better

on that item, and odds ratio values approximately equal to one say that both groups of

students perform equally well on that item. The ETS scale calculates ∆MHj
, which is a

natural-log transformation of the odds ratio multiplied by a scalar factor of -2.35 (Camilli,

2006). Clauser and Mazor (1998) stated a description of ETS’s item classification method:

“Items classified in the first level, A, have a ∆MHj
with an absolute value of less

than 1.0 and/or have a value that is not significantly different from zero (p > .05).

Items in the third level,C, have a ∆MHj
with absolute value greater than 1.5 and

are significantly greater than 1.0 (i.e. 1.0 is outside the confidence interval,

around the estimated value). Items in the second level, B, are those that do not

meet either of the other criteria. Items classified as A are considered to display

little to no DIF and are considered appropriate for use in test construction.

Items classified as B are used only if no A item is available to fill the content

requirement of the test. Items classified as C are to be used only if the content

experts consider them essential to meet the test specifications.” (p.39)

2.3.2 Statistical Methods for Polytomously-Scored Items

An item that is polytomously scored allows an examinee to receive one of several possible

scores rather than just two possible scores for his or her response. In the popular case,

allowing several possible scores to be assigned for a response allows an examinee to receive
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Table 2.2: Contingency Table for a Polytomously-Scored Item at the kth Stratification Level

Group 0 1 · · · J-1 J Total
Reference n11k n12k · · · n1(J−1)k n1Jk n1+k

Focal n21k n22k · · · n2(J−1)k n2Jk n2+k

Total n+1k n+2k · · · n+(J−1)k n+Jk n++k

no (0 points), partial (1,2,· · · ,J − 1 points), or full credit (J points) for an item. With

polytomously-scored items, the average no longer represents the percentage of examinees

receiving full credit for an item. Rather, it represents the average score per examinee received

for that item. Nevertheless, with two groups in question, one can compare these averages to

determine whether DIF exists and its severity.

Table 2.2 provides an extension to the contingency table from Table 1 where polytomous

scoring is allowed for an item at the kth stratification level. Without loss of generality,

consider an item where the test administrator assigns one of five possible scores for an

examinee response. In this case, scores of one, two, or three points represent partial credit,

zero point represents no credit, and four points represent full credit. Here, n2jk represents

the number of examinees in the focal group receiving j credit points in the kth stratum

whereas n1jk represents that number of examinees in the reference group.

The Mantel Chi-Squared test statistic is a popular measure to detect the extent of DIF in

polytomous items. This test statistic uses the total number of points accumulated from the

examinees from the focal group across all stratification levels as its point estimate (Mantel,

1963). This point estimate is compared to the expected number of points that the examinees
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should have if the distributions of scores are equivalent for the two groups. Extremely large

or small total scores from what are expected is evidence to conclude that examinees in the

focal group tend to have a higher or lower chance of performing as well as the examinees in

the reference group. The Mantel Chi-Squared test statistic is calculated as

QM =

(
T∑
i=0

Fi −
T∑
i=0

E(Fi)

)2

T∑
i=0

V ar(Fi)

(2.3)

where T represents the number of stratification levels, Fi is the total of the scores earned by

examinees of the focal group, defined as

Fi =
J∑
j=0

xjn2jk,

xt is the matching criterion score, E(Fi) represents the mean number of points under the

null hypothesis of no bias detected defined as

E(Fi) =
n2+k

n++k

J∑
j=0

xjn+jk,

and V ar(Fi) represents the variance of Fi defined as

V ar(Fi) =
n1+kn2+k

n2
++k(n++k − 1)

[(
n++k

J∑
j=1

x2jn+jk

)
−
(
n++k

J∑
j=1

xjn+jk

)2]

where xj = j. The distribution of QM is approximately Chi-Squared with one degree of
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freedom. Therefore, similar to Equation 2.1, items with observed test statistic values above

3.841 provide significant evidence at the five percent level of significance of test accommo-

dation DIF (5.024 is the critical test statistic at the 2.5% level of significance and 6.635 is

the critical test statistic value at the 1% level of significance).

The Liu-Agresti common odds ratio (LACOR), ψLA, is a popular estimator used to mea-

sure effect size when DIF detection is observed with an item. According to Penfield and

Algina (2003), for J scores, this statistic uses the first J-1 sets of cumulative frequencies

across the matching criterion in calculating an odds ratio. Table 2.3 represents the notation

for these cumulative frequencies. LACOR is calculated as

ψ̂LA =

K∑
k=1

J−1∑
j=1

AjkDjk/n++k

K∑
k=1

J−1∑
j=1

BjkCjk/n++k

(2.4)

where Ajk = n∗1jk, Bjk = n1+k − n∗1jk, Cjk = n∗2jk, and Djk = n2+k − n∗2jk. LACOR values

that deviate from the value of one are evidence of possible DIF and measure the magnitude

of the effect. To place the LACOR on a symmetric scale (Penfield and Algina, 2003), one

could observe the Liu-Agresti common ‘log’ odds ratio (LACLOR) by calculating the log of

the inverse of the LACOR. In this case,

α̂LA = ln
(
ψ̂−1LA

)
.

Since ln
(
ψ̂−1LA

)
= 0, when ψ̂LA = 1, test items where the absolute LACLOR deviate from
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Table 2.3: Cumulative Frequency Notation for an Item at the kth Stratification Level

Group 0 1 · · · J-1 J
Reference n∗11k n∗12k · · · n∗1(J−1)k
Focal n∗21k n∗22k · · · n∗2(J−1)k

zero is evidence of test accommodation DIF (Penfield, 2003). However, absolute LACLOR

values greater or less than the value of zero suggest possible item bias against the focal or

reference groups respectively. For the derivation and distribution of the LACOR, see Liu and

Agresti (1996). The Educational Testing Service (ETS) provides a scale that categorizes the

LACLOR of an item into one of three DIF levels. Specifically, they suggested that absolute

LACLOR values within 0.43 from zero show ‘negligible’ DIF, absolute LACLOR values

between 0.43 and 0.64 show ‘moderate’ signs of DIF, and absolute LACLOR values of at

least 0.64 show ‘large’ signs of DIF (Zieky, 1993). Dorans and Schmitt (1993) addressed a

more popular method that is also congruent with the ETS scale in which one could observe

the standardized effective size. The standardized effective size is equal to the difference

between the focal and reference means divided by the standard deviation of the scores for the

two groups combined. Polytomous items with an absolute standardized effective size within

0.17 of zero are said to have negligible DIF and are notated as “AA” items. Otherwise,

polytomous items with an absolute standardized effective size higher than 0.17 but within

0.25 are said to have moderate signs of DIF and are notated as “BB” items, and items past

the “BB” range items are said to have large signs of DIF and are notated as “CC” items.
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2.3.3 Sample Size and DIF

Although the Mantel-Haenszel and Mantel tests are convenient asymptotic procedures to

detect item DIF, its dependence on the sizes of the reference and focal groups is pivotal for

them to effectively detect item DIF. This dependence has led resarchers to study the impact of

group sizes and their ratios on this pheonomenon. Mazor et al. (1992) conducted simulations

to investigate how small in size the reference and focal groups have to be before the Mantel-

Haenszel statistic loses its ability to identify DIF items. These researchers intentionally

created several DIF items of various DIF severity while using equal sample sizes of 2,000,

1,000, 500, 200, and 100 examinees in each group. They found that when these groups possed

equal mean ability levels, only 18% of DIF items were successfully identified by the Mantel-

Haenszel statistic when 100 examinees were used, almost 30% of DIF items were detected

when groups contained 200 examinees each, almost 40% of DIF items were identified for

groups containing 500 examinees, 61% of DIF items were detected with 1,000 examinees,

and 74% of DIF items were detected with 2,000 examinees. Another study by Herrera and

Gómez (2008) investigated how several ratios between the reference and focal group sizes,

and considered the case where the reference sample size was large (1500 examinees) and small

(500 examinees). These researchers found that the Mantel-Haenszel statistic was prone to

producing a 8% false positive DIF- item rate for large group ratios and when the sample

sizes were small rather than large. Finally, a similar study by Narayanan and Swaminathan

(1994) also tested several group ratios as large as 10:1 to model uniform DIF detection rates.

They found that the detection rate increased as the sample size increased.
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The former studies validated the idea that these DIF methods can experience increased

Type I error rates (Mazor et al., 1992; Shepard et al., 1985; Spray, 1989; Roussos and Stout,

1996). As a result, other researchers have suggested alternative methods involving the use

of exact rather than asymptotic distributions to detect item DIF (Bolt, 2002) or outlier DIF

methods that are robust against sample size (Magis and de Boeck, 2012).

2.4 Disclosure Avoidance

Agencies that produce, disseminate, and distribute large sources of data are often, if not

required, held to standards of privacy protection of the individuals measured. For example,

government agencies are held to federal laws like Title 13 and Title 26 which authorize these

agencies to provide a level of protection on the data. Nongovernmental agencies adhere

to institutional review board standards that give them the moral responsibility respect the

rights of the research subjects. In either case, a level of disclosure avoidance is considered.

Disclosure avoidance, also referred to as statistical disclosure control, is the process of

protecting the privacy of respondents while publishing data or summaries of data. One must

take into account the importance of respondent privacy to further understand the ‘why’

of this definition. Disclosure is the action where individuals “recognize or learn something

that they did not know already” about a respondent through released data (Hunderpool et

al., 2012). This is possible when a data proprietor releases any form of information about

the respondents used. In most cases, this is through the release of microdata or statistics
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produced from the data where disclosure can take place. In short, customers of data become

intruders of data when they are able to “associate data record to a target person” with a

high likelihood (Paass, 1988).

Hunderpool et al. (2012) described four ways in which data is reported: tabular data,

dynamic databases, microdata, and statistical analyses. Tabular data, the most simplistic,

involves reporting “static aggregate information” that is readily accessible for users (Hun-

derpool et al., 2012). This method of delivering data has been used for decades by several

large agencies where cross-tabulations are provided on several attributes for users to access.

Dynamic databases allow users to submit a ‘query’ to a database and receive summarized

aggregate statistics. For example, the USCB is creating a Microdata Analysis System that

is “designed to allow users to perform various statistical analyses” including “regression,

cross-tabulation, and generation of correlation coefficients” (Lucero and Zayatz, 2010). This

service is said to provide users with more “accurate information than what is provided from

the microdata files” which are perturbed to protect confidentiality (Lucero and Zayatz, 2010).

Microdata, a recent tool which involves using some or all of the data records captured at the

person level (Ruggles and Ruggles, 1975), is said to “increase the flexibility and availability

of information a user” (Samarati, 2001). This flexibility, consequently, makes it capable for

data users to link several sets of microdata together in an effort to identify individuals and

compromise disclosure avoidance. One way to avoid this is to alter the values for some of

the records or remove variables from the microdata that would pose a disclosure risk. We

will see in the next section one example to alter microdata.
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The need and importance of disclosure avoidance existed since the “dawn of information

technology in the 1960s” (Wacks, 2010, p.111). As the ability to use technology to dis-

seminate data increases, so does the risk for disclosure. The way to prevent disclosure in

data is to apply appropriate disclosure protection techniques. For the past four decades,

several techniques have been introduced and incorporated. Brief descriptions of two popular

techniques are discussed.

Synthetic data (Rubin, 1993) is fictitious data created from bootstrapping to replace

the real data. Although it is considered to be fabricated, synthetic data is useful since it

preserves the statistical behavior from the real data while capturing anonymity. However,

there is some realness to the data since it bootstraps from record values in the real data.

What makes synthetic data just as competitive to other options is its ability to impute

missing observations (Raghunathan et al., 2003). One can also develop synthetic data using

predictive models where a model exists and fits well with the original data. For example,

Zayatz (2007) explained how some of the Census products use synthetic data to “target

records that have potential disclosure risk” by synthesizing the demographic variables “that

are causing the risk”.

