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(ABSTRACT)

New methods for calculating the stochastic and seismic design response of linear

and nonlinear structures are presented.

For linear structures, two approaches are developed: (1) the modified mode dis-
placement approach for classically as well as non-classically damped structures, and
(2) the generalized force derivative approach for classically damped structures. Both
techniques improve the calculation of the pseudostatic contribution of the truncated
modes without including them in the analysis. In particular, the modified mode
displacement approach is a useful tool for the calculation of seismic design responses
affected by the contributions of higher modes. It properly considers the modal cor-
relations as well as the correlation between retained and truncated modes. It is as
fast as the mode acceleration method of structural dynamics and it only requires
the commonly used ground response spectra employed by the classical mode dis-
placement approach. On the other hand, the generalized force derivative approach
requires the input to be defined in terms of its power spectral density funcion, but it
improves even further the estimation of the missing mass effect due to the trucation

of modes.



For nonlinear structures, the stochastic equivalent linearization technique is em-
ployed to develop response spectrum approaches for hysteretic shear buildings and
for two dimensional frames with plastic hinges. For this purpose, a generalized
modal analysis technique is successfully employed. The proposed response spectrum
approaches require the input be defined in terms of the response spectrum of first
order oscillators as well as in terms of the commonly used ground response spectra.
For shear buildings, the work is extended to include the calculation of floor response
spectra. A simulation study is performed to compare the results obtained by the

proposed approach.
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Chapter 1

Introduction

The seismic design of important civil engineering structures are usually per-
formed by employing a time history analysis or a response spectrum analysis. In
the first, the seismic motions are defined by ground acceleration time histories and
it requires a laborious step-by-step calculation scheme. This method can be used
to determine the response of linear as well as nonlinear structures. The response
spectrum method, on the other hand, is used to calculate design response for input
prescribed by design ground response spectra. However, it is restricted to linear
structures. It uses modal analysis to uncouple the equations of motion and calcu-
lates the design response by an appropriate combination of the maximum responses
for each mode. The maximum modal response values are directly defined in terms

of ground response spectra.

For the combination of the maximum modal responses, several modal combina-
tion rules have been developed. The earliest of these combination rules is commonly
referred to as the square root of the sum of the squares (SRSS). This is based on the

assumption that the maximum modal responses do not occur at the same time and



are statistically uncorrelated. This assumption is obviously not true. It is especially
not true when the structural modes are close to each other. It is also not true for the
well separated modes, if at least one of the two modes is beyond the frequency range
of the input. These especial cases required modifications to the SRSS approach.
Several methods have been developed which account for the correlation between the
modes. The first very popular method was developed by Rosenblueth and Elorduy.
This was based on the assumption that the input was a white noise. The restriction
of the white noise was removed by Singh and Chu [45], where an improved modal
combination rule was proposed. Since then there have been other combination rules,
but usually are some minor modifications of the Rosenblueth and Elorduy’s rule. The
background details of these various methods are presented in chapter 2 and 3 where
we now propose a new rule which, of course, considers the correlation between the
closely spaced modes as well as the correlation between the higher and low frequency
modes. However, the proposed method does not require explicit calculation of these
high frequency modes. Therefore, it is especially effective when mode truncation is
performed in the response calculation. This new approach is called as the modified
mode displacement (MMD) response spectrum approach. The development of this
approach for the classically damped structures is presented in chapter 2 and for the

non-classically damped structures is presented in chapter 3.

The calculation of the higher modes of a system is usually associated with larger
numerical errors than the error for the lower modes. Fortunately, however, in most
dynamic analyses, especially in seismic analyses, the contribution of higher modes
to a response quantity is usually quite insignificant. Thus it is a common practice
to ignore the higher modes in a modal analysis procedure. Which higher modes can

be ignored in the calculation, depends upon the range of frequencies present in the



input motion. The modes which are much higher than the highest frequency of the
input, can be comfortably ignored. However, ignoring the modes with frequencies
close to the highest frequency of the input, can cause error. How can one reduce
this error of mode truncation is the subject of the study presented in chapter 4. A
procedure called force derivative method is presented to minimize this error. The
higher the order of the force derivative approach used, the smaller will be the error
in the calculated response. In this chapter, a recursive, easy to implement, scheme is
developed to obtain the higher order terms in the proposed approach. This method
has practical implication inasmuch as it can be used with advantage to improve the

accuracy of modal synthesis methods, see Suarez and Singh [51].

A common modal analysis approach or the spectrum approaches developed
above are not, of course, applicable to nonlinearly behaving structures. Thus they
can not be used for buildings or structures which yield during a strong ground shak-
ing. However, in the current design practice, buildings are expected to yield and
behave nonlinearly during a design level ground shaking. In this work, a generalized
response spectrum method, based on the concept of equivalent linearization, is devel-

oped to analyze nonlinear hysteretic structures and calculate their design response in

terms of site ground response spectra. A more complete background and the details
of the proposed approaches are described in two chapters. chapter 5 considers shear
buildings with nonlinear shear stiffnesses distributed along the interstory elements,
and chapter 6 considers two-dimensional structural frames with concentrated plastic

hinges.

The nonlinear hysteretic characteristics of the materials are modeled by the

versatile constitutive differential equations provided by Bouc-Wen [9, 56, 57]. A



stochastic linearization procedure determines a linear system which is statistically
equivalent to the nonlinear governing equations. The coefficients of the linear sys-
tem are selected such that they minimize the mean square error introduced by the
linearization process. The linearization coefficients are functions of the response
statistics of the actual nonlinear system which are not known a priori. An iterative
scheme, such as the fixed point iterations or the faster Newton method, are employed
to overcome this difficulty. The linearization is based on the assumption that the
response statistics of the nonlinear system are equal to the gaussian response statis-
tics of the linear system. Since the linearized system is not self adjoint, the right
and left complex eigenproperties are required in the analysis. Complete details of

the proposed method are given in chapters 5 and 6.

The final concluding remarks, and recommendations for future studies are given

in chapter 7.



Chapter 2

Modified Mode Displacement
Response Spectrum Method for
Classically Damped Structures

2.1 Introduction

The aseismic design of important civil engineering structures requires the ap-
plication of methods and procedures of structural dynamics and random vibrations.
This chapter presents a new response spectrum approach based on a suitable com-
bination of the mode displacement (MD) and mode acceleration (MA) methods of
structural dynamics. The proposed method includes the effect of the higher modes

even though they may be truncated and no explicitly considered in the analysis.

The analysis to calculate the design response of elastic multi-degree-of-freedom
structures, when subjected to ground excitation, can be performed deterministically
or stochastically. The deterministic approach is characterized by the use of one

or several ground acceleration time histories. For this purpose, any good direct
(¢}



integration technique can be applied to solve the coupled equations of motion. A
major drawback of the time history analysis is that it requires a large amount of
computer time as such analyses are to be performed for a large set of ground motions
to obtain the design response. Often a large set of design ground motions may also
not be available for a site. For design purposes, the site motion characteristics are
often defined in terms of ground response spectra. In fact, in the current seismic
design practice, the ground response spectra are considered to be best workable tool
to prescribe the design ground motion. The methods which use such inputs directly,

in the calculation of design response are called as the response spectrum methods.

The response spectrum methods are developed on the basis of random vibration
analysis of structures. They all use the well known modal analysis technique. Since
the higher modes usually do not contribute significantly to the seismic response, and
also since their calculation involves larger error, it is common to use only a first
few lower modes and completely ignore higher modes in response spectrum analyses.

This omission of higher modes is known as the truncation of modes.

The error in the response caused by the truncation of higher modes is usually
acceptable. But in some cases, this error can also be too large to be ignored com-
pletely. This can happen in the calculation of the response of stiff structural systems.
Also, some response quantities which have a significant contribution from the high
frequency modes may also be sensitive to this mode truncation error. These errors
are present in the time history analyses as well as in the response spectrum method
of analyses. The error caused by the truncation of modes has also been called as the

missing mass effect [39].



The most commonly used formulation in modal analysis is the mode displace-
ment formulation. However, to reduce this error in the time history and response
spectrum analyses for seismic motions, the mode acceleration formulation [60] of
structural dynamics can be effectively utilized. Successful application of this formu-
lation for time history analysis was demonstrated by Singh and Ghafory-Ashtiany
[46]. For design response calculations also, mode acceleration-based response spec-
trum approaches have been proposed by Singh [44] and Singh and Mehta [50] for
classically damped structures. These response spectrum approaches required that
the seismic design inputs be defined in terms of the relative acceleration and relative
velocity response spectra. The design inputs in terms of the relative acceleration
spectra (similar to the design inputs in terms of the pseudo-acceleration spectra)
could also be developed, but this is rarely done. Since the current practice of seismic
structural analysis is oriented towards the use of the pseudo-acceleration spectra,
it would be desirable to have a spectrum approach which could employ pseudo-
acceleration spectra rather than relative acceleration spectra and which would also
be able to account for the missing mass effect caused by the truncation of modes.
Gupta and Cordero [19] and Gupta and Chen [18] have proposed a response spec-
trum approach, which, they claim, provides acceptable results through the use of

some empirical factors.

Besides the problem of missing mass effect, a response spectrum approach must
also be able to account for the correlation between modes. In the earliest versions
of the response spectrum methods, this correlation was ignored and the method of
the square root of the sum of the squares (SRSS) was commonly used to obtain the
design response from the maximum modal responses. Rosenblueth and Elorduy [41]

were probably the first to provide a rational approach to account for this correlation.



Their approach is still the most popular. The calculation of the modal correlation
term in this approach is based on the assumption of the base input being a white
noise. CQC [59] is another approach which is based on the assumption of a white
noise as the base input. These two approaches provide similar results. For struc-
tures whose dominant modes fall within the dominant excitation frequency range,
these approaches can include modal correlation properly and thus provide accurate
response results. However, because of the assumption of a white noise input, there
could be errors in the response calculated by these approaches for stiff structural
systems whose dominant modes are outside the range of the input motion frequen-
cies. A comparative study of the method proposed in references [50], [41] and [59]
has also been made by Villaverde [55].

Singh and Chu [45] had proposed a response spectrum approach where the
modal correlation between the low and high frequency modes was properly included
without making the assumption of the base input being a white noise. However, the
missing mass effect caused by the truncation of modes cannot be corrected in this

approach if only a limited number of modes are used.

In this chapter, the mode acceleration and the mode displacement approaches
are combined to develop an approach which is called the modified mode displacement
approach for classically damped structures. A similar approach is also developed for
non-classically damped structures in the next chapter. An initial and a reduced ver-
sions of this method is published in references [47, 48]. This approach can effectively
reduce the missing mass effect error, without explicitly including the high frequency
modes in the analysis. Also, the correlation between the lower modes themselves

as well as their correlation with the truncated higher modes is included. Numerical



examples are presented to demonstrate the effectiveness of the proposed approach as

well as to compare its efficiency with other commonly used approaches.

2.2 Modified Mode Displacement Approach

The equations of motion for a linear elastic structure with n degrees of freedom
and subjected to ground excitation in one direction, can be written in general form
as:

[MI{X ()} + [CIH{X ()} + [K]{X(2)} = —[M]{T},(t) (2.1)
where [M], [C], and [K] are matrices of dimension (n X n), and they indicate, re-
spectively, the mass, damping and stiffness matrices of the system; {X(¢)} is the
vector of relative displacements with respect to the ground, and a dot over a variable
indicates its time derivative; the vector {Z} contains the ground motion influence

coefficients; and Z4(t) is the ground acceleration.

For linear systems, equation (2.1) can be decoupled by employing the modal
analysis, which uses the following change of coordinates:

{xX@®)} = [®]{z2(1)}, (2.2)
where the columns of the modal matrix [®] are the n eigenvectors {¢}j corresponding
to the undamped and homogeneous version of equation (2.1). The vector {Z(t)}
contains the so called principal coordinates of the system. The eigenanalysis also
provides the n eigenvalues A; = w?, where w; is the natural frequency of the j**
mode. The matrix [®] is orthogonal to the mass and stiffness matrices and can be

normalized with respect to the mass matrix to get

(] [M][®] = [1], (2:3)



where [I] is the (n X n) identity matrix. Also,
(2] [K][2] = [A], (2.4)

where [A] is the diagonal modal stiffness matrix, entries of which contain the eigenval-
ues \; = wf-. For classically damped systems, the modal matrix [®] is also orthogonal

to the damping matrix [C], that is
[2]" [C][®] = (D], (2.5)

where [D] is the diagonal modal damping matrix whose n entries are (28;w;) 7 =
1,...,n. The uncoupling of equation (2.1) is achieved by the substitution of equation
(2.2) into (2.1), premultiplying it by [#]7, and considering the orthogonality prop-
erties given in equations (2.3-2.5). This leads to the following system of uncoupled

equations:
{Z(t)} + [D]{Z(t)} + [A] {Z(t)} = — [3]" [M]{Z} 3,(t) (2.6)
Or in a single equation format as:
() + 2Bw; 25(t) + wj 25(t) = —1i&,(t) , F=1,...,n, (2.7)
where 7; is the j** participation factor defined as

1 = {8} [MI{Z}. (2.8)

The solution of equation (2.7) for quiescent initial conditions is
t
2(t) = =% [ Bt —1)E()ar , j=1,...m, (2.9)

where h;(t) is the unit impulse response function:

e—Biwjt

h;(t) = sin(wg;t) , (2.10)

dj
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and wy; is the j** damped frequency:

waj = wj/1—pBF. (2.11)

By invoking equation (2.2), we can write for the original vector {X(t)} as
(KO} = 8120} = @50 (212)
Any response quantity R(t), obtained as a linear combination of the components of
vector {X(t)}, can also be expressed as
Rt) = (R (X} = o3 5:), (213)
i=
where {R} is the vector containing the coefficients of the linear transformation, and

p; is the j** modal response quantity defined by

pi = {R} {¢};. (2.14)

Equation (2.12) or (2.13) constitute the basis of the mode displacement (MD)
approach of structural dynamics [15]. It is assumed that the modes and their respec-
tive frequencies are ordered by increasing frequencies. It should be noticed that these
equations consider the contribution of all n modes. However, for a large number of
cases the contribution of the high frequency modes is negligible, and the summation
can be truncated to consider just the first r lower modes, (r < n). That is,

R(t) = Z;Pj zj(t) » (2.15)

i=
which is just an approximation to the actual value of R(t). It has been shown earlier
Singh and Chu [45] that a response spectrum approach based on this MD method
requires the base input to be defined in terms of the relative displacement (or the

more commonly used pseudo-acceleration) and relative velocity ground spectra.
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For some response quantities, the error due to the truncation of modes can be-
come significant. It depends upon the contribution of the forcing function to the
response quantity at the truncated frequencies of the structure. The mode acceler-
ation (MA) approach of structural dynamics [15] was first proposed to approximate
the contribution of the truncated higher modes and reduce the error. In this ap-
proach equation (refl.13) is modified, with substitution of z;(¢) in terms of 2(t); and

2;(t) from equation (2.7), as follows:

R(t) = Zp.‘i w?
Jj=1 J

which can be rearranged to provide:

RO = =503 (2F) -3 B0+ 2850 . @)

Jj=1 wJ j=1"j

The first summation term of this equation has been shown [50] to be the static
response caused by the inertial forces corresponding to a ground acceleration of unit
magnitude. For completeness, this is shown here also in a slightly different form. By

considering the vectors

{r} = {RY'[3] , {7} =[2"[M]{T}, (2.18)

which, respectively, contain the modal response quantities and the modal participa-

tion factors, it is possible to write for this summation term as follows:

é (@) = {pY A7 {0} = {RY" (8] [A] [ [M]{T} . (2.19)
The diagonal matrix [A]™! can be deduced from equation (2.4) as
(A7 = (8] (K] (@] (2.20)

Substitution of this equation into equation (2.19) provides us:

S (B2) = RIT K7 BT = R X} =R, (20

i=1 i

12



where {X,} is the solution of the following static system
[K]{X.} = [M]{Z}, (2.22)

and R, is the corresponding static solution of the response quantity of interest.
Equation (2.21) can be substituted into equation (2.17) to get
R(t) = —&,(t) R = 3 B (3,(0) + 28,05 54(1)) - (2.23)
=173

If the truncation of modes is effected, this expression becomes
R(t) ~ ~ ,(t) R~ 3 5 (5(8) + 28w 44(2)) (2:24)
=12

which is the basis of the MA approach. The term —&,(t)R, is known as the pseudo-
static contribution of all modes, whereas the summation terms provides the different
modal increments, from the pseudo-static response, to reach the actual dynamic

response.

The MA method represents an improvement with respect to the truncated MD
approach since the MA procedure considers the pseudo-static contributions of the
truncated modes, which contribute to the total dynamic response in a static fashion
when the higher frequencies of the forcing function are much lower than the frequen-
cies of the upper modes. A mode acceleration-based response spectrum approach was
developed by Singh [44] and Singh and Mehta [50]. However, such approach required
that the base input motion be defined in terms of relative velocity and acceleration
response spectra. The relative acceleration spectra similar to the commonly used
pseudo-acceleration spectra can also be developed for design purposes [32], but they
are rarely used. This seems to limit the utility of the previously proposed [50] mode

acceleration-based response spectrum approach.
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To circumvent this practical limitation of the mode acceleration formulation,
equation (2.24) is modified with the help of equation (2.7) as follows. The term in
the parenthesis of equation (2.24) is substituted again to get

- T p; v
R(O)~ ~ &) B — 30 2 (—155,(8) — w} 2(0) (225)
=12
which can be rewritten as
R(t) = — £,(t)C, + Y pj 2i(t) (2.26)
i=1

where the coefficient C, is given by

C,=R-Y Pi;”' : (2.27)
J

i=1
Equation (2.26) constitutes the modified mode acceleration (MMA) approach. In a
slightly different form, equation (2.26) has been used earlier [18], [27]. Recently its use
in modal analysis has also been advocated by Leger and Wilson [26]. The summation
term in equation (2.26) is the classical mode displacement expression with a reduced
number of modes. The first term represents the pseudostatic response correction to

account for the missing contribution of only the truncated higher modes.

All quantities in equation (2.26) are still expressed in terms of the characteristics
of the first » modes. Also, the dynamic response term is now expressed in terms
of the modal displacement z;, unlike equation (2.24) where the dynamic term was
expressed in terms of modal velocity, z; and acceleration 2;. As it is shown in the next
two sections, this will be of direct help in the development of a response spectrum

approach which will not require the relative acceleration spectrum of the base input.
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2.3 Mean Square Value Response

For calculating the design value of a general response quantity R(t) in the
stochastic approach it is common to obtain its root mean square value and amplify it
by a suitable peak factor. This approach also directly leads to the response spectrum

approach.

In general, seismic motions can be considered as zero mean random processes.
Consequently, the responses of linear systems to this type of excitations are also
zero mean processes. For responses with zero mean values, their standard deviations

coincide with the square root of the mean square values. That is,

or = {E[R}(2)], (2.28)

where E|[.] denotes the expected value of [.], and o is the standard deviation of R(t).

To obtain the mean square value, we first obtain the response autocorrelation

function. By considering equation (2.26), autocorrelation function can be expressed

E[R(t) R(t,)] = E [(—5g(t1) C, + Xr:l’j zj(tl)) (-5g(tz) C. + Xr: Pk zk(tz))] :

j=1 k=1
(2.29)

It can be expanded, and the expected values distributed to provide

E[R(t:) R(t2)] = C7 E[zy(t:)3,(t)]

0, Y 5 (Elz(t) y(t0)] + Elg(ta) 23(22)])

=1

b Y3 s ok Elzi(t) zalta)] (2.30)

i=1 k=1
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This equation provides the mean square value of the response R(t), by setting ¢; =
t; =1 as:
,
E[R'(t)] = C]E[#(t)]-C, lej (Elzi(t) 24()] + E[24(2) 25(2)])
j=
ror
+ 22D pipn Elzi(t) za(t)] - (2.31)
i=1k=1

It is assumed that the input motions are samples of a stationary random process,
although earthquake motions are not stationary process in a strict sense. In most
seismic accelerograms, three different stages can be recognized. That is, (1) a initial
stage, where the acceleration magnitudes are small and begin to increase, (2) a
strong motion stage, characterized by large magnitudes and containing the maximum
accelerations and maximum structural responses, and (3) a final stage, where the
accelerations decrease till the motion subsides. A conservative assumption is to
consider the earthquakes as being composed of the strong motion phase with infinite
duration and stationarity characteristics. This assumption has been found to be

acceptable in several earlier studies.

For stationary ground motion, the autocorrelation function for the ground ac-

celeration can be written in terms of its spectral density function &,(w) as:

T g, (w) et duy | (2.32)

Blig(t:) 35(ta)] = |
From which we can obtain the mean square value of the ground acceleration as:
EE0)] = [ #y(w)dw = o2, (2.33)

where o, is the standard deviation of the ground acceleration Z,(t).

