
1

Structural Shape Optimization of

Three Dimensional Finite lilement Models

by
Stephen A. llambric

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial lulfillmcnt of the requirements for the degree of

Master of Science

in

Mechanical lingineering

Al’l’R()\/lll):

‘/g 1/L
[

‘LI)r.Charles li. Knigrt, Chairman

. 1_„· ggeß a L /,47 -
Dr. Charles F. Reinholtz ’ Dr. Ro crt I . Fries

August 26, 1987

Blacksburg, Virginia



f

JF
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Three Dimensional Finite Element Models
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Stephen A. llambric

Dr. Charles ll. Knight, Chairman ·

Mechanical Engineering
· (ABSTRACT)

The thesis presents a three dimensional shape optimization program which analyzes

models made up oflinear isoparametric elements._ The goal ofthe program is to aehieve

a near uniform motlel stress state and thereby to minimize material volume.

The algorithm is iterative, antl performs txvo analyses per iteration. The first anal-

ysis is a static stress analysis ofthe model for one or more loatl cases. Based on results

from the static analysis, an expansion analysis is performed. Model elements are ex-

panded or contracted based on whether they are stressed higher or lower than a reference

stress. The shape changing is done by creating an expansion load vector using the dif-

ferences between the calculated element stresses and the reference stress. Expansion

displacements are solved for, and instead of using them to calculate stresses, the dis-

plaeements are added to the nodal coordinates to reshape the structure. This process

continues until a user defined convergence tolerance is met.

Four programs were used for the analysis process. Models were created using a H-

nite element modeling program called l—l)EAS or CAIZDS. The l—l)EAS output files

were converted to input files for the optimizer by a conversion program. The model was

optimized using the shape optimization process tlescribed above. Post- processing was

done using a program written with a graphical programming language called gral’l IIGS.
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Modcls uscd to tcst thc program wcrc: a cylindrical prcssurc vcsscl with nonuniform
. thickncss, a sphcrical prcssurc vcsscl with l]OIlUIlll‘OI'IIl thickncss, a torquc arm, and a

draft sill casting ofa railroad hoppcr car. Rcsults wcrc comparcd to similar studics From
sclcctcd rclcrcnccs.

Both prcssurc vcsscls convcrgcd to ncar uniliorm thickncsscs, which comparcd wcll
with thc rclcrcncc work. ln a two dimcnsional analysis, thc torquc arm volumc dc-

crcascd 24 pcrccnt, which comparcd wcll with puhlishcd rcsults. A thrcc dimcnsional
analysis showcd a volumc rcduction of l3 pcrccnt, hut thcro wcrc convcrgcncc problcms.
l·‘inally, thc dralt sill casting was rcduccd in volumc by 9 pcrccnt [rom a manually opti-
mizcd dcsign.
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Chapter 1

INTRODUCTION

Shape optimization is the changing of the geomctry of a machine part so that its

stress distributions are smoothed and model volume is reduced. A part performs better

ifthere are no wild lluctuations in stress distribution; and less volume means less mate-

rial, which is an advantage when parts are mass produced.

Optimization is commonly done by hand using trial and error techniques. The en-

gineer removes or adds material as needed, basing these changes on testing or in-service

failure. Engineers now have hnite element analysis to check redesigns more easily, and

it also has the potential for shape optimization. Much research has been done (see lit-

erature review) and many methods exist for shape optimization. Ilowever most methods

q are two dimensional and have no standard approaches. ln many previous algorithms,

different models require specialized preparation before they are optimized. Sometimes

large regions ofa model will be held fixed to force the structure into some predetermined

shape. Sometimes programming will be altered to accommodate diflerent models. No

truly general method exists.

1NTR01)uC1‘10N 1
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The goal here is to create a three dimensional shape optimization method that may
be applied to any part without altering the algoritlnn used, or requiring excessive prep-
aration. This study investigates the use ofan element volume expansion and contraction
algorithm to alter a structures shape. lfthe algorithm is successful, it could become a
simple method of shape optimization.

The program would first perform a normal finite element analysis on a part. Strain
energy densities for each element are caleulated and compared to a user defined reference
stress. The elements would then be changed based on the strain energy density differ-
ences. An overly stressed element would expand, and an understressed element would
shrink. The process would then repeat until the model stresses convcrged about the
reference stress. This method could be applied to any three dimensional model made
up ofhexahcdron isoparanictric elements.

This thesis starts with a literature review to describe the history of shape optimiza—

tion. ln the review, some common shape optimization variables are defined, and difler-
ent methods arc described. l’ollowing the literature review, a detailed overview of the
main body is presented. The main body ofthe report contains: the model optimization
procedure explaining how software is used in the shape optimization process; the theo-
ries used in the construction of this software; case studies of models optimized by the
software, with comparisons to similar studies by reference authors; and a conclusion
with suggestions for future work.

INTRODUCTION 2
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Chapter 2

LITERATURE REVIEW

As mcntioncd earlier, shape optimization is the altering of a machine part’s geom-

etry to achieve a smooth stress state and volume reduction. A survey of structural shape

optimization studies is found in the paper by llaftka [1:]. The report contains 139 ref-

_ erences that deal mainly with shape optimization of the boundaries of two and three

dimensional bodies. The dilliculties of working with constantly changing Iinite element

models are discussed. These include problems such as the choice ofdesign variables, and

the effects of automatic mesh generation.

Shape optimization generally involves using one of two types of design variables.

The Erst type is a sizing design variable, which is a simple geometric dimension of a

structure. lßxaniples are a plate thickness or a bar cross sectional area. These variables
i

are altered so a part will meet a design stress requirement. The second type of variable

is a shapeidesign variable, which is used for the more solid and complex geometries an-

alyzed by linite element analysis.

LITERATURE REV1E\V 3
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An example of shape design variables are boundary nodal coordinates. An algo-

rithm calculates stresses at elements on a defined boundary and alters the shape of the

boundary based on those stresses. ()da and Yamazaki [2] use such a technique in their

study using models made up of axisymmetric elements.

They obtained optimum shapes by iteratively changing models until they had be-

come fully stressed shapes. A fully stressed structure has a near constant stress field and

a minimum amount ofmaterial. Since all oftheir models were thick walled vessels under

internal pressure, the stresses at the outer boundaries were analyzed, and the boundary

nodal coordinates were used as design variables. When the outer walls of each model

became fully stressed, the shape was optimized. The program developed here uses the

fully stressed shape approach, but uses the nodal coordinates ofthe entire model as de-

sign variables. Strain energy dcnsities for all elements are caleulated, and nodal coordi-

IIZMCS are modified based on them. Oda and Yamazaki use pressure vessel models

to support their solution. In this study a spherical and a cylindrical model are compared

to their results.

Other programs use the nodes of elements in a certain model region as design vari-

ables. Stresses are caleulated for the entire model, but only the nodes ofthe defined re-

gions are allowed to move while all other areas remain fixed. An example ofthis method

is found in Braibant and I·”leury's study [:3;].

They use boundary nodes as design variables. To change their models, only certain

nodes, called masters, have displacements caleulated for them in the shape change algo—

rithm. The displacements for each iteration are found using a sensitivity analysis. Dif-

ferential equations based on virtual work, with master node displacements as the

variables, are solved. Only a few master nodes may be used, or the solution will require
excessive computer time.

LITERATURE REVIEW 4
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IA problem that arises often in shape optimization is that sometimes a model will
change so much that element distortion causes the analysis to become inaecurate. To
solve this problem, some shape optimization algorithms use automatic rnesh refinement.
The mcsh refiner will redefine the entire mcsh at certain points in the analysis, and also

” give high stress regions a greater element concentration. Bennett and Botkin use

mcsh regeneration in their two dimensional optimizer.

They define only the boundaries of‘ their models and the mesh generator creates an

initial mesh. A finite element analysis is performed on the structure, and based on the
stress results, the mcsh refiner regenerates the mcsh giving areas of stress concentration

more elements. The finite element analysis is performed again, and the defined boundaiy
elements are changed based on the new stress results to modify the structure. This

process is long and costly, and restricts models to two dimensions. A torque arm is used

to test their algorithm. ln this thesis, a similar model is constructed, but a three di-

mensional analysis is done in addition to the two dimensional one.

A common element of each of these studies is that in the shape changing portion

of their algorithms, only the boundaries of structures are altered. This is due to the

difliculty and expense ofisolving sensitivity equations. Design elements must be specified

with great care to achieve useful optimizations. In this thesis, a linear approximation

to the nonlinear problem of shape changing is attempted. The algorithm will use linear

shape modifications to iteratively solve the nonlinear problem and achieve an optimum
shape solution. All the nodes ofa model may be moved to reshape the structure without

requiring exeessive calculations and computer time.

After a normal finite element analysis of‘ a model, an expansion load vector is

formed based on element stresses. A new set of displacements is calculated using an-

other normal finite element analysis, and is added to the current set ofnodal coordinates.
I

The degree ofcxpansion or contraction in an iteration is specified by the user. Note that

LITERATURE REVlEW 5
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Chapter 3

OVERVIEWV

This section provides a detailed overview ofthe main body ofthe tliesis. Summaries

of each chapter arc given. The thesis is divided into three main sections: software use,

software theory and development, and case studies.

3. I Software Use

Chapter 41 explains how a model is created, optimized, and post processed using a

mix ofcommercial and local software. The discussions concentrate on how to use these

programs.
ln this study, a model is made up of two sets ofinformation: the static case model,

which is solved using a standard linite element analysis; and the expansion phase infor-

mation, which determines how the model will change shape.

ovrsizvißw 7
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The static case information is entered using the commercial software I-DEAS or
CAIEDS, a product of the Structural Dynamics Research Corporation in Cincinnati,
()hio. The finite element module is used in this case to define the required information.
The shape of a model is defined by geometric primitives. Nfeshes are then generated
ovcr the shape of the model. Note these meshes are not defined automatically, but the
user has full control over the final mesh. Static constraints and loads are also defined.
A data file is written when the model definition is complete.

The expansion phase information is entered using the program CONVERT [:6] ,
which also acts as a data conversion program for the data hle written by l-DEAS. Ex-
pansion data is entered using a menu format. When the program is finished, the data
files used by ST()l’l·‘IEl’ are written.

ST()l’I‘l§l’ [fi] pcrforms thc shape optimization of the model defined by l-DIZAS
and CONVILRT. The structure is reshaped iteratively until a user defined convergence

tolerance is met. Two output files are written, one containing element stresses and other
· execution information; and the other file containing nodal coordinates for each iteration

of the optimixation process. .

The file with the nodal coordinates is fed into the program ANlNlATli, which al-

lows its user to quickly animate the entire optimization process on a graphics terminal 3

screen. The model may be moved and zoomed in on easily to observe certain regions.

