
Performance Analysis of Multicomputer Interconnection Network Designs

by

Hassan Z. Abdalla

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

J. R. Armstrong

in

Electrical Engineering

APPROVED:

S. F. Midkiff, Chairman

November, 1987

Blacksburg, Virginia

C. E. Nunnally

Performance Analysis of Multicomputer Interconnection Network Designs

by

Hassan Z. Abdalla

S. F. Midkiff, Chairman

Electrical Engineering

(ABSTRACT)

In this thesis, the design and performance issues of multicomputer interconnection

networks are addressed. Analytic models are used to evaluate the performance of large

scale multicomputer networks. Performance is measured as the average end-to-end de-

lay between communicating nodes. The models consider the communication processing

queueing delays experienced by packets at each node as well as delays associated with

transmission of packets. A comparison study of message switching and cut-through

switching is presented. It is shown, conforming to previous studies, that a network has

superior performance when cut-through switching is used. Cut-through switching is most

advantageous when the network load is low and degenerates to message switching per-

formance under heavy network loads.

The network model is used to develop a "Network Analyzer", an interactive pro-

gram that allows analysis of different network designs and work loads. Torus and

spanning bus hypercube networks are then analyzed by the program to study the effect

of various network parameters, traffic patterns, and switching techniques on network

delay performance. The Network Analyzer is relatively easy to learn and use, and once

learned, it is easy to change network parameters to perform a trade-off study of design

alternatives. The program can also be used to quickly generate listings and graphics to

illustrate the results of the analysis. The program proved to be an efficient design tool.

Hypercube topologies are the most popular for large scale parallel computers, par-

ticularly for computationally intensive applications. The torus and spanning bus

hypercubes are implemented in our program and analyzed in detail. Results show that

network topology has a mixed impact on system performance. Networks built of

standard modules of spanning bus hypercubes are harder to expand, compared to a torus

network, but they have lower connection cost per node. Communication delays are

generally higher for spanning bus networks except at very low traffic loads.

Acknowledgements

I sincerely thank everyone who has contributed towards the completion of this

thesis. I especially thank Dr. S.F. Midkiff, my principal advisor, for the countless

number of hours he spent offering guidance, information, and suggestions. I thank the

other members of my graduate committee, Dr. C.E. Nunnally and Dr. J.R. Armstrong,

for their comments and help.

With great appreciation, I thank my wife for the support, encouragement, and love

necessary for me to complete this work.

Acknowledgements iv

Table of Contents

t.O INTRODVCTION . 1

2.0 DESIGN ISSUES OF INTERCONNECTION NETWORKS 4

2.1 INTRODUCTION ... 4

2.2 NETWORK TOPOLOGIES ... 5

2.2. l Overview of Static Networks . 6

2.2.2 Hypercube Connection Structures . 8

2.3 SWITCHING TECHNIQCE . 12

2.3. l Circuit Switching . 12

2.3.2 Packet Switching . 13

2.3.3 Virtual Cut-Through Switching . 15

2.4 OPERATION MODE ... 15

2.5 CONTROL STRATEGY . 16

3.0 PERFORMANCE EVALUAllON 18

3.1 INTRODUCTION .. 18

3.2 DEFINITIONS AND BACKGROUND . 20

Table of Contents V

3.2. l Network Geometry Characteristics . 20

3.2.2 Traffic Characteristics . 22

3.3 NETWORK :v10DEL DEVELOPMENT 24

3.4 MESSAGE SWITCHING DELAY . 27

3.5 ClJT-THROCGII SWITCHING DELAY 28

3.6 DISCCSSION OF RESULTS ... 33

4.0 PERFORMANCE MEASURES FOR STATIC NETIVORKS 36

4.1 INTRODUCTION . 36

4.2 TORUS .. 37

4.3 SPANNING BUS HYPERCUBE 42

4.4 SlJ:\1MAR Y . 43

5.0 NETIVORK PERFORMANCE ANALYSIS TOOL 45

5.1 INTRODCCTION . 45

5.2 PROGRAM STRUCTURE ... 46

5.2.1 Parameter Selection Phase . 47

5.2.2 Computation Phase . 49

5.2.3 Plot Phase . 50

5.3 CSER GCIDE . 50

5.3.1 WhatTheCserNceds ... 50

5.3.2 What The User :'v1ust Know . 50

5.3.3 Csing The Program ... 51

6.0 APPLICATION EXAMPLES . 52

6.1 INTRODUCTIOJ\i .. 52

6.2 EXAMPLE NETWORK . 53

6.3 NETWORK DELAY ANALYSIS . 54

Table of Contents vi

6.4 NETWORK DESIGN EXAMPLE 62

7.0 CONCLUSIONS . 68

7.1 PURPOSE OF RESEARCH .. 68

7.2 FUTURE RESEARCH . 70

REFERENCES . • • . 72

Appendix A. PROGRAM LISTING • • • 75

Appendix B. THE M/M/1 QUEUE • . 100

VITA•... 102

Table of Contents vii

List of Illustrations

Figure 1. Static Interconnection Network Topologies. 7

Figure 2. Dual bus versus spanning bus hypercube structures. 9

Figure 3. Torus versus spanning bus hypercube structures. 11

Figure 4. Network delays for different switching techniques. 14

Figure 5. Multicomputer system node structure. 25

Figure 6. Queueing model of a network node. 25

Figure 7. A typical communication path. 29

Figure 8. Example of a packet address control field. 29

Figure 9. Network delays for a message switched binary torus network. 56

Figure 10. Network delays for different switching techniques. 57

Figure

Figure

Figure

Figure

Figure

Figure

11.

12.

13.

14.

15.

16.

Effect of sphere radius on message delay (probability = 0.8). 59

Effect of traffic pattern on message delay. 60

Network delays for different torus topologies. 61

Performance comparison of torus and spanning bus hypercubes. 63

Performance comparison of torus and spanning bus topologies (W = 2). 66

Performance comparison of torus and spanning bus topologies (W = 4). 67

List of Illustrations viii

List of Tables

Table 1. SUMMARY OF NETWORK MODEL PARAMETERS. 35

Table 2. NET\VORK PARA~·1ETERS FOR HYPERCUBE STRUCTURES. . . 44

List of Tables ix

1.0 INTRODUCTION

Recent advances in VLSI have made large multicomputer networks a promising

approach to parallel processing. Multicomputer networks, with point-to-point links be-

tween processing nodes, use processing nodes operating concurrently to solve problems

decomposed such that each node executes a small part of the problem. Each node

contains a functional processor that executes computational tasks and a communication

processor that executes communication tasks. Since the processing nodes need to share

information, the multicomputer interconnection network must efficiently support mes-

sage transfer. In many multicomputer systems it is the communication time rather than

the computation time that limits system performance [l]. Optimization of message

transfer time, through proper design of interconnection networks and system traffic

patterns, are thus crucial. The objective of this research is to evaluate the performance

of multicomputer network alternatives and to develop a design aid that allows an accu-

rate and efficient analysis.

Analytic models of large scale multicomputer networks can be used to determine

end-to-end delays between the nodes and overall system throughput. They provide a

framework for testing alternative node designs, traffic patterns, and network topologies.

INTRODUCTION

In this research existing models will be generalized and extended to reflect different

switching techniques and traffic patterns. A comparison study of store-and-forward

packet switching and cut-through switching is presented. The comparison is based on

network delay performance. Several static network topologies are analyzed to determine

their mean internode distances as well as their link traffic loads under different traffic

patterns. Analytic models are then used to develop an analysis tool, an interactive pro-

gram that allows analysis and comparison of different network designs and work loads.

Appropriate performance evaluation parameters are selected from the following options:

• Traffic patterns

• Network topologies and size

• Switching techniques

• Link transfer rates (bandwidth)

• Message length

• Header length

• Processing time

Throughout our research we make the following general assumptions:

1. Composite traffic arrival at each node is Poisson distributed.

2. Mes sage lengths, and therefore message transmission times, are exponentially dis-

tributed.

3. Message queues have infinite nodal storage capacity.

4. Network topologies are symmetric.

INTRODUCTION 2

5. Nodes are identical, i.e. all communication processors and links are the same.

6. The average message generation rate is uniform across all nodes.

7. Given assumptions 4, 5, and 6 above, traffic patterns cause uniform load conditions,

i.e., the patterns are such that the message rates over all links are the same.

Assumptions 1, 2, and 6 allow analysis to be tractable and are reasonable for large net-

works with varying message sizes and types. Infinite nodal storage capacity is a rea-

sonable assumption for properly designed communication processors and keeps analysis

from being bogged down in complexity. Assumptions 4 and 5 are true for many popular

network topologies. Although a network topology can be arbitrarily designed, regular

and symmetric topologies are frequently used for ease of implementation. The last as-

sumption follows from assumptions 4, 5, and 6.

Network design issues are discussed in the next chapter. Design decisions are made

between network topologies, switching methods, operation modes, and control strate-

gies. Performance evaluation measures are the subject of Chapter 3. Network geometry

characteristics and message traffic characteristics are discussed. Network delay models

are developed to allow analysis under difTerent network topologies, traffic patterns, and

packet generation rates. Static performance measures for two network topologies, the

torus and the spanning bus hypercube are then presented in Chapter 4. Chapter 5 de-

scribes the Network Analyzer program and provides a user guide. This is followed by

application examples and conclusions in Chapter 6 and Chapter 7, respectively.

INTRODUCTION 3

2.0 DESIGN ISSUES OF

INTERCONNECTION NETWORKS

2.1 INTRODUCTION

In earlier times, when computer systems were confined within von Newman archi-

tecture and hardware cost was a limiting factor, interprocessor communication was not

a prominent issue. Consequently, the design of cost effective interprocessor communi-

cation was an unimportant task. Today, the demand for very high speed processing

coupled with falling hardware costs has made large-scale parallel and distributed com-

puter systems both desirable and feasible. A number of parallel computer architectures,

where several microcomputers are connected by an interconnection networks, have been

proposed in response to the ever growing need for speeding up computationally intensive

tasks [1-3]. Each node in these multicomputer networks includes a computation or

functional processor with some local memory, a communication processor, or controller,

that supports internode message transfer and processing without delaying the computa-

DESIGN ISSUES OF INTERCONNECTION NETWORKS 4

tion processor, and a small number of connections to other nodes. "An interconnection

network consists of software and hardware entities that are designed to facilitate efficient

interprocess and interprocessor communication" [4].

An objective of this research is to assess the performance of alternative intercon-

nection network designs. As a starting point, network design decisions, as outlined in

(5,6), are discussed below. These are fundamental decisions that determine the appro-

priate architecture of an interconnection network. The space of the interconnection

networks can be represented by the cartesian product of the following four sets of design

features: (operation mode) X (control strategy) X (switching methodology) X (network

topology). Not every combination of the design features is interesting. The choice of a

particular interconnection network depends on the application demands," technology

support, and cost-effectiveness.

2.2 NETWORK TOPOLOGIES

Network topology is a key factor in determining a suitable architectural structure.

A network can be depicted by a graph in which nodes represent switching points and

edges represent communication links. The topologies tend to be regular and can be

grouped into two categories: static and dynamic [6]. In a static topology, links between

two processors are passive and dedicated buses cannot be reconfigured for direct con-

nections to other processors. On the other hand, links in the dynamic category can be

reconfigured by setting the network's active switching elements.

DESIGN ISSUES OF INTERCONNECTION NETWORKS 5

2.2.1 Overview of Static Networks

Topologies in static networks can be classified according to the dimensions required

for layout. For illustration, one-dimensional, two-dimensional, and three-dimensional

networks are shown in Figure 1. Examples of one-dimensional topologies include the

linear array used for some pipeline architectures, shown in Figure 1-a. Two-dimensional

topologies include the ring, star, tree, mesh, and hexagonal array, also called systolic

array. Examples of these structures are shown in Figures 1-b through 1-f. Three-

dimensional topologies include the completely connected chordal ring, 3-cube, and

3-cube-connected-cycle networks depicted in Figures 1-g through 1-j. AD-dimensional,

W-wide hypercube contains W nodes in each dimension, and there is a connection to a

node in each dimension. The mesh and the 3-cube are actually two- and three-

dimensional hypercubes, respectively. The cube-connected-cycle is a deviation of the

hypercube. For example, the 3-cube-connected-cycle shown in Figure 1-j is obtained

from the 3-cube.

In a global bus topology [2], all nodes are directly connected to a common bus. A

message from any node propagates through the bus and can be received by all other

nodes. Because all nodes share a common transmission link, only one node can transmit

at a time. Simultaneous requests for bus access are resolved by some form of contention

resolution protocol. A global bus system can support only a small number of nodes

because message density increases linearly with the total number of nodes in the network

[2]. In contrast, the completely connected networks [7] have a dedicated link between

each pair of nodes. This eliminates completely link access contention but the number

of connections per node grows quadratically with the number of network nodes. These

DESIGN ISSUES OF Il'ITERCOl\NECTION ;\ET\VORKS 6

{o) Linear array (b) Rin&

(d) Trtt (r) Nur-nci&hbor =•h (/) Sy,101ic array

@ -. .

{I) Completely connrcttd {Ill Chordal rin&, (ii 3 cube

(j) 3-,·ubc-connccitd cyck

Figure I. Static Interconnection Network Topologies.: (From Feng (5)).

DESIGN ISSUES OF INTERCONNECTION NET\VORKS 7

two networks, the global bus and the completely connected, bound the spectrum of cost

and performance for all practical multicomputer networks [8).

In a ring topology, nodes form a closed loop and messages are relayed from node

to node around the loop. The ring topology can support a limited number of nodes

because average message delay and message traffic density increases linearly with the

number of nodes in the ring [2]. The chordal ring [9] is a ring structured network in

which each node has an additional link, called a cord, to some other node across the

network. This reduces the number of links that must be travelled to reach a destination

node.

2.2.2 Hypercube Connection Structures

The hypercube topology is the most popular architecture for large-scale parallel

computers, particularly for computationally intensive applications. One attraction of

this architecture is that its flexible communication network let programmers choose dif-

ferent topologies for different applications [10]. For example, a four-dimensional system,

with 16 nodes, can be treated as a two-dimensional mesh, a three-dimensional mesh, a

ring, or a tree merely by directing communication appropriately between nodes [10].

