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Coupled Adjoint-based Sensitivity Analysis using a FSI Method in
Time Spectral Form

Hyunsoon Kim

(ABSTRACT)

A time spectral and coupled adjoint based sensitivity analysis of rotor blade is carried out

in this study. The time spectral method is an efficient technique to solve unsteady periodic

problems by transforming unsteady equation of motion to a steady state one. Due to the

availability of the governing equations in the steady form, the steady form of the adjoint

equations can be applied for the sensitivity analysis of the coupled fluid-structure system. An

expensive computational time and memory requirement for the unsteady adjoint sensitivity

analysis is thus avoided. A coupled analysis of fluid, structural, and flight dynamics is carried

out through a CFD/CSD/CA coupling procedure that combines FSI analysis with enforced

trim condition. Coupled sensitivity analysis results and their validations are presented and

compared with aerodynamics only sensitivity analysis results. The fluid-structure coupled

adjoint based sensitivity analysis will be applied to the shape optimization of a rotor blade in

the future work. Minimization of required power is the objective of the optimization problem

with constraints on thrust and drag of the rotor. The bump functions are considered as the

design variables. Rotor blade shape changes are obtained by using the bump function on

the surface of the airfoil sections along the span.



Coupled Adjoint-based Sensitivity Analysis using a FSI Method in
Time Spectral Form

Hyunsoon Kim

(GENERAL AUDIENCE ABSTRACT)

The work in this dissertation is motivated by the reducing the computational cost at the

early design stage with guaranteed accuracy. In the research, the author proposes that the

goal can be achieve through coupled adjoint based sensitivity analysis using a fluid structure

interaction in time spectral form. Adjoint based sensitivity analysis is very efficient for

solving design problems with a large number of design variables. The time spectral approach

is used to overcome inefficient calculation of rotor flows by expressing flow and structural

state variables as Fourier series with small number of harmonics.

The accuracy and the efficiency of flow solver are examined by simulating UH-60A forward

flight condition. A significant reduction in the computational cost is achieved by its Fourier

series form of the periodic time response and the assumption of periodic steady state. A

good agreement between time accurate and time spectral analysis is noted for the high

speed forward flight condition of UH-60A configuration. Prediction from both methods also

agree quite well with the experimental data. The adjoint based sensitivity analysis results

are compared with the finite difference sensitivity analysis results. Even with presence

of small discrepancies, these two results show a good agreement to each other. Coupled

sensitivity analysis includes not only the effect of fluid state changes but also the contribution

of structural deformation.
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Chapter 1

Introduction

Carrying out shape optimization of rotor blades is a difficult work due to the complex and

unsteady nature of the air flow around the rotor blades. While accurately predicting the flow

physics is essential for accurate design, it can be computationally expensive. Additionally, the

fluid dynamic analysis also needs to be coupled with structural and flight dynamic analysis

to accurately capture the rotor deformation and subsequently carry out reliable design.

This makes the rotor design process complicated and time consuming. Therefore, existing

rotorcraft comprehensive analysis tools generally use low-fidelity aerodynamic models to

generate air-load on the rotor blade, such as the lifting line theory and the vortex wake model.

The objective of this study is to develop an accurate and efficient sensitivity analysis method

for helicopter rotor blades by using high fidelity unsteady Euler equations to model the fluid

analysis and to couple it with structural and flight dynamic analysis. To efficiently compute

the unsteady nature of the fluid and structural governing equations, the time spectral method

has been used and coupled adjoint-based sensitivity analysis has been developed and applied

to carry out sensitivity analysis of rotor blades in forward flight condition.

1.1 CFD/CSD coupling

For FSI analysis, the CFD and CSD solvers can be coupled by either loose coupling or tight

coupling. The differences in these coupling strategies are briefly summarized in how data are

1



2 Chapter 1. Introduction

exchanged and tracked by the CFD and CSD modules. In loose coupling, separately fully

converged airloads and structural displacements are exchanged, while in tight coupling, all

the aerodynamic and structural dynamic equations are converged simultaneously through

pseudo time iteration. In loose coupling, the converged pressure distribution on the rotor

blade is transferred for the entire revolution from the CFD to CSD module and the structural

deformation is transferred back from the CSD to CFD module, again, for the entire revolu-

tion. The main advantage of this method is that it converges in a few (7∼8) FSI iterations.

Due to its simplicity, the method was the first approach to be widely used for solving rotor

aeroelastic problems. The tight coupling is a direct approach to solve coupled CFD and

CSD equations. Tightly coupled two codes must run concurrently. Although tight coupling

is computationally expensive, it is a more rigorous strategy which integrates fluid/structural

equations simultaneously at each step.

1.2 Time Spectral Method

The time spectral approach is an efficient method based on the Fourier collocation method.

It approximates the periodic solution by a Fourier series expansion and applies the collocation

method to replace the time derivative term in the governing equations by a simple matrix-

vector product form known as the time spectral derivative operator. The time spectral

method does not require transient calculation to reach the periodic steady state. The benefit

of using time spectral method compared to frequency domain methods is that it solves the

governing equations directly in the time-domain and removes the process of transforming

the flow solutions between the frequency and time domain. Time spectral method is well

suited to analyze unsteady periodic problems, such as helicopter rotor flow analysis.
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1.3 Adjoint-based Sensitivity Analysis

The use of adjoint method has become a popular approach for solving design optimization

problems. The adjoint based sensitivity analysis is cost effective as it can inexpensively

compute the sensitivity of an object with respect to a large number of design inputs. The

cost of sensitivity calculation is similar to the cost of a single analysis, which is unlike the

finite difference method, where the computational cost is proportional to the number of

design variables times the analysis cost. However, the application of the adjoint method to

the unsteady problem has been limited when the objective is a time averaged function and

the formulation of the adjoint method is dependent on the time integration method. The

flow and structural residuals, Jacobians, and adjoint variables should be stored at each time

step, requiring prohibitive amount of memory. This problem is further complicated when

carrying out sensitivity analysis for multidisciplinary coupled systems such as FSI problems.

There are two approaches to formulate the adjoint for a set of partial differential equations.

They are the continuous adjoint approach and the discrete adjoint approach. The continuous

adjoint approach consists of differentiating the partial differential equations analytically to

get the PDE form of the adjoint equations, which are then discretized so that they can be

solved numerically. However, the discrete adjoint approach starts with the discretized form

of the partial differential equations, which is then linearized to obtain the discrete adjoint

equations, which are a set of linear equations. The advantage of the continuous adjoint

approach is that it generates a linearized partial differential equation that can be solved by

using the same numerical iteration technique as the flow solution. This eliminates the need to

explicitly form the Jacobian and leads to fast and low memory adjoint implementations [1, 2].

However, the disadvantages of the continuous adjoint approach are a low accuracy for coarser

meshes and a challenging implementation. The fact that the PDEs are first linearized and

then discretized means that the discretized form of these equations is guaranteed to result
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in a fully consistent gradient only at the limit of an infinitely fine mesh [3]. Therefore, the

continuous adjoint produces inaccurate gradient for cases where the mesh or the numerical

methods have an effect on the solution accuracy [4]. For these reasons, the discrete adjoint

approach is used in this study.

1.4 Thesis Objectives

The aim of the current work is to extend the previous work of Choi, et. al. [5], where rotor

shape design was performed with the prescribed rotor blade deformations and trim angles.

While the previous work offered simplicity and speedy computations, it involves only the

aerodynamic analysis and requires measured or pre-computed deformation and trim control

inputs. In this study, a coupled analysis of fluid, structural, and flight dynamics is carried out

through a CFD/CSD/CA coupling procedure that combines the FSI analysis with enforced

vehicle trim condition. Following which, the coupled adjoint based sensitivity analysis is

performed for the fluid-structure system. The adjoint based sensitivity analysis is validated

by comparing with the finite difference method based sensitivity analysis results. Also, the

fluid-structure coupled sensitivity analysis results for the fluid-structure system are compared

with the aerodynamics only sensitivity analysis results to show the contribution of structural

deformation to the sensitivity analysis.



Chapter 2

Review of Literature

2.1 CFD/CA coupled FSI Analysis

Current comprehensive analysis tools for rotorcraft use simplified aerodynamic models such

as lifting line theory, which are based on the the relative movement of the each section with

respect to the flows [6]. The sectional angle of attack changes are computed based on the

rotor blade twist, the free-stream velocities, and the wake induced velocities. The aerody-

namic model calculates the pressure distribution on the surface of the airfoil which generates

airloads. However, high fidelity CFD can be used to calculate more accurate and detailed

pressure distributions. Though CFD has higher computational cost, increasing computa-

tional power and parallelization have enabled the use of CFD in such practical applications.

Coming to the structural dynamic model, the linear coupled (axial deflection, lead-lag bend-

ing, flap bending and torsion) structural dynamics of rotor were shown by Houbolt et al. [7].

Ormiston and Hodges [8] used a spring hinge to include the effect of centrifugal nonlin-

earities. A set of coupled, nonlinear structural equations of motion for large deformations

was derived by Hodges and Dowell [9]. Hodges et al. [10] developed nonlinear expressions

to relate the orientation of the deformed-beam cross section, torsion, local components of

bending curvature, angular velocity, and virtual rotation to deformation variables. This

development helps to clarify the nature of the elastic torsion variable which is treated as

a quasi-coordinate. These formulations are extended to include the nonlinear structural

5
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and inertial effects for large deformation by Kvaternik et al. [11], Rosen and Freidmann

[12]. The structural governing equations are discretized by using finite element method

[13, 14]. The rotor blade structural FEM model that includes the nonlinear terms are used

in this study. A comprehensive analysis(CA) should have the essential component models

(including the structural FEM model) to solve the multidisciplinary nature of helicopter

problems. The CA code need to compute airloads, structural deformation, trim control an-

gles and stability. Examples of the CA code are CAMRAD [15], UMARC [6] and RCAS

[16]. As mentioned in the introduction, coupling between CFD/CSD can be accomplished in

two ways. In loose coupling, airloads and structural deformation are interchanged between

aerodynamic and structural model once every revolution. Tung et al. [17] developed the

first CFD/CSD loose coupling procedure. In this procedure, the comprehensive analysis

provides the airloads sensitivities with respect to the rotor blade deformations that act as

aerodynamic damping, providing faster convergence. This procedure is called as the delta

method. Strawn and Desopper [18] combined a full potential equations based CFD solver

with the CAMRAD/JA helicopter performance code. The influence of flow field unsteadi-

ness is found to play an important role in the blade aerodynamics. Kim et al. [19] coupled

a Transonic Small Disturbance based CFD model with UMARC. In this study, the coupled

system proceeded updates of the vehicle trim and structural deformation during the coupling

process and used both lift and pitching moment. Sitaraman et al. [20] coupled TURNS-3D

and UMARC, and obtained flow solution with a prescribed deformation of the UH-60A at

high speed forward flight condition. Potsdam et al. [21] coupled OVERFLOW-D with

CAMRAD-II. Their CFD code used a high fidelity overset grid methodology with wake cap-

turing. They calculated the UH-60A Blackhawk helicopter rotor airloads across a range of

flight conditions. In the time accurate tight coupling approach, the CFD and CSD codes are

coupled at every time step and integrated simultaneously. Although tight coupling is more

rigorous, care should be taken to ensure timewise accuracy between CFD and CSD. Also,
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code modification may be required for efficient communications between CFD and CSD.

Altmikus et al. [22] made a comparison of two coupling strategies. They showed that tight

coupling is 2.5 times computationally expensive than loose coupling. Bauchau et al. [23]

made tightly coupled calculation and observed large differences between the prediction of the

rigid blade and aeroelastic cases. This demonstrates the need for coupling CFD and CSD for

rotorcraft comprehensive analysis. Pomin et al. [24] presented a numerical approach for the

aeroelastic analysis of helicopter rotor based on the RANS equations and Timoshenko beam

theory. The tightly coupled procedure was applied to generate hover performance data for

the ONERA 7A model rotor on periodic structured grids.

2.2 Adjoint-based Sensitivity Analysis

The use of adjoint method has become a popular approach for solving aerodynamic shape-

optimization problems using computational fluid dynamics [25, 26, 27]. This is largely due

to the fact that the adjoint based sensitivity analysis is cost effective as it can inexpensively

compute the sensitivity of an objective with respect to a large number of design inputs. The

cost of sensitivity calculation is similar to that of the analysis, which is unlike the finite

difference method, where the computational cost is proportional to the number of design

variables times the analysis cost. The computational cost of adjoint method is independent

of the number of design variables. However, the application of the adjoint method to un-

steady problem has been limited when the objective is a time dependent function and the

formulation of the adjoint method is dependent on the time integration method. The flow

residuals, Jacobians, and adjoint variables have to be stored at each time step, requiring pro-

hibitive amount of memory. Mavriplis [28] demonstrated the formulation and solution of the

adjoint problem for unsteady flow simulations using the Reynolds-averaged Navier-Stokes
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equations. Full implementation and application to large-scale problems including helicopter

rotor problem were made by Lee and Kwon [29], and by Nielsen et al. using NASA FUND3D

code [30, 31]. This problem is further complicated when carrying out sensitivity analysis

for FSI problems. The coupled adjoint based sensitivity analysis and design optimization for

static aeroelasitc problems has been shown by Martins et al. [32, 33, 34]. Maute et al. [35, 36]

calculated the sensitivity of a steady coupled aerodynamic structural system by both direct

and adjoint method. Mishra et al. [37, 38] have computed the sensitivity of coupled time

dependent aeroelastic systems for the purpose of shape optimization of helicopter rotors in

hover and forward flight conditions.