3 Software Theory and Development

Chapter 5 describes theories used and how each program is structured and written.
Special functions of CONVERT include constraint plane definition and element

OVERVIEW 8
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connectivity checking. Since I-DEAS has no way of defining constraint planes, they are
defined in C()NVI3R'I“. Planes for both the static and expansion phase may be defined.
Four points define a region to be specified as a constraint plane. The first three points
define the plane, and all four points define the boundaries of the region to be con-

— strained. I—DI.iAS sometimes incorrectly defincs elements, so CONVERT checks

connectivity as it reads element information in. Any incorrectly defined element is re-
defined correctly.

ST()I’FIlI’ uses a standard hnite element approach using multiple load cases. Spe-
cial features of ST()l’Fl;I’ are the expansion phase and the implementation of constraint
planes. Ifa surface not on a primary plane (xy, xz, yz) should be fixed either to model
a static constraint or to fix a surface in the expansion phase, it may be held using a

constraint plane. All nodes defined on the plane arc restricted to movement on that
plane.

The expansion phase, which alters the shape of the structure, uses a new load vector

created using an initial strain vector. The initial strain vector is created using the ex-

pansion coefficient alpha, and the differences between calculated element strain energy

densities and the reference stress converted to element strain energy densities. Dis-

placements are calculated for this expansion load vector, and are added to the nodal

coordinates to alter the structure.

ANIMATIE is written using the FORTRAN programming language with calls to

the graphical programming language graI’IIIGS. The nodal coordinates for each iter-

ation of the optimization are used to create pictures of the model. The pictures are

stored in a graphics termina1’s memory, and may be drawn immediately on the terminal

screen. All elements of the model may be drawn, or only the outer boundaries. If a

boundary picture is specified, the program scans all elements to find singly defined lines

and draws the outfine of the model. Input devices are programmed to position the

ovßrzvnsw 9
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model in any orientation, zoom in on certain regions, and anirnate the optimization
process.

3.3 Case Studies i

Chapter 6 contains the supporting models used to test the program. Two pressure

vessel quarter sections with nonuniform thicknesses are analyzed, one from a cylindrical
vessel and the other from a spherical vessel. The goal of the analysis was to achieve
uniform model thicknesses for each case. Since the final shape was already known, the
models were good tests for the program. Results were compared to theory using Lame's

solutions and the results in Both models achieved near uniform vessel thicknesses,
with the cylindrical vessel performing better than the spherical. Stress results were found
to be accurate. Model volumes increased in both cases due to the reference stress se-
lected, qut the analyses were only meant to test the program.

A Torque arm with a center hole is analyzed two ways: in two dimensions and in

three dimensions. Results are compared to those in reference [4] and stress results
checked using a beam approximation. The two dimensional model converged fairly well,

although some elements overlapped in the final design. Model volume was reduced by

24 percent. The three dimensional analysis results were not as good as the two dimen-

sional results, although an interesting ünal shape developed. Model volume was only

reduced by 13 percenti Stress results agreed with the beam caleulations.

Finally, a model of a rail car draft sill casting was optimized and compared to the

work done by Roach [5]. The casting model was originally created by Roach, who
i

optimized it by trial and error techniques. Model volume was reduced by nine percent,

QVERVIEW 10
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but a distorted linal shape resulted. The distortion was caused by the sparseness of the
linite element model. To achieve a usable ünal design, a more detailed mesh would l1ave

to be created.

OVERVIEW ll
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Chapter 4

SOFTWARE USE

This section explains how a modcl is created, its data files modified, its shape opti-

mized, and how it is post processcd. A user’s guide containing full documentation for

all programs listed here is inreference4.]

]VIOdel Irformation

A model to be optimized requires two different types of input information to define

it. The first type is the static case data for the normal finite element analysis of the

model; the second type is expansion case information to determine how the model is al-

lowed to change.

soi#'rwAigr; use iz



The static case information includes the linite element model itself made up of
nodes and elements; a sct of nodal eonstraints; and up to ten load cases, made up of

nodal forces and element face pressures, to simulate the in service state ofthe model.
The expansion case information includes a dillerent set of eonstraints, which are

used to preserve certain model geometiy features such as holes, slots, and walls, during
the optimixation of the model.

Static or expansion eonstraints may be simple kinematic nodal degrees of freedom
(d.o.f) eonstraints or constraint planes. The kinematic eonstraints are nodes that are
lixed in the x, y, or z direction, while constraint planes simulate skewed eonstraints.
Nodes on a constraint plane are restricted to movement on that plane.

Note that constraint planes may only be delined for planes not parallel to the pri·
mary planes (xy, xx, yx). Any plane parallel to one olithese primary planes may be held

lixed by applying kinematic eonstraints to its nodes.

Also required in the model delinition are material properties and optimization con-
trol variables. The material properties needed are Young’s Modulus and l’oisson's ratio.
The optimization control variables are the expansion coellicient alpha, which determines ,
how much the element volumes change in an iteration; the relerence stress, to which the
model stresses will try to converge; and the convergence tolerance, which determines
when the optimixation is complete.

4.2 Pre-Processing with SDRC - I-DEAS or CAEDS

' To deline the basic, static case model, the SDRC l-DEAS or CAEDS Finite Ele-
ment Modeling (FEM) module is used. The FEM module is a finite element model

SOFTWARE USE I3
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creation and analysis program, and is used to define n.odes, elements, static case

kinematic constraints, and load sets made up of nodal forces and element face pressures.

A detailed description ofhow to create a linite element model like the one described
above is in reference [6]. A brief description follows. First, the model's geometry is

defined using points, lines, and arcs. Ildges are then defined using the geometry primi-
tives, and surfaces are defined by edges. Five or six surfaces may then be used to make
up a volume. Several volumes may exist in a single model. Three dimensional meshes
are then deüned over the volumes, and nodes and elements are generated using the

meshes.
With the model complete; nodal constraints, nodal forces, and element face pres-

sures may be added and put into sets. When all inputs are completed, data is written
out to a file.

4.3 Data File Conversion with Program CON VERT

Once the model has been defined, the expansion phase information must be added,

constraint planes defined for either phase, and the STOPFEP input Hles required must

be written using the information in the I-DEAS data file. The I-DEAS data file may

be modified by hand to include the expansion phase information, and the STOPFEP

input hlcs created as a result. lland modihcation is tedious however, and the model

would have to be carefully scanned to find all nodes on desired constraint planes.

The program CONVERT accomplishes all ofthese tasks by reading the data in the

original file, and using an interactive menu format for input. The menu allows the user
to deüne any static phase constraint planes, expansion phase constraint planes, expan-SOFTWARE USE I4



sion phase nodal constraints, material property information, and optimization control
variables. Once all data is entered to the user’s satisfaction, the input hles for the opti-
mizer are written.

Constraint planes in STOl’l”’El’ are defined by the first three nodes of a list of all
nodes constrained to motion on that plane. CONVERT simplifies the user input by '

finding all nodes on a specified plane and putting them in a list.
To define constraint planes for either the static or expansion phase, the user selects

a region of the model to be defined as a constraint plane by entering four outer points
of the region. The four points define a quadrilateral in space, inside of which are all the
nodes on the desired constraint plane. These points may be the coordinates of four
nodes on the outside edges of the plane. The program uses the first'three points entered
to form plane equations and scans all nodes in the region defined by the four points to
find those on the plane. When the final data files are output, each plane will be written
as a list of nodes, with the first three nodes defining the plane.

Kinematic nodal constraints for the expansion phase are entered in CONVILRT.
A node’s x, y, or z d.o.f may be held fixed, left free, or released ifit was held fixed for
the static analysis.

All other variables are entered directly when their corresponding menu choices areselected. ‘
4.4 Shape Optimization with STOPFEP

After that all the information has been entered and eompiled in the correct format
in the input hles, the model is analyzed and optimized by the program STOPFEP

S01*Tw,x1<E USE _ IS



(STructural ()l’timization Finite Element Program). The program performs static ana-
lyses on the model and modifies it until the user defined convergence tolerance is
reached, or terrninates by exceeding the maximum allowable number ofiterations.

Before a complete optimization run is made, a data check is done to ensure that all
required model information exists and is correct. lf the model information is correct, a

run using only one iteration is performed with all write flags on (static and expansion

displaccments, current nodal coordinates). The designer then examines the initial stress
states and may choose a reference stress for the model to converge about. The expan-

sion displacements can be raised or lowcred by altering the expansion coefhcient alpha.

With these preliminaries complete, the program can then achieve a successful optimiza-
tion.

The optimixation control variables: the expansion coeflieient alpha, the reference

stress, and the convergence tolerance; are all selected by the user using the initial state

of the model and trial and error.

The expansion eoeflicient alpha determines how much a structure’s nodal coordi-

nates are modified in an optimization iteration. The higher alpha is, the higher the nodal

displacements are.
T

Reference stress may be specified based on the stress state of the model. lfthe de-

signer wishes to remove material from a certain region ofa model, the reference stress

is set higher than the stresses in that region. The reference stress could also be set equal

to a design stress, but obtaining a completely uniform model stress state is rare, and
stresses in some regions could be higher than the design stress.

Convergence tolerance will vary depending on model complexity and the value of

the expansion coefficient alpha. ln general, the tolerance should be raised with complex

models, and lowcred if alpha is low. Running the program for a few iterations should
give the user an estimate for an acceptable convergence tolerance.

SOI·"'I“\‘VARE usb; l6
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No user interaction is required once the program begins execution. Screen writes

by the program at certain points in the analysis keep the user informed.

()utput includes all the model information and element strcsses for each load case

and each iteration. Ifthe user desires, static displacements, used to find element stresses;

and expansion displacements, used to modify the model, may be written. Included in the

output is another file ofdata, containing element connectivity and nodal coordinates for

each iteration. This information is needed for the post processing program ANIMATE.

4.5 Post Processing with Program A NIAEIA TE

To quickly and easily cxamine the results ofthe optimization, some sort of graphical

post processor is required. The program ANIMATE was written for this purpose. The

program allows the user to display the geometric shape after each iteration ofthe opti-

mization process on a graphics terminal screen, achieving a quick animation ofthe entire

analysis. The user may also rotate the model about the x, y, and z axes; move the model

drawing anywhere on the screen; and zoom in on any portion of the model.

All model information is stored in the terminal’s memory, and no redrawing is re-

quired. All the processes described above are executed quickly and smoothly.

When the program begins execution, it requests the filename of the model to be

viewed and the following control information: number of nodes, number of elements,

and number of iterations in the analysis. Two kinds of display styles may be used:

wireframe and boundary. The wirelrame display style shows each of the elements of the

model in their entirety, while the boundary style shows just the outline of the model.

