List of Illustrations

Figure 1.	Block diagram of a VSI fed PMSM drive	14
Figure 2.	VSI inverter module models in stationary and rotating coordinates	15
Figure 3.	DQ axis orientation in a two pole PMSM	19
Figure 4.	PMSM module dq0 models	20
Figure 5.	Three-phase filter module models in stationary and rotating coordinates	22
Figure 6.	Two-stage cascade controller module model	24
Figure 7.	Modulator module models in stationary and rotating coordinates	25
Figure 8.	Interface blocks for a) Three-phase/d-q module connection and	
	b) Transformation from d-q to α - β coordinates	27
Figure 9.	VSI three-phase average modeling - signal transformations	29
Figure 10	. Measurement setup for the system impedance evaluation	32
Figure 11	. Measurement scheme for current loop transfer functions	34
Figure 12	. Model comparison with measurements: a) PMSM drive current	
	control-to-output and b) Sampling delay transfer functions	35
Figure 13	. Block diagram of the APU starting mechanism	38
Figure 14	. Typical load torque profile on the PMSM shaft during the APU start-up	39
Figure 15	. Two stage cascade controller block diagram	41
Figure 16	. Forbidden zones interpreted with Nyquist diagram	44
Figure 17	. Forbidden zones interpreted with Bode plots	45
Figure 18	. VSI fed PMSM drive (plant) d-q average model with a VSI output filter	49
Figure 19	. Decoupled PMSM drive small-signal block diagram	52
Figure 20	. Decoupling scheme for the PMSM drive with a VSI output filter	54
Figure 21	. Dq small-signal average model of the linearized VSI-fed PMSM system	
	with a three-phase EMI filter and without back emf elimination	55
Figure 22	. Reference motor torque and speed controller adjustments to active	
	load for the speed loop stabilization	68
Figure 23	. Natural output characteristics of a PMSM for series and parallel	
	winding connections and id=0	70

Figure 24. PMSM current limit d-q polar diagram	72
Figure 25. PMSM voltage limit d-q polar diagram	73
Figure 26. PMSM voltage d-q vector diagram for a) $i_d=0$ and b) $i_d \neq 0$	76
Figure 27. Block diagram of a variable limit PI regulator (VLPI)	78
Figure 28. PMSM voltage d-q vector diagram for CVCP flux-weakening control	85
Figure 29. PMSM voltage d-q vector diagram for CCCP flux-weakening control	88
Figure 30. PMSM voltage d-q vector diagram for OCV flux-weakening control	91
Figure 31. Decoupling Bode Diagrams	100
Figure 32. Current loop gain transfer functions: a) full decoupling and equivalent	
DC motor with b) unknown load and c) extracted load control methods	101
Figure 33. Iq current loop-gain transfer functions - Nyquist diagrams	102
Figure 34. Closed current loop transfer functions	103
Figure 35. Speed loop transfer functions: a) Nyquist plots and b) Bode plots	104
Figure 36. Speed and current step responses	106
Figure 37. "Full-length" flux-weakening: voltage and current d-q polar diagrams	108
Figure 38. "Full-length" flux-weakening: voltage and current phase shifts	109
Figure 39. "Full-length" flux-weakening: voltage and current time diagrams	110
Figure 40. "Full-length" flux-weakening: input power diagrams	111
Figure 41. "Full-length" flux-weakening: motor torque and speed diagrams	113
Figure 42. Full start-up: voltage and current d-q polar diagrams	115
Figure 43. Full start-up: voltage and current time diagrams	116
Figure 44. Full start-up: input power diagrams	117
Figure 45. Full start-up: motor torque and speed profiles	118
Figure A.1 Park's transformation from three-phase to rotating dq0 coordinate system	129
Figure A.2 Space vector modulation basic principles	131
Figure C.1 Simulation (Simulink) hierarchical model for control design of PMSM drive	143