2.3 Time Spectral Method

Time spectral method has been used as an efficient approach for the simulation of periodic

problems. Gopinath, Weide and Jameson [39, 40, 41] proposed the time spectral algorithm

for the fast and efficient computation of time periodic turbulent Navier-Stokes calculations

past two and three dimensional bodies. Time spectral method has been applied to a large

number of applications such as turbo-machinery and flapping wings. Hall et al. [42] and

Jameson et al. [43] introduced time spectral concept to aerodynamic analysis which was

successfully applied to rotor flight [44], open rotor [45] problems. Helicopter rotor flow is

an appropriate application of the time spectral method due to the periodic nature of rotor

flows. Choi et al. [46, 47, 48, 49] applied time spectral approach to rotor flow analysis.

All these works have validated the applications of the time spectral method on a UH-60A

Black Hawk helicopter rotor for several flight conditions. Prasad et al. [50] have developed

a discrete adjoint approach for aeroelastic design sensitivities based on the time spectral

method. He et al. [51] applied Euler time-spectral computational fluid dynamics methods
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to model the flutter constraint and proposed a coupled adjoint method to calculate the

constraint sensitivity with respect to the design variables.



Chapter 3

Aerodynamic Model for Rotor Flows

3.1 Governing Equations

The Euler equations have been applied to inviscid compressible flow. The Arbitrary La-

grangian Eulerian (ALE) form of the Euler equations has been considered to accommodate

moving boundaries and mesh motion. Eq. (3.1)- Eq. (3.5) shows the 3-dimensional Euler

equations in conservation form.

∂ρ

∂t
+
∂(ρ(u− ux))

∂x
+
∂(ρ(v − vx))

∂y
+
∂(ρ(w − wx))

∂z
= 0 (3.1)

∂ρu

∂t
+
∂(ρu(u− ux) + p)

∂x
+
∂(ρu(v − vx))

∂y
+
∂(ρu(w − wx))

∂z
= 0 (3.2)

∂ρv

∂t
+
∂(ρv(u− ux)

∂x
+
∂(ρv(v − vx) + p)

∂y
+
∂(ρvw(w − wx))

∂z
= 0 (3.3)

∂ρw

∂t
+
∂(ρw(u− ux))

∂x
+
∂(ρw(v − vx))

∂y
+
∂(ρw(w − wx) + p)

∂z
= 0 (3.4)

∂ρet
∂t

+
∂(ρet(u− ux) + pu)

∂x
+
∂(ρet(v − vx) + pv)

∂y
+
∂(ρet(w − wx) + pw)

∂z
= 0 (3.5)

where u,v and w are the fluid velocities in x,y and z directions respectively, and ux, vx and

wx are the grid velocities. These equations can be expressed in a simple vector form as

10
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follows

V
∂w
∂t

+ R(w) = 0 (3.6)

where w is the fluid state vector, and R(w) is the residual vector of Euler Equations.

w =



ρ

ρu

ρv

ρw

ρet


(3.7)

3.2 Unsteady Flows in Time Spectral Form

The time-spectral approach has been used to overcome inefficient calculations by assuming

the periodic behavior of fluid. The fluid state variables are expressed as Fourier series with

a small number of harmonics. The advantage of the time spectral method is that it converts

unsteady problem to steady problem by removing time derivative terms. Then it can reduce

computing cost with accurate prediction capabilities. The basic concept of the time spectral

method is expressing the fluid state variables w(t) in terms of a discrete Fourier series as

shown in Eq. (3.8). The unsteady inviscid compressible Euler equations in time domain

shown in Eq. (3.6) are converted to the frequency domain using NH number of harmonics

and transformed into the time domain using 2NH + 1 number of time instances (collocation

points). Then the time spectral form of the aerodynamic governing equations can be written

as Eq. (3.9). The fundamental frequency ω0 is the rotor rotating speed and used to expand

the Fourier series expansion.
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w(t) = ŵ0 +

NH∑
n=1

(ŵcncos(ω0nt) + ŵsnsin(ω0nt)) (3.8)

ω0VDwts + Rts = 0 (3.9)

where, wts and Rts represent a set of flow variables and their residuals at collocation points,

respectively.

wts =



w(t0 +∆t)

w(t0 + 2∆t)

...

w(t0 + T )


,Rts =



R(t0 +∆t)

R(t0 + 2∆t)

...

R(t0 + T )


(3.10)

Steady state form of Eq. (3.9) can be solved using pseudo-time iteration method. Eq. (3.9)

can be written as Eq. (3.11) with the addition of the pseudo time derivative term for con-

vergence.

dwts

dτ
+ ω0VDwts + Rts = 0 (3.11)

The method is implemented in the flow solver of SUmb (Stanford University multi-block).

Spatial numerical flux is discretized using the JST scheme [52], and the time step is marched

using multi-stage Runge-Kutta method to obtain a steady-state solution in pseudo time.



3.3. Spectral Derivative Matrix 13

3.3 Spectral Derivative Matrix

The derivation of the time spectral matrix, ω0D, is described in this section to show the

difference between the aerodynamic and structural governing equations in time spectral

form. More details of the time spectral method and its derivation can be found in the work

of Naik [53]. The Fourier transform of a signal p(t) gives information about its spectrum.

That is, the time domain function is transformed into the frequency domain function. If p(t)

is a discrete periodic signal of length N

p[j] j = 0, 1, 2, ..., N − 1 (3.12)

The k-th component of its discrete Fourier transform is

Pk =
1

N

N−1∑
j=0

p[j]e−2πikj/N (3.13)

The discrete p[j] is defined over N time instances and spans a physical time period T . The

time vector is uniformly spaced starting from zero time. As a result, this following relations

hold

tj
T

=
j

N
, T = tN (3.14)

Then the k-th component of discrete Fourier transform, Pk, becomes

Pk =
1

N

N−1∑
j=0

p[j]e−2πiktj/T (3.15)

Pk is defined over the discrete frequencies, k. However, the time derivative needs to be taken

in the time domain. The inverse discrete Fourier transform of Pk transforms the expression
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back to the time domain.

p[l] =
N−1∑
k=0

Pke
2πiktl/T

=

N−1
2∑

k=−N−1
2

Pke
2πiktl/T

(3.16)

Taking the time derivative gives

∂p[l]

∂tl
=

∂

∂tl

N−1
2∑

k=−N−1
2

Pke
2πiktl/T

=
2π

T

N−1
2∑

k=−N−1
2

ikPke
2πiktl/T

=
2π

T

N−1
2∑

k=−N−1
2

ik(
1

N

N−1∑
j=0

p[j]e−2πiktj/T )e2πiktl/T

=
2π

T

1

N

N−1
2∑

k=−N−1
2

N−1∑
j=0

ikp[j]e−2πiktj/T e2πiktl/T

=
2π

T

1

N

N−1
2∑

k=−N−1
2

N−1∑
j=0

ikp[j]e2πik(tl/T−tj/T )

=
2π

T

1

N

N−1
2∑

k=−N−1
2

N−1∑
j=0

ikp[j]e2πik(l/N−j/N)

=
2π

T

1

N

N−1
2∑

k=−N−1
2

N−1∑
j=0

ikp[j]e2πik(l−j)/N

=
2π

T

N−1∑
j=0

 1

N

N−1
2∑

k=−N−1
2

ike2πik(l−j)/N

 p[j]

= ω0

N−1∑
j=0

D[l, j]p[j]

(3.17)
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where ω0 =
2π
T

, and D[l, j] is the spectral matrix

D[l, j] =
1

N

N−1
2∑

k=−N−1
2

ike2πik(l−j)/N (3.18)

Eq. (3.17) shows that the time derivative of the discrete periodic signal, p, can be calculated

by simply multiplied by ω0D, where ω0 =
2π
T

, and D is the spectral matrix.

∂p

∂t
= ω0Dp (3.19)



Chapter 4

Structural Model of Rotor Blade

Chapter 4 describes the structural model of rotor blade. The rotor blade is modeled as a

long, slender beam undergoing axial deflection, flap bending, lead-lag bending and torsional

deformation. The structural model follows the Hodges and Dowell formulation [9]. The

structural governing equations are derived by using Hamilton’s principle. The full derivation

of the governing equations is described in Datta’s work [54]. The governing equations are

spatially discretized by using Finite Element Method. The differential form of governing

equation in time domain is converted to the frequency domain, and then the time spectral

form of governing equation is derived at the end of this chapter.

4.1 Derivation of Governing Equations

A bend-twist beam model is a suitable and widely used structural model for slender rotor

blades. A bend-twist beam model was developed and implemented in UMARC (University

of Maryland Advanced Rotorcraft Code). Hamilton’s principle says that the trajectory of a

system, between two specified states at two specified times t1 and t2, is the stationary point

of the time integration of the difference between the potential and kinetic energies. For an

aeroelastic system, e.g. the helicopter rotor blade, there are non-conservative forces. The

16
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generalized Hamilton’s principle, applicable to non-conservative systems, is expressed as

δΠ =

∫ t2

t1

(δU − δT − δW )dt = 0 (4.1)

Where δT is the variation of kinetic energy and δU is the variation of strain energy. δW is

the virtual work done by external forces.

4.1.1 Coordinate Systems and Nondimensionalization

Two coordinate systems are used to describe the motion of rotor blade. The first one is the

undeformed blade coordinate system, (x, y, z). The unit vectors of undeformed coordinate

system are î, ĵ, k̂. The other is the deformed coordinate system, (ξ, η, ζ) with unit vector

îξ, ĵη, k̂ζ . The coordinate transformation matrix between these two coordinate systems can

be determined by the direction cosine between (ξ, η, ζ) and (x, y, z). The transformation

matrix can be expressed as 
îξ

ĵη

k̂ζ

 = TDU


î

ĵ

k̂

 (4.2)

where TDU is a function of three successive Euler angles.

All the structural analysis is done by solving nondimensional form of structural governing

equation. Using nondimensional form of governing equation helps to avoid scaling problems

and increase the generality of the analysis. The reference parameters that are used as the

nondimensionalization factors are shown in Table 4.1.

The axial coordinate x is nondimensionalized by R, and the azimuth angle is considered as
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Table 4.1: Nondimensionalization Reference Parameters

Length R
Time 1/Ω

Mass per Length m0

Velocity ΩR
Acceleration Ω2 R

Force m0Ω
2R2

Moment m0Ω
2R3

Work m0Ω
2R3

nondimensional time, therefore

∂( )

∂x
=
∂( )

∂r

∂r

∂x
=

1

R

∂( )

∂r
(4.3)

∂2( )

∂x2
=

1

R2

∂2( )

∂r2
(4.4)

∂( )

∂t
=
∂( )

∂ψ

∂ψ

∂t
= Ω

∂( )

∂ψ
(4.5)

∂2( )

∂t2
= Ω2∂

2( )

∂ψ2
(4.6)

4.1.2 Strain Energy

Due to the rotor blade being modeled as a long, slender beam element, the uni-axial assump-

tion can be used.

σyy = 0 (4.7)

σzz = 0 (4.8)

σyz = 0 (4.9)
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The remaining constitutive relations are

σxx = Eϵxx (4.10)

τxη = Gγxη (4.11)

τxζ = Gγxζ (4.12)

where σxx and ϵxx are the axial stress and strain, and τxη, τxζ and γxη, γxζ means the

transverse shear stress and strain. The strain energy of rotor blade can be expressed as

U =

∫ R

0

∫∫
A

(σxxϵxx + τxηγxη + τxζγxζ)dηdζdx (4.13)

The variation of strain energy can be calculated by using stress-strain relation.

δU =

∫ R

0

∫∫
A

(Eϵxxδϵxx +Gγxηδγxη +Gγxζδγxζ)dηdζdx (4.14)

The nonlinear strain-displacement relations up to second order (Hodges and Dowell [9]) are

ϵxx = u′ +
v′2

2
+
w′2

2
− λTϕ

′′ + (η2 + ζ2)(θ′ϕ′ +
ϕ′2

2
)

−v′′[ηcos(θ + ϕ)− ζsin(θ + ϕ)]

−w′′[ηsin(θ + ϕ) + ζcos(θ + ϕ)]

(4.15)

γxη = −1

2
(ζ +

∂λT
∂η

)ϕ′ = −ζ̂ϕ′ (4.16)

γxζ =
1

2
(η − ∂λT

∂ζ
)ϕ′ = η̂ϕ′ (4.17)
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where λT is the warp function. The quasi coordinate (ϕ̂) has relations with the twist (ϕ) as

follows

ϕ̂ = ϕ−
∫ r

0

w′v′′dx (4.18)

where r denotes the blade radial station. By differentiating this equation, Eq. (4.19) - Eq.

(4.20) can be acquired.

ϕ′ = ϕ̂′ + w′v′′ (4.19)

δϕ′ = δϕ̂′ + w′δv′′ + v′′δw′ (4.20)

The deformation variable u has relations with the quasi-coordinate ue as follows

u′ = u′e −
1

2
(v′2 + w′2) (4.21)

u = ue −
1

2

∫ x

0

(v′2 + w′2)dx (4.22)

δu′ = δu′e − v′δv′ − w′δw′ (4.23)

δu = δue −
∫ x

0

(v′δv′ + w′δw′)dx (4.24)

Using Eq. (4.19) - Eq. (4.24), the strains become as follows

ϵxx = u′e − λT (ϕ̂
′′ + w′′v′′ + w′v′′′) + (η2 + ζ2)(θ′ϕ̂′ + θ′w′v′′ +

ϕ̂′2

2
+
w′2v′′2

2
+ ϕ̂′w′v′′)

−v′′[ηcos(θ + ϕ̂)− ζsin(θ + ϕ̂)]− w′′[ηsin(θ + ϕ̂) + ζcos(θ + ϕ̂)]

(4.25)
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γxη = −ζ̂(ϕ̂′ + w′v′′) (4.26)

γxζ = η̂(ϕ̂′ + w′v′′) (4.27)

The variation of strains become

δϵxx = δu′e − λT (δϕ̂
′′ + w′′δv′′ + v′′δw′′ + w′δv′′′ + v′′′δw′)

+ (η2 + ζ2)(θ′δϕ̂′ + θ′w′δv′′ + θ′v′′δw′ + (ϕ̂′ + w′v′′)(δϕ̂′ + w′δv′′ + v′′δw′))

− [ηcos(θ + ϕ̂)− ζsin(θ + ϕ̂)]δv′′ + [ηsin(θ + ϕ̂) + ζcos(θ + ϕ̂)]v′′δϕ̂

− [ηsin(θ + ϕ̂) + ζcos(θ + ϕ̂)]δw′′ − [ηcos(θ + ϕ̂) + ζsin(θ + ϕ̂)]w′′δϕ̂

(4.28)

δγxη = −ζ̂(δϕ̂′ + w′δv′′ + v′′δw′) (4.29)

δγxζ = η̂(δϕ̂′ + w′δv′′ + v′′δw′) (4.30)

The variation of strain energy is acquired by substituting Eq. (4.28),(4.29) and (4.30) into

Eq. (4.14). This equation can be nondimensionalized as follows.