Several connection structures have appeared in the research literature for the design and

analysis of hypercube interconnection networks. "Even though connection costs are well

controlled, these structures can allow message delays to increase as slowly as log N,

where N is the total number of nodes in the network, so that a large number of com-

puters may efficiently communicate with each other" [2]. Among the proposed struc-

tures are the spanning bus hypercube [2], the dual-bus hypercube [2], the torus [2],

generalized hypercube [3], and the cube-connected cycles [11]. The spanning bus

DESIGN ISSUES OF INTERCONNECTION NETIVORKS 8

Ca) 3-Dirnens1on spanning bus hybercube

Cb) 3-Dimensfon dual bus hybercube

Figure 2. Dual bus versus spanning bus hybercube structures.

DESIGJ\ ISSUES OF JJ',;TERCON~ECTION NETWORKS
9

hybercube is a D-dimensional lattice of width W in each dimension. Every node is

connected to D buses, each bus spanning a different dimension in the hypercube space.

W nodes share a bus in each dimension.

The dual-bus hypercube was proposed to limit the number of connections to each

node. In this structure each node is connected to two buses only. One dimension, the

0th dimension, is distinguished, and all nodes are connected to a 0th-dimension bus,

shown as the vertical direction in Figure 2. In each D - l hyperplane perpendicular to

the 0th dimension, all nodes have their second connection to buses spanning the same

dimension. The second bus direction differs from plane to plane but may repeat if the

width W of a dimension exceeds D - 1. The torus, Figure 3, is a wv hypercube with

end-around connections. It is identical to the spanning bus hypercube except that the

bus connecting each group of W nodes is replaced by a ring of point-to-point con-

nections. Generalized hypercube structures use a mixed radix number of nodes, in con-

trast to traditional hypercube structures where N = wv for some integer values of W

and D.

The cube-connected cycle topology was also proposed to limit the number of con-

nections per node. This topology is a deviation of the hypercube. For example, the

3-cube-connected cycle shown in Figure 1-j is obtained by replacing each node of the

3-cube by a 3-node cycle. Each node in the cycle is connected to the corresponding node

in another cycle.

Each of these networks can be analyzed to determine its mean internode distance

and its traffic density, two key factors that play a critical role in determining network

delay, as will be shown later. The torus and spanning bus hypercubes are analyzed in

detail in Chapter 3 and are implemented in the Network Analyzer program.

DESIGN ISSUES OF INTERCONNECTION NETWORKS 10

(a) 3-D1mens1on spanning bus hybercube

Cb) 3-D1mens1on torus

Figure 3. Torus versus spanning bus hybercube structures.

DESIG~ ISSUES Of INTERCONNECTION NETWORKS

2.3 SWITCHING TECHNIQUE

The two major switching methodologies are circuit switching and packet switching.

In circuit switching, a physical path is established between a source and a destination.

In packet switching, data is formatted as a packet and routed through the intercon-

nection network without establishing a complete physical connection path. In general,

circuit switching is more suitable for bulk data transmission, and packet switching is

more efficient for many short data messages. Another option, integrated or virtual cut-

through switching, includes the capabilities of both circuit switching and packet switch-

ing. Therefore, three switching methodologies can be identified: circuit switching,

packet switching and virtual cut-through switching.

2.3.1 Circuit Switching

With circuit s\vitching, a complete path of communication links must be set up be-

tween two communicating nodes before the real communication begins. This is accom-

plished by a signalling message. The path is tied up during the entire session between

the two nodes. Once a path is set up, no further signalling for addressing purposes is

necessary. Thus, in a circuit switched network, a path, once set up, implicitly provides

all the addressing information. When applied to data communication networks, circuit

switching suffers from some drawbacks [12]. One is the slow set up which delays transfer

of messages from sender to receiver. Another drawback is the low channel utilization

due to the fact that the channels on a path are tied up, but are not actually being used

during idle periods. That is, the dynamic assignment of paths is not dynamic enough.

DESIGN ISSUES OF INTERCO!'i;";ECTION NETWORKS 12

Figure 4 shows the network delay in different switching systems. In this figure, it is as-

sumed that there is no interfering traffic and that the number of intermediate nodes in

the path is two. It is also assumed that message processing time is negligible.

2.3.2 Packet Switching

In order to achieve a better channel utilization, one may think of relinquishing the

channels on a path during periods in which the source and destination are not commu-

nicating. This brings us to the idea of "store-and-forward" packet switching. Packet

switching is loosely used here to refer to any store-and-forward protocol in which data

are copied into holding buffers at each intermediate node along some path from source

to destination. 1\:o assumption is made about packet size; packets may conceivably be

large enough to encompass any single message.

In this method messages are routed toward their destination node without estab-

lishing a path beforehand, rather, the paths are assigned dynamically. Through pro-

vision of a storage facility at each node, messages are stored in intermediate nodes and

then are sent fonx;ard to a selected adjacent node, hence the name store-and-forward.

This process is repeated until the message reaches the destination node. By attaching

addressing bits to the header, each message carries information regarding its destination.

Since communication links are not allocated into complete paths for specific source-

destination pairs, each link is statistically shared by many nodes. Figure 4-b shows the

network delay in a message switching system.

DESIGN ISSUES OF INTERCO!'INECTION NETWORKS 13

!

-

-"

; I I I "' Al

I

-' ' '

D
ESIG

N
 ISSU

ES O
F IN

TER
C

O
N

N
EC

TIO
N

 N
ETW

O
R

K
S

,..
I ; I I

I

"' • w

14

. • • ::, IT
-C

0 • ., a,
C

-0
., -3 • .. C

• .. • - ,, L.
0
... -• ,, .:t.
L.

i .. -1 . I)
L.
::, a

,
-lo.

2.3.3 Virtual Cut-Through Switching

From Figure 3-c we observe that extra delay is incurred because a packet is not

transmitted out of a node before it is received completely. When a message arrives in

an intermediate node and its outgoing channel is free, it actually does not need to be

completely received in the node before being transmitted out. In the virtual-cut-through

protocol [13), intermediate nodes along a message path attempt to send messages on-

ward as soon as an appropriate output link has been determined. If the appropriate

output channel is free, the attempt succeeds; output and input continues in parallel, with

the initial portion of the message being transmitted while the final portion is being re-

ceived. Otherwise, the message is accepted and buffered as per normal store-and-

forward procedure. Virtual-cut-through, thus, attempts to pipeline a message through

the network at a grain size determined by the time required for routing at each inter-

mediate node. If the packet encounters busy channels at all of the intermediate nodes,

the outcome is exactly the same as in a packet switched network. On the other hand,

if all the intermediate channels are free, the outcome is exactly the same as in a circuit

switched network without the overhead of initial signalling. Cut-through is most ad-

vantageous when the network load is low and degenerates to packet switching perform-

ance under heavy network loads.

2.4 OPERATION MODE

Two types of communication can be identified: Synchronous and asynchronous [5).

Synchronous communication is needed for either a data manipulation function or for a

DESIGN ISSUES OF INTERCONNECTION NETWORKS 15

data instruction broadcast. Asynchronous communication is needed for multiprocessing

in which interprocessor connection requests are issued dynamically. A system may also

be designed to facilitate both synchronous and asynchronous processing. Therefore, the

typical operation modes of interconnection networks can be classified into three cate-

gories: synchronous, asynchronous, and combined. In our research, no assumption is

made regarding operation mode because it will have no bearing on either network or

node models.

2.5 CONTROL STRATEGY

A typical interconnection network consists of a number of switching elements and

interconnecting links. Interconnection functions are realized by proper setting of the

switching elements. The control-setting function can be managed by a centralized con-

troller or by the individual switching element. The latter strategy is called distributed

control and the first strategy corresponds to centralized control.

In circuit switching networks, a circuit path has to be established before data is ac-

tually transmitted over the path. Therefore, the control or routing problem must be

solved in the path connection phase by specifying setting of switching points to be used

in the path. The switching setting is usually derived from source and destination ad-

dresses. The switching points are set to a specific connection state by a centralized con-

troller, in the case of centralized control, or by itself in the distributed control case. In

packet switching networks, each data packet is routed through the network according

to the routing message incorporated in the data packet. The distributed control ap-

DESIGN ISSUES OF INTERCONNECTION NET\VORKS 16

proach is usually used in packet switching networks. This agrees with our assumption,

through out this research, of identical node structure.

"Networks with static topologies usually use distributed packet routing" [4]. A data

packet contains a header with one or more routing parameters; the destination address

is one of these parameters. The distributed control algorithm is implemented in individ-

ual communication nodes, which decode the routing parameters upon reception. The

node then determines the next node to route the data packet to and possibly updates

some of the routing parameters to reflect data routing history. A typical routing strategy

can be found in [9] for chordal ring networks. In Section 4.3, we give an example of a

packet header and how the routing parameters can be updated. Conflict resolution and

queueing are needed when there are multiple inputs and/or multiple outputs at a com-

munication node. In our model, nodes have multiple input and outputs. Communi-

cation queues are served on first come-first serve basis.

DESIGN ISSUES OF INTERCONNECTION NETWORKS 17

3.0 PERFORMANCE EVALUATION

3.1 INTRODUCTION

Performance evaluation measures network capability in terms of parameters that

represent major characteristics of a network application model. Metrics used include

average message delay, message density per link, bandwidth, throughput, effectiveness

in simulating other networks, acceptance rate for connection requests, expected capacity,

number of permutaions that can be performed, number of crosspoints needed, average

number of routing passes or steps for a data communication, degree, diameter, area-time

product of a VLSI realization, reliability, degree of fault tolerance, number of redundant

paths, and cost. Some of the performance metrics are related to inherent geometric

characteristics of the networks while others are related to traffic conditions resulting

from communication requests.

Performance evaluation research on networks with static topologies [2], [8], [14], is

limited, relatively, compared to the enormous work performed on the evaluation of net-

works with dynamic topologies [15-23]. Message delay and message density of some

PERFORMANCE EVALUATION 18

static networks such as loops, cubes, and trees are derived under an assumption of uni-

form distribution of messages across the networks [2]. The throughput of a locped static

baseline network is assessed [14].

For networks with dynamic topologies, some evaluations are done on parameters

such as number of crosspoints [15], effectiveness in simulating other networks [16], [17],

and combinatorial power [18], which are not related to traffic. The majority of work is

concerned with traffic-related parameters such as bandwidth and throughput. Both cir-

cuit switching [18-20] and packet switching [21-23] are considered. Analytic methods,

such as queueing theory and Markov chain theory, and simulation methods are used.

Simplified models have been used in the analysis. Most of the models assume random

and uniform requests from processors.

In our study we measure network performance in terms of end-to-end communi-

cation delay. Generally, traditional computer models are not applicable to multicom-

puter systems, except for derivation of order of magnitude performance estimates under

very simplifying assumptions. Instead such systems must be treated as "network com-

puters" [26]. A network computer is a network of processor nodes that is intended to

function not as a collection of autonomous hosts but as a single MIMD machine.

"~etwork computers are designed to support asynchronous distributed programs" [24].

As the cost of multiprocessors falls, such machines become increasingly affordable and

interest has increased in their performance evaluation. Application of classic network

models [25] is inappropriate due to significant parameter deviations from ordinary

point-to-point computer communication networks. In computer communication net-

works, communication processing queueing delays are, in general, very small compared

to the associated transmission delays. Consequently the classic network model takes

into consideration only outgoing link queues. However, the communication links em-

PERFORMANCE EVALUATION 19

ployed in multicomputer systems have very high bandwidths and thus transmission de-

lays no longer play a dominant role.

The model considered here is adapted from [26] and provides a realistic, and there-

fore more accurate model of a network computer. The original model of [26] assumes

a packet switching technique and point-to-point links. The communication queueing

processing delays experienced by a message or a packet at each node along its route to

the destination is explicitly factored into the model. As it turns out, communication

processing delays play a predominant role in the determination of the performance of

network computer systems. Network traffic thresholds are determined by communi-

cation processing queueing rather than transmission delays and are generally lower than

those predicated by a classic network model. In the following, the model is reviewed and

generalized to reflect the effect of different link traffic densities. The model is then

modified to permit analysis of the virtual cut-through switching technique.

3.2 DEFINITIONS AND BACKGROUND

Before developing the model, it is useful to define several important terms and con-

cepts used to quantify the performance of networks as outlined in [8].

3.2.1 Network Geometry Characteristics

A network topology dictates the network geometry characteristics, some of which

can affect average message delay through the network. Three important network char-

PERFORMAi\CE EVALUATION 20

actcristics arc defined below, network diameter, mean internode distance, and network

symmetry. Note that the mean internode distance of a network depends also on the

message routing distribution through the network.

Network Diameter: The maximum internode distance, often referred to as the diameter

of the interconnection network, places an upper bound on the delay required to propa-

gate information throughout the network. It is simply the maximum number of com-

munication links that must be traversed to transmit a message between any

source-destination node pair along a shortest path.

Mean Internode Distance: In contrast to the network diameter, the mean internode dis-

tance is the expected number of link traversals a typical message makes to reach its

destination. The mean internode distance is a better indicator of average message delay

than the network diameter. Unlike the network diameter, the mean internode distance

depends on the message destination distribution. This destination distribution specifies

the probability that different node pairs exchange messages, and it ultimately depends

on the communication requirements of the application and system programs as well as

on the mapping of these programs onto the network. In its most general form, the mean

internode distance is given by [8]

/max
Nh = L I X <p([)

/= 1

where <r>(l) is the probability of an arbitrary message crossing I communication links, i.e.,

the routing distribution, and /max is the network diameter. Different choices for <r>([)

lead to different message destination distributions and, in turn, different mean internode

distances. In the following, we consider two different message distributions for which

PERFOR;\,1ANCE EVALUATION 21

it is possible to obtain closed forms for the mean internode distance. To do this, how-

ever, we must first distinguish between two types of interconnection network topologies:

symmetric and asymmetric.

Network Symmetry: "In a symmetric interconnection network there exists an

isomorphism that maps any node of the network graph onto any other node" [8]. Thus,

all nodes possess the same view of the network. A bidirectional ring network is a simple

example of a symmetric interconnection network because two nodes are always reacha-

ble by crossing any given number of communication links, and a simple node renum-

bering suffices to map any node onto any other. An asymmetric interconnection

network is any network that is not symmetric, e.g., a tree. Although the network

topology can be arbitrarily designed, regular and symmetric topologies are frequently

used to ease the physical implementation task. In this research, we consider only sym-

metric networks.

