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sectioning (or partitioning) are different concepts. The sectioning concept has

been used in image restoration for several different occasions. Few researchers

have actually incorporated the segmentation concept into an image restoration

method, realizing that the usual assumption of a single characterization for the

whole image is not correct. We note that they use the same image restoration

technique for each of the segments.

The goal of this research is to derive an automatic image restoration method

which gives the best result in both quantitative and qualitative sense. It is

achieved by building a segmentation·oriented rule-based expert system with the

following major procedures: I) Get a priori information either from the user or

I by computation, 2) Segment the image into several statistically homogeneous re-

gions, 3) Select the most suitable image restoration technique for each segment

with the help of the knowledge base and the inference engine, 4) Apply the se-

lected methods to the corresponding segments, 5) Determine boundary region

treatment.

Two image segmentation methods are installed in the system, which are ap-

plicable to most image models. The unitied approach is good for images with a

relatively small number of regions and the masking function approach is good for

images with many details. Although a number of interesting methods for image

restoration have been proposed, only a fraction of these are of practical use.

About six image restoration techniques are installed into the system, along with

programs to extract the a priori and a posteriori information. The merits of our

proposed expert system include versatility, better performance, and modularity.
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Chapter I. Introduction

1.1 Overview

Digital processing of images has been a very active field in the last two dec-

ades. One of the more active areas has been the digital restoration of images [1],

as can be ascertained from several books, partly or exclusively on this topic

[2,3,6,7,8,9,10,1 1,12,13,14].

The first fruitful application of digital image restoration techniques was the

processing of images of the moon received from the unmanned craft that landed

on the surface of the moon in the early l960’s [2, p.4]. Since that beginning, the

interest in digital image restoration has continued to grow. New restoration

methods are continuously being introduced. Therefore, anybody who enters this

field for the first time could easily be intimidated by the large number of tech-

niques published. It is one of the purposes of this research to summarize, com-

pare, and classify those numerous techniques in a concise and simple manner.
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By doing that, we can help researchers in their selection of restoration techniques

suitable for their needs.

The implementation of a truly autonomous system for image restoration,

such as an expert system, has been speculated for some time [3, p.75]. Such an

expert system implies the combination of two very unrelated fields; artificial in-

telligence and image restoration. Although active research is being done in each

of these two fields, no work has been reported to realize their interaction. In this

dissertation, we will develop a versatile and general digital image restoration

method with the help of a rule-based expert system.

The organization of this dissertation will be as follows. In the remainder of

this chapter, we present the basic concepts which will be necessary to understand

the subsequent material. ln Chapter II, we present the historical background,

and a survey of previous research related to digital image restoration. An at-

tempt will be included to summarize those methods into a compact framework.

We describe the new point of view on image restoration in Chapter III. This new

point of view helps us develop a new restoration method. The implementation

detail of this new approach is described in Chapter IV. We discuss performance

criteria in Chapter V. Experimental results will be presented in Chapter VI.

Finally, Chapter VII will conclude this dissertation with a summary and sug-

gestions for further research.
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1.2 Digital Image Restoration

A. Definition

An image formed either on photographie film or any other recording device

is never a perfect replica of the spatial characteristics of thc object [5]. Since

physical imaging systems are not perfect, a recorded image will almost certainly

be a degraded version of an original object or scene [7, p.2l6]. The degradation

may be caused by such factors as spatial blur produced by the point spread

function (PSF) of the imaging system; or nonlinearities in the recording/detecting

device, to mention only a few [6 (p.266), 5 (p.1)].

The object of image restoration then is to obtain an estimate of an original

image from data which has been degraded and recorded [6, p.266]. A simplified

block diagram of an image restoration scheme is given in Figure 1 [7, p.2l6].

B. Image F0rmation/Detection/Recording

The image forms upon the human retina by the iris·lens portion of the human

eye. Thus the eye embodies image formation systems (iris—lens) and image sensor
‘

or recording systems (retina).

According to the Webster dictionary (1985), tn; word image is defined as

" a reproduction or irnitation of the forms of someone or something "

This dictionary definition is useful in conceptualizing an imaging system. Let us

now have a close look at an imaging system.

cnopter 1. Introduction 3
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Figure I. A simpliücd image restoration scheme.
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Imaging System

The black box imaging system in Figure I can be described compactly by a

canonic model [2, pp.23-25] that embodies the process of image formation, de-

tection, and recording, including the existence of noise. The model is given below

in Figure 2, where

f(C, r1): object plane radiant energy distribution,

h: point spread function of the image formation system,

b(x,y): image plane radiant energy distribution,

s: detector response function; transforms image plane radiant energies into a response variable

(usually nonlinear),

r(x,y): response variable of detector; i.e. r(x,y) = s{b(x,y)},

e,, 6,: gain parameters; either 0 or 1,

rh: feed-forward function to account for signal dependent noise,

n,, n,: noise processes, °

ng: resulting signal-dependent noise,

g(x,y): response plus noise = r,(x,y) + n,(x,y) + s,n,(x,y).

Image Formation

Let us next take a closer look at the image formation system. For simplicity,

we assume a perfect detection/recording system. The schematic of image forma-

tion that results is shown in Figure 3 [2, p.9].

As seen in Figure 3, there is an object, j(C, r1) , in the coordinate system

(C, 11), that is referred to as the object plane. The radiant energy reflected, trans-

mitted, or emitted by the object propagates through space. An image formation
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system intercepts the propagating radiant energy and transforms it in such a

manner that in the coordinate system (x , y) , which is referred to as the image

plane, an image is formed [2, p.9].

There are three general principles upon which image formation is based; they

are neighborhood processes, nonnegativity, and superposition [2]. Considering

those three properties of the image formation system, we can express the general

image formation equation as

dC dn (1)

Here the function h is known as the point·spread function (PSF) of the image

formationsystem.lf

the image formation system is linear, then

dw (2)

If the image formation system is linear and separable, then

C) I [/1206 #1)/(C. #2) dn] dC (3)

Equation (3) shows the image formation process in terms of independent hori-

zontal and vertical image formation.

Chapter I. Introduction 8



lf the PSF is space·invariant, then

C,v — MIC, ¤1)) dC dn (4)

If the PSF is linear space·invariant (LSI), then we have the familiar linear con-

volution,

g(x.v) = _Hh(x — C,y - MIC, rz) dC dn (5)

Discretc Formulation

Even though the real scene is continuous, a discrete model is more useful for

actual representation and computation using digital computers. Equation (2) can

be rewritten in discrete form as

N Ng„ = Z 212.,,/1,,,,.,, I6)
k=l l=l

In matrix notation,

8 = Hf (7)

The PSF matrix H has interesting properties, depending on assumptions made

[2], such as:

l. For a separable space·invariant PSF (SSIPSF): .„

Chapter I. Introduction 9



H = A u B, where A, B are Toeplitz

2. For a nonseparable space-invariant PSF (NSIPSF):

H = Block Toeplitz

3. For a separable space-variant PSF (SSVPSF):

H = A n B, where A,B arbitrary

In the above, m is the direct or Kronecker product of matrices. For a nonsepa-

rable space-variant PSF (NSVPSF), no further simplitication results.

C. Mathematical Representation .
— The basic model for the digital image restoration problem is

g = s {Hf} + rz (8)

where s is the sensor response operator, and n represents noise which we will as-

sume to be signal independent. The problem then is to estimate the original im-

age f given the PSF H, the recorded image g, and some a priori knowledge

(usually of a statistical nature) about the noise n and/or the object f. We will

examine this in more detail in Chapter II.
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III-conditioned nature of restoration

One of the most essential problems is the fact that image restoration is an

ill-conditioned problem at best and a singular problem at worst [2, p.lI3]. As-

suming s is the identity function, we may get j" by

f = Hqg = H*‘ (Hr + ~> (9)
= f + H°l n

Examining Eq. (9), we see that the estimate is composed of two parts; the actual

object distribution and a term involving the inverse acting on the noise. Here we

can see two problems. The first is the lack of uniqueness of solution. Given the

existence of a noise process, the multivariate sample vector rz, there is a family of

solutions. One must somehow select the proper solution from within an inlinite

family of candidate solutions. The second problem is the potential singularity

associated with the inverse of the H matrix. lf H is singular, there is no solution.

lf H is nearly singular, then the inverse H·' will have very large entries, and con-

sequently the term H" n can dominate the solution f. There are a few other as-

pects to the ill-conditioned nature of restorations that we will not elaborate on,

such as nontrivial perturbation effects on j by trivial perturbations in g, or non-

uniqueness offr because of the randomness in noise processes [2].

D. Image Restoration versus Image Enhancement
I

Image restoration is closely related to image enhancement. When an image

is degraded, restoration of the original image often results in enhancement. There
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are however, some important differences between restoration and enhancement.

ln image restoration, an ideal image has been degraded, and the objective is to

make the processed image resemble the original as much as possible. In image

enhancement, the objective is to make the processed image better in some sense

than the unprocessed image. In this case, the ideal image dcpends on the problem

context and it is often not well defined. To illustrate this difference, note that an

original, undegraded image can not be restored further, yet it can be enhanced;

for example by increasing sharpness through high-pass filtering [3].

1.3 Expert Systems

A. Definition ‘

Professor Edward Feigenbaum of Stanford University defined an expert sys-

tem as follows [I5]:

" an intelligent computer program that uses knowledge and inference procedure to solve

problems that are difiicult enough to require significant human expertise for their solution. '

As stated above, an expert system is a computer system that encapsulates spe-

cialist knowledge about a particular domain of expertise and is capable of making

intelligent decisions within that domain [I6]. Feigenbaum defines those who

build knowledge-based expert systems as knowledge engineers, and he refers to

their technology as knowledge engineering. Early systems were usually called

expert systems, but most knowledge engineers refer to their systems as knowledge

systems.
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Areas tackled successfully so far within an expert systems framework include

medical diagnosis, geological exploration, organic chemistry and fault·finding in

electronic equipment [I6].

B. Architecture of Expert Systems

An expert system is typically rule-based or knowledge-based. The typical

architecture of a knowledge-based expert system is given in Figure 4 [I5]. The

organization is slightly different from one author to another. The basic structure

of an expert system is organized around two fundamental modules: the know-

ledge base and the inference engine [I7]. The knowledge base can be structured

in two parts: rules and facts. The rules contain the production rules in a proce-

dural form, usually in "if-then” format. The facts contain the set of deductions

performed during the activation of the system.

Notice that the inference enginestands between the user and the knowledge

base. The inference engine performs two major tasks. First, it examines existing

facts and rules, and adds new facts when possible. Second, it dccides the order

in which inferences are made. In doing so, the inference engine conducts consul-

tation with the user.

C. Relation to This Research

R. Forsyth [16] has made a checklist of features which affect the suitability

of the knowledge-based approach. As can be seen in Table I, the field of image

restoration falls more on the left than on the right. There have been several at-

tempts to exploit the expert system concept in image understanding such as for
D
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Figure 4. The architecture of a knowledge-based expert system.
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Table I. Checklist for the suitability of an expert system.

¤··s··¤¤¤·¤¤
Diagnostic Calculative
No established theory Magic formula exists
Human expertise scarce Human expertise is abundant
Data is noisy Facts are known precisely
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segmentation, interpretation, and surface representation [l8,19,20,21,30]. To the

best of our knowledge, however, no work has been reported in image restoration

using that concept, even though a couple of authors express the necessity of using

it [2,3].
i

1.4 Image Segmentation

A. Definition

Image segmentation is the division of an image into different connected re-

gions each having certain properties, such as gray level or texture. Regions have

two basic characteristics: 1) they exhibit some internal uniformity with respect

to an image property, and 2) they contrast with their surroundings [l 1, p.223].

As a result of noise, the nature of these characteristics is not necessarily

deterministic.

During the past two decades, many image segmentation techniques have been

proposed. Likewise, numerous survey papers have been published [22,23,24].

The annual survey paper by Rosenfeld contains a rather complete bibliography

of image segmentation research from 1972 through 1986 [25]. Broadly speaking,

there are two ways of segmenting an image: by delineating the boundaries sur-

rounding its regions, or by defining its homogeneous regions directly [26]. Obvi-

ously, if we can do one perfectly, we can also do the other perfectly. The

processing methods used to determine the regions first are different however from

the processing methods used to determine the boundaries first. Given a regional
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property, such as intensity or texture, picture elements that are similar with re-

spect to this property may be combined into regions. Alternatively, the borders

between regions may be located by detecting discontinuities in image properties.

