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(ABSTRACT)

The thesis presents a three dimensional shape optimization program which analyzes
models made up of linear isoparametric clements. The goal of the program is to achicve
a near uniform model stress state and thereby to minimize material volume.

The algorithm s iterative, and performs two analyses per iteration. The {irst anal-
ysis is a static stress analysis of the model for one or more load cases. Based on results
from the static analysis, an expansion analysis is performed. Model elements are ex-
panded or contracted based on whether they are stressed higher or lower than a reference
stress.  The shape changing is done by creating an expansion load vector using the dif-
ferences bctwcer{ the calculated clement stresses and the reference stress.  [Expansion
displacements are solved for, and instead of using them to calculate stresses, the dis-
placements are added to the nodal coordinates to reshape the structurc. This process
continues until a user defined convergence tolerance is met.

[F'our programs were uscd for the analysis process. Modcls were created using a fi-
nite clement modeling program called [-DEAS or CALDS. The I-DEAS output files
were converted to input files for the optimizer by a conversion program. The model was

optimized using the shape optimization process described above. Post- processing was

done using a program written with a graphical programming language called graPHIGS.




Models used to test the program were: a cylindrical pressure vessel with nonuniform
thickness, a spherical pressure vessel with nonuniform thickness, a torque arm, and a
draft sill casting of a railroad hopper car. Results were compared to similar studies from
sclected references.

Both pressure vessels converged to ncar uniform thicknesses, which compared well
with the reference work. In a two dimensional analysis, the torque arm volume de-
crecased 24 perecent, which compared well with published results. A three dimensional
analysis showed a volume reduction of 13 percent, but there were convergence problems.

Finally, the draft sill casting was reduced in volume by 9 percent from a manually opti-

mized design.
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Chapter 1

INTRODUCTION

Shape optimization is the changing of the geometry of a machine part so that its
stress distributions are smoothed and model volume is reduced. A part performs better
if there are no wild fluctuations in stress distribution; and less volume means less mate-
nal, which is an advantage when parts are mass produced.

Optimization is commonly done by hand using trial and error techniques. The en-
gincer removes or adds material as necded, basing these changes on testing or in-service
failure. Enginecrs now have {inite element analysis to check redesigns more easily, and
it also has the potential for shape optimization. Much rescarch has been done (see lit-
craturc review) and many methods exist for shape optimization. Iowever most methods
arc two dimensional and have no standard approaches. In many previous algorithms,
difTerent models require specialized preparation before they are optimized. Sometimes
large regions of a model will be held {ixed to force the structure into some predetermined
shape. Somectimes programming will be altered to accommodate different models. No

truly general method exists.
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The goal here is to create a three dimensional shape optimization mcthod that may
be applicd to any part without altering the algorithm used, or requiring excessive prep-
aration. This study investigates the use of an clement volume expansion and contraction
algorithm to alter a structure’s shape. If the algorithm is successful, it could become a
simple method of shape optimization.

The program would first perform a normal finite element analysis on a part. Strain
energy densitics for cach element are calculated and compared to a uscr defined reference
stress.  ‘The elements would then be changed based on the strain energy density difler-
ences.  An overly stressed element would expand, and an understressed clement would
shrink. The process would then repeat until the model stresses converged about the
reference stress.  This method could be applied to any three dimensional model made
up ol hexahedron isoparametric clements.

This thesis starts with a literature review to describe the history of shape optimiza-
tion. In the review, some common shape optimization variables arc defined, and differ-
ent methods are described.  [Following the literature review, a detailed overview of the

main body is presented. The main body of the report contains: the model optimization

procedure explaining how software is used in the shape optimization process; the theo-

rics uscd in the construction of this software; casc studies of modcls optimized by the
software, with comparisons to similar studies by reference authors, and a conclusion

with suggestions for future work.
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Chapter 2

LITERATURE REVIEW

As mentioned carlier, shape optimization is the altering of a machine part’s geom-
ctry to achieve a smooth stress state and volume reduction. A survey of structural shape
optimization studics is found in the paper by IHaftka [1]. The report contains 139 ref-
crences that deal mainly with shape optimization of the boundaries of two and three
dimensional bodies. The diflicultics of working with constantly changing finite element
models are discussed. These include broblcms such as the choice of design variables, and
the effects of automatic mesh generation.

Shape optimization gencrally involves using one of two types of design variables.
The first type is a sizing design variable, which is a simple gecometric dimension of a
structure. Examples arc a plate thickness or a bar cross sectional arca. These variables
are altered 5o a part will meet a design stress requircment. The sccond type of variable
is a shupc.dcsign variable, which is used for the more solid and complex geometrics an-

alyzed by [inite clement analysis.
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An cxample of shape design variables are boundary nodal coordinates. An algo-
rithm calculates stresses at elements on a defined boundary and alters the shape of the
boundary bascd on those stresses. Oda and Yamazaki [ 2] use such a technique in their
study using models made up of axisymmetric clements.

They obtained optimum shapes by iteratively changing models until they had be-
come [ully stressed shapes. A fully stressed structure has a ncar constant stress field and
a minimum amount of material. Since all of their models were thick walled vessels under
internal pressure, the stresses at the outer boundaries were analyzed, and the boundary
nodal coordinates were usced as design variables. When the outer walls of each model
became fully stressed, the shape was optimized. The program developed here uses the
fully stressed shape approach, but uses the nodal coordinates of the entire model as de-
sign variables. Strain energy densities for all elemients are caleulated, and nodal coordi-
nates arc modificd based on them. Oda and Yamazaki [2] use pressure vessel models
to support their solution. In this study a spherical and a cylindrical model are compared
to their results.

Other programs usc the nodes of elements in a certain model region as design vari-
ables. Stresses are calculated for the entire model, but only the nodes of the defined re-
gions are allowed to move while all other arcas remain fixed. An example of this method
is found in Braibant and Fleury’s study [3].

They use boundary nodes as design variables. To change their models, only certain
nodes, called masters, have displacements calculated for them in the shape change algo-
rithm. The displacements for cach iteration arc found using a scnsitivity analysis. Dif-
ferential cquations based on virtual work, with master node displacements as the
variables, are solved. Only a few master nodes may be used, or the solution will require

excessive computer time.
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A problem that arises often in shape optimization is that sometimes a model will
change so much that element distortion causes the analysis to become inaccurate. To
solve this problem, some shape optimization algorithms usc automatic mesh refinement,
The mesh refiner will redeline the entire mesh at certain points in the analysis, and also
give high stress regions a greater element concentration.  Bennett and Botkin [4] use
mesh regeneration in their two dimensional optimizer.

They define only the boundaries of their models and the mesh generator creates an
initial mesh. A finite clement analysis is performed on the structure, and based on the
stress results, the mesh refiner regenerates the mesh giving areas of stress concentration
more clements. The finite clement analysis is performed again, and the defined boundary
clements arc changed bascd on the new stress results to modify the structure.  This
process is long and costly, and restricts models to two dimensions. A torque arm is used
to test their algorithm. In this thesis, a similar model is constructed, but a three di-
mensional analysis i1s done in addition to the two dimensional one.

A common clement of cach of these studies is that in the shape changing portion
of their algorithms, only the boundaries of structures are altered. This is due to the
difTiculty and expense of solving sensitivity cquations. Design clements must be specified
with great care to achieve useful optimizations. In this thesis, a linear approximation
to the nonlincar problem of shape changing is attempted. The algorithm will use linear
shape modifications to itcratively solve the nonlincar problem and achieve an optimum
shape solution. All the nodes of a model may be moved to reshape the structure without
requiring excessive calculations and computer time.

After a normal finite clement analysis ol a model, an expansion load vector is
formed based on element stresses. A new set of displacements is calculated using an-
other normal finite element analysis, and is added to the current sct of nodal coordinates.

The degree of expansion or contraction in an iteration is specified by the user. Note that
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no sensitivity analysis is required, and that all nodes in the model may be used as design

variables.
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Chapter 3

OVERVILEW

This scction provides a detailed overview ol the main body of the thesis. Summaries
of cach chapter are given. The thesis is divided into three main sections: soltware use,

software theory and development, and case studics.

3.1 Software Use

Chapter 4 cxplains how a model is created, optimized, and post processed using a
mix of commercial and local software. ‘The discussions concentrate on how to use these
programs.

In this study, a modecl is made up of two sets of information: the static case model,
which is solved using a standard [inite clement analysis; and the cxpansion phase infor-

mation, which determines how the model will change shape.
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The static case information is entered using the commercial software I-DEAS or
CALDS, a product of the Structural Dynamics Research Corporation in Cincinnati,
Ohio. The finite clement module is used in this case to define the required information.
The shape of a model is defined by gecometric primitives. Meshes are then generated
over the shape of the model. Note these meshes are not defined automatically, but the
uscr has full control over the final mesh. Static constraints and loads are also defined.
A data file is written when the model definition is complete.