3.2.2 Traffic Characteristics

Traffic patterns are characterized by the way messages move between communicat-

ing nodes in a multicomputer network. In the following, two traffic patterns are distin-

guished, uniform traffic pattern and sphere of locality traffic pattern. The notion of

"balanced networks" is also discussed.

Uniform Message routing: A message destination distribution is said to be uniform if the

probability of sending a message from one node to another is the same for all nodes in

the network. Because we are interested in message transfers that use the network, we

PERFORMANCE EVALUATION 22

exclude the case of nodes sending messages to themselves. Uniform routing distribution

is appealing because it makes no assumptions about the type of computation generating

the mes~ages; this is also its greatest liability. Because most computations should exhibit

some measure of communication locality, it provides what is likely to be an upper bound

on the mean internode message distance.

Sphere of Locality: Suppose the uniform message routing assumption is relaxed. One

would expect any reasonable mapping of a distributed computation onto a multicom-

puter network to place those tasks that exchange messages with high frequency in close

physical proximity. One abstraction of this idea places each node at the center of a

sphere of locality with radius L, measured in hops. A node sends messages to the other

nodes inside its sphere of locality with some, usually high, probability <p and to nodes

outside the sphere with probability (1 - q,). This model reflects the communication lo-

cality typical of many programs, e.g., the nearest-neighbor communication typical of it-

erative partial differential equation solvers coupled with global communication for

convergence checking [8].

Balanced Networks: "A network is said to be balanced if the traffic across all its links are

the same" [13]. This property does not imply any assumption about the topology of the

network. In light of net,vork symmetry assumption and the two message routing dis-

tributions defined above, networks considered here are balanced.

PERFORMANCE EVALUATION 23

3.3 NETJVORK MODEL DEVELOPAIElVT

A section of the overall network and the assumed structure of each node is depicted

in Figure 5. The node includes a functional processor (FP) that executes computation

tasks. A communication processor (CP), together with a number of communication

controllers (CC), provide the means for communication with the functional processors

of the other nodes. The original model of [26] assumes bidirectional internode links, i.e.,

links act as half-duplex channels. "This assumption can be relaxed so that we may have

D full-duplex channels per node, each channel consisting of two unidirectional links"

[27].

Figure 6 shows the queueing model for a single node adapted from [26]. In this

model, arriving messages are stored by the CC's in shared memory for subsequent

processing by the CP. Arriving messages, together with messages generated by the FP

in that particular node, form a queue in front of the CP. The CP accesses the header part

of each message and executes a routing algorithm to determine the message destination.

It then forwards the appropriate commands to either the resident FP or the appropriate

CC depending on the message's fmal destination. Message arrivals at a CP are assumed

to follow a Poisson distribution while the time required to route each message is assumed

to be fixed. It follows that this first stage can be modeled as an \1/D/ I queuing system.

The composite arrival rate, '•cp• is given by [26]

where '•Jp denotes the mean message generation rate by the resident FP and 1.1,1 denotes

the mean message arrival rate over link i.

PERFORMANCE EVALUATION 24

Figure 5. Multicomputer system node structure.

;i..FP i\FP ~L-~1,0UT ;i..L->-1,0UT

;i..1 IN
;)\L 1

"1,0UT ' M/D/1
• •
• >-cp M/M/1 •
•
D Message

i"IL
>.D,OUT ~D,IN

Processing

>.L->.D,OUT Link
>.L-"-D,OUT Transfer

Fiqure 6. Oueueinq model of a network node.

PERFORMANCE EVALUATION 25

The total processing time for the first stage, Tc,, at each node, which includes waiting time

and service time, is thus obtained as

where - 1- is the CP fixed processing time [26). µI

(3.1)

"Even though interdepartures from the M/D/1 stage are generally non-Poissonian,

interarrivals at each link queue can be approximated very closely with a Poisson dis-

tribution" [26). If message lengths are assumed to be exponentially distributed then their

associated transmission times are also exponential and link queues can be modeled as

M/M/1 queues. Properties of the M/M/1 queue are described in Appendix B. For a

balanced network, defined earlier, traffic going from the M/D/1 queue to any link, or

equivalently to any M/M/1 queue, is equally likely. Thus the composite arrival arrival

message arrival rate at each of the M/M/1 queues is the same and the total delay

through this second stage, Ti, is given by

(3.2)

where - 1- is the average message transmission time and "A., is the aggregate traffic on one µ2

link. The total delay experienced by a message at a node, T" , is the sum of the delay

at the M/D/1 stage and the delay at the corresponding M/M/1 stage, i.e.,

Tn = T,p + T1

l l~ I = [- + ----] + ---,,--
µ1 2µ1(µ1 - l,p) µ2 - l1

(3.3)

PERFORMANCE EVALUATION 26

The overall message delay through the network will depend on the implemented switch-

ing technique and will be discussed in the following sections.

3.4 MESSAGE SWITCHING DELAY

In a network computer, processes running in different nodes exchange information

through messages flowing via virtual channels. When nodes are not adjacent these vir-

tual channels span through intermediate nodes. To simplify the analysis, we consider a

specific communication path from source S to destination D, as depicted in Figure 7,

and study the message delay along this path under different switching techniques. In

this path model, there are Nh + I nodes connected in tandem. Messages enter the

network at node I and leave the network at node Nh + 1, i.e., they travel Nh hops. Note

that such a path model is quite general and applicable to almost any network topology.

In message switching, messages are transmitted in a hop-by-hop fashion through

the network. Each message carries its destination address in its header. At each inter-

mediate node the message must be completely received before it can be forwarded to-

wards its destination node. The overall delay experienced by a message at a node is the

sum of the delay at the M/D/ I stage and the delay at the corresponding M/M/ 1 stage.

Considering that there are Nh + 1 message processing queueing stages and Nh link

queueing stages along a route of Nh hops, then the mean end-to-end message transfer

delays, T Ms, is

PERFORMANCE EVALUATION 27

Substituting for Tep and Ti from Equations 3.1 and 3.2 we get the total delay in terms

of the model parameters as:

(3.4)

3.5 CUT-THROUGJJ sivITCIJING DELAY

In cut-through switching, the operation is similar to message switching with the

difference that messages do not have to be received completely at an intermediate node

before being transmitted out of the node toward the destination. After the header of a

message is received, the outgoing channel can be selected, and if this selected channel is

free, the message may start transmission out of the node immediately, even though its

tail has not yet arrived at the node. If, however, after the reception of the header, it is

found out that the outgoing channel is busy, the operation follows that of message

switching, i.e., the message is received completely before being sent out through inter-

mediate nodes.

The required behavior of virtual-cut-through switching may call for more complex

CC's at each node to avoid waiting for and using the CP to decode the message address.

One way to alleviate the processing required by each CC is to use a routing algorithm

where a source node generates not only the final node destination address, but also the

address of each link to be used through the virtual channel. Figure 8 shows a possible

address control field where k indicates the number of remaining hops along the routes.

lk is the local link number to be used in the current node. Note that k= 0 indicates that

PERFORMANCE EVALUATIO\'\ 28

s

Figure 7. A typical convnunicatton path.

m • nuri>er of remafnfng hops

Figure 8. Example of a packet address control field.

PERFORMANCE EVALUATION 29

the current node is the final destination. Whenever a message enters a free node it can

make a cut. A node is called free if /k is free. In this case, the message is passed imme-

diately to the free link for transmission to the next node and k is decremented. If lk is

busy, then the message must be received completely before being transmitted out.

The probability of finding a free node, i.e., a free assigned link in a node, is the

probability of having an idle M/M/ I queue. This event occurs with probability (1 - p)

[25], where p represents the link utilization factor and is defined as p = ~; (refer to

Appendix B). Assuming that traffic on each link is independent, the number of cuts has

a binomial distribution [13] and we have:

(Nh) KN-K-1 Pr(NC1Jcs = K) = K (I - p) p h

and

where E denotes expectation and Ne denotes the mean number of cut-throughs. Note

that the full message must be received at the i\\ + I node, so at most Nh - I cuts can

be made.

For each node at which a cut-through is made, a nodal service time, Tn less the

header transfer time, is saved. However, this service time is conditioned on the event

that the waiting time at link i is zero. Recall that a link is modelled as an M/M/1 stage.

PERFOR:\lA~CE EVALUATION 30

Let Tcr be the mean end-to-end transfer delay using virtual cut-through switching. Ig-

noring the header transfer time, we have

where T" is the total delay in a node and W; is the waiting at the ith M/M/ 1 stage.

Substituting for T" from Equation 3.3 and noting that Tc, is independent of W, we

get

T MS - TcT = Ne E((Tcp + Ti)I W1 = 0)

= Ne [Tep + E(T1I Wi = O)]

1 = Ne [Tep + µ2]

Considering the fact that a message can be sent out only after its header is received,

header transfer time can not be saved. The previous equation is changed to:

where a is the ratio of header length to total average message length, including the

header. Using the value of Nc from Equation 3.5, we get

(3.6)

Substituting for TMs from Equation 3.3 we get

PERFORMANCE EVALUATION 31

after some algebraic manipulations we obtain the following expression for Tm

(3.7)

Two important cases can be recognized for the number of cut-throughs:

Case (1) p = 1. This implies N, = 0, i.e., no cut-throughs are made and TMs = Tcr

Case (2) p = 0. N, = Nh - I and message switching offers the greatest saving in proc-

essing and transmission delays.

In case I, with probability one, all of the intermediate nodes are busy upon arrival of the

message and no reduction in delay is made. Under heavy traffic loads, messages are re-

ceived completely and processed, at each node along its destination, and the network

behaves like a pure message switched system. In case 2, with probability one, all of the

intermediate nodes are free and all cut-throughs are made, thus the behavior resembles

a circuit switching system. The message is stored and processed only at the source and

destination nodes, consequently message buffering and processing times at the interme-

diate nodes are completely saved. Between the two extremities of link utilization factor,

p , network delay is smaller for cut-through switching at low traffic loads, or small p, and

degenerates gradually as traffic load grows. Equation 3.5 shows that the average num-

PERFORMANCE EVALUATION 32

ber of cut-throughs increases as the mean internode distance, or equivalently the mean

number of of hops, increases. This is intuitively expected since, as the number of ,of

intermediate nodes increases, there is a greater chance to experience more cuts. The

equation also shows that N. is a decreasing function of the link utilization factor, p ,

which means that in a less crowded network the average number of cuts is higher [13).

3.6 DISCUSSION OF RESULTS

Based on the model suggested in [26), a node that includes a communication

processor, with fixed processing time, and communication controllers, that manage link

traffic, may be modeled as an M/D/ I queueing stage followed by M/M/ 1 queues. Com-

munication delay, at a node, is the sum of delays due to the communication processor

queue and link traffic queues. A balanced network of general topology is considered to

derive network end-to-end delay times for the message switching technique and the cut-

through switching technique. Analysis of the equations presented in this chapter leads

to the following conclusions:

1. Equations 3.3 and 3.5 show that the mean internode distance, Nh , plays a key role

in determining a network delay. One way to reduce the impact of high mean inter-

node distance on network delay, particularly at low traffic loads, is to use virtual

cut-through switching methodology. Another option is to reduce the mean inter-

node distance itself. The mean internode distance depends on network topology.

Several topologies are considered in the next chapter.

PERFORMAi'ICE EVALUATION 33

2. Network delay times are expected to grow dramatically as traffic densities, repres-

ented by A,p and 1,1 , approach message service rates, µ1 and µ2 , respectively. A faster

communication processor offers a high µ1 and a link of higher bandwidth increases

µ2 • To minimize network delay times, it is not enough to only use the best available

hardware, if it is affordable. Queue waiting times should also be reduced. This may

be achieved through intelligent management of link traffic density and communi-

cation processor traffic density. Evaluation of these parameters is discussed in the

following chapter.

Because of the large number of symbols and notations used in this chapter, the model

parameters are summarized in the following table.

PERFORJ'\1ANCE EVALUATION 34

SYMBOL DEFINITION

N The total number of nodes in the network.

N, The total number of links per node.

Nh The mean number of hops travelled by a message from
source to destination.

N, The total number of cut-throughs that can be made.

1--fp The mean message generation rate by the function processor.

'A.,p The aggregate traffic rate at the communication processor.

'A., The aggregate traffic rate on a link.

1 The constant service time for message processing. -µ,
I The mean message transmission time, header is included in the -µ2 message length.

Table 1. SU'.\1MARY OF NETIVORK MODEL PARAMETERS.

PERFORMANCE EVALUATION 35

4.0 PERFORMANCE MEASURES FOR

STATIC NET\VORKS

4.1 INTRODUCTION

In this chapter the strengths and weaknesses of several interconnection network

topologies are reviewed. Each is characterized by determining the rates of increase of

several key factors as N, the total number of nodes in the network, increases. These

factors include mean internode distance and message traffic density. As shown previ-

ously, these factors can dramatically affect network delay performance and determine

the suitability of various multicomputer designs for different applications.

As discussed in Chapter 2, there are many connection methods, or topologies, for

linking networks of computers. Each topology covered in this research consists of active

computing nodes connected by passive communication links. All switching occurs at the

nodes. This chapter concentrates on hypercube structures, a subset of static intercon-

nection networks. We will not consider reconfigurable multistage switching networks,

PERFORMANCE MEASURES FOR STATIC NETWORKS 36

such as the Banyan, Omega, and shuffie-exchange. "These networks have most often

been suggested for data routing in SL\1D (single-instruction-stream multiple-data-

stream) machines. although some could be used to interconnect MIMD nodes" [2].

There is a rich literature comparing these reconfigurable interconnection networks.

Performance measures are derived for spanning bus hypercube and torus networks under

uniform message routing assumption. The torus topology is further analyzed when net-

work traffic follows a sphere of locality message distribution. Performance measures for

both topologies are tabulated in Table 2.

4.2 TORUS

As mentioned earlier, a WD torus topology is a D-dimensional hypercube, of width

W, with end-around connections. Each node is connected to its nearest neighbors by

separate communication links, as shown in Figure 3. Thus, a torus may be viewed as if

each of its dimensions forms a ring of size W. Network size N = ~VD may be changed

by varying either D or W. Because each of the N nodes is connected to D rings, there

are ND communication links and the total connection cost is 2ND connections.