Another way of categorizing image segmentation techniques relates to the

approach taken: pixel-based or region-based [25]. The pixel-based approach to

image segmentation involves classification of the individual image points (pixels)

into subpopulations. The segments obtained in this way are the subsets of pixels

belonging to each class. The classification can then be done on the basis of in-

tensity alone (thresholding), or on the basis of local properties derived from the

neighborhood of the given pixel. An example of region-based segmentation

methods is the split-and-merge approach suggested by Horowitz and Pavlidis

[27]. Here the goal is to partition an image into homogeneous connected regions

by starting with an initial partition and modifying it by splitting regions if they

are not sufficiently homogeneous, and merging pairs of adjacent regions if their

union is still homogeneous. In this approach, homogeneous might mean approx-

imately constant in intensity or, more generally, it might mean a good fit to a

polynomial of some degree greater than zero, as in the facet model [31].

B. Relation to This Research

Professors Haralick and Shapiro claimed in their survey paper [24]

' there is no theory of image segmentation. Image segmentation techniques are basically

ad hoc and diifer precisely in the way they emphasize one or more of the desired propertiesI
and in the way they balance and compromise one desired property against another/’
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In this study, we want those image segmentation techniques which displays such

desired properties as l) versatility to handle most image models, including the

facet (or polynomial) and the random-field (or texture) models, 2) producing rel-

atively fast results, without iterations, and 3) boundary knowledge of the seg-

mented regions does not have to be precise and clear. Image segmentation is not

the final goal of this research, but instead it is a pre-processing step for the image

restoration procedure. Moreover it is generally known that the noise in the vi-

cinity of edges is less disturbing to the observer than noise in flat or homogeneous

regions [34,35]. For this reason, errors introduced by unclear or abrupt bounda-

ries are considered to be acceptable in this study.

To meet these three properties, we select the method proposed by Jeong and

Lapsa [28,29]. The latter method uses a general decision criterion and can handle

most image models. It uses a split-and-merge algorithm which satisties the 2nd _

and 3rd requirements as well. The uniüed approach by Jeong and Lapsa is

however not suitable for images with many details. For this reason, the masking

function approach by Netravali and Brasada [34,56] is also selected, as an alter-

native segmentation tool.

l
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Chapter II. The Science of Digital Image

Restoration

2.1 Overview

Image restoration has been the subject of extensive research over the past two

decades, as evidenced by the numberof papers published on this topic. The re-

search Worker who enters the field of image restoration for the first time can

easily be intimidated by the large number of techniques published [3, p.57].

Interestingly enough however, exclusive survey papers on this field have been

rare, especially in recent years. More than a decade ago, Sondhi [36], Andrew

[32], and Frieden [33] published survey papers on image restoration; in 1972,

1974, and 1975 respectively. Every digital image processing textbook devotes one

chapter to image restoration [8,9,10,1 1,12,13], but they are all fairly introductory
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and cover classical methods only. As even the recently revised editions [8,9] do

not update contents to a large extent, textbooks do not provide updated and

practical information to researchers in the field.

Probably the most practical and extensive source of digital image restoration

has been a book by Andrews and Hunt [2] published in I977. This book is

wholly devoted to the science of digital image restoration. Even though this book

is ten years old, it is still a useful source for the fundamental ideas of digital image

restoration. A few tutorial papers have been published recently as a chapter of

the book by Trussell [6], Biemond [7], and Hunt [3], but they fail to cover all

branches of the reported work on digital image restoration.

In the remainder of this chapter, we try to classify most of the reported image

restoration techniques into certain categories. By doing so, we can get a more

unitied and compact view of image restoration techniques. In Section 2, we re-

view most of the reported work. Classification is made in a conventional way

according to their approaches to image restoration. ln Chapter 3, we examine

image restoration methods from a different point of view, that will help us to de-

velop a new restoration method in which we use the artificial intelligence concept.

2.2 Classification of Digital Image Restoration Techniques

Over the last few decades, many image restoration techniques have been

proposed. Many of these techniques have been implemented and test results have

been published. In this section, we survey these techniques, describe briefly the

Chapter II. The Science of Digital Image Restoration 20



underlying concepts, and discuss their merits, limitations, and applications. We

then attempt to classify digital image restoration techniques, based on:

1) degradation models of the imaging system and the types of the noise it suffers

2) computationalalgorithms3)

availability of a priori information about the PSF and noise statistics

4) the number of channels (spectra) in the recorded image

5) specific applications

Of course there are special cases which can not be categorized this way, and those

will be included under 5).

2.2.1 Degradation Models

V Degradations may be divided into point degradations, spatial degradations,

temporal degradations, chromatic degradations, or some combination thereof [2].

An alternative division is one into radiometric or geometric distortions [ll]. Yet

another division is by PSF; linear shift·invariant, linear shift·variant, or nonlin-

ear. The nonlinear PSF is object-dependent, represented as follows

h = MC. may. f(€n1))

The consequent nonlinear analysis does not lend itself to simple solutions. To

° help in understanding this concept, an example is given in [2]. Even though there

are many imaging systems which exhibit an object-dcpendent PSF, such as X·ray
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photos, only object-independent linear PSF models have been considered in the

literature.

Point degradation does not incur blur in the images, but introduces a dis-

tortion due to coordinate transformations. That is

g(x„y) = h(x.v)f(pi(x.1»)„pz(x„v))

where p,(x,y) represents geometric coordinate transformations. Spatial degrada-

tion results when the PSF becomes a function of the object coordinate (C, r;) . In

that case

h = h(¤<.v„ é. vz)

Spatial degradations introduce some form of smearing, or loss of resolution, to the

image. Examples of spatial degradations are [2]; diffraction effects in optical

systems; first, second, or higher-order optical system aberrations; atmospheric

turbulence; motion blur; and defocused systems. Stated differently, spatial de-

gradation is modeled by linear shift-invariant (LSIPSF) and linear shift-variant

point spread functions (LSVPSF). An LSIPSF imaging system introduces the

familiar convolution. The associated H matrix is block Toeplitz. Block Toeplitz

matrices can be approximated with circulant matrices for which we can use FFT

techniques [2].

Noise types may be classified as signal-independent or signal-dependent, ad-

ditive or multiplicative, and white or colored. Typical examples of signal-

dependent noise are film-grain noise (Gaussian type) and photo electronic shot

Chapter H. The Seiehee or Digital image Restoration gz



noise (Poisson type) [54]. The presence of these kinds of noise sources commonly

leads to the use of nonlinear techniques. The approach of Kasturi and Walkup

[37] is to transform signal-dependent noise into signal-independent noise, so that

ordinary methods can be used. The correlation matrix for white noise is diagonal.

It is due to this simplicity, that most reseachers assume the noise to be white.

Stationarity of the noise process is also important, because otherwise the block-

Toeplitz assumption would not be valid. In the majority of papers published on

digital image restoration, the imaging system is assumed to be LSIPSF, with ad-

ditive white noise. This is especially true in earlier papers.

Space·variant image formation was discussed by Lohman and Paris in l965

[49]. Since then, several approaches were proposed to deal with space-variant

degradations. The approach of Sawchuk [38] to space-variant motion degrada-

tion is based on the decomposition of the degradation into geometrical coordinate

distortions and a space-invariant operation. Robbins [39] and Robbins and

Huang [40] discuss the space-variant imaging system where the on·axis PSF is in

focus and the off-axis PSF is spread out in radially symmetric. The algebraic

approach, such as the iterative [4l,43] or recursive [42,44,48] method, has been

successfully applied to the problem of spatially-varying image degradation. The

locally adaptive method is another way of solving the space-variant problem [45].

The recorded image is degraded by motion blur, whenever there is relative

motion between an object and the imaging system. There are two kinds of motion

blur: space-invariant and space-variant. Motion blur alone has generated a great

deal of interest among researchers [38,46,47,48,50,5l].
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For an extremely defocused lens, the assumption can be made that the PSF

is constant over the shape of the aperture, and zero elsewhere [1 l]. A defocused

lens with circular aperture of radius a is modeled therefore with the following

PSF, in polar coordinates [5l]:

l, r S ahl') · io, „>„ l‘°)

Note that the OTF (optical transfer function, Fourier transform of PSF) of (IO)

contains phase reversals.

The blur caused by atmospheric turbulence for long exposure times can be

approximated by [52]:

—b(¤¤2 +y2) ”
h(x.v) = é (11)

In this case, the OTF dose not exhibit phase reversals. McGlamery [53] discussed

this in some detail.

2.2.2 Computational Algorithms

The published techniques have been organized in many different ways, ac-

cording to the computational algorithms involved. Andrews and Hunt [2] made

a distinction between non-iterative methods implemented by Fourier computa-

tion, and linear and nonlinear algebraic restoration methods. Hunt [3] simply
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made a division into direct and indirect techniques. Trussell [6] characterizes on

the basis of statistical information and constraints.

Our categorization here will be into Fourier based, algebraic, and contempo-

rary methods. a

a) Fourier Based Methods:

Fourier based methods are noniterative, and implemented by the use of

Fourier computation. Results, such as a desired restoration, are produced in one

step fashion by executing an appropriate spatial filtering operation. By assuming

space-invariant imaging systems, we have a Toeplitz PSF matrix and a circulant

approximation thereof. The result is, that discrete Fourier transforms (DFT) can

be exploited in the computation.

_The typical Fourier based filters are

a) the inverse filter, with a least—squares criterion,

b) the Wiener filter, with a MMSE criterion [65],

c) the homomorphic filter, with a power spectrum equalization criterion (also

called spectral equalization filter) [63]

To describe the above filters in more detail, we start from the imaging model

g = Hf + rz (12)

where H is block Toeplitz and n is additive noise. The inverse filter meets the

least-squares criterion by minimizing the norm of the noise term n. That is, we

want to find
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fc such thatnTn = (g — Hj/*)T(g —- Hf)

Differentiating with respect to f' and solving for yields

1* = H** g (131

The solution (I3) is called the inverse filter because the restoration is obtained

with the inverse of H. As mentioned in Section l.2., the singularity of H and

the effects of noise are of concern. For this reason, the inverse filter is applicable

only to images with high SNR, i.e. very little noise. Another problem is the in-

version of the large-size matrix. By approximating the block—Toeplitz matrix with

a block·circulant matrix however, we can use a direct algorithm for computing

the restoration by using DFT techniques [2]. The primary difference between the

block-Toeplitz and block·circulant matrix is that they differ only by elements

added to produce a cyclic structure in the rows. By approximating the block-

Toeplitz with a block·circulant matrix, we approximate the linear convolution

with the circular convolution. The larger the image size, the better the approxi-

mation will be.

A Wiener filter is derived from a criterion of minimum mean·square error

(MMSE) between the original object distribution f and its estimate That

means we try to minimize the difference between f(x,y) and jf(x,y) over some

random ensemble of possible objects. Let jf = L g. Then we get

L = 12,1=1T(1112,11T + 12,,)** (14)
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where R, = E{ff"}, R,, = E{n rf}.

Again, by approximating H, Rf, and R,, as block-circulant, we can use DFT

methods to compute fi See [2, p.137] for details. The estimate in the Fourier

domain is [65],

I; (u,v) G(u,v) (I5)
|H(u,v)I + 5,,(u,v)/5j(u,v)

As can be seen in (I5), there is no ill-conditioned behavior. Even though H(u,v)
' becomes small or even zero, the denominator can not fall below the lower limit

set by the ratio 5,/Sf . With extremely low noise, such as 5,, —· 0, this Wiener filter

approaches the inverse filter. Note that we only need Sfand 5,, in actual compu-

tation, where 5, = 5flH|* + 5,, .

In developing the filter, stationarity of the random process models is as-

sumed. For models with underlying nonstationary random processes, the Fourier

based computation methods are not necessarily valid. We must note that this

MMSE estimate uses only the covariance information of the stationary model.

It is generally known that the MMSE is not the criterion that the human visual

system employs naturally. MMSE restoration in low SNR appears too smooth,

the human eye is willing to accept more visual noise in exchange for the addi-

tional image structure lost in the process.