SOFTwA1zE USE _ l7
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Wirelrame display is used to see how the elements are changing, and the boundary style
shows a less cluttered outline ofthe actual part.

When AXIA/lA”l”Ii has linished processing all the input data, the original model is

drawn on the screen and input devices are set up for use. Using these devices, the user

may rotatc the modcl about the x, y, and z axes; move forward or backward through the

optimization process; zoom in on desired sections; and move the model to dillerent lo-

cations.
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Chapter 5

SOFTWARE THEORY AND DEVELOPNIENT

This section explains the structures and theories used in the development of the

programs (IONVliRT, STOl’l*lil’, and ANIM/\Tll. All program listings, along with

detailed descriptions of program executions and subroutine lists, are found in [6:].

Recall from the previous chapter that CONVERT is used to add expansion phase

information and write out the input Üles necessary for the program STOl’l·‘lll’.

STOl’I·'liP performs the finite element analyses needed to alter and structurally optimize

the given model. ANIMATE is then used to graphically display the results ofthc opti-

mization.
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5. I CONVER T

Two of the main features of CONVERT are the input of nodal kinematic con-
straints for the expansion phase and constraint planes for the static and expansion cases.
[Expansion phase kinematic constraints are added by entering the node number, and the
x, y, and z constraints. The expansion phase kinematic constraints are completely difl

ferent from those of the static phase. Nodal d.o.f. may be fixed, left free, or released.

A nodal d.of may be released if it was held fixed in the static analysis. A ’l' constrains

a d.o.f., a '0' leaves it alone, and a '-l’ releases a d.of constrained in the static phase.

(Äonstraint planes for either phase are created by entering four outer points of a

desired plane. Only three points are necessary to define a plane, however such a plane

would extend infinitely. At times a model will have a region on a plane that does not

need to be completely constrained. The four points the user inputs define a region as

well as a plane. Only nodes within the defined region that are on the defined plane will

bc added to the constraint plane list. After the first three points define the given plane,

the fourth point is tested to ensure it is on the plane. lf the point passes the test, the

algorithrn procecds. lf it does not, the user is instructed to recntcr all four points.

The program will use these boundary points to deüne a plane equation. All the

nodes in the model are then scanned and their coordinates input into the defined plane

equation. lfa node causes the result ofthe equation to be zero, the node is on the plane,
‘ and is inserted into that plane's list of nodes. This procedure is repeated for each defined

constraint plane. The end result is a list of nodes for each constraint plane.

The maximum and minimum x, y, and 2 coordinates of the four points entered de-

fine a box in space containing the nodes on the desired constraint plane, and other nodes
in the nearby region. Only the nodes in the box are tested for the plane.

l
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‘The plane equations are formed below, where the subscripted coordinates are those

of the first three points used to dehne the plane. The unsubscripted coordinates are the

coordinates of each node being checked.

Ö = cl(x —xl) —+— c2(_y ——yl) + c3(z — 21)
where

Cl =(.)’2 “.V1)(Z’3 ”Z1)“(.)’3 “}’1)(Z2 -21) [l]
Z2 = (xs — ·r1)(Z2 — Z1) — (rz · »<1)(Z1 · Z1)
C3 = (X2 - xl)(.y3 -.)'1) “‘ (X3 - X1)(.V2 -.V1)

The value of the variable delta is used to determine if a node lies on the plane.

ldeally, ifa node is on the defined plane, delta will be zero. Due to computer inaccuracy,

tl1is will not identify all the nodes. Therefore the program variable epsilon is used to

measure the sinallness of delta. Any node with a delta less than epsilon is on the defined

plane. By trial and error, an epsilon of two times the lowest c value (cl, c2, and c3 de-

fined above), was found to give accurate results.

Another function of CONVIZRT is to test element connectivity, since l·DEAS
_ sometimes incorrectfy defines elements. lncorrectly defined elements cause negative el-

ement volumes, which will cause a ünite element sofver to fail. CONVFRT tests each

element's definition as it reads it in; The conventional definition for an eight noded,

three dimensional element begins by numbering the ürst four nodes of the bottom face

in a counter cloekwise direction. By the right hand rule, the bottom face should point

up toward the top face, which is also numbered in a counter clockwise direction using

the last four nodes.
_ The program defines three vectors: vector A from node one to node two, vector B

from node one to node four, and vector D from node one to node üve. Vector C is

formed by crossing A into B, and should point in approxirnately the same direction as

vector D. A picture of these vectors is in figure Figure l.
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Figurc l. Ycctors A, B, C, and D in a typical clcmcnt.
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Thc anglc, 0, bctwccn thc vcctors C and D is:

COSCIICI
ll)!

lfthis an vlc is small, thc faccs arc corrcctl ' dcüiicd. lf thc an lc is a sroachin 90 dc-. E E E PP E
grccs, thc clcmcnt is hatlly tlistortcd; and il it is grcutcr than 90 dcgrccs, thc vcctors arc
poiiitiiig in oppositc dircctions and thc clcmcrit laccs arc iricorrcctly dcühcd. To corrcct

this, thc Faccs arc switchcd by iritcrcliaiiging thc Hrst Four notlcs ofthc clcmcnt with thc
last Four.

SOFTVVARE TIIEORY AND Dl£VEL()l’MEN'I‘ 23



l
5.2 STOPFEP

ST()l’l’ljl’ is made up of a standard finite element analysis program coupled with
shape modification routines. Most of the shape modification information is caleulated

using the routines ofthe ünite element solver. The solver was modified to handle more
than one load case.

The program was originally written by (lli. Knight and l.R. Grosse, and it was de-

bugged and enhanced by S.A. llainbric. The key modifications made here include: im-

plementing multiple load case capability, which allows the model to be optimized based
on diflerent types ofin service loading; debugging the computer coding for the constraint

plane application to load vectors and displacement vectors; optimizing the code; and

making the program user friendly.

As mentioned before, the program uses a two part analysis. The first part is a static
analysis, which performs a finite element analysis of the model with applied loads and

constraints. Stresses are caleulated for each load vector, and the maximum element

strain energy densities are selected from each load case to form the expansion load vec-

tor.

The second part ofthe analysis is the expansion phase. The maximum strain energy

densities for each element, the reference stress, and the expansion coefficient, are used

to calculate an initial strain vector for each element. Using these initial strains, the ex-
pansion load vector is formed. This load vector and the expansion phase stiffness matrix

are used to calculate a new set of displacements. These are the displaeements used to

modify the model and are added to the current nodal coordinates.

The program checks for convcrgencc and continues iterating if the convergence

tolerance is not met.
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The following algorithm is made up of a conventional finite element formulation

with added constraint plane capability. Much of the algorithm was implemented by I.

R. Grosse. A basic knowledge of finite elements is assumcd. The text by Cook [7] is

an excellent reference source.

The stiffness matriccs are formed first, one for the static phase using the static case

constraint set; and one for the expansion phase using the expansion case eonstraints.

The matriccs are constructed on an element basis and assembled to get the global

stiffness matriccs.

Nodal constraints on global coordinate d.o.f are implemented by removing corre-

sponding equations, but constraint planes involve matrix manipulations to couple the

appropriate d.o.fÄ. A constraint matrix must be formed for each element and used to

alter the element's stifliiess matrix before it is added to the global matrix. The constraint

matriccs are also used to modify all load vectors and calculatcd displacement vectors.

To form an element constraint matrix, the following operations are performed. The

first three nodes are taken from each constraint plane node list and are used to define

the plane. The planes are implemented by eliminating the nodal z d.o.f. in favor ofthe

x and y d.o.f. Plane equations are:

fz — Zi) = %L(x — xi) — ·yi)
where

¤1=fV2 —yi)<¤3 fm) —f)u ·yi)<Z2 —Zi) lßl
62 = fx; · xi)<¤2 — Zi) — fxz · xl)<Z3 · Zi)
C3 = (X2 “ xl)(.y3 ’}’1) ‘ (X3 ’ X1)(.V2 ’}’1)

The variables alpha and beta will become entries in the element constraint matrix,

and are calculated as:
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Where cl, c2, and c3 are calculated in equation 3.

During the element stilliiess matrix formulation, each node in the element is looped

over to determine ifit is a constraint plane node. lf it is, the alpha and beta calculated

in equation 4 will be put in the element constraint matrix. The constraint matrix is an

n x n identity matrix with n equal to the total d.o.lÄ of the element with the following

changes: the column corresponding to the node's z d.o.f is zeroed out; in the row cor-

responding to the node's z d.o.f., thc value corresponding to the node's x d.o.lÄ is set

equal to alpha, and the value corresponding to the node's y d.o.f. is set equal to beta.

This is done for each node of the element that is on a constraint plane.

Stillness matrices are altered on an element basis by:

76* _ —e TK12I/~l—lCIl ll«»l
where

_ [K6] = the element stillness matrix [5] -
[C6] = the element constraint matrix
[E6] = the transformed element stilTness matrix

This is done for both thc static and expansion phase matrices using the constraint

planes delined for each phase. These calculations amount to a coordinate transforma-

tion lrom global x, y, z coordinates to in—plane x’, y', and z' coordinates. Due to the

zeroes in the constraint matrices, the modilied stillhess matrix will not be positive deh-

nite. This problem is solved by putting dummy positive numbers in the diagonals that »

ended up being zero. These substitutions will cause incorrect displacement calculations
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for the corresponding z' d.o.f, but since they were constrained out in favor of x' and y'
d.o.fÄ, the are set to zero an 'wa after the dis lacements are calculated.Y Y Y P

After both stifiiiess matrices are formed and modified, the load vectors for each load

case are formed. Nodal loads are added to element face pressure contributions to form
‘ element load vectors. Constraint planes transformations are added by:

. „ 7*{7”} = [CGI {rg}
where [6]{rg} = the element load vector

{FI?} = the transformed element load vector

The element load vectors are then added into the global load vector as follows:

_ ITIIIITC _(,{7} = E {7 I6 I
7where I I

{F} = the transformed global load vector

The program can now solve for the static displacements for each load case by the

conventional finite element equation:

[KI {4} = {7}where [8][I?] = the transformed global stiffness matrix
{4/} = the transformed displacement vector

Constraint plane transformations are applied to the displacement vector to yield
global coordinate components:

{JI = {JI ICIwhere [9]
{4/} = the final global displacement vector
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The element stress state for each set of displacements is:

€ ~P I] I?{G} = I/= ll/YIM}
where

{og} = the element stress vector [10]
[lf'?] = the element material stilfness matrix
[B6] = the element strain displacemcnt matrix

Element stresses are used to calculate a strain energy density for each element.