δŪ =
δU

m0Ω2R3
=

∫ 1

0

(Uu′eδu
′
e + Uv′δv

′ + Uw′δw′ + Uv′′δv
′′ + Uw′′δw′′ + Uϕ̂δϕ̂+ Uϕ̂′δϕ̂

′ + Uϕ̂′′δϕ̂
′′)dx

(4.31)

where the coefficients are

Uu′e =EA[u
′
e +K2

A(θ
′ϕ̂′ + θ′w′v′′ +

ϕ̂′2

2
)]

− EAeA[v
′′(cosθ − ϕ̂sinθ) + w′′(sinθ + ϕ̂cosθ]

(4.32)

Uv′ = 0 (4.33)

Uw′ = (GJ + EB1θ
′2)ϕ̂′v′′ + EAK2

Aθ
′v′′u′e (4.34)
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Uv′′ =v
′′[EIzcos

2(θ + ϕ̂) + EIysin
2(θ + ϕ̂)]

+ w′′(EIz − EIy)cos(θ + ϕ̂)sin(θ + ϕ̂)

− EB2θ
′ϕ̂cosθ − EAeAu

′
e(cosθ − ϕ̂sinθ) + EAK2

Au
′
ew

′θ′

+ (GJ + EB1θ
′2)ϕ̂′w′ − EC2ϕ̂

′′sinθ

(4.35)

Uw′′ =w′′[EIzsin
2(θ + ϕ̂) + EIycos

2(θ + ϕ̂)]

+ v′′(EIz − EIy)cos(θ + ϕ̂)sin(θ + ϕ̂)

− EB2θ
′ϕ̂sinθ − EAeAu

′
e(sinθ + ϕ̂cosθ) + EC2ϕ̂

′′cosθ

(4.36)

Uϕ̂ = (EIz − EIy)((w
′′2 − v′′2)cos(θ + ϕ̂)sin(θ + ϕ̂) + v′′w′′cos2(θ + ϕ̂)) (4.37)

Uϕ̂′ = GJ(ϕ̂′ + w′v′′) + EAK2
A(θ

′ + ϕ̂′)u′e + EB1θ
′2ϕ̂′ − EB2θ

′(v′′cosθ + w′′sinθ) (4.38)

Uϕ̂′′ = EC1ϕ̂
′′ + EC2(w

′′cosθ − v′′sinθ) (4.39)

The following sectional properties need to be defined to express the variation of strain energy

in a simple form.

∫∫
A

Edηdζ = EA (4.40)

∫∫
A

Eηdηdζ = EAeA (4.41)

∫∫
A

Eζ2dηdζ = EIy (4.42)

∫∫
A

Eη2dηdζ = EIz (4.43)

∫∫
A

G(η2 + ζ2)dηdζ = GJ (4.44)
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∫∫
A

E(η2 + ζ2)dηdζ = EAK2
A (4.45)

∫∫
A

E(η2 + ζ2)2dηdζ = EB1 (4.46)

∫∫
A

Eη(η2 + ζ2)dηdζ = EB2 (4.47)

∫∫
A

Eλ2Tdηdζ = EC1 (4.48)

∫∫
A

EζλTdηdζ = EC2 (4.49)

4.1.3 Kinetic Energy

The kinetic energy of the rotor blade is calculated by using two velocities. The first one

is the relative blade velocity with respect to the hub. The second one is the hub velocity

itself. The hub velocity originated from fuselage motions and is ignored in this study. Let

the location of a point after the beam deformation is defined by (x1, y1, z1) where

x1 = x+ u− λTϕ
′ − v′(y1 − v)− w′(z1 − w) (4.50)

y1 = v + (y1 − v) (4.51)

z1 = w + (z1 − w) (4.52)

where

y1 − v = ηcos(θ + ϕ̂)− ζsin(θ + ϕ̂) (4.53)

z1 − w = ηsin(θ + ϕ̂) + ζcos(θ + ϕ̂) (4.54)
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The blade velocity can be expressed as

V⃗ =
∂r⃗

∂t
+ Ω⃗× r⃗ (4.55)

The rotational velocity vector Ω⃗ is defined with precone angle of βp with respect to the rotor

shaft.

Ω⃗ = Ωsinβpî+ Ωcosβpk̂ (4.56)

The time derivative of displacement is

∂r⃗

∂t
= ẋ1î+ ẏ1ĵ + ż1k̂ (4.57)

Using Eq. (4.56) and Eq. (4.57) in Eq. (4.55), then we have

V⃗ = (ẋ1 − y1Ωcosβp)̂i+ (ẏ1 + x1Ωcosβp − z1Ωsinβp)ĵ + (ż1 + y1Ωsinβp)k̂ (4.58)

All velocities are nondimensionalized by RΩ, and the time derivative can be converted to

the azimuth angle derivative by using chain rule.

˙( ) =
∂( )

∂t
=
∂( )

∂ψ

∂ψ

∂t
= Ω

∂( )

∂ψ
(4.59)
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Then the variations of the velocities in nondimensionalized form become

V⃗ · δV⃗ = ẋ1δẋ1 − y1cosβpδẋ1 − ẋ1cosβpδy1 + y1cos
2βpδy1

+ ẏ1δẏ1 + x1cosβpδẏ1 − z1sinβpδẏ1 + ẏ1cosβpδx1 + x1cos
2βpδx1

− z1sinβpcosβpδx1 − ẏ1sinβpδz1 − x1cosβpsinβpδz1 + z1sin
2βpδz1

+ ż1δż1 + ż1sinβpδy1 + y1sinβpδż1 + y1sin
2βpδy1

(4.60)

In generalized Hamilton’s principle, the kinetic energy needs to be integrated in time between

t1 and t2. The initial and final values are set to zero. By using integration by parts, the

variations of the velocities can be converted to

V⃗ · δV⃗ = −ẍ1δx1 + 2ẏ1cosβpδx1 + y1cos
2βpδy1

− ÿ1δy1 − 2ẋ1cosβpδy1 + 2ż1sinβpδy1 + x1cos
2βpδx1

− z1sinβpcosβpδx1 − x1cosβpsinβpδz1 + z1sin
2βpδz1

− z̈1δz1 − 2ẏ1sinβpδz1 + y1sin
2βpδy1

(4.61)

The variation of kinetic energy in nondimensionalized form is expressed as follows

δT

m0Ω2R3
=

∫ 1

0

[

∫∫
A

ρV⃗ · δV⃗ dηdζ]dx =

∫ 1

0

[

∫∫
A

ρ(Tx1δx1 + Ty1δy1 + Tz1δz1)dηdζ]dx (4.62)

where Tx1 , Tx2 and Tx3 are

Tx1 = −ẍ1 + 2ẏ1cosβp + x1cos
2βp − z1sinβpcosβp (4.63)

Ty1 = −ÿ1 + y1cos
2βp − 2ẋ1cosβp + 2ż1sinβp + y1sin

2βp (4.64)

Tz1 = −z̈1 − x1cosβpsinβp + z1sin
2βp − 2ẏ1sinβp (4.65)
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Using Eq. (4.50), Eq. (4.51), and Eq. (4.52), the time derivatives of the displacement become

ẏ1 = v̇ − (ηsin(θ + ϕ̂) + ζcos(θ + ϕ̂))θ̇1

= v̇ − (z1 − w)θ̇1

(4.66)

ż1 = ẇ + (ηcos(θ + ϕ̂)− ζsin(θ + ϕ̂))θ̇1

= ẇ + (y1 − v)θ̇1

(4.67)

ẋ1 = u̇− λT ϕ̇
′ − v̇′(y1 − v)− v′(ẏ1 − v̇)− ẇ′(z1 − w)− w′(ż1 − ẇ)

= u̇− λT ϕ̇
′ − (v̇′ + w′θ̇1)(y1 − v) + (v′θ̇1 − ẇ′)(z1 − w)

(4.68)

where θ1 is θ + ϕ̂.

The second derivatives of the displacement are

ÿ1 = v̈ − (z1 − w)θ̈1 − (y1 − v)θ̇21 (4.69)

z̈1 = ẅ + (y1 − v)θ̈1 − (z1 − w)θ̇21 (4.70)

ẍ1 = ü− λT ϕ̈
′ − (v̈′ + 2ẇ′θ̇1 + w′θ̈1 − v′θ̇21)(y1 − v)

+(2v̇′θ̇1 + v′θ̈1 − ẅ′ + w′θ̇21)(z1 − w)

(4.71)

The variations of the displacement are

δy1 = δv − (z1 − w)δϕ̂ (4.72)

δz1 = δw + (y1 − v)δϕ̂ (4.73)

δx1 = δu− λT δϕ̂
′ − (δv′ + w′δϕ̂)(y1 − v) + (v′δϕ̂− δw′)(z1 − w) (4.74)
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Using Eq. (4.63) - Eq. (4.74) in Eq. (4.62), the variation of kinetic energy in nondimension-

alized form becomes

δT

m0Ω2R3
=

∫ 1

0

m(Tueδue + Tvδv + Twδw + Tv′δv
′ + Tw′δw′ + Tϕδϕ+ TF )dx (4.75)

The following sectional properties are useful to make simple expression.

∫∫
A

ρdηdζ = m (4.76)

∫∫
A

ρηdηdζ = meg (4.77)

∫∫
A

ρζ2dηdζ = mk2m1 (4.78)

∫∫
A

ρη2dηdζ = mk2m2 (4.79)

mk2m = mk2m1 +mk2m2
(4.80)

All the terms in Eq. (4.75) are truncated up to second order

Tue = −ü+ u+ x+ 2v̇ (4.81)

The relations between u and ue are shown in Eq. (4.21) - Eq. (4.24).

Tv = −v̈ + egθ̈sinθ + egcosθ + v − ϕ̂sinθ + 2ẇβp + 2egv̇
′cosθ

+2egẇ
′sinθ +

¨̂
ϕegsinθ − 2u̇e + 2

∫ x

0

(v′v̇′ + w′ẇ′)dx
(4.82)

Tw = −ẅ − egθ̈cosθ − eg
¨̂
ϕcosθ − 2v̇βp − xβp (4.83)
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Tv′ = −eg(xcosθ − ϕ̂xsinθ + 2v̇cosθ) (4.84)

Tw′ = −eg(xsinθ − ϕ̂xcosθ + 2v̇sinθ) (4.85)

Tϕ̂ = −k2m
¨̂
ϕ− (k2m2 − k2m1)(ϕ̂cos2θ + cosθsinθ)− xβpegcosθ

− vegsinθ + xv′egsinθ − xw′egcosθ + v̈egsinθ − ẅegcosθ − k2mθ̈

(4.86)

The non variational term TF becomes

TF = −Tue
∫ x

0

(v′δv′ + w′δw′)dx (4.87)

4.1.4 Virtual Work

The virtual work in nondimensionalized form is expressed as follows

δW

m0Ω2R3
=

∫ 1

0

(LAu δu+ LAv δv + LAwδw +MA
ϕ̂
δϕ̂)dx (4.88)

where LAu , LAv and LAw are the aerodynamic loads along the x, y, and z directions. Mϕ̂ stands

for the aerodynamic pitching moment.

4.1.5 Governing Equations

By using the Hamilton’s Principle (Eq. (4.1)) and collecting the terms related with δu, δv,

δw and δϕ̂, the equations of motion of rotor blade can be obtained as follows.

EA[u′e +K2
A(θ

′ϕ̂′ + θ′w′v′′ +
ϕ̂′2

2
)]′ − EAeA[v

′′(cosθ − ϕ̂sinθ) + w′′(sinθ + ϕ̂cosθ)]′

+m(üe − ue − x− 2v̇) = Lu

(4.89)
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[v′′(EIzcos
2(θ + ϕ̂) + EIysin

2(θ + ϕ̂)) + w′′(EIz − EIy)cos(θ + ϕ̂)sin(θ + ϕ̂)− EB2θ
′ϕ̂′cosθ

−EAeAu′e(cosθ − ϕ̂sinθ) + EAK2
Au

′
ew

′θ′]′ −m[−v̈ + egθ̈sinθ + egcosθ + v − ϕ̂sinθ

+2ẇβp + 2egv̇
′cosθ + 2egẇ

′sinθ +
¨̂
ϕegsinθ − 2u̇e + 2

∫ x

0

(v′v̇′ + w′ẇ′)dx]

−meg(xcosθ − ϕ̂xsinθ + 2v̇cosθ)′ + [mv′
∫ 1

x

(−üe + ue + x+ 2v̇]′ = Lv

(4.90)

[w′′(EIzsin
2(θ + ϕ̂) + EIycos

2(θ + ϕ̂)) + v′′(EIz − EIy)cos(θ + ϕ̂)sin(θ + ϕ̂)− EB2θ
′ϕ̂′sinθ

−EAeAu′e(sinθ + ϕ̂cosθ) + EC2ϕ̂
′′cosθ]′ −m[−ẅ + egθ̈cosθ − ¨̂

ϕegcosθ − 2v̇βp − xβp]

−meg(xsinθ + ϕ̂xcosθ + 2v̇sinθ)′ + [mw′
∫ 1

x

(−üe + ue + x+ 2v̇)]′ = Lw

(4.91)

(w′′2 − v′′2)(EIz − EIy)cos(θ + ϕ̂)sin(θ + ϕ̂) + v′′w′′(EIz − EIy)cos2(θ + ϕ̂)

−[GJ(ϕ̂′ + w′v′′) + EAK2
A(θ

′ + ϕ̂′)u′e + EB1θ
′2ϕ̂′ − EB2θ

′(v′′cosθ + w′′sinθ)]′

+[EC1ϕ̂
′′ + EC2(w

′′cosθ − v′′sinθ)]′′ − (−k2m
¨̂
ϕ− (k2m2 − k2m1)(ϕ̂cos2θ + cosθsinθ)− xβpegcosθ

−vegsinθ + xv′egsinθ − xw′egcosθ + v̈egsinθ − ẅegcosθ − k2mθ̈) = Lϕ̂

(4.92)

4.2 Structural Finite Element Model

4.2.1 Finite Element Discretization in Space

The rotor blade is discretized into a number of beam elements. Each beam element has

fifteen degrees of freedom. These degrees of freedom are distributed over five element nodes.