To evaluate performance measures, node addresses may be viewed as D digit, base

W numbers [3,8]. Each digit represents a ring of W nodes, and a message is routed to

its destination by successively sending the message to the correct place on each of the

D rings. Under the uniform traffic assumption, messages flow identically in each di-

mension and from each of the W positions along an axis. The average number of hops

in each dimension is [8]

PERFORMANCE MEASt:RES FOR STATIC :\ETWORKS 37

W-1 r min(K,W - K)
K=O

Nh one dimension = ----w-· ---
w =-
4

if W is even and

w2 - 1 =----4W if Wis odd.

The minimum function in the sum reflects the routing of messages along the shorter of

the two potential paths in each ring. Because the dimensions are independent, the mean

internode distance in a wv torus is given by the following equation for W even:

(4.1)

The factor (N 1) occurs because we assume that a node does not route a message to

itself. For a symmetric network of identical node and link structures, the link traffic

density, Ai, is obtained for even Was

A = N x (total traffic generated)
1 h total number of links

NiNt'fp) =----DN
DW 1'1P =--xN-

4 D

(4.2)

W)'fp
=--

4

A similar expression for Ai is obtained for the case of odd W and is included in Table 2.

The communication processor traffic density, Acp , is given by

PERFORMANCE MEASURES FOR STATIC NETWORKS 38

Acp = traffic per node + ')...IP

total traffic = ------- + t.· number of nodes :1P

=
Nh(N>"fp)

N + f..Jp

= (1 + Nh)t.fp

(4.3)

The derivation of mean path lengths for non-uniform message routing distributions,

though conceptually straight forward, is computationally difficult. To simplify exposi-

tion we use the recursive Reach function [8] defined below for the torus when its width

Wis odd:

Reach(L,D,W) = 1

=2

=O

for L = 0

for D = I and L :;;; I W I
2
w for D = I and L > 12 1

. [Li w,l mm ,12 1

= 2 r Reach(L - I, D - l,W)
/= I

+ Reach(l, D - l, W) otherwise

(4.4)

where I I denotes the integer portion of (i;), i.e., the largest integer less than or equal

to (i) and Reach(L,D,W) denotes the number of nodes exactly l links away from a

source node in a torus of dimension D and width W.

The factor 2 appears in the above equation because of network symmetry. If we

assume a source node is at the center of a (D - 1)-dimensional hyperplane and has I i I
(D - 1)-dimensional hyperplanes above and below it, then a message can, due to sym-

metry, go up or down exactly the same number of links away from the source node. In

PERFORMANCE MEASURES FOR STATIC NETIVORKS 39

the case of even W, this inner symmetry is lost and we modify the Reach function defi-

nition to be:

Reach(L,DJV) = I

=2

= I

=O

for L = 0

for D = l and L < I r; I
iv for D = l and L = 12 1

w for D = l and L > 12 1

min[L,1 ~i]
= 1: Reach(L - l, D - l,1Y)

l= 1

+ Reach(l,D - 1, T-V) otherwise

(4.5)

Once the number of nodes in the sphere of locality is obtained, it is relatively easy

to obtain the mean internode distance. The mean number of hops when the message

routing distribution follows a sphere of locality distribution ·with a radius L and proba-

bility <p is given by:

D' W,
L :21

= <p 1: KPr(Nhops = K) + (I - <p) !: KPr(Nhops = K)
K=I K=L.J..1

where DI i;T I is the network diameter of the torus [8]. Using the classical definition of

probability [28], the above equation becomes

PERFORMA:'\CE MEASURES FOR STATIC NETWORKS 40

L r K x Reach(K,D,W)
K=I Nh = <p X __ L ______ _

r Reaclz(K,D,W)
K=I

D ,....!:[,
i 2 I

r K x Reach(K,D, W)
K=L+I +(l -q,)x--------

v,....!:!::1
I 2
I Reach(K,D,W)

K=L+I

(4.6)

In the first summation of Equation 4.6, the sum starts from I. This means that we rule

out the possibility that a source node will send messages to itself.

There are two ways to expand a torus network size:

(a) When dimension D is fixed, the width W may grow as N11v • In this case the

number of connections per node is constant. The same module can be used regard-

less of network size. However, both message delay and traffic intensity, in terms of

Nh and)..., , respectively, increase relatively rapidly as N11v .

(b) When Wis fixed, D may increase, relatively slowly, as log N. A slow increase

in D is desirable because it results in a slow growth in the mean internode distance,

Nh , as can be seen from Equation 4.1. However, since expanding the number of

dimensions requires two additional link connections per node, it will usually be

necessary to rewire the entire interconnection network if this method of expansion

is used.

PERFORMANCE MEASURES FOR STATIC NETWORKS 41

4.3 SPA1VN/JVG BUS IIYPERCUBE

The spanning bus hypercube is a D-dimensional lattice of width W in each dimen-

sion. Each node is connected to D buses, each spanning one of the orthogonal dimen-

sions. In each dimension, W nodes share the bus spanning that dimension {2). An

example of the spanning bus hypercube topology is shown in Figure 2. Because each

of the WD nodes is connected to D buses, there are ND connections in a network of size

N = WD. Compared to a torus, spanning buses require half as many ports per node.

In each dimension of its path, a message in a WD spanning bus hypercube needs one

hop across the bus to one of the W nodes sharing the bus. Thus for D independent di-

mensions, the average message distance is given by N,. = D . However, the previous

relation should be modified by a factor of UV; I) to reflect the fact that there are only

W nodes along a bus [2]. On the average, in 1/ W of all cases, the source and destination

nodes will be the same and the bus will not be used. This gives the mean internode

distance as [2]:

W - 1
;\'h = D ':< ---w (4.7)

Since W nodes share each bus, the total number of buses is :~ and the traffic density

for each bus (link) is

Sh/'{)1,fp w - l w "-1 = --- = D X --- X -D X A.r,p = (W - l)t.r,p (4.8) (SD/ W) 1-V n Ji

and ')..,, is given by

PERFOR:\.1A~CE MEASLRES FOR STATIC l'IETWORKS 42

(4.9)

Like the torus, spanning bus hypercubes built of standard modules have a practical

limit to increasing the dimension D because the number of ports per node, D con-

nections for D buses, has to increase. Expanding a spanning bus hypercube network by

increasing its width is also restricted. The width W of nodes sharing each bus is limited

by the bus bandwidth and by driver/receiver characteristics at each node [2]. The torus

topology does not have this limitation because each bus connects two nodes only. In

summary, a spanning bus hypercube is harder to extend than a torus. On the other hand,

compared to a torus, spanning buses require half as many ports per node. Moreover,

the average number of hops along spanning buses is less than that along torus links by

a factor of approximately ~: (refer to Equations 4.1 and 4.7).

4.4 SUMMARY

Table 2 summarizes the expressions of JVM ,.,, and '•cp for different topologies. In this

table we define p and y as the communication processor traffic load factor and link

traffic load factor, respectively. p and y satisfy the following relations

'·cp = P1:rp
1·1 = Y11p

It is clear, from Equations 4.3 and 4.9, that p is simply equal to Nh + l. The expressions

in Table 2 are valid for large N. In the case of a small network the expressions for

PERFORMA~CE :\1EASURES FOR STATIC l\ETWORKS 43

N1r. and y should be multiplied by a factor of (N) to reflect the fact that a source
N -1

node does not send messages to itself.

As can be seen, network topology has mixed effects on network traffic parameters.

The mean internode distance is decreased for the spanning bus hypercube topology,

compared to the torus, for a price of increased link traffic density. To quantify and ex-

amine the effect of these two performance measures, both topologies are implemented

in the network analyzer program which is the subject of the next chapter.

Topology Nh y J3

Binary Torus D 1 (+ 1) 2 2
N = 2D
Torus N = wv
Weven WD w (WD + l)

4 4 4

Wodd (1V2 -1)D
4W

(1V2-1)
4W

[l+(W2-l)]D
4W

Spanning Bus (W -1)D (W -1) [(W -1)D + 1]
Hypercube w w

Table 2. NETIVORK PARAMETERS FOR HYPERCUBE STRUCTURES.

PERFORi'\1ANCE MEASURES FOR STATIC NETWORKS 44

5.0 NETWORK PERFORMANCE ANALYSIS

TOOL

5.1 INTRODUCTION

In order to assess the performance of different multicomputer network alternatives,

the "Network Analyzer" program was developed to serve as a design and analysis tool.

The program accepts a network description and computes nodal and link delay times.

End-to-end delay times are generated as a function of message generation rate within

each node. Network Analyzer is relatively easy to learn and use, and once learned, it is

easy to change network parameters to perform "what-if' analysis. The program can also

be used to quickly generate numerical results and plots to illustrate the results of the

analysis. This chapter provides a brief summary of the program structure and general

guidelines for using the program. Chapter 3 provides detailed definitions of the param-

eters used below.

l\ETWORK PERFORMANCE ANALYSIS TOOL 45

The program is developed for balanced networks of symmetric topologies. Networks

are modelled as an interconnection of identical nodes, where each node includes a com-

munication processor and a number of communication controllers to handle message

transfer between nodes. A node is modelled as an M/D/ I stage that represents the

communication processor queueing delay and a second stage of several M/M/ I systems

that represent the communication controllers and link transmission queues. The model

assumes unlimited nodal storage capacity for message queues. Composite arrival traffic

at each node is is assumed to have a Poisson distribution. Message lengths, and there-

fore message transmission times, are assumed to be exponentially distributed. The pro-

gram is a suitable tool for trade-off studies of different multicomputer interconnection

network designs.

5.2 PROGRAM STRUCTURE

A listing of the Network Analyzer program appears in Appendix A. The program

is implemented in Turbo Pascal [29]. Turbo Pascal provides a number of compiler di-

rectives to control special runtime facilities, such as recursion and user interrupt, as well

as plotting facilities. These directives have been activated. The user interrupt directive

allows the user to interrupt the program any time during execution by entering a Ctrl-C.

The recursive directive was activated and was particularly useful for implementing the

recursive Reach function defined in Equations 4.4 and 4.5.

The program is divided into three main sections:

(1) parameter selection through the main menu,

(2) computation, and

NETWORK PERFORMANCE ANAL \'SIS TOOL 46

(3) plotting the computed data.

Such a modular structure is attractive because of ease of program expansion and mod-

ification. It also aided in debugging the program during development and testing phases.

5.2.1 Parameter Selection Phase

The main menu offers ten choices and may branch to submenus. Choices are sum-

marized as follows:

1- topology

1.1 binary torus1

1.2 W**D torus

1.3 W**D spanning bus hypercube

1.4 others2

2- traffic pattern

2.1 uniform

2.2 sphere of locality3

3- switching technique

3.1 message switching

3.2 virtual cut-through

4- link band,vidth

5- mean message length

6- mean header length

1 The first choice in a submenu is the default value.

2 Cser provides numerical values for the network parameters, N h , ~. and y , for ·others·.

3 Sphere of locality is implemented for the torus topology only.

l\ETIVORK PERFOR\U~CE ANALYSIS TOOL 47

7- processing time

8- compute

9- plot

10- exit

Using the menu, a user may specify a wide variety of network designs and compute

and plot a performance curve for each design. Performance is measured in terms of

end-to-end message communication delay. The program uses the network model dis-

cussed in Chapter 3. The total message delay for message switching and cut-through

switching is given by Equations 3.4 and 3. 7, respectively, which are written below for

convemence.

Menu selections 4 through 7 are straight forward and affect message service times

as follows:

µ1 = I/processing time
µ2 = transmission rate'mean message length
a = mean header length1 mean message length

The last parameter, a, is relevant only if the virtual cut-through technique is used (refer

to Equation 3. 7). Choices 1 and 2 are tightly related and affect the following parameters:

'·cp = ~'):fp '

1.1 = y1.1P , and

Nh = average number of hops through the network.

NEnVORK PERFOR:\1Ai"l'CE ANALYSIS TOOL 48

where we define p and y as the processor traffic load factor and link traffic load factor,

respectively. A summary of the expressions for p, y, and Nh for the implemented

topologies and traffic patterns is given in Table 2. Evaluation of these parameters is

deferred to the precomputation phase to allow the user to visit the main menu as many

times as needed without entering too many parameters each time.

5.2.2 Computation Phase

Before the start of computation, network parameters are evaluated according to the

current choices of the main menu items I through 7. If either the current topology or

traffic patterns are user defined, the user is alerted that he will provide N1r., p, and y be-

fore the start of computation. Currently the program allows up to six curves to be

computed and plotted in one session. These curves are labeled sequentially (1, .. ,6) when

computed. If more curves are required, data points of the new curve overwrite data

points of the oldest curve. This means that the user will always access the most recently

created set of curves. A total of 50 points are computed for each curve. Delay time is

computed as a function of).1P , the packet generation rate by the resident functional

processor in each of the network nodes. The parameter).1P is initially varied from 0 in

steps of 100 packets/second. The stepping interval is reduced gradually as '),,cp or J., grows

closer to µ1 or µ2, respectively, and the value of 1 tends to grow out of bounds.
(µ - ,.)

Data are stored sequentially in the data file network.dat for possible later process-

ing. In this file, data is listed in two columns using format 2F15.5. Each line represents

a point (x,y) on a curve with 50 points per curve. Curves are numerically indexed before

each computation. The user should note the indices as they are used to select which

curves to plot.

NETWORK PERFOR:\1ANCE ANALYSIS TOOL 49

5.2.3 Plot Phase

Before curves are plotted, the user is prompted to select whether to plot all curves

or selectively choose the curves one by one. The user is also able to select scales for , .. ,p,

packets/second, and network delay, in milliseconds, by entering maximum values for

each.

5.3 USER GUIDE

5.3.1 What The User Needs

The Network Analyzer requires the following:

l. An IBM-PC or compatible with at least one floppy disk drive, 256K of memory, and

DOS 2.0 or higher.

2. One of the many standard display adapters for the IB~1-PC.

5.3.2 \Vhat The User Must Know

The user must know enough about DOS to boot the system and enter commands,

and about network model parameters, particularly Nh , ~. and y defined earlier.