When stress calculations are complete, there exists a set of element strain energy densi-

ties for each load case. Optimization should be based on the maximum strain energy

densities for·each element. Therefore each set of densities is scanned, and a single set

containing only the maximtnns is formed.

The user delined reference stress is then converted to the reference strain energy

density. This is subtracted from the set of maximum calculated strain energy densities.

Multiplication by the expansion coellicient alpha determines the magnitude of the initial

strains in the element:

, . rte;} = a(<p” — tp,) [1 I I 0 0 0I
where

{1;;} = the element initial strain vector
U I]ot = the expansion eoelhcient

tpg = the element strain energy density
<p, = the reference strain energy density

Next, using these strains, an expansion load vector is calculated. This is done on

an element basis, and surnmed to form a global expansion load vector. Constraint plane

. transformations are applied as they were to the load vectors in the static phase.
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6 6 T -6 6fr} ZIII lßl
lblHUITIClr} = E {/7} [I2]
6 I

{V} = IC'} fr}

This expansionload vector is used to calculate a new set of displacements, which
then have expansion phase constraint plane transformations applied to them. These
displacements are transformed to global coordinates and then added to the nodal coor-
dinates to reshape the structure, and the iteration is complete.

The leveling of strain energy density distributions is tested after the stress compu-

tations. The convergence tolerance is calculatcd by using a scaled euclidian norm

foriterationi. The equation uses strain energy densities for each element from the current
and previous iterations:

IIUITTC el Girl 2I E (<t>.„ r <t>.. Irf Is = ___i
IIUTIIC UI 2

(Ipa)
\/ 6 Z l‘ llßlwhere

sl = the convergence tolerance
rp = the element strain energy density

nume = the number of elements

If this value is less than the user defined tolerance, the model has converged. lf it

is greater than for previous iterations, the solution is diverging and the program stops.

In the lirst iteration, an arbitrarily high value is assigned to ensure the program will go

through at least two iterations. All subsequent iterations are treated normally.
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The program is used to display the optimization process on screen, and to allow the
user to observe diflerent sections ofthe model by rotation, location, and zoom functions.
lt is written using the I’()l{'l‘RAN programming language and uses calls to graPlllGS
subroutines to perform all graphical functions. Documentation listings for graPlllGS
are found in reference [0].

ANIMATE draws a model as it appears in each iteration in separate pictures.
These pictures are stored in memory so the user may recall any of them to a graphics
terminal screen. Various input devices are programmed to accept user commands at any
time to manipulate the model onscreen into any desircd position and orientation.

graPlll(iS differs from other graphics languages such as GKS in that it stores entire
pictures for use at any time. No matter how complex the drawing in a picture is, it may
be stored in the intelligent workstation memory and llashed on the screen instantly. The
user does not wait for lines and text to be drawn.

l’or this reason gral’lll(iS is ideal for the animation of the optimization process.
Each iteration of the process is put in a diflerent picture. The pictures may then be se-

quentially displayed to simulate animation.

Pictures are filled up with model drawings for each iteration by reading in element

connectivity once and storing the information, then reading in all nodal coordinates for
each iteration and drawing the lines that define the models. lf a normal wireframe Ä

drawing is specified, each element of the model is looped over and lines are drawn from

node to node using the coordinates ofthe nodes that define an element. The result is a

series of drawn boxes in a picture that make up a drawing of a model. This process is
repeated for each iteration of the optimization process.
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If a boundary drawing is requested, all elements are looped over; but instead of
simply drawing each line of an element, all lines of an element are compared to all the
lines of all the rernaining elements of the model. lfa match is found, the tested line is
not on the outer boundary, and is not drawn. lf no match exists, the line is drawn in
the picture. This testing algorithm is performed only for the first iteration of the opti-
mization, and the nodes delining the boundary lines are stored. The stored nodes are
used in all subsequent iterations to draw modified model boundaries in the other pic-
tures.

Different model locations and orientations are produced on screen by using the
concept of views. Different views may be defined for any picture to exarnine it in a dif-
ferent way. Views may be moved in any direction, and rotated in any way using transf-

ormations. AXINIATIZ works by delining a view based on user input. and then puts the
current picture containing the current iteration of the optimization in that view. Views

may be constantly redelined. lf for example the user slowly turns a valuator dial to ro-

tate the model about an axis, the appearance onscreen is that of a constantly rotating
model. ·

I Once the program completes drawing pictures of each iteration of an optimization

process and storing the pictures in the graphics terminal memory, the algorithm sets up

input devices and awaits user input. The program is then in a wait and respond mode.

Input is given through input devices attached to the IBM 5080 terminals. The at-

tached input devices used here are the Choice board, which uses choice keys to perform

the translate and zoom operations; the valuator dials, whichare used for rotation about
the x, y, and z axes; the locator and tablet, which are used to deüne zoom boxes and new

locations on the screen; and finally string input on the keyboard.

These inputs may be programmed in one of three modes: Request mode, where data

may only be entered when the program asks for it; Sample mode, where the program
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samples data from an input device without user interactiongand Event mode, when the
program waits for user input and responds to it.

Event mode is the type used most in ANINIATE. This mode allows the user to

perform any given action at any time. When the user requests certain actions, such as

zoom or loeate, the keyboard and locator are put in request mode to complete the op-
eration.

When input is made, it is to redeline the current view ofthe model, or to bring up

the previous or following picture ofthe optimization. Views are redeüned by moving the

observation point, expanding or shrinking the observation window, or rnultiplying a ro-

tation matrix by the window and observation point delining the view. Once a new view
is calculated, the current picture is placed in it and the operation is complete. To show
the next picture ofan optimization, the current picture is removed lrom the current view,

and the next picture placed in that view. Done rcpeatedly, this will produce an ani-

mation ofthe entireioptimization process with a model in any specilied view.
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Chapter 6

CASE STUDIES

Three types of structures were studied to evaluate this optimization approach.
Where appropriate, results are compared with reference studies. Results are also com-

pared to theoretical or approximate solutions. The following models were analyzed:

· Pressure Vessel: a spherical model and a cylindrical model
were analyzed. Both were given nonuniform thicknesses and were

A expected to converge to uniform thickness models. Results are
compared to l,ame's solutions and to a similar analysis by ()da and

Yamazaki·

Torque Arm: a two dimensional and a three dimensional
optimization were performed. The two dimensional results were
compared to those of Bennet and Botkin Stress
calculations were verilied using a beaxn approximation.

— Draft Sill Casting: a multiple load case model ofa Norfolk
Southern design ofa dralt sill casting is optimized.
The model was originally created and analyzed by Roach [5]
in 1986. Results are compared to previous linite element analyses.

The pressure vessel models were used as an initial program test. The models were

simple, and the solution was known. The torque arm model was selected to test the
programs ability to handle more complicated models, lirst in a two dimensional analysis,

CASE STUDIES . 33



l

l
l

then in a three dimensional one. After getting satisfactory results from these analyses,
a complex model of a draftsill casting would test the programs multiple load case ca-
pability.

6.1 Alethod of Presentation

'fhe following method of presentation is used for each case study. First a de-
scription of each model is given, along with aceompanying pictures. All constraints and
load cases are described, along with material properties and optimization control vari-
ables. ln a results section, the initial and linal stress states are described. Pictures ofthe
linal model are shown, along with a plot of how model volume changed lrom iteration
to iteration. Computer CPU times for a static analysis, a single iteration, and the entire
optimization are compiled. At the end of each section is a discussion of results, de-

seribing how the model performed and eomparing results to theory and relerenced work.

CASE STUDIES 34



l

l
6.2 Prcss1u·c Vcssels

T

Two models were created, both quarter section slices of pressure vessels. ()nly

quarter section slices are needed due to vessel symmetry. The first model was from a

cylindrical vessel, and the second from a sphcrical vessel. Both models were created with
varying thicknesses and are shown in Figure 2 and Figure 3. An engineering drawing
of both models is in Appendix C. The goal ofthe analysis was to verify that a uniform

thickness for each model is obtained. Although the solution to the problem is obvious,

the models are a good means oftesting the program since the solution is known.

Steel was used as the material, with a Young's Nfodulus of 200.8 Gl’a, and an as-

stxrned yield strength ofabout l80 Mpa. Results will be cornpared to those rcported by
()da andYamazakiCASE
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Spherical Vessel

6.2. 1.1 ll/[ode] Description

The model was one element deep, with four elements in the radial direction and 24

elements in the angular direction. The vessel had a uniform inner radius of 100 mm and

an outer radius varying from 110 mm to 125 mm. The following symmetry constraints

were applied to simulate the rest of the pressure vessel. The top and bottom faces were

held fixed in the tangential direction by nodal d.o.f constraints. The back face is flush

with the xy plane and was constrained by eliminating all z d.o.fÄ on that face. The front

face is not on any primary global coordinate plane, and was constrained using a con-

straint plane. ()ne load case was applied to simulate a constant internal pressure, and

used element face pressures of 1.0 Nlpa applied to all elements on the inner face. The

model was given an expansion coellicient of5.0 xl0‘ 6, a reference stress of2.5 Mpa, well

below the assumed yield strength of 180 Mpa; and aconvergence tolerance of 0.05. A

model approximation exists at the sphere apex, where the slice should converge to a line _

rather than a face. lixtremely poor stress results occured when hexahedron elements

were degenerated to tetrahedrons. *Therefore, the model actually has a small polar hole.

6.2.1.2 Stress States and Other Results

Stresses were largest on the inside of the vessel and decreased to a minimum at the

outside, which is predicted by Lame' (see Appendix A). This distribution was greatest

at the bottom, thinner end of the quarter section; and smallest at the top, thicker end;

which was also expected. The thinnerl the vessel wall is, the higher the stresses will be.
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The maximum Von Mises stress was 6.36 M pa, located in the inner element of the
bottom face. The minimum Von Mises stress was 1.55 Mpa, located in the outer ele-

ment ofthe top {ace. These values give a maximum/minimum ratio of4.10. Also note

the average stress is higher than the relerence stress of 2.5 Nlpa, so there will be more
elements expanding than contracting in the optimixation, causing an increase in material

volume.

ln the converged model, the stress distribution still showed larger stresses on the

inside and lower stresses on the outside. This time however, the distribution did not vary

much throughout the quarter section since the thicknesses were almost uniform

throughout.

Comparing maximum and minimum stresses showed that the maximum Von Mises

stress was again in the inner element of the bottom lace, but was lowered to 3.36 Nlpa.

The minimum Von Nlises stress was also in the same location as before and equal to 1.96

M pa, which gave a linal maximum to minimum ratio of 1.71.