16



By considering the expression of z;(t) given by equation (2.9), the crosscorrela-

tion E[z;(t,)Z4(t:)] can be expressed as follows:
Elzj(t) 25(t2)] = —; /0 hi(ts — 1) E[25(1) 24(22)] dr1 , (2.34)
Utilizing equation (2.32) with the appropriate arguments, one obtains
oo 131 s
Elzi(t)a(t)] = =% [ [ #)hsts ) e Dindw . (235)
A change of variable (u = ¢; — 71) and rearrangement of integrals yields

Elzi(t)g,(ta)]l = 1 [ (@)D M0 th)dw,  (2.36)

where

t .
He(w,ty) = /o " hi(w) e du (2.37)

is the complex transient frequency response function of a damped single-degree-of-
freedom oscillator. A superscript ¢ indicates a complex quantity and the superscripts
cc denote its complex conjugate. In the limit as ¢; — oo, Hj(w,?;) becomes the

stationary transfer function Hf(w):
‘}1_120 Hi(w,t1) = Hij(w) = [w} —® +i2B;w;w] ™, (2.38)
which satisfies the following equations:
5(0)+ 5w st + P aslE) = €, n(t) = Hiw)e.  (2.39)

Thus, as t; and ¢; tend to infinity, that is, when the system has been acted upon for
a long time relative to its period, and the response has attained stationarity at the

limit, as t; — t; — t — oo, equation (2.37) becomes

Blat),(t)) = =% [ 84(w) Hy(w) D do (2.40)

17



Similarly, one can show that as ¢; — co and £; — oo

limBlay(t) 5(t)] = =% [ B,w) Hr@)e* @ do,  (241)

ty,t3—00

One can also express the crosscorrelation E|[z;(¢,) 2¢(¢2)] in terms of the spec-
tral density and frequency response function. With the help of equation (2.9), this

crosscorrelation can be rewritten as

Elss(t) an(t)] = % [ [ holti—n) halta—ra) Bliy (1) 3,(ra)] dry i , (2.42)

Substituting equation (2.32), with the appropriate arguments, one obtains:
00 t t2 .
Blzi(t) a(ta)] = um [ [ [7 8,(w)hslt =) ha(ta— 1) 40" dry dry oo
(2.43)

Again with a change of variables as u = ¢; — 1, v = t; — 73, and a rearrangement of

integrals yields

oo i ty . t2 .
E(zj(t1) z(t2)] = 75 /_ 3, (w) ei(tr=ta) /0 hj(u) e ™™ du /(: hie(v) e’ dv dw ,
(2.44)
where equation (2.37) and its complex conjugate can be invoked to write
Elzj(t:) 2e(t2)] = 7ime / By(w) D) M (w, 1) HE (w, ta) dw . (2.45)

Again for large time values of ¢; and t;, the crosscorrelation attains a stationary

value as

E[z;(t1) ze(t2)] = 75 /_: ¢, (w) H;(w) HE(w) eiwlti-ta) g, (2.46)

Equations (2.33), (2.40), (2.41), and (2.46) with ¢, = ¢, = ¢, can now be substi-

tuted into equation (2.32) to get the stationary mean square value of the response
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R(t) as,

E[R}t) = C? 03 +C, gp,- ¥; /_: P(w) [H;(w) + H;‘(w)] dw

+ D piktin /

=1 k=1 -

oo

- ®g(w) Hj (w) He'(w) dw . (2.47)
The double summation terms can be decomposed into two terms. Terms with j = k

(also called as the diagonal terms), and terms with j # k (off-diagonal terms). The,

equation (2.47) is rewritten as follows:

Cio+C, Xr:P:‘ Vi _/:: ®(w) [H;(w) + H;"(w)] dw

j=1

+ 20 [ 8 (w) | Hy(w) do

=1

+ DD PPk _/

3=1 k= 1 -
k#j

E[R(t)]

: &, (w) Hi(w) HE (w) dw . (2.48)
This equation possesses four general terms. The first term represents the pseudostatic
contribution of the truncated higher modes. The second term is the correlation
between the pseudostatic response due to the truncated modes, and the dynamic
response due to the retained modes. The last two terms are the same as those in
the truncated mode displacement-based approach. The single summation part of the
third term represent the squared contributions of individual modes, it is the base of
the classical square root of the sum of the squares (SRSS) approach. The double
summation part of the third term, on the other hand, represents the contributions

due to the modal correlations between the retained modes.

To be able to obtain a response spectrum approach, it is necessary to simplify
equation (2.48) further. We first examine the second term, where the sum H§(w) +

H$*(w) can be written as

[H () + H*(w)| = 2 Re[H(w)] = 2(w} — w*) [Hj(w)]* (2.49)
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where
|Hj(w)|* = Hj(w) B (w) = [w] + (487 — 2)w} w® + w7 . (2.50)
By utilizing equation (2.49), the integral in the second term of equation (2.48) can

be written as
) " 8(w) [H3(w) + HE(w)] dw = 2(e} - I3). (2.51)
where the quantities I ;i' and I} denote the following frequency integrals

= [~ W@l , I=[ & Hwldw. (252

These integrals are, respectively, the mean square values of the relative displace-
ment and relative velocity responses associated with the j** single-degree-of-freedom
oscillator, with frequency w; and damping ratio B;, subjected to the base accelera-
tion £,(t). For zero mean processes, these mean square values coincide with their

respective variances. That is,

I;-’ = 0'5,. , I'=a2 |, (2.53)

where 04; and o, are the standard deviations of the relative displacement and relative
velocity responses of the j* oscillator. Appendix G provides closed form expressions
for I_;‘ and I} when the spectral density function of the input is defined by a white

noise or by a Kanai-Tajimi type of function.

It is noted that the frequency integral in the third term of equation (2.48) is
just I ;-’. We will now express the integral in the fourth term, denoted as (i, in terms

of the frequency integrals in equation (2.52).

= [ : 8, (w) H(w) HE (w) du . (2.54)

20



In this expression, the product Hj(w) Hg*(w) can be written in terms of the squared

modulus of the transfer functions, that is,
Hiw) H(w) = [H7(w) Hi(w)] [Hi(w) 1)l
= [Ew)+i0W)]™ |Hf(w)P |H ()", (2.55)
where £(w) and O(w) are, respectively, even and odd polynomials in w:
Ew) = w* + (40; Prwjwi — Wi —wp )W’ + Wi wp (2.56)

O(w) = 2 [(B5w; — Buwi) w* + (Buw; — Bjwi) wjww] . (2.57)

Substitution of equation (2.55) into equation (2.54) renders
G = [ () [E@) +iO@W)] [H5(w)P [Hi(w)] dw . (2.58)

It can be noticed that the only odd function of w, in this expression, is O(w). As
a consequence, the imaginary term containing O(w) vanishes when integrated from

—o0 to co. Therefore, the expression for (; is reduced to

Gho= G = [ 8,(w) &) |Hy(w)]? | HE(w)? du . (2:59)

The symmetry of (;» with respect to the indexes j and k is due to the symmetry
of the polynomial £j. The factors £(w) |H(w)|? |Hf(w)|?* can be expanded into the

following partial fractions, by using the procedure given in Case IV of appendix A:

E(w) |H () |Hi(w)* = (TL +w* TH) |Hy(w)? + (T - »* TE) |HH W),
(2.60)

where the partial fraction coeflicients are:

Th = [0% +48;8. 0% — (1-48}) 04| 45, (2.61)
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= 0% - 1] wi?d5?, (2.62)
I = [_1+4ﬁ,, +48; B Qe + O3] 5, (2.63)

with Qj; = w;/wy and
din = 1+48; B Qe + (482 + 482 - 2) Q4 + 45, B O3 + O . (2.64)

After substitution of equation (2.60) into (2.61), the modal correlation coefficients

become

Go = [ @y(w) [(Th+o" TH) 1B @) + (T4 - o* T) 1By ()] dw
(2.65)

which can be written in terms of the frequency integrals of equation (2.52) as:
Gn = TR I+ TH (I - L) + TR IE . (2.66)
The above mentioned symmetry (;x = (x; demands that

T =T, Ti =-1, (2.67)

] 2

which can be easily shown to be true.

By substitution of equations (2.51), (2.52), and (2.66) into equation (2.48), we

obtain the following expression for the mean square value of the response R(t):

E[R}(#)] = Clo2+20C, Y pjvi (wIIf - )+Zp,7,

j=1
+ Y pimrim [T +TE (- L)+ T 1], (2.68)
J=1 k=1
k#j

and, due to the symmetry of the double summation terms with respect to jk, the

number of calculations can be substantially reduced by just duplicating the contri-
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butions of only the upper off-diagonal terms. Thus,

E[R)(t)] = o} = Clo2+2C, me (wirf-13) (2.69)
=1

+ Zp,'r, +2E Z pime i [TRIE+TH (I - 1) + T 1]
i=1 =1 k=j+1

This expression presents the advantages of both, the MD and the MA ap-
proaches. That is, except for the calculation of C, by a simple static analysis, no
extra information than that required by the classical MD method is needed and it
also considers the contribution of the truncated modes. Equation (2.69) is used in

the following section to develop a response spectrum approach.

2.4 Response Spectrum Method by the MMD
approach

In the previous section, we obtained the expression for the mean square response
defined in terms of the frequency integrals, which were in turn defined in terms of
the ground motion spectral density functions. We will now use this expressions to

obtain the design response, expressed in terms of the ground response spectra.

The design response values can be chosen to be a suitable amplified root mean

square response value op as:

MR = ’PR OR, (2.70)

The amplification factor Pg is often called as the peak factor for the response R(t).
The root mean square value oy is defined by equation (2.69). Equation (2.70) thus

defines the design response in terms of the mean square value of the ground accelera-
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tion, as well as the mean square values of the relative displacement and relative veloc-
ity responses of the single-degree-of-freedom oscillators expressed in equation (2.52).
These mean square values, however, can also be defined in terms of their maximum
values through their respective peak factors. For example, the mean square value of

the ground acceleration can be written as:

M?
o = 2, (2.71)
g Pg

Where M, is the maximum ground acceleration and P, is the peak factor for the

ground acceleration.

Similarly, the variances represented by the frequency integrals I ;-’ and I}, can

also be expressed in terms of their maximum values and associated peak factors as:

M3, M.

where My, is the maximum relative displacement of the 7t* single degree of freedom
oscillator when subjected to the seismic ground acceleration #,(t), and M,; is the
maximum relative velocity of the same oscillator. The peak factors Py, and P,; are

associated to the relative displacement and relative velocity respectively.

The maximum value My; is known as the relative displacement response spec-
tra. It can be obtained from the commonly used pseudo-acceleration spectra Myp,;
as:

My,

¢

= Wi My, . (2.73)

M,; is the relative velocity spectra. If such spectra are not available, they can be

approximated by the pseudo-velocity spectra M, as:

My, & Mpy; = wi' My, . (2.74)
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This approximation, however, can introduce some error in the calculation of the
design response. Utilizing equations (2.69), (2.71) and (2.72) into equation (2.70) we

obtain for the design response as:

A42 r 2.
M2 = PE {C’z P2 g 42C, Zp,’)‘,( wj ’P: )+Zp,7’ 'P:’ (2.75)
M2
d;

j=1

r—-1 r AA’ AA: AAd
R p"p””"[”‘ Py * (Pz 'T{)’LT’I"H Pd:]}'

=1 k=j+1

The peak factors appearing in equation (2.75) can be defined in terms of a predecided
probability of exceedance level. Usually they all will be slightly different from each
other. However, if only a few dominant modes primarily contribute to the response
quantity, then the peak factor associated with these modes will be nearly equal to
the peak factor of the response. This usually is the case in seismic response analysis.

It is therefore fairly accurate to assume all the peak factors to be equal. That is,

P\’ (P’ (Pr\’
()~ (22)' = (22) =1 7o
g ] vj

With this assumption one obtains M% to get

My~ CPM2+2C, Yy (0 M3, — M) + 3 gt M (2.77)
i=1 j=1
r—=1 r
+ 230 30 pirkTiwe [T_,-’,,Mﬁ,. + T (M.z,,- —M.z,.) +T,¥IM§.] ,
i=1k=j+1

If the pseudo acceleration spectra are used to define the relative displacement spectra,

equation (2.76) can be written as

M2 M2
Mi = 02M2+2C Zp,'y,,( ; —M2)+ZPJ7J - (2.78)

j=1 J j=1

= v r Moa; | otr (42 2 11 Mz
+ 23 > piskum [Tjk ot 1T (M3, - M) + T8 wf] :
2

j=1k=j+1 k

Equation (2.78) is the statement of the proposed response spectrum approach

for calculating the design response from prescribed ground response spectra. Again,
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as mentioned in the previous section, the last two terms in equation (2.78) are the
same as those in the mode displacement-based response spectrum approach, imple-
mented with the first » modes. The single summation part of these two terms is
the classical SRSS approach. The first term of equation (2.78) is the pseudostatic
response contribution of the truncated higher modes to the squared response. The
second term represents the correlation between the pseudostatic response due to the
truncated modes and the dynamic response due to the retained modes. The relative
contributions of these terms with respect to the total response are reported in the

following section for various numerical examples considered herein.

By considering the expression of C,, equation (2.27), it can be noticed that this
coefficient depends on the number of retained modes. It becomes zero when all n
modes are included in the dynamic analysis, and consequently, the MMD approach

of equation (2.78) reduces to the MD approach without truncation of upper modes.

Both equations (2.77) and (2.78) use the relative velocity spectra M,;, but
such spectra are not always available. The earthquake engineering community have
commonly used the pseudo-velocity spectra M,,; as a replacement. M,,; can be

obtained from the pseudo-acceleration spectra My,; as

My, = Mpa;/wj . (2.79)
However, substitution of equation (2.79) into equations (2.77) or (2.78) shows that
the second term in these equations vanishes. This implies that the contribution due
to the correlation between truncated and retained modes becomes zero with this

assumption. It introduces error in the double summation terms as well. The use of

the pseudo-velocity as a replacement of the relative velocity is also analyzed in the

numerical examples presented in the next section.
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2.5 Numerical Results

To demonstrate the effectiveness of the proposed approach with regard to its
capability to reduce the missing mass effect error, herein some numerical results are
presented. The results are obtained for structures with well separated as well as
closely spaced frequencies. The structure with separated frequencies considered here
is a five-span continuous beam excited at its support. The model of the beam is
shown in figure 2.1. The beam is discretized into 26 finite elements with 48 degrees
of freedom. The mass of the beam is included through the consistent mass matrix in
the analysis. In addition, each node also supports a lumped mass. The results are
presented for (i) a rather stiff beam and (ii) a flexible beam. The first few frequencies
of the two beams are shown in table 2.1 and it is seen that they are well separated.
The numerical results are obtained for the bending moment in the beam at node
11. For this structure, the product (p;v;) is relatively high, even for high frequency
modes, thus showing the importance of these modes in the calculation of response.
A Kanai-Tajimi spectral density function with the cut-off frequency of 16 Hz and
a set of pseudo-acceleration and relative velocity response spectra are considered as
seismic inputs applied to this structure. For the stochastic input, the root mean
square value of the response has been obtained, whereas for the response spectrum

input, the response value of design interest has been obtained.

For the sake of comparison, the response values have been obtained by the fol-
lowing approaches: (i) the modified mode displacement (MMD) approach developed
herein; (ii) the mode acceleration (MA) approach proposed in Reference [50]; (iii)

the mode displacement (MD) approach of Reference [45] with truncated number of
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Figure 2.1: Schematic of the beam analyzed.

Table 2.1: Natural frequencies of the flexible and stiff beams,

Frequencies (Hz)

Mode | Flezible beam | Stiff beam
1 5.006 19.969
2 7.038 28.556
3 7.880 32.378
4 9.905 41.406
5 10.689 44.166
6 17.714 73.031
7 18.656 81.050
8 19.763 83.454
9 26.937 108.375
10 28.860 115.999
48 4230.627 4238.074
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modes; (iv) the CQC approach of Reference [59] and the Rosenblueth and Elorduy
approach of Reference [41] (they give almost identical results); (v) the classical square
root of the sum of the squares (SRSS) approach; and (vi) the absolute sum (ABS)
approach. The response value obtained by the mode displacement approach with the
complete set of modes used in the analysis (that is, the values obtained from equation
(2.69) with » = n and C, = 0, for the stochastic response, and the corresponding
response spectrum expression presented in Reference [45] and in equation (2.78) with
r =n and C, = 0, for the design response) are the benchmark values against which
the values obtained by the above approaches have been compared. The differences
between the benchmark response and the response values obtained by the various
approaches are presented as per cent errors. All response values are obtained for a

modal damping ratio of 0.03.

Figure 2.2 shows the error in the root mean square response of a bending moment
in the stiff and flexible beams obtained by various approaches for increasing number
of modes. The stiff beam results are shown in the top-half portion and the flexible
bean results in the bottom-half portion of the figure. It is observed that for both
beams the proposed approach and the mode acceleration approach both provide
results with the least error for a given number of modes. The errors in the results
obtained by the SRSS and CQC approaches are high even when a large number of
modes are considered in the analysis; when all modes of the beam have been included
this error is about 45 per cent for the stiff beam and about 20 per cent for the flexible
beam. In the CQC approach, this large error is due to an improper consideration of
modal correlation of the high frequency modes. For stiff structures the absolute-sum
approach will usually provide better results than the SRSS and CQC approaches; this

is because even the well separated modes in such structures, especially the ones with
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frequencies outside the frequency range of the input, will be strongly correlated. For
flexible structures, on the other hand, the absolute-sum approach provides absurd

results.

In figure 2.3 we compare the contributions of various terms of equation (2.69)
towards the total mean square response. The curve identified by PS shows the
contribution of the pseudostatic term with increasing number of modes. When only
the first few modes are considered, this contribution is quite large, especially in
the stiff beam. Of course, this contribution decreases as more and more modes are
considered. The symbol MD identifies the curve showing the contribution of the mode
displacement term. As expected, this contribution approaches the total response as
more and more modes are considered. This figure also shows the contribution of the
term associated with the correlation of the pseudostatic and dynamic parts of the
response. It is seen that this correlation is not insignificant, especially when only a
few lower modes are considered. This is contrary to what was assumed by Gupta
and Chen [18]. It is seen form equation (2.69) that this term will be zero only when
the mean square values of the relative and pseudo-velocities are equal. This happens

only when the input is a true white noise.

The results shown in figure 2.4 are obtained for the support input defined by
response spectra. The pseudo-acceleration spectra resembled the spectra defined in
reference [38] which are prescribed for the design of nuclear power plants by the Nu-
clear Regulatory Commission. Here, the benchmark response value is obtained from
the response spectrum approach developed in Reference [45] without truncation of
any modes. The validity of this approach has been verified by a numerical simulation

study reported in Reference [17]. As mentioned before, the differences between the
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Figure 2.2: Percent error in the root mean square value of a bending moment obtained
for Kanai-Tajimi spectral density function by different approaches with increasing
number of modes for: (A) stiff beam, and (B) flexible beam,
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benchmark result and the results obtained by the proposed approach are superior to
those obtained by all other approaches. This superiority is especially impressive for
the stiff beam. Again, the errors in the CQC and SRSS approaches are quite high,

and especially so for the stiff beam.

Next some similar numerical results obtained for a 18-degrees-of-freedom build-
ing (6 stories) are shown in figure 2.5. The stiffness properties of the structure were
chosen such that the frequencies are closely spaced, causing a strong correlation be-
tween the modes. Again, a relatively stiff and a relatively flexible structure were
considered. The first few frequencies of the structures are shown in table 2.2. This
structure was also analyzed for two inputs: (i) a Kanai-Tajimi spectral density func-
tion with a cut-off frequency of 16 Hz and (ii) the response spectra used to obtain

the results in figure 2.4.

Table 2.2: Natural frequencies of the flexible and stiff building

Frequencies (Hz)
Mode | Flexible Stiff
1 4.997 19.987
2 5.002 | 20.006
3 9.081 36.322
4 11.118 | 44.471
5 11.123 | 44.491
6 15.735 | 62.941
7 16.393 | 65.571
8 16.551 | 66.204
9 20.885 | 83.541
10 20.934 | 83.736
18 75.508 | 302.032

Figure 2.6 depicts the percent error in the root mean square response for the stift
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and flexible structures obtained by various approaches for the stochastic input. It
is clear from the figure that the proposed approach performs the best again, giving
least error in the response for a given number of modes. For the stiff structure,
the performance of the proposed approach is especially remarkable, as with just 2
modes considered in the analysis the mode truncation error is practically eliminated.
The SRSS approach performs worst, even with the flexible structure, because of
ignoring modal correlation completely. For the reasons cited earlier, the absolute
sum approach again gives very good results for the stiff structure; also for the flexible
structure the error increases again. The CQC does very well for the flexible structure,
but for the stiff structure the error, even with the complete set of modes considered
in the analysis is rather high, at about 20 per cent. The errors for this structure
are, in general, smaller than the error for the beam, discussed earlier. It is primarily
due to the fact that, even in the stiff structure, the product (p;v;) was significant
only for the first three modes whereas in the beam this product was relatively large,
even for several higher modes. Thus, ignoring higher modes did not make as much

difference in this structure as it did in the case of the beam.

Figure 2.7 shows results similar to those in figure 2.6, but for the response
spectrum input. Here again, the proposed approach performs the best and errors in

the results by other methods are similar to those in figure 2.6.