1\ETWORK PERFORMANCE ANALYSIS TOOL so

5.3.3 Using The Program

The following steps can be used to start the program:

1. Insert diskette in drive A.

2. Boot DOS.

3. Type Graphics.

4. Type Net_Analyzer.

5. Now the program starts and the main menu is displayed.

NETWORK PERFOR\1ANCE ANALYSIS TOOL 51

6.0 APPLICATION EXAMPLES

6.1 INTRODUCTION

In this chapter, the performance models are applied to several multicomputer de-

signs to investigate the impact of different network parameters on network delay and

demonstrate the effectiveness of the Network Analyzer program as a design and analysis

tool. The node model discussed in this research assumes a node structure that includes

a communication processor, with fixed message processing time, and several communi-

cation controllers that manage message transfer across communication links. Network

delay is developed for a network of general topology when either message switching or

virtual cut-through switching is used. The torus and the spanning bus hypercube

topologies are implemented in the program. Both topologies may be studied assuming

a uniform traffic load across the entire network. The torus can also be analyzed for the

case of sphere oflocality traffic pattern. The program also allows the study of the effects

of other network parameters, for example message length, message processing time, and

link bandwidth, on network delay.

APPLICATION EXAMPLES 52

6.2 EXAlWPLE NET~VORK

For simplicity, a multicomputer network with a binary torus topology is considered

first. The effect of topology on network delay is discussed later. The example network

considered is the network described by the default values of various network parameters

that are implemented in the Network Analyzer program. The network is assumed to

have a binary torus topology of dimension D = 10, i.e. network size is N = 1024 nodes,

and the mean internode distance is Nn = 5 links (refer to Table I), assuming a uniform

traffic distribution. It is assumed that messages have an average length of 512 bytes.

Message length includes the header and a header length of 26 bytes is assumed. Message

processing time by the communication processor is assumed to be 0.1 milliseconds while

link bandwidth, BW, is considered to be 10 megabits/second. Note that such a band-

width results in an average message transmission time, ~2 , of about 410 microseconds

obtained as follows

1 . . . µ2 = average message transnuss10n time

average message length =---------link bandwidth (6.1)
512 X 8 =----

106
= 410 µsec.

where µ2 is the mean message service rate of a link queue, as defined in Chapter 3.

The above network description is practically feasible with current technology.

Hypercubes have already been built with 1024 nodes [IO]. A mean message length of 512

bytes is a bit generous but can always be changed to reflect the desired granularity. A

APPLICATION EXAMPLES 53

header length of 26 bytes results in a useful message utilization of about 95% indicating

a reasonable message overhead. Links with 10 Mbits/sec are already implemented in the

iPSC [30]. Message processing time depends on the complexity of the message routing

algorithm and the communication processor cycle frequency or speed. If M is the num-

ber of processor cycles or microinstructions executed to process one message and P is

the processor cycle frequency, the message processing time is given by 1~ [I]. 1W is

typically a few hundred cycles or less [1].

6.3 NETJ,VORK DELAY ANALYSIS

Figure 9 shows network delay times for the above network when a uniform message

routing distribution is assumed and message switching is used. Delay times are derived

from Equation 3.3 and reflect different link bandwidths and message processing times.

Communication delays are shown for the network described earlier and when either the

message processing time or the link bandwidth is doubled.

The plotted results show the magnitude of the communication processing delays

relative to transmission delays. One obvious conclusion is that communication proc-

essing times become dominant at high message generation rates. In fact, traffic rate

thresholds, the traffic rates beyond which delay becomes very large, are determined

solely by queueing delays at the communication processor. The figure shows that dou-

bling the message processing time results in lowering the traffic threshold by a factor of

two, from 1600 packets/sec to about 800 packets/sec. Moreover, processing delays are

comparable to transmission delays at lov .. · traffic rates even when the average communi-

cation processor time per message is as low as 0.1 millisecond, in spite of the generous

APPLICATION EXA:\1PLES 54

assumption about message length. Doubling the link bandwidth, while keeping the

message processing time at 0.1 millisecond, reduces network delay by a factor of+ only

over a packet generation rate, "rP , of 0 to 1200 packets/sec.

Note that using an average message length of 256 bytes, instead of 512 bytes, not

shown in Figure 9, results in network delays that are identical to delays obtained when

link bandwidth is doubled. This is expected because either change has the same effect

on average message transmission time, i2 , as obtained from Equation 6.1.

Figure 10 shows delay times for the example network when traffic follows a uniform

distribution. Results are plotted when either message switching or virtual cut-through

switching is used. The results are computed from Equations 3.3 and 3.7. It is observed

that the virtual cut-through delay is always less than the message switching delay, par-

ticularly at low traffic loads. As traffic grows the number of cut-throughs is decreased

and the cut-through technique loses its advantage. Minimal increases in network delay,

at low traffic rates, are encountered when the header length is doubled for the same

message length. Minimal delay increases indicate that if the header length has to be in-

creased to accommodate virtual cut-through switching, the impact of the header length

on network delay is negligible.

The effects of traffic pattern changes on average message delay are displayed in

Figures 11 and 12. In Figure l l, the probability of sending a message from a source node

to nodes within the sphere, cp , is fixed and the effect of increasing the sphere radius is

studied. The number of nodes within the sphere is obtained using Equation 4.4 and is

used to obtain the average number of hops, Nh , using Equation 4.6. Average message

delay is highly dependent on the value of Nh, as evidenced by Equations 3.3 and 3.7.

Figure l l shows that for a given probability, higher than 0.5, average message delay

increases as the radius of the sphere, L, is increased. With cp 0.5, a higher L means

that an average message is more likely to travel a longer distance to reach its destination.

APPLICATION EXAMPLES 55

> .,, .,,
C n >
j
0
2
l:"'1
:><

.,,
r-

20--------------..---ol'fM------
&

16

.
u

12 .
:z: -

8
..J

f:!>

A ,4... -~· .A
. A&· c!-. e.J e.J E9 E9 E9 E9 E9 E9 eJ
-~-~-0-~-0-~-0-~-0-~-0-®·e·

00 400 800 1200 1600 2000
LAMBDA CPACKETS/SEC>

(9,-----~e:J BW• 10 Mbp1 CP .. rw:• t.N• OJ we:.
C9 - - - - - - - - -(!) BW• 20 Mbp& CP Nf'VICe ta.- Ol a. .. c.
A· · · · · · · - ·l!:i. BW- 10 Mbp• CP MMC• -· 02 a. •c.

FIGURE 9.MESSAGE DELAY FOR A MESSAGE SWITCHED BINARY TORUS NETWORK.

> -0
-0

n > -0

!:Pl

"4' -
t""
f;l

UI
..J

15

12

,.... .
u
L&J 9
U) .
J:

6

3 6-Pl-a-a~e-a-e--i:::r--
, & -1!1 • 8 ·t!I· 8 ·8· 4!1 •Ill· ('). 8- .e

- .ff . tt .,e

00 400 800 1200
LAMBDA CPACKETS/SECl

1600 2000

t':Ji-------e:J MS
(9 - - - - - - - - -(!) VCT ALPHA • 005
A··· · · · · · ·A VCT ALPHA • 0J0

rIGURE 10.NETWORK DELAY FOR DIFFERENT SWITCHING TECHNIQUES.

Figure 11 also shows that for some values of L and <p, in the figure

L = 2 or 4 when <p = 0.8, small mean internode distances are obtained and message de-

lay is less for a spherical distribution than it is for a uniform distribution. Locality is

obviously useful and should be considered when programs are compiled and tasks are

assigned in a multicomputer system.

Similar conclusions may be drawn from Figure 12. Here the sphere radius is fixed

at L = 5 while probability is changed. Message delay increases as the probability of

sending messages further away from a source node is increased. Note that when the

probability q> = l and the sphere radius is equal to the network diameter, network delay

is equal to that of the uniform distribution. This is because a probability of I means that

all messages generated will be sent to destinations within the radius.

Finally, the impact of topology on network delays is discussed below. Figure 13

shows network delays for four possible torus topologies that may be used to implement

a network of size N = 4096 nodes. Uniform message distribution is assumed. The results

show that the best performance is achieved when the network width Wis minimum and

that performance deteriorates as Wis increased. This behavior may be explained by the

nature of the torus topology. A torus of size N = WD may be viewed as if each node is

connected to a ring of size Wand each node is connected to D rings. Increasing W, and

thereby decreasing D, for a fixed network size, is equivalent to increasing the size of each

ring and reducing the number of rings attached to each node. Increasing a ring size im-

plies an increase in the number of links a message has to travel between two opposite

nodes in the ring and leads to an increase in Nh. Reducing the number of rings per node

reduces the connectivity between network nodes, again increasing Nh. This explains the

binary torus's performance advantage. Note that network delay increases slightly when

W is changed from 2 to 4. This is because the mean internode distance is the same for

both topologies, but traffic density for W = 4 is twice that of a binary torus (refer to

APPLICATION EXAMPLES 58

'"O
'"O
C
r"l

0
:.I.

.,, -'"O r-

UI
'°

20

16

,... .
u 12
.

J:: -
>-(I 8
...J
I.LI
0

-4

00

I

I h.
I

4> I 6.

+ rh f

j
I
I

f jZ] A , ,
.!::.A C)

.l.-,,.-A ,
6·A·6 6-A6. t!:,.6-6. 6-6-6. 6 .(!')I!)

<!> e>-C9 (!) e)-C9 (!) e)·G (!) e)·C9 (!) 0-G (!) e)-C9 (!) e:rC9 0 er C9

600 1200 1800 2400
LAMBDA CPACKETS/SEC>

d)
' I ,

cb .
'

(!)
I

(!)
cb
d)

, , ,

3000

~----~MS UNIFORM DISTRIBUTION
C9 - - - · - - - - -C) L • 2
A·········6L .41

- - - -~ L • 8

FIGURE 11. EFFECT OF SPHERE RADIUS ON MESSAGE DELAY PROBABILITY • 081

> "'O
"'O
C
("')
> = 0 -z.
M

> 4"
"'O
t""
f;l

0--
0

20

! 6 I
I
I

J:. 16 l
6 .

, !
,
I

I

12 r I
I

I

I j I

9)
>-

8~ CI
_j

el 7 . .i. ,
,.

,4 - .._.. __ ,,...., A

00 400 800 1200 1600 2000
LAMBDA (PACKETS/SEC)

FIGURE 12.EFFECT OF TRAFFIC PATTERN ON MESSAGE DELAY.

Bf----~~MS UNIFORM DISTRIBUTION
0 - - - - · ·· · · -C) L • 5 PROBAB l L IT Y • 0.1
,!i. - - - - - - - · · .6 L • 5 PROBAB l L l TV • 08
~-----~L •10 PROBABILITY

>
"'C
"'C
C n
>
:j
0 :z
r"P!

>
"'C r--

°'

25

20

,.... .
u w 15
LO .
X: -
)-
a: 10 __,
w
0

5

00

I
;I

I
I

I
?I

I ,
I ,

I ,
p

ft
. A .. A

.l':,.··/t':,·. 6 .

320

t

i

A

640 960
LAMBDA (PACKETS/SEC>

1280 1600

FIGURE 13.NETO~RK DELAYS FOR DIFFERENT TORUS TOPOLOGIES.

C9-----<e:J BINARY TORUS D • 12
- - - - - - - • -(!) TORUS W • 1 D • 6

A· · · · - · · · · A TORUS W • 8 0 • 1
- - - -~ TORUS W • 16 D • 3

Table 2). This also shows how little message transmission time affects total message

delay in comparison to message processing time.

In Figure 14, the performance of torus and spanning bus hypercube topologies are

compared. Message switching and uniform traffic distribution are assumed. The plotted

results show that a spanning bus network offers lower network delays at low traffic

loads, but traffic thresholds are reached much earlier than for a torus network of the

same width and dimension. Spanning bus topologies have lower delays at low traffic,

compared to torus topologies, because they have lower mean internode distance. On the

other hand, because spanning bus hypercubes have fewer links, average link traffic den-

sity increases rapidly as the traffic load increases.

6.4 NETJVORK DESIGN EXAMPLE

In the previous sections, the effects of individual network parameters on network

delay performance were investigated. In the following \Ve consider a hypothetical net-

work design problem of a more general nature to demonstrate the effectiveness of the

Network Analyzer program as a design tool.

Assume a multicomputer system with the following constraints:

1. ";\;etwork size is N = 1024 nodes. Due to expected growth in system capacity, net-

work size may be increased up to 4096 nodes.

2. Average message length is 512 bytes.

3. Traffic follows a uniform distribution.

APPLICATION EXAMPLES 62

> -:,
-:,
t"" -("')
> ::!
0 z
t"'
X > ,, ...
-:,
t""
f;l

°' CM

25 d)
I ,
I (!)

I cb
20 ' (!) I

I d)
,... .
u

15
.

I i
@ I

<j>
I

I

J:: -
>-a: 10

, I
' I!, ' , I I , t. ti.

dJ
,

5
, 1 0,

a-

or...-.-J..---'--~-__._ _ __,, _ __..___.1.-_~--'---
0 320 640 960 1280 l 600

LAMBDA (PACKETS/SEC>

r3f-----~ TORUS \.I • 1 0 • 6
C9· - - - - - - - -(!) SPANNING BUS \.I • 1 0 • 6
l!i · · · · · · · · ·A TORUS \.I • 16 0 • 3

- - - -~ SPANN I NG BUS \I • 16 0 • 3

FIGURE 11.PERFORMANCE COMPARISON OF TORUS ANO SPANNING BUS HYPERCUBES.

4. \1essage routing algorithm is simple enough to assume a message processing time

of 0.1 milliseconds.

5. Maximum expected message generation rate will not exceed 1000 packets/sec.

It is required to select the most economical topology arrangement that can be used to

implement the system without compromising network delay performance.

To simplify matters, it is assumed that network cost is proportional to the following

cost function C:

where B W is the link bandwidth, N en is the number of connections per node, and N, is

the total number of links in the network.

Using the cost function defined above, one can estimate system cost for torus and

spanning bus hypercube topologies as (refer to Chapter 4):

ctorus = (BH,') x (2D) x u,:D)

cspanning bus = (BW') X (D) X (:~:f.)
C = Ctorus

r Cspanning bus

where C, is defined as the relative cost of torus to spanning bus topologies.

The above relations show that for a given bandwidth, a spanning bus hypercube

offers a cost advantage of 2 W over a torus topology of the same width and dimension.