The model converged in eight iterations. Figure —1 shows a graph of model volume

vs. number of iterations. The graph shows an increasing volume, which may seem

contrary to the basic goal of the program. The goal in this analysis however was to

achieve a near uniform thicl·;ness model, a goal that was achieved. The graph shows a

convergence ofmodel volume to a value ofabout 25 cubic centimeters.

The CPU time for a single static analysis was 1.20 seconds, 2.37 seconds for a single

iteration, and 19.0 seconds for the complete optimization. These values indicate the

entire optimization process required about 16 times the computer time a single static

analysis required. A picture ofthe linal model is shown in Figure 5.

The figure shows near uniform wall thicknesses, with a top thickness of 0.0163 me-

ters and a bottom thickness of 0.0106 meters. The initial top to bottom thickness ratio

was 2.5, with the linal ratio equal to 1.5.
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Figure 5. Spherical pressure vessel quarter section, final model.
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6.2.2 Cylintlrieal Pressure Vessel
E

6.2.2.I zllodel Description

The model was three elements deep with Four elements in the radial direction and
12 in the angular direction. Radial dimensions are the same as in the spherical model.
Constraints were applied to simulate the surrounding pressure vessel. The top and bot-
tom Faces were Hxed in the tangential direction by nodal d.o.lÄ constraints as were the
Front and back Face. Again one load case was applied to simulate a constant internal
pressure, with element Face pressures oF 1.0 Ml’a applied to the entire inner face. The
model was given an expansion coellicient oF5.0 xll) “, a relerence stress oF2.5 Nlpa, and
a convergence tolerance ol°0.05; the same control variables given to the spherical model.

6.2.2.2 Stress States aml Ot/zer Results

Stresses varied From a maximum on the inside to a minimum on the outside, with
stresses decreasing as the vessel thickness increased; which was expected. There was no

stress variation in the z direction through the thickness. The maximum Von Mises stress

was 12.4 Mpa located in the inner elements oFthe bottom Face, with the minimum Von

Mises stress equal to 0.35 Mpa located in the outer elements oFthe top Face. This gives
a max/min ratio oF 35.0.

ln the Ünal optimized model the maximum Von Nlises stresses were again in the

inner elements oF the bottom lace, and were lowered to 3.68 Mpa. The minimum Von
Mises stresses were also in the same locations as beFore and were raised to 1.77 Mpa.
The max/min ratio was lowered to 2.08.

U
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The model converged in 12 iterations. Figure 6 shows a graph of model volume vs.
number of iterations. The model volume inereases, as it did in the spherical vessel
analysis, converging to about 60 cubic centimeters. The volume increase is acceptable
since the goal oli the analysis was to obtain a near unilorm vessel thickness. The CPU
time for a single static analysis was 1.67 seconds, 3.33 seconds I‘or a single iteration, and
40.0 seconds Tor the complete optimixation. The complete optimization required about
24 times the CPU time as a single static analysis. A picture ofthe linal model is shown

in Figure 7.

Nleasuring vessel thicknesses shows a top wall thickness of 0.036 meters and a bot-

tom thickness of0.033 meters. The linal thickness ratio was 1.09, a large improvement
over the initial value of 2.5.

CASE STUDIES 43



LI

L
4 N

4 · O

Ö 3

U) ¢

Ü Q
> EE . 5.53 I

’ =cn · Z .Lu cCK L CP
.1< L S
Q :’..
cx: , IQ DZ.1
>-
Q

4 Y

‘ ·1

4O
Q

4 4‘¤ ¤¤ E 2 Ä
(9—OI X UI 0¥QT10)öLU¤[OA[8p0N

Figure 6. Model volume vs. number of itcrutions for cylindrical pressure vessel model.

CASE STUDIES 44



I

I

X

. >-.;/ ‘

\„ x* \~·
1 XX \,~,

\‘

,1 I. ,
·l II (I II

1I" ,/I ,I jl

I1! , 1 I /
I I I ,1
III I I1II

‘l·”i;;urc7. Cylindrical pressure vcssel quartcr section, final modcl.

CASE STIJDIES 45



‘ 1
l

6.2.3 Discussion

Both models moved out to near uniform thickness quickly (lirst four iterations for

the spherical case and ürst nine iterations for the cylindrical case), and spent the last few

iterations trying to converge about the reference stress. This was a futile task consider-

ing the stress distribution in a pressure vessel, with stresscs ranging from a maximum at

the inner face, to a minimum at the outcr face. The program attempted to lower the

max/min stress ratios by expanding the inner elements and shrinking the outcr ones,

which decreases the accuracy of the analysis. This caused the eentroids of the elements

to be closer together near the center of the wall. Since stresscs are caleulated at Gauss

points and averaged at the center ofthe element, this caused the Von Nlises stresscs to

appear to converge.

The cylindrical vessel’s linal wall thickness ratio (1.09) converged better than the

spherical vessel’s ratio (1.50). This discrepancy is due to the elements at the top of the

spherical vessel model. These elements have very poor aspect ratios, with the thick-
’ _ nesses in the 2 direction almost {C11 times less than any other dimension. Stresses cal-

T
culated in these elements are a little high, causing them to expand too much in the

expansion analysis. Recall also the small hole in the top of the model, which will cause

a stress concentration at the top elements. The error was not drastic though, as

Figure Sshows.

Reference [2]’s axisyrnmetric model converged in 15 iterations and also ended up

with near uniform thickness. llowever they held model volume constant and based

convergence on stress distributions on the inner and outer surlaces of the model. Stress

distribution progresses from largest at the bottom to lowest at the top. When the dis-

tribution was near constant, their model had converged.

*
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Their model converged in 15 iterations, with model volume remaining almost con-
stant. The linal model had an outer radius ratio of 1.007, as compared to a value of 1.02
For the cylindrical vessel model and 1.05 for the spherical vessel model in this study.
There1‘ore the method presented here produced similar results using Fewcr itcrations.
Also, in this method the model volume was allowed to vary, and convergence based on
the overall model stress state; this is a more general method ol” optimization.

Stress results l‘or both models were checked using 1,ame's equations. Calculations
are in Appcndix A.
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6.3 Torque A rm

Using a single model, two analyses were made. The Erst was a two dimensional
analysis which is compared to the results oT Bennett and Botkin [4]; the other was a

three dimensional analysis, which was not attempted in relerenced work, perTormcd to

evaluate the ellcctiveness oTthe program.

6.3.1 Model Description

A picture oT the initial model is in Figure 8. The hole on the lelt was constrained

at all nodes to simulate a wcld. The hole on the right was leTt Tree during the static

analysis, but constrained in all dircctions during the expansion analysis to preserve hole

size. Steel was again the assumed material, with a Young's Nlodulus oT 206.8 Gl’a, and

a yield strength oT about 180 Mpa. An engineering drawing oT the torque arm with all

pertinent dimensions is in Appendix (I.
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The model was one element deep, with 528 elements on the xy plane. A bending

Force was applied by distributing y direction nodal Forces at nodes on the upper halF oF
the right side hole. The equivalent Force was 4063 N. An axial load oFhalFthe magni-
tude oF the bending load was applied by distributing x direction nodal Forces at nodcs
on the right halF oFthe right side hole.

Vor the two dimensional simulation, all the nodes oF the model were constrained in
the z direction For the expansion analysis, which elFectively produced two dimensional

optimization. For the three dimensional case all nodcs were lree to move except those
at the leFt and right holcs. Control variables For the two dimensional case were: an

alpha oF l.0 xl0", a reFerence stress oF 50.0 Nlpa, and a convergence tolerance oF0.025.
l"or the three dimensional case, control variables were: an alpha oF0.5 xl0’l, a reFerence
stress oF 50.0 Nlpa, and a convergence tolerance oF 0.025. These values were chosen
based on the model stress state, and trial and error by attempting. some short optimiza-
tions. The lower alpha value For the three dimensional case was due to the sensitivity

oFthe model (see results).
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6.3.2 Stress States and Other Results

The model subsection of interest is the region between the holes on the right and left

sides. The material on the outside ofthe far holes has stresses that are about ten times
less than the center material. Therefore maximum and minimum stresses will be taken

T

from this center region.

For both cases the initial stress state was the same. The maximum Von Mises stress

was 89.3 Mpa, located at the bottom of the model directly below the left end of the

center hole. The minimum Von Mises stress was 3.62 Mpa, located at the lower left side

of the far right hole, which is directly opposite to the direction of the resultant load.

The maximum. minimum stress ratio was 24.7.

The axial stress contribution to the model stresses was fairly constant throughout

the middle ofthe model, with stresses at about 2.5 Nlpa. The bending stresses increased

_ going from right to left, which was expected. Bcnding stresses were also greater at the

top and bottom and less near the center hole; ranging from 6.() Mpa to 83.0 Mpa.

Bcnding stresses were dominant, and the overall distribution was similar to the bending

stress distribution. These stress calculations are checked using a beam approximation

in Appendix B.

For the two dimensional case, the final maximum and minimum stresses were 66.7

Mpa and 9.46 Mpa respectively; with the same locations as in the initial analysis. This

gave a maximum/minimum stress ratio of 7.05, a reduction of 17.65 from the initial ratio.

For the three dimensional case, the final maximum stress was 88.0 Nlpa and the final

minimum stress was 8.28 Mpa. The final ratio was 10.6, a reduction of 14.1 from the
[

initial state.
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The two dimensional model converged in 20 iterations and the three dimensional

model could only reach seven iterations. For the two dimensional case, the CPU times
were: 6.14 seconds lior a single static analysis, 12.28 seconds 1‘or a single iterations, and

4:05.6 minutes lior the entire process. There1‘ore the entire process used about 40 times

the CPU time as a single static analysis did. For the three dimensional analysis, the CPU

times were: 6.14 seconds static analysis, 12.58 seconds single iteration, and 1:28.06

minutes total. The entire process required about 14 times the computer time the static

analysis did.

Figure 9 shows model volume vs. iterations l‘or the two dimensional model; and

Figure 10 shows model volume vs. iterations for the three dimensional case. In the two

dimensional case, model volume converges to about 270 cubic centimetcrs. ln the three

dimensional case, model volume is not converging enough to make a linal volume ap-

proximation. The two dimensional model decreased in volume by 24 percent, and the

three dimensional model volume decreased by 13 percent.

Pictures of the linal two dimensional model are in Figure ll and Figure 12. Pic-

tures olithe linal three dimensional analysis model are in Figure 13, and Figure 14.
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6.3.3 Discussion

The two dimcnsional hnal model had elements overlapping at the right side of the

center hole after iteration 9. This is a common problem in shape optimization, and no „
F

feasible solution exists to keep overlapping from occurring. llowever, the designer could

close the hole where the elements overlap.