Cell suppression is a common method used when providing tabular data. With cell sup-

pression, attribute classes are withheld from publication or concatenated with other classes

(Hunderpool et al., 2012) in an effort to explicitly conceal sensitive information about a

respondent (Doyle et al., 2001). In most cases, classes with small frequencies are often con-

catenated with neighboring classes so that the final displayed frequencies are large enough
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not to identify information for any individual. Because cell suppression does not guarantee

enough protection, several extensions have been made to supplement this method. One of

the most popular tactics involve increasing the value of small frequencies in tabular data,

or adding noise (Kelly et al., 1992). Although this prevents an intruder from separating the

“noise from the signal” (Willenborg and de Waal, 2001), the drawback of this method is that

artificial error has been introduced to the tabular data (Kelly et al., 1992).

Regardless of which type of data disseminated or the disclosure technique used, a disclo-

sure review board reviews and approves the data before it is disseminated. For example, the

United States Census Bureau’s Disclosure Review Board reviews all data that is publicly

released by the agency, and is responsible for making sure that data proprietors providing a

level of disclosure protection to the data where no subset of respondents’ right to privacy is

compromised (Zayatz, 2007). Other agencies, like the National Center for Education Statis-

tics, are responsible for the release of data as well as the procedures used to protect the data

(Institute of Education Sciences, 2013). Both review boards carry one commonality; they

are responsible for data owners to adhere to a code of ethics, laws, or standards to protect

the populations they wish to describe. Specifically, they provide a secondary check at the

potential disclosures that can exist from publishing data.
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2.5 Data Swapping

Data swapping (Dalenius and Reiss, 1982) is one of several techniques used in disclosure

avoidance, and is considered to be a member of the “post randomization” family of disclosure

techniques (Willenborg and de Waal, 2001). It uses permutations in the process of creating

its data; that is, the order of the data is rearranged rather than discarded. The main objective

is to exchange the information of a small percentage of records in the data in an effort to

protect those records with unique responses. The term, and its usage, was first introduced

in 1978 by Dalenius and Reiss, but the probabilistic justification of its use was addressed

the year before. Like the other protection techniques, the development of this technique was

centered over the growing concerns to preserve the values of summary statistics, publish as

much of the values of the original data, and yet “introduce uncertainty about sensitive data

values” to an intruder (Fienberg and McIntyyre, 2004).

Although agencies apply slight variations to data swapping relative to their missions, there

are several commonalities in these variations that should be addressed in order to provide the

reader with a general understanding of how data swapping works. First, a target percentage

of records to swap is determined. This percentage is usually set between one to five percent,

with three percent being the most popularly used (Shlomo et al., 2010; Zayatz, 2007). Second,

a key is created that is determined by the data proprietors. The key is a list of variables

in which records with unique combinations of these variables are flagged as unique records

and are eligible to be swapped during the data swapping process. Although not required,
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the unique records can be individually ranked based on the number of variables that are

uniquely sensitive. Records with higher ranks have a higher chance of being swapped. It

is also important to note that not every flagged record has to be swapped. If the number

of flagged records exceeds the target percentage, a deselection process is applied to remove

flagged records from being swapped. Similarly, records that are not flagged can also be

chosen to pair with records that are flagged. This may, as well, deselect flagged records.

Nevertheless, when all of the selected records have been paired, only the values from the key

are swapped. As a result of these steps, a new set of data is formed that is different from

the original data and can be disseminated for others to use.

Several worldwide government agencies incorporate data swapping as a means to protect

their data. For example, the decennial Census data begins with an unedited data file (CUF)

and cleans the data to create an edited data file (CEF). Several disclosure avoidance tech-

niques are applied to the data, with “targeted” data swapping being one of those techniques

(Shlomo et al., 2010). After identifying unique households that pose a risk of disclosure in

the data while allocating small percent of records to swap, the selected households are paired

with each other and the swapping of geographic information is performed to create a Census

decennial file (CDF) that is used to create the statistical tables made available for public

use (Zayatz, 2007). Before publishing, the Census Bureau conducts evaluations that com-

pare the CEF and CDF files to measure the performance of preserving statistical properties.

Some properties that are expected to be preserved are empirical distributions and standard

errors; but other statistics preserved include medians and means. The Office for National
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Statistics in the United Kingdom also uses data swapping in which they swap between two

and five percent of their census data. In 2001, their swapping results in exchanging the

information of over 327,000 individuals in almost 125,000 households (Shlomo et al., 2010).

The procedures that they use to swap are similar to those of the USCB.

One could view data swapping to be a renewably-efficient data technique (Willenborg

and de Waal, 2001), meaning that it uses all of the values from the original unperturbed

data. This is not to say that data swapping is a pollution-efficient disclosure protection

technique (Willenborg and de Waal, 2001). Like its alternatives, data swapping introduces

data noise that can pose a risk of reduced data utility. Shlomo et al. (2010) suggest to

use a rather small percentage of swaps since a “higher swapping rate protects more unique

cells”, but increase the chances of adding unnecessary noise to the data. They caution that

using a high swapping rate can “overly protect” the pre-swapped data when imputation and

adjusted parameters were used to clean the data.

In summary, making assessment data available to users through microdata is a flexibility

because it satisfies the growing need for data proprietors to share information easily and

quickly (Samarati, 2001). In doing so, it is important to protect the individuals that help

create the data while preserving the properties collected in the data. Preserving potential

item bias, using DIF, is one example. The methodology that will be used in this research

study will contribute to the insight of measuring how often it is preserved when applying a

commonly used disclosure avoidance technique.



Chapter 3

Methods

3.1 Research Study Methodology

It was hypothesized that the likelihood of preserving test-setting accommodation DIF was

conditional on several independent variables such as the percentage of records swapped, the

type of item scoring, the ratio between the reference and focal group sizes, and the magnitude

of the DIF prior to swapping.

1. Item Scoring. The study used dichotomously-scored and polytomously-scored items,

and DIF preservation was tested for both cases.

2. Initial DIF Level. Three levels of DIF (None, B, and C) were considered for the

dichotomously-scored items, and three levels of DIF (None, BB, and CC) were consid-

ered for the polytomously-scored items.

30
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3. Swap Rate. Three swapping rates (5%, 3%, and 1%) were considered, with the 3%

swapping rate representing the baseline privacy protection of the data, 1% represents

underprotection, and 5% represents overprotection. This is concordant with the com-

mon practice of data swapping described in Chapter 2.5.

4. Sample Size Ratio. Four reference-to-focal sample size ratios (10:1, 5:1, 2:1, and 1:1)

were considered, with the 1:1 ratio representing the baseline. These ratios were con-

sidered since focal groups typically carry small sample sizes resulting in large ratios in

comparison to the reference group (discussed in studies described in Chapter 2.2).

The methodology of this study can be summarized into four steps: (1) simulating pre-

swapped data, (2) assessing the DIF magnitude of the DIF pre-swapped data, (3) performing

the data swapping to create the post-swapped, and (4) measuring the magnitude of the DIF in

the post-swapped data. The data that have been captured after completing these steps will

be used to compute likelihoods of preserving various item DIFs after applying data swapping

to protect the data, quantify the association with the several factors that will be used, and

develop a generalized linear model to explain the likelihoods.

3.2 Research Study Simulation

A program using the SAS 9.3 statistical programming language was used to perform several

simulations containing 10,000 iterations. Each iteration involved creating a fictitious dataset

of 50,000 examinees with item responses to twenty dichotomous each worth zero or points
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and twenty polytomous items each worth up to four points. The number of examinees and

the number of test items reflected that of a typical statewide standardized tests. The ability

levels (θ) for each examinee was sampled from a standard normal distribution with mean of

zero and variance of one.

Item responses of zero or one were assigned for the twenty dichotomous items using

the three-parameter model (Harris, 1989). According to this model, the probability of an

examinee receiving full credit for an item given θ is

P
(
Yj = 1|θ

)
= c+

1− c
1 + exp{−1.7aj(θ − bj)}

. (3.1)

The item difficulty (bj) and discrimination (aj) parameters were randomly generated from

the standard normal distribution and the lognormal distribution with mean of 0 and variance

of 0.2, respectively. The guessing parameter (c) for all of the dichotomous items was constant

at 0.2. Each dichotomous item response was determined by comparing the probability of

receiving full credit to a number randomly sampled from a uniform distribution between [0, 1].

If the probability was greater than or equal to the randomly generated uniform number, full

credit was assigned. Otherwise, no credit was assigned.

The generalized partial credit model (Muraki, 1992) was used to generate the item re-

sponses for the polytomously-scored items in which integer scores between zero (no credit)

and four points (full credit) were given. According to the model, the probability of assigning

item response k points given θ is equal to
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P (Yj = k|θ) =
exp

{∑k
i=0 aj(θ − bji)

}
4∑
l=0

exp
{∑l

i=0 aj(θ − bji)
} , k = 0, 1, 2, 3, 4 (3.2)

where j = 1, 2, ..., 19, 20. Similar to the dichotomous case, item discrimination parameters

were randomly generated from a lognormal distribution with mean of 0 and variance of

0.2. To create the item step difficulties for a polytomous item j, four numbers were ran-

domly sampled from the standard normal distribution (zj0, zj1, zj2, zj3) and then arranged

in ascending order (z∗j0, z
∗
j1, z

∗
j2, z

∗
j3) where z∗j0 = bj0, z

∗
j1 = bj1, z

∗
j2 = bj2, z

∗
j3 = bj3, and

bj0 < bj1 < bj2 < bj3. The probabilities from the partial credit model were used as input

arguments into a SAS random number generator called rantbl to select an item response

between zero and four based on these probabilities (Cody, 2010).

One medium- (BB) and one high-level (CC) polytomous DIF item were generated using

the constant pattern described by Wang and Su (2004). Under this pattern, each of the

item step difficulty parameters for the focal group was increased by s > 0 units and used to

calculate the probabilities of the polytomous item responses. Thus, for the ith polytomous

item, the kth item step difficulty parameter is calculated as

b∗ik = bik + sp, k = 0, 1, 2, 3, 4.

For polytomous items, sp = 0.90 was added to each of the difficulty thresholds to produce

the BB-level DIF and sp = 1.20 for the CC-level DIF items. These values were determined
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using simulations, and were fairly in range of the constants used by Wang and Su (2004)

in their simulation study. For those dichotomous items where sd represents the additional

difficulty, sd = 0.127 was added to create the B-level DIF items and sd = 0.175 for the

C-level DIF items. These were created based on simulations that I conducted to maximize

the number of iterations that would contain these types of DIF as intended. B-level DIF was

detected 92.5% of the time when sd = 0.127 was used and C-level DIF was detected 91.6%

of the time when sd = 0.175 was used.

The four DIF items became the treatment items for the analysis. Additionally, one di-

chotomous and one polytomous item of the remaining 36 items acted as the baseline items.

These items used identical parameters for the reference and focal groups and did not contain

statistically significant DIF in them.

A school identification number represented the geography variable in the data. Each

examinee was randomly assigned one of 580 unique possible school identification numbers.

This variable was needed since data swapping involves exchanging examinee records across

schools and not within the same school.

Finally, seven flag variables were randomly generated to identify examinees who were in

most need to be swapped. The seven flag variables represented whether an examinee had a

unique first language, ethnicity, physical disability, gender, learning disability, or remedial

or gifted course schedule. A value of one for a flag variable meant that the examinee was

the only one within his or her school with that particular demographic characteristic or was

one of two examinees with that characteristic. A value of zero was recorded otherwise. It
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is important to note that an examinee could be flagged for none, one, or more than one of

the seven demographics. Table A.1 contains a list of all of the variables generated via the

simulation.

Several statistics were computed before swapping the data on the baseline and treatment

items. The Mantel-Haenszel test statistic, its p-value, and effect size were calculated for

the dichotomous items, and the Mantel test statistic, its p-value, and the LACLOR were

computed for the polytomous items. These measures were discussed in the previous chapter.

Recording these statistics was essential to understanding the status of these items before

implementing the data swapping procedure to protect the data. After data swapping, the

same measured were collected again in order to observe the effect that data swapping had

on these items.

3.3 Data Swapping

Several procedures were used to perform the data swapping on the simulated data. First, a

total risk score (TRS) was calculated on the sum of the flag variable values plus one. That

is,

TRS = fclang + fethnic + fdisabil + fcgender + fclapmath + ftasmath + fgifted + 1.