Exact information about the original object distribution being unavailable, it

is reasonable to specify properties in terms of an average quantity, such as a V

power spectrum; which is a very common average quantity in signal processing.
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The homomorphic filter [63] is derived by requiring the power spectrum of the

estimated object
jl}

to equal the power spectrum of the original object f That is,

we require

S/(u,v) = S}(u,v) (16)

Then we get

S u,v) 1/2
(17)

|H(u,v)| Sf(u,v) + S„(u,v)

As seen in Eq. (17), there is no il1·conditioned behavior in regions where I-I(u,v)
—• 0. The homomorphic filter approaches the square root of the signalzto-noise

spectrum. The important point is that because the Wiener- filter is forced to zero

at a singularity, its frequency response shows greater variation than that of the

homomorphic filter [3]. In addition, because of the cutoff behavior at a

singularity, the power spectral equalization filter has higher gain at frequencies

near the singularity, thus admitting more structure into the restored picture than

the Wiener filter. Though it is not optimal in the MMSE sense, experimental

studies show that a human viewer usually prefers images produced by power

spectral equalization restoration over those restored by Wiener filtering [3]. Since

the human visual system is not a minimum mean-square error processor, it is not

a surprising phenomenon that the result of the Wiener filter is not necessarily

preferred.
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In general, the restoration for lower SNR with a homomorphic filter will ap-

pear slightly sharper than the corresponding Wiener filter restoration [3,64].

b) Algebraic Methods:

Algebraic methods for digital image restoration are based on the concepts of

numerical analysis or linear algebra. These methods are more powerful and more

flexible than the traditional ones based on spatial filtering using the two-

dimensional Fourier transform. Such numerical methods can deal with problems

concerning linear space-varying systems as well as linear space-invariant systems

and can work under various constraint conditions. The typical algebraic methods

may be classified as follows:

linear methods -
• inverse filter

• constrained least-squares filter

• parametric Wiener filter

• geometric mean filter

• pseudo-inverse filter

nonlinear methods ·
• iterative methods

• Bayesian methods (MAP, ML)

• maximum entropy methods

• optimal recursive methods (Kalman)

ciiepeee u. The Science er oigieci Image Reennceinn 29



In the inverse filter derivation, we seek the j" that minimizes the norm of the

difference between Hf" (the estimated object fi reblurred through the PSF) and

the given image g. The inverse filter is represented by

(H" HV' H" um

where * stands for conjugation and t stands for transpose. Note that (18) has

singularity problems if H is singular, as is the case with the traditional Fourier

inverse filter.

A constrained least-squares filter has been developed by Hunt [66], in which

the constraint allows the designer additional control over the restoration process.

Let the linear operator, i.e. constraint matrix, be C. The constrained least-

squares problem can then be formulated as

minimize ||CfI|2 subject to Ilg — H/Ilz = Ilnllz

By using the method of Lagrangian multipliers, we get

· ^ ·r ·1 -1 •1
f=(HH+vCC)Hg (19)

Here y, the reciprocal of the Lagrangian multiplier, must be adjusted such that

the constraint Ilg — Hjllz = llnllz is satisfied. This is often done in an iterative

manner [66]. lt is possible to generate a family of filters from (19) according to

C.

If C = I, the identity matrix, it leads to the pseudo·inverse filter.
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lf C = eye model, the restoration is appealing to a human from a perceptual

viewpoint [67].

If C =
¢>;‘/2

rb}/2 , it leads to a parametric Wiener filter, where ¢>/, ¢>„ are

the signal and noise covariance matrices. lf y = 1, the filter reduces to the

traditional Wiener filter.

The linear algebraic version of the Wiener filter minimizes the effective

noise-to-signal ratio for the estimated object Ä', while simultaneously minimizing

the residual norm between the image and the reblurred estimated object. The

resulting Wiener filter is given by

(H·'H +
¢;‘4>„)"

H" (20)

With the constrained approach chosen, we get the parametric Wiener filter

(H*'H + V
¢>fl<1>„)'lH*‘

(20

According to the value of y, we can emphasize (y > l) or de-emphasize (y < I),

the noise and signal statistics.

The motivation for developing the geometric filter is the desire to de-

emphasize the low frequency dominance of the Wiener filter, while avoiding the

singularity of the inverse filter. This can be done by parameterizing the ratio of

the inverse filter to the Wiener filter effect on the restoration. That is

(inversejiIter)“ (parametric WienerfiIter)1”°‘
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where 0 S oz S 1. By adjusting oz and y (of the parametric Wiener filter), we can

get a number of different filters, such as the inverse filter, the Wiener filter, the

geometric mean filter, the parametric Wiener filter, and all in·between filters,

such as the inverse-dominated filter or the Wiener·dominated filter.

lf the PSF matrix H is singular, there will be a possibly infinite number of

objects
;“

which could have provided the given g. A pseudo·inverse filter provides

the object J? which is smallest, and which when passed through H, also equals the

image g. In other words, the pseudo·inverse filter is equivalent to minimizing the

difference between the image g and H} (the estimated object jf reblurred through

the PSF), subject to a minimum norm on f. The pseudo-inverse filter, denoted

by H*, is given by [69]

. _ H+ = (H°H+yI)_1H*' (22)

A major problem associated with algebraic image restoration methods is the

problem of solving simultaneous equations with many unknowns (an image of

200 x 200 pixels has 40,000 unknowns). ln practice, it is impossible therefore to

solve them directly or by using the inverse matrix, even when a large computer

is used. The requirement of a large memory is another problem.

Iterative methods form one approach to solve the above problems. The use

of an iterative method saves much computer memory and much computation

time if the PSF matrix H is sparse [71], which is generally the case, because the

extent of the PSF in the actual imaging system is considerably smaller than that

of the object. lterative techniques are also flexible in incorporating a priori in-
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formation into the restoration process, and they have become popular in image

restoration because of this flexibility. There are a number of iterative techniques,

such as the Jacobi method, the Gauss-Seidel method, the steepest descent method

[70], and constrained iterative restoration methods [7l] [72]. Singh et al. [73]

published a good survey paper on this topic.

Convergence is the important factor in judging the performance of iterative

techniques. During iterations, several constraints can be introduced. Conver-

gence of the iteration is guaranteed, when the composite constraint operator is

nonexpansive. Schafer et al.[72] and Trussell [74] discuss convergence issues in

detail.

The maximum a posteriori density (MAP) method uses Bayes theorem to ex-

press the conditional probability that any restoration is correct, given a blurred

image. The criterion can be written as follows

maximize p(/lg) = (23)f p(g)
As seen in Eq. (23), the form of the density functions must be known. An expo-

nential form is usually assumed for both p(g|f) and p(f) [6]. The form for p(g)

does not matter since the term is independent of f, and thus its derivative with

respect to f will be zero. While many exponential forms can be selected, the most

common is the multivariate Gaussian distribution [6]. Assuming image formation

models with sensor nonlinearity s(.),

g = s(Hj) + n (24)

Chapter u. The Science of oagaeei nhege Reecemaeh ss



we obtain the following implicit equation in ?,

f = E + R,H'S,,R.7‘ ig - smb) (zi)

where Ä is the meanvof the distribution of f, S,, is a diagonal matrix of derivatives

of s evaluated at the points of b = H? . A numerical solution to Eq. (25) can be

obtained by using the modified Picard method [77], which is however computa-

tionally expensive. If the function s is a linear transformation, the matrix 5,, be-

comes an identity matrix. By the use of circulant approximations for

Rf, H, andR„ , the MAP estimate can be approximately computed by using the

efficient FFT. lt is known [75] that the MAP and MMSE estimates are equiv-

alent for linear systems and symmetric densities.

It has been shown that the more exact model leads to restorations which are

superior to those obtained by simpler assumptions [76]. However, the computa-

tional burden may be orders of magnitude greater. A reasonable strategy is to

obtain a restoration by a fast linear method, such as the Wiener filter or linear

MAP, and to observe whether this result is adequate. If not, the more expensive

nonlinear technique may be applied. Cannon et al. [64] suggest that the result

of the Wiener or PSE restoration be used as the starting point for the numerical

MAP method. They conclude that for focus·blurred images, the MAP method

performs better than other methods, such as the Wiener or PSE method, espe-

cially in a high SNR environment. The MAP method appears to be better able

to cope with the singularities and phase reversals (of that type of blur) [64]. The
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MAP filter passes more high-frequency information, including noise, than the

MMSE filter [6]. This often results in visually more pleasing images.

Associated with the MAP estimate is the maximtun likelihood (ML) method,

which is derived by assuming that p(f[g) =p(g[f); i.e. the vector f is a nonrandom

quantity. The maximum likelihood estimate is then given by [2]

^ _ H-1 -1fmt - S (g)

It is seen that the ML method requires the inverse transformation of the sensor

response, and also that we have potential problems associated with the ill-

conditioned nature of
H·‘.

Precisely because of these problems, the ML method

is of limited utility [2].

Suppose that the object f is normalized to unit sum, that is = 1, so that

the scalar values ß can be interpreted as probabilities [68]. The entropy of the

object would then be given by

entropy = — Zßlnß = —fTlnf (26)
1

By applying a constrained least-squares approach with the constraint

[lg — Hfllz = ||n||* , the following relation [2, p.l53] results

- A • A

f = ¤Xp{ -1 — 2vH
‘(g

- Hf)} (27)
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This is a nonlinear matrix equation for j, where the exponential guarantees the

positivity of the restoration. Linearization, by observing the first two terms in the

Taylor series expansion, results in

f = (H'°H + m" H*°g · <28>

where y is the reciprocal of the Lagrangian multiplier. The formulation in Eq.

(28) is known as the linearized maximum entropy filter. Actually there are two

forms of the maximum entropy method [6]. The first is derived from a maximum

likelihood assumption [68]; the second from a maximum a posteriori assumption

[2,78]. Eq. (27) is derived by the second assumption. While the forms of the two

maximum entropy solutions may seem quite different, they very much have the

same characteristics.

The maximum entropy method works well with an image having relatively
h

few high values, and with little correlation between points. A starfield from as-

tronomical imagery tits this requirement well.

ln recent years recursive Kalman filter techniques have been applied to the

area of image restoration in hopes of obtaining an optimal restoration method.

The first attempt to extend Kalman filtering to the processing of image data was

performed by Nahi and Assefi [79]. Even though the observed image is a two

dimensional array, it was treated as one dimensional by scanning the image line

by line and applying a Kalman filter. A common problem encountered in de-

signing two-dimensional recursive filters is the lack of a 2·D spectral factorization

theorem. Habibi [115] was the first to generalize Kalman filtering to two dimen-

T
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sions. His filter was essentially a one-step predictor. Aboutalib and Silverman

[46] discuss linear motion blur, which they then extended to the case of general

motion blur in Aboutalib, Murphy, and Silverman [48]. Woods and Ingle [80]

derive a Kalman filter for scalar observations based on a nonsymmetric halfplane

model for the original image. The image is filtered one pixel at a time. Murphy

and Silverman [81] discuss a vector Kalman filter based on a general semicausal

image description. This filter processes the image one line at a time.

All approaches with two-dimensional recursive filters are characterized by

large computational and storage requirements, and complexity in design and im-

plementation. For these reasons many authors propose various modified recur-

sive Kalman techniques which are suboptimal in performance, but which reduce

computational load and memory space requirements. Some references are Rajala

and Figueiredo [35], Biemond, Rieske, and Gerbrands [81], Watanabe, Osaki,

Horii, and Kageyama [82], Felix, Cheng and DeMoment [88], and Min and

Xiang [83]. The recursive filters are most useful when the degradations are causal

and spatiallyvarying.A

compromise, between the transform based Wiener filters and the two di-

mensional recursive filters, is obtained by the semicausal filters [84]. These filters

are implemented by taking an image transform along one of the coordinates and

performing recursive filtering operations on the other coordinate. These filters

combine the advantages of recursive and transform based algorithms.

Due to the nonrealistic assumption that only a few parameters, such as cor-

relation coefficients in x and y, can embody the features of interest in a typical
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image, the results obtained with real images are often disappointing. A better

assumption would be that there are different regions in an image where different

correlation coefticients would apply. This problem is alleviated by partitioning

the image into regions according to some criteria, local spatial activity [35] for

example. The restoration process is then linear within segments, but nonlinear

considering the whole image.

C) Contemporary Methods:

Two recently proposed methods will be discussed here. They are projection on

convex sets (POCS), and fuzzy set methods.