Many of the proposed spectrum approaches implicitly assume that the relative
and pseudo-velocity responses of an oscillator excited by ground motion are equal.
This assumption avoids the need of especifying the relative velocity response spectra
for the base input motion, as this can now be obtained from the commonly pre-

scribed pseudo-acceleration response spectra. However, this assumption introduces
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inaccuracy in the calculated response, as is shown by the dashed curves (identified by
PMMD) in figures 2.2 and 2.6 obtained for the Kanai-Tajimi spectral density func-
tion input and in figures 2.4 and 2.7 obtained for the response spectra as the input.
These curves show the error in the response calculated by the proposed approach
but with the incorrect assumption of the relative velocity response being equal to
the pseudo-velocity response. It is seen that the effect of this assumption in the
proposed approach is to increase the error in a stiff structure. This shows that it is
important to define design input in terms of the relative velocity spectra in addition
to the pseudo-acceleration spectra, if one wants to calculate the response accurately.
Also as one would expect, the results obtained with this approximation approach the

results of methods in references [41] and [59] as we increase the number of modes.

2.6 Conclusions

A response spectrum method is presented for an accurate calculation of the
design response. The method combines the advantages of the mode acceleration and
mode displacement formulations. It reduces the error caused by the truncation of
modes, and it uses the same input required by the mode displacement-based response
spectrum approach. The relative acceleration spectra, which were required as input
in the mode acceleration-based response spectrum approach, are not required in
this approach. It is shown through numerical examples that, for a given number of
modes used in the analysis, this approach gives much less error in the response than
some other currently used response spectrum approaches. The approach is effective
in providing accurate seismic response of stiff as well as flexible structures equally.

However, the improvements in the accuracy of the response of stiff structural systems
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are more impressive. To capture the contribution of all significant modes, one should
consider at least the modes which are within the cut-off frequency of the input plus
a few more following modes. The higher modes need not be calculated; their effect

is included through a pseudostatic response term.
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Chapter 3

Modified Mode Displacement
Response Spectrum Method for
Non-classically Damped
Structures

3.1 Introduction

In many situations, it may not be justified to assume the energy dissipation
characteristics of a structural system to be classically damped. This precludes the
use of the undamped modes in their dynamic analysis. However, by utilizing the
damped eigenproperties one can still analyze non-classically damped systems by a
mode superposition approach [33]. This approach has been used by several inves-
tigators [43, 46, 21, 20, 53, 54] for time history and response spectrum analyses of

non-classically damped systems.
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As is commonly done in the analysis of classically damped structures, one can
also truncate high frequency modes in the dynamic analysis of non-classically damped
systems as well. In most cases, this truncation does not cause any accuracy problems
in the calculated response. Yet in some situations involving stiff structural systems
and the response quantities affected by the high frequency modes, this truncation can
cause such problems. The previous chapter presented a response spectrum method
to reduce the error due to truncation of modes in classically damped systems. This
chapter presents now a similar method to reduce the mode truncation error in non-

classically damped structures.

In the past, two formulations have been used to develop the response spectrum
methods for non-classically damped structures: (1) mode displacement formulation
and (2) mode acceleration formulation. The methods developed by Singh [43], Igusa,
Der Kiureghian and Sackman [21] and Villaverde [54] are based on the mode dis-
placement formulation whereas the method developed by Singh and McCown [49] is
based on the mode acceleration formulation. The mode acceleration approach has
been shown [49] to be very effective in reducing the error due to the truncation of
modes. But as it was the case with classically damped structures, this approach
requires that the base input be described in terms of the relative acceleration and
relative velocity response spectra. Since these spectra are not commonly used in the
earthquake engineering community, the mode acceleration-based response spectrum
approach has lacked practical appeal. The mode displacement approaches, on the
other hand, do not have this problem, but they are not as efficient and accurate as
the mode acceleration approach in reducing the mode truncation error. That is, for
a given number of modes used in an analysis the mode displacement approach do

not provide as accurate response as the mode acceleration approach.
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Basically, this chapter extends the idea presented in the previous chapter to
develop a response spectrum method for non-classically damped structures. In this
formulation, the advantages of both approaches, the mode acceleration-based ap-
proach and the mode displacement-based approach, are combined to obtain a re-
sponse spectrum method which (1) utilizes the commonly prescribed form of base
response spectra like a mode displacement approach does and (2) reduces the mode
truncation error as effectively as a mode acceleration approach would without using
the high frequency modes explicitly. The main idea behind the formulation presented
here is the same as the one used in the previous chapter, but the details are quite

different.

3.2 Response by Modified Mode Displacement

The equations of motion for an elastic structure with n degrees of freedom, and

subjected to ground acceleration Z,(t) at its base, can be expressed as:

[M]{X ()} + [CH{X(£)} + [K]{X ()} = ~[M]{Z}5,(t), (3-1)
where [M], [C] and [K] are the (n X n) symmetric structural matrices for the mass,
damping and stiffness respectively; {X(¢)} is the vector of structural displacements
with respect to the ground; {Z} is the vector of ground motion influence coefficients

and a dot over a variable represents its time derivative.

For the general case in which the damping matrix [C] is non-proportional or
non-classical, equation (3.1) can be written as a the following system of first order

equations:

Ao+ e = -0 { G 1o, (32)
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where {Y(¢)} is the (2n x 1) state vector. Its first n elements are the elements of the
relative velocity vector {X(t)}, and the remaining n elements belong to the relative
displacement vector {X(t)}. The matrices [A], [B] and [D] of dimension (2n x 2n)
are defined as:

A= fa] o= @] el ]

(3.3)

Equation (3.2) can be decoupled by utilizing the eigenproperties of the following

associated eigenvalue problem:

Ai[Al{¢}; = [B]{¢}; ; i=1,...,2n (3.4)

The solution of equation (3.4) provides 2n eigenvalues A; and their correspond-
ing 2n eigenvectors {¢};. However, due to the characteristics of the system, these
eigenproperties are given in n pairs of complex and conjugate quantities. That is,
the eigenanalysis provides n pairs of complex and conjugate eigenvalues (A, AF,
j =1,...,n) and their corresponding n pairs of complex and conjugate eigenvectors
({#°};, {¢*}i, i=1,... n). Tﬁe eigenvalues are considered to be ordered with in-
creasing magnitude with the ones with positive imaginary part preceding those with
negative imaginary part. That is, the eigenvalue with the smallest magnitude and
positive imaginary part is denoted as A; = A§, its complex conjugate as A; = AT,
the one with largest magnitude and positive imaginary part is Ay,_; = A%, and its
complex conjugate is Ay, = AS°. Similarly, the order of the eigenvectors is determined

by the order of their associated eigenvalues.

The modal matrix [®] contains the eigenvectors, and after normalization with
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respect to matrix [A], presents the following orthonormal properties:
(@] [A][®] = (1] , [2]"[B][%] = [A], (3.5)
where []] is the (2n x 2n) identity matrix and [A] is a diagonal matrix containing the

eigenvalues.

As indicated by Singh [43], the system frequencies w;, and the modal damping

ratios (;, can be related to the real and imaginary parts of the eigenvalues as:

Re(d;)

/\; = ﬂjwj+iwﬂ/l—ﬂ} y UJ- = IA;I , ﬁj = w: ’ j=1,...,TL. (36)

Equation (3.2) can be decoupled by premultiplying it by [®]T, by using the

following standard transformation of coordinates
{Y@®r = [e1{z(1)}, (3.7)

and by considering the orthogonality properties indicated in equation (3.6). The

resulting 2n decoupled equations for the principal coordinates z;(t) are
é,(t) + AJ' Zj(t) = —7_1' ;)g(t) , ] = 1, ceey 2n ’ (38)
where «; is the j* participation factor defined as
= wrm{ Bl g  i=1....2 3.9
%= @HIDI{ [ (= BFB0E 5 G=l..m. (39)

In this equation, the quantity indicated as {@}; is the lower half of the j** eigenvector

{¢};-

For a given ground motion Z,(t) and quiescent initial conditions, equation (3.8)

can be solved for all z;(t) to get

t
27(t) = —v; /0 y(r)e Nt dr | j=1,...,%n. (3.10)
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Such solution, can then be used to calculate the relative displacement vector as

follows:

2n
{X()} = {Y(1)} = [21{Z(2)} = D_{¢};z(t), (3.11)
i=1
where a bar over a quantity indicates its lower half. Also, any response quantity

R(t), which is linearly related to the relative displacement vector, can be written in

terms of the solutions z;(t) as follows:

T 2n
ro={ 1 oy = ey = S osw. G

=1

Where {R} is the vector containing the n constant coefficients to linearly combine
the n elements of the relative displacement vector {z(t)}, and p; is the j** modal

response R(t). It is obtained by a simple linear transformation of {¢}; as:

pi = {RY'{8}; ; i=1....2n. (3.13)

Equation (3.12) is a statement of the mode displacement formulation for cal-
culating the response of non-classically damped systems. To avoid calculation of
all eigenproperties, one can use only a first few eigenproperties in the summation
of equation (3.12). This is equivalent to the procedure of mode truncation, com-
monly used with classically damped systems. The implementation of the truncation
requires the above mentioned rearrangement of the modal frequencies in increasing
order to identify the lower modes. These lower modes and their complex conjugate
are, then, used in the summation in equation (3.12) and the remaining higher modes
are discarded. As was the case with classically damped structures, this omission or
truncation of higher modes from the analysis does not cause any significant error in
the calculated response in most structures. But in some stiff structures and some
response quantities affected by high frequency modes, this truncation of modes can

also cause significant error in the calculated response.
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For non-classically damped structures also this truncation error can be con-
trolled, and in fact practically eliminated, by adopting the mode acceleration for-
mulation as shown by Singh and McCown [49]. The method proposed herein is an

improvement of the approach proposed by Singh and McCown.

In the mode acceleration formulation, one rewrites equation (3.12) by substitut-
ing the principal coordinates z;(t) by the expression —[v; £, + 2;]/A;, obtained from

equation (3.8), to get

. 2n ... 2n . 2.(t
RE) = —3,() Y 22 - 3 £5240) (314)
j=1 J 7=1 J

As it was the case in the previous chapter, for classically damped structures, the
summation factor in the first term of equation (3.14), though expressed in terms of
the eigenproperties, can also be calculated by a simple static analysis as it is shown

below. For this purpose, such term is denoted by R, and it can be expressed as

R = 25T — (RYT A (1), (3.15)

where the vectors {p}* and {7} contain the modal response quantities and the par-

ticipation factors respectively. Their expressions are
T
T = {0}} ® =<I>TD{{O}} 3.16
w-{@ e w-wro{Z}. e
Equation (3.6) can be used to obtain matrix [A]™! as
[A]7* = [2]7[B][2]" . (3.17)
Substitution of equations (3.16) and (3.17) into equation (3.15) provides

AR () 3 G- ) o
R'_{{'R}} [B] [DJ{{I}}—{R} (K] [M]{Z} = {R} {X,i, |
3.18
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where {X,} is the static solution of the following system
[K]{X.} = [M]{Z}. (3.19)

The above analysis demonstrated that R, is the static response associated to the
response quantity R(¢) when the system is subjected to the load [M]{Z}. In terms
of R, equation (3.14) can be rewritten as

R@t) = —&,() R, - 3" 222 z’(t) (3.20)

i=1

where now the summation is carried over the first » modes or eigenproperties. Equa-
tion (3.20) is known as the mode acceleration approach, and it formed the basis of
the response spectrum method proposed by Singh and McCown [49]. As in the case
of classically damped structures (previous chapter), this formulation required that
the ground input be defined in terms of the relative acceleration and relative velocity
spectra. As mentioned earlier, this particular form of input requirement is the main
practical drawback of this approach. To eliminate this limitation, it is possible to
reuse equation (3.8) to substitute for z; in terms of Z,(¢) and z;(¢) in equation (3.20),

and obtain

R(t) = —R, z,(t)-{-z Bi [y; 3,08) + Ay z(2)] (3.21)

j=1 J

or in a more compact notation
2r
R(t) = — C,&,(t)+ ) pjz(t) (3-22)
=1
where C, is defined as

Z Pi '7.1 (3.23)

j=1 .7

and it represents the response (per unit ground acceleration) of only the truncated

modes. It should be noticed that this quantity depends on the number r of truncated
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modes. In particular, for » = n, C, is zero and equation (3.22) reduces to the classical

mode displacement approach with the total number of modes.

Equation (3.22) is as effective in eliminating the error due to mode truncation as
equation (3.20), but it is expressed in terms of z;(t) in lieu of 2;(¢). It will now be used
to develop a response spectrum approach for calculating the design response. Since
the design response can be expressed as an amplified value of the root mean square
response, the next sections presents the formulation leading to the autocorrelation

function of R(t). equation (3.22) as follows:

3.3 Mean Square Value of the Response Quan-
tity R(t)

The mean square value of the response quantity R(t) can be obtained as a
limiting value of its autocorrelation following a similar procedure as the one used in
the previous chapter. As it was assumed in chapter 2, here also it will be considered
that the input motion is a zero mean stationary process, and since the structures are
linear, it implies that their responses are also stationary with zero means, and their
mean square values coincide with their respective variances which can be written in

terms of the autocorrelation function as
lim , E[R(t) B(tz)] = E[R'(®)] = o} (3.24)
where o is the standard deviation of R(t).

To implement the proposed approach, the autocorrelation of R(t) is written
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with the help of equation (3.22) as follows

E[R(t;)R(t;)] = E

(— C.z4(t1) + ép,- z,-(tl)) (— C, 4(t2) + i:: Pk Zk(tz))} .
) ) (3.25)

After expanding the above equation and distributing the expected values, it becomes

E[R(t) R(t2)] = C) E[Z,(t1)Z,(t2)]

- ¢, g”" (Elzs(tr) 8,(t2)] + Elzy(t:) 23(t2)])

+ 2020 pipk Elzit) zil(ta)] - (3.26)

i=1k=1

By setting ¢; = t; = ¢, this equation provides

E[R'(t)] = CJE[E(t)-C, il’i (Blz(t) 24(2)] + E[2,(2) 25(2)])

+ ‘Z; g:lpj P Elz;(t) 24(t)] - (3.27)

The first expected value to be considered is the autocorrelation of the ground
acceleration, which is the fourier transform of its stationary PSD function denoted as

®,(w). In chapter 2, equations (2.32) and (2.33) express such autocorrelation. The

mean square value of ground acceleration in equation (4.27) can be expressed as

$,(w)dw = o], (3.28)

Elzy(t,) £,(t)] = E[33(t)] = _/_ -

o0

where oy is the standard deviation of the ground acceleration.

The crosscorrelations E[z;(t1) Z,4(t;)] and E[2,(t,) z;(t;)] are analyzed next.

With the help of equation (3.10), the first crosscorrelation can be written as

Elss(n)o(ta)] =~ [ e MO Bl (n)d(ta)ldn,  (329)
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where the indicated autocorrelation of Z,(t) is given by

Elzy(n),(t)] = [ &5(w) e dw . (3.30)

Substitution of the above equation into equation (3.29) provides
oo . . t .
Elzi(t1) Z4(2)] = —; / P (w)e e~ Nt du / t eI m g (3.31)
—00 0

After integrating the time integral and some rearranging, equation (3.31) becomes

. 00 s ¢ eiwh — e—A’-tl
E[z_.;(tl)zg(tz)] = —'yj/ Qg(w)e iwis (A—{——zw) dw . (3.32)
—c0 ;

At the limit, as ¢; — oo, e~*i*t becomes zero because of the positive real part of A;,

and equation (3.32) can be written as

Blzj(t)) 3,(ta)] = —v; [ @y(w)e ) (A,. i,-w) do,  (333)

This equation provides the stationary value of the cross correlation terms. At ¢; = ¢,

1t renders

B3] = 3 [ 800 (5575) . (3.34)

Similarly, the limit of the other crosscorrelation E[z,(t1) z;(t2)], as t1 =t =t — oo,

is given by

Bla) (0] =~ [~ &) (5275) & (3.35)

The limit of the remaining crosscorrelation E[z;(t;) zx(¢2)], is considered next.

For this, equation (3.10) is used to write

t t3
E[z;(t1) z(t2)] = Y5 /l/ e~it1=n) g=Mu(t2-7) B[z (1) & ,(r;)] dry dry
o Jo
(3.36)
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where substitution of the autocorrelation of the ground acceleration by its fourier

transform, and some rearrangement produce

t ,
E(z;(t1) z(t2)] = ‘7,‘71,/ &, (w) ( "\5‘1/0 e"l(":"*"“)drl)
t 13
X (e"\“t’ /ze"’(x""“') de) dw . (3.37)
0

After integrating the time integrals, equation (3.37) becomes

twtl _ e—A,-t; e—iutz _ e—Ag t2
Bla(t) ] = w1 [ 8,6) (T (T b
J
(3.38)

At the limit, as ¢;, — oo and ¢; — oo, with At = ¢, — t, as a finite value, the limits

—Aits ~A:f2 become zero, and equation (3.38) renders

of e and e

Blae) ()] = 7y [ 8,00 (1) (L) aw, a39)

/\j 41w A —tw
Substituting ¢; = t; it provides the covariance terms appearing in the last term of
equation (4.27) as

Elsi(t) a(t)] = v | 2(w) ( ¥ +W) ( /\,,—l-iw) du . (3.40)

Equations (3.28), (3.34), (3.35) and (3.40) can now be substituted into equation

(3.27) to express the mean square value of R(t) as

E[RY(t)] = /w &,(w) [C’-I-C Z(,\ iw+ % )

et Aj —tw
2r 2r Qe
dw 3.41
+J§__:{§ (/\ +1.w) (Ak—iw) ’ ( )

where g; is a complex quantity defined as

g = pivi = 6 +ie;, (3.42)

52



with §; and ¢; being its real and imaginary parts.

Equation (3.41) expresses E[R?(t)], which is a real quantity, in terms of complex
quantities. To express it in terms of real quantities only, it is necessary to manipulate
it even further. First consider a typical summation of 2r terms, on the right hand

side of equation (3.41), as a summation of » complex and conjugate terms
2r

g q5°
Z A +w Z (/\" + 1w + AE +iw) ’ (3.43)

=1

where the superscripts ¢ and cc indicate a complex number and its conjugate, re-
spectively. These summation terms can be written in the following form, after some

simplification:
2r

E G 23 piw) Hi(w), (3.44)

Aj +iw ot

where H;(w) is the transmnt transfer function of a second order single-degree-of-

freedom oscillator with frequency w; and damping ratio 3; [see equation (2.38)], and

pi(w) is the following complex quantity

Re( gt ¢
piw)=¢+idiw , (= e(qT”) =w; (Bi6; +ei/1-B2) . (3.45)

Equation (3.44) is developed in detail by equations (5.38-5.43). Similarly, the re-

maining summation term in equation (3.41) can be written as

2r

)PP LI Z 7 (w) H(w) . (3.46)

=1 Ak — W

Substitution of equations (3.45) and (3.46) into equation (3.41) provides

where the three terms S, §; and S; contain frequency integrals and they are defined

as follows

S = O /_ : ,(w)dw = C?o?, (3.48)
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s, =4C, [ : 8,(w) 3 Re [5(w) HE(w)] dow, (3.49)

i=1

S =4 [ 8,0) DY B@) i) Bj() Hp(@)do . (350)

=1 k=1

The term &, provides the pseudostatic contribution of the truncated modes, <
considers the correlation between the pseudostatic response of the truncated modes
and the dynamic response of the retained modes, and the term &3 is the same as
provided by the classical mode displacement approach. It represents the dynamic
contributions of the retained modes. The expressions for §, and &3 still need to be

simplified further in order to be expressed in terms of real quantities only.

Substitution of pj(w) and H$(w) by their real and imaginary components, allows

S, to be written as
PO r
S, = 4C, / _2(w) X [Giw? + (885w — §)w?] |Hy(w)Pdw,  (3.51)
- =
or in a more compact notation
% = 4C, Y [GuI L + (8w - G) ] (3.52)
—~
where the frequency integrals I and I?, have been defined in chapter 2 by equations
(2.52) and (2.53). As mentioned there, they respectively represent the mean square
values of the relative displacement and relative velocity responses of an oscillator

excited by the ground acceleration &,(t). Closed form expressions for I ;-1 and [} are

given in appendix G for commonly used power spectral density functions.

To analyze the term S, it is convenient to separate it into two parts: g
containing the diagonal terms with j = k, and S73; containing the off-diagonal terms

with j # k. S3; represents the dynamic contribution of each retained mode and s,
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represents contributions due to the modal correlations between the retained modes.