Six degrees of freedom are used at boundary node, and they are u, v, v′, w, w′, and ϕ. It

is also allocated two nodes for axial deflection, u, and one node for twist ϕ. Figure 4.1
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Figure 4.1: 15 degree of freedom beam element

shows a beam model with 15 degrees of freedom for each element to accommodate axial, lag-

wise, bend-wise, and torsional displacements. By using the interpolation polynomials, the

displacement over a beam element can be expressed in terms of elemental nodal displacement

qi. The displacement of i-th beam element is expressed as follows



u(s)

v(s)

w(s)

ϕ̂(s)


=



Hu 0 0 0

0 Hv 0 0

0 0 Hw 0

0 0 0 Hϕ̂


qi (4.93)

where s = x/li, li is the length of i-th beam element, qi is the elemental nodal displacement

vector.

qi =

{
u1 u2 u3 u4 v1 v′1 v2 v′2 w1 w′

1 w2 w′
2 ϕ̂1 ϕ̂2 ϕ̂3

}T

(4.94)
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The interpolating polynomial shape functions are

Hu =



−4.5s3 + 9s2 − 5.5s+ 1

13.5s3 − 22.5s2 + 9s

−13.5s3 + 18s2 − 4.5s

4.5s3 − 4.5s2 + s



T

(4.95)

H =



2s3 − 3s2 + 1

(s3 − 2s2 + s)li

−2s3 + 3s2

(s3 − s2)li



T

(4.96)

Hϕ̂ =


2s2 − 3s+ 1

−4s2 + 4s

2s2 − s



T

(4.97)

The shape functions for flap and lead-lag deflections (Hermite Polynomials) insure the con-

tinuity of displacement and slope respectively, and the shape functions for axial and twist

(Lagrange Polynomials) insure the continuity of displacement. By using finite element dis-

cretization, the second-order equation of motion of rotor blade can be expressed as

Mq̈ + Cq̇ + Kq = F (4.98)

where M, C, and K are the mass, damping, and stiffness matrices of the system respectively.

The Vector F(t) is the external force vector, and the vector q represents the displacements

along all degrees of freedom. At this point, it is necessary to show the element mass, stiffness,

damping matrices and load vector in detail. These element matrices and vector are assembled
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to construct the global matrices and load vector which are shown in the structural governing

equation (Eq.(4.98)). The element mass, stiffness and damping matrices can be partitioned

to indicate the contributions of axial deflection, lead-lag bending, flap bending and torsion

as follows.

[M ]i =



[Muu] [Muv] [Muw] [Muϕ]

[Mvu] [Mvv] [Mvw] [Mvϕ]

[Mwu] [Mwv] [Mww] [Mwϕ]

[Mϕu] [Mϕv] [Mϕw] [Mϕϕ]


(4.99)

[K]i =



[Kuu] [Kuv] [Kuw] [Kuϕ]

[Kvu] [Kvv] [Kvw] [Kvϕ]

[Kwu] [Kwv] [Kww] [Kwϕ]

[Kϕu] [Kϕv] [Kϕw] [Kϕϕ]


(4.100)

[C]i =



[Cuu] [Cuv] [Cuw] [Cuϕ]

[Cvu] [Cvv] [Cvw] [Cvϕ]

[Cwu] [Cwv] [Cww] [Cwϕ]

[Cϕu] [Cϕv] [Cϕw] [Cϕϕ]


(4.101)

The element mass matrix terms are expressed as

[Muu] =

∫ 1

0

mHT
uHuds (4.102)

[Mvv] =

∫ 1

0

mHTHds (4.103)
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[Mww] =

∫ 1

0

mHTHds (4.104)

[Mϕϕ] =

∫ 1

0

mk2mHT
ϕ̂
Hϕ̂ds (4.105)

[Mvϕ] = −
∫ 1

0

meg sin θHTHϕ̂ds (4.106)

[Mvϕ] =

∫ 1

0

meg cos θHTHϕ̂ds (4.107)

[Muv] = 0 (4.108)

[Muw] = 0 (4.109)

[Mvw] = 0 (4.110)

The element stiffness matrix terms are defined as

[Kuu] =

∫ 1

0

EAH′T
uH′

uds (4.111)

[Kvv] =

∫ 1

0

FAH′TH′ds+

∫ 1

0

(EIy sin2 θ + EIz cos2 θ)H′′TH′′ds−
∫ 1

0

mΩ2HTHds (4.112)

[Kww] =

∫ 1

0

FAH′TH′ds+

∫ 1

0

(EIz sin2 θ + EIy cos2 θ)H′′TH′′ds (4.113)

[Kϕϕ] =

∫ 1

0

mΩ2(k2m2 − k2m1) cos 2θHT
ϕ̂
Hϕ̂ds+

∫ 1

0

(GJ + EB1θ
′2)H′T

ϕ̂H′
ϕ̂ds

+

∫ 1

0

EC1H′′T
ϕ̂H′′

ϕ̂ds

(4.114)

[Kuv] = −
∫ 1

0

EAeA cos θH′T
uH′′ds (4.115)

[Kuw] = −
∫ 1

0

EAeA sin θH′T
uH′′ds (4.116)
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[Kuϕ] =

∫ 1

0

EAk2Aθ
′H′T

uH′
ϕ̂ds (4.117)

[Kvw] =

∫ 1

0

(EIz − EIy) sin θ cos θH′′TH′′ds (4.118)

[Kvϕ] =

∫ 1

0

mΩ2eg sin θHTHϕ̂ds−
∫ 1

0

xmΩ2eg sin θH′THϕ̂ds

−
∫ 1

0

EB2θ
′
cosθH′′TH′

ϕ̂ds−
∫ 1

0

EC2 sin θH′′TH′′
ϕ̂ds

(4.119)

[Kwϕ] =

∫ 1

0

xmΩ2eg cos θH′THϕ̂ds−
∫ 1

0

EB2θ
′ sin θH′′TH′

ϕ̂ds

+

∫ 1

0

EC2 cos θH′′TH′′
ϕ̂ds

(4.120)

The element damping matrix terms are expressed as

[Cuv] = −
∫ 1

0

2mΩHT
uHds (4.121)

[Cvv] =

∫ 1

0

2megΩ cos θH′THds−
∫ 1

0

2megΩ cos θHTH′ds (4.122)

[Cvw] = −
∫ 1

0

2mΩβpHTHds−
∫ 1

0

2megΩ sin θHTH′ds (4.123)

[Cvu] = −[Cuv] (4.124)

[Cwv] = −[Cvw] (4.125)

[Cuu] = 0 (4.126)

[Cuϕ] = [Cϕu] = 0 (4.127)

[Cvϕ] = [Cϕv] = 0 (4.128)

[Cwϕ] = [Cϕw] = 0 (4.129)
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[Cww] = 0 (4.130)

[Cϕϕ] = 0 (4.131)

The element load vector consists of two parts. The first one is contribution of the external

virtual work, δW , and the second one is contribution of the variation in kinetic energy, δT .

The load terms from the kinetic energy come from the inertial forces on the rotor blade

(centrifugal force). The load vector contains linear and nonlinear terms. The element load

vector can be expressed as

Fi = (F0)i + (FNL)i (4.132)

The linear load vector terms are defined as

(Fu)0 =

∫ 1

0

mΩ2xHT
uds (4.133)

(Fv)0 =

∫ 1

0

m(Ω2eg cos θ + θ̈eg sin θ)HTds−
∫ 1

0

mΩeg cos θxH′Tds (4.134)

(Fw)0 = −
∫ 1

0

mΩ2(βpcx+ θ̈eg sin θ)HTds−
∫ 1

0

mΩeg sin θxH′Tds (4.135)

(Fϕ)0 = −
∫ 1

0

mk2mθ̈ +mΩ2(k2m2 − k2m1) sin θ cos θHT
ϕ̂
ds−

∫ 1

0

mΩ2βpceg cos θxHT
ϕ̂
ds

(4.136)

The nonlinear load vector terms are expressed as

(Fu)NL = −
∫ 1

0

EA(eA(v
′′
ϕ̂ sin θ − w

′′
ϕ̂ cos θ) + k2A

ϕ̂′2

2
+ k2Aθ

′
w

′
v

′′
)H′T

uds (4.137)
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(Fv)NL =

∫ 1

0

((EIz − EIy)v
′′
ϕ̂ sin 2θ − (EIz − EIy)w

′′
ϕ̂ cos 2θ)H′′Tds

−
∫ 1

0

EAeAu
′

eϕ̂
′ sin θH′′Tds−

∫ 1

0

(GJϕ̂′w
′
+ EAk2Aθ

′
w

′
u

′

e)H′′Tds

+

∫ 1

0

(2m

∫ x

0

(v
′
v̇

′
+ w

′
ẇ

′
)dξ)HTds−

∫ 1

0

(2v
′
∫ 1

x

mv̇dξ)H′Tds

(4.138)

(Fv)NL = −
∫ 1

0

((EIz − EIy)v
′′
ϕ̂ cos 2θ − (EIz − EIy)w

′′
ϕ̂ sin 2θ)H′′Tds

+

∫ 1

0

EAeAu
′

eϕ̂
′ cos θH′′Tds−

∫ 1

0

(GJϕ̂′v
′′
+ EAk2Aθ

′
v

′′
u

′

e)H′Tds

−
∫ 1

0

(2w
′
∫ 1

x

mv̇dξ)H′Tds

(4.139)

(Fv)NL = −
∫ 1

0

((EIz − EIy)w
′′2 sin θ cos θ + (EIz − EIy)v

′′
w

′′ cos 2θ)HT
ϕ̂
ds

+

∫ 1

0

(EIz − EIy)v
′′2 sin θ cos θHT

ϕ̂
ds−

∫ 1

0

(EAk2Aϕ̂
′u

′

e +GJw
′
v

′′
)HT

ϕ̂
ds

(4.140)

The second order differential equations (Eq. (4.98)) can be reduced to first-order differential

equations by introducing new state vector y and coefficient matrix A and B as follows

ẏ = Ay + Bf (4.141)

where,

y =

qq̇
 ,A =

 0 I

−M−1K −M−1C

 ,B =

 0

M−1

 , f =
0

F

 (4.142)

The residual of the structural equations can be defined as

S = ẏ − Ay − Bf = 0 (4.143)
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4.2.2 Structural Governing Equation in Time Spectral Form

The identical definition and approach of time spectral method in the aerodynamic system

can be applied to the structural governing equations.

y(t) = ŷ0 +

NH∑
n=1

(ŷcncos(ω0nt) + ŷsnsin(ω0nt)) (4.144)

The structural governing equations in the time spectral form are obtained as Eq. (4.145),

where the structural state vector y and the airload vector f are expanded equivalent to the

fluid state vector of aerodynamic governing equations in time spectral form, as shown in

Eq. (3.8).

dyts

dτ
+ Dyts − Ayts − Bfts = 0 (4.145)

yts =



y(t0 +∆t)

y(t0 + 2∆t)

...

y(t0 + T )


, fts =



f(t0 +∆t)

f(t0 + 2∆t)

...

f(t0 + T )


(4.146)

In this approach, the aerodynamic forces are calculated from Eq. (3.11) and implemented

as external forces in Eq. (4.145) for the aeroelastic system, which in turn calculates the

deformations. The nodal displacements are used to update the CFD grid mesh.
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4.2.3 Derivation of Spectral Matrix in Structural Governing Equa-

tion

This section describes the derivation of spectral matrix in structural governing equations in

time spectral form. Once the structural governing equations are nondimensionalized, then

the time derivatives are replaced by the derivatives with respect to the azimuth angle. This

can be shown by using uncoupled structural governing equations, Eq.(4.147)-Eq.(4.149).

mü− EA
∂2u

∂x2
= fx (4.147)

mẅ − EI
∂4w

∂x4
= fz (4.148)

mk2Aθ̈ −GJ
∂2θ

∂x2
=M (4.149)

Eq.(4.147)-Eq.(4.149) are the uncoupled governing equations of axial deflection, flap bending

and twist. As shown in Eq. (4.3) and Eq. (4.5), the axial coordinate x is nondimensionalized

by R, and the azimuth angle is considered as nondimensionalized time.

m

m0

∂2ū

∂ψ2
− EA

m0Ω2R2

∂2ū

∂r2
=

fx
m0Ω2R

(4.150)

m

m0

∂2w̄

∂ψ2
− EI

m0Ω2R4

∂4w̄

∂r4
=

fz
m0Ω2R

(4.151)

mk2A
m0R2

∂2θ̄

∂ψ2
− GJ

m0Ω2R4

∂2θ̄

∂r2
=

M

m0Ω2R2
(4.152)

Eq.(4.150)-Eq.(4.152) are nondimensionalized axial, bending and twist governing equations.