POCS Methods

The constrained approach discussed earlier in this section emphasizes a single

constraint, forcing the norm of the residual to be equal to the variance of the

noise. There may be other constraints which are desired, but additional con-

straints may result in an unwieldy set of equations [6]. A new approach is to

formulate the constraints as convex sets. Youla [94] applied this concept to image

restoration by a method of alternating projections. He considered the image res-

toration problem as that of determining an original signal f in a Hilbert space

from the projection of that signal onto a subspace. The alternating projection

algorithm provides background for its extension that can be applied to image

restoration. The restriction of defining subspaces can be broadened to that of

requiring closed convex sets [85, 86]. A set C, is convex if for any two points in
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C, the line between the points is also in C. That is, if x, and xz are in C, then the

point x = ax, + (1 —- oc)x, is also in C for all oz, 0 S oz S l. A set C, is closed if the

limit point of any sequence of points in C is also contained in C. That is, if x, is

in Cfor all i and ||x—x,|| —»0 asi —»«>o , then xis in C.
l

Constraints can be applied to the image restoration problem by formulating

them as closed convex sets. Youla and Webb proposed and proved ll different

closed convex sets [85]. Sezan and Stark actually applied some of them to the

restoration problem [86,87]. This represents a novel method of including a priori

knowledge in the restoration process. Each closed convex set represents a con-

straint on the image. The original signal must then lie in the intersection of all

the sets,

fe C1
1:1

where C] is a closed convex set. Beex [119,120] proposed a similar concept for

noisy data. The solution algorithm is to sequentially project the estimates onto

each of the sets until an estimate jl"l is found in the intersection. The method can

be described mathematically by

° 1"‘+" = <HP.>1"‘l = P„.P„.-1--.P11"" @91
1:1
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where P, is the projection operator onto the ith closed convex set C}. The

projection of a vector x onto the closed convex set C is the vector x, 6 C, which

is closest to x; that is, llx — xcll is a minimum. The initial estimate fl°* can have

a profound effect on the restoration result [89]. This indicates that the initial es-

timate jl°* may be useful in allowing the user to insert a priori knowledge [89, 90].

The initial estimate should be chosen to have the characteristics of the true sol-

ution.

Leahy and Goutis [91] pointed out that the POCS method is suboptimal and

has two major problems; slow convergence and nonuniqueness of the solution.

They proposed a new technique, so called dual optimization, for tinding an opti-

mal feasible solution which is free from the above mentioned problems. The dual

optimization procedure however, does not offer the full flexibility of POCS in that

the number of constraint sets is limited [91].

Fuzzy Set Methods

The latest entrance into the world of image restoration methods is the appli-

cation of the theory of fuzzy sets proposed by Civanlar and Trussell [92]. The

theory of fuzzy sets is a relatively new but well·developed mathematical area

which is beginning to find application in such areas as operations research and

economics. The theory provides a tool for handling inexact or approximate

knowledge. _

As an example, we can. look at the following closed convex set [90,119]
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2 2C = {fl IIg—HflI $6,,} (30)

where aß is the noise variance. The fact that C is convex can be shown easily.

Since the value of aß is estimated, there is some uncertainty about its value. The

true solution could lie outside of the set C. Some values are more likely than

others, and values outside the range are not impossible. A more accurate con-

straint on the solution of the restoration problem should reflect this uncertainty.

Fuzzy set theory accommodates this uncertainty by the value of the membership

function. The membership function [93] describes the strength of our belief that

an element x is a member of the set A, and is denoted by uA(x) . lf p,,(x) = l,

we are certain x is in A; if ju„,(x) = O, we are certain that x is not in A.

A fuzzy set A is defined on a set of objects Q as a set of ordered pairs

A = {x, #,,(x)}, ref! (31)

where p_,(x) is a membership function of the set. The function u„,(x) is defined

over all x in the space Q and has a value between O and l. . .

Fuzzy sets can be used to describe constraints for restoration problems.

Thus, as with the POCS method, the solution is a vector in the intersection of a

specified collection of fuzzy sets. It is natural to define the solution as that

member which best satisfies all of the imposed constraints. That is

maximize {minimum (uAl(x), , uAN(x))} (32)
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The methodology for solving the maximization problem will depend on the par-

ticular mathematical forms of the membership functions [6].

The key to the use of fuzzy sets is the membership function. The membership

function may be equivalenced to a probability density function. If the distribution

of x is known, that function can be used to define a membership function [94].

A fuzzy set is defined by its membership function. Therefore the user must

mathematically describe the qualities he desires in the restored image. Some of

the common examples include positivity, smoothness, and maximum power

[92,119]. Some other qualities are also suggested [6]. Often it is difficult for the

user to define a membership function describing the quality he desires. lt is re-

commended that care be taken to choose a form that permits a tractable nu-

merical solution [6].
·

This fuzzy set approach to image restoration is in its infancy. Preliminary

work with one dimensional signals has shown some promise [6, 92]. A critical

drawback of this method is the fact that the computational requirements are [

quite heavy. This has limited the dimensionality of the problem. At present it

appears that numerical solutions to the fuzzy set formulation will have to be de-

veloped on a case by case basis. Another problem is the dependence of the sol-

ution algorithm on the choice of membership functions and the defining algebra.
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2.2.3 Availability ofA Priori Information

According to the availability of a priori information about the PSF and noise

statistics, the published techniques may be organized into four groups. These are

the combinations of (un)known PSF and (un)known noise statistics. Most image

restoration methods are based on the assumption that the correct PSF and noise

statistics are available a priori. Most restoration methods discussed in Subsection

2.2.1 fall into this category.

If the noise statistics are nmknown, they are estimated from the given image.

The noise norm is a very popular statistic in constrained restoration methods.

Most constrained restoration methods use the constraint requiring the norm of

the residual image to be equal to the noise norm. lf we follow the general as-

sumption of white Gaussian noise, then the norm of the noise is the same as its

variance. In Eq. (30), the noise variance was used to deiine a convex set. The

noise variance can also be used to define the convergence criterion for the itera-

tive restoration method.

Noise variance can be calculated from the regions of relatively unchanging

object content. By comparing the eigenvalue plot of a dark flat region to that of

a light flat region, we can tell whether the noise is signal-dependent (multipli-

cative ) or not [2, p.l02]. It is believed that the noise is multiplicative, or at least

has a signal dependent component, if the noise process changes as a function of

the underlying object brightness.
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Kondo and Atsuta [95] proposed a restoration method which does not need

the noise norm information. They proposed two quality measures for a restored

image; a measure of smoothness and a measure of fidelity. A measure of fidelity

has the same role as the noise norm in the constrained least squares method.

If the PSF is unknown a priori, we have two choices. We may use those image

restoration methods which do not require PSF information, or we may derive the

PSF characterization from the degraded image.

The homomorphic filtering method does not require the PSF information a

priori. As discussed in Subsection 2.2.2, the power spectrum of the PSF is esti-

mated from the image and used for image restoration.

The method of deriving the PSF from the analysis of points or lines in the

image has been successfully applied in a wide number of cases [2, 6, 96,97]. A

point image, such as the image of a glint of sunlight off glass or metal, is by de-

finition the point spread function. On the other hand, the image of an edge is the

projection integral of the PSF in the direction of the edge. In this case an addi-

tional assumption, such as rotational symmetry, is required to recover the PSF

from the line spread image, which may be observed in the image itself.

Quite recently a number of researchers, including Biemond [98], Woods

[62,98], and Kaufman [62], reported their work on identification of PSF parame-

ters. The blurred image is modeled as the output of a noncausal unknown linear

system, which is characterized by its PSF. Tekalp, Kaufman, and Woods [62]

developed spatia1·domain procedures for simultaneously identifying both the PSF

parameters and the image model parameters without assuming a specific func-
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tional form for the PSF. The image model coefficients define the AR part, and

the blur parameters define the MA part. The identified parameters are then used

for the design of a two-dimensional reduced update Kalman filter for subsequent

restoration of blurred and noise image.

Biemond, Putten, and Woods [98] propose a parallel scheme for the identifi-

cation of two-dimensional noncausal image blurs. They formulate the blur iden-

tification problem as a parallel set of one·dimensional nearly uncorrelated

ARMA identification problems. Again the image model coefficients form the

· AR part and blur parameters form the MA part. They express the ARMA

models as equivalent infinite-order AR models, and then follow the linear esti-

mation procedure developed by Graupe, Krause, and Moore [99]. They extend

this procedure by developing a parallel Kalman restoration filter with those

identified image model and blur parameters [61]. Han and Yenping [47] also re-

port a method for estimation of the motion blur parameters. They propose a new

degradation model for motion blur and apply sign statistics to estimate the de-

graded parameters.

2.2.4 The Number ofChannels

Based on the number of channels, image restoration techniques can be

grouped into single or multi·channel image methods. By single channel images, _

we mean monochrome images. Multi-channel (or multi—spectrum, multi·plane)
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images are defined as images with multiple image planes obtained by an imaging

system that measures the same scene using more than one type of sensor.

Digital image restoration of monochrome images has been studied exten-

sively; the restoration of multichannel images however, has received attention

only recently [100,101,102,103,104]. Most of the restoration techniques for

multi-plane images so far involve individual image plane restoration, without us-

ing the interactions between the image planes. Hunt and Kubler [103] however,

propose a multichannel restoration scheme based on the assumption that the sig-

nal autocorrelation, the between·channel and within·channel relationship, is sep-

arable. This leads to a linear transformation to decorrelate the signal between

image channels, making the channels orthogonal. Galatsanas and Chin [102] do

not introduce the assumption of spectral and spatial separability in their restora-

tion algorithm. They use both the within·channel and between—channe1 corre-

lation. They claim that as a consequence, the restored image is a better estimate

than the one produced by independent channel restoration. Angwin and

Kaufman [104] also consider multichannel image restoration by applying the re-

duced update Kalman filter to each of the red, green, and blue components of a

color image.
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Chapter III. Hierarchical Classification of Image

Restoration Methods

We will next classify reported work according to the number of restoration

methods involved for a single degraded image, and the shape of the degraded

images to be processed. A division can be made into four categories, which in

increasing order of intelligence are the following

(l) a single method for one image with single region

(2) a single method for one image with sectioned regions

(3) a single method for one image with segmented regions

(4) multiple methods for one image with segmented regions

We note that categories (l), (2), and (3) are special cases of category (4). This

evolution concept is illustrated in Figure 5.

Examining restoration methods in this way, we realize how research has been

heavily concentrated in one direction. Almost all of the reported restoration
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algorithms apply a single method to the whole picture, falling into category (1).

These restoration methods were covered in Chapter II, which we refer to for a

discussion of category (l).

The sectioning concept has been used in image restoration mainly for reduc-

ing the computational burden. Sectioning is the division of an image into equal-

sized regions. By processing small portions of an image separately, the

requirement for computer memory space is reduced. A few papers [44,45,55] fall

into category (2).

We point out that segmentation and sectioning are different concepts. Seg-

mentation is the division of an image into different connected regions each having

certain properties, such as gray level or texture. Actually image segmentation

alone is one of the major fields within the image processing discipline. lf we have

a degraded image of a building with a grassy field in the background, the usual

assumption of a single characterization for the whole image is not correct. The

correlation among pixels of the building is different from that of the grassy field.

In this case, it is advisable to segment the image into two regions so that we can

use different paramßtcrs for the different regions. Image segmentation will not

only reduce the computational load and memory space, but it will also improve

overall performance. As a result of processing the segmented regions separately,

we get a nonlinear restoration effect for the whole image even when each of the

segmented regions is processed by a linear method. This idea was speculated a
i

decade ago [2], but no work has been reported until recently. Rajala and
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Figueiredo [35], and Jinchi et al. [57], proposed image restoration methods in

which segmentation is required. The latter belong to category (3).

To the best of our knowledge, no reported image restoration method falls into

category (4). Even though it is not about image restoration, the paper by Qian

et al. [58] on image enhancement is worth mentioning here. This algorithm in-

cludes segmentation and four different filters. lt applies different filters for re-

gions with different local activities. The proposed research falls into category (4).

We segment the image into regions of homogeneous characteristics. For each of

the different regions, we decide the most appropriate restoration technique with

the help of a rule-based expert system. Details will be discussed in the next

chapter.
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Chapter IV. Image Restoration Using a Knowledge

System

4.1 Overview

In this research, we plan to develop a general and versatile digital image res-

toration tool with the help of a segmentation·oriented ruIe·based expert system.

We would like to emphasize a few points to justify the idea of building an expert

system for image restoration.

Though numerous image restoration techniques have already been reported,

there is no generally·agreed to best method. Most methods are designed to treat

a very specific case. lf one type of technique is applied to a class of images dif-

ferent from that for which it was designed, the results are often unacceptable [6].

Rule·based expert systems can resolve this conflict by choosing a correct method
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for each of a number of different cases. In fact Hunt [3, p.75] has already spec-

ulated the necessity of an expert system in this field [3, p.75].

" The implementation of a truly autonomous system for image restoration will probably

require integration of restoration filters with knowledge base or expert systems of artiiicial in-

telligence. "

Before building an expert system, we may need to check whether such a sys-

tem is suitable for our application or not. As given in Table l of Chapter l, R.