Figure 12 shows the model in the iteration before the overlapping began. Material

around the far holes shrunk to about two thirds of the original thickness. The center

hole expanded at the left side, and closed at the right. Material on the outer boundary

contracted.

Figure ll shows the model in its final state. The center hole closed signilicantly at

the right side. Material around the far holes shrunk to about half of the original thick—

nesses, and the outer boundaries contracted more. The notches formcd at the far left

side were caused by element distortion, and should be smoothed out for final design.

Results are compared to reference Figure 15 shows an iteration history ofthe

author’s model. The author’s eenter hole is smaller than the one of this model, but not

that much. Most torque arm designs use center holes longer than the one in the Ügure,

and the author’s final design shows a substantial increase in hole length. The center hole

has assumed a similar shape to the analysis here, with the author using constraint arcs

to aehieve the circular appearance of the hole, and to prevent the overlapping that oc-

curred in the analysis here. The outer boundaries also assuine similar shapes, with the

exception of the loss of material around the outer holes and the errant notches in this

model. The author used triangular elements, a mesh regenerator, and boundary design

elements for his optimization.
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The author's torque arm required 45 iterations to achieve convergence, with con-

vergence based on the stress variations of the model. Although this analysis required

an enormous amount of computer time, the optimixation achieved a 55 percent re-

duction in model volume. The final shape is also smooth, efficient, and simple to man-

ufacture. The method used in this report achieved a final shape approaching that ofthe

authors', but used fewer iterations. Unfortunately in the optimization reported here,

element distortion had an effect on the final results, preventing the dramatie volume loss

found in the reference from occurring.

ln the three dimensional analysis, the model did not change much in the xy plane.

Changes similar to those of the 2-D analysis occurred, but to a less degree. Since the

elements expanded or contracted uniformly in this analysis, changes occurred in the z

direction that are IIOL seen in an xy plane plot. figure I3 and figure 14 show the effects

ofz direction movement. lilements around the far holes shrank inward. The elements

around the center hole expanded on the outer edges, which are the regions of highest

stress, and shrank on the inner edges, giving the surface a concave appearance. This

phenomenon is more easily seen in figure I4. lf the three dimensional analysis is used

as a final design, the part would have to be cast due to its geometry.
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Problems occurred in both analyses. In the two dirnensional analysis, the effects
of distorted elements is seen in the strange notches at the left side. To solve this prob-
lem; a mesh regenerator could be used, the mesh relincd at those regions, or the designer

can smooth out the boundary following the analysis. The closing up of the center hole

could be valid, but constraint arcs could be used as in [:4] to preserve a circular ended

hole.

ln the three dimensional case, the model solution started to diverge after the seventh

iteration. Altering the variable alpha would not prevent the divergence. This is a per-
plexing problem, since stress results were accurate, and the model changes were accept-

able until the divergence. The inability of the program to achieve a convergence casts
some doubt on the validity ofthe method in three dimensions.

A possible solution to the problem would be increasing the number of elements

throughout the thiclxness to three or four. Perhaps using only a one element thickness

leads to numerical dilliculties in a three dimensional shape modihcation. llowever this

would create stilliiess matrices so large that the analysis would become infeasible.
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16.4 Draft Sill Casting

The model of the draft sill casting was created by Roach [5]. Roach created the

model for Norfolk Southern and did a manual optimization of it using l—DllAS and the

SUPFRB finite element solver. ln his conclusion, Roach recommended using a three

dimensional shape optimizer to shrink the model walls; which he said would signilicantly

reduce model weight.

Roach gives the following description of a draft sill casting in his report: "The

draftsill is a cast steel part weighing approximately 1,100 lbs (4890 N) and measuring

approximately 6 ft (1.8 m) long and 13 in (33 cm) square. The sill is attached to each

end of a hopper car by a long box shaped member called a centersill which runs under

the length of the car. The purpose of the draftsill is to transmit to the hopper car all

loads applied by the draftgcar assembly. The draftgcar consists of the coupler and fol-

lower blocks and fits into the draftsill in an area called the draft pocket."

The draftsill and draftgcar are shown in drawings in Appendix D.

6.4.1 Model description

Pictures of thc model appear in Figure 16, Figure 17, Figure 18, Figure 19, and

Figure 20. The first figure shows the bottom side of the model, the next three show

subsections of the overall side, and the final figure shows the mode1’s top side. The

model was created by manual entering of nodes and elements, and uses several

hexahedron elements degraded to tetrahedron elements. Although degraded tetrahedron

elements give poor stress results, the purpose of the optimization attempt was to verify
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that the program could work with a complex model loaded with more than one loadCZISC.
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Only half ofthe draft sill casting is modeled due to symmetry. The model is made
up of 678 nodcs and 330 elements. l·‘our load cases were used in the analysis:

- Load case l : Draft load, siinulates generated load when hopper car
is pulled by another car. lflement face pressures
are applied in the - x direction to the first wall L
from the left (on the yz plane), on its right side.

- Load case 2 : Cornpressive end load, simulates generated load when
hopper car is pushed by another car. l·'ace pressures
are applied in the x direction to the second wall
from the left (on the yz plane), on its left side.

— Load case 3 : (Üarbody lift, simulates the car being lifted at its
coupler. liace pressures are applied in the - y
direction at the first wall from the bottom (on the
xz plane) of the keyslot. l’ressures are applied on
the top side.

- Load case 4 : l)ownward vertical load, sinnilates generated load
when draftgear is not correctly aligned and is forced
downvvard. l‘ace applied the same as in load case 3,
but on the opposite wall and face.

lncluded in all load cases is a vertical load, which represents the structural weight of the
hopper car as it is applied to the draftsill through the bolster beam. l’ace pressures are
applied in the - y direction located above the centerplate (right, top side ofdrawing) and
distributed over the body bolster beain contact area.

The same constraints Roach used for his static analyses were used here. ln the ex-

pansion phase, the following regions were constrained to preserve certain required model

geometries.

- Far left face in the x direction;

- Far left slot in all directions;

- Left side ribs facing bottom hole in all directions;

- lintire back face on inner side in y direction;

- Both walls on sides facing each other in x direction;

- Middle floor on top side in z direction;
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- Outer face of the centerplate at the far right side in all directions;

- Far right face in the x direction.

The material used is specified as cast steel, with Young's Modulus of30 Mpsi (206.9
(Jpa) and a maximum yield strength of 70 ksi (482.7 Nlpa). An alpha of 0.5, a stress
reference of 70 ksi (482.7 Mpa) and a eonvergence toleranee of 0.04 were used. The
stress reference is the yield strength ofthe steel, which Norfolk Southern designers found
acceptable as a design stress. The expansion coeflicient and eonvergence toleranee were

ehoscn by trial and error.

6.4.2 Stress States and Other Results

Stresses in the first itcration ranged from very low (around 2 ksi (13.8 Mpa)) at the

far right end, to very high (around 75 ksi (517 Nfpa)) at the far left end. The max

stresses exceed the yield strength, an indication that the model is underdesigned. 1·low-

ever Norfolk Southern engineers calculated similar stress results and eoncluded that

some yielding would not cause the part to fail.

Comparing stress results with Roach show load cases 1, 3, and 4 yield similar

stresses. Load case 2 results here were considerably lower however. Since the other

three load case results were accurate and only the maximum stress results are used for

the expansion analysis, this does not greatly affect the hnal model.
‘ Strcsscs did not vary significantly from the first iteration to the final iteration, which

is due to the complexity ofthe model. There was a significant material loss of238 cubic

inches (3,900 cubic cm) though (see Figure 21), a loss of 8.6 %. Pictures of the final

model are shown in Figure 22, Figure 23, Figure 24, Figure 25, and Figure 26. These
figures use the same views as the figures of the original model, so changes may be ob-

l
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scrvcd casily. Tlic CPU timcs for thc analysis wcrc: 0:05.72 minutcs for a static analysis,

0:09.641 minutcs {br a singlc analysis, and 1:07.5 minutcs {cr tlic cntirc proccss.
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6.4.3 Discussion

The linal model is slightly distorted as the pictures show. Variable wall thicknesses

as well as curved boundaries appear. These may be smoothed by the designer however,

and since the part is cast, no major manulacturing problems will occur.

The stress diserepancies ofload case 2 are disturbing, as are the model’s varying el-

ement sizes. Recall the degraded tetrahcdron elements used in the model cause poor

stress results, and due to the sparsity ol‘ the mcsh, some areas with stress concentrations

may have been overlooked. For more detailed and accurate results, the model should

be regenerated using a rnapped mesh generator to produce a more detailed, uniTorm

mesh using only hexahedron elements. A better mesh would give better stress results.

With more accurate stresses and a liner mesh, the linal model would have a smoother

geometry.

As the model stands now, entire walls and lloors are modeled by less than ten ele-

ments. Not only do stresses vary greatly, but so do the linal geometries.

In spite ofthe problems encountered in the analysis, the program demonstrated its

ability to work with a complex model, and to base shape changing on stress results from

multiple load cases. The dilliculties described above are all attributed to the model,

rather than the method used to optimize it.
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Chapter 7

coNc1„us1oN

As the program stands now, it is a valid, simple, method for shape optimization.

No excessive model preparation is required, and analyses do IlOt require excessive CPU

time to run.

The pressure vcssel models were analyzed accurately, and converged to uniform

thickness models without dilliculty. The torque arm model was analyzed correctly, as

the supporting calculations show, and signilicant volume loss occurred in the optimiza-T
tion process. The draft sill casting analysis also gave reasonable stress results, and was

reduced in volume by almost lt) percent.

Problems did present themselves however. ln the two dimensional torque arm

analysis, elements overlapped at one end; and distorted elements caused the appearance

of notches about an end hole. ln the three dimensional analysis, solution divergence

occurred after about a nine percent volume loss. The dralt sill casting lost volume, but

· attained a slightly warped appearance.cowctusiow so
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Problem causes are with the presented method and with the models. The three di-
mensional torque arm analysis could have diverged due to a model thickness ofonly one
element. The draft sill casting model was sparse and included several hexahedron ele-
ments that were degraded to tetrahedron elements, which caused poor stress results and
the warped final model. The distortion in the final torque arm model however, is only
attributed to the program’s inability to refine meshes and prevent element distortion
from having an effect in the analysis.

Some possible program refinements which could solve the above problems are:

- Compare models made of parabolic elements to the linear ones
analyzed here. Parabolie elements would give better stress results.

— (Äonsider mesh regeneration after a certain point to eliminate the
eflects ofelcment distortion. Also using mesh refinement in areas
ofstress coneentration will give better stress results and shape
niodifications.