The derivatives with respect to the azimuth angle take the places of the time derivatives.

The spectral matrix in the structural governing equations can be derived by using equivalent
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process in Eq. (3.17). Taking the derivative with respect to the azimuth angle gives

∂p[l]

∂ψl
=

∂

∂ψl

N−1
2∑

k=−N−1
2

Pke
2πiktl/T (4.153)

If the rotational speed,ω0, is constant, the azimuth angle can be defined as

ψ = ω0t =
2π

T
t (4.154)
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Then 2πtl/T in Eq.(4.153) can be replaced by ψl, and Eq.(4.153) becomes

∂p[l]

∂ψl
=

∂

∂ψl

N−1
2∑

k=−N−1
2

Pke
ikψl

=

N−1
2∑

k=−N−1
2

ikPke
ikψl

=

N−1
2∑

k=−N−1
2

ik(
1

N

N−1∑
j=0

p[j]e−2πiktj/T )eikψl

=
1

N

N−1
2∑

k=−N−1
2

N−1∑
j=0

ikp[j]e−2πiktj/T e2πiktl/T

=
1

N

N−1
2∑

k=−N−1
2

N−1∑
j=0

ikp[j]e2πik(tl/T−tj/T )

=
1

N

N−1
2∑

k=−N−1
2

N−1∑
j=0

ikp[j]e2πik(l/N−j/N)

=
1

N

N−1
2∑

k=−N−1
2

N−1∑
j=0

ikp[j]e2πik(l−j)/N

=
N−1∑
j=0

 1

N

N−1
2∑

k=−N−1
2

ike2πik(l−j)/N

 p[j]

=
N−1∑
j=0

D[l, j]p[j]

(4.155)

Eq. (4.155) shows that the derivative with respect to the azimuth angle of the discrete

periodic signal, p, can be calculated by simply multiplied by D.

∂p

∂ψ
= Dp (4.156)
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This section explains the reason why Eq.(4.145) has Dyts instead of ω0Dyts.

4.2.4 Modal Reduction of the Structural Governing Equations

The FEM structural governing equations Eq. (4.98) generally involves a lot of degrees of

freedom. In order to reduce computational time, the structural governing equations are

converted into the normal mode form. This process helps to reduce the number of de-

grees of freedom and to mitigate the convergence issues by eliminating the high frequency

modes. The modal transformation requires the computation of the natural frequencies and

the corresponding mode shapes of rotor blade’s free vibration. To make the modal analysis,

the damping matrix and the external loads are excluded. Then the structural governing

equations become

Mq̈ + Kq = 0 (4.157)

For the free vibration of rotor blade, the displacement can be assumed as

q = q̄eiωψ (4.158)

Substituting Eq. (4.158) in Eq. (4.157) gives

Kq̄ = ω2Mq̄ (4.159)

Eq. (4.159) is the eigenvalue problem. The eigenvalues (ω2) are real and positive, and the

corresponding eigenvectors (Φ) are also real and orthogonal. The displacement of rotor

blade are represented by a linear combination of the mode shapes (Φ) and the generalized
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coordinates (g). The rotor blade displacement vector q is approximated with n modes.

q = Φg (4.160)

where Φ is an N × n matrix and g is the generalized coordinate vector. N is the global

degrees of freedom of rotor blade and n is the number of modes selected to represent the

rotor blade response. Applying the normal mode transformation to Eq. (4.98) results in the

normal mode equations of rotor blade.

M̄g̈ + C̄ġ + K̄g = F̄ (4.161)

where

M̄ = ΦTMΦ

C̄ = ΦTCΦ

K̄ = ΦTKΦ

F̄ = ΦTF

(4.162)

M̄, C̄, K̄ and F̄ are respectively the modal mass, damping, stiffness matrices and the load

vector.

4.3 CFD/CA Coupled Analysis

Comprehensive analysis includes structural response analysis and coupled trim analysis.

Coupled trim analysis involves calculation of the rotor controls, vehicle orientation, and rotor

blade displacement such that the trim equations and the rotor blade structural equations of
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motion are satisfied. The satisfaction of the vehicle trim equations means that the resultant

forces and moments on the vehicle, averaged over one rotor revolution, become zero [54].

The satisfaction of the rotor blade structural equations of motion means determination of the

steady periodic structural deflection with a specified set of rotor control inputs. A primary

assumption on the trim analysis is a steady flight condition under the helicopter operation.

This requires the solution of the blade equations to converge to a periodic solution and the

rotor forces satisfy the vehicle trim equations. In order to determine this correct solution,

the rotor blade structural equations and the vehicle trim equations need to be solved as one

coupled solution. In general, the expressions for the vehicle equilibrium condition are

∑
F = 0 (4.163)

where the size of F = [F1, ..., F6]
T depends on the trim condition considered. F1, F2, and F3

are, respectively, the force equilibrium residuals in the X, Y, and Z directions, and F4, F5,

and F6 are the rolling, pitching, and yawing moment equilibrium residuals about the center

of gravity. For trim, the unknown control inputs to be determined from the equilibrium

equation Eq. (4.163) are

θ = [αs, ϕs, θ75, θ1c, θ1s, θtr]
T (4.164)

where αs and ϕs are forward and lateral shaft tilt angles, θ75 is the collective pitch angle

at 75 percent radius, θ1c and θ1s are respectively the lateral and longitudinal cyclic pitch

angles. The tail rotor pitch is simply a constant collective pitch input θtr. At this point,

it is necessary to discuss about CFD/CA coupling process. The fluid, structural, and flight

dynamics coupling is made at each pseudo time step, while all the fluid, structural and

flight dynamics solutions are converged together within pseudo-time iteration process. The
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followings show this procedure step by step.

1) Initialize [w0
ts, y

0
ts, θ

0
ts]

2) Get wts from aerodynamic analysis

dwts

dτ
+ ω0V Dwts + Rts = 0 (4.165)

wk+1
ts = wk

ts +∆wts (4.166)

3) Use the aerodynamic force as the external force of the structural system after r sub-

iterations

4) Get yts, θts from the coupled trim analysis

dyts

dτ
+Dyts − Ayts − Bfts = 0 (4.167)

yl+1
ts = yl

ts +∆yts (4.168)

Tts = 0 (4.169)

θl+1
ts = θl

ts +∆θts (4.170)

5) Perform interpolation to get deformation δj

6) Update the aerodynamic grid system

7) Repeat 2)-6) until the aerodynamic force and structural deformation are converged
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Figure 4.2: Serial staggered procedure of coupled aeroelastic analysis
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Coupled Sensitivity Analysis

5.1 Sensitivity Analysis

Sensitivity analysis is the process of computing derivatives of one or more quantities (out-

puts) with respect to one or several independent variables of interest (inputs). It is an

important tool that is used across multiple disciplines, such as design optimization, uncer-

tainty quantification, etc. Although there are various uses for sensitivity information, the

main motivation is the use of sensitivity information in gradient-based optimization. A

general constrained optimization problem can be expressed as

minimize f(xi)

w.r.t xi, i = 1, 2, ..., n

subject to cj(xi) ≥ 0, j = 1, 2, ...,m

(5.1)

In order to solve a general constrained optimization problem using a gradient-based opti-

mization algorithm, the sensitivities of the objective function (▽f(xi)) and the sensitivities

of all the active constraints (∂cj/∂xi) at the current design point should be obtained. Since

the calculation of gradients is often the most costly step in the optimization cycle, using

efficient methods that accurately calculate sensitivities is extremely important. There are

multiple approaches adopted in practice for sensitivity analysis, the benefits and drawbacks

46
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of which shall be discussed briefly.

Most gradient-based optimizers use finite-differences for sensitivity analysis. Finite differ-

ence method is both costly and subject to inaccuracies. The computational cost of finite

difference method is proportional to the number of design variables, when this number is

large, sensitivity analysis is the bottleneck in the optimization cycle. Eq. 5.2 shows a forward

finite difference approximation.

df

dx
≈ f(x+ h)− f(x)

h
+O(h) (5.2)

Complex step method is accurate and robust way for sensitivity calculation. The implemen-

tation of complex step method is relatively easy. However, the computational cost is also

proportional to the number of design variables. Eq. 5.3 shows a complex step method.

df

dx
≈ Im[f(x+ ih)]

h
+O(h2) (5.3)

Analytic differentiation is most accurate and efficient method available for sensitivity anal-

ysis. The function of interest can be either the objective function or any of the constraints

specified in the optimization problem. In general, such function depends not only on the

design variables, but also on the physical state of the system. Thus the function can be

expressed as

f = f(xn, yi) (5.4)

where xn represents the vector of design variables and yi is the state variable vector. For a

given design variable vector xn, the solution of the governing equations of the system yields

a state vector yi, thus establishing the dependence of the state of the system on the design



48 Chapter 5. Coupled Sensitivity Analysis

variables. The governing equations can be expressed by Eq. (5.5).

Rk(xn, yi) = 0 (5.5)

As a first step toward obtaining the derivatives, the total derivative of f can be obtained by

using chain rule.
df

dxn
=

∂f

∂xn
+
∂f

∂yi

dyi
dxn

(5.6)

Since the governing equations must always be satisfied, the total derivative of the residuals

(Eq. (5.5)) with respect to any design variable must also be zero.

dRk

dxn
=
∂Rk

∂xn
+
∂Rk

∂yi

dyi
dxn

= 0 (5.7)

Eq.(5.7) provides the means for computing the total sensitivity of the state variables(yi) with

respect to the design variables(xn). By rearranging Eq.(5.7), dyi
dxn

can be expressed as

dyi
dxn

= −[
∂Rk

∂yi
]−1∂Rk

∂xn
(5.8)

By substituting dyi
dxn

, the total derivative Eq.(5.6) becomes

df

dxn
=

∂f

∂xn
− ∂f

∂yi
[
∂Rk

∂yi
]−1∂Rk

∂xn
(5.9)

The approach where dyi
dxn

is first calculated by using Eq.(5.8) and then the result is substituted

in the expression for the total derivative (Eq.(5.9)) is called the direct analytic method. There

is an alternative option for computing the total derivative df
dxn

in Eq.(5.9). This approach is

called as adjoint method, so it is semi-analytic method. By introducing new adjoint vector
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ψk (= − ∂f
∂yi

[∂Rk

∂yi
]−1), the adjoint equation is obtained.

∂Rk

∂yi
ψk = − ∂f

∂yi
(5.10)

Once the adjoint vector ψk is obtained, the total derivative of the function of interests can

be calculated as follow
df

dxn
=

∂f

∂xn
+ ψk

∂Rk

∂xn
(5.11)

In contrast with the direct analytic method, the adjoint vector does not depend on the design

variables (xn), but instead depends on the function of interest (f). Therefore, if the number

of design variables is greater than the number of functions, the adjoint method is computa-

tionally more efficient. Otherwise, if the number of functions to be differentiated is greater

than the number of design variables, the direct analytic method would be a better choice.

The details of adjoint method are discussed in next section. Automatic differentiation, also

known as computational differentiation or algorithmic differentiation, is a popular approach

based on the systematic application of the differentiation chain rule to computer programs.

Although this approach is as accurate as an analytic method, it is potentially much easier to

implement since this can be done automatically. This method is based on the application of

the chain rule of differentiation to each operation in the program flow. The derivatives given

by chain rule can be propagated forward or backward. Fig. 5.1 summarize the methods for

computing derivatives.

5.2 Coupled Adjoint-based Sensitivity Analysis

In this study, coupled adjoint-based sensitivity analysis is carried out to get the gradient

information that will be used in shape optimization. The sensitivities of objective function
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Figure 5.1: Sensitivity Analysis Methods

and constraints are computed with respect to design variables which characterize the shape

of rotor blade. As discussed in the Introduction chapter, the sensitivity analysis is performed

using the adjoint method, and the adjoint formulation for gradient computation for current

problem is derived. The design problem to be solved in this study is the optimization problem

of minimizing the objective function, I, with a number of design variables, b, while satisfying

a set of constraints. The objective function (I) depends on the flow state, w, the structural

state, y, and the fluid mesh state, x.

minimize I(w, y, x, b)

subject to R(w, y, x, b) = 0

S(w, y, x, b) = 0

(5.12)

Where the constraints R and S represent the time-spectral form of the fluid governing equa-

tions and the rotor blade structural equations of motion. The sensitivities of the objective
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with respect to the design inputs can be computed by using the chain rule.

dI

db
=
∂I

∂b
+
∂I

∂w

∂w

∂b
+
∂I

∂y

∂y

∂b
+
∂I

∂x

∂x

∂b
(5.13)

Similarly, considering the fluid, structural state equations and the trim equations, these

equations are also dependent on the same state, control inputs, and design variables. The

total derivatives of the state equations and trim equations can be calculated.

dR(w, y, x, b)

db
=
∂R

∂b
+
∂R

∂w

∂w

∂b
+
∂R

∂y

∂y

∂b
+
∂R

∂x

∂x

∂b
= 0

dS(w, y, x, b)

db
=
∂S

∂b
+
∂S

∂w

∂w

∂b
+
∂S

∂y

∂y

∂b
+
∂S

∂x

∂x

∂b
= 0

(5.14)

However, irrespective of the design variables, the residuals of the state equations and the

trim equations must be equal to zero, as they are the governing equations. Thus, their total

derivatives with respect to the design variable should remain zero. The total derivatives can

then be multiplied by each of adjoint vector elements and added to the sensitivities of the

objective function, as expressed in Eq. (5.15).

dI

db
=
∂I

∂b
+
∂I

∂w

∂w

∂b
+
∂I

∂y

∂y

∂b
+
∂I

∂x

∂x

∂b
+ ψTa

(
∂R

∂b
+
∂R

∂w

∂w

∂b
+
∂R

∂y

∂y

∂b
+
∂R

∂x

∂x

∂b

)
+ϕTa

(
∂S

∂b
+
∂S

∂w

∂w

∂b
+
∂S

∂y

∂y

∂b
+
∂S

∂x

∂x

∂b

) (5.15)

Rearranging the terms and bringing the state sensitivity terms together,

dI

db
=
∂I

∂b
+ ψTa

∂R

∂b
+ ϕTa

∂S

∂b
+

(
∂I

∂w
+ ψTa

∂R

∂w
+ ϕTa

∂S

∂w

)
∂w

∂b

+

(
∂I

∂y
+ ψTa

∂R

∂y
+ ϕTa

∂S

∂y

)
∂y

∂b
+

(
∂I

∂x
+ ψTa

∂R

∂x
+ ϕTa

∂S

∂x

)
∂x

∂b

(5.16)

All the terms stated in Eq. (5.16) can be computed without solving the entire problem again,
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apart from ∂w/∂b and ∂y/∂b. The change in the aerodynamic and structural state cannot

be calculated without solving the FSI problem that drives the residuals goes to zero. The

dependence of the objective function gradient on the sensitivity of the state can be avoided

by setting the terms within the brackets to zero, giving the adjoint equation as written in

Eq. (5.17).