Forsyth [16] has proposed a checklist of features that affect the suitability of the

knowledge·based approach. According to Forsyth, if our intended application

falls more on the left than on the right of this table, we should seriously consider

an expert system. Our application passed this suitability test. To the best of our

knowledge no research work on this topic has been reported, in spite of this

speculation andsuitability.Another

important aspect of our research is the idea of applying the image

segmentation concept to image restoration. This idea was proposed by Hunt [2,

pp.204·206] to derive the optimal recursive estimates of the original image con-

sisting of several different regions. This idea however, was only speculated, and

not implemented until recently.

Segmentation and sectioning (or partitioning) are different concepts. The

former process is done with intelligence, whereas the latter is done blindly (with-

out intelligence) by dividing the image into equal-sized blocks. The sectioning

concept has been used in image restoration on several different occasions. In the

homomorphic filtering approach, the image is divided to estimate the average

power spectrum [2, p.l42]. In the Kalman filtering approach, the image is di-
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vided into sections or strips to ease the computational load and complexity by

reducing the matrix size [9, p.327],[44,55]. Hunt and Trussell [45] proposed a lo-

cally adaptive image processing method by sectioning the image and applying a

modified MAP restoration algorithm. Here the sectioning is equivalent to the

decomposition of the filtering process into localized convolutions.

Rajala and Figueiredo [35] are the first researchers who have actually incor-

porated the segmentation concept into an image restoration method, realizing

that the usual assumption of a single characterization for the whole image is not

correct. They segment the image into regions by thresholding the masking func-

tion [34,56] which is the measure of spatial activity. The reasoning behind the

segmentation is to adjust the parameters of the difference equation for each of the

homogeneous regions. Jinchi et al. in their recently reported work [57] also use

the masking function to segment the image. Again, the segmentation concept is

used to accommodate the differences of model parameters for different regions.

We would like to point out that in all of the above a single image restoration

technique for the whole image is used.

Though it is in primitive form, the paper by Qian et. al [58] on image en-

hancement has the flavor of artiücial intelligence. The image is segmented into

regions and four different filters are used for regions with different local activities.

This paper is considered to be closest to our research.

The goal of this research is to derive an automatic image restoration method

_ which gives the best result in both the quantitative and qualitative sense. It is

attempted by building a segmentation·oriented rule-based expert system with the
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following major procedures: l) Get a priori information either from the user or

by computation, 2) Segment the image into several homogeneous regions, 3) Se-

lect the most suitable image restoration technique for each segmented region with

the help of the knowledge base and the inference engine, 4) Apply the selected

method to the corresponding regions, 5) Determine boundary region treatment,

and, if desired, compute the performance criteria.

Two image segmentation methods [28,56], which are applicable to most image

models, are installed in the system. The unitied approach [28,29] is good for im-

ages with a relatively small number of regions, and the masking function ap-

proach [34,56] is good for images with many details.

Although a number of interesting methods for image restoration have been

proposed, only a fraction of these are of practical use. About six restoration
' techniques are selected and installed into the system, along with programs to ex-

tract the a posteriori information. The schematic diagram of the proposed system

is provided in Figure 6.

4.2 Selection of Methods

We need to select several image restoration techniques, and in fact we imple-

ment about 6 methods. Some procedures are designed for a very general prob-

lem. Few assumptions are made about the type of image to be recovered and

these methods require little a priori knowledge. Other methods are designed to
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treat a very specific case. Such methods use a great deal of a priori knowledge.

The important selection criterion is the ability to solve realistic problems. Ac-

cording to Hunt [3], realism in the application of an image restoration may be

measured by the following aspects:

l) an image restoration technique should be computable at an average computer

facility,

2) the computational requirements of the restoration technique should be appli-

cable to pictures of reasonable size,

3) a realistic image restoration technique must be successful in the presence of the

information that is available a priori, or must be a technique that is relatively

insensitive to errors in the state of knowledge of the a priori information.

Considering those requirements, a preliminary selection of the possible candidate

techniques has been made as follows:

• constrained least squares filter

• geometric filter

_ • homomorphic filter

• MAP method

• maximum entropy method

• Wiener filter

The fuzzy set method is a powerful tool, but since the computational load is too

big, we dropped it from the list. With the selected methods above, most of re-
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ported restoration methods can be deduced by adjusting parameters or constraint

matrices.

Other software that was implemented consists of segmentation algorithms

and a posteriori information computation algorithms.

The interface module controls the order of processing for each of the seg-

mented regions. Computed a posteriori information is transferred to the A.l.

module to help in selecting the correct restoration method. Section 4.6 gives more

details.

4.3 Generalized Masking Function

It is generally known that at sharp transitions in image intensity the contrast

sensitivity of the human visual system decreases with the sharpness of the tran-

sition and increases approximately exponentially within limits as a function of

spatial distance from the transition [l 16].

With this property in mind, Anderson and Netravali [34] define the masking

function M, at coordinate i,j as a measure of spatial detail to be

1+k
CIKW) (P<i)ll Elmpql (33)

p=i—k q=j—·I

where ||(i,j) — (p,q)|| denotes the Euclidian distance between positions (i,j) and

(p,q); ni}; and vip'; are the vertical and horizontal slopes of the image intensity at
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(p,q) respectively; C is a constant controlling the rate of exponential decay of the

effect of an image intensity transition on its neighbors; and k, 1 are constants

controlling the size of the relevant neighborhood around (i,j).

It is clear that 1%] increases monotonically with the amount of spatial detail

in a two-dimensional neighborhood surrounding a picture element. Rajala and

Figueiredo [35] show that the masking function approach works well with C = .35,

k=l= 1. Their test image was the face of a girl. They derive
m],‘f]

and mg by

1 P+ V1
I P

mg, = —;— Zgwq) —g
2 g(¤„<1) (34)

ll=p Il=p— V2

I *7+ Wi
I

(7
mj; = W Zgtm —-E 2 g<p.~> (35)

il=q Il=q•W2A

thresholding operation is used to segment the range of values of the measure

of spatial activity 1%], such that the image will be divided into regions

Q.], p = 1,2, ...,k. The region Q], is chosen if

ap_l

apwherea], is chosen subjectively depending on the range of 1%] and the number of

regions desired. Equations (34), (35) look reasonable, but they turn out to be

unable to handle many situations, especially noisy images. lt also generates un-

usually high values around the edges, even when v, and w, are set to 3. To take

care of this deficiency, we modified equations (34) and (35) as
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p+ vl q+l p q+l
V -;.mm- vl + l I; g(u,v) V2 + 1 _Z g(u,v) (37)

·—P v=q—I
“··P V2 v=q—1

q+ wl p+I q p+l
H l lmpq = — g(V•¤) ——- g(V.V) (38)

W1 + 1 u=‘I
v=p—l

W2 + 1 **:;***2
Äl

Equations (37) and (38) are better able to cope with noisy situations and do

not generate unusually high values. A result of the application of the modified

masldng function approach is shown in Figure 7 along with the original. As seen

in Figure 7, there are some isolated edges and disconnected boundaries. To re-

solve this problem, we introduce the direction information of the slope into the

· segmentation process. We define that an edge pixel, with coordinate (xl,yl) in the

predefined neighborhood of (x,y), has an angle similar to the pixel at (x,y) if

I¤¤(¤<.v)-¤=(¤<i„yi)| < A (39)

where A is an angle threshold. a(x,y) is decided by the ratio between horizontal

and vertical slopes at (x,y) according to a(x,y) = arctar1(mj';/ mj;) . We refer to

Equations (37),(38), and (39), together with (33), as the generalized masking

function approach. The result of applying this generalized masking function

approach, to the same original that generated the previous result, is given in

Figure 8. We set v, and wp as 2, and A as I5 degrees. As seen in Figures 8, the

isolated small regions have been absorbed and boundaries are widened and con-

nected.
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’~Figure7. A result from applying the modified masking function approach.
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„.Figure8. A rcsult from applying the generalized masking function approach.
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4.4 Point Spread Function Estimation

We may often assume that the point spread function (PSF) is known. Yet

many situations arise, in which it is not known, and must be estimated. We

suggest and implement two methods of identifying the PSF, that havelbeen ap-

plied successfully, including in the present research application.

4.4.1 Zero Recognition Approach

The zero recognition approach can sometimes serve as a convenient technique

for estimating the detailed form of h(x), provided enough of the zeros of the op-

tical transfer function (OTF) can be recognized. When the form of the PSF is

simple, the OTF tends to possess pronounced real zeros, which can be readily

recognized in the Spectrum of a recorded blurred image. Figures 9, 10, and ll

show the Fourier magnitude spectrum of some typical point spread functions;

linear motion, defocus (square aperture), and atmospheric blur respectively. All

point spread functions have been normalized. As expected, the OTF of atmo-

spheric blur does not have zero crossings in it, which means we can not estimate

the PSF in this case by the zero recognition approach.

The Fourier Spectrum G(u,v) of a degraded image g(x,y), does not exhibit

clear zero crossings. This is illustrated in Figure 13, which is the Fourier
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magnitude spectrum of the image degraded by the motion blur of Figure 9. The

magnitude of Fourier spectrum F(u,v) of the original image f(x,y) is shown for

comparison in Figure 12. To compensate for the effect of the noise, each column

of G(u,v) is averaged. Subsequently the zero crossings are detected to determine

the extent of the motion blur or the radius of the aperture. The Fourier spectrum

of the estimated PSF is shown in Figure I4. When we compare the result with

the ideal in Figure l0, we see the resemblance between the two, except that the

power is more concentrated in the main lobe for Figure l4.

4.4.2 Line Spread Function Approach

The other method we implemented, to estimate the PSF, is by analysis of

lines in the image. An image often possesses structures that can be identified as

unresolved edges, that is, edges whose size is unresolved within the spatial extent

of the PSF of the image formation system [3,97]. Analysis of the images formed

by such lines produces direct information about the PSF. An additional as-

sumption is required, such as rotational symmetry, to recover the PSF from the

line spread image.

The simplest case is that of a boundary, between two different intensity lev-

els, that extends in a north-south direction. This corresponds to an underlying

functional form of a step discontinuity. We get this kind of scene structure from

the checkerboard image which will be shown in a later chapter.
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Take a l4-by-14 section from the image which centers on the boundary. The

least-squares straightline approximation to the pixel values is computed for each

row. The rearranging of this line deünes a temporary origin for each row. We

average over the columns 4 pixels to the left of this origin to 4 pixels to the right

of this origin, and the result of this averaging is approximated using a cubic spline

method, which results in a 9 point PSF estimate.

Two examples using this approach are given in Figures 15 and I6. The line

spread function (LSF) approach is more powerful than the zero recognition ap-

proach if the subject image has a clear line in it. The zero recognition approach ·

is unable to estimate the atmospheric blur because there are no zero crossings in

the spectrum of such blur. On the other hand, the zero recognition approach does

not require a clear line in the subject image in order to estimate the blur param·

eters.

4.5 Rule-Based Knowledge System

We represent knowledge by logic expressions. Logic formulations represent

knowledge in a manner different from other commonly used approaches, such as

semantic networks or O-A·V triplets [I5]. Ordinarily, when representing facts,

this is done because we want to retrieve these facts directly. They may be the

values associated with an object or an attribute. Ordinarily we search to locate

the needed values. Logic is a bit different. lf we assert a fact in predicate calculus,

which is a common logic system, its value must be either true or false. For
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O

example, a simple fact such as a medium signal-to-noise ratio (MSNR) can be

expressed by

MSNR = SNR .GE. 10 .AND. SNR .LE. 20 (40)

Only if both conditions on the right side are met, does the logical value of MSNR

become true.

The control strategy of the inference engine is a combination of backward

and forward chaining. The premises of the rules are examined to see whether or

not they are true, given the information on hand. lf so, then the conclusions are

added to the list of facts known to be true. Eq. (40) is an example of forward

chaining inference. Backward chaining takes control of the inference engine next.

The rule has the following format:

CONDITION .AND. .AND. CONDITION ACTION

The left-hand side is composed of a set of CONDITIONS which are evaluated

on the data in backward fashion. Backward chaining systems are also called

goal·directed systems. Here ACTION can be regarded as a goal statement. For

example,

LSNR .AND. PSF.AND. FAST USE—INVERSE—FILTER (41)

where LSNR refers to large signal·to·noise ratio, PSF means that a PSF is

available, and FAST means that a fast result is requested.

Chapter IV. Image Restoration Using a Knowledge System 73



The system holds about 16 prompts for getting information from the user,

and 25 facts and rules. As stated before, we use the logical system to represent

the knowledge base. A

Considering the fact that the present expert system needs a lot of computa-

tional modules in it, we are inclined to use the FORTRAN language.