To make use of that fact, one may consider a bandwidth of 40 megabits/second for the

spanning bus topology versus 10 megabits/second for the torus's bus. With the different

APPLICATIO:"i EXAMPLES 64

bandwidths in consideration, C, is given by C, = i;· . For ease of physical implemen-

tation, a network should be built of regular and identical modules. Because the initial

size of the network is N = 210 = 1024 and the maximum size is ;V = 212 = 4096, network

width may be either W = 2 or W = 4.

Figure 15 shows message delays for torus and spanning bus hypercube networks

when W = 2, note that C, = l in that case. B W equals 10 Mbit/sec for the torus net-

work and 40 Mbit/sec for the spanning bus network. Communication delays are shown

for the minimum and the maximum expected network sizes. It is obvious that the per-

formance of the spanning bus topology is superior. ?\etwork delays are consistently

lower than those offered by the torus topology for "-tP less than 1000 packets/sec.

Figure 16 shows message delays under the same assumptions of the previous figure

except that network width is changed to W = 4. The superiority of spanning bus

topology is still sustained. This is partly because, as we found in the previous section,

the performance of the torus topology deteriorates as W is increased. The interesting

observation is that the spanning bus's performance improves when W is changed from

2 to 4. Average message delay is decreased and the permissible packet generation rate is

increased from 1200 packets/sec to about 1600 packets/sec. Again, this behavior may

be explained by the dependence of the mean intern ode distance and the link traffic den-

sity on Wand D as shown in Table 2. 0Jote that even though C, = 2 for W = 4 , the

absolute cost of the spanning bus network is halved when W is changed from 2 to 4.

The results discussed above conclude that a spanning bus topology with FV = 4 is

the best choice to implement the required network in terms of network delay perform-

ance and the defined cost function. Another consideration that favors the spanning bus

topology is the relative ease of gradual network expansion. Expanding a spanning bus

hypercube requires only addition of extra modules along each dimension while expan-

sion of a torus network requires breaking existing connections and inserting new nodes.

APPLICATION EXAMPLES 65

> .,, .,,
I:'."" -(")
>
"'1 -0 z
l'.li
;i<
> 3: .,,
I:'.""
f;l

°' °'

-.

20

16·

u
12 .

J::
ti 8
...J

,
i
: I
: I
: I
:,
:,
: I
: I :,
: I :,

, f!J
4 I- .(!)·

.i:T)..(9-e)-·~-~-~- /J.

. ... &..,&.AT . ~;-k-:k: ~:-rt: 6 -A· -h -A

00 800 1200
LAMBDA (PACKETS/SEC>

1600 2000

C9-----,eJ TORUS Q. 10 BW• 10 MBPS
(9 - • • - - - • • -e> TORUS D• 12 BW• 10 MBPS
A········ ·A SPANNING BUS o. 10 aw. 10 MBPS

- - - -~ SPANN I NG BUS D• 12 10 HBPS

FIGURE 15.PERrORMANCE COMPARISON Or TORUS ANO SPANNING BUS TOPOLOGIES~- 21

> .,, .,,
C
("')
> ::J
0 z
l:"l
;;.<
> < -.,,
t'""

°' -..J

20

16

-.
u

12
.

X: --
>-a: 8
.J

4

, ,
(!)

<!)

I
I
I
I
I
I
I
I
I
I
I
I
I

, }
• r· r ·l.:,1- ;.,.t; 0 rti-Jl+-~= /

-&~~ .-A.A.

· .. ,..:-1k-=~ ~=-k"7~ 6 -A· -6 A o--------------------0 400 800 1200 1600 2000
LAMBDA <PACKETS/SEC>

(9----eJ TORUS 0- S BW- 10 MBPS
(9 - - - - - - - - -(!) TORUS 0- 6 BW- 10 MBPS
A········ ·A SPANNING BUS O• 5 BIJ• '10 MBPS

- - - -¢ SPANN I NG BUS D• 6 8\J- 10 MBPS

FIGURE 16.PERFORMANCE COMPARISON OF TORUS ANO SPANNING BUS TOPOLOGIES~- 11

7.0 CONCLUSIONS

7.1 PURPOSE OF RESEARCH

The goal of this research was to evaluate the performance of multicomputer net-

works that use point-to-point and spanning bus interconnection topologies, and to de-

velop a design aid that can help explore design alternatives. Performance was measured

as the average end-to-end delay across the network. This thesis focused on the impact

of network topology, switching technique, and traffic patterns on system cost and per-

formance.

Existing performance models were generalized and modified to model both message

switched and cut-through switched networks with different message routing distrib-

utions. Virtual cut-through was introduced in [13) and modelled for computer networks

where message transmission times represent the bulk of communication delays. Queue-

ing delays at network nodes were represented by M/M/m queues in [13]. The model de-

veloped in [26) assumes a message switched network with uniform traffic distribution and

considers a node structure that is more representative of nodes in large scale multicom-

CONCLUSIONS 68

puter networks. In such networks, traffic loads tend to be high, message lengths are

short, and message routing algorithms are complex enough to justify allocating a special

communication processor to manage message transfer functions. The model in [26] also

assumes bidirectional links between communicating nodes. In this research, the model

in [26] was generalized to allow the use of unidirectional links, as suggested in [27], and

extended to represent message delays in balanced networks that may implement either

message or cut-through switching with different traffic patterns.

The models were used to develop a network performance analysis program. The

program accepts a network description and provides graphs and listings of analysis re-

sults. The program consists of three main phases. The first phase allows a user to de-

scribe a network design by choosing its parameters through different menus. In the

second phase, network delays are computed using the models that \Vere developed. The

third phase provides graphical results of the analysis and allows the user to redefine

network parameters. The program proved to be a useful design tool and was used to

analyze the impact of different network parameters and design decisions on network

delays.

The binary torus topology proved to off er minimum network delay over a wide

range of traffic loads and patterns in a multicomputer system. Spanning bus hypercube

topologies have low average delays at low traffic rates but link traffic saturates quickly

afterwards creating a communication bottleneck and increasing communication delays

substantially.

Methods to reduce communication delays in torus networks were investigated. One

way is to use the cut-through switching technique. Cut-through switching reduces net-

work delay at low traffic rates and approaches message switching performance only at

high traffic loads when links begin to saturate. Another method is to assign tasks in

multicomputer networks such that traffic patterns have locality. It is shown that locality

CONCLUSIONS 69

in tratlic patterns can reduce network communication delays, compared to uniform dis-

tribution, at all traffic loads.

7.2 FUTURE RESEARCH

As a basis for future resean.:h, this thesis provides an introduction to static large

scale interconnection networks. It exposes some fundamental concepts and methods in

modelling and analysis of multicomputer network performance and provides a network

design program. Additional topologies and design alternatives need to be considered and

added to the program to make "Network Analyzer" a more powerful tool for the design

engmeer.

Topologies like the dual-bus hypercube, the cube-connected cycle, and generalized

hypercubes may be considered. Each of these topologies can be analyzed to determine

its key parameters such as mean internode distance, link traffic density, communication

processor traffic density, system connection cost, and network expansion potential.

Currently, the program allows the study of torus networks with either a uniform or

a sphere of locality distributions. In light of the method used in this thesis to determine

the number of nodes in a sphere of locality and the mean internode distance, it is possi-

ble to apply the sphere of locality distribution to other topologies. Another distribution

that is worth investigating is the sphere of locality distribution with decreasing proba-

bility [8]. In this distribution, the probability of sending a message decreases as the dis-

tance of the destination node from the source node increases.

Finally, it will be useful to add other performance measures to the program in ad-

dition to the current one that measures network delay versus packet generation rate.

CONCLUSIONS 70

DifTerent network cost and/or performance functions may be studied versus network

size, message length, or message routing distributions.

CONCLUSIONS 71

REFERENCES

l. S.F. Midkiff and C.R. Carroll, "A Communication Processor for Point-to-Point
Multiprocessor Networks," Proceedings Sixth International Phoenix Conference on
Computers and Communications," 1987, pp. 14-17.

2. L.D. Wittie, "Communication Structures for Large Networks of Microcomputers,"
IEEE Transactions on Computers, vol. C-30, April 1981, pp. 264-273.

3. L.N. Bhuyan, and D.P. Agrawal, "Generalized Hybercube and Hyberbus Structures
for a Computer Network," IEEE Transactions on Computers, vol. C-33, April 1984,
pp. 323-333.

4. C. Wu and T. Feng, Tutorial: Interconnection Networks for Parallel and Distributed
Processing, IEEE Computer Society Press, Silver Spring, MD, 1984.

5. T. Feng, " A Survey of Interconnection Networks," IEEE Computer, vol. 14, Dec.
1981, pp. 12-27.

6. K. Hwang and F.A. Briggs, Computer Architecture and Parallel Processing.
McGraw-Hill, New York, 1984, Chapter 5.

7. E.M. Aupperele, "MERIT Computer Networks: Hardware Considerations," in
Computer Networks. R. Rustin, ed., Prentice-Hall, Englewood Cliffs, N.J., 1972, pp.
49-63.

8. D.A. Reed and D.C. Grumvald, "The Performance of Multicomputer Intercon-
nection :\etworks," IEEE Computer, vol. 20, June 1987, pp. 63-73.

9. B.W. Arden and H. Lee, "Analysis of Chordal Ring !\etwork," IEEE Transactions
on Computers, vol. C-30, April 1981, pp. 291-295.

10. P. Wiley, "A Parallel Architecture Comes of Age at Last," IEEE Spectrum, vol. 29,
June 1987, pp. 46-50.

11. F.P. Preparata and J. Vuillemin, "The Cube-Connected Cycles: A Versatile Network
for Parallel Computation," Communications ACM, vol. 24, May 1981, pp. 300-309.

12. W. Stallings, "Data and Computer Communications," Macmillan, New York, 1984.

13. P. Kermani and L. Kleinrock, "Virtual Cut-Through: A New Computer Communi-
cation Switching Technique," Computer Networks. vol. 3, Sept. 1979, pp. 267-286.

REFERENCES 72

14. F.S. Wong and M.R. Ito, "A Loop-Structured Switching Network," IEEE Trans-
actions on Computers, vol. C-33, May 1984, pp. 450-455.

15. S. Nakamura and G.M. Masson, "Lower bounds on Crosspoints in Concentrators,"
IEEE Transactions on Computers, vol. C-31, Dec. 1982, pp. 1173-1178.

16. H.J. Siegel, "Analysis Techniques for SIMD Machine Interconnection and the Ef-
fects of Processor Address Masks," IEEE Transactions on Computers, vol. C-26, Feb.
1977, pp. 153-161.

17. H.J. Siegel, "A Model of SIMD Machines and a Comparison of Various Intercon-
nection Networks," IEEE Transactions on Computers, vol. C-28, Dec. 1979, pp.
907-917.

18. G.D. Adams and H.J. Siegel, "On the Number of Permutations Performable by the
Augmented Data Manipulator Network," IEEE Transactions on Computers, vol.
C-31, April 1982, pp. 270-277.

19. L.N. Bhauyan and D.P. Agrawal, "Design and Performance of a General Class of
Interconnection Networks," IEEE Transactions on Computers, vol. C-32, Dec. 1983,
pp. 1091-1098.

20. M. Lee and C. Wu, "Performance Analysis of Circuit Switching Baseline Networks,"
Proceedings International Symposium on Computer Architecture, 1984, pp. 82-90.

21. Y-C. Jenq, "Performance Analysis of a Packet Switch Based on a Single-Buffered
Banyan Network," IEEE Journal on Selected Areas in Communication, vol SAC-1,
Dec. 1983, pp. 1014-1021.

22. D.H. Lawrie and D.A. Padua, "Analysis of Message Switching with Shuffie-
Exchanges in Multiprocessors," Proceedings Workshop on Interconnection Networks
for Parallel Distributed Processing, 1980, pp. 116-123.

23. C.-Y. Chin and K. Hwang, "Connection Principles for Multipath Packet Switching
Networks," Proceedings International Symposium on Computer Architecture, 1984,
pp. 99-109.

24. M. Arango, H. Badr, and D. Glerenter, "Staged Circuit Switching," IEEE Trans-
actions on Computers, vol. C-34, Feb. 1985, pp. 174-180.

25. L. Kleinrock, "Queueing Systems, Vol. II: Computer Applications," John Wiley &
Sons, New York, 1976.

26. D.A. Protopapas and J.N. Denenberg, "A New Model for Performance Analysis of
Large Scale Multicomputer Networks," Proceedings Sixth International Phoenix
Conference on Computers and Communications, 1987, pp. 451-456.

27. S.F. Midkiff, "Link Allocation in Point-to-Point Multicomputer Networks," to ap-
pear, Proceedings Seventh International Phoenix Conference on Computers and Com-
munications, 1988.