A higher total risk scores increased an examinee’s chance of being selected for swapping. A

high total risk score for an examinee did not necessarily guarantee that the examinee would

be selected for swapping. The total risk score was then multiplied by a number randomly
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sampled from the uniform distribution to create a selection score that was used to select the

examinees for swapping. The examinees were sorted by selection scores and the swapping

candidates were chosen based on top selection scores and the swapping rate.

Before the swapping took place, each examinee was paired with another examinee that was

also selected for swapping. In doing so, the first requirement was that the paired examinees

had different school identification numbers. Afterwards, the examinees were paired based on

equivalent gender followed by equivalent ethnicity. All remaining examinees were paired by

the TRS. In cases where there was a discrepancy, the selection scores were regenerated for

all examinees and the selected examinees were paired again. The decision to pair on gender

and ethnicity was based on the purpose of minimizing the likelihood of experiencing a swap

failure and the amount of demographic information lost due to the data swapping.

When the data swapping took place, only the school identification number and group

variables were interchanged between the paired examinees. Exchanging all of the information

would not be an example of data swapping, but rather a reordering of the unswapped data.

After swapping the data, the same statistics computed on the baseline and treatment items

were computed again to assess how the magnitude of the DIF changed due to the data

swapping.
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3.4 Details of the Simulation

A total of twenty-four distinct simulations were performed to test the combination of the

three swapping rates (1%, 3%, and 5%) and four reference-to-focal size ratios (10:1, 5:1,

2:1, and 1:1) at the two distinct item scorings. The results from the simulations were

used to populate several contingency tables for the analysis. The 3% swapping rate and

1:1 reference-to-focal size ratio represented the baseline scenario for a couple of reasons.

First, data proprietors often use a three percent swapping rate to protect their data since it

represents just enough protection without introducing to much noise in the data (Duncan

et al., 2001; Doyle et al., 2001; Zayatz, 2007). Therefore, using a 3% swappng rate as

a baseline would allow the reader to understand how larger swapping rates that introduce

more noise than needed or lower swapping rates which introduce less noise than needed affect

DIF preservation likelihoods. Furthermore, larger group ratios mimic real data (Shealy and

Stout, 1993) and baselining the 1:1 ratio allows the reader to gain a better understanding of

how these larger group ratios affect DIF preservation.

3.5 Plan of Analysis

3.5.1 Estimation

Several contingency tables were constructed to estimate the rate at which uniform DIF is

preserved in dichotomous and polytomous items after applying data swapping protection to
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the data. Graphs were also constructed to show emphasis on the likelihoods of preserving

the same level of DIF after data swapping for the combinations of the swapping rates and

reference-to-focal group ratios. Because the likelihoods were relatively close in value, the

likelihoods were mapped using the log of the likelihood’s odds, or logits so that the reader

could get a better visualization. Finally, additonal contingency tables were constructed to

show the mean effect size for DIF levels after data swapping conditional on the level of

DIF before data swapping. The purpose of these tables was to show possible relationships

between the behavior of the mean effect size and the independent variables of the study.

3.5.2 Association

A test of association and a correlation coefficient were used to determine whether asso-

ciation existed and to measure the association between the data swapping rate, item scor-

ing, reference-to-focal group ratio, and the severity of DIF before and after data swapping.

The Cochran-Mantel-Haenszel (CMH) correlation test (Cochran, 1954) using standardized

midranks was considered because of the ordinal nature of the variables. This test is similar

to that of the Cochran-Armitage Test of Trend (Armitage, 1955) and carries a test statistic

calculated as

QCS =
(n− 1)[

∑3
i=1

∑4
j=1(ci − µc)(aj − µa)nij)]

2

[
∑3

i=1(ci − µc)2ni+][
∑4

j=1(ai − µa)2n+j]
,

where c = (c1, c2, c3) represents the standardized rank scores for the pre-swap DIF levels
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and a = (a1, a2, a3, a4) are the standardized midrank scores for the post-swapped DIF levels.

For information on how the standardized midranks are calculated, see Stokes et al. (2003).

Standardized midrank scoring was considered over regular integer scoring since its does not

require the user to create any score system for qualitative responses. Note that QCS follows

a Chi-Squared distribution with one degree of freedom, and extremely large values for QCS

are evidence to conclude that such a correlation exists.

Somer’s D (Somers, 1962) was used to compliment the Mantel-Haenszel Test by quanti-

fying the association between pre- and post-swapped DIF levels. This statistic is calculated

as

DC|R =
P −Q
wr

,

where wr = n2 −
3∑
i=1

n2
i+, P represents the number of pairs in which the pre-swapped DIF

level was higher than the post-swapped DIF level, and Q represents the number of pairs in

which the pre-swapped DIF level was lower than the post-swapped DIF level. Somers’ D is

a measure of asymmetric behavior, and so this coefficient ignores ties on the independent

variable (Goodman and Kruskal, 1954). Several other nonparametric correlation coefficients

like Kendall’s Tau and the Gamma coefficient could have been used to measure the asso-

ciation. Somer’s D was preferred over them since it is the least conservative, takes into

consideration the ordinal nature of the variables, and it adjusts for ties between the row and

column variables.

Confidence intervals, with 95% confidence levels, were then applied to account for the
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sampling error associated with this statistic. The confidence intervals were computed as

CI95% = rD ± 1.96× ASErD ,

where rD represents the value of Somer’s D and the ASErD is the asymptotic standard error

of rD. Confidence intervals not containing the value of zero show significant evidence of an

association between the aforementioned variables.

3.5.3 Modeling

The cumulative logit model is one of several generalized linear models (GLM) that can be

used to predict the likelihood of an item containing a level of DIF as a function of the pre-

swap DIF level, the swapping rate, and the reference-to-focal group ratio. This model was

preferred over the loglinear GLM for two reasons. First, the loglinear GLM is commonly

used to predict frequencies rather than likelihoods. Second, the loglinear GLM works best

with frequency tables with equal row totals. When the row totals are different, an offset

parameter is used in the model as an adjustment factor. Interpreting the offset parameter

to the research at hand would be both difficult and irrelevant. The cumulative logit model

in its multivariate form is

logit[P (Y ≤ j)] = αj + β′x,
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where

logit[P (Y ≤ j)] = log

[
P (Y ≤ j)

1− P (Y ≤ j)

]
, j = 1, 2, 3, 4.

The dependent variable represents the level of DIF preserved after data swapping. For

the dichotomous case, Y = 1 represents A1-level DIF preserved after data swapping, Y = 2

represents A2-level DIF, Y = 3 for B-level DIF, and Y = 4 represents C-level DIF. Similarly,

AA1, AA2, BB, and CC would be the analogous levels for the polytomous case respectively.

Because there are two sets of post-swapping DIF levels based on two separate scales, separate

cumulative logit models were made.

Four dichotomous and four polytomous cumulative logit models were fitted to measure

the effects of the explanatory variables on DIF preservation likelihoods. Models 1 through

3 are main effects models in which the DL variable, the DL and SR variables, and the DL,

SR, and RF variables were used respectively. The results from these models are provided

in Tables 4.4 and 4.7. Model 4 is the full model containing all main and interaction effects.

Its results are found in Tables 4.5 and 4.8. Each of these tables contains the regression

model coefficients, the Akaike Information Criterion (AIC), the c-statistic, and the correct

classification rate (CCR). The AIC (Akaike, 1974) was considered as the measure to compare

models and is calculated as

AIC = 2k − 2 ln(L)
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where L represents the value that maximizes the likelihood function for the cumulative logit

model. Models with the lowest AIC are siad to be the best parsimonious model (Sakamoto

et al., 1986). The c-statistic was used to measure model predictive power, and values higher

than 0.7 suggest that the model’s ability to predict is not by mere random chance (Hosmer

and Lameshow, 2000). The CCR is equal to the proportion of all simulations where the

model correctly predicted the level of item DIF after data swapping.



Chapter 4

Results

This research study attempted to estimate the rate at which uniform DIF is preserved in

dichotomous and polytomous items after applying data swapping protection to the data,

determine whether an association exists between the likelihood of preserving uniform DIF,

the data swapping rate (SR), the item scoring (IS), the reference-to-focal group ratio (RF),

and the severity of the DIF originally detected (DL), and determine whether the likelihood

of preserving uniform DIF can be explained using a generalized linear model. The results

were organized by the three research questions.

4.1 DIF Preservation Rate Estimation

Tables B.1 to C.12 describe the outcomes of the simulations before (BDS) and after data

swapping (ADS). The BDS frequencies show how many of the 10,000 iterations successfully

43
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created the intended items, whereas the ADS frequencies show the change in the item DIF

after swapping. It is important to note that the sum of the row frequencies in the ADS cells

always match the frequency to which the intended DIF level and the BDS DIF level were

concordant. Consider the frequencies for B-level DIF found in Table B.1, for example. The

intention was to simulate 10,000 iterations in which one B-Level DIF dichotomous item was

created. However, this only happened in 7,031 of the 10,000 iterations. The frequencies for

the ADS cells for that row sum to 7,031, which was not the frequency in which B-Level DIF

was intended, but rather the frequency where B-Level DIF was actually created.

It is important to note that since A-level DIF is interpreted as “little to no DIF”, the

dichotomous tables in Appendix B contain two A-level DIF columns. The “A2” level repre-

sented those simulations in which the data swapping produced a significant Mantel-Haenszel

statistic to conclude that significant differences in group performances existed between the

reference and focal groups, but the effect size difference was little. The “A1” level represented

those simulations in which the Mantel-Haenszel statistic was not found to be significant and

the effect size was neglgible, hence the “no DIF”. Both columns represent cases of A-level

DIF, but their separation was meant to show the impact that data swapping has on creat-

ing noise such that a dichotomous item containing no-DIF data can contain little DIF after

swapping. Similarly, the “AA1” and “AA2” levels in the polytomous tables show the dis-

tinction between non-significant versus significant Mantel test statistics although the effect

sizes for both cases are small.

The twenty-four tables in Appendices B and C provide results for all combinations of the
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RF and SR for the dichotomous and polytomous items being analyzed. Collectively, Tables

B.1 to B.12 show that the intended levels of DIF were successfully created 92.11% of the

time, whereas Tables C.1 to C.12 show that the intended levels of DIF were successfully

created 90.33% of the time.

Figure 4.1: Comparison of DIF Preservation Rates-Dichotomous

Figure 4.1 provides an illustration of the dichotomous preservation likelihoods for the

combinations of the SR and RF after data swapping. Logits, which are the log of the odds,

were graphed on the vertical axis for the reader to get a better visualization of the likelihoods.

The 3% SR and 1:1 RF combination represents the baseline scenario. For preserving A1-DIF,

two other scenarios were found to yield lower DIF preservation likelihoods than the baseline.



46

One scenario, where the SR was 1% and the RF was 1:1, had a logit of -4.490 (equivalent

to a proportion of 1.11%). The propotion was calculated by dividing the 111 simulations

resulting in a A1-DIF level after data swapping by the 10,000 simulations in which A1-DIF

was created before data swapping. The other scenario involved a 1% SR and a 2:1 RF for

which the logit was -5.912 (proportion equal to 0.27%). The highest three scenarios had

preservation likelihoods that were at least 4.5 logits away from the baseline; namely where

SR was 5% and RF was 10:1 (proportion equal to 69.67%), SR was 3% and RF was 10:1

(proportion equal to 62.58%), and SR was 1% and RF was 10:1 (proportion equal to 55.84%).

A list of the likelihoods for the dichotomous case can be found in Table D.1 of the Appendix.

Preservation rates for B-level DIF were between 0.828 and 4.713 logits, which are much

higher and less variable than the A1-DIF preservation rates. Yet, several scenarios were

found to be lower than baseline scenario. The three lowest, in particular, were where the

SR was 5% and the RF was 10:1 (logit equal to 0.828), SR was 3% and the RF was 10:1

(logit equal to 1.627), and SR was 5% and the RF was 5:1 (logit equal to 1.667). Only two

scenarios were found to have higher B-level preservation rates: SR of 1% and the RF of

1:1 (logit equal to 4.713) and SR was 1% and the RF was 2:1 (logit equal to 4.291). It is

interesting to note that not only were the scenarios that were greatest now were among the

poorest in preserving no-DIF, but also the scenario that was the poorest now was the best

in preserving no-DIF.