FORTRAN supports such data types as LOGICAL and CHARACTERS.

Those features are used exclusively in the A.I. module of the system. Our

knowledge system is a bit different from the ordinary common expert systems in

the sense that it contains a relatively large computational module. The A.l.

module is small compared to the computational module. The Litho system [117]

developed at Schlumberger for petroleum exploration in 1982 has structures sim-

ilar to the present one. ·

4.6 Implementation

4.6.1 Functional Description

Our system consists of one main program, ll major subroutines, and nu-

merous minor subroutines, such as FFFT, IFFT, INDAT etc. The major sub-

programs are the following:

MASK: segment by the masking function approach,

SEGMENT: segment by the unilied approach,

POSTERI: get a posteriori information from the image,
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EXPERT: decide proper image restoration scheme by a rule-based knowledge

system,

CNSTR: restore by constrained method,

GEOM ET: restore by geometric filter,

I-IOMO: restore by homomorphic filter,

MAP: restore by maximum a posteriori method,

MAXENT: restore by maximum entropy method,

WIENER: restore by Wiener filter,

PERFORM: compute the performance criteria.

The program flow chart is given in Figure I7. In most cases, major subrou-

tines can be bypassed by users if they choose such option. This option is added

to the system as a tool to compare the performance with the traditional methods.

First, the subject image is read into the system. The image is then segmented by

either the masking function or the unified approach. If we want to process the

whole image at once, we may by-pass this step. Subsequently, the interface .

module takes control. It selects one region to be processed. The selected region

is sent to POSTERI to derive a posteriori information such as the PSF. Now the

subject region is passed on to the EXPERT module where one or two restoration

methods are recommended. One of the restoration methods is activated. After

all of the segmented regions have been processed, we have restored the degraded

image. Finally, the performance criteria are computed. A typical example of an

interactive terminal session is provided in Appendix A.
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4.6.2 Modularity of the System

Another aspect of the proposed system is its modularity. Each major part

of the system is inter-related only by the interface module. Each module, such

as the A.I. module or the computational module, can be expanded or modified

independently without affecting other parts of the system. Expansion or up-

grading of the system can be done easily when new approaches are introduced

or developed.

Each restoration method can be regarded as a filter, whether in closed form

or not. Iterative methods, such as the MAP method, can not be expressed in a

closed form. We may express these filters in a parametric form as follows

I H(w) = H(w;f,g,n,SNR,PSF,K)

where co represents frequency and f, g, and n represent original, degraded image,

and noise process respectively. K denotes all necessary constants. Most compu-

tations are done in the frequency domain to make use of the FFT algorithm. For

each different image, degradation, noise, and PSF, the filter uses different pa-

rameters. The implementation details for each of these filters are given in Section

6.3. If exact information is not available, it is estimated from the degraded image

itself.
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Figure 17. Simplified program 1Iow chart.
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Figure 17. Continued
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Chapter V. Performance Criteria

There are two aspects to assessing the performance of an image restoration

method: quantitative and qualitative measures. As a quantitative measure, the

MSE criterion is most widely used. The MSE criterion weighs all errors equally,

regardless of their location in the image. For a qualitative measure, a large num—

ber of individuals needs to assess quality somehow. The underlying criterion can

be approximated with a quantitative measure, and several of these so-called

qualitative performance criteria have been proposed. These measures range from

simple, and mathematically tractable measures, to measures based on complex

models of the human visual system.

5.1 Quantitative Image Quality Measures

The most commonly used measure of image quality is the mean square error

(MSE) criterion. The MSE for a digital image or image segment is defined by
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I AMSE = (42)
k

where fandj represent the original and the restored image respectively, Z re-
I1

presents a 2-D summation over all pixels in the image or image segment, and N,

denotes the number of pixels it consists of. A measure based on the absolute

value of the difference is called the mean absolute error (MAE) criterion. MAE

is defined by

I A
MAE = —— lf —f| (43)Nf E

k k

MSE and MAE can be normalized with respect to the measure associated with

the original image. The normalized mean square error (NMSE) and normalized

mean absolute error (NMAE) are given by the following equations [118].

Z ln.
—n>’

NMSE (44)
Z1;.
k

Z lr?. —m
NIWAE = JL-- (45)

2 lm
k
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It is also meaningful to define measures based on the signal-to-noise ratio (SNR).

Root-mean-square SNR (RMSSNR) and absolute SNR (ABSSNR) are defined

as follows [5]

Z1?
RMSSNR = 10 (46)

Z m.-ai ·
1.

Z tm
ABSSNR = 20 login--/L-? (47)

Z ln. -1;.1
k

5.2 Qualitative Image Quality Measures

The measures described in the previous section are simple in nature and can

be computed rather easily. They do however, not correlate well with subjectivc

quality evaluations. A number of measures designed to improve this shortcoming

have been reported [7, 12, 115]. It is known that the response of the human vis-

ual system to input light intensity is nonlinear, and this nonlinearity is often

modelled as a logarithmic function. Logarithmic mean square error (LOGMSE)

[7] takes into account this nonlinearity.

Chapter V. Performance Criteria 82



Z1LOGMSE= (48)

k

Laplacian mean square error (LMSE) is a measure that takes into account the

importance, to the human observer, of edges. LMSE is defined by

Z (G1 - 61)*
1,11155 = -’5--—?- (49)

E Gk
k

where

G1; = Ä+1,; + /;-1,; +/;,1+1 + fi;-1 “ 4ß,p (50)

and Ö is defined similarly on the basis of f'. Note that the support of' G is the

interior of the support of f, since G is computed from the nearest neighbors. The

gradient mean square error (GMSE) criterion [12] is obtained by defining G,_, in

Equation (49) as,

G11 = l/€+1,;-1 + 2J$+1,; +-/2+1,i+l ·ß-1,1-1 — Zß-1,1
_-/$-1,/+1I

(51)+ l/1-1,1+1 + 2/},1+1 +—ä+l,i+l ‘Ä-1,1-1 "2Ji,;-1 _-/f+l,i—l|
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Ö is defined similarly, based on jf . These measures have been experimentally

found to exhibit correlation with subjective evaluations that is better than those

presented in the previous section. Quantitatively good images of a poor subjective

quality often rate high on the above semi-qualitative measures [5]. It should be

emphasized that a generally agreed-upon quantitative measure of image quality

has not been discovered yet.

The wide range of situations in which image quality measures are applied

makes it inappropriate to label a particular measure as best for all different kinds

of applications. instead of selecting any single criterion as our choice for meas-

uring quality, we show and compare the values of several different measures in

the experiments of Chapter VI.
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Chapter VI. Experiments

6.1 Synthesis of Degraded Images

The degraded image g(x, y), is exprcssed by the following equation.

gk = ß.*/ik + nk (52)

where k is a 2-D index, j$, is the original image, h,, is the PSF, and n,„ is the addi-

tive noise process.

Two different originals are used here: one is a street scene taken from above

and the other is a checkerboard pattern generated by computer. The size of these

originals is 96 by 96.

Six different degradations have been generated. They are: motion blur

(5-pixel width and 9·pixel width), defocus blur (circular and square apértufß of

5·by·5 extent) and atmospheric blur (light and severe). Each PSF has been nor-

malized. For example, the PSF of tive-pixel width motion blur is represented by
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%[l l 1 l 1]. The PSF for defocus blur is the flat region with a constant pixel

value over a specified extent. The PSF for atmospheric blur has been synthesized

byexp() , where l 5 x,y $ 9, 6 = 2, 4. Noise is assumed

to be white, and Gaussian, and has tive different levels of variance (6 = 2, 3, 4,

5, 6).

The original images have been degraded according to Eq. (52). A few typical

examples are illustrated in Figures 18 through 20. An image degraded by 9·pixel

width motion blur and additive noise with variance 9 is shown in Figure 18. The

original is also provided for comparison. Figure 19 illustrates out-of-focus blur

with noise of variance 36. A checkerboard pattern degraded by severe atmo-

spheric blur and noise with variance 9 is shown in Figure 20.

6.2 Generation of Test Images

The degraded images generated according to Section 6.1 can be mixed to-

gether in various ways to get more realistic situations. The result is an image that

has different kinds and amounts of blur, for which segmentation into two regions

looks most natural. Four examples of test images are given in Figures 21 through

24. Each figure consists of two images, the one on the top is the test image syn-

thesized by combining two degraded images. The one on the bottom is the ori-

ginal undegraded image.

l Figure 21 shows the combination of two degraded images: one degraded by

square aperture out-of-focus blur and one degraded by 5-pixel width motion blur.
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Figure IB. Illustration of degradation by motion blur and noise. V
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vgFigureI9. Illustration of degradation by defocus blur and noise.
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Figure 20. Illustration of degradation by atmospheric blur and noise.
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In figure 22, 5-point motion blur with noise of varaince 16 and atmospheric blur

with noise of variance 25 are shown in a single image. For the checkerboard

image, many combinations are possible. A few of these are shown in Figures 23

and 24. In Figure 23, we illustrate motion blur in central region surrounded by

a region degraded by atmospheric blur. The combination of out-of-focus blur in

the background and motion blur nearby is illustrated in Figure 24. The degra·

dation of these figures is somewhat realistic. A moving vehicle in a battle field

may produce a situation similar to that of Figure 23. We may encounter this kind

of degradation in everyday life. The scene of a shop display where the head of a

mannequin is moving with respect to the background, also results in a situation

similar to that of Figure 23. lf we take a picture of a country scene from the

window of a moving train, the objects in the foreground are blurred badly by a

uniform camera motion blur, but the background suffers very little from this

motion blur. Figure 24 represents this situation.
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Figure 21. Test image #l: combination of motion/out-of-focus blur.
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.

Figure 22. Tut image #2: combination of atmospheric/motion blur.
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Figure 23. Test image #3: combination of motion/atmospheric blur.
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·Figure24. Test image #4: combination of out·of-focus/motion blur.
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6.3 Filter Implementation

In this section, we present the implementation details of the image restora-

tion filters installed in the system. The extcnt of the PSF h(x,y), is restricted to

be less than 9 by 9. lt is augmented with zeros to the size of 128 by 128. The

degradcd image g(x,y), produced by Eq. (52), is also augmented with zeros to the

size of 128 by 128. The FFT of these augmented arrays, h(x,y) and g(x,y), results

in H(u,v) and G(u,v) in the frequency domain. The Wiener filter (denoted by

W) is implemented based on Eq. (15). Filtering is performed in the frequency

domain on a point-by-point basis. The power spectrum of the original (5/) and

the noise (5,,) can be either estimated from the degradcd image itself or computed

exactly using the correct information. The inverse FFT of I?(u,v) gives}“(x,y) , the

restoration result, which is then limited to the extent of the image segment proc-

essed.

The homomorphic filter (denoted by 1-1) of Eq. (17), the inverse filter (de-

noted by I) of Eq. ( 13) or Eq. (18), the geometric filter (denoted by G) of Section

2.2.2, and the linearized maximum entropy method (denoted by E) of Eq. (28),

follow a procedure similar to that of the Wiener filter.

The restoration process of the constrained least-squares filter (denoted by C)

of Eq. (19) is iterative. The constrained method stops iteration when the con-

straint, (1. — 0.025)||n||* 5 llg — Hfllz 5 + 0.025)||r1||2, is met. For each iter-

ation, it increments or decrements the y value according to a Newton·Raphson
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like procedure. With an initial y value of .01 and an initial increment of .001,

convergence to the proper value of y is usually achieved in 4-7 iterations.

The MAP (denoted by M) method is also an iterative method. The MAP

method needs Ä the mean of the distribution ofjj and Ä, the initial estimate of

Ä When exact information on f is available, f is used as When f is not avail-

able, we use the output of the Wiener filter as The output of the Wiener filter

is also chosen as the initial estimate The iteration stops when we achieve

||g·— s(HÄ)||* 5 ||n||* . The restoration by the MAP method is a slow process.

· Each iteration involves a lot of computation, both in time domain and frequency

domain, and the convergence is slow. Trussell and Hunt [76] proposed an im-

proved MAP method which converges faster. We implemented this new method

in our system. We stop the iteration process when either the number of iterations

is more than 10, or when the norm of the difference between Ä, and Äh,) is smaller

than 35.

6.4 Illustration of Conventional Image Restoration Approach

ln this section, we illustrate the performance of various image restoration

methods when they are used in a conventional way. The image restoration

methods include only those which were implemented in the proposed system.