∂R
∂w

∂R
∂y

∂S
∂w

∂S
∂y


T ψaϕa

 = −


∂I
∂w

∂I
∂y

 (5.17)

Then, the objective function sensitivity can be calculated by using the adjoint variable vectors

from Eq. (5.17).

dI

db
=
∂I

∂b
+ ψTa

∂R

∂b
+ ϕTa

∂S

∂b
+

(
∂I

∂x
+ ψTa

∂R

∂x
+ ϕTa

∂S

∂x

)
∂x

∂b
(5.18)

5.3 Adjoint Jacobian Matrix

In order to compute the sensitivity by using the adjoint method, it is required to find the

adjoint Jacobian matrix first. For this, all the block Jacobians involving the coupled adjoint

matrix need to be computed and assembled. Each block Jacobian will be addressed term

by term for detail. Since the time spectral formulation has been applied, all the state

equations, state variables, and trim control inputs are considered simultaneously in the

Jacobian formulation. The state equations at a certain time instance will not depend onto

the states at another time instance. Therefore, ∂R/∂w has the diagonal form shown in

Eq. (5.20), where the Jacobian has both spectral parts and standard parts, and the standard

part is a block Jacobian, where the subscript denotes the time instance. The computation

of the fluid Jacobian at each time instance is well discussed in literature. More details of the



5.3. Adjoint Jacobian Matrix 53

fluid Jacobian can be found in the work of Lee. Ref.[55]

dR

dw
=

∂

∂w
(ωDw +Rts) = ωD +

dRts

dw
(5.19)

dRts

dw
=



∂R1

∂w1
0 0 0

0 ∂R2

∂w2
0 0

0 0
. . . 0

0 0 0 ∂RN

∂wN


(5.20)

where N is the number of time instances. The structural Jacobian has the same structure as

that of the fluid Jacobian. In fact, the structural state, given by Eq. (4.145), can be seen as a

linear function of the structural state. Therefore, the structural block Jacobian is expressed

as shown in Eq. (5.21)-(5.23).

dS

dy
=

∂

∂y
(ωDy + Sts) = ωD +

dSts
dy

(5.21)

dSts
dy

=



∂S1

∂y1
0 0 0

0 ∂S2

∂y2
0 0

0 0
. . . 0

0 0 0 ∂SN

∂yN


(5.22)

dS1

dy1
= A =

 0 I

−M−1K −M−1C

 (5.23)

On the other hand, calculating the cross Jacobians ∂R/∂y, and ∂S/∂w are not as simple

as the two Jacobians previously discussed. The state equations are not explicitly a function

of the other state variables. However, the state equations are affected by the each other

states through the FSI coupling. For example, considering the spatially discretized form of
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the fluid residuals (for each cell), given by Eq.(5.24), it can be seen that the residual also

depends on the cell face area projections (∆sx) along with the fluid state.

R =

nfaces∑
j=1

Fj(w)∆sxj (5.24)

Hence, for the first off diagonal block Jacobian, ∂R/∂y, a change in the structural state,

deflection, would perturb the surface mesh (xs) along the wetted boundary, which in turn

would perturb the volume mesh (xv). The perturbed volume mesh will perturb the mesh

metrics (sx) which would affect the fluid residual. Hence, the block Jacobian is computed

as shown in Eq. (5.25).

∂R

∂y
=
∂R

∂sx

∂sx
∂xv

∂xv
∂xs

∂xs
∂y

(5.25)

Similarly, the other off diagonal block Jacobian, ∂S/∂w, can be calculated. In this case, the

structural residuals would only get impacted by the fluid state through the aerodynamic force

term. Only the surface elements of the fluid mesh would impact the structural residuals, as

only they contribute in computing the aerodynamic force. Hence, ∂S/∂w would be sparse

and is calculated as shown in Eq. (5.26).

∂S

∂w
=
∂S

∂f

∂f

∂p

∂p

∂w
(5.26)

The structural residual,S, is defined in Eq. (4.143). Differentiation of Eq. (4.143) with

respect to external force shows that

∂S

∂f
= −B (5.27)
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The external force,f , can be calculated by integrating pressure on the rotor blade surface.

f =

∫∫
S

p dS (5.28)

Thus, the partial derivative, ∂f/∂p, is the surface normal area vector for each surface element.

∂f

∂p
= d⃗S (5.29)

Pressure can be expressed by using fluid state variable,w.

p = (γ − 1)

(
w5 −

1

2w1

(
w2

2 + w2
3 + w2

4

))
, w =



w1

w2

w3

w4

w5


=



ρ

ρu

ρv

ρw

ρE


(5.30)

The partial derivative, ∂p/∂w, can be calculated by differentiating Eq. (5.30) one by one.

δp = (γ − 1)

(
δw5 +

1

2w2
1

(
w2

2 + w2
3 + w2

4

)
δw1 −

1

w1

(w2δw2 + w3δw3 + w4δw4)

)
(5.31)

The calculation of ∂S/∂w requires interpolation transfer matrix between CFD and structural

node.
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Validation and Coupled FSI Analysis

With the framework for the time spectral FSI analysis and its sensitivity analysis using

the adjoint method being established in the previous sections, the method is applied to the

helicopter rotor blade. The final goal of this work is to use the time spectral method to

predict the performance of the rotor blade and use that information to carry out coupled

adjoint based sensitivity analysis. The representative UH-60A like geometry rotor blade

based on the work in Ref. [49] has been chosen as there is a wide range of experimental and

computational data in different reports which serves well for the validation studies.

6.1 Validation of Rotor Flow Analysis

Using the time spectral approach can save the computational cost and make the coupling pro-

cess more efficient comparing to the conventional time accurate approach. The application of

the time spectral approach has been validated for rotor flows in Choi’s work [46, 47, 48, 49].

Several flight conditions of UH-60 (high speed forward flight, low speed forward flight, and

dynamic stall cases) have been used for test cases. The results from the high speed forward

flight case, C8534, are shown here for the validation purpose. The conventional comprehen-

sive analysis code with lifting line theory and free wake model cannot capture the advancing

side transonic flow and corresponding structural deformations, while CFD coupling with

CA plays a key role in improving pitching moment and vibration prediction. High fidelity

56
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CFD analysis seems to be a critical tool for rotor design in high speed forward flight condi-

tion [21, 56]. The time spectral analysis is coupled with a rotorcraft comprehensive analysis

tool, UMARC. The UMARC supplies the structural dynamic rotor blade model, the flight

dynamic model, and the airload gradient which is needed for delta method. The compu-

tational mesh is shown in Fig. 6.1. Fig 6.2 shows the pressure distributions on the blade

Figure 6.1: Single Bladed CFD Mesh

surfaces. The computed sectional normal forces are plotted in Figure 6.3. Also, they are

compared with flight test data. The test data come from the U.S.Army/NASA-Ames UH-

60A Black Hawk Airloads Program [57, 58]. The comprehensive set of flight test data from

the UH-60A Airloads Program has been used as benchmark to validate rotor analysis and
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Figure 6.2: Blade Surface Pressure Contours

refine the rotor structural dynamics in UMARC. Comparison between time spectral and

time accurate method shows good agreement, and both results match reasonably well with

flight test measured data.

Figure 6.3: Measured and predicted normal force in high speed flight condition(C8534)
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6.2 Validation of Rotor Blade Motion Analysis

In order to validate the rotor blade structural model, coupled trim analysis is performed with

the high speed flight condition C8534. Coupled trim analysis involves calculation of the rotor

controls, vehicle orientation, and rotor blade deformation such that the trim equations and

the blade response equations are satisfied. The satisfaction of the trim equations means

that the resultant forces and moments on the vehicle, averaged over one rotor revolution,

become zero [6]. The air loads from the CFD calculation in previous section are used as an

input of coupled trim analysis. The CFD air loads are used as correction over the air loads

calculated by the lifting line theory model in UMARC. In this procedure, called the delta

method, the comprehensive analysis supplies the air load sensitivities to blade deformations

which provide aerodynamic damping during convergence [54]. Fig. 6.4 shows the vehicle

equilibrium residuals and convergence. In this case, the convergence criteria are satisfied

in 32 iterations. The changes of 6 control inputs and disc loading over the coupled trim

iterations are shown in Fig. 6.5. The test data used in the present study are from Flight85

of the UH-60A Black Hawk Air Loads Program [59]. Flight 85 is a steady level flight and

corresponds to a nominal vehicle weight coefficient, Cw/σ, of 0.08. For example, counter 34

data corresponds to high speed forward flight (155 kts).

Figure 6.4: Vehicle Equilibrium Residuals and Convergence
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Figure 6.5: Disc Loading and Control Inputs

6.3 CFD/CA Coupled FSI Analysis

In this section, CFD is coupled with the Comprehensive Analysis (UMARC) to predict

the deformation and the air loads on the rotor blade. In loose coupling, air loads are

used to compute the rotor blade deformation. As a first step, lifting line theory is used

to generate air loads on the rotor blade surface. By using this initial guess, the iterative

coupled trim analysis calculates the rotor control inputs, vehicle orientations, and blade

deformation that satisfy the trim equations and the blade response equations. Then these

control inputs and deformation are used to update CFD grid mesh. With the modified

mesh, CFD calculation is performed to predict the air flow around the rotor blade. By

integrating pressure over the blade surface, the air load distribution on the surface of the

rotor blade can be generated. The distribution of air load is again used as an input for

coupled trim analysis. This step requires a proper interpolation between aero nodes and

structural nodes. This whole process is repeated until the converged solution is obtained.

Fig 6.6 gives a schematic of framework for this process. Figs. 6.7, 6.8, and 6.9 show how

the aero coefficients change through coupled CFD-Comprehensive Analysis iterations. This

analysis results in a converged solution in 8 iterations. The light blue solid line shows the

first iteration results which come from the CFD analysis using the structural deformation

of comprehensive analysis. This first comprehensive analysis is performed using a rough
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Figure 6.6: Process of CFD-Comprehensive Analysis

estimate of air load by lifting line theory. The second step (orange solid line) is calculated

using delta method, which utilizes the difference between CFD and lifting line theory air

loads. This process is repeated until the solution is converged. Fig. 6.10 is the convergence

plot of this process.

Figure 6.7: CFD-Comprehensive Analysis Results: CL
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Figure 6.8: CFD-Comprehensive Analysis Results: CD

Figure 6.9: CFD-Comprehensive Analysis Results: CM
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Figure 6.10: Convergence of CFD-Comprehensive Analysis



Chapter 7

Sensitivity Analysis Results

7.1 Design Problem Definition

Although shape optimization of rotor blade is not performed in this study, it is necessary

to define the design problem for sensitivity analysis purpose. The objective of shape opti-

mization problem can be minimizing the rotor torque. And the thrust level is required to

be equal to or greater than the initial value. This condition can be enforced as a nonlinear

constraint. Design variables are properly chosen to change the shape of the airfoil sections

along the span. The airfoil shape at the 9 radial locations along the span-wise direction

is perturbed by an application of Hicks-Henne bump functions. At each airfoil section, 10

bump functions are employed with the maximum bump location fixed at a designated lo-

cation. The amplitudes of the bump are used as the design variables. The airfoil shapes

between design locations are linearly interpolated. A total of 90 design variables are used

to change the shape of the rotor blade. The maximum size of bump function is limited so

that the mesh generator can make the geometry change. Fig. 7.1 shows the locations of the

design variables on the rotor blade surface. Fig. 7.2 shows the rotor blade shape changes

when three different size bumps are applied. delP is the design parameter which specifies

the height of bump.
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Figure 7.1: The Locations of Design Variables

Figure 7.2: The shape changes of rotor blade with different size bumps

7.2 Aerodynamics only Sensitivity Analysis

In Section 6.3, the converged CFD-Comprehensive analysis solution is obtained. It means

that the fluid and the structural states are known under a given flight condition. With these

fluid and structural states, the sensitivity analysis is performed. This section shows aerody-

namics only sensitivity analysis results. The contributions of the structural deformation are

not included in this sensitivity analysis. Flow solutions of the time-spectral computation are

used to get the values of objective function and constraints. Calculated fluid state is used as

an input of the discrete adjoint solver to compute the adjoint solution. Aerodynamics only
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adjoint solver becomes Eq. (7.1).