The expansion phase information is entered using the program CONVERT [6]
which also acts as a data conversion program for the data file written by I-DEAS. Ex-
pansion data is entered using a menu format. When the program is [inished, the data
files used by STOPI'EDP are written.

STOPIEP 6] performs the shape optimization of the model defined by I-DEAS
and CONVLERT. The structure 1s reshaped iteratively until a user defined convergence
tolerance i1s met. Two output files arc written, once containing clement stresses and other
exccution information; and the other file containing nodal coordinates {or cach itcration
of the optimization process.

The file with the nodal coordinates is {ed into the program ANIMATE, which al-
lows its user to quickly animate the entirc optimization process on a graphics terminal

screen. The model may be moved and zoomed in on easily to observe certain regions.

3.2 Software Theory and Development

Chapter § describes theories used and how each program is structured and written.

Special functions of CONVERT include constraint plane delinition and element
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connectivity checking. Since [-DEAS has no way of defining constraint planes, they are
defined in CONVERT. Planes for both the static and expansion phase may be defined.
["our points defline a region to be specificd as a constraint plane. The first three points
define the plane, and all four points define the boundaries of the region to be con-
strained. [-DIIAS somectimes incorrectly defines clements, so CONVERT checks
connectivity as it reads clement information in. Any incorrectly defined element is re-
deflined correctly.

STOPI'EP uses a standard finite element approach using multiple load cases. Spe-
cial features of STOPIEP arc the expansion phase and the implementation of constraint
planes. If a surface not on a primary planc (xy, Xz, vz) should be fixed either to model
a static constraint or to [ix a surluce in the expansion phase, it may be held using a
constraint plane.  All nodes defined on the plane are restricted to movement on that
planc.

The expansion phase, which alters the shape of the structure, uses a new load vector
created using an initial strain vector. The iitial strain vector is created using the ex-
pansion cocflicicnt alpha, and the diflerences between calculated clement strain energy
densities and the reference stress converted to clement strain energy densities.  Dis-
placements are calculated for this expansion load vector, and are added to the nodal
coordinates to alter the structure.

ANIMATE is written using the FORTRAN programming language with calls to
the graphical programming language gralPIIIGS. The nodal coordinates for cach iter-
ation of the optimization are uscd to create picturcs of the model. The pictures are
stored in a graphics terminal’s memory, and may be drawn immediately on the terminal
screen.  All elements of the model may be drawn, or only the outer boundarics. If a
boundary picture is specified, the program scans all clements to find singly defined lines

and draws the outline of the model. Input devices are programmed to position the
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model in any orientation, zoom in on certain regions, and animate the optimization

process.

3.3 Case Studies

Chapter 6 contains the supporting models used to test the program. Two pressure
vessel quarter sections with nonuniform thicknesses are analyzed, one from a cylindrical
vessel and the other from a spherical vessel. The goal of the analysis was to achieve
uniform model thicknesses for cach case. Since the final shape was alrecady known, the
models were good tests for the program. Results were compared to theory using Lame’s
solutions and the results in [2]. Both models achieved near uniform vessel thicknesses,
with the cylindrical vessel performing better than the spherical. Stress results were found
to be accurate. Model volumes increased in both cases due to the relcrence stress se-
lected, qut the analyses were only meant to test the program.

A Torque arm with a center hole is analyzed two ways: in two dimensions and in
three dimensions. Results arc compared to thosc in reference [4] and stress results
checked using a beam approximation. The two dimensional model converged fairly well,
although some clements overlapped in the {inal design. Model volume was reduced by
24 percent. The three dimensional analysis results were not as good as the two dimen-
sional results, although an interesting [(inal shape developed. Model volume was only
reduced by 13 percent. Stress results agreed with the beam calculations.

Finally, a model of a rail car draft sill casting was optimized and compared to the
work done by Roach [5]. The casting model was originally created by Roach, who

optimized it by trial and error techniques. Model volume was reduced by nine percent,
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but a distorted [inal shape resulted. The distortion was caused by the sparscness of the
finite clement modcl. To achieve a usable {inal design, a more detailed mesh would have

to be created.
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Chapter 4

SOFTWARE USE

This section explains how a model is created, its data files modified, its shape opti-

mized, and how it is post processed. A user’s guide containing (ull documentation for

all programs listed here is in relerence [6].

4.1 Model Information

A model to be optimized requires two diflerent types of input information to define

it. The first type is the static case data for the normal finite element analysis of the

model; the second type is cxpansion case information to determine how the model is al-

lowed to change.
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The static case information includes the finite element model itsclf, made up of
nodes and clements; a sct of nodal constraints; and up to ten load cases, made up of
nodal forces and clement face pressures, to simulate the in service state of the model.

The expansion casc information includes a diflerent set of constraints, which are
used to preserve certain model geometry features such as holes, slots, and walls, during
the optimization of the modcl.

Static or expansion constraints may be simple kinematic nodal degrees of freedom
(d.o.f.) constraints or constraint planes. The kincmatic constraints are nodes that are
fixed in the X, y, or z dircction, while constraint plancs simulate skcwed constraints.
Nodes on a constraint plane are restricted to movement on that plane.

Note that constraint planes may only be delined for planes not parallel to the pri-
mary planes (xy, x7, v7). Any plane parallel to one ol these primary planes may be held
fixed by applying kinematic constraints to its nodes.

Also required in the model definition are material propertics and optimization con-
trol variables. The material propertics needed are Young's Modulus and Poisson’s ratio.
The optimization control variables arc the expansion cocflicient alpha, which determines
how much the element volumes change in an iteration; the reference stress, to which the
model stresses will try to converge; and the convergence tolerance, which determines

when the optimization is complcte.

4.2  Pre-Processing with SDRC - I-DEAS or CAEDS

To define the basic, static casec model, the SDRC I-DEAS or CAEDS Finite Ele-

ment Modeling (FEM) module is used. The FEM module is a finite element model
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creation and analysis program, and is used to define nodes, clcrncnts, static case
kinematic constraints, and load scts made up of nodal forces and element face pressures.

A detailed description of how to create a finite element model like the one described
above is in reference [6]. A bricf description follows. First, the model’s gcometry is
defined using points, lines, and arcs. Edges are then defined using the geometry primi-
tives, and surfaces arc defined by edges. TFive or six surfaces may then be used to make
up a volume. Scveral volumes may exist in a single model. Three dimensional meshes
are then defined over the volumes, and nodes and clements arc gencrated using the
meshes.

With the model complete; nodal constraints, nodal forces, and clement face pres-
sures may be added arid put into scts. When all inputs arc completed, data is written

out to a file.

4.3 Data File Conversion with Program CONVERT

Once the model has been defined, the expansion phase information must be added,
constraint planes defined for either phase, and the STOPFEP input files required must
be written using the information in the [I-DEAS data file. The I-DEAS data file may
be modified by hand to include the cxpansion phase information, and the STOPFEP
input files created as a result. Iland modification is tedious however, and the model
would have to be carcfully scanned to find all nodes on desired constraint plancs.

The program CONVERT accomplishes all of these tasks by reading the data in the
original file, and using an interactive menu {ormat (or input. The menu allows the user

to define any static phase constraint plancs, expansion phase constraint planes, expan-
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sion phasc nodal constraints, material property information, and optimization control
variables. Once all data is entered to the user’s satisfaction, the input files for the opti-
mizer arce written.

Constraint planes in STOPI'EP arc defined by the first three nodes of a list of all
nodes constrained to motion on that plane. CONVERT simplifics the user input by
finding all nodes on a specified plane and putting them in a list.

To definc constraint planes for cither the static or expansion phase, the user selects
a region of the model to be defined as a constraint plane by entering four outer points
of the region. The four points define a quadrilateral in space, inside of which are all the
nodes on the desired constraint planc. These points may be the coordinates of four
nodes on the outside edges of the plane. The program uses the first three points entered
to form planc cquations and scans all nodes in the region delined by the four points to
find thosc on the plane. When the final data files arc output, cach plane will be written
as a list of nodes, with the first three nodes defining the plane.

Kinematic nodal constraints for the expansion phase are entered in CONVERT.
A nodc’s x, y, or z d.o.f. may be held fixed, left {ree, or released if it was held fixed for
the static analysis.

All other variables are entered directly when their corresponding menu choices are

selected.

4.4 Shape Optimization with STOPFEP

After that all the information has been entered and compiled in the correct format

in the input f[iles, the model is analyzéd and optimized by the program STOPFEP
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(STructural OPtimization Finite Element Program). The program performs static ana-
lyses on the model and modifies it until the user defined convergence tolerance is
reached, or terminates by exceeding the maximum allowable number of iterations.