Each figure contains the original image (denoted by O), the degraded image (de-

noted by D), and the result of six different image restoration methods (C, G, H,
l

I, M, W). Various measures of image quality discussed in Chapter V were eval-
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uated for the restored images and the results are tabulated in Tables 2 through

4.

In Figure 25, the original image is degraded by five-pixel-width motion blur

with no noise added. Table 2 shows the performance criteria associated with the

results in Figure 25. From the results shown in Figure 25 and Table 2, the

quality of restorations appears to be good. Considering the fact that the original

image in Figure 25 is not subject to any noise, the small errors in Table 2 are a

natural consequence. With zero noise, it is also expected that the restoration re-

sults of the inverse filter, the geometric filter with y = l. and oc = .5, and the

Wiener filter are identical. As can be seen in Table 2, the error terms for the

Wiener filter restoration are slightly different from those of the inverse filter. This

deviation came as a result of differences in implementation details. The

homomorphic filter is a magnitude-only filter that does not use any phase infor-

mation. For this reason, the restoration result of the homomorphic filter suffers

from a high MSE error. .

Figure 26 illustrates the case where the original is degraded by moderate at-

mospheric blur with additive Gaussian noise of variance 25. The SNR value of

this degraded image is about 15 dB. Table 3 gives the performance measures for

Figure 26. Due to the large noise, the entries in Table 3 are much bigger than

those of Table 2. The Wiener filter produced the best result in terms of most of

the error criteria including MSE, LOGMSE, and GMSE. The restoration result

from the geometric filter gave a smaller MSE than that from the homomorphic

filter. Comparing the results visually as shown in Figure 26, we may rate the
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Table 2. Performance criteria for Figure 25.

Filter Type MSE MAE NMSE
NMAE LOGMSE RMSSNR

ABSSNR LMSE GMSE
onstrained 1.4326 0.8636 0.0010

Method 0.0256 0.0013 30.0072
31.8421 0.0532 0.0064

eometric 5.8670 1.8657 0.0041
Filter 0.0553 0.0063 23.8843

25.1517 0.0502 0.0340
Homomorphic 132.3172 8.1212 0.0922
Filter 0.2405 0.0441 10.3524

12.3762 0.8949 0.4312
Inverse 5.8670 1.8657 0.0041
Filter 0.0553 0.0063 23.8843

25.1517 0.0502 0.0340
MAP Method 0.4940 0.4940 0.0003

0.0146 0.0002 34.6309
36.6933 0.0101 0.0009

Wiener 1.5691 ‘ 0.9098 0.001 1
Filter 0.0269 0.0017 29.6119

31.3892 0.0295 0.0085
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Figure 26. Illustration of restoration by conventional approach, #2.
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Table 3. Performance criteria for Figure 26.

Filter Type MSE MAE NMSE
NMAE LOGMSE RMSSNR

ABSSNR LMSE GMSE
Constrained l 13.3175 8.2140 0.0393
Method 0.171 1 0.0087 14.0509

15.3336 4.6812 0.8562
eometric 74.4022 6.5270 0.0258

Filter 0.1360 0.0036 15.8780
17.3304 1.0787 0.5347

Homomorphic 410.9936 16.4231 0.1427
Filter 0.3421 0.0324 8.4555

— 9.3156 1.6700 1.2416
lnverse 444.6943 39.2203 0.8489
Filter 0.8171 0.2531 0.7160

1.7546 165.8187 13.0789
MAP Method 59.2540 5.9554 0.0206

A 0.1241 0.0043 16.8666
- „ 18.1265 1.0750 0.8617

iener 36.4179 4.0884 0.0126
Filter 0.0852 0.0017 18.9807

21.3936 0.8482 0.3454
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restoration result from the homomorphic method higher than that from the ge-

ometric filter. The computed performance given in Table 3 however, does not

support this subjective observation. As discussed in Chapter V, quantitatively

good images of a poor subjective quality often rate high on the semi-qualitative

measures such as LOGMSE, LMSE, or GMSE. The result of the inverse filter

is very poor, as expected, because of the noise amplification effect as discussed in

Chapter II. The high values of LOGMSE, LMSE, and GMSE correspond to this

poor appearance.

Figure 27 shows the restoration results for an image degraded by circular-

aperture defocus blur and noise with variance 9. The SNR of the subject image

is about 17 dB. The MAP method and the Wiener filter gave the best results

both in a quantitative and a qualitative sense. The MAP filter uses the restora-

tion result of the Wiener filter as the starting point of its iteration. The MAP

filter converged at the first iteration resulting in the same restoration as the

Wiener filter. The restoration result from the homomorphic filter again appears

to be more pleasant than those from the constrained method or the geometric

filter. The computed performance given in Table 4 however, does not support

this subjective observation.

A
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Table 4. Performance eriteria for Figure 27.

Filter Type MSE MAE NMSE
NMAE LOGMSE RMSSNR

ABSSNR LMSE GMSE
onstrained 54.0371 5.5755 0.0377

Method 0.1651 0.0261 14.2416
15.6428 1.8780 0.2424

Geometrie 39.3495 4.7588 0.0274
Filter 0.1409 0.0216 15.6192

17.0186 0.8589 0.2129
Homomorphic 270.0096 1 1 .9363 0.1882
Filter 0.3535 0.0935 7.2548

9.2049 1.9510 0.6904
Irlverse 529.3140 18.1059 0.3688
Filter 0.5363 0.1534 4.3315

5.4122 26.7556 1.5470
MAP Method 24.0712 3.6571 0.0168

0.1083 0.0138 17.7535
19.3057 0.6791 0.1209

iener 24.0712 3.6571 0.0168
Filter 0.1083 0.0138 17.7535

19.3057 0.6791 0.1209
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6.5 Image Restoration by a Segmentation-Oriented Knowledge System

The test images generated in Section 6.2 are processed by the proposed sys-

tem. The restoration result and the performance criteria are illustrated in the

following way. For each test image, we produce seven different results and illus-

trate these in two figures and one table. The first figure contains the test image

(denoted by D), the restoration result by single method A, the restoration result

by single method B, and the restoration result by the proposed system, using

method A for one region and method B for the other region. We note that the

first two restoration results correspond to those of the third generation approach

discussed in Chapter lll. The second figure contains the segmentation result

(denoted by S) of the subject image and three residual images corresponding to

the three restored images in the first figure. The table shows the performance

criteria for each of the restorations. Each table has three parts: one for method

A, one for method B, and one for the combined method. Each part consists of

three sub·parts: one for region l, one for region 2, and one for the whole image.

The seven performance criteria discussed in Chapter V are evaluated for each of

the restoration methods used.

Figure 28 shows the restoration results of a test image degraded by a combi-

nation of motion blur in the left·side region (region l) and out-of·focus blur in the

right·side region (region 2) of the image. Both regions are contaminated by ad-

ditive white noise with variance 9. The segmentation result is shown in Figure

29(S). For region l, degraded by motion blur and moderate noise, the geometric
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filter (method A) is the choice of the expert system under the MSE criterion. The

MAP method (method B) is selected for region 2 which suffers squared~aperture

defocus blur and a moderate level of noise. The SNR values for region l and

region 2 are ll dB and 15 dB respectively. The MSE difference for region l be·

tween two methods is about 5.99. As seen in Table 5, the MAP method gives the

restoration result with lower LMSE value in region l. Lower LMSE means that

the restored image has sharper edges. This can be confirmed in Figure 28(M).

Other than that, the geometric filter outperforms the MAP method in all other

criteria. As for region 2, the restoration result by the MAP method outperforms ·

that for the gometric filter in terms of all the criteria. The residue image of region

2 by the MAP method, as seen in Figure 29(M), does not exhibit any trace of the

original_ patterns. We see however a certain pattern, such as the shape of a street,

in region 2 processed by the geometric filter, as seen in Figure 29(G). ln general,

the residue of the restoration by the geometric filter contains some remainders of

the original. ln other words, most of the MSE error comes from edges or

boundaries. The overall error however, is relatively small compared to that of the

other methods, especially for this image degraded by moderate motion blur and

a moderate noise level. Overall, our segmentation based approach gives better

performance, in MSE sense, than the conventional approach of using same

method for different segments. The result for the MAP method however gives

lower LMSE value as seen in Figure 28(M).

Figure 30 contains the results for the restoration of Figure 22, in which the

image is degraded by a combination of atmospheric blur and additive white noise
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Table 5. Performance criteria for Figure 28.

Method A: Geometrie Filter
_

MSE MAE NMSE NMAE LOGMSE LMSE GMSE
Region 1 23.658 3.657 [EE 0.126 0.032 0.577 0.112
Region 2 43.085 5.165 0.027 0.136 0.008 0.894 0.245
Overall 33.909 4.453 0.024 0. 132 0.017 0.740 0.173

Method B: MAP Method
—

MSE MAE NMSE NMAE 1.06MSE LMSE GMSE
Region 1 29.653 4.139 0.024 0.142 0.035 0.423 0.126
Region 2 37.353 4.846 0.023 0.128 0.006 0.529 0.240
Overall 33.716 4.512 0.024 0.134 0.018 0.478 0.179

Combined Method: Geometrie Filter and MAP Method
—

MSE MAE NMSE NMAE 1.06MSE LMSE GMSE
Region 1 23.658 3.657 [EQ 0.126 0.032 0.677 0.112
Region 2 37.353 4.846 0.023 0.128 0.006 0.529 0.240
Overall 30.885 4.284 0.022 0.127 0.017 0.552 0.171
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of variance 25 in region 1, and motion blur and additive white noise of variance

16 in region 2. The selected method for region l is the MAP method (method

A). The MAP method is powerful when images are degraded by atmospheric

blur and very high noise (or low SNR). The Wiener filter (method B) is the

choice of the expert system under the MSE sense for region 2 where it suffers

from motion blur and high noise. The SNR value of region l and 2 is 10 dB and

14 dB respectively. As seen in Figure 3l(W), the residue of the restoration by the

Wiener filter shows some square patterns, especially in region 2. This error ex-

plains the smeared edges or boundaries in the restored image produced by the

Wiener filter. This interpretation is confirmed in Table 6, where the LMSE error

in region 2 is smaller by the MAP method than by the Wiener filter. For region

1, the MAP method outperforms the Wiener filter in terms of all error criteria.

Overall, the combined method resulted in better performance than the conven-

tional approach of using a single method for different segments of the image.

The restoration by the MAP method however, gave smaller LMSE value which

can be confirmed by Figure 30(M) and Table 6.

Figure 32(D) is synthesized by mixing two degraded images according to the

predefined segmentation given in Figure 33(S). Reference back to Section 6.2 for

details of synthesis. Natural test images of this shape and combination were not

obtained during this study. This situation is the same for the test image given

in Figure 34(D). The outer region (region 1) is degraded by atmospheric blur and

noise of variance 36. The inner region (region 2) is degraded by motion blur and

noise of variance 9. The SNR values for region l and region 2 are 12 dB and 19
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Table 6. Performance criteria for Figure 30.

Method A: MAP Method
—

MSE MAE NMSE NMAE 1.06MsE 1.MsE GMSE
Region 1 32.231 4.271 0.025 0.143 0.031 0.357 _ 0.168
Region 2 34.343 4.629 0.022 0.125 0.008 0.513 0.216
Overall 33.377 4.465 0.023 0.132 0.017 0.442

‘@

Method B: Wiener Filter
—

MsE MAE NMSE NMAE LociMsE LMsE GMSE
Region 1 41.687 4.673 0.032 0.156 0.035 0.850 0.205
Region 2 27.089 4.018 0.017 0.008 0.617 @
Overall 33.770 4.318 0.024 0.128 E 0.723 0.185

Combined Method: MAP Method and Wiener Filter
—

MsE MAE NMSE NMAE LOGMSE LMsE GMSE
Region 1 32.231 4.271 0.025 0.143 0.031 0.357 ¤@
Region 2 27.089 4.018 0.017 0.008 0.617 ¤@
Overall 29.443 4.133 0.021 0.122 0.017 0.500 0.165
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dB respectively. For region 1, where atmospheric blur and low SNR exists, the

MAP method is the choice of the expert system under the MSE criterion as stated

previously. The selected method for region 2 is the geometric filter. As seen in

Figure 33 and Table 7, the error between the two selected methods is small in

region 2, about 1.3. This is partly because the SNR in this region is relatively

high. For region 1, the MAP method outperforms the geometric filter with a big

margin. Overall, the combined method resulted in a better restoration than either

single method in MSE sense.