C-level preservation rates were between 0.682 and 4.605 logits, which were much higher

than the A1-DIF preservation rates and slightly lower than the B-level preservation rates.
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The baseline scenario had a logit of 3.320, which was equivalent to a preservation rate of

96.51%. Similar to the behavior found with B-level DIF preservation, the SR of 1% and the

RF of 1:1 and SR was 1% and the RF was 2:1 were found to yield the highest preservation

rates. Also, the scenario where the SR was 5% and the RF was 10:1 was still the worst in

preserving C-level DIF after data swapping. Overall, Figure 4.1 show that it is much more

difficult to preserve dichotomous items containing no DIF than items with some level of DIF

before data swapping. One explanation is that data swapping adds noise to the data which

increases the variability in the item scoring. As a result, this further distorts the expectation

that examinees with higher ability levels leads to a higher chance of receiving a correct score

than examinees with lower ability levels.

Figure 4.2 provides an illustration of the polytomous preservation likelihoods after data

swapping, using logits to show a better visualization of the likelihoods. Preservation like-

lihoods were between 2.893 (94.75%) and 4.191 (98.51%) logits at the AA1-DIF, between

-0.299 (42.57%) and 6.213 (99.80%) logits for BB-level DIF, and between -0.918 (28.54%)

and 8.517 (99.98%) logits for CC-level DIF. A list of the likelihoods can be found in Table

D.3 of the Appendix. Compared to Figure 4.1, the behavior of the preservation likelihoods

for the polytomous case is completely different. The preservation rates for AA1-DIF are now

higher and contain less variability. The preservation likelihoods for the BB- and CC-level

DIF are more spread apart than they were for the dichotomous case. Additionally, these

likelihoods are at several ranges of values where clusters of scenarios can be identified.

For preserving AA1 DIF, the baseline had a logit of 3.112 (which is comparable to a



48

Figure 4.2: Comparison of DIF Preservation Rates-Polytomous

likelihood of 95.74%. The scenarios in which a 5% SR and a 2:1 RF were used (logit equal

to 2.893) plus where a 5% SR and a 1:1 RF were used (logit equal to 3.046) were the only

two scenarios that produced smaller preservation likelihoods. The scenarios with the largest

preservation likelihoods both involved using a swapping rate of 1%, but different level for

RF (10:1 had a logit of 4.191 and 5:1 had a logit of 3.960).

Although the variability in the preservation likelihoods for CC-level DIF was larger than

the BB-level, their conclusions regarding which scenarios were best and worst were similar.

Figure 4.2 clearly identified that using a 5% SR on data containing a 10:1 ratio yields

the lowest DIF preservation rates for a polytomous item (BB-level logit of -0.299 and CC-
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level logit of -0.918). In fact, this was the only scenario that produced BB- and CC-level

preservation rates below 50%. The scenario in which SR was 1% and RF of 2:1 tied with

with the scenario in which 1% and RF of 1:1 for the largest BB-level DIF preservation rate

(logit equal to 6.213). For CC-level DIF preservation, the scenario in which 1% and RF of

1:1 was more effective than 1%-2:1 scenario (logit of 8.517 versus 7.824).

Table 4.1: DIF Preservation Decreases between Swapping Rates

Dichotomous Polytomous
DIF Level R:F Ratio 1% to 3% 1% to 5% 1% to 3% 1% to 5%

1:1 1.76% 4.24% 0.65% 0.30%
B (dichotomous)/ 2:1 2.02% 4.80% 0.97% 0.29%
BB (polytomous) 5:1 5.04% 7.75% 5.03% 3.08%

10:1 9.48% 13.98% 18.42% 19.63%
1:1 2.50% 6.79% 3.39% 2.20%

C (dichotomous)/ 2:1 3.23% 7.56% 5.28% 4.26%
CC (polytomous) 5:1 6.22% 11.80% 17.82% 22.19%

10:1 10.69% 17.49% 35.32% 49.47%

The results from Figures 4.1 and 4.2 suggest to data proprietors to use a data swapping

rate of 1% to produce the highest DIF preservation rates when a dichotomous item contains

B- or C-level DIF. For some data proprietors, the decision of the swapping rate to use is

mandated by law. For such situation, the purpose of Table 4.1 is to show the decrease in

the preservation likelihoods when using a swapping rate other than 1% so that the reader

can consider the risk of using a swapping rate higher than 1%.

The mean effect size was also used as a measure to explain the item DIF transition due

to data swapping. Tables E.1 to E.12, using Equation (2.2), explained the phenomenon for

the dichotomous items. It is important to emphasize that these tables are row-conditional
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tables, meaning that the columns reflect the DIF outcomes after data swapping conditional

on the DIF created before swapping reflected in the rows. For example, the value of 1.56 in

Table E.1 reflect the mean effect size of those iterations in which A2-level DIF was created

after swapping given that B-level DIF was created before data swapping. Tables F.1 to F.12

were created and interpreted in the same manner where Equation (2.4) was used. These

tables suggest that a trend exists between data swapping and effect size, namely effect size

decreases when items transition from A1 and AA1 DIF to higher levels of DIF after data

swapping and effect size increases when items transition from some level of DIF to an even

higher level after data swapping.

Estimates from these tables show that the effect size ranges between 0.74 and 0.86 when

A1-DIF is preserved after data swapping, between 1.69 and 1.73 when B-level DIF is pre-

served, and 2.09 and 2.24 when C-level DIF is preserved. For the polytomous items, data

swapping has little impact on the effect size since the ranges were found to be between 0.98

and 0.99. Effect size ranges for BB-level and CC-level DIF were 1.20 to 1.21 and 1.30 to

1.32 respectively. These ranges contain much less variability and show a less severe impact

on the focal and reference groups than what happens for dichotomous items. Overall, the

ranges for the A1 and AA1 DIF levels suggest that data swapping shifts the effect size into

levels that favor the focal group for dichotomous items more than polytomous items.
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4.2 Tests for Association

Frequencies from the ‘After Data Swapping’ columns of Tables B.1 through C.9 were used to

determine whether an association existed between the preservation likelihoods and the level

of DIF before data swapping at all combinations of the swapping rates and reference-to-focal

group ratios.

Table 4.2: Cochran-Mantel-Haenszel Correlation Test Values

Item Scoring
RF SR Dichotomous Polytomous
1:1 1% 27092.65*** 25786.18***
1:1* 3%* 26704.27*** 25662.43***
1:1 5% 25575.83*** 25008.02***
2:1 1% 26543.01*** 26220.97***
2:1 3% 26063.98*** 26087.75***
2:1 5% 24782.33*** 25109.40***
5:1 1% 23909.75*** 27784.55***
5:1 3% 22828.11*** 26889.00***
5:1 5% 21319.42*** 23753.47***
10:1 1% 20996.31*** 27946.20***
10:1 3% 19898.00*** 25133.86***
10:1 5% 18821.35*** 23381.38***
pv < 5%,**pv < 1%, ***pv < 0.1%

Table 4.2 contains the results of the Mantel-Haenszel Test. Strong associations were present

for all combinations of swapping rate and reference-to-focal group ratios. When aggregating

over all swapping rates and reference-to-focal ratios, strong associations were still present

for the dichotomous (QCS = 278, 104, pv =< .0001) and polytomous (QCS = 298, 478, pv =<

.0001) case.

Somer’s D was used to quantify the association between pre- and post-swapped DIF levels
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in Tables B.1 through C.9. Combining frequencies over all swapping rates and reference-to-

focal ratios, the Somers’ D coefficient and asymptotic standard error for the dichotomous

case were 0.9057 and 0.0005 respectively. This resulted in a 95% confidence interval of

(0.9047,0.9067), showing significant evidence that a correlation exists between initial DIF

level and the level of DIF after data swapping. Similar conclusions resulted for the polyto-

mous case in which the overall Somer’s D coefficient and asymptotic standard error estimates

were 0.9589 and 0.0003, resulting in a 95% confidence interval of (0.9583,0.9595).

Table 4.3: Somer’s D Tests for Association

Swapping R:F Dichotomous Polytomous
Rate Ratio DC|R ASED DC|R ASED
1% 1:1 0.9556 0.0012 0.9999 <0.0001
1% 2:1 0.9502 0.0013 0.9998 <0.0001
1% 5:1 0.9256 0.0016 0.9988 0.0002
1% 10:1 0.8969 0.0020 0.9917 0.0005
3% 1:1 0.9459 0.0014 0.9984 0.0003
3% 2:1 0.9405 0.0014 0.9984 0.0003
3% 5:1 0.9040 0.0018 0.9871 0.0007
3% 10:1 0.8738 0.0022 0.9374 0.0013
5% 1:1 0.9201 0.0016 0.9883 0.0007
5% 2:1 0.9103 0.0017 0.9802 0.0009
5% 5:1 0.8695 0.0020 0.9223 0.0015
5% 10:1 0.8487 0.0023 0.8876 0.0017

Table 4.3 provides the estimates and standard errors for Somers’ D when considering the

swapping rate, reference-to-focal ratio, and item scoring. Correlations for the dichotomous

case were between 0.8487 and 0.9556. These correlations were much smaller in magnitude and

contained more variability than the correlations for the polytomous case. For the polytomous

case, correlations were between 0.8876 and 0.9999. Conditional on item scoring, the highest
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correlations between pre- and post-swapped DIF levels were found where a 1% swapping rate

and a 1:1 ratio was used. The lowest correlations were also located where a 5% SR and a 10:1

RF was used. Nevertheless, all twelve combinations for swapping rate and reference-to-focal

ratio revealed a statistically significant association.

4.3 Generalized Linear Model Fitting

Two cumulative logit models were produced to explain DIF likelihood preservation in di-

chotomous and polytomous items separately. The results follow for each model:

4.3.1 Dichotomous Model Results

Table 4.4 shows the results of the cumulative logit model for dichotomous items. Model

1 is the main effects using the DL as a predictor. Including this variable in the model

reduced the AIC from 851,749.18 to 342,325.35. According to this model, the DL was found

to have a significant negative effect on DIF preservation likelihoods when a dichotomous

item contains B- and C-level DIF before data swapping. A significant positive effect reflects

a statistically significant increase in the logit of preserving DIF levels, while a significant

negative effect reflects a statistically significant decrease in the logit. B-level dichotomous

items have a 0.012 increase on the odds (or multiplicative effect (Agresti, 2002)) of post-

swapped DIF preservation when compared to dichotomous items containing A1-level DIF

before swapping. The multiplicative effect is even smaller for items containing pre-swapped
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Table 4.4: Main Effects Cumulative Logit Models: Dichotomous

Model 1 Model 2 Model 3
Estimates β seβ β seβ β seβ
Intercept (α)
αA1 -1.24*** -1.32*** -2.11***
αA2 1.97*** 1.97*** 1.53***
αB 9.94*** 10.09*** 10.12***

Pre-Swap DIF Level (DL)
DLB -4.45*** 0.01 -4.56*** 0.015 -5.02*** 0.05
DLC -12.17*** 0.05 -12.43*** 0.05 -13.41*** 0.05

Swapping Rate (SR)
SR1 -0.42*** 0.01 -0.43*** 0.01
SR5 0.55*** 0.01 0.59*** 0.01

Reference-Focal Ratio (RF)
RF2 0.08*** 0.01
RF5 0.80*** 0.01
RF10 1.98*** 0.01

AIC 342,325.35 335,234.63 308,697.15
c 0.926 0.940 0.956
CCR 81.58% 81.58% 83.14%
*p < 5%,**p < 1%, ***p < 0.1%

C-level DIF. The c-statistic for Model 1 was 0.926, which represents strong predictive power.

Model 1 was found to predict post-swapped DIF levels correctly 81.58% of the time, with the

best prediction performances occurring when the SR was 1% and the RF was 1:1 (95.10%)

and when the SR was 1% and the RF was 2:1 (94.81%).