[
∂R

∂w

]T
ψa = − ∂I

∂w
(7.1)

The total derivatives of the objective with respect to the design variables are calculated via

vector operations using the adjoint parameters (ψ) as in Eq. (7.2).

dI

db
=
∂I

∂b
+ ψTa

∂R

∂b
(7.2)

Figs.7.3 shows the locations of rotor blades at each time instance and the corresponding

azimuth angles. The rotor blade at first time instance is located on top of the picture and it

corresponds to zero azimuth angle. At this time, the rotor blade is aligned with the y-axis

which has the same direction with free stream velocity. The rotor blade rotates in counter

clock wise direction. So, the rotor blade at second time instance is located at 40 degrees. A

rotor blade moving in the same direction as the vehicle is called the advancing blade, and the

blade moving in the opposite direction is called the retreating blade. In the advancing side,

the rotational speed is added to the free stream velocity. On the contrary, the relative speed

is the difference in velocity between those two in the retreating side. The rotor blades from

2 to 5 located in advancing side, and blades at 6 to 9 are in retreating side. Figs.7.4, and 7.5

show the aerodynamics only sensitivity analysis results. Sensitivity analysis shows that the

both objectives (lift and drag) are more sensitive to the design variables in the advancing

side, and the location of peak is constant. Fig.7.6 shows the location of this most sensitive

point in the airfoil section. This point is located on the upper surface near the leading edge.

In order to validate adjoint sensitivity analysis, sensitivity with respect to one design

variable (the 72nd design variable) is calculated by using Finite Difference Method (FDM)

and compared. The 72nd design variable corresponds to the peak in the Figs.7.4, and 7.5.
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Figure 7.3: The locations of rotor blade at each time instance

Fig.7.7 shows the location of bump which is used as the 72nd design variable. Assuming that

the perturbation (the height of bump function) is sufficiently small, the approximation of the

first derivative of objective function can be calculated by difference between objective values

with baseline and perturbed geometry. The difference needs to be divided by the magnitude

of perturbation to get the sensitivity. Figs.7.8, and 7.9 show the comparison between adjoint

and FDM sensitivities at 9 time instances. The comparison between two sensitivities show

good agreements overall, even with presence of small discrepancies. The light blue lines

show the partial derivatives of objective function with respect to the design variables, i.e.
∂I
∂b

. Partial derivative of a function of several variables is its derivative with respect to one



68 Chapter 7. Sensitivity Analysis Results

Figure 7.4: Sensitivity Analysis Result (Objective I=Drag)

of those variables, with others held constant. In this case, the ∂I
∂b

include only the effect

of the shape changes due to the design variable (bump function), such as change in surface

area vectors, whereas the flow state is fixed. The difference between the partial derivatives(
∂I
∂b

) and the total derivatives ( dI
db

) can be explained by the change of flow state, and it can

be mathematically expressed as ∂I
∂w

∂w
∂b

term in Eq. (4.2). The ∂w
∂b

is hard to calculate and

inefficient in terms of computational cost. Here, adjoint method calculates equivalent ψTa ∂R∂b
term instead of ∂I

∂w
∂w
∂b

.
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Figure 7.5: Sensitivity Analysis Result (Objective I=Lift)

Figure 7.6: Location of Sensitive Point in Airfoil Section)
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Figure 7.7: The location of 72nd design variable

Figure 7.8: Comparison between ADJ and FDM Sensitivities (DRAG)

7.3 Sensitivity Analysis using Finite Difference Method

This section describes the sensitivity analysis using a finite difference method (FDM) that

is compared with the adjoint sensitivity analysis in the previous section. The finite differ-

ence method is a numerical method for solving differential equations by approximating the
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Figure 7.9: Comparison between ADJ and FDM Sensitivities (LIFT)

derivatives with finite differences. The error in FDM solution is defined as the difference

between the approximation and the exact solution. The two sources of error in finite differ-

ence method are round-off error, the loss of precision due to computer rounding of decimal

digits, and truncation error or discretization error that comes from approximating an infi-

nite sum of series by a finite sum. FDM requires step size study to find optimal size of step

between two sources of error. Small step size is always helpful to reduce the truncation error

but it can cause the round-off error. In this study, the optimal size of bump needs to be

determined. At first, 8 different sizes of bump are tested to figure out how much they affect

the sensitivities of lift, drag, and pitching moment with 3 time instances. Fig.7.10 shows the

convergence of lift, drag and pitching moment with three time instances with respect to the

bump size. Y axis shows the sensitivity of lift, drag and moment, and X axis represents the

size of bump. delP is the parameter that specifies the maximum height of the bump function,

it varies from 0.125 to 10 in log scale. Drag sensitivity at the 1st time instance (CD1) shows

different pattern from the other 8 curves. This can be explained by round-off error. All 8

sensitivities in CD1 show very small differences between them. The limit on the number of
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Figure 7.10: Step size study (3 time instances)

digits could be the reason of this pattern. As a result, this step size study shows that all the

sensitivities are converged around delP = 1.0. Fig.7.11 and 7.12 show how the sensitivities

Figure 7.11: Step size study (3 time instances: DRAG)
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Figure 7.12: Step size study (3 time instances: LIFT)

of drag and lift along the azimuth angle change with different bump sizes. Y axis shows

the sensitivity of lift and drag, and X axis represents the azimuth angle. All the curves are

moving toward the smallest bump size curve (delP=0.125) as the bump size decreases. In

order to check the effect of the number of time instances on the sensitivity, similar step size

studies are made with a number of 9 time instances and 11 time instances. Eight different

sizes of bumps are used to check the convergence of the sensitivity with respect to the bump

size. Fig.7.13 - 7.15 show the lift, drag and pitching moment sensitivities with respect to the

bump sizes from finite difference sensitivity analysis using 9 time instances. Again, delP=1.0

shows good enough convergence. Fig.7.16 and 7.17 show the drag and lift sensitivities along

the azimuth angle. All curves fall on top of each other. The size of bump has very small

effect on the drag and lift sensitivities based on 9 time instances calculation compared to

the sensitivity calculation with 3 time instances. Figs.7.18 and 7.19 show the comparisons

of the drag and lift sensitivities from finite difference sensitivity analysis between 3,9 and 11

time instances. The grey line (3 nTS) is much different from the others. This indicates that
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Figure 7.13: Step size study (9 time instances: 1-3)

Figure 7.14: Step size study (9 time instances: 4-6)
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Figure 7.15: Step size study (9 time instances: 7-9)

Figure 7.16: Step size study (9 time instances: DRAG)

the calculation with 3 time instances is not good enough to simulate the motion of rotor

blades and to achieve exact sensitivities. For drag, the orange line (9 nTS) and the blue line
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Figure 7.17: Step size study (9 time instances: LIFT)

Figure 7.18: Comparison of DRAG sensitivity with 3,9,11 time instances

(11 nTS) shows good agreement. However, they show some discrepancy in lift sensitivities

in the advancing side. The blue line (11 nTS) has no data point near 120 degree azimuth

angle, so that is the reason why those two lines look different. Figs.7.18 and 7.19 show that
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Figure 7.19: Comparison of LIFT sensitivity with 3,9,11 time instances

the time spectral analysis with 9 time instances is good enough to calculate the lift and drag

sensitivities.

7.4 Coupled Sensitivity Analysis

The sensitivity analysis in Sections 7.2, 7.3 only account for the air flow changes due to

the shape perturbations. With structural state changes (i.e. deformation), generated based

on the air flow changes, accurate sensitivity analysis results can be expected. So, the fluid-

structure coupled sensitivity analysis is essential for a reliable design framework. Fig. 7.20

shows the fluid-structure coupled adjoint equations. The coupled adjoint Jacobian matrix

consists of 2 × 2 block Jacobians. The first one, ∂R
∂w

, is the aerodynamic Jacobian which

is used in aerodynamics only sensitivity analysis. It means the partial derivative of fluid

residual(R) with respect to the fluid state(w). The size of this sub-matrix is huge (368,640

× 368,640), but this is a sparse matrix. For the fluid-structure coupled sensitivity analysis,
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the other three Jacobians should be added. ∂S
∂y

is the structural Jacobian. It means the

partial derivative of structural residual(S) with respect to the structural state(y). The size

of this sub-matrix is 3,348 × 3,348. This matrix is a sparse matrix. The third Jacobian is
∂S
∂w

. This term is the off-diagonal term and it couples fluid and structure. So, it is called as

coupled cross Jacobian. This is the partial derivative of structural residual(S) with respect

to the fluid state(w). The size of this sub-matrix is 3,348 × 368,640. This is a sparse matrix.

The last one is ∂R
∂y

. This Jacobian is the other off-diagonal term, so it is one of coupled cross

Jacobians. This is the partial derivative of fluid residual(R) with respect to the structural

state(y). This sub-matrix is the only densely populated matrix. This can be explained by

the fact that the structural perturbation (displacement) affects all the volume mesh(xv) and

mesh metrics(sx) through surface mesh (xs). Due to the large size of the adjoint matrix,

Figure 7.20: Coupled Adjoint Solver

GMRES and Krylov subspace solver has been used to solve coupled adjoint equation. This

has been implemented by using PETSC library, which is a suite of scalable and parallel

routine for the large scale PDEs. This system takes around 1,500 iterations with 600 restart

iterations for the converged solutions. Fig.7.21 shows the comparison between adjoint-based

and FMD-based coupled sensitivity analysis results with respect to four different design

variables. The objective function of this analysis is the sum of all displacements. For the



7.4. Coupled Sensitivity Analysis 79

coupled sensitivity analysis, the sum of displacements is the direct measure of the change of

system. So, the displacement sensitivity is used to validate adjoint-based coupled sensitivity

analysis. The displacement sensitivities with respect to 69th and 70th design variables are

quite well matched with each other. However, the comparison between adjoint and FDM

sensitivities shows small discrepancy for 71st and 72nd bumps. This can be explained by

the fact that 71st and 72nd bump generated bigger aerodynamic load changes comparing

to other bumps in the same airfoil section. For these sensitive design variables, small error

source could be magnified then it shows bigger discrepancy than other design variables.

Fig.7.22 shows the comparison between adjoint-based and FMD-based coupled sensitivity

Figure 7.21: Coupled Sensitivity Analysis with respect to four Design Variables

analysis results with 3 time instances. They show good agreement in all 3 time instances.

The 69th bump is located on the lower surface of airfoil section.
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Figure 7.22: Coupled Sensitivity Analysis with 3 time instances

7.5 Future Work

After the development is completed, the fluid-structure coupled adjoint based sensitivity

analysis will be used to optimize the shape of the rotor blade. Minimization of required

power is pursued as an objective of the optimization problem with constraints on the thrust

and drag of the rotor. Therefore, plans for future work involve multidisciplinary design

optimization that integrates the CFD/CA coupling procedure. The overall design procedure

is shown in Fig. 7.23.
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Figure 7.23: Multidisciplinary Design Procedure



Chapter 8

Conclusions

This chapter summarizes the conclusion of this research work. This research focused on

the coupled sensitivity analysis combining fluid and structural analysis. The time-spectral

approach is used to overcome inefficient calculation of rotor flows by expressing flow and

structural state variables as Fourier series with small number of harmonics.

1. Time spectral formulation based fluid-structural governing equations are used for FSI

coupled analysis. The governing equations are modified by replacing physical time derivative

operator with spectral time derivative operators. There is a difference between fluid and

structural time spectral derivative operators due to the fact that nondimensionalized form

of structural governing equations are using the azimuth angle as nondimensional time. The

derivations of both time spectral derivative operators are shown in Sections 3.3 and 4.2.3 to

show the reason why they are different.

2. Coupled adjoint-based sensitivity analysis is discussed in 5.2. This section explains how

the adjoint method has become a popular approach for solving design problems with a large

number of design variables. The derivations of the adjoint Jacobian matrices are shown

including the cross Jacobian terms.

3. The accuracy and the efficiency of flow solver are examined by simulating the flow

conditions commonly encountered in a helicopter flight. Time spectral approach is used as

an efficient algorithm and applied to the simulation of UH-60A flight condition. A significant

82



83

reduction in the computational cost achieved by its Fourier series form of the periodic time

response and the assumption of periodic steady state. A good agreement between time

accurate and time spectral analysis is noted for the high speed flight condition of UH-60A

configuration. Predictions from both methods also agree quite well with the experimental

data.

4. Adjoint based aerodynamics only sensitivity analysis results are discussed in 7.2. The

gradients of aerodynamics coefficients (Cl and Cd) with respect to the design variables

(shape changes due to the bump functions) are computed using adjoint method, also they

are compared with the sensitivities from finite difference method. Even with presence of

small differences, these two results show a good agreement to each other. Aerodynamics

only sensitivity includes the effect of fluid state changes due to the shape changes, but the

contributions of structural deformation are not included.

5. FDM based aerodynamics only sensitivity analysis results are shown in 7.3. At first, step

size studies are performed to find an optimal size of bump function (design variables) for the

finite difference sensitivity analysis. Then, the gradients of aerodynamic coefficients with

different number of time instances are compared. The sensitivities with 9 time instances are

well matched with the results of 11 time instances, this shows that time spectral analysis

with 9 time instances are good enough to simulate the fluid and structural motion of rotor

blade.

6. Adjoint based coupled sensitivity analysis results are shown in 7.4. The gradients of

structural displacements with respect to the design variables are calculated using adjoint

method, and they are compared with the gradients from finite difference method. Even with

the presence of small discrepancy for two design variables, they show overall good agreement

to each other. Coupled sensitivity analysis includes not only the effect of fluid state changes

but also the contribution of structural deformation.
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7. The fluid-structure coupled adjoint based sensitivity analysis will be used to optimize the

shape of the rotor blade in the future work.



Bibliography

[1] Michael B Giles and Niles A Pierce. An introduction to the adjoint approach to design.

Flow, turbulence and combustion, 65(3-4):393–415, 2000.

[2] Jacques EV Peter and Richard P Dwight. Numerical sensitivity analysis for aerodynamic

optimization: A survey of approaches. Computers & Fluids, 39(3):373–391, 2010.