Before a complete optimization run is made, a data check is done to ensure that all
required model information exists and is correct. If the model information is correct, a
run using only one itcration is performed with all write flags on (static and expansion
displacements, current nodal coordinates). The designer then examines the initial stress
states and may choose a relerence stress for the model to converge about. The expan-
sion displacements can be raised or lowered by altering the expansion cocflicient alpha.
With these preliminaries complete, the program can then achieve a successful optimiza-
tion.

The optimization control variables: the expansion cocllicient alpha, the relerence
stress, and the convergence tolerance; arc all selected by the user using the initial state
of the model and trial and error.

The expansion cocfficient alpha determines how much a structure’s nodal coordi-
nates arc modified in an optimization iteration. The higher alpha is, the higher the nodal
displaccments are.

Reference stress may be specificd based on the stress state of the model. If the de-
signer wishes to remove material from a certavin region of a model, the reference stress
is set higher than the stresses in that region. The reference stress could also be set equal
to a design stress, but obtaining a completely uniform model stress state is rare, and
stresses in some regions could be higher than the design stress.

Convergence tolerance will vary depending on model complexity and the value of
the expansion cocflicient alpha. In general, the tolerance should be raised with complex
models, and lowered if alpha is low. Running the program for a few iterations should

give the user an cstimate for an acceptable convergence tolerance.
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No user interaction is required once the program begins execution. Screen writes
by the program at certain points in the analysis keep the user informed.

Output includes all the model information and clement stresses for each load case
and cach iteration. If the user desires, static displacements, used to (ind element stresscs;
and cxpansion displacements, used to modify the model, may be written. Included in the
output is another file of data, containing element connectivity and nodal coordinates for

cach iteration. This information is needed for the post processing program ANIMATEL.

4.5 Post Processing with Program ANIMATE

To quickly and casily examine the results of the optimization, some sort of graphical
post processor is required. The program ANIMATL was written for this purpose. The
program allows the user to display the geometric shape alter cach iteration of the opti-
mization process on a graphics terminal screen, achieving a quick animation of the entire
analysis. The user may also rotate the model about the x, y, and z axes; move the model
drawing anywherc on the screen; and zoom in on any portion of the model.

All model information is stored in the terminal’s memory, and no redrawing is re-
quired. All the processes described above are executed quickly and smoothly.

When the program begins exccution, it requests the filename of the model to be
viewed and the following control information: number of nodes, number of elements,
and number of iterations in the analysis. Two kinds of display styles may be used:
wircframe and boundary. The wirclrame display style shows cach of the elements of the

model in their entirety, while the boundary style shows just the outline of the model.
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Wireframe display is uscd to sce how the clements are changing, and the boundary style
shows a less cluttered outline of the actual part.

When ANIMATE has finished processing all the input data, the original model is
drawn on the screen and input devices are set up for use. Using these devices, the user
may rotate the model about the x, y, and z axes; move forward or backward through the
optimization process; zoom in on desired scctions; and move the model to different lo-

cations.
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Chapter 5

SOFTWARE THEORY AND DEVELOPMENT

This scction explains the structures and theories used in the development of the
programs CONVERT, STOPIFEP, and ANIMATE. All program listings, along with
detailed descriptions of program executions and subroutine lists, are found in [6].

Recall from the previous chapter that CONVERT is used to add expansion phase
information and write out thc input files nccessary for the program STOPIEP.
STOPI'EP performs the finite element analyses needed to alter and structurally optimize
the given model. ANIMATE is then used to graphically display the results of the opti-

mization.
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5.1 CONVERT

Two of the main features of CONVERT are the input of nodal kinematic con-
straints for the expansion phasc and constraint planes for the static and expansion cascs.
Expansion phasc kinematic constraints are added by entering the node number, and the
X, ¥, and z constraints. The expansion phase kinematic constraints are completely dif-
ferent from those of the static phase. Nodal d.o.f. may be fixed, left free, or released.
A nodal d.o.[l may be rcleased if it was held fixed in the static analysis. A “l” constrains
a d.o.f,, a '0" lcaves it alone, and a -1” releases a d.o.[. constrained in the static phase.

Constraint planes for either phase are created by entering four outer points of a
desired plane. Only three points are necessury to define a plane, however such a plane
would extend infinitely. At times a model will have a region on a plane that does not
nced to be completely constrained.  The four points the user inputs define a region as
well as a planc. Ounly nodes within the defined region that are on the deflined plane will
be added to the constraint plane list. After the first three points define the given plane,
the fourth point is tested to ensure it 1s on the plune. I the point passes the test, the
algorithm proceeds. If it does not, the user is instructed to reenter all four points.

The program will use thesc boundary points to define a planc equation. All the
nodes in the model are then scanned and their coordinates input into the defined plane
cquation. If a node causes the result of the equation to be zero, the node is on the plane,
and 1s inserted into that plane’s list of nodes. This procedure is repeated for each defined
constraint planc. The end result is a list of nodes for cach constraint plane.

The maximum and minimum X, y, and z coordinates of the four points entered de-
fine a box in space containing the nodes on the desired constraint plane, and other nodes

in the nearby region. Only the nodes in the box are tested for the plane.
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The plane cquations are formed below, where the subscripted coordinates are those
of the first three points used to define the plane. The unsubscripted coordinates are the

coordinates of cach node being checked.

d=cl(x—x)+c2(p —y) +3(z—z)
where
cl =0 =)z —2) =03 —p)zn — 7)) (]
2 =(x3 —x)(z3 —2)) = (xg = x)(z3 — 79)
3 =0 —x)W —») — (3 —x) 0 —»)

The valuc of the variable delta is used to determince if a node lies on the plane.
Ideally, if a node is on the defined plane, delta will be zero. Due to computer inaccuracy,
this will not identily all the nodes. Thercfore the program variable epsilon is uscd to
mueasure the smallness of delta. Any node with a delta less than epsilon is on the defined
planc. By trial and error, an epsilon of two times the lowest ¢ value (cl, ¢2, and ¢3 de-
fined above), was found to give accurate results.

Another function of CONVLERT is to test element connectivity, since [-DEAS
somctimes incorrectly deflines elements. Incorrectly defined elements causc negative el-
ement volumes, which will cause a finite clement solver to fuil. CONVLERT tests cach
clement’s definition as it reads it in. The conventional definition for an eight noded,
three dimensional element begins by numbering the first four nodes of the bottom face
in a counter clockwise dircction. By the right hand rule, the bottom face should point
up toward the top face, which is also numbered in a counter clockwise direction using
the last four nodes.

The program defines three vectors: vector A from node one to node two, vector B
from node onc to node four, and vector D from node one to node five. Vector C is

formed by crossing A into B, and should point in approximately the same direction as

vector D. A picture of these vectors is in ligure Figure 1.
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Figure 1. Vectors A, B, C, and D in a typical elecment.
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The angle, 8, between the vectors C and D is:

1| C-D

0 = cos [——:l [2]
[CHID]

If this angle is small, the faces are correctly defined. If the angle is approaching 90 de-

grees, the clement is badly distorted; and if it 1s greater than 90 degrees, the vectors are

pointing in opposite dircctions and the clement faces are incorrectly defined. To correct

this, the faces are switched by interchanging the first four nodes of the element with the

last {our.
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5.2 STOPIFLP

STOPI'EP 1s made up of a standard finite ¢lement analysis program coupled with
shape modification routines. Most of the shape modification information is calculated
using the routines of the finite element solver. The solver was modificd to handle more
than one load case.

The program was originally written by C.E. Knight and 1.R. Grosse, and it was de-
bugged and enhanced by S.A. Ilambric. The key modifications made here include: im-
plementing multiple load case capability, which allows the model to be optimized based
on different types of in service loading; debugging the computer coding for the constraint
plance application to load vectors and displacement vectors; optimizing the code; and
making the program user {riendly.

As mentioned belore, the program uses a two part analysis. The first part is a static
analysis, which performs a finite element analysis of the model with applied loads and
constraints.  Stresses are calculated for cach load vector, and the maximum element
strain cnergy densities are sclected from cach load case to form the expansion load vee-
tor.

The second part of the analysis is the expansion phase. The maximum strain energy
densitics for cach element, the reference stress, and the expansion coeflicient, are used
to calculate an initial strain vector for each element. Using these initial strains, the ex-
pansion load vector is formed. This load vector and the expansion phasc stiffness matrix
arc uscd to calculate a new set of displacements. These are the displacements used to
modify the model and arc added to the current nodal coordinates.

The program checks for convergence and continues itcrating if the convergence

tolerance is not met.
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The following algorithm is made up of a conventional finite element formulation
with added constraint plane capability. Much of the algorithm was implemented by I.
R. Grosse. A basic knowledge of finite clements is assumed. The text by Cook [7]is
an excellent reference source.