Model 2 includes the DL and SR as predictors to model DIF preservation likelihoods. The

inclusion of the SR decreased the AIC from 342,325.35 to 335,234.63. A significant negative

effect was still present with the DL. DIF preservation rates are negatively affected when

dichotomous items are swapped at the 1% SR than at the 3% SR, but are positively affected
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when the 5% SR is used. Dichotomous items containing B-level DIF have a 0.01 multiplica-

tive effect on DIF preservation odds and, similar to Model 1, C-level DIF dichotomous items

have an even smaller multiplicative effect. Swapping at a 1% rate results in a multiplicative

effect between 0.642 and 0.773, but swapping at 5% results in a multiplicative effect between

1.70 and 1.77 with 95% confidence. The c-statistic for Model 1 was found to be 0.940, which

was stronger than the c-statistic from Model 1. However, the predictive power rate and the

combinations for the SR and RF where the model predicted best remained equal to that of

Model 1.

Model 3 experienced a decreased in the AIC compared to Model 2 (335,234.63 versus

308,697.15). Similar effects were found in the DL and the SR after including the RF main

effect. The RF was found to have a positive effect on DIF preservation likelihoods at all levels

when compared to the 1:1 RF. Consistency was found in the positive effects, namely the 10:1

and 2:1 ratio had the largest and smallest positive effect on DIF preservation likelihoods

respectively. The DL multiplicative effect at the B- and C-levels were 0.007 and 0.001

and the multiplicative effects due to the swapping at 1% and 5% were 0.649 and 1.807

respectively. Swapping data containing an RF of 10:1 results in a 7.266 multiplicative effect,

while swapping data containing a 5:1 or 2:1 RF results in a multiplicative effect of 2.235

and 1.081 respectively. Model 3 had a higher c-statistic (0.953) than Models 1 and 2,

and a slightly higher correct classification rate (83.14%). The best prediction performances

occurred at the same locations as those from the previous two models.

Model 4 contains the full-interaction model, containing main and interaction effects to
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explain the behavior of DIF preservation likelihoods. There was a slight decrease in the

AIC compared to Model 3 (from 308,697.15 to 303,153.14). The behaviors of the main

effect estimates for the DL and RF variables in Model 3 were present in Model 4. DIF

preservation likelihoods were not negatively affected statistically when using a 1% SR over

a 5% SR. This therefore suggests that, with all factors constant, underprotecting the data

does not significantly affect DIF preservation likelihoods. Patterns were also found in the

two-way and three-way interaction effects. Significant negative effects were present in the

DL and the SR factors, particularly when dichotomous items contain B- or C-level DIF in

data are swapped at a 1% SR. The DIF preservation likelihoods at these conditions were

found to be significantly lower than dichotomous items containing A1-level DIF and swapped

at 3%. When a 5% SR is used, a significant positive effect in DIF preservation likelihoods

was found. When considering the interaction between the DL and the RF, DIF preservation

likelihoods were negatively affected when B- or C-level dichotomous items are swapped with

data containing a 10:1 RF. It is only positively affected when a dichotomous C-level DIF item

is swapped with data containing 2:1 or 5:1 RFs. Several conditions between the interaction

of the SR and RF variables also affect DIF preservation likelihoods. Negative effects were

present with data that was swapped at 1% and contained 2:1, 5:1, or 10:1 ratios, and the

likelihoods at these combinations were lower than at the baseline of a 3% SR with a 1:1 RF.

Significant positive effects were present when data is swapped at the 5% SR but contains a

RF of 5:1 or 10:1. With the interaction of all three factors, there were four combinations

in which statistically negative effects were present. According to the model, negative effects
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were present in dichotomous B- and C-level items created by 5:1 and 10:1 RFs swapped at a

5% SR. This means that the DIF preservation likelihoods are smaller at these conditions than

at the baseline treatment. A positive effect was found only where a C-level DIF dichotomous

item comes from data with a 10:1 RF and swapped at 1% SR. Model 4 produced a c-statistic

of 0.990 and a correct classification rate of 93.08%, which demonstrates the strong predictive

power amongst the four models.

Table 4.6 contains the predicted probabilities of preserving the various DIF levels after

data swapping as a function of the SR, RF, and DL. The predicted probabilities are row con-

ditional since the cumulative logit model is a conditional model on all of its predictors. The

highest probabilities on each row were bolded for the reader to better see the concordances

and discordances between pre- and post swap DIF levels. For example, 71.38% represents

the highest probability among the four post-swap DIF levels under the condition that the

data has a 1% SR, a 1:1 RF, and the dichotomous item contained A1-level DIF before data

swapping. This represents a discordance since the dichotomous item initially contained A1-

level DIF before data swapping. However, the bolded 97.26% and 99.01% on the second and

third rows represent concordances since they represent the highest likelihoods where the pre-

and post-swapped DIF are the same. Only two combinations for the SR and RF were found

to have complete concordances at all three pre-swapping DIF levels (SR= 3%, RF= 10 : 1

and SR= 5%, RF= 10 : 1). All of the other combinations for the SR and FR produced dis-

cordant results when A1-level DIF was created before data swapping and concordant results

when B- and C-level DIF was created before data swapping. These strong findings suggest
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Table 4.6: Predicted DIF Preservation Likelihoods: Dichotomous

DIF After Swapping
SR RF DIF Before Swapping A1 A2 B C
1% 1:1 A1 9.65% 71.38% 18.97% <0.01%
1% 1:1 B 0.04% 1.72% 97.26% 0.98%
1% 1:1 C <0.01% <0.01% 0.99% 99.01%
1% 2:1 A1 9.14% 70.95% 19.91% <0.01%
1% 2:1 B 0.05% 1.94% 97.14% 0.87%
1% 2:1 C <0.01% <0.01% 1.33% 98.67%
1% 5:1 A1 14.49% 72.65% 12.86% <0.01%
1% 5:1 B 0.07% 2.61% 96.68% 0.64%
1% 5:1 C <0.01% <0.01% 2.41% 97.59%
1% 10:1 A1 45.21% 51.85% 2.94% <0.01%
1% 10:1 B 0.13% 4.72% 94.81% 0.35%
1% 10:1 C <0.01% <0.01% 5.40% 94.60%
3% 1:1 A1 10.17% 71.74% 18.08% <0.01%
3% 1:1 B 0.08% 3.05% 96.32% 0.55%
3% 1:1 C <0.01% <0.01% 3.49% 96.51%
3% 2:1 A1 10.83% 72.10% 17.07% <0.01%
3% 2:1 B 0.09% 3.48% 95.95% 0.48%
3% 2:1 C <0.01% <0.01% 4.56% 95.44%
3% 5:1 A1 19.69% 71.06% 9.26% <0.01%
3% 5:1 B 0.20% 7.14% 92.44% 0.22%
3% 5:1 C <0.01% <0.01% 8.63% 91.37%
3% 10:1 A1 55.77% 42.28% 1.94% <0.01%
3% 10:1 B 0.41% 13.78% 85.70% 0.11%
3% 10:1 C <0.01% <0.01% 16.08% 83.91%
5% 1:1 A1 11.38% 72.32% 16.29% <0.01%
5% 1:1 B 0.19% 6.88% 92.69% 0.23%
5% 1:1 C <0.01% <0.01% 10.27% 89.72%
5% 2:1 A1 12.25% 72.56% 15.18% <0.01%
5% 2:1 B 0.23% 8.07% 91.51% 0.20%
5% 2:1 C <0.01% <0.01% 12.12% 87.88%
5% 5:1 A1 27.01% 66.66% 6.33% <0.01%
5% 5:1 B 0.45% 14.83% 84.62% 0.10%
5% 5:1 C <0.01% <0.01% 20.42% 79.57%
5% 10:1 A1 66.35% 32.40% 1.25% <0.01%
5% 10:1 B 1.01% 28.06% 70.89% 0.04%
5% 10:1 C <0.01% 0.01% 33.58% 66.41%
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that dichotomous items are able to maintain the same level of DIF before and after data

swapping when DIF is contained in the item, and that DIF can be created in an item after

data swapping when DIF is not present beforehand.

4.3.2 Polytomous Model Results

Table 4.7 shows the estimates for main effects cumulative logit models. Model 1 contains

the effect of the DL on DIF preservation in polytomous items. Including this predictor in

the model reduced the AIC from 796,958.61 to 185,996.58. Although this appears to be a

significant drop in the AIC, it was found that polytomous items with BB- or CC-level DIF

do not significantly decrease DIF preservation likelihoods compared to polytomous items

containing AA1-level DIF. One possible explanation is that the distribution in the number

of simulations preserving the same level of DIF versus different DIF before and after data

swapping were similar across Tables C.1 through C.12. The c-statistic for Model 1 was 0.960,

which represents a strong predictive power. Additionally, Model 1 was found to predict post-

swapped DIF levels correctly 91.33% of the time. Unlike the predictive power from Model 1

for the dichotomous case, this model predicted well at several combinations of the SR and

RF. Model 1 had the weakest prediction when the SR was 5% and the RF was 10:1 (54.86%).

Including the SR into the model lowered the AIC from Model 1 (185,996.58 versus

164,733.68). Levels for the DL continued to be not significant, suggesting that the DIF

preservation likelihoods do not depend on the level of DIF before data swapping. A strong
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Table 4.7: Main Effects Cumulative Logit Models: Polytomous

Model 1 Model 2 Model 3
Estimates β seβ β seβ β seβ
Intercept (α)
αAA1 3.47*** 3.74*** 2.92***
αAA2 21.27 21.51 21.77
αBB 43.45 44.52 46.97

Pre-Swap DIF Level (DL)
DLBB -23.42 56.92 -24.19 53.81 -26.45 79.26
DLCC -45.54 86.07 -47.14 84.30 -51.58 126.30

Swapping Rate (SR)
SR1 -1.02*** 0.02 -1.07*** 0.02
SR5 1.45*** 0.02 1.77*** 0.02

Reference-Focal Ratio (RF)
RF2 0.18*** 0.03
RF5 1.61*** 0.03
RF10 3.25*** 0.03

AIC 185,996.58 164,733.68 132,073.15
c 0.960 0.979 0.989
CCR 91.33% 91.33% 93.08%
*p < 5%,**p < 1%, ***p < 0.1%

negative effect on DIF preservation likelihoods was found when data is swapped at an SR of

1% versus 3%, while a strong positive effect was found when data is swapped at an SR of

5% versus 3%. Although Model 2 had a slightly larger c-statistic than Model 1 (0.979 versus

0.960), Model 2 yielded the same correct classification rate as Model 1.

Model 3 used the main effects of the DL, SR, and RF to predict DIF preservation like-

lihoods. The AIC for Model 3 was smaller than the AIC from Model 2 (132,073.15 versus

164,733.68), suggesting that more variability in DIF preservation was explained by includ-

ing the RF into the model. The DL was found to not affect DIF preservation likelihoods,
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which was similar behavior found in the previous models. The SR continued to be a strong

predictor for explaining DIF preservation likelihoods, with the higher swapping rate yielding

higher DIF preservation likelihoods. All three levels for the RF were found to have strong

positive influences on DIF preservation. Data containing higher ratios, namely 2:1, 5:1, and

10:1 ratios, tended to have higher preservation likelihoods than data containing 1:1 ratios.

Including the RF main effect in Model 3 increased predictive power since the c-statistic and

correct classification rate increased to 0.989 and 93.08% respectively.

Model 4 involved the main and interaction effects of the DL, SR, and RF predictors.

Little change in the AIC was observed after including the interaction effects in the model

(123,437.27 versus 132,073.15 from Model 3). This, therefore, suggested very few significant

interaction effects compared to Model 3. Similar to the previous models, the DL had a

nonsignificant negative effect on DIF preservation while the RF had a significant positive

effect. It was surprising to observe a significant positive effect in DIF preservation only when

a 1% swapping rate was used compared to a 5% rate. It is believed that the inclusion of

the interaction effects in the model changed the behavior of this phenomenon. There were

negative effects in DIF preservation when BB- and CC-level polytomous items were swapped

at a 1% SR and positive significant effects when swapped at the 5% SR. There were also

positive significant effects when BB- and CC-level items were created from data with a 5:1 or

10:1 RF versus a 1:1 ratio. There were no significant effects detected between the interaction

of the SR and RF predictors, but significant positive and negative effects were found between

the interaction of the DL and SR variables. These significant interactions offset the ironic
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behavior found in the offset of the SR main effect. Additionally, only one combination of the

interaction was found to have a significant effect on DIF preservation (DL =CC, SR =5%,

RF =2:1).