[3] Siva Nadarajah and Antony Jameson. A comparison of the continuous and discrete

adjoint approach to automatic aerodynamic optimization. In 38th Aerospace Sciences

Meeting and Exhibit, page 667, 2000.

[4] Thomas D Economon, Juan J Alonso, Tim A Albring, and Nicolas R Gauger. Adjoint

formulation investigations of benchmark aerodynamic design cases in su2. In 35th AIAA

Applied Aerodynamics Conference, page 4363, 2017.

[5] Seongim Choi, Kihwan Lee, Mark M Potsdam, and Juan J Alonso. Helicopter rotor

design using a time-spectral and adjoint-based method. Journal of Aircraft, 51(2):412–

423, 2014.

[6] Gunjit Bir, Indeerit Chopra, et al. University of maryland advanced rotor code (umarc)

theory manual. Center for Rotorcraft Education and Research, University of Maryland,

College Park, MD, 1994.

[7] John C Houbolt and George W Brooks. Differential equations of motion for combined

flapwise bending, chordwise bending, and torsion of twisted nonuniform rotor blades.

1957.

85



86 BIBLIOGRAPHY

[8] Robert A Ormiston and Dewey H Hodges. Linear flap-lag dynamics of hingeless heli-

copter rotor blades in hover. Journal of the American Helicopter Society, 17(2):2–14,

1972.

[9] Dewey H Hodges and EH Dowell. Nonlinear equations of motion for the elastic bending

and torsion of twisted nonuniform rotor blades. 1974.

[10] Dewey H Hodges, Robert A Ormiston, and David A Peters. On the nonlinear deforma-

tion geometry of euler-bernoulli beams. Technical report, NATIONAL AERONUAT-

ICS AND SPACE ADMINISTRATION MOFFETT FIELD CA AMES RESEARCH …,

1980.

[11] Raymond G Kvaternik and Krishna RV Kaza. Nonlinear curvature expressions for

combined flapwise bending, chordwise bending, torsion and extension of twisted rotor

blades. 1976.

[12] Aviv Rosen and Peretz P Friedmann. Nonlinear equations of equilibrium for elastic

helicopter or wind turbine blades undergoing moderate deformation. 1978.

[13] FK Straub and PP Friedmann. A galerkin type finite element method for rotary-wing

aeroelasticity. 1980.

[14] Inderjit Chopra and N Sivaneri. Aeroelastic stability of rotor blades using finite element

analysis. 1982.

[15] Johnson Aeronautics. Rotorcraft aerodynamics models for a comprehensive analysis.

[16] Hossein Saberi, Maryam Khoshlahjeh, Robert A Ormiston, and Michael J Rutkowski.

Overview of rcas and application to advanced rotorcraft problems. In American Heli-

copter Society 4th Decennial Specialists’ Conference on Aeromechanics, San Francisco,

CA, 2004.



BIBLIOGRAPHY 87

[17] Roger C Strawn and Francis X Caradonna. Conservative full-potential model for un-

steady transonic rotor flows. AIAA journal, 25(2):193–198, 1987.

[18] Roger C Strawn, Andre Desopper, Judith Miller, and Alan Jones. Correlation of puma

airloads: Evaluation of cfd prediction methods. 1989.

[19] Ki-Chung Kim, Andre Desopper, and Inderjit Chopra. Blade response calculations using

three-dimensional aerodynamic modeling. Journal of the American Helicopter Society,

36(1):68–77, 1991.

[20] Jayanarayanan Sitaraman, JD Baeder, and Inderjit Chopra. Validation of uh-60 rotor

blade aerodynamic characteristics using cfd. In ANNUAL FORUM PROCEEDINGS-

AMERICAN HELICOPTER SOCIETY, volume 59, pages 1452–1468. AMERICAN

HELICOPTER SOCIETY, INC, 2003.

[21] Mark Potsdam, Hyeonsoo Yeo, and Wayne Johnson. Rotor airloads prediction using

loose aerodynamic/structural coupling. Journal of Aircraft, 43(3):732–742, 2006.

[22] ARM Altmikus, S Wagner, Ph Beaumier, and G Servera. A comparison- weak versus

strong modular coupling for trimmed aeroelastic rotor simulations. In AHS Interna-

tional, 58 th Annual Forum Proceedings-, volume 1, pages 697–710, 2002.

[23] O Bauchau and J Ahmad. Advanced cfd and csd methods for multidisciplinary appli-

cations in rotorcraft problems. In 6th Symposium on Multidisciplinary Analysis and

Optimization, page 4151, 1996.

[24] Hubert Pomin and Siegfried Wagner. Navier-stokes analysis of helicopter rotor aerody-

namics in hover and forward flight. Journal of Aircraft, 39(5):813–821, 2002.

[25] Antony Jameson and John Vassberg. Computational fluid dynamics for aerodynamic



88 BIBLIOGRAPHY

design-its current and future impact. In 39th Aerospace Sciences Meeting and Exhibit,

page 538, 2001.

[26] Antony Jameson. Aerodynamic shape optimization using the adjoint method. Lectures

at the Von Karman Institute, Brussels, 2003.

[27] Sangho Kim, Juan J Alonso, and Antony Jameson. Multi-element high-lift configura-

tion design optimization using viscous continuous adjoint method. Journal of Aircraft,

41(5):1082–1097, 2004.

[28] Dimitri Mavriplis. Solution of the unsteady discrete adjoint for three-dimensional prob-

lems on dynamically deforming unstructured meshes. In 46th AIAA Aerospace Sciences

Meeting and Exhibit, page 727, 2008.

[29] Sang Wook Lee and Oh Joon Kwon. Aerodynamic shape optimization of hovering rotor

blades in transonic flow using unstructured meshes. AIAA journal, 44(8):1816–1825,

2006.

[30] Eric J Nielsen, Boris Diskin, and Nail K Yamaleev. Discrete adjoint-based design op-

timization of unsteady turbulent flows on dynamic unstructured grids. AIAA journal,

48(6):1195–1206, 2010.

[31] Eric J Nielsen, Elizabeth M Lee-Rausch, and William T Jones. Adjoint-based design of

rotors in a noninertial reference frame. Journal of Aircraft, 47(2):638–646, 2010.

[32] Joaquim R RA Martins, Juan J Alonso, and James J Reuther. High-fidelity aerostruc-

tural design optimization of a supersonic business jet. Journal of Aircraft, 41(3):523–530,

2004.

[33] Joaquim RRA Martins, Juan J Alonso, and James J Reuther. A coupled-adjoint sensi-



BIBLIOGRAPHY 89

tivity analysis method for high-fidelity aero-structural design. Optimization and Engi-

neering, 6(1):33–62, 2005.

[34] Gaetan KW Kenway, Graeme J Kennedy, and Joaquim RRA Martins. Scalable par-

allel approach for high-fidelity steady-state aeroelastic analysis and adjoint derivative

computations. AIAA journal, 52(5):935–951, 2014.

[35] Kurt Maute, Melike Nikbay, and Charbel Farhat. Coupled analytical sensitivity analysis

and optimization of three-dimensional nonlinear aeroelastic systems. AIAA journal,

39(11):2051–2061, 2001.

[36] Kurt Maute, Melike Nikbay, and Charbel Farhat. Sensitivity analysis and design op-

timization of three-dimensional non-linear aeroelastic systems by the adjoint method.

International Journal for Numerical Methods in Engineering, 56(6):911–933, 2003.

[37] Asitav Mishra, Dimitri Mavriplis, and Jay Sitaraman. Time-dependent aeroelastic

adjoint-based aerodynamic shape optimization of helicopter rotors in forward flight.

AIAA Journal, pages 3813–3827, 2016.

[38] Asitav Mishra, Karthik Mani, Dimitri Mavriplis, and Jay Sitaraman. Time-dependent

adjoint-based aerodynamic shape optimization applied to helicopter rotors. Rn, 3:2,

2014.

[39] Arathi Gopinath and Antony Jameson. Time spectral method for periodic unsteady

computations over two-and three-dimensional bodies. In 43rd AIAA aerospace sciences

meeting and exhibit, page 1220, 2005.

[40] Edwin Van Der Weide, Arathi Gopinath, and Antony Jameson. Turbomachinery appli-

cations with the time spectral method. In 35th AIAA Fluid Dynamics Conference and

Exhibit, page 4905, 2005.



90 BIBLIOGRAPHY

[41] Arathi Gopinath and Antony Jameson. Application of the time spectral method to

periodic unsteady vortex shedding. In 44th AIAA Aerospace Sciences Meeting and

Exhibit, page 449, 2006.

[42] Kenneth C Hall, Jeffrey P Thomas, and William S Clark. Computation of unsteady non-

linear flows in cascades using a harmonic balance technique. AIAA journal, 40(5):879–

886, 2002.

[43] Antony Jameson, J Alonso, and M McMullen. Application of a non-linear frequency

domain solver to the euler and navier-stokes equations. In 40th AIAA aerospace sciences

meeting & exhibit, page 120, 2002.

[44] DK Im, SI Choi, E Kim, JH Kwon, and SH Park. Unsteady aerodynamic analysis of

helicopter rotor blades using diagonal implicit harmonic balance method. Journal of

computational fluids engineering, 17(1):70–77, 2012.

[45] Ji-Sung Jang, Seongim Choi, Hyung-Il Kwon, Dong-Kyun Im, Duck-Joo Lee, and Jang-

Hyuk Kwon. A preliminary study of open rotor design using a harmonic balance method.

In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and

Aerospace Exposition, page 1042, 2012.

[46] Seongim Choi, Juan Alonso, Edwin Weide, and Jaina Sitaraman. Validation study of

aerodynamic analysis tools for design optimization of helicopter rotors. In 25th AIAA

Applied Aerodynamics Conference, page 3929, 2007.

[47] S Choi and A Datta. Time-spectral method for the cfd prediction of main rotor vibratory

loads. In 5th International Conference on CFD, 2008.

[48] Seongim Choi and Anubhav Datta. Cfd prediction of rotor loads using time-spectral



BIBLIOGRAPHY 91

method and exact fluid-structure interface. In 26th AIAA Applied Aerodynamics Con-

ference, page 7325, 2008.

[49] Seongim Choi, Mark Potsdam, Kihwan Lee, Gianluca Iaccarino, and Juan Alonso.

Helicopter rotor design using a time-spectral and adjoint-based method. In 12th

AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, page 5810,

2008.

[50] Rachit Prasad, Hyunsoon Kim, and Seongim Choi. Flutter related design optimization

using the time spectral and coupled adjoint method. In 2018 AIAA/ASCE/AHS/ASC

Structures, Structural Dynamics, and Materials Conference, page 0101, 2018.

[51] Sicheng He, Eirikur Jonsson, Charles A Mader, and Joaquim Martins. Aerodynamic

shape optimization with time spectral flutter adjoint. In AIAA Scitech 2019 Forum,

page 0697, 2019.

[52] Antony Jameson, Wolfgang Schmidt, and Eli Turkel. Numerical solution of the euler

equations by finite volume methods using runge kutta time stepping schemes. In 14th

fluid and plasma dynamics conference, page 1259, 1981.

[53] Kedar Naik. The time-spectral method: A primer. 2011.

[54] Anubhav Datta. Fundamental Understanding, Prediction and Validation of Rotor Vi-

bratory Loads in Steady-Level Flight. PhD thesis, 2004.

[55] Ki Hwan Lee. Design Optimization of Periodic Flows Usuing a Time-Spectral Discrete

Adjoint Method. Stanford University, 2010.

[56] Anubhav Datta and Inderjit Chopra. Validation of structural and aerodynamic mod-

eling using uh-60a airloads program data. Journal of the American Helicopter Society,

51(1):43–58, 2006.



92 BIBLIOGRAPHY

[57] William G Bousman. Uh-60 airloads program tutorial. 2009.

[58] R Kufeld, Dwight L Balough, Jeffrey L Cross, and Karen F Studebaker. Flight testing

the uh-60a airloads aircraft. In ANNUAL FORUM PROCEEDINGS-AMERICAN HE-

LICOPTER SOCIETY, volume 5, pages 557–557. American Helicopter Society, 1994.

[59] WG Bousman, RM Kufeld, D Balough, JL Cross, KF Studebaker, and CD Jennison.

Flight testing the uh-60a airloads aircraft. In 50th Annual Forum of the American

Helicopter Society, Washington, DC, 1994.


	Titlepage
	Abstract
	General Audience Abstract
	List of Figures
	List of Tables
	Introduction
	CFD/CSD coupling
	Time Spectral Method
	Adjoint-based Sensitivity Analysis
	Thesis Objectives

	Review of Literature
	CFD/CA coupled FSI Analysis
	Adjoint-based Sensitivity Analysis
	Time Spectral Method

	Aerodynamic Model for Rotor Flows
	Governing Equations
	Unsteady Flows in Time Spectral Form
	Spectral Derivative Matrix

	Structural Model of Rotor Blade
	Derivation of Governing Equations
	Coordinate Systems and Nondimensionalization
	Strain Energy
	Kinetic Energy
	Virtual Work
	Governing Equations

	Structural Finite Element Model
	Finite Element Discretization in Space
	Structural Governing Equation in Time Spectral Form
	Derivation of Spectral Matrix in Structural Governing Equation
	Modal Reduction of the Structural Governing Equations

	CFD/CA Coupled Analysis

	Coupled Sensitivity Analysis
	Sensitivity Analysis
	Coupled Adjoint-based Sensitivity Analysis
	Adjoint Jacobian Matrix

	Validation and Coupled FSI Analysis
	Validation of Rotor Flow Analysis
	Validation of Rotor Blade Motion Analysis
	CFD/CA Coupled FSI Analysis

	Sensitivity Analysis Results
	Design Problem Definition
	Aerodynamics only Sensitivity Analysis
	Sensitivity Analysis using Finite Difference Method
	Coupled Sensitivity Analysis
	Future Work

	Conclusions
	Bibliography