The stiflness matrices are formed first, one for the static phasc using the static case
constraint sct; and one for the cxpansion phase using the cxpansion case constraints.
The matrices are constructed on an element basis and assembled to get the global
stifflness matrices.

Nodal constraints on global coordinate d.o.f. arc implemented by removing corre-
sponding cquations, but constraint plancs involve matrix manipulations to couple the
appropriate d.o.f.. A constraint matrix must be formed for cach element and used to
alter the element’s stiffness matrix before it 1s added to the global matrix. The constraint
matrices are also used to modify all load vectors and calculated displacement vectors.

To form an element constraint matrix, the following operations are performed. The
first three nodes are taken [rom cach constraint planc node list and arc used to define
the plane. The planes are implemented by eliminating the nodal z d.o.f. in favor of the

x and y d.o.[.. Planc cquations are:

(=2) == (x —x) = S0 - )
where
cl =0, —y)(z “ z)) =y =z —z)) (3]

€2 = (x3 —x))(z; = z)) = (x3 = x) (23 — 27)

3 =(x; —x) 3 =) = (3 —x) 02 =)

The variables alpha and beta will become entrics in the element constraint matrix,

and arc calculated as:
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a = _3

¥

-, 4]
p=—<=

()

Where cl, ¢2, and ¢3 are calculated in equation 3.

During the clement stiflness matrix formulation, cach node in the clement is looped
over to determune if it is a constraint plane node. If it is, the alpha and beta calculated
in equation 4 will be put in the element constraint matrix. The constraint matrix is an
n X n identity matrix with n cqual to the total d.o.f. of the clement with the following
changes: the column corresponding to the node’s z d.o.f. is zerocd out; in the row cor-
responding to the node’s z d.o.fi, the value corresponding to the node’s x d.o.f. is sct
cqual to alpha, and the value corresponding to the node’s v doo.f. is sct equal to beta.
This 1s done for cach node of the clement that 1s on a constraint planc.

Stiflness matrices are altered on an clement basis by:

1K =117 KT 1)

where
[K?] = the clement stiffness matrix [3]
[C°] = the clement constraint matrix

the transformed element stifTness matrix

[K°)

This is done for both the static and expansion phase matrices using the constraint
planes defined for cach phase. These calculations amount to a coordinate transforma-
tion {rom global X, y, z coordinates to in-plane ®", y’, and z" coordinates. Due to the
zeroes in the constraint matrices, the modified stiffness matrix will not be positive defi-
nite. This problem is solved by putting dummy positive numbers in the diagonals that

ended up being zero. These substitutions will cause incorrect displacement calculations
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for the corresponding z* d.o.[, but since they were constrained out in favor of X and y’
d.o.f}, they are sct to zero anyway after the displacements are calculated.

After both stiflness matrices are formed and modified, the load vectors for each load
casc are formed. Nodal loads are added to element face pressure contributions to form

* clement load vectors. Constraint planes transformations arc addced by:

{7y =19 (%)
where

6
{r’} = the clement load vector 16}
{r’} = the transformed clement load vector
The element load vectors are then added into the global load vector as follows:
_ nume _
{rt = T {r}
e 1 7
where 71

{r} = the transformed global load vector

The program can now solve for the static displacements for cach load case by the

conventional {inite clement cquation:

(K] {d} = {7}
where

[K] = the transformed global stillness matrix (8]

=
I

the transformed displacement vector

Constraint plane transformations are applied to the displacement vector to yield

global coordinate components:

{d} = {d}1C)
wherc (9]
{d} = the final global displacement vector
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The clement stress state for cach sct of displacements is:

{o") = [E11B) (")

where
{c°} = the clement stress vector [10]
[£°] = the clemerit material stilfness matrix

[B°] = the element strain displacement matrix

Element stresses arc used to calculate a strain energy density for each element.
When stress calculations are complete, there exists a sct of clement strain encrgy densi-
ties for cach load case. Optimization should be bused on the maximum strain energy
densities for-cach element. Therefore cach sct of densities is scanned, and a single set
containing only the maximums is formed.

The uscr defined reference stress is then converted to the reference strain energy
density. This is subtracted from the set of maximum calculated strain energy densities.
Multiplication by the expansion cocllicient alpha determines the magnitude of the initial

strains in the clement:

(2 =a(p" =) 1 1000
where
{¢’} = the element initial strain vector

(11]

a = the expansion cocefTicient
¢° = the element strain energy density
¢, = the reference strain energy density
Next, using these strains, an expansion load vector is calculated. This is done on
an clement basis, and summed to form a global expansion load vector. Constraint plane

transformations are apphed as they were to the load vectors in the static phase.
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{rfy =[5 1BTLE) (o) dv
=T [12]
{F} = Cl{r)

This expansion load vector is used to calculate a new sct of displacements, which
then have expansion phase constraint planc transformations applied to them. These
displacements are transformed to global coordinates and then added to the nodal coor-
dinates to reshape the structure, and the iteration is complete.

The leveling of strain cnergy density distributions is tested after the stress compu-
tations. The convergence tolerance is calculated by using a scaled cuclidian norm for
iteration i. The equation uscs strain energy densitics for cach element from the current

and previous iterations:

nume t -1

e e T2
/ E1 (g =9y )
! [
s = N -
nume l.'/ 2
o X (g)
\/ e =1
[13]
where
s' = the convergence tolerance
¢ = the clement strain energy density
nume = the number of clements

[f this value is less than the user defined tolerance, the model has converged. If it
is greater than for previous itcrations, the solution is diverging and the program stops.
In the (irst iteration, an arbitrarily high value is assigned to ensure the program will go

through at lcast two iterations. All subsequent itcrations are treated normally.
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5.3 ANIMATE

The program is used to display the optimization process on screen, and to allow the
user to obscerve diflerent sections of the model by rotation, location, and zoom functions.
[t 1s written using the FORTRAN programming language and uses calls to graPI{1GS
subroutines to perform all graphical functions. Documentation listings for graPHIGS
are found in reference [0,

ANIMATE draws a modcl as it appears in cach itcration in separate pictures.
Thesc pictures are storcd in memory so the user may recall any of them to a graphics
terminal screen. Various input devices are programmed to accept user commands at any
time to manipulate the model onscreen into any desired position and orientation.

graPITIGS diflers from other graphics languages such as GKS in that it stores entire
pictures for usc at any time. No matter how complex the drawing in a picture is, it may
be stored in the intelligent workstation memory and (lashed on the screen instantly. The
user does not wait for lines and text to be drawn.

IFor this rcason gralPHIGS is ideal for the animation of the optimization process.
Lach iteration of the process is put in a diflerent picture. The pictures may then be se-
quentially displayed to simulate animation.

Pictures are filled up with model drawings for each iteration by reading in element
connectivity once and storing the information, then reading in all nodal coordinates for
each iteration and drawing the lines that define the models. If a normal wireframe
drawing 1s spccified, each element of the model is looped over and lines are drawn from
node to node using the coordinates of the nodes that define an clement. The result is a
scrics of drawn boxes in a picture that make up a drawing of a modcl. This process is

repeated for cach iteration of the optimization process.
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If a boundary drawing is requested, all elements arc looped over; but instead of
simply drawing cach linc of an clement, all lines of an clement are compared to all the
lines of all the remaining clements of the model. If a match is found, the tested line is
not on the outer boundary, and is not drawn. I no match exists, the line is drawn in
the picture. This testing algorithm is performed only for the first iteration of the opti-
mization, and the nodes delining the boundary lincs are stored. The stored nodes are
uscd in all subscquent iterations to draw modified model boundaries in the other pic-
tures.

Different model locations and orientations arc produced on screen by using the
concept of views. Diflerent views may be defined for any picture to examine it in a dif-
ferent way. Views may be moved in any direction, and rotated in any way using transf-
ormations. ANIMATLE works by defining a view based on user input, and then puts the
current picture containing the current iteration of the optimization in that view. Views
may be constantly redefined. [If for example the user slowly turns a valuator dial to ro-
tate thc modecl about an axis, the appearance onscreen is that of a constantly rotating
modecl.

Once the program completes drawing pictures of cach iteration of an optimization
process and storing the pictures in the graphics terminal memory, the algorithm sets up
input devices and awaits uscr input. The program is then in a wait and respond mode.

Input is given through input devices attached to the IBM 5080 terminals. The at-
tached input devices used here are the Choice board, which uses choice keys to perform
the translate and zoom operations; the valuator dials, which_are uscd for rotation about
the x, v, and z axcs; the locator and tablet, which are used to define zoom boxes and new
locations on the screen; and finally string input on the keyboard.

These inputs may be programmed in onc of three modes: Request mode, where data

may only be entered when the program asks for it; Sample mode, where the program
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samples data {rom an input device without user interaction; and Lvent mode, when the
program waits for user input and responds to it.