- lmplement constraint arcs to supplernent nodal d.o.fÄ constraints
and constraint planes to help eliminate the problem ofoverlapping
elements.

The results given here, while not perfect, are promising. The expansion analysis
method appears to be a valid and simple means of shape optimization. Computer time
is not exorbitant, and no sensitivity analysis is required to reshape the structure. All
nodal coordinates may be used as design variables, rather than only a select few, which
eliminates costly trial and error optimizations.

Simple models, such as the pressure vessels, may be optimized quickly and easily

without using excessive computer time. Complex models, such as the torque arm and
draft sill casting, must be created with care, and with detailed and accurate meshes to

U

prevent inaccurate results and solution divergence. With the modifications suggested

above, larger models may be modified and optimized better, with more useful Hnal
shapes resulting.

cowcuision 8l
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Appendix A

PRESSURE VESSEL CALCULATIONS USING

LAl\/IE' EQUATIONS

A.] Spherical pressure vcssel eqnations and calcnlations

I,ume's equation for the radiul stress, For 0,, is used to ztpproximate 0, in the elements

on the bottom Face und 0, in the elements on the top fhce. The equation for the

tangentiul stress, 0, , is used to approximate 0, in elements on the bottom läce and 0,

in elements on the top Face.

Lume's equution lgor 0,, was found in reference [8] :

_ wb — p„>¤gbg , mg — mag
0* —

3 3 _ 3 3 _ 3r (a b ) a /2
3 3 3 3 L 3 3 [1]

G = p,,/2(Zr +a) — p,a(2r +b)[ zrgtbg — bg) 2r3(a3 — bg)

vnßssuuß vßssmb usrm; LAME rzotmrrows 83



Two expressions will be found for each equation. One using the bottom outer radius,
and one using the top outer radius. The following constants are defined:

pp = 0.0Pa
pi = 1.0.1IPa
a = 0.10111 ·

bppi = 0.1 lffl
bmp = 0.125111

Making these substitutions gives the following expressions for the bottom face:

—6, = 3.0212Mpa20,1
1 0 ·

[2]
6, = 3.0212Mpa-1-and

the following expressions for the top face:

20 0.26, = 1.049211Ipa—3_ 1024.6 E J
Oi —— 1.0<-192111Ipa -1- —-——T-

I'

Tables of 6, and 6, values and the corresponding theoretical values for 6, and O',21l'€
shown below. There appears to be an error in tangential stresses calculatcd in the top
of the vessel. This could be due to the poor aspect ratio in the elements in that part of

the model. filement thicknesses in the z direction were lowercd to about one tenth of
the other element dimensions. This discrepancy did not seriously damage the optimiza-
tion process, although the vessel thickness at the top did not quite match the thiekness

at the bottom.
The radial stress at the top agreed well with the calculatcd results, as did radial stress

at the bottom. Tangential stress at the bottom was a little lower than the calculatcd

mu;ssum; vßssm CALCULA'l‘1()NS usmc 1.AME' 11QUA’1‘1ONS_ 84
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valucs, but not signilicantly so. Rccall thcsc calculations arc only approximatc in that
this modcl is not a uniform thickncss modcl. The nonuniformity will causc dcparturcs
from thcory.
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Tahlc 1. Prcdictcd and actual strcsscs at tup 01‘ sphcrical prcssurc vcsscl modcl

r(m) 0,(.-'1·Ipa) G,( 11 {pa) 6,( 1'l’[[.7(l) GX/1-[[761)
(Lamc') (1’.1.Z.) (Lamc') (17.1i.)

0.105 0.772 0.80-1 1.96 3.80
0.110 0.553 0.5-16 1.8-1 3.11
0.116 0.298 ().315 1.72 2.-12
0.121 0.107 0.093 1.62 1.6-1

PRESSURE vrzssuc cALCu1.A'|‘10NS USING LAME' EQUATIONS 86



Tahlc 2. Prcdictcd and actual strcsscs at hottom of sphcrical prcssurc vcsscl modcl
1 l'(/Tl) O’,(1‘l [pa) 0,(Mpa) ¤,(11{pa) @(11/pa)
L (1,amc’) (1*.12.) (Lamc') (lili.)

L 0.101 0.882 0.828 4.97 5.72
0.104 0.554 0.569 4.81 5.45

L 0.106 0.355 0.336 4.71 5.21L 0.109 0.127 0.113 4.62 4.89

PRESSURE VESSEL CALCULA'l'l()NS USING LAME’ EQUATIONS 87



A.2 Cylizzdrical presszwc vessel equations and calculations

Lumc's equation for rudiul stress, 0, , is used to approximute 0, in the elements on the

bottom lhce und 0, in the elements on the top lhee. 'l‘he equation for tangential stress,

0, , is used to upproximate 0, in elements on the bottom lltce und 0, in elements on the

top flxce.

Lame’s equation for 0, with no external pressure was found in reference [8]:

Pr1.0-7/1— a r

ilihe equution for 0, is:

{W12 /12
i

O', = +/1— a r

Using the following constunts:

p, = l.01l/Pa
a = 0.lOm

bbo, = 0.llm
/1,0,, = 0.125111

· yiclds the following equutions:

57,2(00,,,,,, = 4.76211/[pa — ——%—’, E6]. 57,..60
Umm)’

1·R1;ssum; VESSEL cALcuLA'r1oNs usmc; L1\ME’ l·]QUA'l‘l0l\lS 88



27,7800,,,,,, = l.778ilIpcz — —7—
r [727,780 J

0,,,,,, = 1.778il/pa + --5

Tables of 0, and 0, values and the eorresponding theoretieal values for 0, and 0, are
shown below. The predieted radial stresses agree well with ealeulations at the top and
bottom of the model. Predieted tangential stresses do not vary as much as the calculated
ones, but the linite element results average about the predieted ones. As before, note
the Lame equations are only approximations in a nonunilorm thiekness model.

PRESSURE vßssm. cALcU1.A'r10Ns Usmc LAM1? EQUATIONS 89



3. Prculictcd and actual strcsscs at top of cylimlrical prcssurc vcsscl modcl
r(m) 0,(.1Ipa) 0,( 0,(11Ipa) G,(1Wpcz)

(Lamc') (lili.) (Lamc') (1*.13.)

0.105 0.742 0.672 4.35 8.13
0.110 0.517 0.369 4.16 5.16
0.116 0.287 0.175 3.84 2.49
0.121 ().119 0.052 3.68 0.35

PRESSURE VESSEL CALCULATIONS USING l.AME’ EQUATIONS 90



'l‘ablc 4. Prcdictcd and actual strcsscs at bottom of cylimlrical prcssurc vcsscl motlcl
1

r(m) 0,(.1·1'pa) ¤,( .1{pa) 0,( .11'pa) 0,( .1{pa)
(l.amc’) (lili.) (Lamc') (1*.1i.)

0.101 0.886 ().949 10.5 13.6
0.104 0.699 0.924 10.1 11.4
0.106 0.366 0.360 9.89 8.99
0.109 0.178 0.273 9.61 6.79

PRESSURE VESSE1. CA1.Cu1..xT10NS Usmt; LANll£’ EQUAHONS 91
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Appendix B

SUPPORTING CALCULATIONS FOR

TORQUE ARM ANALYSIS

Two types ofloads are applied to the torque arm; a bending load and an axial load.

To check the results of chapter 5, the arm is modeled as a rectangular bar with approx-

imately the same dimensions. The bar has a thickness ol‘ 0.01 m, a width of O.l m, and

a length (from hole to hole) o1”0.¢1 ni.

An axial load of 2031 N is applied at one end ofthe model. An approximate model

area is:

A = tw
= (0.0lm) (O. 10m)
= ().0Olm2

Axial stress is approximated by: 5
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1
p _ 2,031.0
A 0.001111

= 2.0311/pa

Calculated stresses ranged from 2.4 to 2.6 Mpa, so the approximation is valid and the

results are conlirmed. ‘

A bending load of 4()63 N is applied at the far right end ofthe model. The moment

I ofinertia of the model is about:
[ =12

_ (0.0l)(0.l)3—
12

=0.83333(1i‘1 ‘°)111‘

liending stress is approximated by:

G = Mc
I

with the moment equal to the applied force times the distance along the arm. The

maximum distance along the arm is about 0.4 m and the minimum about ().l m. The

minimum distance is from the location of the applied load at the center of the right side

hole to the left edge of that hole. The maximum distance from the centroid to the outer

boundary is about 0.05 m, with the minimum distance about 0.01 m.
Using these values, bending stress varies [rom about 5 Mpa to 95 Nlpa. The cal-

culated stresses run from 6.0 Mpa to 83.0 Mpa. The approximation is therefore valid

and the eomputations are conlirmed.
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Appendix C

DRAWINGS OF CASE STUDY MODELS



I

CROSS SECTION FOR BOTH PRESSURE VESSELS

O. I25
O. IOO

L O. I IOÄ

ALL OIMENSIONS IN METERS

CYLINORICAL \/ESSEL: TI—IICI<NESS=0.0IO M

SRHERICAL \/ESSEL: BOTTOM TI—IICI<.=0.0IO M

TOR THICK . =O . OO I M

Figurc 27. Prcssurc Ycsscl Drawing.
'
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Appendix D

DRAFT SILL CASTING DRAWINGS

following Iigurcs wcrc tukcn dircctly {Tom rcibrcncc

DRAET SILL CASTING DRAWINGS 97



•E· 15I I „_
G}I

E FI II
_ In . I§§§ ä_ I{I? 6% · I II * I_ · fi? ‘n ’

: . «§ BI
I ;

' uu -· · I; ;I¥g¤ ·-'“·-·-·•E ' ,
-

• I , _ • an P nur I ,‘

ää E:
~' . I *- ‘ um ' 1 ; :Z •g

I? "l£I”I‘.""' *;_Ü‘f"*4I,j I?