Table 4.9 contains the predicted likelihoods for DIF levels after data swapping. This table

is read similar to that of Table 4.6 where the predicted probabilities are row conditional.

A considerable number of the combinations for the SR and the RF experienced concordant

results regarding the DIF before and after swapping. The likelihoods were at least 90%, but

they decreased as the levels of the SR and RF increased. There were two combinations for the

SR and RF that experienced discordant results. At the SR of 5% and RF of 10:1, polytomous

items containing BB- or CC-level DIF had a greater chance of experiencing different levels of

DIF after data swapping than similar levels. For polytomous items containing BB-level DIF,

there was a higher likelihood of producing an item with AA2-level DIF after data swapping

(57.43% versus 42.57%), resulting in a relative risk of 34.9%. Polytomous items containing

CC-level DIF had a higher likelihood of producing polytomous items containing BB-level

DIF after data swapping (71.46% versus 28.54%), producing an even higher relative risk

(150.4%). These relative risks show the magnitude between the likelihoods of preserving the

correct level of DIF versus a less severe level of DIF. Nonetheless, the results from this table

show that higher levels of the SR and RF can reduce the level of DIF in polytomous items.
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Table 4.9: Predicted DIF Preservation Likelihoods: Polytomous

DIF After Swapping
SR RF DIF Before Swapping AA1 AA2 BB CC
1% 1:1 AA1 97.81% 2.19% <0.01% <0.01%
1% 1:1 BB <0.01% 0.20% 99.80% <0.01%
1% 1:1 CC <0.01% <0.01% 0.02% 99.98%
1% 2:1 AA1 97.37% 2.63% <0.01% <0.01%
1% 2:1 BB <0.01% 0.20% 99.80% <0.01%
1% 2:1 CC <0.01% <0.01% 0.04% 99.96%
1% 5:1 AA1 98.13% 1.87% <0.01% <0.01%
1% 5:1 BB <0.01% 0.90% 99.10% <0.01%
1% 5:1 CC <0.01% <0.01% 0.31% 99.69%
1% 10:1 AA1 98.51% 1.49% <0.01% <0.01%
1% 10:1 BB <0.01% 3.69% 96.31% <0.01%
1% 10:1 CC <0.01% <0.01% 2.36% 97.64%
3% 1:1 AA1 95.74% 4.26% <0.01% <0.01%
3% 1:1 BB <0.01% 0.85% 99.15% <0.01%
3% 1:1 CC <0.01% <0.01% 0.32% 99.68%
3% 2:1 AA1 95.90% 4.10% <0.01% <0.01%
3% 2:1 BB <0.01% 1.17% 98.83% <0.01%
3% 2:1 CC <0.01% <0.01% 0.33% 99.67%
3% 5:1 AA1 96.94% 3.06% <0.01% <0.01%
3% 5:1 BB <0.01% 5.93% 94.07% <0.01%
3% 5:1 CC <0.01% <0.01% 3.39% 96.61%
3% 10:1 AA1 97.60% 2.40% <0.01% <0.01%
3% 10:1 BB <0.01% 22.11% 77.89% <0.01%
3% 10:1 CC <0.01% <0.01% 21.99% 78.01%
5% 1:1 AA1 95.46% 4.54% <0.01% <0.01%
5% 1:1 BB <0.01% 4.24% 95.76% <0.01%
5% 1:1 CC <0.01% <0.01% 2.52% 97.48%
5% 2:1 AA1 94.75% 5.25% <0.01% <0.01%
5% 2:1 BB <0.01% 6.45% 93.55% <0.01%
5% 2:1 CC <0.01% <0.01% 4.59% 95.41%
5% 5:1 AA1 96.55% 3.45% <0.01% <0.01%
5% 5:1 BB <0.01% 23.75% 76.25% <0.01%
5% 5:1 CC <0.01% <0.01% 25.58% 74.42%
5% 10:1 AA1 97.60% 2.40% <0.01% <0.01%
5% 10:1 BB <0.01% 57.43% 42.57% <0.01%
5% 10:1 CC <0.01% <0.01% 71.46% 28.54%



Chapter 5

Discussion

The focus of this research study was the investigation of preserving uniform DIF after a

disclosure avoidance method, namely data swapping, was applied to protect the data. Three

research questions were addressed as a result of this study, and predictive models and several

statistical methods were used to answer these questions. This study estimated the rate

at which uniform DIF is preserved in dichotomous and polytomous items after applying

data swapping to the data. It then determined whether association was found between

the likelihood of preserving uniform DIF, the data swapping rate, the item scoring, the

reference-to-focal group ratio, and the severity of the DIF originally detected. Then finally,

it determined whether a generalized linear model could explain the association between the

likelihood of preserving uniform DIF, the data swapping rate, the item scoring, the reference-

to-focal group ratio, and the severity of the DIF originally detected. The purpose of this

chapter is to summarize the findings, address the significance of the research study, and

66
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discuss the study’s limitations which address several directions for further research.

It is concluded that when a dichotomous item contains B-level DIF, its level of DIF is

preserved between 70 to 97 of every 100 times after data swapping. When the dichotomous

item contains C-level DIF, its preservation happens between 79 to 99 of every 100 data

swapping attempts. At the baseline swapping rate of 3% and a 1:1 reference-to-focal group

ratio, the preservation rates for both DIF levels were approximately equal to 96 of every 100

data swapping attempts. However, increases in the swapping rate or group ratios decrease

these preservation rates. With polytomous items, BB-level DIF is preserved between 71 to

99 of every 100 data swapping attempts and CC-level DIF is preserved between 28 to 99 of

every 100 attempts. Similar to the dichotomous case, increases in the swapping rate and

group ratios decrease these rates. At the baseline, both levels of DIF are preserved 99 of

every 100 data swapping attempts. Despite the lower limit of the preservation rate range

for the polytomous case, preservation rates were more stable than those of the dichotomous

case. When omitting the largest swapping rate and group ratio treatment, preservation rates

for CC-level DIF were found to be between 74 to 99 of very 100 data swapping attempts.

Results from the Cochran-Mantel Haenszel tests and Somer’s D correlation coefficients

suggest that pre-swapped DIF levels in dichotomous and polytomous items significantly

correlate with post-swapped DIF levels for all combinations of swapping rate and reference-

to-focal group ratio. Associations between pre-swapped and post-swapped DIF levels were

found to be stronger for polytomous items than for dichotomous items, smaller reference-to-

focal ratios than larger ones, and smaller swapping rates than larger swapping rates. One
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possible explanation is that data swapping does not add enough noise to alter the distribution

and variance of scores for polytomous items than for dichotomous items.

It is concluded that a generalized linear model, specifically the cumulative logit model,

can model the likelihood of preserving dichotomous and polytomous DIF conditional on

swapping rate and reference-to-group ratio. When using a main-effects model to measure

DIF preservation likelihoods in dichotomous items, one should expect to see significant neg-

ative effects in the logit when the items contain DIF before swapping or when data are

underprotected. Significant positive effects in the logit occur when the data is overprotected

or when the data contains unequal reference and focal group sample sizes. When using a

full-effects model, one should expect to observe the same effects found in the main-effects

model, significant negative two-way effects between pre-swap DIF level and the 1% swapping

rate, pre-swap DIF and the 10:1 group ratio, and group ratio and the 1% swapping rate, and

significant positive two-way effects between pre-swap DIF and the 5% swapping rate, group

ratios and the C-level pre-swap DIF, and group ratios and the 5% swapping rate. Addition-

ally, significant negative three-way effects occur at B- and C-level pre-swap DIF levels and

the 5% swapping rate with relatively large group ratios. For polytomous items, one should

observe significant negative effects when data is underprotected, significant positive effects

when the data is overprotected, and significant positive effects when data contains unequal

reference and focal group sample sizes. Under the full-effects model, one should expect to

observe a significant positive effect when underprotecting data or when using data containing

unequal reference and focal group sample sizes. Significantly negative two-way effects are
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expected between pre-swap DIF and the 1% swapping rate, but positive effects at the 5%

swapping rate. Positive two-way effects are also expected between group ratios at BB- and

CC-level pre-swap DIF levels.

It is interesting to note that the GLMs suggest concordant pre- and post-swap DIF levels

in dichotomous items when DIF is present before data swapping. For dichotomous items

containing no DIF, data swapping increases the presence of DIF but not enough to reach the

B- and C-DIF levels. However, this is the case when the data contains smaller reference-to-

focal group ratios. Concordant behavior also occurred in the polytomous model for nearly

all combinations of the pre-swapped item DIF, swapping rate, and reference-to-focal group

ratio. But at high swapping rates and group ratios, there is potential for polytomous items

containing moderate and high levels of DIF to contain negligible and moderate DIF levels

after data swapping respectively.

In determining the optimal swapping rate to use, several suggestions are recommended to

the data proprietor. First, one should consider the number of dichotomous and polytomous

items containing DIF in their data. Assessments containing items with little to no DIF should

experience no significant harm with overprotection, but proprietors should use caution when

overprotecting data containing any DIF items. Swapping rates should be more conservative

for data containing polytomous items with DIF than dichotmous items, and the severity of

DIF in such items makes it more important to use a swapping rate less than three percent.

Finally, data proprietors should also take into account the magnitude of the group sizes that

are responsible for the item DIF, and use the results from Table 4.1 to make an empirical



70

decision on the best swapping rate to use that minimizes the amount of item preservation

lost.

Although little research exists in investigating the relationship between disclosure avoid-

ance protection and factors of assessment data, the results of this study validate two points

addressed in prior research that investigated these factors individually. First, the findings

in this study support published literature that states that forms of disclosure avoidance

protection, including data swapping, help preserve statistical properties in data (Willenborg

and de Waal, 2001; Shlomo et al., 2010; Fienberg and McIntyyre, 2004; Dalenius and Reiss,

1982). In this research, the statistical property to preserve was uniform DIF. The findings

from this study also validate that disclosure avoidance methods add noise to data, and noise

results in information loss in data (Nayak et al., 2011; Zayatz, 2007). This means that the

behavior found in data before protection can be significantly different afterwards.

There is a strong significance for this research with regard to educational assessments.

The need to disseminate data is an important task, and so is protecting the privacy of the

respondents that were used to make it. Data swapping is one of several powerful disclosure

avoidance methodologies, but more research is needed to investigate how well it can preserve

the statistical properties within the data. Several studies have evaluated the efficiency of

data swapping using metadata produced by non-government and government agencies, but

none of these studies has investigated its efficiency using assessment data. This, therefore,

questions the generalizability of this knowledge into the educational setting and identifies

the significance of this research. The idea and results from this research study represent
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the first steps in gaining insight of how disclosure avoidance techniques protect privacy in

assessment data by integrating the two issues together. In doing so, this study also provides a

significant contribution by comparing changes in DIF preservation rates when the swapping

rate is compromised by a data proprietor’s choice or by legislation (see Table 4.1).

The findings of this study have several limitations worth addressing. One of the strongest

limitations is the study’s attention to uniform DIF. Although it is a common and popular type

of DIF to test, it is not the only one. With standardized assessments, it is as important to test

for non-uniform DIF since items can exhibit a significant difference in group performances

as a function of the ability levels.

A second limitation of this study involves the particular DIF methodology used to detect

DIF. As explained in the literature review, other DIF approaches such as logistic regression,

the SIBTEST, and the likelihood ratio test have been widely used and accepted as effective

methods to identify biased items based on group performances. Considering all of these

methods in one study would create much confusion in understanding the holistic nature of

DIF preservation likelihoods.

It is important to also emphasize that this study considered focal and reference groups

containing no difference in ability levels. Although constant difficulty was added to items to

contain B- and C-levels of DIF, this difficulty was added to address that these items biased

against focal groups containing just as enough ability to answer these items as the reference

groups. Adding such a constant to the items while considering the use of differences in the

reference and focal groups would create a challenge in simulating items with all levels of
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DIF.