Event mode is the tvpe used most in ANIMATE. This mode allows the user to
perform any given action at any time. When the user requests certain actions, such as
zoom or locate, the keyboard and locator are put in request mode to complete the op-
cration.

When input is made, it is to redefine the current view of the model, or to bring up
the previous or following picture of the optimization. Views are redefined by moving the
observation point, expanding or shrinking the observation window, or multiplying a ro-
tation matrix by the window and obscrvation point dcfining the view. Once a new view
1s calculated, the currcﬁt picture is placed in it and the operation is complete. To show
the next picture of an optimization, the current picture is removed from the current view,
and the next picture placed in that view. Done repeatedly, this will produce an ani-

mation of the entire optimization process with a model in any specified view.
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Chapter 6

CASE STUDIES

Three types of structures were studied to cvaluate this optimization approach.
Where appropriate, results are compared with reference studics.  Results are also com-
parcd to theoretical or approximate solutions. The following models were analvzed:

- Pressure Vessel: a spherical model and a cylindrical modcl
were analvzed. Both were given nonuniform thicknesses and were
expected to converge to uniform thickness models. Results arc
compared to Lame’s solutions and to a similar analysis by Oda and
Yamavzaki [2].

- Torque Arm: a two dimensional and a three dimensional
optimization were performed. The two dimensional results were
compared to those of Bennet and Botkin [4]. Stress
calculations were verilied using a beam approximation.

- Draft Sill Casting: a multiple load case model of a Norfolk
Southern design of a draft sill casting 1s optimized.
The model was originally created and analyzed by Roach [5]
in 1980. Results arc compared to previous finite clement analyses.
The pressure vessel models were used as an mitial program test. The models were

simple, and the solution was known. The torque arm model was sclected to test the

program’s ability to handle morc complicated models, {irst in a two dimensional analysts,
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then in a three dimensional one.  After getting satisfactory results from these analyses,
a complex model of a draftsill casting would test the program’s multiple load casc ca-

pability.

6.1 Method of Presentation

The following method of presentation is used for cach case study. First a de-
scription of cach model is given, along with accompanying pictures. All constraints and
load cases are described, along with material propertics and optimization control vari-
ables. In a results section, the mitial and {inal stress states are described. Pictures of the
final model are shown, along with a plot of how model volume changed {rom iteration
to iteration. Computer CPU times for a static analysis, a single iteration, and the entire
optimization arc compiled. At the end of cach scection is a discussion of results, de-

scribing how the model performed and comparing results to theory and referenced work.
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6.2 Pressure Vessels

Two models were created, both quarter section slices of pressure vessels.  Only
quarter section slices are needed due to vessel symmetry. The [irst model was from a
cylindrical vessel, and the sccond from a spherical vessel. Both models were created with
varying thicknesscs and are shown in Figure 2 and Figure 3. An cnginecring drawing
of both models is in Appendix C. The goal of the analysis was to verify that a uniform
thickness for cach model is obtained. Although the solution to the problem is obvious,
the modecls are a good means of testing the program since the solution is known.

Steel was used as the material, with a Young's Modulus of 200.8 GPa, and an as-
sumed yield strength of about 180 Mpa. Results will be compared to those reported by

Oda and Yamazaki [2].
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Figure 2. Spherical pressure vessel quarter section, original model.
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Figure 3.  Cylindrical pressure vessel quarter section, original model.

CASE STUDIES v

37




6.2.1 Spherical Vessel

6.2.1.1 Modcl Description

The model was one clement deep, with four clements in the radial direction and 24
clements in the angular dircction. The vesscl had a uniform inner radius of 100 mm and
an outer radius varying from 110 mm to 125 mm. The following synuﬁctry constraints
were applied to simulate the rest of the pressure vessel. The top and bottom [aces were
held fixed in the tangential direction by nodal d.o.f. constraints. The back face is flush
with the xy planc and was constrained by climinating all z d.o.f. on that face. The front
facc 1s not on any primary global coordinate plane, and was constrained using a con-
straint plane. One load case was applied to simulate a constant internal pressure, and
used element fuce pressures of 1.0 Mpa applied to all elements on the inner face. The
model was given an expansion coeflicient of 5.0 x107¢, a reference stress of 2.5 Mpa, well
below the assumed yield strength of 180 Mpa; and a’ convergence tolerance of 0.05. A
model approximation cxists at the sphere apex, where the slice should converge to a linc
rather than a face. Lxtremecly poor stress results occured when hexahedron elements

were degenerated to tetrahedrons. - Thercefore, the model actually has a small polar hole.

6.2.1.2 Stress States and Other Results

Stresses were largest on the inside of the vessel and decreased to a minimum at the
outside, which is predicted by Lame” (sce Appendix A). This distribution was grecatest
at the bottom, thinner end of the quarter section; and smallest at the top, thicker end,

which was also expected. The thinner the vessel wall is, the higher the stresses will be.
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The maximum Von Mises stress was 6.36 Mpa, located in the inner element of the
bdttom face. The minimum Von Mises stress was 1.55 Mpa, located in the outer cle-
ment of the top face. These values give a maximum/minimum ratio of 4.10, Also note
the average stress is higher than the reference stress of 2.5 Mpa, so there will be more
clements expanding than contracting in the optimization, causing an increase in material
volume.

In the converged model, the stress distribution still showed larger stresses on the
inside and lower stresses on the outside. This time however, the distribution did not vary
much throughout the quarter scction since the thicknesses were almost uniform
throughout.

Comparing maximum and minimum stresses showed that the maximum Von Miscs
stress was again in the inner element of the bottom face, but was lowered to 3.36 Mpa.
The minimum Von Mises stress was also in the same location as before and equal to 1.96
Mpa, which gave a final maximum to minimum ratio of 1.71.

The model converged in eight iterations. [Figure 4 shows a graph of model volume
vs. number of iterations. The graph shows an increasing volume, which may seem
contrary to the basic goal of the program. The goal in this analysis however was to
achicve a near uniform thickness model, a goal that was achicved. The graph shows a
convergence of model volume to a value of about 25 cubic centimeters.

The CPU tume [or a single static analysis was 1.20 seconds, 2.37 scconds for a single
iteration, and 19.0 scconds for the complete optimization. These values indicate the
cntire optimization process required about 16 times the computer time a single static
analysis required. A picture of the final modecl is shown in [Figure 5.

The (igurc shows necar uniform wall thicknesscs, with a top thickness of 0.0163 me-
ters and a bottom thickness of 0.0106 meters. The initial top to bottom thickness ratio

was 2.5, with the final ratio equal to L.5.
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Figure 4. Model volume vs. number of itcrations for spherical pressure vessel model. |
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Figure 5.  Spherical pressure vessel quarter section, final model.
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6.2.2 Cylindrical Pressure Vessel

6.2.2.1 Modcl Description

The model was three elements deep with four elements in the radial direction and
12 in the angular direction. Radial dimensions are the same as in the spherical model.
Constraints were applied to simulate the surrounding pressure vessel. The top and bot-
tom faces were [ixed in the tangential direction by nodal d.o.f. constraints as were the
front and back face. Again one load case was applicd to simulate a constant internal
pressure, with clement face pressures of 1.0 MPa applicd to the entire inner face. The
model was given an expansion cocllicient of 5.0 x10 ¢, a reference stress of 2.5 Mpa, and

a convergence tolerance of 0.05; the same control variables given to the spherical model.
6.2.2.2 Stress States and Other Results

Stresses varied from a maximum on the inside to a minimum on the outside, with
stresses decreasing as the vessel thickness increased; which was expected. There was no
stress variation in the z direction through the thickness. The maximum Von Mises stress
was 12.4 Mpa located in the inner elements of the bottom face, with the minimum Von
Mises stress equal to 0.35 Mpa located in the outer clements of the top face. This gives
a max/min ratio of 35.0.

In the [inal optimized model the maximum Von Mises stresses were again in the
inner clements of the bottom face, and were lowered to 3.08 Mpa. The minimum Von
Mises stresses werce also in the same locations as before and were raised to 1.77 Mpa.

The max/min ratio was lowered to 2.08.
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The model converged in 12 iterations. I'igure 6 shows a graph of model volume vs.
number of iterations. The model volume increases, as it did in the spherical vessel
analysis, converging to about 60 cubic centimeters. The volume increase is acceptable
since the goal of the analysis was to obtain a near uniform vessel thickness. The CPU
time for a single static analysis was 1.67 scconds, 3.33 scconds for a single iteration, and
40.0 scconds for the complete optimization. The complete optimization required about
24 times the CPU time as a single static analysis. A picture of the final model is shown
in [igure 7.

Mcasuring vessel thicknesses shows a top wall thickness of 0.036 meters and a bot-
tom thickness of 0.033 meters. The final thickness ratio was 1.09, a large improvement

over the miual value of 2.5.
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Figure 6. Model volume vs. number of iterations for cylindrical pressure vessel model.