Thus,
S5 = S + Sz (3.53)
with
S = 4 [ @u(e) X 5P 5P (354
and
% =4 [7 8,0 3 S AR W E WS, (5)
k#i

Substituting for p§(w) from equation (3.45), we obtain for equation S, as:
Su =4 [ 8,(w) 3 (¢282) |HE(w)Pdw, (3.56)
i=1
Equation (4.55) is simplified further (see section 5.5) to express it in terms of real
quantities only. This simplification leads to the following:

o r—1 r - -
Sn = 8 [ %)Y X [(Fh+o TIBW)N

i=1 k=j+1

+ (TR + P T H W) dw, (357

where the quantities T, T4, T2/ and T}Y are the partial fraction coefficients defined

as
Th = {270 [1- Q% +2(820% — B)] — wa (0% — O70)} A7, (3.58)
= {n Q% — O37) — 2052 pje [1- Q% +2(Bi0% - B8))|} wj? AF, (3.59)
TH = ¢; G 057 - TLO5E, (3.60)
T:,,k = 6 6k Jk ) (3.61)
where
Q,’k = w,-/w,, ’ (352)
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Bie = GG (3 — 1)+ wi66 [(1 — 48702, + 488k — 1]

+ 2wk (6;Ck — 6.l5) (Br — BiQ) (3.63)

Mk = (G [L— 4B} + 48;8u05 — Q] + w186 (1 — OF)

+ 2w; (8;C — 6k(;) (B; — BrfUin) » (3.64)
Aj = 16(8F + B — B; — Be) — Qi — —6
+ 4(0% +037 [1 —2(82+ 82 - 2ﬂ?ﬁ£)] : (3.65)

After invoking the frequency integrals I?' and I?, the terms $3; and S5, become

\931—42(2Id+52 r) . (3.66)
j=1
Sz = 82 Z [ThIi+ T+ T IR+ TR 1 (3.67)
=1 k=j+1

To avoid the calculation of ’1-"]-1,‘" and TJ-I,,V, equations (3.60) and (3.61) can be substi-

tuted into equation (3.67) as follows

Sy = srf Z [Th (- + T (I -R) + G GOR I+ 66 1) .
J=1 k=j+1

(3.68)

Finally, substitution of equations (3.48), (3.52), (3.66) and (3.68) into equation

(3.47) provides the mean square value of the response R(t) as

E[R(t)] = CIa2+4C, Y [l + (88w — G| +4 Y (G I +8: 1)
i=1 j=1
-1

+ szj E [Th (13— 12038) + T (I - 1Y) + 66 Q5 IE + 656 13
J=1k=j+1
(3.69)

This expression is used in the next section to develop a response spectrum method

based on the modified mode displacement approach.
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3.4 Response Spectrum Method by the MMD
approach

The proposed response spectrum method provides an approximation to the
maximum value of the response quantity R(t), which is also known as the design

value of the response R(t). Here the design response value is Mp.

Mp is approximated by amplifying the root mean square value of R(t) by a
peak factor Pr. For linear systems excited by zero mean processes the root mean
square values of the responses coincide with their respective standard deviations.
Thus,

Mg = Pr\/E[R}(t)] = Pror, (3.70)

where oy is the standard deviation of R(t). To facilitate the notation, the following

formulation provides the square of the maximum value, that is

= PLE[R*(t)] = Piok. (3.71)

The same rationale presented in the previous chapter to obtain the square of the
design response, from the mean square response, is used here to express the design
response in terms of the pseudo-acceleration spectrum value, My,;, and the relative
velocity response spectrum value, M,,, as follows:

M?
M}Q = CZM2+4C Z[ wm’+(6 ,B,w, C,)M,z;,‘l
J

i=1

2
; 42( ”“’+6’M’)+8EZ Ta (a2, - m2,)
J=1 j=1 k=j+1 J
TH (M2 - M2) + “” M’ +6,-5,¢M3h], (3.72)
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where M, is the maximum ground acceleration.

Expression (3.72) has been obtained by assuming that all peak factors (for
the ground motion and the modal responses) are approximately equal. The main
advantage, of making such an assumption is that the peak factors are eliminated

from the expression of M% accuracy is lost.

Equation (3.72) represents a response spectrum approach for non-classically
damped systems. It is seen that the last two summation terms in this equation
represent the response which would be obtained if the mode displacement formula-
tion with a reduced number of modes is used. Among these two terms, the second
summation term accounts for the correlation between various modes; this term gains

importance when two modal frequencies are closely spaced.

The first term in equation (3.72) accounts for the contribution of the higher
modes which have been truncated. This contribution appears as a pseudostatic term
as these modes are relatively rigid compared to the input frequency. In rigid struc-
tures where many modes have frequencies outside the range of the input frequencies,
this term will contribute significantly. The correlation between the pseudostatic re-
sponse of the higher modes and the dynamic response of the retained lower modes
is considered through the second term in equation (3.72). The relative contribution
of this term and other terms, of course, depends upon the frequency characteristics

of the input as well as the number of modes considered in the analysis.

To obtain the design response from equation (3.72), one needs to have the modal
properties, the results from a simple static analysis, as well as the input defined

in terms of the pseudo-acceleration and relative velocity response spectra. Often,
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however, the latter spectrum is not available in practice. In such case, it is usually
assumed to be equal to the pseudo-velocity spectrum. This, of course, introduces
error in the calculated response. As done in the case of classically damped systems
in the previous chapter, the effect of such an assumption on the accuracy of the

calculated response is also evaluated in this chapter.

3.5 Numerical Results

To illustrate the effectiveness of the proposed response spectrum approach
for non-classically damped systems, here numerical results obtained for a structure
with three different stiffness characteristics are presented. Figure 3.1 shows the
schematic of this structure which consists of rigid slab diaphragms supported on
columns and shear walls. The mass centers of the diaphragms are eccentrically
placed with respect to the stiffness centers. Thus, each slab has three degrees of
freedom —two translations in the x- and y-directions in the horizontal plane and
a rotation about vertical z axis— with a total of 18 degrees of freedom in each
structure. The stiffness and mass characteristic of the structure in various stories
are chosen to give closely spaced frequencies. The first ten modal frequencies and
damping ratios obtained from the complex eigenvalues in the three different stiffness
cases are shown in table 3.1. The structures with these frequency characteristics are

designated as flexible, medium stiff and stiff structures.

To demonstrate the effectiveness of the proposed approach in reducing the error
due to truncation of modes, the numerical response results obtained by the proposed

approach utilizing a smaller number of modes are compared with the bench-mark
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Figure 3.1: Schematic of the structure analyzed.
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Table 3.1: First ten natural frequencies and damping ratios for the three structures

Structure

Mode Flezible Medium Stiff Stff

o (E2) | B; ()| 5 () [ B; (%) | 7 () | B, (%)
5.0075 | 0.91 | 19.9872 | 1.37 | 29.9610 | 2.01
5.0078 | 2.24 | 19.9883 | 3.65 | 29.9628 | 5.52
53644 | 1.69 | 21.4069 | 2.69 | 32.0750 | 4.04
13.0025 | 2.17 | 51.9146 | 3.42 | 77.8514 | 5.07
13.0034 | 5.99 | 51.9212 | 9.62 | 77.8766 | 14.47
13.9180 | 4.38 55.5021 6.99 83.0796 | 10.48
21.0909 | 3.47 | 84.2308 | 5.47 | 126.3230 | 8.10
21.0937 | 9.77 | 84.2636 | 15.67 | 126.4331 | 23.61
22.5476 | 7.10 | 89.8509 | 11.34 | 134.4355 | 16.96
26.3587 | 4.31 | 105.2759 | 6.79 | 157.8753 | 10.07

S0 ao ok wy

results of the mode displacement approach utilizing the complete set of modes. The
difference in the two results is plotted as percent error for increasing number of modes
considered in the analysis in figures 3.2-3.7. All these results pertain to the bending
moment response in a column in the first story. A small error indicates that the

method is effective in reducing the error due to truncation of modes.

The results obtained by the proposed approach are identified by the acronym
MMD (Modified Mode Displacement). Also shown in these figures are the truncation
errors in the results of the (1) mode displacement approach of Reference [43], identi-
fied by letters MD and (2) mode acceleration approach of Reference [49], identified
by letters MA.

Figures 3.2, 3.3 and 4.4 are for the base input defined by Kanai-Tajimi spectral
density function with a cut-off frequency of 16 cps. The plotted error is in the root

mean square response. Figure 3.2, 3.3 and 3.4, respectively, are for the flexible,
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medium stiff and stiff structures, the dynamic properties of which are shown in table
3.1. It is seen that for any number of modes utilized in the analysis the errors in the
results of the proposed approach (MMD) and mode acceleration (MA) are always
the lowest. (These two approaches also provide almost identical results). Also the
rate of convergence to the correct response is fastest with these two approaches.
For the low frequency structure, Figure 3.2, the mode displacement approach also
provides acceptable results with just a few modes considered in the analysis, as
dominant modes are within the frequency range of the input. The error in the mode
displacement approach, however, increases as the structure becomes more rigid, with
several dominant frequencies outside the input frequency range. As seen in Figure
3.4, the error becomes insignificant in the proposed approach with only three modes
considered in the analysis, whereas it remains fairly high even when a large number of
modes are considered in the classical mode displacement formulation. The advantage
of using the proposed modified mode displacement formulation, with rigid as well as

flexible structures, is thus obvious.

The effect of the assumption that the relative velocity is the same as the pseudo-
velocity on the error in the root mean square response is also shown in Figures 3.2,
3.3 and 3.4. The curve identified as PMD shows the results obtained by the mode
displacement approach but with the assumption of the equality of the two velocities.
Similarly, the PMMD curve shows the results obtained by the proposed modified
mode displacement approach with the same assumption (The prefix P signifies that
the pseudo-velocity has been used in place of the relative velocity in the calculation
of these results). Comparison, of these curves with the curves obtained without any
assumption about relative velocity response indicates that, when a first few modes

are considered, the error in the response could be more or less without any specific
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pattern. Also, when a large number of modes have been included, the error is always
larger because of this assumption. Thus, in general, the assumption that relative

velocity is equal to the pseudo-velocity is not acceptable.

Figures 3.5, 3.6 and 3.7 are similar to the preceding three figures except that
they are for the base input defined by response spectra. These spectra are similar to
the spectra commonly used for the design of nuclear power plants [38]. The results
shown are thus for the design bending moment in a lower story column. The percent
difference in the response values obtained by the proposed method and the bench-
mark value obtained by the untruncated mode displacement-based response spectrum
approach are presented as percent errors in these figures. Validity of the mode
displacement approach as well as the mode acceleration approach were established
by numerical simulation studies using ensemble of seismic motion, as reported in
References [17] and [49]. The results in these figures are similar to those in figures
3.2, 3.3 and 3.4. That is, for the low frequency structure, the mode displacement
method as well as the proposed method provide accurate results. However, in the
medium and high frequency structures the error in the mode displacement results
remains high even when a large number of modes are used. In general the proposed
method always provides the results with least error, whether the structure is stiff or
not. The figures 3.5, 3.6 and 3.7 also show the results obtained with the assumption
that the pseudo-velocity spectrum is the same as the relative velocity spectrum. The
effect of this assumption on the error in the response is similar to the one discussed

above for the root mean square response in figures 3.2, 3.3 and 3.4.
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3.6 Conclusions

As done in the normal mode approach for classically damped structures, the
truncation of modes can also be effected in the analysis of non-classically damped
structures. This truncation can cause error in the calculated response. One way
to eliminate this error in the seismic analysis of structures is to adopt the mode
acceleration method of structural dynamics. The use of this method with response
spectrum approach, however, requires that the seismic input be defined in terms
of, rather, uncommon relative acceleration and relative velocity spectra. Herein, an
approach combining the good features of both the mode acceleration and mode dis-
placement methods is developed. The proposed approach does not require the input
in the form of the relative acceleration spectrum; the conventionally used pseudo-
acceleration spectrum can be used, yet the effect of mode truncation is virtually
eliminated. The effect of the higher modes which are truncated is included in the
formulation through a pseudostatic response term. The proposed methods includes
the correlation between the retained modes as well as the correlation between the
pseudostatic response of the truncated modes and the dynamic response of the re-
tained modes. The numerical results show that the approach provides more accurate
results than the mode displacement based approach both for the stiff as well as flex-
ible structures. However, the improvement in the accuracy of the results of a stiff

structure due to utilization of the proposed approach is quite dramatic.
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Chapter 4

Random Response of Structures
by a Force Derivative Approach

4.1 Introduction

To reduce the error in the response caused by a straigth foward truncation of
higher modes in a modal analysis procedure, the use of mode acceleration and mod-
ified mode displacement procedures was mentioned in the preceding two chapters.
In these two methods, the effect of truncated higher modes is included through a
pseudostatic response term. This assumes that the dynamic inertial effects of the
higher modes are negligible. The validity of the assumption that a high frequency
mode does not contribute dynamically to the response depends on how high the
modal frequency is relative to the highest frequency in the input force. For modes
with frequencies much higher than the forcing function frequencies, this assumption
is quite justified as these modes virtually ride with the load without any significant
dynamic distortions. However, if the highest frequency in the input is not very much

smaller than the lowest frequency of the truncated modes, then the contribution of

71



the truncated modes can no longer be calculated by a simple static analysis as it is

ussually done in the mode acceleration method.

To increase the accuracy of the response in such cases, Leung [28] proposed
an improvement of the mode acceleration approach for undamped structures by
performing successive integration-by-parts of the convolution integral of undamped
structures. As in the case of undamped systems, the accuracy of the calculated
response can also be improved for damped systems by increasing the number of suc-
cessive integration-by-parts. This extension of Leung’s approach to damped systems
has been proposed by Camarda et al [10]. They have called this approach as the
Force Derivative approach since it involves the terms related to time derivative of
the forcing function. Each integration-by-parts increases the order of the derivative
of the force by one. Thus, the resulting response expressions for the damped case
become quite complicated as the number of integration-by-parts is increased. To
obtain numerical results for different time varying forcing functions, Camarda et al

used four integration-by-parts terms involving the force derivatives of order four.

In this chapter, the force derivative approach it is further examined with the final
aim of utilizing it to calculate the random response. First, the approach is generalized
to include the N** order force derivative terms expressed in their simplest and easy-
to-calculate forms. This is achieved through a recursive definition of the terms which
appear in the process of successive integration-by-parts. The N** order expression is
used to obtain the second order statistics of the response for stochastically defined
loads. In the approaches presented in references [28] and [10] the convolution integrals
involved the force derivative terms. This is, however, not the case in the formulation

presented herein. This is of help in a random vibration analysis of the response. An
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effective use of the force derivative approach in the development of an improved mode
synthesis precedure has recently been made by Suarez and Singh [51]. Numerical
results demonstrating the applicability of the proposed response calculating scheme,
and the effectiveness of the approach in improving the accuracy of mode truncation

analysis are presented.

4.2 Modal Analysis and Truncated MD Approach

For a classically damped linear structure with n degrees of freedom, the equa-

tions of motion can be written as:
[M]{z(t)} + [C]{z(¢)} + [K]{X(t)} = {Q(%)} (4.1)

Where [M] is the mass matrix, [C] is the classical damping matrix, [K] is the stiffness
matrix, {X(t)} is the response vector and {Q(¢)} is the loading vector. Also, a
dot over a variable denotes its time derivative. Is assumed that the force vector is
differentiable up to order N. We will also assume the following initial conditions,

although they are not required to be satisfied by the following formulation.

{=(0)} = {2(0)} = {0} . (4.2)

The modal analysis provides the following uncoupled equations of motion:
Ej(t) + 2,33 w,- Z'j(t) + w;‘-' Zj(t) = pj(t) y ] = 1, ceay M, (43)

Where w; and B; are the frequency and damping ratio for j** mode, p;(t) is the
generalized modal load defined as:

pi(t) = {¢}; {Q()} (4-4)
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The vector {z(t)} contains the principal coordinates related to {X(t)} as:

(X} = [@{(0)} = >{8}; (1) (4.5)

=1

The columns of matrix [®] contain the normalized modal vectors {¢}1, {#}2, ...,
{#}n, which are ordered in accordance to their associated increasing frequencies: w;
< wy < ... < wp. This matrix, after being normalized with respect to the mass

matrix, satisfies the following identities:
[@F[M][e]=[1] , [#]F[CI@]=[D] , [2]"[K][®]=[A], (4.6)

where [I] is the (n x n) identity matrix, [D] is the diagonal modal damping matrix
with its j** element defined as (2 3; w;), and [A] is the diagonal modal stiffness matrix
which entries contain the eigenvalues (A; = w?). Equation (4.3) is solved for z;(t)

and substituted in equation (4.5) to define the response vector {X(¢)} as

X} = S 0bs [ bt -n)m(e)dr, (47)

where h;(t) is the unit impulse response function of equation (4.3)

e—ﬂjw,'t .
h;(t) = o sin(wg; t)  , wy; = wj/1-063, (4.8)

]

If all n modes of the system are used in equation (4.7), one obtains the exact response.
However, in practice only a first few modes are used. Thus, if only the first » modes

are considered, one obtains an approximate value of the response as:

XW = 2 18% [ hilt—)ps0)r (49)

=1 0

Equation (4.9) is the classical truncated mode displacement approach. Here it
is desired to improve this estimate of the response without including any further
modes in the expression. That is, it is desired to include the effect of the higher or

truncated modes without explicitly calculating them.
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4.3 First Order Force Derivative Approach

The first order FD approach is based on the first integration by parts of equation
(4.7). The details concerning any number of integrations by parts of the Duhamel
integral are provided in appendix B. Therefore, following appendix B, the integration

of equation (7) once by parts can be written as:
O} = 300 e - S0k | () w0+ im0 @10)

— :Z;{%'} [(2[3,) /J: i(t — 1) psi(7)dr + ( 1 ) '[ h;(t — ) p;(r) d,-] .

J

It is easy to show, [15, 50], that the first summation term of equation (4.10) can be

obtained as the static solution of the following expression:

Z{fﬁ}: o pi(t) = [2][A]7 [2]" {Q(8)} = [K] {Q(t)} (4.11)

i=1
Substituting equation (4.11) in (4.10) and truncating the second and third sum-
mations up to r modes, one obtains, what here is called, the first order approximation

of the true response as follows:

{X)h = K7 {Q®)} - §{¢}’ [(@) hi(t) + Jh(t)] p;(0) (4.12)
- 3 |(32) [ me-narrer + (43) [ b=t

Also, if the truncation of modes is effected in equation (4.10), one obtains the zero

order approximation {X(t)}o. That is,

K@k = 16k g a0 - 09 (2) ey + b0 ) 9)

j=1

0 [(2@) / h(t—T)PJ("')d‘f—F(}L)/h(t—r)p,(‘r)d-r] .

=1
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Eliminating the second and third summation terms from equation (4.12) and (4.13),

one obtains:

{X(t)h = {X(®)}o + | K] {Q(2)} - :21{45}: ( ,) P;(t)] (4.14)
This relates the classical truncated mode displacement solution {X(¢)}o to the first
order solution {X(¢)};. Obviously, the terms in parentheses represent the first order
pseudo-static contribution of the higher modes to the response. Equation (4.14) is
nothing but an alternative form of the classical mode acceleration approach. Actually
it is just the modified mode displacement approach developed in chapter 2. This
was also obtained by Leger and Wilson [26] through a quite different analysis. An
advantage of the form of equation (4.14) over the classical mode acceleration form,
is that here the improved response is expressed in terms of the response obtained
by the classical truncated mode displacement approach. Also in equation (4.14), the
absence of any force derivative terms is noted. This was, however, not the case in

the formulation developed by Leung [28] and Camarda et. al. [10]. This absence the

of derivative terms simplifies the analysis.

4.4 Second Order Force Derivative Approach

To further improve the truncated mode solution, equation (4.10) is integrated
by parts again. After some rearrangements of terms and simplification (see appendix

B) it can be shown that

xoy = S (5 )p,(t) o (2%) a0

gw}, () w :1(}1»:) ;,,.(’t)] 2,(0)
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v 3o0n | (B mar+ (B) ] 50 (4.15

J

+ 30k [(w : ) /o hi(t — 7)b;(T)dr + ( ‘6’) /o'iz,-(t-f);s,-(r)dr :

j=1 J wj

The first summation term is expressed as a static solution in equation (4.11).
To avoid the use of the higher modes in the calculation of the second summation

term, one can also express it in terms of the matrices [K] and [C] as follows:
26; _
Stohs () i) = tns (35 o) (35) o) = (K10 Q00
i=1
(4.16)
Substituting equations (4.11) and (4.16) into equation (4.15), and then perform-

ing the truncation of modes in the remaining terms, one obtains the second order

estimate of the response as follows:
{xX@®} = [k {e@®} - (K7 [C] (K] {Q(t)}
- 3004 |(2) mir+ (2) hs)] 20

=1

+ 3o | () me+ (%) ] 50

¥ g{‘”’ _(wiz.,:: )/ hs (t—r);,(r)dr+ ( ﬂ’) [ st = rypstryae,

(4.17)

It is also observed that if the summations in equation (4.15) are only extended up

to », it becomes equal to {X(t)},. That is,

X} = S (—) i) - 06k (22) 500

j=1 j=1 J

- Tn (%) wtr + () ) is)] 2,0
¥ Z{ds},[(“ﬂ: ) (t)+(2ﬂ’) hj(t)] 55(0)

J
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455 — 1) /o it — 7)s(r)dr + (%) /o byt = )pi(r)dr J :

(4.18)

+ JZ;;M}j [(

J

Eliminating the last three summation terms from equations (4.17) and (4.18) one
obtains

(X0 = X+ K7 Q- X () 200

j=1 wj

K] [C] K {00} + 3{6}; (ﬂ) s, (419)

j=1 wj
This equation expresses the second order estimate of the response in terms of the
classical truncated mode displacement estimate plus some terms which represent the
first and second order pseudostatic contributions of the higher modes. It is also
noted that the first three terms are the same as {X(t)},. The remaining two terms

represent the improvement over {X(t)}1 due to consideration of the force derivative

terms which are evaluated by a simple static type of analysis.