28. A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill,
New York, 1984, Chapter 1.

REFERENCES 73

29. Borland International, Inc., Turbo Pascal Reference Jlanual, Scotts Valley, CA,
1986.

30. Intel Corporation, "iPSC Data Sheet," Beaverton, OR, Order No. 280101-001.

REFERENCES 74

Appendix A. PROGRAlVI LISTING

Appendix A. PROGRAM LISTING 75

(. .)
(* Program Network Analyzer *)
(* *)
(* This program is intended to serve as a Network Analyzer. Network *)
(* is modeled as identical nodes, each node consists of two stages: *)
(* M/0/1 that represents the Communication Processor (CP) and *)
(* M/M/1's that represent the Communication Controllers (CC). *)
(* The model assumes the following ASSUMPTIONS: *)
(* 1- Composite arrival traffic at each node is Poisson distributed. *)
(* 2- Message lengths, and therefore message transmission times, *)
(* are exponentially distributed. *)
(* 3- Infinite nodal capacity for message queues. *)
(* 4- Symmetric network topologies. *)
(* 5- Identical node structure, all communication processors and *)
(* links are the same. *)
(* 6- Uniform message generation rate. *)
(* 7- Given assumptions 4,5, and 6 above, traffic patterns cause *)
(* uniform load conditions, i.e., the patterns are such that *)
(* message rate over each link is the same. *)
(* *)

{$U + }{directive U + allows program interrupt with Ctrl-C}
{$A-}{directive A- allows recursion}

Program Network_Analyzer;

Type
Topology = string[28];
Traffic = string[28];
Switching = string[28];

Const
Blank = '';
Curve_Max = 6;{maximum number of curves in one session}
Num_Point = 50;
Step = 100.;
Delay_Max = 45.;

Var
Topology_lndex: integer;
Topology_Type: Array [1 . .4] of Topology;
Traffic_lndex: integer;
Traffic_Pattern: Array[1 .. 3] of Traffic;
Switching_lndex: integer;
Switching_technique: Array[1 .. 2] of Switching;
X : Array[1 .. Num_Point] of Real;
Y: Array[1 .. Num_Point] of Real;

Appendix A. PROGRAM LISTING 76

Xglobal: Array[1..Curve_Max, 1 .. Num_Point] of Real;
Yglobal: Array[1..Curve_Max, 1 .. Num_Point] of Real;
Xtemp: Array[1..Curve_Max, 1 .. Num_Point] of Real;
Ytemp: Array[1..Curve_Max, 1 .. Num_Point] of Real;
Legend: Array[1 .. Curve_Max] of Integer;
Curve_lndex,Temp_Curve_lndex: Integer;
Curve_Max_Reached : String[3];

{plot parameters}
Xaxl,Yaxl: integer;
xtic,ytic,I:I nteger;
xdiv,ydiv:I nteger;
Title: String (50] ;

X_Max,Y _Max: Integer;
Fil: Text;{data file variable}

Var
User_Choice, Choice: Integer;
L, D, Num_Points: Integer;
N_hops, Prob : Real;
Network_Size: Real;
Network_Width, Network_Dimension, Network_Diameter: Integer;
Message_Length, Header _Length: Integer;
Band_Width, Processing_ Time: Real;
Beta, Gamma: Real;

Appendix A. PROGRA\-1 LISTING 77

(*
r r

Reach Function

(* This recursive function is used to evaluate the number of nodes
(* exactly L links from a source node in a O-dimensional torus of
(* width W. When W is odd, this function is defined as
(* Reach(L,D,W) =
(* 1 L = 0
(* 2 D = 1 and O < L < = Float(W/2)
(* 0 D = 1 and L > Float(W /2)
r
(* 2* SUM from k = 1 to min{L,Float(W/2)}
(*
(*
(*

of Reach(L-k,D-1,W)
+ Reach(L,O-1,W) Otherwise

(**)

Function Reach (Lr,Dr,Wr: Integer): Real;

Var
K, Kmax,Wx: Integer;
Temp: Real;

Label 20;

begin{reach}
Wx := Wr div 2;
if Lr = 0 then
begin{then}

Reach : = 1.0;
goto 20;

end;{then}
if (Or = 1) and ((0 < Lr) and (Lr < = Wx)) then
begin{then}

if Odd (Wr) then Reach:= 2
else Reach:= 1;
goto 20;

end;{then}
if (Dr = 1) and (Lr > Wx) then
begin{then}

Reach : = 0.0;
goto 20;

end;{then}
if (Lr > = Wx) then Kmax : = Wx
else Kmax : = Lr;
Temp:= 0.0;
for K : = 1 to Kmax do
begin{do}

if Odd (Wr) then
Temp:= Temp + 2.0*Reach (Lr - k,Dr - 1,Wr)

else

Appendix A. PROGRAM LISTING 78

Temp:= Temp + Reach (Lr - k,Dr - 1,Wr);
end;{do}
Reach : = Temp + Reach (Lr,Dr - 1,Wr);

20: end;{reach}

Appendix A. PROGRAM LISTING 79

(* *)
(* Sphere Procedure *)
(* *)
(* This procedure is used to evaluate the mean number of hops *)
(* when the traffic pattern is Sphere of Locality. *) r In such a traffic pattern, messages are sent to nodes within *)
(* a sphere of radius L with probability Probs. Nodes outside *)
(* the sphere receive messages with a probability (1 - Probs). *)
(* This traffic pattern is currently implemented for W**D torus *)
(* only. *)
(* Note that we assume that a source node does not send messages *)
(* to itself. *)
(* •)
(***•······)

Procedure Sphere (Ls,Ds,Ws:lnteger;Probs:Real);

Var
Temps1,Temps2,Temps3: Real;
Ks,Kmax,Network_Diameter:I nteger;

begin{sphere}
Network_Diameter : = Os * (Ws div 2);
if Ls > = Network_Diameter Then Kmax : = Network_Diameter
else Kmax : = Ls;
Temps1 : = 0.0;
Temps2: = 0.0;
for Ks : = 1 to Kmax do { summation starts from 1, see note above}
begin{do}

Temps3: = Reach (Ks,Ds,Ws);
Temps1 : = Temps1 + Ks • Temps3;
Temps2: = Temps2 + Temps3;

end;{do}
N_hops: = Probs • Temps1/Temps2;
if Kmax < Network_Oiameter then
begin{then}

Temps1 : = 0.0;
Temps2: = 0.0;
for Ks : = Kmax + 1 to Network_Diameter do
begin{do}

Temps3 : = Reach (Ks,Ds,Ws);
Temps1 : = Temps1 + Ks • Temps3;
Temps2: = Temps2 + Temps3;

end;{do}
N_hops: = N_hops + (1.0 - Probs) * Temps1/Temps2;

end;{then}
end;{sphere}

Appendix A. PROGRAM LISTING 80

(*
(* Initialize Network Parameters Procedure
(*
(* Network parameters are initialized to their default values.
(*

Procedure I nitialize_Network_Parameters;

begin{lnitialize_Network}
User_Choice :=O;
Topology_lndex: = 1;
Traffic_lndex := 1;
Switching_lndex: = 1;
Band_Width : = 10.;
Message_Length : = 512;
Header_length : = 26;
Processing_ Time : = 0.1;
Network_ Width : = 2;
Network Dimension : = 10;
Network Size : = 1024;

{ Beta : ; 6.0;}
{ Gamma : = 0.5; }
{ N_hops : = 5.;}
Curve_lndex : = O;
Curve_Max_Reached : = 'No';

Topology_ Type [1] : = 'Topology (Binary Torus)';
Topology_Type [2]: = 'Topology (W**D Torus)';
Topology_ Type [3] : = 'Topology (W**D Hypercube)';
Topology_Type [4] : = 'Topology (Others)';

Traffic_Pattern [1]: = 'Traffic Pattern (Uniform)';
Traffic_Pattern [2] : = 'Tr. Pat. Locality (torus)';
Traffic Pattern [3] : = 'Tr. Pat. Locality (Others)';

Switching_ Technique [1] : = 'Switching Technique (MS)';
Switching_Technique [2] : = 'Switching Technique (VCT)';

end;{lnitialize_Network}

Appendix A. PROGRAM LISTING

*)
*)
*)
*)
*)

81

(* *)
(* Display Main Menu Procedure *)
(* •)
(* Clear screen, Display main menu, Prompt user to enter choice *)
(* *)

Procedure Display_Main_Menue;

beg in{Mai n_Menue}
ClrScr;
writeln;
write In(' Network Parameters (Current Values) N = ',

Network_Size:10,' Nodes');
gotoxy (4,4);
writeln('(1) ',Topology_ Type[Topology_lndex]);
gotoxy (43,4);
writeln ('(2) ', Traffic_Pattern[Traffic_lndex]);
gotoxy (4,5);
writeln('(3) ',Switching_ Technique[Switching_l ndex]);
gotoxy (43,5);
writeln ('(4) Link Bandwidth (Mega Hz)',Band_Width:7:1);
gotoxy (4,6);
writeln('(5) Message Length (Bytes)',Message_Length:8);
gotoxy (43,6);
writeln ('(6) Header Length (Bytes)',Header_Length:8);
gotoxy (4,7);
writeln('(7) Prcocessing Time (m. sec.)',Processing_Time:5:2);
gotoxy (43, 7);
writeln ('(8) Compute');
gotoxy (4,8);
writeln('(9) Plot',Blank:31,'(10) Exit');
writeln;
write (' Enter Your Choice (1..10)

readln (User_Choice);
end;{Display_Main_Menue}

Appendix A. PROGRAM LISTING

. ')· . '

82

(*
(* Select Topology Procedure
r
(* Display topology options. Prompt user to enter his choice,
(* Update Network Size.
r

Procedure Select_ Topology;

begin{select_topology}
ClrScr;
Writeln (' Topology Options Are:');
writeln (Blank:10,'(1) Binary Torus');
writeln (Blank:10,'(2) W**D Torus');
writeln (Blank:10,'(3) W**D Spanning Bus Hypercube');
writeln (Blank:10,'(4) Others');
write (' Enter Your Choice (1 . .4) :');
readln (Topology_lndex);
case Topology_lndex of
0: ;
1: begin{1}

write (' Enter Network Dimension (Integer Value) :');
readln (Network_Dimension);
Network_Size : = exp(Ln(2.0)'Network_Dimension);{2**D}
end;{1}

2,3: begin{2,3}
write (' Enter Network Width (W) Integer Value :');
readln (Network_Width);
write (' Enter Network Dimension (D) Integer Value :');
readln (Network_Dimension);

*)
*)
*)
*)
*)
*)

Network_Size : = exp(ln(Network_Width)*Network_Dimension) ;{W**D}
end;{2.3}

4: begin{4}
writeln ('User Provides the Following Parameters',

writeln ('
writeln ('
writeln ('
write In;

' Before Computation Starts:');
N_hops = Average Number of Hops');
Beta = Communication Processor Loading Factor');
Gamma = Link Traffic Loading Factor');

write (' Enter Network Size (N) Integer Value
readln (Network_Size);

·')· . '

end;{4}
end;{case}

end;{select topology}

Appendix A. PROGRA\1 LISTING 83

(*
(* SELECT Traffic Pattern Procedure
(*
(* Clear screen, Display traffic pattern options, and Prompt
(* user for a choice
(*

Procedure Select_ Traffic_Pattern;

Var choice:integer;
Label 50,60;

begin{select traffic pattern}
ClrScr;
writeln (' Traffic Pattern Options Are:');
writeln (Blank:10,'(1) Uniform Traffic');
writeln (Blank:10,'(2} Sphere of Locality (Torus}');
writeln (blank:10,'(3) Sphere of Locality (Others)');
writeln;
write (' Enter Your Choice (1 .. 3) :');
read (Choice);
case Choice of

3: begin{3}
Traffic_lndex : = 3;
writeln;
writeln ('User Provides the Following Parameters ',

'Before Computation Starts:');
writeln (' N_hops = Average Number of Hops');
writeln (' Beta = Communication Processor Loading Factor');
writeln (' Gamma = Link Traffic Loading Factor');
Delay(S000);

end;{3}
2: begin{2}

Traffic_lndex : = 2;
{temp} goto 50;

if Topology_lndex < > 1 then
begin{then}

writeln;
writeln(' Topology Has Been Changed To Binary Torus
writeln;
write (' Enter Network_Dimension (D) Integer Value:');
Readln(Network_Dimension};
Network_Size : = exp(ln(2.0) * Network_Dimension);
Topology_lndex: = 1;

end;{ then}
if (Topology_lndex = 1) or (Topology_lndex = 2) then
begin{outer then}

50: writeln;

Appendix A. PROGRAM LISTING

');

84

write (' Enter Radius of Sphere (in Links) :');
readln (L);
Network_Diameter : = Network_Dimension • (Network_Width div 2);

{ goto 60;}{temp}{you should compare to network diameter = d*(W div 2)}
if L > Network Diameter then

begin{thenf
writeln(' This Value is Unlikely L > Network Diameter');
goto 50;

end;{then}
60: write (' Enter Probability of Message Within Sphere :');

readln (Prob);
if Prob > 1.0 then

begin{then}
writeln(' This Value is Unlikely Probability > 1.0');
goto 60;

end;{then}
end;{outer then}

end;{2}
end;{case}

end;{select traffic pattern}

Appendix A. PROGRAM LISTING 85

(**••··)
(* *)
(* Select Switching Technique Procedure *)
(* *)
(* Clear screen, Display switching technique options, and Prompt *)
(* user to enter choice. *)
(* *)
(********••··)

Procedure Select_Switching_ Technique;

Var Choice :char;

begin{Select_Switching_ Technique}
ClrScr;
writeln;
writeln ('
writeln ('
writeln ('
writeln;

Switching Technique Options are:');
(1) Message Switching');
(2) Virtual- Cut-Through');

write (' Enter Your Choice (1 .. 2)
read (Choice);
case Choice of

'O': ;
'1 ': Switching_lndex: = 1;
'2': Switching_lndex: = 2

end;{case}
end;{Select_Switching_ Technique}

Appendix A. PROGRAM LISTING

·') . . '

86

(..•...................................•..•....)
(" *)
(* Select Bandwidth Procedure *)
(* •)

Procedure Select_Link_Bandwidth;

begin{select bandwidth}
ClrScr;
writeln;
writeln (' Current Link Bandwidth is :',Band_Width:7:1,' Mega Hz');
gotoxy (2,5);
write ('Enter New BandWidth = ');
readln (Band_Width);

end;{ selct bandwidth}

(*••···)
(* •)
(* Select Message Length Procedure *)
(* *)

Procedure Select_Message_Length;

begin{selct message length}
ClrScr;
write In;
writeln (' Current Message Length
gotoxy(2,5);
write ('Enter New Message Length
readln (Message_Length);

end;{select message length}

Appendix A. PROGRAM LISTING

is :',Message_Length:8,' Bytes');

·') . . '

87

Select Header Length Procedure

Procedure Select_Header _Length;

begin{select header length}
Clrscr;
writeln;
writeln (' Current Header Length
gotoxy (2,5);
write ('Enter New Header Length
readln (Header_Length);

end;{select header length}

is :',Header _Length:8,' Bytes');

. ')· . '

*)
*)
*)

(************************••··)
(* *)
(* Select processing Time Procedure *)
(* *)
(**••················)

Procedure Select_Processing_ Time;

begin{select processing time}
ClrScr;
writeln;
writeln (' Current Processing Time is :',Processing_ Time:5:2,' m. sec.');
gotoxy (2,5);
write ('Enter New Processing Time :');
readln (Processing_ Time);

end;{select processing time}

Appendix A. PROGRAM LISTII'\G 88

(...••...........................)
(* *)
(* Compute Message Delay Procedure *)
(* *)
(* This procedure computes end-to-end communication delay time of *)
(* message assuming either message switching or virtual-cut-through *)
(* switching technique. Delay time is studied versus packet *)
(* generation rate. The following global parameters are used: *)
(* Message_Length, Header_Length, Processing_ Time, *)
(* Band_Width, Beta, Gamma,N_Hops, Num_Points, Step. *)
(* *)