Iteration Number

CASE STUDIES

44




Figure 7. Cylindrical pressure vessel quarter section, final model.
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6.2.3 Discussion

Both models moved out to near uniform thickness quickly (lirst four iterations {or
the spherical case and first nine iterations for the cylindrical casc), and spent the last few
iterations trying to converge about the reference stress. This was a futile task consider-
ing the stress distribution in a pressurc vessel, with stresses ranging {from a maximum at
the inner face, to a minimum at the outer face. The program attempted to lower the
max/min stress ratios by cxpanding the inner clements and shrinking the outer ones,
which decreases the accuracy of the analysis. This caused the centroids of the elements
to be closer together ncaf the center of the wall. Since stresses are calculated at Gauss
points and averaged at the center of the element, this caused the Von Mises stresses to
appedr to converge.

The cylindrical vessel’s final wall thickness ratio (1.09) converged better than the
spherical vessel’s ratio (1.50). This discrepancy is due to the clements at the top of the
spherical vessel model. These elements have very poor aspect ratios, with the thick-
nesses in the z direction almost ten times less than any other dimension.  Stresses cal-
culated in these elements are a little high, causing them to expand too much in the
expansion analysis. Recall also the small hole in the top of the modcl, which will cause
a stress concentration at the top elements. The error was not drastic though, as
I'igure Sshows.

Reference [2]'s axisymmetric model converged in 15 iterations and also ended up
with near uniform thickness. tHowever they held model volume constant and based
convergence on stress distributions on the inner and outer surfaces of the model. Stress
distribution progresses from largest at the bottom to lowest at the top. When the dis-

tribution was ncar constant, their model had converged.
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Their model converged in 15 iterations, with model volume remaining almost con-
stant. The final model had an outer radius ratio of 1.007, as compared to a value of 1.02
for the cylindrical vessel model and 1.05 for the spherical vesscl model in this study.
Thercefore the method presented here produced similar results using fewer iterations.
Also, in this method the model volume was allowed to vary, and convergence based on
the overall model stress state; this is a more gencral method of optimization.

Stress results for both models were checked using Lame’s equations. Calculations

arc in Appendix A.
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6.3 Torque Arm

Using a single modecl, two analyses were made. The first was a two dimensional
analysis which is compared to the results of Bennett and Botkin [4]; the other was a
three dimensional analysis, which was not attempted in referenced work, performed to

cvaluate the ellectiveness of the program.

6.3.1 Model Description

A picture of the initial model 1s in Figure 8. The hole on the left was constrained
at all nodes to simulate a weld. The hole on the right was left free during the static
analysis, but constrained in all dircctions during the expansion analysis to prescrve hole
size. Stecl was again the assumed material, with a Young's Modulus of 206.8 GPa, and
a vicld strength of about 180 Mpa. An engineering drawing of the torque arm with all

pertinent dimensions is in Appendix C.
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Figure 8.
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The modcl was one clement decp, with 528 clements on the xy plane. A bending
force was applicd by distributing y dircction nodal forces at nodes on the upper half of
the right side hole. The equivalent force was 4063 N. An axial load of half the magni-
tude of the bending load was applied by distributing x dircction nodal forces at nodes
on the right half of the right side hole.

FFor the two dimensional simulation, all the nodes of the model were constrained in
the z direction for the expansion analysis, which eflectively produced two dimensional
optimization. [For the three dimensional case all nodes were {ree to move except those
at the left and right holes. Control variables for the two dimensional case were: an
alpha of 1.0 x1077, a reference stress of 50.0 Mpa, and a convergence tolerance of 0.025.
IFor the three dimensional case, control variables were: an alpha of 0.5 x10-7, a reference
stress of 50.0 Mpa, and a convergence tolerance of 0.025. These values were chosen
based on the model stress state, and trial and error by attempting some short optimiza-
tions. The lower alpha value for the three dimensional case was due to the sensitivity

of the model (sce results).
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6.3.2 Stress States and Other Results

The modecl subscction of interest is the region between the holes on the right and left
sides. The material on the outside of the far holes has stresses that are about ten times
less than the center material. Therefore maximum and minimum stresses will be taken
from this center region.

For both céscs the initial stress statc was the same. The maximum Von Miscs stress
was 89.3 Mpa, located at the bottom of the model directly below the left end of the
center hole. The minimum Von Mises stress was 3.02 Mpa, located at the lower left side
of the far right hole, which is directly opposite to the direction of the resultant load.
The maximum: minimum stress ratio was 24.7.

The axial stress contribution to the model stresses was fairly constant throughout
the middle of the model, with stresses at about 2.5 Mpa. The bending stresses increased
going from right to left, which was expected. Bending stresses were also greater at the
top and bottom and less ncar the center hole; ranging from 6.0 Mpa to 83.0 Mpa.
Bending stresses were dominant, and the ovcruil distribution was similar to the bending
stress distribution.  These stress calculations are checked using a beam approximation
in Appendix B.

[or the two dimensional case, the final maximum and minimum stresses were 66.7
Mpa and 9.46 Mpa respectively; with the same locations as in the initial analysis. This
gave a maximum/minimum stress ratio of 7.05, a reduction of 17.65 from the initial ratio.
[For the three dimensional case, the final maximum stress was 88.0 Mpa and the final
minimum stress was 8.28 Mpa. The [inal ratio was 10.0, a reduction of 14.1 {rom the

initial state.

CASE STUDIES 51




The two dimensional model converged in 20 iterations and the three dimensional
modecl could only rcach seven iterations. FFor the two dimensional case, the CPU times
were: 6.14 scconds for a single static analysis, 12.28 scconds for a single iterations, and
4:05.6 minutes for the entire process. Therefore the entire process used about 40 timces
the CPU time as a single static analysis did. For the three dimensional analysis, the CPU
times were:  0.14 scconds static analysis, 12.58 scconds single iteration, and 1:28.06
minutes total. The entire process required about 14 times the computer time the static
analysis did.

Iigure 9 shows modcl volume vs. itcrations f[or the two dimensional model; and
[Figure 10 shows model volume vs. iterations for the three dimensional case. In the two
dimensional case, model volume converges to about 270 cubic centimeters. In the three
dimensional case, model volume 1s not converging enough to make a final volume ap-
proximation. The two dimensional model decreased in volume by 24 percent, and the
three dimensional model volume decreased by 13 percent.

Pictures of the final two dimensional model are in Iligure 11 and Figure 12, Pic-

tures of the final three dimensional analysis model arc in F'igure 13, and Figure 14.

CASE STUDIES 52




Torque Arm Model (2-D Analysis)
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Figure 9.  Modcl volume vs. number of iterations for torque arm model (2-D analysis)
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TORQUE ARM MODCL (3-D ANALYSIS)
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Figure 10. Model volume vs. number of iterations for torque arm model (3-D analysis)
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Figure 11.  Torque arm, final model (2-1) analysis).
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Figure 12.  Torque arm, iteration 9 (2-1) analysis).
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Torque arm, final model (3-D analysis).

Figure 13.
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Figure 14, Zoom view of final torque arm model (3-D analysis).

CASE STUDIES S8




6.3.3 Discussion

The two dimensional {inal model had clements overlapping at the right side of the
center hole after iteration 9. This is a common problem in shape optimization, and no
fcasible solution exists to keep overlapping [rom occurring. [Towever, the designer could
close the hole where the clements overlap.

Figurc 12 shows the model in the iteration before the overlapping began. Material
around the far holes shrunk to about two thirds of the original thickness. The center
hole expanded at the left side, and closed at the right. Material on the outer boundary
contracted.

I'igure 11 shows the model in its final state. The center hole closed significantly at
the right side. Material around the far holes shrunk to about half of the original thick-
nesscs, and the outer boundaries contracted more. The notches formed at the far left
side were caused by clement distortion, and should be smoothed out for final design.

Results arc compared to reference [4]. Figure 15 shows an iteration history of the
author’'s model. The author’s center hole is smaller than the one of this model, but not
that much. Most torque arm designs use center holes longer than the one in the figure,
and the author’s final design shows a substantial increase in hole length. The center hole
has assumed a similar shape to the analysis here, with the author using constraint arcs
to achieve the circular appearance of the hole, and to prevent the overlapping that oc-
curred in the analysis here. The outer boundaries also assume similar shapes, with the
exception of the loss of material around the outer holes and the errant notches in this
model. The author used triangular clements, a mesh regenerator, and boundary design

clements [or his optimization.
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The author’s torque arm required 45 iterations to achieve convergence, with con-
vergence based on the stress variations of the model.  Although this analysis required
an cnormous amount ol computer time, the optimization achieved a 55 percent re-
duction in model volume. The final shape is also smooth, cfficient, and simple to man-
ufacture. The method used in this report achieved a final shape approaching that of the
authors’, but used fewer iterations. Unlortunately in the optimization reported here,
clement distortion had an cflect on the {inal results, preventing the dramatic volume loss
found in the reference from occurring.