4.5 Nt* Order Force Derivative Approach

Equation (4.19) will now be generalized to the N** order estimate of the re-
sponse by successive integration by parts N times. After some algebra and simplifi-

cation (see appendix B), it can be shown that

n [ <k-1>
(XO) = S8k [ ST 5 |
n [ N <k-1>
#3000 |2 (6 Tanws hst) — Tanhitt) 708 | (4.20)
+ i:{qb}j -w? Tinn /ot hi(t — ) ;f(?) dr — Tin /0 “hi(t—1) pilr) dr|

78



where a number between angles, at the top of a variable, indicates the number of
time derivatives, and the coefficients T;; are defined in appendix B by a second

order recursive formula as:

2
Tix = —ﬁ'r,,,,_ —2T,-‘,._, , Tio=0, Tj1=—1. (4.21)

J

As it was done for the first and second order cases earlier, it is indeed possible
to express the first summation in equation (4.20) in terms of the mass, stiffness and

damping matrices by introducing the matrix [F:

DT zr,.,. p,(t] Z:[F &y, (4.22)

=1

where [F| is a type of flexibility matrix, herein called the k** pseudo-flexibility

matrix, and it is defined by the following expression:

n
[Fle = > _{6}; Tin {4} , (4.23)
j=1
which, in terms of the structural matrices, can be expressed by the following recursive

formula (appendix C):

[Fle = — [K]7" {[C][Fle-1 + [M][Flx—2} , [Flo=1[0] , [Fl=[K]"". (4.24)

Substituting equation (4.22) into equation (4.20) and considering the modal
summation only up to 7 modes in the second and third summation terms, we obtain

the N** order approximation of the response as

(X = Z[Fk 0+ 3041, [Z (6 Y Bi(e) — T3 h5(8) Z'Z-Zi)’,=o]

j=1 k=1

+ g{‘f’}:‘ [‘*’?T:'.NH / it —7) p:(f) dr - T / hi(t — ) p,(r) dr] .
) (4.25)
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One can also obtain {X(t)}o from equation (4.20) by carrying out the modal
summation up to r modes. Subtracting such an expression of {z(t)} from equation

(4.25) one obtains

N <k-1> N r <k-1>
{X@®)}v = {X(t)}o + :;[F Ik {Q®)} =3 3 {4}; Tix pi(t) (4.26)

k=1 j=1

Since p;(t) = {¢;}T {Q(¢)}, one can also write equation (4.26) as:

N
{X@®)}v = {X(t)}o + g{xh(t)}k ) (4.27)
where
[F:]k .
{Xa(t)he = ([F]:. - g{qs},- T, {¢},T) Q5 . (4.28)

{Xn(t)}x can now be interpreted as the k** order pseudo-static contribution of the
higher modes to the response. It can be shown that as N — oo, the vector {X(¢)}~

approaches the correct response {X(t)}.

Equation (4.28) is not quite suitable for numerical work. It is better to obtain the
matrix shown in the parentheses of equation (4.28) directly, and not as a difference of
two matrices. This matrix will be denoted as [Fj]x where the superscript A signifies
that this is the contribution from the "higher” modes. Using the definition of [F|i
given by equation (4.23) and substituting in equation (4.28), one obtains:

[Fale = [Fle =D {8}; Tia {8} = X {#}i Tin {4} - (4.29)
i=1 j=r+1

Since [F}] is defined in terms of higher modal vectors, it will be called as the

k** pseudo flexibility matrix associated with higher modes. It can be easily shown

(appendix C) that this matrix is obtained by the following recursive formula, without
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explicitly using the higher modes:

[Fale = —[K]7([C][Fhlk-1 + [M][Fhlk-2)
Bl = 0, (Bl = K- () 0F. @)

The substitution of [F}]i, in equation (4.28), by the expression given in equation

(4.30), provides the N** order estimate of the response as:
N <k-1>
{X@)}v = {X()}o + D_[Fule {Q(2)} (4.31)
k=1

Equation (4.31) defines the procedure for calculating the improved estimate of the
response, using only the first » modes. An observation of the recursive formula for
[Fh)k, suggests that this matrix need not be defined explicitly, rather, each term of
the summation can be obtained by successive solutions of simultaneous equations.
However, depending upon how many successive steps are required in the calculation
of each summation term for k = 1,..., N, it may be computationally more efficient

to store [K]~! once and utilize it whenever needed.

For the convergence of the summation terms in equation (4.31), it is necessary
that all structural frequencies, which are lower than the highest frequency component
in the input, are included in calculating {X(¢)}o. That is, the summation term in
equation (4.31) only represents the contribution from the modal frequencies which

are larger than the highest frequency in the input.

A response quantity, R(t), linearly related to {X(¢)} can be easily approximated

R(t) = {R} {X(t)} = {R} {X(t)}~, (4.32)

where {R} is the vector containing the coefficients of the linear transformation.
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The characteristics of the second and fourth order force derivative approaches,
with regard to their effectiveness and limitations for calculating the time history
response, have been thoroughly explored by Camarda et al [10] for different deter-
ministic forcing functions. Though they presented an alternative formulation, their
results are expected to possess the same characteristics as the results obtained by the
N** order formulation proposed here, since the latter is just an extension of Camarda
et al’s formulation but expressed in a different way. That is, the results will depend
upon the frequency characteristics of the sustained loads, the duration of the tran-
sient loads and the response quantity being calculated. Here, these characteristics
will not be investigated. Rather, the effectiveness of this approach for calculating

the stationary response for stochastically stationary loads is examined.

4.6 Random Response: Auto-Correlation Func-
tion of R(t)

For a random forcing function vector, one can use equation (4.32) to obtain the

auto-correlation function of the response quantity R(t) as:
E[R(t) R(t2)] = {RY" E [{X(t)}w {X(e)}5] (R}, (439)

where E|[.] denotes the expected value of the quantity in the brackets. Here equation
(4.33) will be explicitly evaluated for only proportional load. That is, for the forcing
function vector {Q(t)} defined as:

{Q(®)} = {Qo}4a(?) (4.34)

where g(t) represents a common time variation of all forces and {Q,} is the amplitude

vector. Here g(t) will be assumed to be a zero mean stationary random process, de-
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finable by its spectral density function ®,(w) which is related to the auto-correlation

function of ¢(t) as:

Coolts = ts) = E la(tr) alta)] = [ @o(w) =) d (4.35)

Using equation (4.9) in (4.31) and, in turn, (4.31) into (4.32), the expression of

the response R(t) for this proportional loading can be written as:

r ¢ N <k-1>
R(t) = > {R}{¢}; / hi(t — ) {8} {Qo} a(r) dr + D_{R} [Fula{ @0} 4(t) ,

j=1 0 k=1
(4.36)
or in a more compact form
r t N T <k-1>
R{) = Yo [ bt —m)a(r)dr + ARV Uik alt) ,  (437)

i=1 k=1

where p; is the j® modal response quantity, 7; is the j** modal participation factor,

and {Ug} is the k*P pseudo-static response of the higher modes to the amplitude

vector. These quantities are defined, respectively, as:

pi = {RY {8}; ;i 7 = {8} {Qo} ; {Unke = [Fule{Qo}. (4.38)

It is noted that, like [Fi]x, {Un}s can also be defined recursively as the solution

of the following simultaneous equation:
[K]{Un}x = —I[C]{Ur}r-1 — [M]{Un}r-2
Gl = 0, KOk = (@} - 3

i=1

5) @b ()

i

From equation (4.37), the auto-correlation function for R(t) can be expressed as:

r t N <k-1>
D P /0 hi(ty — ) q(n)dm + Z:{R}T{Uh}k Q(t1))

=1

E[R(t,) R(t2)] = E[(

x (Lo [ bl - ma(r)dn + 3 (R Ohdn o )|
=1 m=1
(4.40)
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and after expanding this equation and distributing the expected values, it becomes
E[R(tl) R(tz)] = E,(tl, tz) + ‘I,N(tl; tz) + AN(tI, tz) ) (4.41)

where the quantity =, (2,, ;) contains the terms associated to the retained modes and
it is due to the truncated mode displacement approach, ¥ y(¢,,¢;) contains the terms
associated to all N pseudostatic contributions of the truncated modes, and An(t,,%,)
possesses the terms associated to the correlation between the dynamic response of
the retained modes and all N pseudostatic contributions of the truncated modes.

These three quantities are defined as follows:

r r I t2
Er(tlx tz) = E Z PipPLYi N /o ./(; hj(tl = Tl) hl(tz - Tz) 000(7'1 - 7'2) dry dr, (4-42)

i=1l=1

N N
Un(t,t2) = D Y akam Croym-1(ts, t2) , (4.43)

k=1m=1

N r t
AN(tI: tz) = Z E Qm P Y5 '[) hj(tl - 7’1) Co,m—l(‘f'h tz) dn

m=1 j=1
N » t2
+ Z Z ar Pt N / hJ(tz bt Tz) Ck—l,O(tl, Tz) de . (4.44)
k=11=1 0
where
ar = {RY {Un}s, (4.45)

and the cross-correlation function of the m*® and k** derivative of g(t) is defined as:

<k> <m> oktm Coolt1,t2)
Crm(t ,l) = E t =
k, ( 1 2) [q( 1) Q( 2)] atlk atzm

(4.46)

4.7 Random Response: Stationary Mean Square
Value of R(t)

For a stationary input g(t), with power spectral density function ®,(w), the

response statistics of a linear system are also stationary. In particular, the stationary
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mean square value of the response R(t) can be obtained by considering the limit of
equation (4.41) as t; = t; =t — oo. Here, this limiting process will be performed
independently on each term of equation (4.41). During this process it will be useful
to consider the following relationships:
<k> <m> oo w(ti—tz)
Com(tits) = E |alt)a(t))| = [ @a» cua(w)e™@™Dd,  (447)
—oo  q(t1)q(t2)

where it can be easily shown that:

B > <mr(W) = (W) (—iw)™ By(w) = P ™™ (w) . (4.48)

a(t1)q(ta)

4.7.1 Contribution of the Retained Modes

The limit of =,(¢1,%2) as t; = t = t — oo is denoted as Z,, and has already
been developed in chapter 2 to get
E = 2057 5(0) (4.49)

2
r—1 r
+ 2 Y pimevime [TRI0) +TH (1;(2) - I(2)) + T L(0) ] ,

i=1 k=j+1

where I;(3) denotes the following frequency integral
I(s) = || W () | Hj(w) dw, (4.50)

and Hf(w) = [w} — w? + 2iB;w;w]™! is the stationary complex frequency response
function of a single-degree-of-freedom oscillator with frequency w; and damping ratio
B;. The partial fraction coefficients T, TJ-I,,I and TJ-I,," are provided in equations (2.61-

I

1.65).
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4.7.2 Contribution Due to the Correlation Between Re-
tained and Truncated Modes

To obtain the limit of ¥x(t1,2;) as t; = t; =t — oo, first equation (4.47) is
substituted into equation (4.43) (with the appropriate subscripts), to get
N N oo '
Uy(tnt) = 0% mam it [T g ) (45))
k=1m=1 —00
At the limit, ¥y(¢,,%2) is denoted as ¥y and its expression is

N N
Uy = Z Z 3 o o L(k+m —2), (4.52)

k=1m=1
where it should be noticed that i*™ = i*+3™ and I,(s) is the following frequency
integral:

I(s) = / T w8, (w) dw . (4.53)

To compact even further the notation, equation (4.52) can be written as

N N
By = 33 F g, (454
k=1m=1
where v, is given by
Yim = Pmp = axam L(k+m —2). (4.55)

The calculation of ¥y can be performed with significant numerical advantage
by recognizing the symmetry and pattern of the terms involved in the summation
process. First it should be noticed that I,(s) = O for s being an odd number. In
that case, the integrand is an odd function which will be integrated from —oo to oco.

Therefore, for various values of k and m, the entries in the summation of equation
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(4.54) are shown in the following (N x N) matrix

P11 0 —-¥3 O P15 0 Y17 ..
0 Ya,2 0 —vY;q4 O Y26 0o ...
-3 0 Y33 0 —t35 O VYa,z
0 —¢24 O Pa,a 0 -4 O ...
P15 0 —t35 O Ps 5 0 -5 ...
0 Yae 0 —4e O Va8 o .
-y 0 Yaz 0 -9z O Yrz

For increasing values of N the elements in the leading (N x N) matrix are required
to be summed up in equation (4.54) to obtain ¥y. This summation can be given by

the following recursive formula:

In ) 2N —3 —(-1)¥
Uy =Una+ YN +2) (1Y P2y, To=0 , Jv= 4 (= )
i=1
(4.56)

4.7.3 Contribution of the Truncated Modes

Similarly, appropriate substitutions of equation (4.47) into equation (4.44) pro-

duces

Ap(ti,t2) =
N »r t oo ‘
+2 ) ampiv; / hi(ty — )it / W™ @ (w) e(m—t) duy dry
m=1 j=1 0 —00
Y “ -1 [ k-1 iw(ty—3)
+3 > mm -[) hi(t2 — 12)14 / W B (w) e N T dw dry . (4.57)
k=1 I=1 -00

After a change of variables (u = t; — 7;) and (v = ¢, — 73) and some rearrangement,

equation (4.57) becomes

N r oo .
An(ti,t) = X Y i ™ Vanp;; /_ W™ Bo(w) eI M (w, b)) du

m=1 j=1
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N r o .
+ ¥ oy / W 1B (w) et HE (W, t,) dw
-—00

k=11=1
(4.58)
where Hj(w, ;) and Hf*(w,,) are complex and conjugate transient frequency re-

sponse functions of single-degree-of-freedom oscillators:
t ) ¢ X
He(w,ty) = / "hijw) e rdu  ,  HE(w,ts) = / ‘hi(v) e vdu.  (4.59)
0 0
At the limit, as ¢; = t; =t — 0o, An(%1,12) is denoted as Ay and its expression is

N »r 00
Av = 3 S i Vampy [ o 8yw) Hiw) do

m=1 j=1

N r oo
+ S+l pm /_ W1 B, (w) HE (w) do . (4.60)

k=1 l=1
By renaming the index m as k and [ as j, and considering that i~(*=1) = (—1)*-1 %1

the above equation becomes

N r oo
Av = SN+ anpy [ o 8w) (-1 Hyw) + HiE(w)] do . (4.61)

k=1 j=1

For convenience of analysis, equation (4.61) can be written in terms of somewhat
simpler integrals. For this purpose, Hf(w) and H$*(w) are multiplied and divided by
their respective conjugates to get (after some rearrangement):
N »
Ay = Y Y i oy {[(-1* 41 [wl Lk —1) - Lk + 1)]
k=1 j=1
+i2 [(-1)* +1] Bjw; Ii(k)} . (4.62)
Where the quantities i*"! = (—1)*-1)/2 and i* = (—~1)¥/? can be substituted in

equation (4.62) to get

N »
Ay = 3 Y apiv {(-1)ED2 1= (-1 [w? ik — 1) — Li(k + 1)]

k=1 j=1

+2(=1)*? 1+ (-1)¥ Bjw; Ii(k)} (4.63)
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which can be compacted to the following expression:

Ay = Vé{sk 8 + 5,68}, (4.64)
or in recursive form:
Ay = Ax_1+snbn+sh8y , Do=0. (4.65)
where
A i;mi w2 Ik — 1) - Ik +1)] (4.66)
i
5, = 20, gpmﬂj wi i), (467)
si=(=1)*V72 1 (-1, (4.68)
s = (=1 [14(-1)] . (4.69)

The quantities s; and s}, can only take two values: +2 and 0. It can be noticed
that their zero value also coincides with the zero value of their respective factors 4,
and &y, which are zero because of the integration of odd functions from —oco to co.

The first seven values of A} are provided in table 4.1 for illustrative purposes.

Table 4.1: First seven values of A

JAVA
246,
2(6,-63)

2 (81— 8 —8)
2(86—6—65+6;)
2(86—8;—8+6,+65)
2(6,—8;— 63+ 85+ 85— 6g)
2 (8 — 64— b3 + 8, + b5 — 84 — &7)

PR~ RS, TG SO CR P,
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4.7.4 Final Expression for E[R?(t)]

The expression of the mean square value of the response R(t) is given by

lim E[R(t) R(t,)] = E[R}t)] = E + Un + Ax . (4.70)

ti=ta=t—o00

Therefore, substitution of equation (4.49), (4.52) and (4.63) into equation (4.70)

renders

ERW] = 33 #P aan Lk +m—2)+ Y s 71 0)

F 2% 3 o [TALO) + T (1) - L2) + TE L(0)]
=1 k=541
3 Tt {0 [1- (<11 [ LGk~ 1) - Lk + 1)
+ 2(=1)** [1+ (-1)¥] Biw; Ii(k)} , (4.71)

or the recursive expressions for ¥ and Ay, given in equations (4.56) and (4.65),
can be especially helpful when one is interested in examining the effect of increasing
number of integration by parts on the convergence of the calculated response. In such
a study, the values of these quantities calculated in the previous step are directly used

in the current step. In this case, the expression for E[R?(t)] is simply indicated as

E[R*t)] = ¥n+Ax+Y_ 037} 1;(0) (4.72)
j=1
r~1 r
+ 2 Y pioevime [TRI0) + TH (15(2) — 1u(2)) + Ti 1(0)]
j=1 k=j+1

In principle, other statistics of the response quantity R(t) can be similarly ob-
tained. However in this work, only the mean square value has been calculated for
the example problem by utilizing equation (4.71), and the effect of increasing the

number of integrations by parts on the calculated response is shown.
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4.8 Numerical Results

To verify the effectiveness of the proposed approach, the example problems
of a multi-span beam are considered. There are six spans and each is four meters
long. The moment of inertia of the beam about the axis of bending is 2700 cm?,
the area is 43.68 cm?, the modulus of elasticity is 206 x 10° N/m? and the mass
density is 0.00786 kg/cm®. The beam also has concentrated masses of 768 kg at each
meter. For dynamic analysis, each span was subdivided into four beam elements,
each of length 1 m. The consistent mass matrix was used in the analysis. The beam
was discretized in 43 degrees of freedom, with vertical displacement and rotational

degrees of freedom at each node. Figure 4.1 shows some beam details.

The forcing function was due to a uniform support motion at all supports. The
time variation of the motion is random and is characterized by a band-limited white
noise with the cut-off frequency +w,, shown in figure 4.1 (B). For this random process,
the derivatives of all order exist in the mean square sense. As the convergence to
the final result is affected by the frequency characteristic of the force, several cut-
off frequencies values of the force spectral density function have been considered.
Herein, the numerical results for the bending moment in the beam at the middle of

the 4** span (from the left) are obtained.

The mean square value of the bending moment is obtained by (1) the classical
mode displacement approach with truncated modes and with all modes, (2) by the
mode acceleration approach with the same number of modes as the number used in
the truncated mode displacement approach and (3) by the proposed approach. In the

proposed approach, the increasing number of integration by parts are used to show
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768 kg

/ 'L4 th span }

, 4 meters
L)

+ 24 meters

a) Beam layout

b) Forcing function spectral density function

Figure 4.1: (A) Schematic of the multi-span beam and (B) Band-limited white noise
spectral density input considered in the analysis.
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the convergence to the final results. The numerical value obtained with the complete
set of modes is taken as the bench mark value. The response values obtained by the
other methods are presented as ratios to the correct bench mark value. Thus, a ratio

close to 1 indicates nearly perfect results.

The energy dissipation in the system is defined through the modal damping
ratio, B;. It is assumed t_ha-.t each mode used in the analysis has a damping ratio of
5% of the critical value. This characteristic could also be defined through a system
damping matrix. However, for the formulation developed herein it is required that

such a damping matrix be classical.

In order to utilize the recursive relationships of equations (4.30) and (4.39)
we need to have the explicit form of the damping matrix. The method proposed
presupposes that not all modal vectors will be available. In such a case, one can
construct a damping matrix, with prescribed damping ratios for the first r modes
but with increasing or decreasing damping or a combination of these for the truncated

modes as shown in appendix D. Such a damping matrix can be defined as follows:

(€] = [M][F][Dd] R [M]
+ & (K] - [M][F][A] [FT (M)
+ & ([M] - [M][F][F]" [M]) (4.73)

where [®,] is a (n X ) modal matrix containing only the first » modes; & and
¢; are two constants which can be adjusted to obtain the damping ratios in the
truncated modes within a desired range; the diagonal matrix [D,] is of size (r x r)
with its elements defined as (28;w;); and [A] is also a diagonal matrix of size (r X r)

containing the first r eigenvalues (A; = w?). It is simple to see that a damping matrix
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constructed according to equation (4.73) will have the preselected damping ratios 3;
in the first » modes. The damping ratios in the higher modes, though not explicitly

used in the approach proposed, will vary according to the following equation:

ﬂ1=llélw1+2] ’ j=7‘+1,’l‘+2,...,n (474)
2 w,-

Equations (4.73) and (4.74) are simple generalizations of the formulation by Craig
[15], which now includes a combination of increasing and decreasing modal damping

ratios.