A
Figures 34 and 35 illustrate the restoration results for an image degraded by

a combination of out-of·focus blur in the upper portion of the image (region 1)

and severe motion blur in the lower portion (region 2). The SNR is about 17 dB

for each region. The geometric filter is chosen by the expert system under the

MSE criterion for region 1 and the MAP method is the choice for region 2. As

can be seen in Table 8, the MSE difference for region 1 between these two

methods is about 14. As discussed earlier, the restoration result by the geometric

filter gets its MSE error mostly from the boundaries. This can be verified in

Figure 35-c by examining the bright square patterns. The MAP method however,

results in evenly distributed errors. Figure 35(M) confirms this observation. The

MSE difference between the two methods for region 2 is small. We see however,

relatively high MSE values for this region. Severe motion blur often results in

high MSE values. Overall, the quality of the restoration result by the proposed

approach is better than that of the conventional approach of using a single .

method. The subjective criteria however, would prefer Figure 34(G) to Figure
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QFugure32. Restoration result of proposed approach on Figure 23.
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Table 7. Performance eriteria for Figure 32.

Method A: MAP Method

MAE NMSE NMAE LOGMSE 1.MsE GMSE
Region 1 53.590 5.427 0.1 I3 0.003 0.896 0.786
Region 2 16.069 3.348 0.006 0.070 0.383 0.163
Overall 44.709 4.907 0.102 0.002 0.718 0.576

Method B: Geometrie Filter
—

MSE MAE NMSE NMAE LOGMSE 1.MsE GMSE
Region 1 78.064 6.625 0.027 0.138 0.004 mßß
Region 2 16.782 3.080 0.006 0.362 0.175
Overall 62.743 5.739 0.022 0.120 0.003 0.867 0.467

Combined Method: MAP Method a.nd Geometrie Filter
_

MsE MAE NMSE NMAE L06MsE 1.MsE GMSE
Region 1 53.590 5.427 0.113 0.003 0.896 0.786
Region 2 16.782 3.080 0.006 0.382 0.176
Overall 44.388 4.840 0.016 [@ 0.002 0.717 0.584

Chapter Vl. Experiments ll7



34(GM). This speculation is contirmed by comparing LMSE or GMSE values

between them. lf we had wanted the restoration results to be best in perception

sense, and the expert system were operating under say the LMSE instead of the
h

MSE criterion, the system would have selected the geometric filter for both re-

gions. This selection however, would have resulted in a restoration with a higher

MSE.

In all of the examples given in this section, the restoration was oriented to

accomplish minimum MSE. We obtained this goal as can be seen in Tables 5

through 8. We would like to point out however, that the combined methods

suggested by our approach do not have to be different. Depending on the com-

bination of blur type, noise level, and severity of blur in each region, the method

chosen by the expert system under a given criterion, could be the same for each

region.
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Figure 34. Restoration result of proposed approach on Figure 24.
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Table 8. Performance eriteria for Figure 34.

Method A: Geometrie Filter
—

MSE MAE NMSE NMAE L0cMSE 1.MSE GMSE
Regen 28.952 4.129 [EM 0.086 0.002 0.554 0.275
Region 2 45.061 5.447 [EQ 0.113 0.003 0.520 0.360
Overall 32.979 4.458 0.093 0.002 0.547 0.292

Method B: MAP Method

·
—

MSE MAE NMSE NMAE 1.06MsE 1.MsE 6MSE
Regen 42.420 5.230 0.015 [Ea 0.003 @ 0.495
Region 2 38.919 5.056 [m| 0.106 0.003 0.683 0.470
Overall 5.187 0.108 0.003 0.864 0.490

Combined Method: Geometrie Filter and MAP Method
_

MSE MAE NMSE NMAE 1.06MSE LMSE GMSE
Regen 28.952 4.129 E 0.086 0.002 0.554 0.275
Region2 38.919 6.066 0.105 · 0.003 0.683 0.470
Overall 31.4-43 4.861 [ 0.002 0.580 0.816
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Chapter VII. Conclusions and Suggestions

7.1 Conclusions

It is safe to say that there is no image processing without involving image

restoration. Accordingly, extensive research has been reported during the last

two decades. There is however, no general image restoration method available.

Although numerous image restoration methods have been proposed, none of the

methods can handle all the kinds of degradation which subject images can suffer.

Also the usual assumption of a single degradation characterization for the whole

image is not correct in general. As a consequence, it is a better idea to segment

_ the image into a number of homogeneous regions and to apply different restora-

tion methods for each of the regions.
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The proposed image restoration method, which is supported by a rule—based

expert system, attends to the above problems. The necessity and importance of

the proposed system has been addressed by researchers in the image restoration

field for some time [2, 3]. To the best of our knowledge however, no research

work in this direction has been reported. We emphasized that the actual imple-

mentation of our system involves two very unrelated fields: artificial intelligence,

and image restoration.

The performance of the knowledge system presented in this dissertation was

evaluated by computer simulations on both real and simulated images. In addi-

tion to the quantitative evaluations of the restored images, subjective comparisons

were carried out by computing several semi-qualitative measures.

The results of the experiments in Section 6.5 illustrate that the approach of

the proposed system, with segmentation and restoration of individual segments,

performs better than conventional approaches. _

The merits of our expert system are fourfold:

l. Versatility

-

The system incorporates several image restoration methods. Each

method is designed to treat a specific case; for example in the MSE sense, the

geometric filter is the choice when degradation is caused by motion blur with

low to medium noise or MAP is good for images degraded by atmospheric blur

with severe noise. With the help of an expert system, all methods implemented

in the system are combined into a general tool which can treat virtually any

kind of image degradation.
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2. Generality - By adapting the image segmentation approach, the conventional

approaches such as categories (1), and (3) of Chapter lll can be implemented

by our system as special cases.

3. Better performance · By applying a properly selected image restoration method

for each of the segmented regions, the overall performance was shown to be

better than that of using a single method for the whole image, either in the

MSE sense or in the human perception sense.

4. Modularity/Expandability - Each part of the proposed system is inter-related

only by the interface module. Each module can be expanded or modified in- [

dependently without affecting other parts of the system. The A.l. module or

the computational module can be expanded easily as the requirements of the

system grow.

7.2 Limitations and Their Significance

It is possible to obtain an incorrect impression about the extent to which im-

age restoration can be carried out. Hunt [3, p.74] makes assertions about the

practical solution of image restoration problems as follows:

" assertions that are offered with no proofs but which have grown out of the author’s ex-

perience in this area If an image restoration problem can be solved, then about 75 percent

of the time it can be treated with some of the simplest techniques, for example, inverse or

Wiener filter. Of the 25 percent of cases not solved by simpler techniques, perhaps only half

of these will be amenable to solutions by a complex technique. There remains a core of

problems that can not be solved by any method of image restoration "
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The test images we have processed in Section 6.5, Figures 21 through 24, are

among the ones that can not be solved properly so far. In that sense, we have

reduced the percentage of unsolvable problems, which represents the signiticance

of this study.

The restoration methods implemented in this dissertation exploited FFT

techniques extensively. Most of the computations are performed in the frequency

domain, which means that linear convolutions are approximated by circular con-

volutions. As a consequence, we lose information when a segmented region is

processed with a filter impulse response with larger support than the border of

zeros surrounding the segment. Such occurrence should be avoided, or controlled.

Since the test images are synthesized artificially by combining two different

images, pixels on opposite sides of the boundary do not have any interaction with

each other. The overlap-and-save algorithm should then not be applied.

We assumed that motion blur is horizontal. Motion blur under oz degrees can

not beuestimated by the present system. We also assumed that the PSF is sym-

metric. Images suffering from asymmetric degradation can not be restored unless

we have exact values of the PSF array.

7.3 Future Directions

The encouraging results obtained in this endeavor suggest the need for ex-

tending the idea to other areas of image processing. In particular, image en-
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hancement schemes may be added to the system to facilitate a wider range of

applications.

As for the system itself, the following features are considered necessary to

widen the capability of the system.

l. To decide a proper thrcshold for image segmentation, the addition of a

histogram generation and display capability would be useful.

2. To make the system more versatile, more special purpose image restoration

methods may be added to the system. The addition of image restoration

methods for multi-channel images would be a good candidate for extension.

To treat X-ray images, a restoration method for stochastically degraded images

[112] is also desirable.

3. To be of more practical use, the ability to display results on the display inter-

actively would be desirable. Real time processing by incorporating custom-

made hardware into the system, may be worth pursuing. Especially for

military applications, this could be desirable.
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Appendix A. Sample Terminal Session
9 RUN ZEBRA

ägTER THE NAME OF DEGRADED IMAGE; g(x;g)

DO YOU WANT THE SUBJECT IMAGE TO BE SEGMENTED?ÄYPE Y FOR YES; N FOR NO.

THIS IS FOR REGION NUMBER ... 1
DO YOU NEED TO COMPUTE A POSTERIORI INFORMATION?LYPE Y FOR YES; N FOR NO.
WE NOW PROCESS THE BLOCK WITH COORDINATES AS
ROW FROM 1 ... TO 128
COLUMN FROM 1 · ... TO 128

EQTER NAME OF THE PSF ARRAY FOR THIS BLOCK.
PLEASE SPECIFY THE TYPE OF PSF...(g$T:MOTION; OOF:OUT-OF—FOCUS; ATM:ATMOSPHERIC}
M

SäTER THE NAME OF NOISE ARRAY; n(x;g).

DO YOU WANT THE HELP OF AN EXPERT SYSTEM
TO DECIDE THE PROPER RESTORATION METHOD?LYPE Y FOR YES; N FOR NO.
SELECT ONE OR TWO METHODS FROM THE FOLLOWINGS.

WIENER FILTER(MMSE) ................. 1
HOMOMORPHIC FILTER(PSE) ............. 2
MAXIMUM ENTROPY METHOD¢LINEARIZED) .. 3
GEOMETRIC/INVERSE FILTER ........... 4_ CONSTRAINED LEAST SGUARE METHOD ..... 5
MAP METHOD .......................... 6

HOW MANY METHODS DO YOU WANT TO SELECT (MAX. 2)? „

ENTER THE NUMBER DF YOUR FIRST CHOICE.
. DO YOU NANT TO READ INTO THE ORIGINAL IMAGESATHER THAN ESTIMATE FROM THE DEGRADED IMAGE? (Y OR N}
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( Appcndix A continues )

, LET US ESTIMATE THE SPECTRUM OF ORIGINALWITH AVAILABLE INFORMATIONS...
*&***+&&#* ENTERING MAP METHQD

****«***
.° MMR AND MMC VALUES ARE... 7 7_ VARIANCE AND NORM OF NOISE ... 9.160583 150087.0 V1

ITERATION NUMBER & DIFFERENCE ARE,. 1 108430.0
DIFFERENCE IS SMALL ENOUGH AT ITERATION.. 1MINIMUM AND MAXIMUM GRAY VALUES.. -12.79417 66.84731
---—--- EXIT FROM MAP -—-———

WE NOW NEED AN ORIGINAL IMAGE TO COMPUTE PERFORMANCE.EQTER THE NAME OF ORIGINAL...
THE NUMBER OF PIXELS PROCESSED... 16384
THE GUALITY MEASURE OF THIS REGION ...
MSE= 12.45612 MAE= 2.387268NMSE¤ 1.5431034E—02 NMAE= 0.1257034LOGMSE= 6.33039255-02 RMSSNR= 41.71375ABSSNR= 20.73830 LMSE= 0.3989764GMSE= 0.1048677 -
WITHIN FERFORMB (FOR WHOLE IMAGE)...
MSE= 17.96517 MAE= 3.287001
NMSE¤ 1.2518902E—02 NMAE= 9.7357251E—02
LOGMSE= 1.23874505-02 RMSSNR¤ 43.80516ABSSNR• 23.29368
LMSE= 0.3896192 GMSE• 9.7836934E—02
GIVE NAME TO THE RESIDUAL IMAGE,.
RB-E-M

NAME THE DATA FILE OF THESE CRITERIA,CB-E-M

NAME THE RESTORED IMAGE.
GB-E-M

MINIMUM AND MAXIMUM GRAY VALUES.. 0.0000000E+O0 66.84731
FOR DISPLAYING PURPOSE• POWER OF OUTPUT CAN BE ADJUSTEDTO THAT OF THE ORIGINAL. WANT IT? (Y OR N)
DO YOU WANT TO PROCESS THIS SAME IMAGESITH DIFFERENT METHOD? (Y OR N)
DO YOU HAVE ANOTHER DEGRADED IMAGE:0 BE PROCESSED? (Y OR N)
S LOG
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