Procedure Compute_Message_Delay;

Var
I: Integer;
Rho, Alpha: Real;
Local_Step, Mu1, Mu2, 01, 02: Real;
Delay_CP, Delay_L: Real;
Lamda, Lamda_CP, Lamda_L: Real;

Lamda_FP: Array[1 .. Num_Point] of Real;
Delay_MS : Real;
Delay_VCT: Real;

Label 20, 30, 40;

begin{Compute_Message_Dlay}
Curve_lndex: = Curve_lndex + 1;
Legend[Curve_lndex] : = Curve_lndex;

Mu1 := 1000. / Processing_Time; {CP_Service_Rate in Hz}
Mu2 : = (Band_Width • (1000000.0)) I (Message_Length • 8.);

{Link_Service_Rate in Hz}
Local_Step : = Step;
Alpha : = Header _Length / Message_Length;

Lamda_FP [1]: = 0.01 - Step;
for I : = 1 to Num_Point do
begin{for}

30: Lamda : = Lamda_FP[I] + Local_Step;
Lamda_CP : = Beta • Lamda;
Lamda_L : = Gamma • Lamda;
01 : = 2. * Mu1 * (Mu1 - Lamda_CP);
02 : = Mu2 - Lamda_L;

if ((01 < = 0.0) or (02 < = 0.0)) then
20: begin{then}

Local_Step : = Local_Step /20.;

Appendix A. PROGRA:vJ LISTING 89

goto 30;
end;{then}

Delay_CP: = 1000. • (1. / Mu1 + Lamda_CP I Q1); {time in m. sec.}
Delay_L: = 1000. / Q2; {time in m.sec.}
Delay_MS : = (N_hops + 1.0) * Delay_CP + N_hops * Delay_L;
if Delay_MS > Delay_Max then goto 20;

40: Rho : = Lamda / Mu2; {Link Utilization Factor}
Delay_VCT := Delay_MS - (N_hops - 1.0) * (1.0- Rho)*

(Delay_CP + 1000.0*(1.0 - Alpha)/ Mu2);
Lamda_FP[I + 1] : = Lamda;
Lamda_FP[I] : = Lamda;
Xglobal[Curve_lndex,I] : = Lamda;
if Switching_lndex = 1 then Yglobal[Curve_lndex,I] : = Delay_MS;
if Switching_lndex = 2 then Yglobal[Curve_lndex,I] : = Delay_ VCT;

end;{for}
writeln;
writeln(' This is Curve# ',Curve_lndex);
delay(2000);

end;{Compute _Message _Delay}

Appendix A. PROGRAM LISTING 90

(*
(* Evaluate Network Parameters Procedure
(*
(* This procedure is called before each computation.
(* Note#1
(* N_hops is scaled to exclude nodes routing messages to
(* themselves.
(*

Procedure Evaluate_Network_Parameters;

Var Ans: Char;
Label 80, 90;

begin{ evaluation}
if Curve Index = Curve Max then
begin{then} -

*)
*)
*)
*)
*)
*)
*)
*)

writeln (' Maximum Number of Curves Has Been Reached ');
writeln (' New Curves will Replace Oldest Curves');
Delay(SO00);
Curve_lndex: = 0;
Curve Max Reached : = 'yes';

end;{then} -
case Traffic Index of
1: begin{1}

if Topology_lndex = 1 then
begin{1,1} {Note#1}

N_hops := (Network_Dimension*Network_Size) / (2.0*(Network_Size -1.0));
Beta : = N_hops + 1.0;
Gamma : = N_hops / Network_Dimension;

end;{1,1}
if Topology_lndex = 2 then
begin{1,2}

if Odd(Network_Width) then
N_hops: = (Network_width*Network_Width - 1.0)*

(Network_Dimension/(4.0* Network_Width))*
(Network_Size / (Network_Size -1.0)) {Note#1}

else
N_hops : = (Network_Width*Network_Dimension/4.0)*

(Network_Size/(Network_Size - 1)); {Note#1}
Beta : = N_hops + 1.0;
Gamma : = N_hops/Network_Dimension;

end;{1,2}
if Topology_lndex = 3 then
begin{1,3}

N_hops : = (Network_Width - 1.0)*Network_Dimension/Network_Width;
Beta : = N_hops + 1.0;
Gamma:= Network_Width - 1.0;

Appendix A. PROGRAM LISTING 91

end;{1,3}
if Topology_lndex = 4 then goto 80;
end;{1}

2: begin{2}
Sphere (L,Network_Dimension,Network_Width,Prob);
Beta:= N_hops + 1.0;
Gamma : = N_hops/Network_Dimension;

end;{2}
3: begin{3}

80: writeln (' User Has To Provide N_hops, Beta, Gamma ');
writeln;
write (' Do You Have These Values Ready (YIN) ?');
readln (Ans);
if (Ans = 'y') or (Ans = 'Y') then
begin{then}

write (' Enter Average Number Of Hops N_hops = ');
readln (N_hops);
write (' Enter Processor Traffic Load Factor Beta=');
readln (Beta);
write (' Enter Link Traffic Load Factor Gamma=');
readln (Gamma);

end;{then}
if (Ans = 'n') or (Ans = 'N') then goto 90;

end;{3}
end;{case}
Compute_Message_Delay;

90: end;{evaluation}

Appendix A. PROGRAM LISTING 92

(* •)
(* Select Plot Curves Procedure *)
(* *)
(* This procedure is called before plotting the curves. *)
(* It uses Curve_lndex and Arrays Xglobal, Yglobal to get *)
(* Temp_Curve_index, Arrays Xtemp, Ytemp that will be used by *)
(* Procedure Plot. *)
(* •)

Procedure Select_Plot_Curves;

Var
l,J,Kp: Integer;
Ans: Char;

Label 20;

begin{select plot curve}
if Curve_lndex = 0 then
begin{then}

writeln(' No Data Yet To Plot
Sound(440);
Delay(50);
NoSound;
Delay(3000);
goto 20;

end;{then}
if Curve_Max_Reached = 'yes' then Kp : = Curve_Max
else Kp : = Curve_lndex;
Temp_Curve_lndex : = Kp;

write (' do you want to plot all curves (YIN) ?');
readln (Ans);
if (Ans = 'y') or (Ans = 'Y') or (Ans = 'yes') then
begin{then}

for j : = 1 to Kp do
begin{outer do}

for I : = 1 to Num Point do
begin{inner do}

Xtemp[J,I] : = Xglobal[J,I];
Ytemp[J,1] : = Yglobal[J,I];
Legend[J] : = J;

end;{inner do}
end;{ outer do}
goto 20;

end;{then}

Temp_Curve_lndex : = 0;
for J: = 1 to Kp do

Appendix A. PROGRAM LISTING

');

93

begin{outer do}
write(' Do You Want To Plot Curve #',J:3,' (Y/N) ?');
readln (Ans);
if Ans = 'y' then
begin{then}

Temp_Curve_lndex: = Temp_Curve_lndex + 1;
for I : = 1 to Num_Point do
begin{inner do}

Xtemp[Temp_curve_lndex,I] : = Xglobal[J,I];
Ytemp[Temp_curve_lndex,1]: = Yglobal[J,I];

end;{inner do}
Legend[Temp_Curve_lndex] : = J;

end;{then}
end;{outer do}

20: end;{select plot curves}

Appendix A. PROGRAM LISTING 94

(.
(*
(*

Plot Procedure

Procedure plot;

var
xscale,yscale: Real;
x1,x2,y1,y2: Integer;
temp: Real;
l,J: Integer;
Continue: Char;

Label 70;

{$1 graph.p }
begin{plot}

if Curve_lndex = 0 then goto 70;
Xaxl: = 360;
Yaxl := 120;

{temp} write (' Enter X_Max (Integer Value) :');
Readln(X_Max);
Y_Max: = S0;{end temp}
write (' Enter Y _Max (Integer Value) :');
Read In (Y _Max);
xdiv : = X_Max div 5;
ydiv : = 10;
Title:= ' Delay Time Versus Packet Generation Rate';

{Screen Set Up}

TextMode(2);
HiRes;
HiResColor(White);

{Write Scales.Title}

gotoxy(1, 19);
writeln(' 0',xdiv:10,2*xdiv:9,3*xdiv:9,4*xdiv:9,5*xdiv:9);
writeln(' Lambda (Packet/Sec.) ');
write In(' ',Title);

gotoxy (1,4);
Writeln(' D ');
writeln(' e ');
Writeln(' I ');
writeln(' a ');
writeln(' y ');
writeln;

Appendix A. PROGRAM LISTING

*)
*)
*)

95

writeln(' i '); {Write Y _Axis Label}
writeln(' n ');
write In;
writeln(' m ');
write In;
writeln(' s ');
writeln(' e ');
writeln(' c ');

gotoxy (3,3};
ydiv : = Y _Max div 5;
write(5*ydiv:4};
gotoxy (4,6);
write(4*ydiv:4};
gotoxy(4,9);
write(3*ydiv:4); {Write Y _Axis Scale}
gotoxy (4,12};
write(2*ydiv:4);
gotoxy (4, 15};
write(ydiv:4);
gotoxy (4, 18};
write(' 0'};

gotoxy (1,23);
write ('Enter Carriage Return To Continue Waiting

Sound(440);
Delay(50);
NoSound;

{write curve legends}

xscale : = 45 / X_Max ;
yscale := 15 / Y_Max;
for J : = 1 to Temp_Curve_lndex do
begin{big do}

for I : = 1 to Num Point do
begin{small do}

x[I] : = Xtemp[J,I];
y[I] : = Ytemp[J,I];

end;{small do}

I : = 15;{ (Num_Point - 20);}
x[I] : = Xtemp[J,I + J];
y[I] : = Ytemp[J,I + J];

{scale legend points}
x1 : = 7 + Round((x[I] • xscale));
y1 : = 18 - Round((y[I] • yscale));
gotoxy (x1,y1);
writeln ('#',Legend[J]);

end;{big do}

Appendix A. PROGRA:\1 LISTING

');

96

{set Screen for Graphics}
Palette(1);
ColorTable (0, 1,2,3);

{Draw Borders}
GraphWindow (60, 15,Xaxl + 60,Yaxl + 15);
Draw(0,0,0,Yaxl, 1);
Draw(0,Yaxl,Xaxl,Yaxl, 1);
Draw(Xaxl,Yaxl,Xaxl,0, 1);
Draw(Xaxl,0,0,0, 1);

{Draw Tic Marks}
xtic : = Xaxl div 5;
ytic : = Yaxl div 5;
for I: = 1 to 4 do
begin {do}

Draw (l*xtic,Yaxl,l*xtic,Yaxl-1, 1);
Draw (0,l*ytic,2,l*ytic,1);

end;{do}

{Plot Curves}

xscale : = Xaxl I X_Max ;
yscale: = Yaxl / Y _Max;
for J : = 1 to Temp_Curve_lndex do
begin{big do}

for : : = 1 to Num Point do
begin{small do}

x[I] : = Xtemp[J,I];
y[I] : = Ytemp[J,I];

end;{small do}

{scale curve points and Plot Them}

for I:= 1 to (Num_Point-1) do
begin{small do}
x1 : = Round(x[I] • xscale);
x2: = Round(x[I + 1] • xscale);
y1 : = Yax! - Round(y[I] • yscale);
y2: = Yaxl - Round(y[I + 1] • yscale);
Draw (x1,y1,x2,y2,1);

end;{small do}
end;{big do}
Read (Continue);

{Back to Text Mode}
Text mode;

Appendix A. PROGRAM LISTII'.G 97

70: end;{Plot}

(*
(*
(*

Write Data File Procedure

Procedure Write_Data_File;
Var

J,I: Integer;
FileName: string [15];

begin{write data file}
write(' Writing a Data File .. Enter Data File Name: ');
Readln (FileName);
Assign (Fil,FileName);{'Network.Dat');}
Rewrite (Fil);
for J : = 1 to Curve Index do
begin{big do} -

for I : = 1 to Num Point do
write In (Fil,Xg lobal[J, I]: 15:5, Yglobal[J, I]: 15:5);

end;{big do}
Close (Fil);
write In;
writeln (' Data File Name is: ', FileName);{Network.Dat ')};
writeln (' Data Format is (2F15.5)');
writeln (' Number of Points is',Num_Point:5,' For Each Curve');

end;{write data file}

Appendix A. PROGRAM LISTING

*)
*)
*)

98

(*
(.
(*

Main Program

begin{program}
Initial ize_Network_Parameters;
while User Choice < 10 do
begin{while}

Display_Main_Menue;
case User Choice of

1: Select_ Topology;
2: Select_ Traffic_Pattern;
3: Select_Switching_ Technique;
4: Select_Link_Bandwidth;
5: Select_Message_Length;
6: Select_Header _Length;
7: Select_Processing_ Time;
8: Evaluate_Network_Parameters;{ and Compute_Message_Delay}
9: begin{9}

Se lect_Plot_ Curves;
Plot;

end;{9}
end;{case}

end;{while}
Write_Data_File;
writeln (N_hops:5);

end.{program}

Appendix A. PROGRAM LISTING

*)
*)
*)

99

Appendix B. THE M/M/1 QUEUE

Appendix B. THE M/M/1 QUEUE

The following presents some of the important properties of the M/M/ 1 queueing

system as outlined in [25J. The M/M/ 1 is characterized by having a Poisson input and a

single server with an exponential service time. A Poisson input means that interarrival

times follow an exponential probability distribution. The server utilization factor, p, is

defined as the average arrival rate of customers to the system times the average service

time each requires. If 'A andµ are used to denote the mean arrival rate at the queue in-

put and the mean service rate, respectively, then p is given by [25]

).
p =-µ

The following relations hold for an M/M/1 queueing system when customers are

served on first-come-first-serve basis [25]:

p/µ average waiting time = ---
1 - p

1 average service time =-µ
total average delay = average service time + average waiting time

1 =-+ p/µ
µ 1 - p

1/µ 1
= -1---p- = -µ-_...,x.-

probability of the server being idle = (1 - p)

Appendix B. THE M/M/1 QUEUE IOI

The vita has been removed
from the scanned document

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111