While performing numerical analysis with equation (4.71) or (4.72), sensitivity
of the results to numerical roundoff errors was noticed. For large k and m values,
the frequency integrals I(m) and Ij(m) start to become large. At the same time,
however, the coefficients a, = {R}T{U,}+ tend to became small with increasing
value of the index k; it happens because, the vector {Us}« is obtained by successive
solution of equation (4.39) which, in principle, involves successive inversions of the
[K] matrix. The product of oy with the frequency integral, however, diminishes with
increasing k, as in most cases the contribution of the higher order integration-by-
parts term usually also diminishes. The problem of rapid increase in the frequency
integral values and commensurate decrease in the values of a; can be balanced by

considering the normalized values of the frequency integrals as follows:

A 1 A a 1 A A
Lom) = [ v, Iem) = [ o™ W) $w)d, (475)

where now

Byw) = By(ww) , B = [{(:ﬁ)z—w’}zHﬂf (?)T (4.76)

c c

where w, is the cut-off frequency of the spectral density function. Consistent with
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this change in the frequency integral, the corresponding value of & is defined as:
& = {RHUK (4.77)

with the vector {U}x obtained as a solution of the following recursive equation:

[K1{Uh = —w.[C]{Un}r1 — 2 [M]{Un}r-s (4.78)
e = {0} , [KI{0hh = &?{Qo} - [K]E(;‘:—) (47

In terms of these new &, and the frequency integrals, the expression for the

mean square response in equation (4.72) becomes:

E[R(t)] = Wy+Ay+ j;pg 22 10) (4.79)
pa
+ 2 ;ikiﬂ pion it [ThI;(0) + w2 T (1;(2) - 1(2)) + TH 1(0)]
=y
with
a a a In . A a
Uy = ¥n1+9Ynn+2 ;(—1)’ YN-2iN, , Yo =0
o= S EW g - GbnLktm—2),  (480)
and
Ay = Ay, +5N3N+33v3;v ., Ag=0
by = n zp 7 [(ifwe)® BN —1) = B +1)]
By = an Zp 7 [285 (wsfwe) TN)] . (481)

In the numerical work it was observed that the use of equation (4.79) provided

stable numerical values, especially for large N.
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In figure 4.2 is shown the normalized mean square value of the bending moment
at the middle of the fourth span, obtained by the proposed approach, for an increasing
number of integration by parts. The normalization is with respect to the exact mean
square value obtained with the complete set of modes. For the results of this figure,
the cut-off frequency of the spectral density function of the force is 45 rad/s. The
first three frequencies of the structure are 51.34, 55.30 and 65.78 rad/s. Since all
structural frequencies are higher than the cut-off frequency, one need not consider
any modes in the proposed analysis. Here in this figure, the results obtained by the
proposed method with no modes (curve I) and with two modes (curve II) are shown.
It is relevant to mention here that the normalized response obtained by truncated

mode displacement approach with only two modes was about 8%.

From curve I, which corresponds to the case with no modes used in the analysis,
it is seen that the first integration by parts (which is also the same as the mode
acceleration approach) captures about 81% of the total response. More response can
also be captured by including more integration-by-parts terms and it takes about
18 of these terms to capture the full response (within 0.1% of the total response).
This number of integration-by-parts can be reduced by reducing the ratio of the
input cut-off frequency to the frequency of the first truncated modes. This ratio is
denoted by 7. in this and other figures. In this particular case this ratio is 0.876.
For a given input cut-off frequency, this ratio can be decreased by including more
modes in the calculation of the mode displacement part of the response, and thus
reducing the number of modes to be truncated. This effect is clearly seen by the
results represented by curve II, where now two modes have been included in the
analysis and the remaining modes are to be truncated. In this case, two modes and

one integration by parts term (mode acceleration formulation) captures about 96%
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of the total response; the remaining 4% can be captured by nine integration by parts
terms. In this case the ratio of the cut-off frequency to the first truncated frequency,

which now is the third structural frequency, is 0.684.

In figure 4.3 are shown results similar to those shown in figure 4.2, but for the
input cut-off frequency of 50 rad/s, which is now very close to the first structural
frequency, with the frequency ratio of 0.974. Since the cut-off frequency is still
smaller than all structural frequencies, one need not use any modes in the proposed
approach. Curve I shows these results. It is noted that the first integration by parts
(mode acceleration formulation), but with no modes, can now capture only 73% of
the total response. This value can be improved again by including more integration
by parts terms, and it requires about 27 integrations to achieve convergence to within
0.1% of the total response. Here again, this number of the integration by parts terms
can increase significantly if the ratio of the cut-off frequency to the first truncated
frequency is closer to 1. This is shown by curve II, where this ratio is now 0.9999;
here, no mode included in the mode acceleration formulation captures about 70% of
the total response, and the remaining 30% is captured by about 53 integration-by-

parts terms.

In figure 4.4 are shown the results for a case in which the input cut-off frequency
is now larger than the first structural frequency. This necessitates that at least
the first mode be included in the analysis. Curve I shows the results for a cut-
off frequency of 54 rad/s, which provides a frequency ratio of 0.976 with respect
to the second modal frequency. Mode displacement formulation with one mode
captures about 0% of the response, with two modes 19%, whereas one mode with

one integration by parts (i. e. mode acceleration formulation) captures about 61%.
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Further improvements in the response estimates are again possible with increasing
number of integration by parts. Curve II shows the effect of including one more mode
in the analysis. Here the number of integrations required to capture the remaining

response is about 15.

Figure 4.5 is similar to the previous figures but now the first five modes fall
within the range of the input cut-off frequency (100 rad/s), and thus a minimum of
five modes must be considered in the analysis. The convergence characteristics of

the response is similar to those of the earlier cases.

A question which immediately arises is: How many integration by parts terms
are necessary to achieve convergence to the total response? The answer to this query
is probably as elusive as is the answer to the question: How many modes should one
consider to capture the full response in the classical mode displacement approach?
The total response being sought is not known a priori. One can thus only check for
the mutual convergence of the results obtained with successively increased number of
integration by parts. This, however, only checks for the flatness of the curves shown
in the preceding figures. A problem arises here, as these curves are not monotonically
increasing or decreasing to the final value of the response. Although the calculation
of successive terms of the integration-by-parts scheme is very efficient, one can not
indefinitely increase the number of integrations because of the accumulation of the

round-off errors in the process of solving simultaneous equations successively.
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4.9 Conclusions

An N* order force derivative approach is presented to reduce the error due to
truncation of modes in modal analysis of structures. In this method the response is
expressed in terms of a dynamic part and a pseudostatic part. The dynamic part is
the same as used in the classical (truncated) mode displacement formulation. The
pseudostatic part represents a correction which accounts for the contribution of the
truncated modes. By increasing the order of the force derivatives in the approach, the
contribution of higher modes can be more accurately calculated. In this chapter, this
contribution is calculated without evaluating any convolution integrals: rather, only
a simple inversion of the system stiffness matrix or the solution of a system of linear
equations is required for calculating this contribution. Simple recursive formulas are
presented to facilitate the calculation of this contribution for successively increasing

orders of the force derivative terms.

The formulation is used to calculate the second order statistics of the response
for random forcing functions. The numerical results of an example problem show
how the convergence to the correct response is achieved by increasing the order of
the derivatives in the approach. It can be proved that as the order of the derivative
is increased indefinitely the calculated response will approach the correct response
in the limit. For practical applications, however, it may not be necessary to adopt
very high order of derivatives in the approach. Of course, the approach is only ap-
plicable to differentiable forcing functions. Also, it is necessary that all structural
modes below the highest frequency in the input be included in the calculation of

the dynamic part. It is only the contribution of modes with frequencies higher than
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the highest input frequency that can be improved by the force derivative approach.
Furthermore, the greater the separation between the highest frequency of the input
and the frequency of the lowest truncated mode, the faster is the convergence with
increasing order of the highest derivative in the approach. This separation can ob-
viously be increased by including more modes in the dynamic part of the response.

This fact is also clearly shown by the numerical results presented herein.
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Chapter 5

Response Spectrum Method for
Hysteretic Shear Buildings

5.1 Introduction

Civil engineering structures, affected by strong earthquake induced ground
motions, need to be properly designed to avoid the damages leading to their collapse
and the consequent loss of lives. Several structural systems have been designed to
withstand such seismic forces elastically. That is, they are allowed to work within
the elastic range of its constitutive materials. This design philosophy may, however,
result in large and expensive structural members. To reduce the size of structural
members, it is a common practice in building designs to permit some yielding of
members. Structures so designed, dissipate vibratory energy through the hysteretic
behavior of structural members subjected to cyclic loading caused by earthquake
induced dynamic loads. As a result of this energy dissipation, these structures have
slender structural members and are less expensive than those that behave elastically.

However, it is understood that the structure may be partially damaged whenever
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a design level earthquake would occur. The maximum amount of damage to be
tolerated, is determined by the maximum ductility levels to be reached during a

design earthquake.

For the calculation of design forces for such yielding structures, in a dynamic
earthquake environment, the use of response modification factors, which depend upon
the type of construction, has been suggested in some recent codes such as ATC 3 [2]
and NEHRP [35]. The recommendations have also been made to include such behav-
ior through the use of the inelastic ground response spectra developed for different
ductility ratios. All these methods, however, provide just approximate solutions and
have been proposed primarily to simplify the analysis. It is always possible to accu-
rately evaluate the nonlinear behavior by using a step-by-step procedure for a given
ground motion time history of the design earthquake. However, to use this approach
it is necessary to employ several ground acceleration time histories as base inputs.

Such analyses can become quite involved and cumbersome; they are not suitable for

design purposes.

For multi-degree-of-freedom linear structures, a faster approach, known as the
response spectrum method, is commonly utilized to calculate response for design
purposes. It makes use of the smoothed response spectra of the design ground motion
[38, 2, 35]. These spectra, define the random inputs in terms of the maximum
responses of different single-degree-of-freedom oscillators. Multi-degree-of-freedom
elastic structures can be easily decomposed into a set of single-degree-of-freedom
oscillators by using modal analysis. The modal response combination rules such as
those described in chapters 2 and 3 can be used to calculate the design response.

Such approach, however, can only be used with linear systems.
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This study presents a response spectrum method which can provide approxi-
mate, but still reasonably accurate values of design response for nonlinear structures
with hysteretic elements. To be able to develop this response spectrum approach,
the nonlinear equations of motion are first linearized using the stochastic equivalent
linearization technique. The equivalent linear system of equations are then solved by
a generalized modal analysis approach employing the adjoint sets of system eigen-
properties. In this approach the seismic design inputs, commonly defined in terms of
pseudo acceleration and relative velocity ground response spectra, can now be used.
In addition to these conventionally used spectra, the need for defining the seismic
input in terms of the relative displacement spectrum of a massless oscillator is also

identified.

In this chapter, this approach is first developed for structures that can be mod-
eled as shear buildings with one nonlinear hysteretic element for each story of the
building structure. In the following chapter this approach is extended further for two

dimensional structural frames with concentrated plastic hinges.

5.2 The Shear Building Model

The response of most structural buildings with rigid floor slabs, when subjected
to horizontal seismic excitation, can be well approximated by just considering a few
degrees of freedom at each floor level. Since these structures consist mainly of several
stiff horizontal slabs connected by flexible columns and or shear walls, it is possible
to allow just three degrees of freedom per floor, two horizontal translations and one

rotation about the vertical axis, to obtain a good approximation to the response. In
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some structures the mass centers of each floor coincide with the respective stiffness
centers and the rotational degree of freedom can be avoided allowing the two trans-
lational components to be studied independently. In this case, just one horizontal
translation per floor will suffice to study the response in one direction. This simpli-
fied model is widely known as shear building. Such models have been commonly used
in earthquake engineering studies of multi-story building structures. In this chapter,

we have also used this model to represent multi-story building structures.

5.3 Governing Equations

Figure 5.1 (on page 144) shows a schematic of a shear structure where the
floor masses m; have been concentrated at the story levels and are interconnected by
elements that represent the columns and or shear walls of the actual structure. The
relative displacement of the i** mass with respect to the ground is indicated by z;
and the deformation of the i** connecting element (or interstory drift) is denoted as
u; = z; — z;_;. It will be assumed that the i** element, when dynamically deformed,

provides stiffness forces s; and damping forces d;.
Using Newton’s law the equation of motion for the 1** mass can be written
Siy1 — 8§ + d,'+1 - d,' = m; {é: (51)

where Z2 is the absolute acceleration of the i** floor. The damping force d; is assumed
to be viscous and is thus proportional to the drift velocity through the damping

coefficient ¢;:

d; = iy = ¢ (& — 2i—1).- (5.2)
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The model for the restoring stiffness force depends upon the constitutive character-
istics of the structural materials. For structures with material deformation within

the linear elastic range the stiffness force is simply given by
8i = kiuy = ki(zi — zi-1) (53)

where k; is the elastic stiffness coefficient. To represent the inelastic behavior here we
will use the model proposed by Wen [57] which consists of an elastic part in parallel

with an hysteretic part:
8 = agki (i — zi1) + (1 — o) ki v (5.4)

where k; is now the initial stiffness parameter of the hysteretic model, «; is the
proportionate contribution of the linear elastic part (0 < a; < 1), and v; is the
auxiliary variable (auxiliary drift) of the hysteretic part. The deformation variable
u; is assumed to be related to the auxiliary variable v; by the Bouc-Wen [9, 56, 57]

hysteretic constitutive model of the following form:
v = At — Biug [vi|® — Civg | o[t (5.5)

This ingenious differentiai equation was first proposed by Bouc [9] and has been
extensively used by Wen [56, 57, 58], Baber and Wen [5, 6, 7] and many others in
their studies of stochastic response of engineering structures. It can represent a wide
variety of hysteretic characteristics depending upon the values of their parameters
(5, 30]. Also, deterioration and pinching effects may be modeled by the introduction
of additional parameters [4]. The meaning of the different parameters involved in

equation (5.5) are discussed in appendix E.

The figure in appendix E shows the general shape of the hysteresis loop which

has been adopted in the numerical examples. To model the softening behavior of the
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which nonzero entries have the following pattern:

( (e1 + c2) —Cz
—c;  (ec2+es) —cs
[C] = ’ : : (5.9)
cn-1 (en-1+¢n) —cn
- —-cvz c" -
The linear part of the stiffness matrix is denoted by [K*] and its structure is
[ (kr+k5) k3 '
—kz (R +Ek5) -k
[K*] = . : (5.10)

kiy (ki +E3) —k3
! —kn k2

where kf = o;k;. Matrix [H?®] contains the hysteretic elements with following ar-

rangement:

[ h$ —hg

hy —h3
[H°] = (5.11)

where A = (1 — a;)k;.

The n dynamic equilibrium conditions expressed by equation (5.8) contain n un-
knowns in vector {X} plus n unknowns in {V'}. Additional n equations are provided

by the constitutive equations of each deforming element, equation (5.5).

The assembled constitutive equations for all n connecting elements, together
with the equations of motion, fully describe the dynamic response of an inelastically
behaving shear building subjected to ground excitation. To develop a response spec-
trum approach, the constitutive equations (5.5) must be linearized. The linearization
procedures have been widely used in practice since the first proposal by Krylov and
Bogoliubov [25]. The book by Roberts and Spanos [40] provides an excellent de-

scription of this technique. The analytical form of the Bouc-Wen model is especially
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suitable for stochastic linearization processes. The equivalent linear form of equation

(5.5) is defined by the following expression:
v; = a;u; + b;v; = a,-(:i:,--—:i:;_l)+b;v,- , i=1,...,n (5.12)

where a; and b; are the coefficients of linearization, yet to be defined. Assembling
equation (5.12) for all deformable elements, we can rewrite them in the following
form:
{V} = [Al{X} +[B]{V} (5.13)
where matrix [B] is diagonal and matrix [A] has the following structure:
ay
—a; a

[4] = . . . (5.14)

—an Gan

Equations (5.8) and (5.13) constitute the equivalent linear system of governing
equations. The linearization coeflicients a; and b; are chosen such that they minimize
the mean square value of the error introduced by the linearization itself. This leads
to expressions of the coefficients as functions of the response statistics of the actual
nonlinear system which are not known a priori. Simplified closed form expressions
can be obtained for a; and b; in terms of the response statistics if the response can
be assumed to be Gaussian. See Atalik and Utku [3]. In appendix F, it is shown

that these coeflicients are:

o= Aol T (BN Bt )Gt B |, (515)

o _ n — 1 e
b = — oy o /2 [ [mm( 5! Bi + (m)!Cipl" 125,-] , (5.16)
where 7; is the exponent of the model in equation (5.5) which is a positive odd

integer, o, expresses the standard deviation of the subscripted variable x, p; is the
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correlation coefficient between 4; and v;, and X,; and I, are defined by the following

summations: (mi=1)/
_ wA P (e -27-1)/2 (1 - p2)
Yo, = jor 71 (m — 25! (2p:)4 10
e 52/ (e — 25 — 1) /2]t (1 — p2) (5.18)

i dtmi-24-10 (2p)%

Other expressions for these coefficients have also been obtained, [57, 11, 4].

Since the response statistics oy, 0y, and p; are still unknown, which in turn can
be obtained only after the determination of the linearization coefficients, an iterative
approach has to be implemented to solve this problem. Till now, several investigators
have used the Fized Point iterative scheme which can be described as follows: the first
iteration starts with some assumed values of the linearization coefficients then the
response statistics of the linearized system are determined, which in turn are used in
equations (5.15) and (5.16) to obtain a new set of coefficients to be compared against
the initial ones. If the comparison does not satisfy some tolerance requirement, the
newly obtained coefficients can be used to initiate the next iteration. This scheme
was observed to be rather slow to converge. Here, therefore, a faster approach has
also been used, which is based on a modification of the well known Newton method

[13]. Some further details of these methods are provided in section 5.7.
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5.4 Solution of the Linearized Governing Equa-
tions

To solve the linearized governing equations (5.8) and (5.13) they will be combined

into a system of first order equations

(L {Y} + L] {Y} = {F} (5.19)

where vectors {Y'} and {F} have dimension 3n and are defined as

{X} {0}
{r} = { {X} } , {F}= { —[M] {I} &, } : (5.20)
{V} {0}
The dimension of matrices [L,] and [L,] is (3n X 3n) and they are given by:
(1] (0] [0] [0 -{ [0
(L = | [0] [M] [0] | , [L]=|I[K] [C] I[H] (5.21)
0] [0 (1] 0] —[A] —[B]

where [0] and [I] are the (n X n) null and identity matrices respectively.

Since [L,] is a general nonsymmetric matrix, to decouple equation (5.19) it is
necessary to obtain its right and left complez eigenproperties by solving the corre-

sponding right and left eigenproblems:
[La][8] = [L][®1[A] ,  [®) [La] = [A][9])" [L4] (5.22)

where [A] is a diagonal matrix the entries of which contain the 3n eigenvalues J;
ordered by increasing modulus with A, at entry (1,1); [®] and [¥] are the right and
left modal matrices respectively, which have been normalized with respect to matrix

[L4] so the following conditions are satisfied:

(O Li](®) = [1) , [®)7[La][2] = [A]. (5.23)
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The columns of matrices [®] and [¥] are ordered in accordance to the entries of matrix
[A], that is, the i** columns of [®] and [¥] contain respectively the it? right eigenvector
{®}: and the it* left eigenvector {¥};. The solution of each eigenproblem will provide
n real and n pairs of complex conjugate eigenvalues with their corresponding real
and complex eigenvectors. To distinguish between real and complex quantities the
real eigenproperties will be indicated by a superscript » whereas the complex and
complex conjugates by the superscripts ¢ and cc respectively. All real eigenvalues as
well as the real part of all complex eigenvalues are positive. We will write the n pairs

of complex conjugate eigenvalues as [43]

Aj=Bjwitiw; 1= , A =fjwj—iw;jy1-p8} , j=1,...,n (524)

where, B; is the equivalent damping ratio and w; is the equivalent frequency for the
7** pair of complex conjugate modes. Equations (5.24) can be solved for w; and B;

to obtain:

wj =[5 , Bj=Re(A})/w; , j=1,...,n (5.25)

Equation (5.19) can be uncoupled by using the following transformation of co-

ordinates:

Y} = [9]{2} = 3 {a}; 5(t), (5.26)

=1

where z;(t) is the j** component of vector {Z}. Substitution of equation (5.26)
into equation (5.19) and then premultiplication by [¥]7 provides the following set of

uncoupled equations:

{2} +[A1{Z} = [¥]"{F}. (5.27)

Thus, the n uncoupled equations are

zi(t) + A 2i(t) = —v;2,(t) , Ji=1...,3n (5.28)
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where v; is the j** modal participation factor defined as

{0}
7 = {9} { [M{IO?} } - (5.29)

The solution of the first order differential equation (5.28) for zero initial condi-

tion can be written as:
t -
zi(t) = — ; ‘/(; etz (r)dr , j=1,...,3n. (5.30)

By performing the linear transformation indicated in equation (5.26), the I** com-

ponent of the response vector {Y'} can be written

3n
wt) = - . qj / etz (r)dr ; 1=1,...,3n (5.31)
i=1

¢
0
where gi; = ¢1;4; and ¢y; is the (I, j) component of the right modal matrix [®].
Equation (5.31) defines the deterministic response of the linearized system of

governing equations. The formulation to the response statistics of equation (5.19),

for random ground motions, is presented in the following section.