In the three dimensional analysis, the model did not change much in the xy plane.
Changes similar to those of the 2-D analysis occurred, but to a less degree. Since the
clements expanded or contracted uniformly in this analysis, changes occurred in the z
direction that are not seen inan xyv plance plot. Figure 13 and Iligure 14 show the eflects
of z dircction movement. [lements around the {ar holes shrank inward. The clements
around the center hole expanded on the outer edges, which are the regions of highest
stress, and shrank on the inner edges, giving the surfuce a concave appearance. This
phenomenon is more easily scen in Iligure 14. [If the three dimensional analysis is uscd

as a final design, the part would have to be cast duce to its geometry.
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Figure 15.  Bennett and Botkin’s torque arm iteration history.
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Problems occurred in both analyses. In the two dimensional analysis, the eflects
of distorted elements is seen in the strange notches at the left side. To solve this prob-
lem; a mesh regencerator could be used, the mesh refined at those regions, or the designer
can smooth out the boundary following the analysis. The closing up of the center hole
could be valid, but constraint arcs could be used as in [ 4] to preserve a circular ended
hole.

In the three dimensional case, the model solution started to diverge after the seventh
iteration. Altering the variable alpha would not prevent the divergence. This is a per-
plexing problem, since stress results were accurate, and the model changes were accept-
able until the divergence. The inability of the program to achieve a convergence casts
some doubt on the validity of the mcthod in three dimensions.

A possible solution to the problem would be increasing the number of clements
throughout the thickness to three or four. Perhaps using only a one clement thickness
lcads to numerical difficulties in a three dimensional shape modification. [lowever this

would create stiflness matrices so large that the analysis would become infeasible.
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6.4 Draft Sill Casting

The model of the draft sill casting was created by Roach [5]. Roach created the
model for Norfolk Southern and did a manual optimization of it using [-DEAS and the
SUPLRDB finite clement solver. In his conclusion, Roach recommended using a three
dimensional shape optimizer to shrink the model walls; which he said would significantly
reduce modcl weight,

Roach gives the following description of a dralt sill casting in his report: “The
draftsill is a cast stecl part weighing approximately 1,100 1bs (4890 N) and measuring
approximately 6 {t (1.8 m) long and 13 in (33 ¢m) square. The sill is attached to each
end of a hopper car by a long box shaped member called a centersill which runs under
the length of the car. The purpose of the draftsill 1s to transmit to the hopper car all
loads applicd by the draltgear assembly. The draftgear consists of the coupler and fol-
lower blocks and fits into the draftsill in an arca called the draft pocket.”

The draftsill and draftgear are shown in drawings in Appendix D.

6.4.1 Model description

Pictures of the model appcar in Figure 16, FFigure 17, Figurc 18, Figure 19, and
Iligure 20. The first (igure shows the bottom side of the model, the next three show
subsections of the overall side, and the final figure shows the model’s top side. The
model was crcated by manual entering of nodes and eclements, and uses several
hexahedron clements degraded to tetrahedron elements. Although degraded tetrahedron

elements give poor stress results, the purpose of the optimization attempt was to verify
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that the program could work with a complex model loaded with more than one load

casc.
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Bottom side of draft sill casting, original model.

Figure 16.
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Figure 8.

\

Middle subsection of draft sill casting, original model.
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Figure 19.  Far right subscction of draft sill casting, original model.
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Figure 20.

Top side of draft sill casting, original model.

Y

<

CASE STUDIES

69




Only half of the draft sill casting is modeled due to symmetry. The model is made

up of 678 nodes and 330 clements. [Four load cascs were used in the analysis:

- Load case 1 : Dralt load, simulates generated load when hopper car
is pulled by another car. Ilement face pressures
are applied in the - x direction to the first wall
from the left (on the yz plane), on its right side.

- Load case 2 : Compressive end load, simulates generated load when

hopper car i1s pushed by another car. Face pressures

arc applied in the x direction to the sccond wall

from the left (on the yz planc), on its left side.
- Load case 3 : Carbody lift, simulates the car being lifted at its

coupler. Irace pressures are applied in the - y

dircction at the first wall {rom the bottom (on the

xz planc) of the keyslot. Pressures are applied on

the top side.
- Load casc 4 : Downward vertical load, simulates generated load

when draftgear 1s not correctly aligned and 1s forced

downward. ace apphied the same as in load cuse 3,

but on the opposite wall and face.
Included i all load cases 1s a vertical load, which represents the structural weight of the
hopper car as it is applied to the draftsill through the bolster beam. IFace pressures are
applied in the - v direction located above the centerplate (right, top side of drawing) and
distributed over the body bolster beam contact area.

The same constraints Roach used lor his static analyses were used here. In the ex-

pansion phase, the following regions were constrained to preserve certain required model

geometries.

- Far left face in the x direction;

- Far left slot in all dircctions;

- Lelt side ribs facing bottom hole in all directions;

- IEntire back face on inner side in y direction;

- Both walls on sides facing cach other in x direction;

- Middle floor on top side in z direction;
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- Outer face of the centerplate at the far right side in all directions;

- Far right {ace in the x dircction.

The material used 1s specified as cast steel, with Young's Modulus of 30 Mpsi (206.9
Gpa) and a maximum vicld strength of 70 ksi (482.7 Mpa). An alpha of 0.5, a stress
reference of 70 ksi (482.7 Mpa) and a convergence tolerance of 0.04 were used. The
stress relerence is the yicld strength of the steel, which Norfolk Southern designers found
acceptable as a design stress. The expansion coeflicient and convergence tolerance were

chosen by trial and crror.

6.4.2 Stress States and Other Results

Stresses in the first iteration ranged from very low (around 2 ksi (13.8 Mpa)) at the
far right end, to very high (around 75 kst (517 Mpa)) at the far left end. The max
stresses exceed the yield strength, an indication that the model is underdesigned. How-
ever Norfolk Southern engineers calculated similar stress results and concluded that
some yiclding would not causc the part to fail.

Comparing stress results with Roach show load cases 1, 3, and 4 yicld similar
stresses.  Load case 2 results here were considerably lower however.  Since the other
three load casc results were accurate and only the maximum stress results are used for
the expansion analysis, this docs not greatly affect the final modcl.

Stresses did not vary significantly from the first iteration to the final iteration, which
is duc to the complexity of the model. There was a significant material loss of 238 cubic
inches (3,900 cubic ¢cm) though (sce Figure 21), a loss of 8.6 %. Pictures of the final
model are shown in Figure 22, I'igure 23, Figure 24, [igure 25, and Figure 26. Thesc

figures use the same views as the [igures of the original model, so changes may be ob-
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served casily. The CPU times for the analysis were: 0:05.72 minutes for a static analysis,

0:09.64 minutces for a single analysis, and 1:07.5 minutes for the entirc process.
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Bottom side of draft sill casting, final model.
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Far left subsection of draft sill casting, final model.

Figure 23.
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Figure 24.  Middle subsection of drait sill casting, final model.
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Figure 25.  Far right subsection of draft siil casting, final model.
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Top side of draft sill casting, final model.

Figure 26.
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6.4.3 Discussion

The final model is slightly distorted as the pictures show. Variable wall thicknesses
as well as curved boundaries appear. These may be smoothed by the designer however,
and since the part is cast, no major manu.facturing problems will occur.

The stress discrepancics of load case 2 are disturbing, as are the model’s varying el-
ement sizes. Recall the degraded tetrahedron elements used in the model cause poor
stress results, and duce to the sparsity of the mesh, some arcas with stress concentrations
may have been overlooked. [For more detailed and accurate results, the model should
be regenerated using a mapped mesh generator to produce a more detailed, uniform
mesh using only hexahedron elements. A better mesh would give better stress results.
With more accurate stresses and a liner mesh, the final model would have a smoother
geometry.

As the model stands now, entire walls and [loors arc modeled by less than ten cle-
ments. Not only do stresses vary greatly, but so do the [inal gcometries.

In spite of the problems encountered in the analysis, the program demonstrated its
ability to work with a complex model, and to base shupe changing on stress results from
multiple load cases. The diflicultics described above are all attributed to the model,

rather than the method used to optimize it.
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Chapter 7

CONCLUSION

As the program stands now, it is a valid, simple, method (or shape optimization.
No excessive model preparation is required, and analyses do not require excessive CPU
time to run.

The préssurc vessel models were analyzed accurately, and converged to uniform
thickness models without difficulty. The torque arm model was analyzed correctly, as
the supporting calculations show, and significant volume loss occurred in the optimiza-
tion process. The dralt sill casting analysis also gave reasonable stress results, and was
reduced in volume by almost 10 percent.