JE I -I\y%§Il I “I2I:l-I "¥Is3E§;:E _ _ I--‘°" g ¤;t~.<c:—-6-:2--#::222;
-523g 2 [IFF 2; *""‘ 2*
J! : g .I · II M 5;

‘=

1 I '
‘ I I

= 2 FIJ:«••:-tzflu-•·"~
% * E * ° ‘ ; — ” ·!: =BEI} ¢ ¢ I I~:···2?” ·—#=· ·—·°'I2§ *2

III I - E Q II LL | |·
I

I III I I I¢"*-—-. I ‘I I" J'--3: I' T""I”*_“ M: -—··« -2-
EPAIV •¤ E/I C'; I'L°-I\I\•/•\‘; EI 7-: ""'°7°”Ü "

-*0·‘ 2*:-
·I“* —.-— - I:¤ Ig,;z· 2 ~ „1««.=- -5I ·-I-. , .-2 · =¤:*% ;1_= 2 °_g IIIIII,

·‘;g 5I;2 ,.’ ; u
1* · 3* II? · ZI II3...L*'I 1;*} ..I'I'VlI?I · IE· ZIISII II

“' 2} ~—
:

-
I I II Ü

I; "‘:? _I _| I I *IEI c’* =‘¤=I I II ?I“‘ *I I I =‘II I 33 2;
Q: L ' ‘$E;......;.I *2 I“Tr"„;*« ·„-——. ·—· *c:
g2a_ III:} I -:.II__T_T__I,I 1;-Q I· I I C.
II äg V g-Q2. ; IIIIÄÜI-1ZII ä· s2= I -2 · I-T'- - "'gg I II6 ·_ · .~*?¤ “
.2 IQ 2 „· .
5 JI 1 I

II
°§‘ —'*•T+¤r-v*I'

°‘

ä .· Ü} * ;_I·‘I·IIE I-.I I I
é. II i @321;}** · 2_‘„.:I}III.I1} MI -¤ ITI;I_, 2 -,5I gw

· ;——a6;—:‘—-—·-,,:1 I _ 1 — * „_I_I
I•··‘I I ¤•¤ II 1

ci}gz*E32 II? I1 I WI 23
gl: I5 I _::.;L;:‘;;T.";i. Q
in 1:I~?2EI II:.,

23 -7- E-- *····.„_ .1*wJ. · 2 —,
IEIIII

-I•:• ·I“—*%rv"'_‘

I
98



6 fi] _ '§ ~¤
. Qxi6‘ 6 6. „· 2sz·_

' u _1·• S: §Ä E' _ " § ”
.6*1 66% 6 3 ? Ä! Ä®“

I1 2\ 5° Ä; 'O
< X X! 2. '

-

Y

ä 5 [__ Ä E 1 E Ä
Ä Ä Ä 4 Ru,

I V M11 Ä CDI; :_ -. j- 5 __ YIIZII 3. :3
. ?

Ä WA • ‘
A

—

.XÄ ‘§

*2* “ X TI1; .*5,;**61 go!.! ,_ ge ‘· _ #4 -. Z!-‘ • ~_ _
(

,. Q YU I §_

'

’ ••~

= - 6 6 2 6. 1’¤! ~¤s.:1,; 8‘5= . „ " ~..«.·6-’··6- 6 “ .5 1·2• *6 =¤ ·¤K? ' 2 2 1 Z1 2 .2 ·Y‘.?§'i$
?.5‘ Ä// Ä ' 3 1 1 ;; ‘ T5 'g F1'; Ü 76Ei ‘~ "éX‘·«·.

*6 e — 362 56 E
6 i é ·" I/

‘Ä Ä
^°"'T""'Ä 'C Ä

SÜI Z : Ä '
{ E "i’]

-
"‘;

Ä
Ä

Y
Z.;)

Ii_ _
I

n I 7vv-•IJ
I; ' E ' ;‘I HY?QL°“‘ X FÄ c‘ Ä j 2 : · . _L_;___ J-

Ii I *| V)
4 .,

I
g ¢ I ,-*2.

:|• 1 CD

·· =:iZ :16. ·•— ‘
ZS I;6’**7? {If ' ZÄÄVII6 Äxf °‘ Ä 'T 'Ä'l?Ä ~Ü§Zfl‘55Ä

1 1* * H 1** Q1” ’ 2T“"”T' *7 7 I2? ” R52? °° E' . Ä°‘¥•. ?§ „‘ Ä 5* I ' .:· IV I HTW I I "*ii I*ä~·« 1* II XQÄI ·
6* M 22* .—L.-l1;—;2;—»2ä¤ ~Ä= 6—«— *5gfIig‘ E1 I -„i.:··~7q,.,..l.,;? .* 1. Ä 5¤3.Ä.JL:;L.—·:..:Ä.‘;., Y 'E¤!~ ä—·—• 1··;;§«-1.*·•1‘6y~Ä~;1—+Ä6 ¤I - =- Lg.."l*,_‘;Ä1€ ‘¤

·f 2 ,1 6 1 · :65.; ¤7i / ~ 4· TI Ä I -"' . r 2.3 1 I; g · 2
E 12%:.1 @1 J E 5* Bi ·—1·¤·I E. """:~'** 5- EI: EI *2 . ¤“ Ä61 § ;%$..K*·Ä Ä" *·’ *‘1Ü=*;®ÄI}6‘·Äk $6-:.; EÄ‘

‘ _ gg
I E E? L. 2E E

jh #1 I EFW; äi .
_:;::‘I :.;;;‘::.·,i,Ä»-\j? N

ZH 5; ~ · Ä 6***IL ·•
Er-•—gäXF(IX '-Q-• T

$5 1 Ä.‘5‘5’ÄXi Ä95 .Ä /Ä

DRAFT SILL CASTING I)RA\\’lN(}S 99



I Z
I .
I E

I
. ‘ " * EEE I I

I
‘

ISI.1-I '5 : I !;E%! "’
Z?. {I I EIEIE$3 I= =‘\ I V EI? -*2 E3 J I ääää ·=
gg ° Ö g.„}·§

: ——I.·· 1 =Iä • — 1 -? 1 * EII,.
-NL--.:77::*:é ·—«—+—- -- -+„•. . « I;6 Ä I~\ I II "I . ~·= • ‘z:2

Ä: *v aj I 5%- I zi: I · §;=§, -=
" ~ I ~ , · : ··.•.• uv I gI2·I

-
::2 vs

- · \ :7 ·
._•

I I Ü I.«I
:!;x_

;¥I ‘„?§.··i2?€·I I „/ ' ‘ F ‘w I I IIS?} ‘E:2I Ä
I „I°— °°' _ "— "' äJI I1

I•• F I ·: * I•I•|I -'
‘$ „ I

·. I II\I·*.·.·I ;·‘; 'I E-:
¤

·I 'I I 3.6, ‘. ,· 5 ·, ·· _ X . ‘ „ _. . ¤ ··I I«— II IJ IIII , IIL-II 1 I
I- ..I:‘¢ I “ I""I.‘LIj I .,*;*.5 I I L E *5 L;PI ‘I‘ ~IZIgi

..--Ö;_‘„.-,, *‘°" _ II •I I •.. ...:.1 ·¢·»· 'én
‘ _ .. III ig

Q Q I; z? I E; $:5
1 - — II — :. -· II "‘

IC Ir"‘ ·I°Ö .;“I“II OIEI I I?/IIII F
*$i?.=z“;‘I 3 Z;) “

E
{Q E I 1. II Q iE I 3% IIS] ‘° I Z I I I -3
:I _, I5 I E

I,.
:3. ._

I
__ ~.... ' 1; '· I--— •_gI-_

·
I__ CUCI. E III I ähEII.€ I'- I ” 5:* E II I F ur.-: E '~ 1; In T1? ., 'Z

Q L I U
· I ~; I .I· E I·I 1 wr: I -2-:: I 5 U

O I r . I II C 1- ‘f*
.....IL. E F I v

I
„\;

E
E I.- SIT.] ÜI 5-§iI I:=--2 :~€—I¢I I III -5 I II°I°

{ I„—-———-—·;• ' I-

II III‘°€
’ ·: I‘ ‘ 1IIé ‘I„I'·II · 7

° I I " ‘ I ‘* I I I I '
IS I _· I s gi II l.;I“ III Iäl1--I7

T7. ' : Ea ,' ‘l ’ "* I ,5 U‘ 2% / I 2-I I EI II IL. -
I Z RI

Z21.*“ {
IIV'°°“°ü;I

. fäI;.

r>Iz„xI-I'I‘ SILL c,xs‘I‘Ixc DR.\\\'IN(}S I00



I
.. ··_‘~Ü·„ —· ‘— „I *1,-'}. I »~l .2...\__·§‘¢é"?I·;III.fZ”·"...2 I·I_-_;?i.·-~. -~ · ·_. _ I ,_ I

II · ° I I ...3...
E- · :7 ‘ ._i°_:,°',:,„_ ,,_,„,,_ "

.· .· Ei) '_. 'T \· "I **7ETTT°Z'.Ä°‘TT}.1—lZ'~ÄTI'f?.TZ....-. 11}.14 — JL.; _1 F-
mI

5,¥“—“°‘“l'Ö,“;I°....:'°.* ;éä;‘„.a—;'#.;·;.i — ·- ·
{M11?

I0

Q : 11; = . _II: 6. ‘
I 6 : 1E _ ta

Q Ö ‘ g ;•‘x
1 Ä)I6 : III;.,¢.I:,. I g•

Z
‘

' Ip:. „;T7 €° ‘ ::3 M I I I ÜI I- -:I — ; · ° ¤ ’/ ' H °°1I;:I' T ~ ,9 II. E I
‘ oI.• ‘ II I .§

II v gg§é!§I: GII? E I =I ÄJQ M __ Q ‘ ·;

I IQ ·
I · MM

I1. I . II „ 1 .. . _. I ·¤
LII IEÖ1 I? ° *:*2} M, %?II? E. ·' I. 1 ·, .-
I? _I Ii? IW M M7 YES IEA EI äIIGI I¥I;I: 9 9 ;?;.·I’\ IIII •==¢= J J ;>· ·· 1 —

- . IE I1 _ I. :....•····•·—···......·•—·····;·:,. /—" $.,%*3* I
EO

I II I II VI 1 II'· L ., ‘ -_. II Q

' 2 :9* 1IIII?‘*"‘——¥'$·*+'**ä*?I ··:*?<E€?Ir“”*—i7
E EI 1- 1 1 . 11. 1 IIII I II 7—;:;•—:i7..:M7—MÄ‘;..;II IM-- I 75

I!1 IH ' ?I_°MM-M °°;'T°T""I’°?€g J
I I_,U ; II_ Im I„ g

, IIS 3 "i1I_1E-........ „„. :1: , ,I G
I; E ' 1 ·’

II :*2 I IIII I 1%*.IgI '° ~I1II «es lk . 1 :2...... *61
. III I Q _ II

‘*' ,.21
I

‘I lvjltp 3 I
I ,13 I;‘1*:‘:•I.;;.·;.·1 g I.. {III,

I
<x>1,i_1+JI—;1_,

,1
“"'.T*? ' 0

I I
I Y

Q I
I

~ Ä — ’“ I___ :—;,.T1:;I I1-1— '
<

‘°'° "..1LT..g_,..".„.’«5..-Ä';...:....*

I DRAFT SILL CASTING DRAWINGS 101