5.5 Response Covariance Matrix of the Linearized
System

To obtain the linearization coefficients, we will need some elements of the
correlation matrix of the response vector {Y(¢)}. Such matrix is denoted here as

[Y(t1,t2)] and its (I, m) typical element can be defined as:

Vim(t1,t2) = Elyi(t:) ym(t2)] - (5.32)
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To define this correlation in terms of the input motion and the eigenproperties we

use equation (5.31) to obtain:

3n 3n

Vim(tssta) = 33 ages [ [ €740 M B[3 () &) i d
= (5.33)
As considered in the previous chapters, we will assume the ground motion to be a
stationary random process with power spectral density function ®,(w). Its autocor-

relation function can then be written [29]

Bliy(r)y(m)] = [ 8,(w)e ) du. (5.34)

Substitution of equation (5.34) into equation (5.33) and integration of the time in-

tegrals provides

3n 3n eiwtl _ e-—Ajh e—l'wtz — e—Agtz
Vim(t1,t2) = ;§I§ ququ/ P, (w) ( X +iw ) ( M — iw dw
(5.35)

For large values of ¢; and ¢,, this response correlation will also approach stationarity,
as shown in previous chapters. For a finite value of the time difference, At = ¢, —¢,.

This stationary correlation can be expressed as:

oo 3n B 3n
At)= [~ a,(wyent (3 T It ) 5.36
din(at) = [T au)en (P8 (3 e (5.36)
The evaluation of the frequency integration for real and imaginary eigenproperties
requires a different treatment. It is, therefore, necessary to consider these separately

in the summations appearing in equations (5.36) as

3n n c cc
Qz, q; qi;
5.
J.z_;/\ + tw JE_;/\ + 1w .Z;(/\;+iw+z\§°+iw) ’ (5.37)

where the quantities gj; are obtained from only the real eigenproperties, and gf; and

gi; from the complex and complex conjugate eigenproperties. Equation (5.37) can
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be written in terms of the real and imaginary components of gf; as

3 z": qi; z": (AF + iw) (&5 + ie;) + (A5 + iw) (85 — iey;)
SAtiw S Ajtiw o (A% + iw) (AF + iw)
(5.38)
where
&i; = Re(q;) , & = Im(q;)- (5.39)

By substituting for A and A¥ from equation (5.24), equation (5.38) can be rewritten

as:

3n n n

qi; r» ~c c c
> : Y = > ai; Giw) + 2 ) pi;(w) Hj(w) (5.40)
j=1 Aj +iw j=1 j=1

where G§(w) is the complex frequency response function of a first order system,

defined as:
5Nz =e 5 =Gjw) e, Giw)= [N +iw]T ;  (5.41)
and Hf(w) is the complex frequency response function of a damped single-degree-of-

freedom oscillator with natural frequency w; and damping ratio §;; defined in chapter

2 by equation (2.37). The other quantities appearing in (5.40) are defined as:

] Re(qf; AE

The second summation term in equation (5.36) can be similarly rearranged to

provide:
3n

Ik Zq,,,,, Cew) + 2 3 95, (w) HE(w) (5.43)

k=1 A — iw k=1

where the quantities in (6.49) w1th superscript cc are the complex conjugates of the
respective quantities defined in equations (5.41) through (5.42). After substitution
of equations (5.40) and (5.43) into equation (5.36), with some further rearrangement

of terms, the cross covariance term at At = 0 can be expressed as:

Vin = [ #,(w) [BR(w) + 258 (w) + 435, (w)] do (5.44)
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where

5 (w) = Z 2 &, 4o G3(w) G () (5.45)
SR (w) = z z g 7% () G5(w) HE(w) + g 55(w) G (w) Hiw),  (5.46)
58, (w) = Z gpf,-(w) Py () H(w) H(w) (5.47)

Since ®,(w) is an even function of w, the integrand terms defined by odd functions

of w will vanish when integrated from —oo to oco.

To be able to express the integration in equation (5.44) in terms of just a few
frequency integrals, the summation terms given by equations (5.45-5.47) will be

considered independently for further simplification

5.5.1 Terms associated with only real eigenproperties: I (w).

By multiplying and dividing equation (5.45) by G¥°(w) Gi(w) and after some
readjustment of terms, we obtain
n n
TR (w) = z 2 df; o |G [GE )P (W + X5 20) +iw(; - X)) (5.48)
where |G<(w)|? = [(A7)? + w?] ™" is an even function of w. Since the imaginary part
of equation (5.48) is an odd function of w, its contribution will become zero when
integrated in equation (5.44). Therefore, only the real part of this expression which
generates a nonzero contribution will be considered. This part is re-written as:

n n

Re[Zr(w)] = 2_ 3 af; @i IG5 () |GR ()] (w® + A7 XS) - (5.49)

i=1 k=1
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The product term in equation (5.42) can be expressed as a sum of two terms by
partial fractions (see Case I in appendix A) as:
Re[Zip(@)] = - Y- Tienja |G5(@) [ + Tirua; G () (5.50)
i=1k=1
where the coefficients of the partial fractions, T,f,u-,, and T,I,,{,,J-, are:

A% AT
T g, 3 ol g, Tk _ 5.51
tmjk = 915 Imk X+ ’\; v Limkj = U5 Imk X+ /\; ( )

5.5.2 Terms associated with real and complex eigenprop-
erties: ZFC(w).

The terms in equation (5.46) will now be simplified so that the product of the
response functions are avoided. For this purpose, the subscripts 7 and k in the second
term of equation (5.46) are interchanged to get

n n
i (@) = 30 D af; Pe(w) G5(w) H¥(w) + ¢ pla(w) G5 (w) Hi(w) . (5.52)
i=1k=1
Multiplication and division of each term by the corresponding conjugates of the
frequency response functions yield
n n CcC (]
El'if w) = G(w 2 Hé(w 2 {qr- |: pmk(w) + q:n [ plk(w) ] } .
l ( ) ,z:{gl J( )I | k( )I (4] G;c((d) H,‘:(w) Y] G’j(w) H,‘;"’(w)
(5.53)
In this equation the quantities enclosed by brackets are the only complex quantities.
The real and imaginary parts of p35,(w)/[GF(w) Hi(w)], which are even and odd

function of w, respectively, are explicitly defined as:

e [Q"%(;g@)] = (Crrd] — Smaw?) (wi — @) + 2Brwi (Cmk + SmicA}) w?

= Sk w* + Xmjk @ + i Aj wi (5.54)
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m [G;gf;gz;g(w- )] = 20k (G = Ermses®) = (Gt + B X)) (woo — ). (5.55)

where Xk is given by
Xmile = (2 Bk Wi — A}) Gk + (2 Bk wie A} — Wi ) bmic - (5.56)

and its imaginary part, can be expressed by the following odd function of w:

Similarly, the real and imaginary components of the remaining complex factor

in equation (4.57) can be defined as:

Pik(w) .
Re |G| = twt e+l @90

fm [a}’—(f’%] = — 20wk (CrAjw — 8w®) + (i + S A}) (wiew — w®). (5.58)

In this case also the real and imaginary parts are even and odd functions of w
respectively. Again at this stage, the complex terms can be completely dropped
from any further consideration since they provide zero contributions to equation
(5.44) when integrated from —oco to oco. Thus, considering only the real parts in

equation (4.57), we write we write

n n

Re [2f9(w)] = 3 3 1G5(@)? 1HE(@)I? Pine(w) (5.59)

i=1k=1

where Py i(w) is a fourth degree polynomial in w
Pimir(w) = (qf;0me+ a5 ;5) @* +(af; Xme+ G Xtite) @2 +H(Cmi+ a0 Cue) Ajwii - (5.60)

The product |G§(w)|? |H(w)|? Pimjk(w) can now be expanded into partial fractions

(see Case II in appendix A) to provide:

Re[3Fw)| = 1) T4 1Gw)? + (THE +w* Tiva) |Hi()*  (5.61)

j=1lk=1
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where the coefficients Ti;, T,f,{,’,, and TV, are

T = {[(axmsn + ahixaie) — (05) (a5i6mi + alnjbie)] (A7) (5.62)

— (gfyCmi + qfasC) Xjeik } {4820 (A7) — [(A5)? + 2%}

T = {wk (487 = 2) — (X)) (gljCmi + ghnjue) XjewE — wit [(@ljxmin + alniXuie)

— (X0 (afjbme + b)) } {482 VP — (X2 + B} (5.63)

Titvie = (97;6mk + @iOie) — Tiine (5.64)

5.5.3 Terms associated with only complex eigenproperties:
o (w).

Here we will work with equation (5.47) to identify inconsequential odd terms

and then express it as a sum of | H¢(w)|? and no their product.

To achieve this Equation (5.47) is first decomposed into two parts. The first
part contains only those terms with j = k (diagonal terms) and the second part
contains the remaining terms with j # k (off-diagonal terms) as:

Tim(@) = X 2i;(w) P () [Hf (@) + 32 3 pf(w) Pk (w) Hj (w) H¥(w) . (5.65)

j=1 J=1 k=1
k#j

The real and imaginary parts of the single summation terms can be easily identified
by expanding the product pf;(w) p%s;(w) into its real and imaginary parts. Again, at
this stage the odd parts can be ignored as explained before. The remaining real part
can now be expressed as:

Re |3 () s (@@ | = 3 (G g + 6158 ?) [HS(@)P (5.66)

i= 7=1
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To simplify, the double summation term of equation (5.65), it is first multiplied
and divided by the complex conjugates of the frequency response functions. At
this stage again the imaginary part can be completely deleted for obvious reasons

explained earlier. The remaining real part of a product term can be written as:
Re [p};(w) 2 (@) H5(w) Hif(@)] = Prma() [ H5(@)P |1HE @), (5.67)
where P, ji(w) is a sixth degree polynomial in w:

Pmju(w) = [6i6mi]w® + [(4BiBewiwn — ] — w})bis6ma + Gijlomi
+  2(Cmibtj — Gi0mi) (Brwi — Bjw;)] w* + [(4ﬂjﬁkijk — w} — wi)(1iCme
+  8ibmawiwy + 2wiwn(Cmbts — C158m)(Biwi — ﬂkwj)] w?
+ [Gimwind] o° (5.68)
It is relevant to mention that the above polynomial is symmetric with respect to the

indexes j and k. That is, .Islmjk(W) = If’lmu(w). This symmetry reduces by half the

number of calculations required for the off-diagonal terms.

By using equations (5.66) and (5.67), and the symmetry of Pimir(w), this real

component of equation (5.47) can be written as

n n—1 n
Re [B€,(w)] = D (¢tiCmi+810mw®) [Hi@)P+2 Y. D Pimja(w) | Hy(w)[? | HE(w)]
i=1 =1 k=j+1
(5.69)
Finally, the product in the double summation term of equation (5.69) can be ex-

pressed as a sum by partial fractions (see Case III in appendix A) to provide the

following equation:

Re[SC,()] = 3(Cisms + Gisbmis®) | (@) (5.70)

i=1

n-1 n
+ 230 3 (Toe + w0 T H5 (@) + (Timiie + @ Tiie) 1Hz ()?

J=1k=j+1
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VIII

where the coefficients T,mJ,,, T,ka, T,,,Uk and T; are given by

mik
Timik = {2 i jk [1 ~ Q3 +2(8} ﬁk)] = Pimgie (U — ;kz)} Az
Toix = {ﬂlmjk (ij -0 -2 Q,Tk Kimgjk [1 — Q% +2(B2Q%, - B2 )]} wi? AR
Toihe = Gl Q5 — T Q3
Timiie = 613 bk — Tzfjk ; (5.71)
with
Qjr = w;fwi (5.72)

Pimie = Gk (W = 1) + w36036mi [(1 — 4B2)Q% + 488405 — 1]

+ 2w;iQk (615¢mk — Smris) (Br — BiClik) (5.73)

Mmik = Gijlmk [1 — 483 + 48P — ka] + W} 6136m (1 — Q)

+  2w; (615¢me — Omilis) (Bi — Brflix) (5.74)

Ap = 16(B2+82—B:— B — 0% — Q3¢ —6
+ 4(0%+057) [1-2(82 + 87 — 28267)| (5.75)

5.5.4 Final Expression for each Component of the Covari-
ance Matrix

Since only the real parts of B, B¢ and Ef need to be used in equation

(5.44), it can be expressed in terms of simple frequency integrals as:

n n

= 33 (Thadi +Tha i) +2 2% (T8 J; + THL IR+ TR, 1)

i=lk= J=1k=1

-

+ 4 (Cszmj I + 8136m; I.';)

j=1

n
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n—1 n

+ 8 X (Thali+Thal + TR I+ TV 1) (5.76)
7=1 k=j+1
where Jj, ];;’ and I} are frequency integrals defined as
Ji= [ &) IGw) du/;, (5.77)
i=[ W) H@)f e, L= [ " () B W) dw . (5.78)

I_ff and I were defined in chapter 2 as the mean square values of relative displace-
ment and velocity response of a single-degree-of-freedom oscillator excited by ground
motion. J; is the mean square value of the response of a first order system, with

parameter A}, excited by ground motion.

For some commonly used forms of spectral density functions these integrals may
be obtained in closed-form. Appendix G provides some closed-form expressions for

white noise and Kanai-Tajimi type of seismic inputs.

5.6 Response Spectrum Method

The objective of a response spectrum method is to express the maximum value
of a design quantity by an appropriate combination of the maximum modal responses.
These maximum responses, of the individual modes, are defined in terms of the input

response spectra.

Any design quantity of interest R(t), which is a linear combination of the re-

sponse vector {Y(¢)} may be written

R(t) = (R} {¥Y (1)}, (5.79)
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where {R} contains the coeflicients of the linear transformation. For linear systems
subjected to zero mean stationary inputs, the mean square value of R coincides with

its covariance
op = E[R*(t)] = {R}Y E{Y()HY (1)} {R} = {R} [VI{R}, (5.80)

where [Y] is the covariance matrix of the response vector {Y'(¢)}. The (I, m) element

of this covariance matrix is Y, which is defined in equations (5.76-5.78).

The maximum value of R, denoted as Mg, can be approximated for some small
probability of exceedance by scaling its standard deviation with an appropriate peak

factor Pg:

MH ~ PR OR, (5.81)

Using equations (5.81) and (5.80) the squared maximum value can be approximated

as

My~ {RY" (PA[V]) {R}. (5.82)

This equation expresses the maximum value of R as a function of the scaled stationary
covariance matrix Pa[Y]. Therefore, it is of primary interest to relate the integral
inputs used for Y, in equations (5.76-5.78) with the ground inputs defined by the

response spectra.

Approximate expressions for the frequency integrals in equations (5.77) and
(5.78) can be obtained in terms of the response spectrum values and their respective
peak factors:

M. 2 M., 2 . Mu,- 2
J; ~ (#) , i~ (Wd’) , I'm (P ) . (5.83)
J ] vi

where M is the spectrum value of the first order oscillator, and Mg; and M,, are
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the values of the relative displacement and relative velocity spectra, respectively, of

the second order oscillator.

In terms of these frequency integrals we can define ('P}iy,,,.) as

n n M2 M2
sz{ ylm = ’Plzl [E E (Tlmjk + Tlmh: 772 )

=1 k=1

n n M M Mz
+ 2 Z],k 1'( lmgk +T‘IIn{]Ik 1):. +ngk tpg )
i=lk=
n M2
+ 4 Z (CIJCmJ Pg +5136m,7 Pz ) (584)
Jj=1
+ 8 (Tfn “: +TYL +T‘;‘H d, $TYHI Zw ) )

However, if we assume all the peak factors to be equa.l, equation (5.84) simplifies to:

Pﬁylm ~ ZZ( mng2+ lkaMz)
=1 k=1
n n
+ 233 (T M3+ THE M3, + T, M2, )

=1 k=1

E]

+ 4 (GiGmi M3, + 61j6m5 M2,) (5.85)
Jj=1
n-1 n
+ 8Y Y (ThaMi, + TV M2 + TVE M3 + TVHI M)
7=1 k=J+1
Substitution of equation (5.85) in equation (5.82) provides the squared design re-

sponse value of interest. The numerical results have been obtained both from equa-

tion (5.84) and (5.85), that is, with and without the assumption of equal peak factors.

5.7 Summary of the Iterative Scheme

As it has been mentioned, the numerical solution of the proposed equivalent

linear approximation to the hysteretic response, requires an iterative scheme. This
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is due to the definition of the linearization coeflicients as functions of the unknown

response statistics.

Several iterative schemes may be adopted to reach the desired convergence. In
particular, the fixed point [13] procedure has commonly been considered by several
investigators. The fixed point approach is based on the solution of the following

equations:
F(a; b)) = a; , Fi(ajd))=b , 4,j=1,...,n. (5.86)

The functions F® and F? express the linearization coefficients as functions of the
coeflicients themselves. In the current problem, these functions can be defined only
numerically. That is, equations (5.15-5.18) provide the coeflicients a; and b; in terms
of the response statistics, which are given by the appropriate elements of the covari-
ance matrix. In turn, the components of the covariance matrix are functions of the
eigenproperties of the linearized governing equations, which involve the linearization

coeflicients.

By considering equations (5.86), the fixed point scheme provides the following

recursive formulas:

a';(k+l) = F (ag'k): b:(ik)) ) bs(k+1) = Fib (a'g'k)) bg'k)) y Hi=1l..,m.
(5.87)
where the iteration steps are indicated by superscripts. Thus, the coefficients at step

(k + 1) are functions of the coefficients at the previous step (k).

The different tasks required by each step, of the fixed point iterative scheme,

can be summarized as follows:
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. Start with some assumed values of the linearization coefficients. For this pur-
pose it is useful to notice that the linearization coefficients for a linear system

area;=land ;=0fori=1,...,n.
. Assemble matrices [4] and [B], and modify accordingly matrix [L,].

. Obtain the right and left eigenproperties corresponding to the homogeneous
version of equation (5.19). Calculate the quantities required to determine all

partial fraction coefficients.

. Determine the response statistics by calculating only the necessary elements of
the covariance matrix. For inputs defined in terms of power spectral density
functions (Kanai-Tajimi), use equations (5.76-5.78). For inputs defined by
ground response spectra, use equation (5.84). The latter requires the use of

the peak factors associated to the ground motion.
. Calculate the new linearization coefficients by using equations (5.15-5.18).

. Compare the newly obtained coefficients with the initial coefficients. If the
comparison satisfies some tolerance requirements, the process can be finished.

Otherwise, the new coefficients are utilized to initiate the next iteration at step

number 2.

. After achieving convergence, the standard deviation of any quantity R, linearly
related to the response vector {Y'}, can be obtained by using just the covari-

ance matrix: op = /{R}T [V]{D}. The maximum value of R requires the
knowledge of its associated peak factor: Mp = \/ {R}T (PE[)]) {R}.

To attain convergence, the fixed point approach requires the satisfaction of the
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conditions given in reference [13]. The convergence of this scheme is linear because
the error corresponding to the (k + 1)** step depends linearly on the error of the
(k)t* step. However, this type of convergence is characterized by its slow progress.
Alternatively, the Newton method can be employed to accelerate convergence. It
possesses the faster gquadratic convergence. However, this method presents some
drawbacks. It requires initial guesses not far from the actual values, and also the
jacobian of F? and F? need to be provided. In the present problem only a numerical

jacobian can be calculated.

The numerical solution of the examples presented in this work have used both
iterative methods. For this purpose, the fixed point iteration has been fully imple-
mented in a Fortran code, and a subroutine provided by the IMSL package [22, 34]
has been employed to apply a modified version of the Newton method. Both ap-
proaches has been used independently or the fixed point iteration has been used
first, to obtain an approximation to the convergence values, and a later refinement

has been carried out by the Newton method.

5.8 Interstory Shear Responses

For the design of columns in a story it is of interest to calculate the interstory
shear force. The shear force s; affecting the column members between the i** and
the i — 1%* floors, is given by equation (5.4). Also, it can be written in terms of the

response vector {Y'} as

si = {RY{Y} = ki [os (i — 2ia) + (1 — ) wi] (5.88)
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The mean square value (or covariance for zero mean processes) corresponding
to this shear force can be obtained by using equation (5.80), or by calculating the

expected value for the square of equation (5.88):
E[s}] = k} E[{es (zi — 2i-1) + (1 — ) w}?], (5.89)
which yields
E[s}) = K {a? (Ble]] - 2 E[eizia] + Elz1,))
+ 2ai(l - &) (Eloaw] — Elmirwil) + (1 — ) ER?)} ,  (5.90)
where all the expected values of the right hand side are defined by the covariance

matrix [Y].