Problems did present themselves however. In the two dimensional torque arm
analysis, clements overlapped at one cnd; and distorted elements caused the appcarance
of notches about an end hole. In the three dimensional analysis, solution divergence
occurred after about a nine percent volume loss. The draft sill casting lost volume, but

attained a shightly warped appearance.
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Problem causes are with the presented method and with the models. The three di-
mensional torque arm analysis could have diverged due to a model thickness of only onc
clement. The draft sill casting model was sparse and included several hexahedron ele-
ments that were degraded to tetrahedron clements, which caused poor stress results and
the warped final model. The distortion in the {inal torque arm model however, is only
attributed to the program’s inability to refine meshes and prevent element distortion
from having an cffect in the analysis.

Some possible program refinements which could solve the above problems are:

- Compare modecls made of parabolic elements to the lincar ones
analyzed here. Parabolic elements would give better stress results.

- Consider mesh regeneration alter a certain point to climinate the
cffects of element distortion. Also using mesh refinement in arcas
of stress concentration will give better stress results and shape
modifications.

- Implement constraint arces to supplement nodal d.o.f. constraints
and constraint plances to help climinate the problem of overlapping
clements.

The results given here, while not perfect, are promising. ‘The expansion analysis
mcthod appears to be a valid and simple means of shape optimization. Computer time
15 not exorbitant, and no sensitivity analysis is required to reshape the structure.  All
nodal coordinates may be uscd as design variables, rather than only a select few, which
climinates costly trial and error optimizations.

Simple models, such as the pressure vessels, may be optimized quickly and casily
without using excessive computer time. Complex models, such as the torque arm and
draft sill casting, must be created with care, and with dectailed and accurate meshes to
prevent inaccurate results and solution divergence. With the modifications suggested

above, larger models may be modilied and optimized better, with more useful final

shapes resulting.
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Appendix A
PRESSURE VESSEL CALCULATIONS USING

LAME’ EQUATIONS

A.1 Spherical pressure vessel equations and calculations

Lame’s equation for the radial stress, for o,, is used to approximate o, in the elements
on the bottom face and o, in the clements on the top face. The equation for the
tangential stress, o, , is used to approximate o, in elements on the bottom face and o,
in clements on the top face.

Lame’s cquation for o,, was found in reference [8] :

3,3 3 3
(P = po)ab N b — pa

A - a - b [
3 3 3 3 3 3 I
p,b(2r +a’) pa(2r +57)
0 = —_
LS -y 2 - b
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Two expressions will be found for each equation. One using the bottom outer radius,

and onc using the top outer radius. The following constants arc delined:

po = 0.0Pa

7 = 1L.OMPa

a = 0.10m
bpor = 0.11m
biop = 0.125m

Muaking these substitutions gives the following expressions for the bottom face:

o, = 3.0212Mpa — LY
J
P 2011.0 : (2]
o, = 3.0212Mpa + —
;
and the following expressions for the top face:
5
o, = 1.04920fpa — 2D
-
[3]
o, = 1.04923Mpa + L2220
,

Tables of o, and o, values and the corresponding theoretical values for o, and o, are
shown below. There appears to be an error in tangential stresses calculated in the top
of the vessel. This could be due to the poor aspect ratio in the elements in that part of
the model. Element thicknesses in the z direction were lowered to about one tenth of
the other element dimensions. This discrepancy did not seriously damage the optimiza-
tion process, although the vessel thickness at the top did not quite match the thickness
at the bottom.

The radial stress at the top agreed well with the calculated results, as did radial stress

at the bottom. Tangential stress at the bottom was a little lower than the calculated
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valucs, but not significantly so. Recall thesce calculations are only approximate in that
this model is not a uniform thickness model. The nonuniformity will cause departures

{rom thcory.
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Table 1. Predicted and actual stresses at top of spherical pressure vessel model

r(rm) o (Mpa) o,(Mpa) o (Mpa) o{Mpa)
(LLamc”) (1°.120) (LLame”) (IF.ED
0.105 0.772 0.804 1.96 3.80
0.110 0.553 0.540 1.84 3.11
0.116 0.298 0.315 1.72 2.42
0.121 0.107 0.093 1.62 1.04
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Table 2.

r(m)

)

Predicted and actual stresses at bottom of spherical pressure vessel model

(Mpa) o(Mpa)
I".E

(I°15)

0.101
0.104
0.106
0.109

0.828
0.509
0.330
0.113

5.72
5.45
5.21
4.89
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A.2  Cylindrical pressure vessel equations and calculations

Lamc’s cquation for radial stress, o, , is used to approximate ¢, in the clements on the
bottom [ace and o, in the clements on the top face. The cquation (or tangential stress,
o, , 1s uscd to approximate 6, in clements on the bottom face and 6, in clements on the
top face.

Lame’s equation for o, with no external pressurc was found in reference [8]:
pia’ %
0,:'——[1.0—’—] [4]
2 2 2 :
b® — a

The equation for o, is:

_ b a b
0[—7———2-[1.04'—2—] [5]
h® — a r
Using the following constants:
p,' = ]01\/[’61
a =0.10m
bbo( =0.1lm
biop = 0.125m
yiclds the following equations:
57,260
Gpor = 4.762Mpa — 2=
r
6
, 57,260 L6l
Opor = 4.702Mpa +
r
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27,780

Criop = 1778 Mpa — 5
y
27,780 [7]
Cuop = L.TI8Mpa + —
’

Tables of 6, and o, values and the corresponding theoretical values for ¢, and o, are
shown below. The predicted radial stresses agree well with calculations at the top and
bottom of the model. Predicted tangential stresses do not vary as much as the calculated
ones, but the finite clement results average about the predicted ones. As before, note

the Lame cquations arc only approximations in a nonuniform thickness model.
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Table 3. Predicted and actual stresses at top of cylindrical pressure vessel model

r(m) o(Mpa) o Vpa) o (Mpa) G(Mpa)
(Lame’) (I°.1:) (Lamc’) (I.E)
0.105 0.742 0.672 4.35 8.13
0.110 0.517 0.369 4.16 5.10
0.110 0.287 0.175 3.84 2.49
0.121 0.119 0.052 3.68 0.35
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Table 4. Predicted and actual stresses at bottom of cylindrical pressure vessel model
r(rm) o, (Mpa) o(Mpa) o(Mpa) c(Mpa)
(Lamce’) (I°.15) {LLame’) (F.E)

0.101 0.880 0.949 10.5 13.0

0.104 0.699 0.924 10.1 1.4

0.106 0.306 0.300 9.89 $.99

0.109 0.178 0.273 9.01 6.79
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Appendix B
SUPPORTING CALCULATIONS FOR

TORQUE ARM ANALYSIS

Two types of loads are applicd to the torque arm; a bending load and an axial load.
To check the results of chapter §, the arm is modeled as a rectangular bar with approx-
imatcely the same dimensions. The bar has a thickness of 0.01 m, a width of O:l m, and
a length (from hole to hole) of 0.4 m.

An axial load of 2031 N is applied at one end of the model. An approximate model

area is:

A=1rw

= (0.01m) (0.10mm)
= 0.001m*

Axial stress is approximated by:
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F 2,031.0

W 0.001m
2.033Mpa

it

Calculated stresses ranged {rom 2.4 to 2.0 Mpa, so the approximation is valid and the
results are conlirmed.
A bending load of 4003 N is applied at the far right end of the model. The moment

of incrtia of the model 1s about:

b’

12
(0.01)(0.1)°
12

0.83333 (10 %y

[ =

Bending stress is approximated by:

with thc moment cqual to the applied force times the distance along the arm. The
maximum distance along the arm is about 0.4 m and the minimum about 0.1 m. The
minimum distance is from the location of the applied load at the center of the right side
hole to the left edge of that hole. The maximum distance from the centroid to the outer
boundary is about 0.05 m, with the minimum distance about 0.01 m.

Using these values, bending stress varies [rom about 5 Mpa to 95 Mpa. The cal-
culated stresses run from 6.0 Mpa to 83.0 Mpa. The approximation is therefore valid

and the computations arc confirmed.
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Appendix C

DRAWINGS OF CASE STUDY MODELS
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CROSS SECTION FOR BOTH PRESSURE VESSELS

0.12%

0.110

ALL DIMENSIONS IN METERS

CYLINDRICAL VESSzZL: THICKNESS=0.010 M

SPHERICAL VESSEL: BOTTCM THICK.=0.010 M

TOP THICK.=0.001 M

Figure 27.  Pressure Vessel Drawing.
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Figure 28.  Torque Arm Drawing.
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Appendix D

DRAFT SILL CASTING DRAWINGS

The following figures were taken directly from reference [S].
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