Lastly, the findings of this study is limited to the use of unidimensional models. Item

scores were created using item response theory models. Particularly, the the three-parameter

and generalized partial credit model were used to create the dichotmous and polytomous

scores respectively. Both models considered the assumption of a unidimensional latent trait

and local independence of the item scores. Although these properties are pivotal for the

models to work, one cannot rule out the possiblity for assessments to contain items with a

multidimensional trait space or item scores being dependent.

This study suggests that more work is needed to understand the relationship between

disclosure avoidance methods and DIF. For example, one could consider modeling the like-

lihood of preserving nonuniform DIF and how it decreases or increases the likelihood. As

discussed previously, items with nonuniform DIF are said to possess a trend in performance

that is a function of the examinee ability levels.

Researchers could investigate whether data swapping strengthens or weakens this trend,

resulting in possibly higher or lower DIF preservation likelihoods than the likelihoods found

in this study. Another topic worth exploring is using other disclosure avoidance techniques

to protect privacy. Data shuffling (Muralidhar and Sarathy, 2006) permutes the values of

the confidential data within the data. Unlike data swapping which depends on marginal dis-

tributions, data shuffling was found to have lower risks of data disclosure (Muralidhar and

Sarathy, 2006). Synthetic data (Reiter, 2002) and multiplicative noise (Nayak et al., 2011)

are other techniques that are said to preserve the nature of estimators from non-perturbed
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data produced from several sampling designs. Since these techniques contain unique steps

and impact the data in different ways, one could discover that the DIF preservation likeli-

hoods are significantly smaller or larger than those for data swapping.

Resarchers can also explore how to model preservation likelihoods for other DIF detection

methods. The SIBTEST and logistic regression methods are among other popular robust

methodologies for detecting DIF, and therefore one may be curious as to how changes in

the methodology used plays a role in how DIF is preserved. One may find that modeling

preservation likelihoods is more challenging when these methods are used.

Finally, an interesting question for item analysts is to investigate how the number or

percentage of items containing DIF prior to data swapping affect DIF likelihood preservation.

In this study, a forty-item assessment was used in which one dichotomous and one polytomous

item contained DIF. Although it is common for large-scale assessments to contain either none

or one DIF item (Camilli, 2006) since items are often pre-tested prior to production, one

could investigate how the presence of multiple DIF items impacts the ability to preserve item

DIF at any level.
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Appendix A

Record Layout of Simulated Data

Table A.1: Record Layout of Simulated Data

Variable Name Variable Description Variable Values
Distsch Unique school identification

number
001-580

Setting Test setting accommoda-
tion needed

0 = no (reference), 1= yes (focal)

Msum Examinee Total Score 0-100
itXX Score for dichotomous item

XX
0 = no credit, 1 = full credit

pitXX Score for polytomous item
XX

0 = no credit, 1 - 3 = partial credit,
4 = full credit

flag clang examinee is unique by lan-
guage flag

0 = flagged as unique, 1 = flagged as
unique

flag cethnic examinee is unique by eth-
nicity flag

0 = not flagged as unique, 1 =
flagged as unique

flag cdisabil examinee is unique by dis-
ability flag

0 = not flagged as unique, 1 =
flagged as unique

flag cgender examinee is unique by gen-
der flag

0 = not flagged as unique, 1 =
flagged as unique

flag clapmath examinee is unique by spe-
cial education flag

0 = not flagged as unique, 1 =
flagged as unique

flag ctasmath examinee is unique by tak-
ing Title 1 class flag

0 = not flagged as unique, 1 =
flagged as unique

flag cgifted examinee is unique as a
gifted student flag

0 = not flagged as unique, 1 =
flagged as unique
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Appendix B

DIF Preservation Tables-
Dichotomous

Table B.1: DIF Preservation-Dichotomous (Ratio = 10:1 & Swap Rate = 1%)

A1-Level A2-Level B-Level C-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
A1-Level 10,000 5,584 0 2,241 0 2,136 0 39
B-Level 49 0 1,498 401 7,031 6,543 1,422 87
C-Level 0 0 10 0 1,431 462 8,559 8,097

Table B.2: DIF Preservation-Dichotomous (Ratio = 10:1 & Swap Rate = 3%)

A1-Level A2-Level B-Level C-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
A1-Level 10,000 6,258 0 2,039 0 1,691 0 12
B-Level 34 0 1,529 1,064 6,997 5,848 1,440 85
C-Level 0 0 1 0 1,464 1,373 8,535 7,162
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Table B.3: DIF Preservation-Dichotomous (Ratio = 10:1 & Swap Rate = 5%)

A1-Level A2-Level B-Level C-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
A1-Level 10,000 6,997 0 1,816 0 1,178 0 9
B-Level 47 13 1,577 2,045 6,918 4,815 1,458 45
C-Level 0 0 6 1 1,508 2,849 8,486 5,636

Table B.4: DIF Preservation-Dichotomous (Ratio = 5:1 & Swap Rate = 1%)

A1-Level A2-Level B-Level C-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
A1-Level 10,000 1,893 0 6,369 0 1,735 0 3
B-Level 0 0 982 211 8,217 7,963 801 43
C-Level 0 0 0 0 863 220 9,137 8,917

Table B.5: DIF Preservation-Dichotomous (Ratio = 5:1 & Swap Rate = 3%)

A1-Level A2-Level B-Level C-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
A1-Level 10,000 2,394 0 6,200 0 1,404 0 2
B-Level 1 0 1,007 629 8,256 7,585 736 42
C-Level 0 0 0 0 929 783 9,071 8,288

Table B.6: DIF Preservation-Dichotomous (Ratio = 5:1 & Swap Rate = 5%)

A1-Level A2-Level B-Level C-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
A1-Level 10,000 3,004 0 5,974 0 1,021 0 1
B-Level 0 0 1,027 1,273 8,187 6,887 786 27
C-Level 0 0 0 0 938 1,851 9,062 7,211
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Table B.7: DIF Preservation-Dichotomous (Ratio = 2:1 & Swap Rate = 1%)

A1-Level A2-Level B-Level C-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
A1-Level 10,000 27 0 8,763 0 1,210 0 0
B-Level 0 0 576 114 9,165 9,041 259 10
C-Level 0 0 0 0 519 126 9,481 9,355

Table B.8: DIF Preservation-Dichotomous (Ratio = 2:1 & Swap Rate = 3%)

A1-Level A2-Level B-Level C-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
A1-Level 10,000 309 0 8,703 0 988 0 0
B-Level 0 0 556 297 9,168 8,859 276 12
C-Level 0 0 0 0 466 435 9,534 9,099

Table B.9: DIF Preservation-Dichotomous (Ratio = 2:1 & Swap Rate = 5%)

A1-Level A2-Level B-Level C-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
A1-Level 10,000 424 0 8,832 0 744 0 0
B-Level 0 0 544 748 9,176 8,426 280 2
C-Level 0 0 0 0 487 1,153 9,513 8,360

Table B.10: DIF Preservation-Dichotomous (Ratio = 1:1 & Swap Rate = 1%)

A1-Level A2-Level B-Level C-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
A1-Level 10,000 111 0 8,757 0 1,132 0 0
B-Level 0 0 464 79 9,397 9,313 139 5
C-Level 0 0 0 0 392 95 9,608 9,513
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Table B.11: DIF Preservation-Dichotomous (Ratio = 1:1 & Swap Rate = 3%)

A1-Level A2-Level B-Level C-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
A1-Level 10,000 117 0 8,895 0 988 0 0
B-Level 0 0 442 248 9,441 9,191 117 2
C-Level 0 0 0 0 375 336 9,625 9,289

Table B.12: DIF Preservation-Dichotomous (Ratio = 1:1 & Swap Rate = 5%)

A1-Level A2-Level B-Level C-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
A1-Level 10,000 167 0 9,121 0 712 0 0
B-Level 0 0 434 648 9,419 8,770 147 1
C-Level 0 0 0 0 376 989 9,624 8,635



Appendix C

DIF Preservation Tables- Polytomous

Table C.1: DIF Preservation-Polytomous (Ratio = 10:1 & Swap Rate = 1%)

AA1-Level AA2-Level BB-Level CC-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
AA1-Level 8,877 8,745 1,123 132 0 0 0 0
BB-Level 0 0 323 357 9,676 9,319 1 0
CC-Level 0 0 0 0 62 235 9,938 9,703

Table C.2: DIF Preservation-Polytomous (Ratio = 10:1 & Swap Rate = 3%)

AA1-Level AA2-Level BB-Level CC-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
AA1-Level 8,882 8,669 1,118 213 0 0 0 0
BB-Level 0 0 322 2,139 9,676 7,537 2 0
CC-Level 0 0 0 0 77 2,182 9,923 7,741
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Table C.3: DIF Preservation-Polytomous (Ratio = 10:1 & Swap Rate = 5%)

AA1-Level AA2-Level BB-Level CC-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
AA1-Level 8,883 8,670 1,117 213 0 0 0 0
BB-Level 0 0 330 5,551 9,666 4,115 4 0
CC-Level 0 0 0 0 88 7,083 9,912 2,829

Table C.4: DIF Preservation-Polytomous (Ratio = 5:1 & Swap Rate = 1%)

AA1-Level AA2-Level BB-Level CC-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
AA1-Level 8,031 7,881 1,969 150 0 0 0 0
BB-Level 0 0 96 89 9,904 9,815 0 0
CC-Level 0 0 0 0 16 31 9,984 9,953

Table C.5: DIF Preservation-Polytomous (Ratio = 5:1 & Swap Rate = 3%)

AA1-Level AA2-Level BB-Level CC-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
AA1-Level 7,873 7,632 2,127 241 0 0 0 0
BB-Level 0 0 95 587 9,905 9,318 0 0
CC-Level 0 0 0 0 17 338 9,983 9,645

Table C.6: DIF Preservation-Polytomous (Ratio = 5:1 & Swap Rate = 5%)

AA1-Level AA2-Level BB-Level CC-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
AA1-Level 7,920 7,647 2,080 273 0 0 0 0
BB-Level 0 0 103 2,351 9,897 7,546 0 0
CC-Level 0 0 0 0 17 2,554 9,983 7,429
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Table C.7: DIF Preservation-Polytomous (Ratio = 2:1 & Swap Rate = 1%)

AA1-Level AA2-Level BB-Level CC-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
AA1-Level 6,301 6,135 3,699 166 0 0 0 0
BB-Level 0 0 25 20 9,975 9,955 0 0
CC-Level 0 0 0 0 4 4 9,996 9,992

Table C.8: DIF Preservation-Polytomous (Ratio = 2:1 & Swap Rate = 3%)

AA1-Level AA2-Level BB-Level CC-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
AA1-Level 6,315 6,056 3,685 259 0 0 0 0
BB-Level 0 0 44 116 9,956 9,840 0 0
CC-Level 0 0 0 0 8 33 9,992 9,959

Table C.9: DIF Preservation-Polytomous (Ratio = 2:1 & Swap Rate = 5%)

AA1-Level AA2-Level BB-Level CC-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
AA1-Level 6,362 6,028 3,638 334 0 0 0 0
BB-Level 0 0 29 643 9,971 9,328 0 0
CC-Level 0 0 0 0 2 459 9,998 9,539

Table C.10: DIF Preservation-Polytomous (Ratio = 1:1 & Swap Rate = 1%)

AA1-Level AA2-Level BB-Level CC-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
AA1-Level 5,854 5,726 4,146 128 0 0 0 0
BB-Level 0 0 27 20 9,973 9,953 0 0
CC-Level 0 0 0 0 3 2 9,997 9,995
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Table C.11: DIF Preservation-Polytomous (Ratio = 1:1 & Swap Rate = 3%)

AA1-Level AA2-Level BB-Level CC-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
AA1-Level 5,840 5,591 4,160 249 0 0 0 0
BB-Level 0 0 21 85 9,979 9,894 0 0
CC-Level 0 0 0 0 2 32 9,998 9,966

Table C.12: DIF Preservation-Polytomous (Ratio = 1:1 & Swap Rate = 5%)

AA1-Level AA2-Level BB-Level CC-Level
Created BDS ADS BDS ADS BDS ADS BDS ADS
No-DIF 5,798 5,535 4,202 263 0 0 0 0
BB-Level 0 0 23 423 9,977 9,554 0 0
CC-Level 0 0 0 0 3 252 9,997 9,745



Appendix D

DIF Level Preservation Likelihood
Tables

Table D.1: Dichotomous DIF Level Preservation Likelihoods: A = A1

DIF Preservation Levels
Swap Rate Ref:Foc Ratio A B C
1% 10:1 55.84% 93.06% 94.60%
1% 5:1 18.93% 96.91% 97.59%
1% 2:1 0.27% 98.65% 98.67%
1% 1:1 1.11% 99.11% 99.01%
3% 10:1 62.58% 83.58% 83.91%
3% 5:1 23.94% 91.87% 91.37%
3% 2:1 3.09% 96.63% 95.44%
3% 1:1 1.17% 97.35% 96.51%
5% 10:1 69.67% 69.60% 66.42%
5% 5:1 30.04% 84.12% 79.57%
5% 2:1 4.24% 91.83% 87.88%
5% 1:1 1.67% 93.11% 89.72%
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Table D.2: Dichotomous DIF Level Preservation Likelihoods: A = A1

⋃
A2

DIF Preservation Levels
Swap Rate Ref:Foc Ratio A B C
1% 10:1 78.25% 93.06% 94.60%
1% 5:1 82.62% 96.91% 97.59%
1% 2:1 87.90% 98.65% 98.67%
1% 1:1 88.68% 99.11% 99.01%
3% 10:1 82.97% 83.58% 83.91%
3% 5:1 85.94% 91.87% 91.37%
3% 2:1 90.18% 96.63% 95.44%
3% 1:1 90.12% 97.35% 96.51%
5% 10:1 88.83% 69.60% 66.42%
5% 5:1 89.78% 84.12% 79.57%
5% 2:1 92.56% 91.83% 87.88%
5% 1:1 92.88% 93.11% 89.72%

Table D.3: Polytomous DIF Level Preservation Likelihoods: AA = AA1

DIF Preservation Levels
Swap Rate Ref:Foc Ratio AA BB CC
1% 10:1 98.51% 96.31% 97.64%
1% 5:1 98.13% 99.10% 99.69%
1% 2:1 97.37% 99.80% 99.96%
1% 1:1 97.81% 99.80% 99.98%
3% 10:1 97.60% 77.89% 78.01%
3% 5:1 96.94% 94.07% 96.61%
3% 2:1 95.90% 98.83% 99.67%
3% 1:1 95.74% 99.15% 99.68%
5% 10:1 97.60% 42.57% 28.54%
5% 5:1 96.55% 76.25% 74.42%
5% 2:1 94.75% 93.55% 95.41%
5% 1:1 95.46% 95.76% 97.48%
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Table D.4: Polytomous DIF Level Preservation Likelihoods: AA = AA1

⋃
AA2

DIF Preservation Levels
Swap Rate Ref:Foc Ratio AA BB CC
1% 10:1 100.00% 96.31% 97.64%
1% 5:1 100.00% 99.10% 99.69%
1% 2:1 100.00% 99.80% 99.96%
1% 1:1 100.00% 99.80% 99.98%
3% 10:1 100.00% 77.89% 78.01%
3% 5:1 100.00% 94.07% 96.61%
3% 2:1 100.00% 98.83% 99.67%
3% 1:1 100.00% 99.15% 99.68%
5% 10:1 100.00% 42.57% 28.54%
5% 5:1 100.00% 76.25% 74.42%
5% 2:1 100.00% 93.55% 95.41%
5% 1:1 100.00% 95.76% 97.48%



Appendix E

Dichotomous Effect Size Tables

Table E.1: Mean Effect Size-Dichotomous (Ratio = 10:1 & Swap Rate = 1%)

After Data Swapping
Before Data Swapping No-DIF A-Level B-Level C-Level
No-DIF 0.76 0.67 0.61 0.51
B-Level N/A 1.56 1.71 1.87
C-Level N/A N/A 1.93 2.18

Table E.2: Mean Effect Size-Dichotomous (Ratio = 10:1 & Swap Rate = 3%)

After Data Swapping
Before Data Swapping No-DIF A-Level B-Level C-Level
No-DIF 0.75 0.66 0.61 0.52
B-Level N/A 1.59 1.72 1.85
C-Level N/A N/A 1.97 2.21
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Table E.3: Mean Effect Size-Dichotomous (Ratio = 10:1 & Swap Rate = 5%)

After Data Swapping
Before Data Swapping No-DIF A-Level B-Level C-Level
No-DIF 0.74 0.65 0.61 0.52
B-Level 1.56 1.62 1.73 1.84
C-Level N/A 1.91 2.02 2.24

Table E.4: Mean Effect Size-Dichotomous (Ratio = 5:1 & Swap Rate = 1%)

After Data Swapping
Before Data Swapping No-DIF A-Level B-Level C-Level
No-DIF 0.79 0.70 0.62 0.52
B-Level N/A 1.55 1.70 1.88
C-Level N/A N/A 1.91 2.13

Table E.5: Mean Effect Size-Dichotomous (Ratio = 5:1 & Swap Rate = 3%)

After Data Swapping
Before Data Swapping No-DIF A-Level B-Level C-Level
No-DIF 0.78 0.70 0.62 0.52
B-Level N/A 1.56 1.71 1.87
C-Level N/A N/A 1.94 2.15

Table E.6: Mean Effect Size-Dichotomous (Ratio = 5:1 & Swap Rate = 5%)

After Data Swapping
Before Data Swapping No-DIF A-Level B-Level C-Level
No-DIF 0.77 0.69 0.62 0.55
B-Level N/A 1.59 1.72 1.87
C-Level N/A N/A 1.97 2.17
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Table E.7: Mean Effect Size-Dichotomous (Ratio = 2:1 & Swap Rate = 1%)

After Data Swapping
Before Data Swapping No-DIF A-Level B-Level C-Level
No-DIF 0.86 0.72 0.63 N/A
B-Level N/A 1.54 1.69 1.88
C-Level N/A N/A 1.91 2.10

Table E.8: Mean Effect Size-Dichotomous (Ratio = 2:1 & Swap Rate = 3%)

After Data Swapping
Before Data Swapping No-DIF A-Level B-Level C-Level
No-DIF 0.82 0.71 0.63 N/A
B-Level N/A 1.55 1.70 1.88
C-Level N/A N/A 1.92 2.11

Table E.9: Mean Effect Size-Dichotomous (Ratio = 2:1 & Swap Rate = 5%)

After Data Swapping
Before Data Swapping No-DIF A-Level B-Level C-Level
No-DIF 0.80 0.71 0.63 N/A
B-Level N/A 1.57 1.70 1.88
C-Level N/A N/A 1.95 2.12

Table E.10: Mean Effect Size-Dichotomous (Ratio = 1:1 & Swap Rate = 1%)

After Data Swapping
Before Data Swapping No-DIF A-Level B-Level C-Level
No-DIF 0.83 0.71 0.63 N/A
B-Level N/A 1.54 1.69 1.88
C-Level N/A N/A 1.90 2.09
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Table E.11: Mean Effect Size-Dichotomous (Ratio = 1:1 & Swap Rate = 3%)

After Data Swapping
Before Data Swapping No-DIF A-Level B-Level C-Level
No-DIF 0.82 0.71 0.63 N/A
B-Level N/A 1.55 1.69 1.88
C-Level N/A N/A 1.92 2.09

Table E.12: Mean Effect Size-Dichotomous (Ratio = 1:1 & Swap Rate = 5%)

After Data Swapping
Before Data Swapping No-DIF A-Level B-Level C-Level
No-DIF 0.82 0.71 0.63 N/A
B-Level N/A 1.56 1.69 1.88
C-Level N/A N/A 1.94 2.11



Appendix F

Polytomous Effect Size Tables

Table F.1: Mean Effect Size-Polytomous (Ratio = 10:1 & Swap Rate = 1%)

After Data Swapping
Before Data Swapping No-DIF AA-Level BB-Level CC-Level
No-DIF 0.98 0.96 N/A N/A
BB-Level N/A 1.02 1.22 N/A
CC-Level N/A N/A 1.28 1.32

Table F.2: Mean Effect Size-Polytomous (Ratio = 10:1 & Swap Rate = 3%)

After Data Swapping
Before Data Swapping No-DIF AA-Level BB-Level CC-Level
No-DIF 0.99 0.96 N/A N/A
BB-Level N/A 1.18 1.21 N/A
CC-Level N/A N/A 1.27 1.31
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Table F.3: Mean Effect Size-Polytomous (Ratio = 10:1 & Swap Rate = 5%)

After Data Swapping
Before Data Swapping No-DIF AA-Level BB-Level CC-Level
No-DIF 0.99 0.96 N/A N/A
BB-Level N/A 1.17 1.20 N/A
CC-Level N/A N/A 1.26 1.30

Table F.4: Mean Effect Size-Polytomous (Ratio = 5:1 & Swap Rate = 1%)

After Data Swapping
Before Data Swapping No-DIF AA-Level BB-Level CC-Level
No-DIF 0.98 0.97 N/A N/A
BB-Level N/A 1.18 1.22 N/A
CC-Level N/A N/A 1.28 1.32

Table F.5: Mean Effect Size-Polytomous (Ratio = 5:1 & Swap Rate = 3%)

After Data Swapping
Before Data Swapping No-DIF AA-Level BB-Level CC-Level
No-DIF 0.99 0.97 N/A N/A
BB-Level N/A 1.18 1.21 N/A
CC-Level N/A N/A 1.28 1.31

Table F.6: Mean Effect Size-Polytomous (Ratio = 5:1 & Swap Rate = 5%)

After Data Swapping
Before Data Swapping No-DIF AA-Level BB-Level CC-Level
No-DIF 0.99 0.97 N/A N/A
BB-Level N/A 1.18 1.20 N/A
CC-Level N/A N/A 1.28 1.30
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Table F.7: Mean Effect Size-Polytomous (Ratio = 2:1 & Swap Rate = 1%)

After Data Swapping
Before Data Swapping No-DIF AA-Level BB-Level CC-Level
No-DIF 0.99 0.98 N/A N/A
BB-Level N/A 1.18 1.21 N/A
CC-Level N/A N/A 1.28 1.32

Table F.8: Mean Effect Size-Polytomous (Ratio = 2:1 & Swap Rate = 3%)

After Data Swapping
Before Data Swapping No-DIF AA-Level BB-Level CC-Level
No-DIF 0.99 0.98 N/A N/A
BB-Level N/A 1.18 1.21 N/A
CC-Level N/A N/A 1.28 1.32

Table F.9: Mean Effect Size-Polytomous (Ratio = 2:1 & Swap Rate = 5%)

After Data Swapping
Before Data Swapping No-DIF AA-Level BB-Level CC-Level
No-DIF 0.99 0.98 N/A N/A
BB-Level N/A 1.18 1.20 N/A
CC-Level N/A N/A 1.28 1.30

Table F.10: Mean Effect Size-Polytomous (Ratio = 1:1 & Swap Rate = 1%)

After Data Swapping
Before Data Swapping No-DIF AA-Level BB-Level CC-Level
No-DIF 0.99 0.98 N/A N/A
BB-Level N/A 1.18 1.21 N/A
CC-Level N/A N/A 1.28 1.32
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Table F.11: Mean Effect Size-Polytomous (Ratio = 1:1 & Swap Rate = 3%)

After Data Swapping
Before Data Swapping No-DIF AA-Level BB-Level CC-Level
No-DIF 0.99 0.98 N/A N/A
BB-Level N/A 1.18 1.21 N/A
CC-Level N/A N/A 1.28 1.31

Table F.12: Mean Effect Size-Polytomous (Ratio = 1:1 & Swap Rate = 5%)

After Data Swapping
Before Data Swapping No-DIF AA-Level BB-Level CC-Level
No-DIF 0.99 0.98 N/A N/A
BB-Level N/A 1.18 1.20 N/A
CC-Level N/A N/A 1.28 1.31