The maximum value of s; can be obtained by amplifying the root mean square
value by its peak factor. To simplify the calculations, the peak factors can be assumed
to be equal as done in the derivation of equation (5.85). The calculation of peak
factors by a procedure such as Davenport’s approach [16], requires the calculation of
the mean square value of the derivative of s; with respect to time. From equation

(5.88) this derivative can be defined as:
5= K o (8 — &im) + (1 — ) 9] (5.91)

It can be noticed that s; is a function of v;, which is not contained in the response
vector {Y'}. However, it can be expressed in terms of the components of {Y} by using

the equivalent linear constitutive law given in equation (5.12). Thus, $; becomes
$; = k; [CI'., (2, — 2.!,'_1) + (1 - a,) {a,- (2, - Kb;_l) + b; ‘U,‘}] . (592)
From equation (5.92) we can obtain the mean square value as:

B3] = K {lea+ai(1— ) (Ble]] - 2 Elésgin] + Elg1)) (5.93)
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+(1 — )8 E[vf] + 2o + a: (1 — )] (1 — ) bs (Elovi] — El#:_1v) },

where all the expected values on the right hand side are now defined in term of the

elements of the covariance matrix [Y].

If Davenport’s formula is used to calculate the peak factor then the mean of

maximum values of s;, is denoted as M,,, and can be obtained from:

fo 17~ 0.5772
M.‘- = ( 2h(pTd)+m) Os; (594)

where
o;

05 = E[sf] ) O = E["?] ) P = — (5°95)

TO,
and Ty is the duration time for the strong motion part (stationary part) of the design

earthquake.

5.9 Absolute Acceleration Response of a Floor

For design of light secondary systems it is of interest to calculate the abso-
lute acceleration of a floor and floor response spectra. The vector of absolute floor

acceleration can be defined by

{X°} = {X}+{T},(t) (5.96)

Since the acceleration vectors {X} and {X°} are not included in the response
vector {Y'}, it is necessary to express them as functions of the quantities contained
in {Y'} to avoid the calculation of new responses. For this purpose, the relative

acceleration vector {X} is obtained by derivating once with respect to time the part
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of the response vector {Y'} that contains the relative velocity vector.
(X} = 2{X) = 27 (5.97)
=zt =7 '

where {Y'} is the middle third part of {Y'} containing just the elements n+1,...,2n.
By considering equation (5.26), the response vector {Y'} may be written as a linear

combination of the principal coordinates, so the relative acceleration vector becomes

démMm—gmm (5.98)

where {¢}; is the middle third part of the j** right eigenvector. The decoupled

equations (5.28) can be solved for z;(t) to obtain
zj(t) = —[A;2;(2) + 75 24(t)] (5.99)

which can be substituted into equation (5.98) to get

{X} = Z A; z(t) {¢}J — 24(t) Z'YJ {¢}J (5.100)

i=1
Now, it will be proved that the factor 3%, v; {#}; is equal to the influence
vector {Z}. For this, consider the 3n vectors {¢}; which are linearly independent
and form a base for the 3n dimensional space. Since any vector belonging to such
space can be obtained as a linear combination of the base vectors, the following

equation can be written

{0} 3n
{Z} ? =2 ei{}; (5.101)
{0} i=1

where the coefficients g; can be determined by premultiplying both sides of equation
(5.101) by {¥}{[L4]

{0} 3n
{9} (L] { g{ } = ;ej {2}% [L1]{¢}; - (5.102)
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The left hand side of this equation is equal to the k** participation factor (see equation
(5.29))
o g ooy {0} .| 10
{%}e | (0] [M] [0] {Z} ¢ ={%h { M]{Z} ¢ = 1. (5.103)
[0] [0] ] {0} {0}
On the other hand, by considering the orthonormal property given by equation (5.23),
the right hand side of equation (5.102) equals the coefficient g;. Therefore, gy = v

and the influence vector in equation (5.101) becomes

@ =Suey (5.104)

i=1

which proves the initial hypothesis.

Substitution of equation (5.104) into equation (5.100) produces the following
expression for the relative acceleration

(X} = =3 X 2(0){3); - £, () {T} (5.105)

=1

and a new substitution of this equation into equation (5.96) provides the final ex-
pression of the absolute acceleration vector as a function of the eigenproperties and

the principal coordinates

3n
{X°} = =325 2i(t) {¢}; (5.106)

j=1
To obtain the maximum acceleration of a floor, we will first obtain its mean
square value. The correlation matrix [X%(t;,1,)], corresponding to the absolute ac-

celeration vector, can be defined by the following expected value by using equation

(5.106)
[ty 12)] = EHX(t)}HE )] = Z,.Z X5 e {85 (BN Elzs(ty) mu(ta)]

(5.107)
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The diagonal elements of this matrix defines the autocorrelation function of absolute
acceleration for various floors. This autocorrelation function for the f** floor can be

written as:

X7y(t,ta) = E[23(t)#3(t)] = if} X Ak Bs5 Box Elz;(t) zi(t2)] . (5.108)

j=1k=1

Equation (5.30) allows to write the cross correlation of z;(¢;) and z.(%;), required in
equation (5.108) as
t ot
E[Zj(tl) zk(t2)] = YT /l / ? e-h‘(‘l—ﬂ) e—kh(tz—ﬁ)E[ig(Tl)iy(rz)] d‘l'l de .
o Jo
(5.109)
Substituting for the correlation function of ground acceleration in terms of spectral

density function we obtain:

ty tz oo B
E[zj(t1) zi(t2)] = v1i 1 '/(; /‘; / B, (w) e“n—m) g=2ilti=m) g=u(-7) dr dr, iy .

(5.110)
For large t, and ¢, and finite ¢, — ¢, = At, it is simple to show that
oo 3, (w) e(At)
; = ; . 111
Blzi(t) el = um [ b ooy (5.111)

From equation (5.111) one can identify the cross power spectral density function of

the principal coordinates, here denoted by @, (w), as

— ¥ e Bg(w)
Pz (w) = B+ 10) e — 10 (5.112)

Substituting equation (5.111) into equation (5.108) and setting At = 0, we obtain

the mean square value of the absolute acceleration of the f** floor as:

3an a 3n -~
Y * a¢i sk
Xf, = ® —_— ——| dw, 5.113
= [ #e) [E (A,-+w)} Ea) (5.113)
where §y; is defined as
dri=Xdgiv; , f=1,...,n , j=1,...,3n (5.114)
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For a fixed value of f, there are 3n quantities §;;, of which n are real values denoted

as ¢7; and the remaining 2n are n pairs of complex conjugate values denoted as ¢3;

and ¢7;. Denoting the real and imaginary parts of ¢3; as
qS; = by +iéysg . (5.115)

Substituting for the eigenvalues A; in terms of real and imaginary parts, the summa-

tion factors in equation (5.113) can be written as:

3n A n

ds; . e .

2y fiw = Z 1 Giw) + 2 ) p3;(w) Hi(w) (5.116)
i=173 j=1 i=1
3n A n n

g i e v ~

2 M\ — iw ik- = D dnGr(w) + 2 3 pf(w) Hy'(w). (5.117)

k=1 "k w k=1 k=1

where G§(w) and H$(w) have been defined by equations (5.41) and (2.37) and the
complex quantity p%; is given by
Piiw) =Cpi+ibyjw , lpi=wi (Bibyi+é/1-82) . (5.118)

Substituting equations (5.116) and (5.117) in equation (5.113) we obtain

.J\:“';f = /_:*I)g(w (thG"(w)+2th(w)H"' ))

j=1 i=1

x (gj T G (w) + 2 gﬁ;;(w) H;c(w)) do. (5.119)

This expression is very similar to equation (5.44). It can therefore, be simplified

similarly to express this in terms of frequency integrals and real quantities as:

xy = 20 (Thadi+Tins ) +2 23 (THadi + Tih It + Tia i)

Jj=1k=1 i=1k=1

j=1
n—-1 n

+ 8 3 (T;;,.,,I;‘+ VL I+ TV I +Tf,§§ff") (5.120)
i=1 k=j+1
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where J;, I¢, and I} are the frequency integrals defined by equations (5.77) and
(5.78). For some commonly used spectral density function, they can be evaluated
easily (see appendix G). They can also be expressed in terms of ground response
spectra by utilizing the proper peak factor values, as explained before. The partial
fraction coefficients Tf’ﬁk - ’f’fvfﬁ’ have similar expressions as those corresponding to

the coefficients T{ ., — TVI! (see equations (5.51), (5.62-5.64) and (5.71)):

imjk — Limjk

N P\ " Y4

Tfrin = @5 @k vr L i =0 G 5.121

1w = Gy Tipni = @3 Q5 Y (5.121)
Tiin = 2 { [é}jiﬁk—(/\})z é},-gﬂe] (A7)? (5.122)

ar 2 r r r -1
= &l N} } {482 W} (05)* = (O + wil?}

e = 2 { (Wi (48] - 2) — (X)) $e Xy} — wib (@503 — (V) d705] }

-1
x {4Bwi () - [(33) +wil’ } (5.123)
Tfl},jk =230 — TfI;jk (5.124)

Tf‘}jk = {2 N1k [1 - ng +2 (ﬁ;ﬂfk - ,313)] — sk (ka — Q;kz)} A;kl (5.125)

T¥in = {frsie (% — Q50) — 29577 fgpie [1 — Q% +2(820% — B])] } wi? AR

(5.126)
TYin = Cri Cn Q52 — T O3 (5.127)
i = 8si8p — T (5.128)

where the variables ;. and A, were defined in equations (5.72) and (5.75) and the

auxiliary variables Xyjk, ftfsjk and 7jyzjk are

Xik = (2Bewe — X}) Epn + (2B wie A} — w}) & (5.129)
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fggie = 3l (Qh — 1)+ widyida [(1- 48203, + 48:8: 0 — 1]

+ 2w Qs (6558 — 81alr3) (Br — Bifn) (5.130)

drse = Crilnn [1 — 487 + 48,805 — O3] + w¥y;8p (1 - OF)

+ 2w (6plsn — 85ls;) (B — Bl - (5.131)

To obtain the maximum value of floor acceleration, the root mean square value
obtained from (5.120) can be amplified by its peak factor. The peak factor can
be calculated by a suitable formula such as Davenport’s formula. Or to simplify
the calculation all peak factors can be set equal to calculate the maximum floor

acceleration in terms of ground response spectra.

5.10 Floor Response Spectra

To obtain floor response spectra, we need to obtain the maximum acceleration
of a single degree of freedom oscillator subjected to the acceleration of the floor at
its base. The equation of motion of a single-degree-of-freedom oscillator attached to

the f** floor of a shear building can be written as
Zo+2Bowo o + Wz, = —3%, (5.132)

where the subscript o indicates variables that are associated to such oscillator, z, is
the relative displacement of the oscillator with respect to the f** floor and z% is the

absolute acceleration of such floor. % can be obtained from equation (5.106)

25 = "i":/\:' 2;(t) 4; - (5.133)

j=1
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Thus, the equation of motion of the oscillator becomes

3n
Zo+2Bowodo+wliz, = D Ajzi(t) s, (5.134)

i=1

and its solution for zero initial conditions is
z,(t) = j{‘; A; Bs; /ot ho(t — 1) z;(7) dr . (5.135)
i=
The absolute acceleration of oscillator o is defined as:
Z, = Zo+ 2 = —2f,wo o — wiz,. (5.136)

Using equation (5.136), we can define the autocorrelation formula of oscillator accel-

eration as:
E[z3(t1) 25(t2)] = w) Elzo(t1) zo(ta)] + 485 w; El2o(t1) 2o(t2)]

+ 2Bow; (Elzo(t1) zo(ta)] + Elzo(t) o(t2)])  (5.137)

where the four expected values will now be considered independently.

By using equation (5.135) the auto correlation function of relative displacements

becomes
3n 3n _ _
Elzo(t)zo(ta)] = DD AidsiMedn (5.138)
=1 k=1

x /o . /o " ho(ts — 1) ho(ts — 72) Elz;(1) zu(72)] dry dr .

For stationary inputs, and response, E[z;(71)2x(72)] can be expressed by equation
(5.111) as

Elz;(r) z(rs)] = / : 8,.,, (w) €M) dy (5.139)
where &,_,,(w) is given in equation (5.112). Substitution of equation (5.139) into

(5.138) and considering large values of ¢, and ¢;, we can show that

3n 3n

Blou(t)2olta)] = 2D A driu b [ B (0) 457D | He(w) deo , - (5.140)

Jj=1k=1
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where HS(w) is defined as

Hiw) = [w? -w +2zﬂ°wow] (5.141)

The remaining three expected values in equation (5.137) can be obtained by

appropriate derivations of equation (5.140) with respect to time. Thus,

3n 3n

Bt bl = 32 35355 b [ 7 o)) )P
(5.142)
Blsat) 2u)l = 3552010 by [ () By 0) 0 (o)
(5.143)
and
Bt )] = 353505 B [ (-30) ) 0 ) s
(5.144)

Substituting the above equations in equation (5.137) and setting ¢, = t; = ¢,

we obtain the mean square value of the absolute acceleration of the oscillator as:

BIEY) = [ 8(w)(ud +46] w’)z(A S S I

+iw) pe] , )
5.145

Where §5; and §gx were defined by equation (5.114). Substituting for the summation
terms defined in equations (5.116) and (5.117), and after some rearrangement of

terms we obtain

Bla)] = [ #(w)(wh+4p20l0?) |Hyw)P

x [BF(w) + 287 () +45F;(w)] dw (5.146)
where
2w = g;a;, dh G5(w) G (w) (5.147)
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2 W) = ZEé}, 55 (w) G5(w) HE*(w) + da 535(w) G5 (w) H(w) (5.148)

7=1k=1

£ (w) = ): z 75,4(w) 5 (w) Hi(w) He(w) (5.149)

Gi{(w), Hi(w) and p%; have been defined by equations (5.41), (2.37) and (5.118)

respectively.

Since equations (5.146-5.149) have a structure similar to equations (5.44-5.47),
the analysis used to simplify these equations can also be used here to simplify the
expression for E[(22)?] in terms of real quantities only and the frequency integrals.
After some pages of algebra, the mean square value of the oscillator acceleration can

be written as:

7 ]
E[) = Y [E9], (5.150)
=1
where
ED =33 80 0+ 88, 184+ 50 12, (5.151)
i=1k=1
EP(w) = z; ;.El $8 T+ 88, 184 89, 12, (5.152)
J—. —4
E®(w) = 2 Zl ,,Z 80 7+ 88 144 89 17, (5.153)
J._ —
B w) =223 800 i3+ 58 v+ 80 18+ 84 12, (5.154)
i=1k=1
5 14 15 v 18 17 v
EQ(w) = 4 2: S+ S+ S 1+ G0 I, (5.155)
n-1 n

EQW) =83 3 SGdr+ 850+ 80 1d+ 551, (5.156)

=1 k+j+1

n—1 n

EDw)y=8% 3 8013+ 580 1y + 580 12+ 88 13 (5.157)

7=1 k=j+1
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Ji, I? and I} are the frequency integrals defined by equations (5.77) and (5.78) with
the appropriate change of subscripts. The factors of partial coeflicients are defined
in appendix A. As mentioned before, the frequency integrals can be expressed in
terms of the spectral density functions or in terms of ground response spectra by

using appropriate peak factor values.

Thus, equations (5.150-5.157) provide the mean square value of the absolute
acceleration of oscillator "o0” attached to the f** floor. To obtain the maximum value
of the oscillator acceleration, M;zs, the mean square value needs to be amplified by
the peak factor of the acceleration. However, if the peak factors are assumed equal,
the maximum values of the oscillator acceleration can be defined in terms of the

ground response spectrum values as:

> (M, (5.158)

=1
where
MY ~ 3 350 M2 4 88 M3+ 5 M2 (5.159)
i=1k=1
MO(w) ~ 33 5%, M2+ 55, M3+ 550, M2, (5.160)
=1 k=1
M) ~ 2 ZZ S50 M2+ 53 M3, + S0 M2, (5.161)
j=1k=
MOW) ~ 23 3 800 gz | 500 g2 | 60D pa 4 503) 442 5.162
o(w) ~ ZZ kao + fiko Vg+ fiko ¢+ fiko Vo ? ( . )
=1 k=1
MY = 4 30, + DA+ DAL+ DA, (G100
j=1
Mi(w) =~ 8 Z > Sl ME, + S5 My, + SE ME, + S ML, (5.164)
=1 k=j+1
n-1 n
M) ~ 83 3 S MG + S A, + SR MG + S M. (5169
j=1 k=j+1
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It should be noticed that the expression for the maximum value of the absolute
acceleration of the oscillator ”0” is given in terms of: 1) the relative displacement
spectrum My;, which can be easily obtained from the pseudo acceleration spectrum,
2) the relative velocity spectrum M,,, which can be approximated by the pseudo
velocity spectrum, and 3) the relative displacement spectrum of the massless oscil-
lator M;. This last spectra is required whenever hysteretic behavior is involved in

the analysis.

5.11 Numerical Results

In this section we present numerical results for two example problems of multi-
story shear structures. The first structure is used to demonstrate the application of
the response spectrum approach presented in the previous section. The formulation
presented has also been used with the second structure, but in addition a numerical
simulation study has also been conducted to ascertain the accuracy of the response

calculated by the proposed equivalent linear approach.

Figure 5.1 shows the schematic of the first structure. The mass, stiffness and
damping ratios for this structure are shown in table 5.1. Also all four interstory stiff-
ness elements are assumed to behave nonlinearly. The parameters of these hysteretic

elements are given in table 5.2.

The seismic input for this case is defined in terms of mean pseudo-acceleration
and relative velocity response spectra of an ensemble of time histories. These spectra
are shown in figure 5.2. We also need the spectra for the first order oscillator which

is shown in figure 5.3 (A).
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Figure 5.1: Schematic of the 4-story shear building.

Table 5.1: Structural characteristics of the 4-DOF structure

4-DOF Structure
Story Mass Elastic Stiffness | Modal Damping Ratio
kips-sec® [in kips/in (%)
1 3 3200 mode 1: 5
2 2 2400 mode 2: 5
3 2 1600 mode 3: 5
4 1 800 mode 4: 5

Table 5.2: Hysteretic parameters of the 4-DOF structure

Parameters
Interstory | a [n| A| B=C
1 0.25 | 1 2u,)!
2 025 | 1|1 |(2u,)
3 0.25 1] 1| (2u,)
4 0.25 1] 1| (2u,)"
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Figure 5.2: Ground response spectra for the second order oscillator: (A) Pseudo-
acceleration spectra, (B) Relative velocity spectra.
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Figure 5.3: Spectra for the first order oscillator: (A) Ground response spectra for

relative displacement, (B) Peak factors for relative displacements.
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The calculation of the linearization coefficients requires the use of the spectra for
the peak factors of the pseudo-acceleration, relative velocity and first order oscillator
response. These peak factor spectra were obtained from the mean and standard
deviation spectra of the maximum responses using the following formulas derivated

by Davenport [16]:

_ Pmass) _ 0.5772

TO» Oz
Omaz(z) = ’ p =

v6/2 In(pTu) Tos

These two equations define the mean and standard deviations of the maximum re-

(5.167)

sponse in terms of the response standard deviation o, zerocrossing rate p and du-
ration of the response process Ty. Knowing fmaz(z) and Opmaz(s) for the input, and
assuming a strong motion phase of 7 seconds, equations (5.166) and (5.167) were
solved to obtain p and o,. These known values were then utilized to calculate the
peak factor from equation (5.166). Figures 5.4 and 5.3 (B) show these peak factor

spectra for the pseudo-acceleration, relative velocity and massless oscillator response.

In the following set of figures we show the maximum values of story shears
and story ductilities. To obtain the maximum value of a response quantity, the
standard deviation of the quantity obtained form equation (5.80) was amplified by
its peak factor value. The peak factor of a response quantity was also calculated

using equation (5.166).

Figure 5.5 shows the variation of the maximum shear force in each story with the
maximum ground acceleration. The values of the ground response spectra have been
appropriately scaled to vary the level of the maximum ground acceleration. The yield

level for the interstory drifts is considered to be the same for all stories: u, = 0.4 in.
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Figure 5.4: Peak factor spectra for the second order oscillator: A) Peak factors for
pseudo-acceleration, B) Peak factors for relative velocity.
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For comparison purposes, the figure also shows two straight lines that correspond
to the interstory shears (for the first and fourth floor) of the same structure but
with perfectly linear elastic behavior. As it is expected, the shear forces due to the
inelastic behavior, follow curved paths which initial tangents (at zero acceleration)
coincide with the straight lines of the elastic structure. It is seen that the structure
has been excited well inside the plastic zone since the two tangent stiffness of the
constitutive law intercept at the points with ordinates 1280, 960, 640, and 320 kips
for the first, second, third and fourth floor respectively. This fact is best appreciated
in figure 5.6 where the maximum interstory ductilities have been plotted against the
maximum ground accelerations. The interstory ductility is defined here as the ratio

between the maximum interstory drift and the yield level.

In the iterative process, it is important to have some idea about the values of
the linearization coefficients a; and b; Figures 5.7 and 5.8 show the different values
of the linearization coefficients (at convergence) with increasing maximum ground
acceleration. It is noted that for low levels of ground acceleration the structure
behaves almost elastically. For those cases, the coefficients of linearization, denoted
as a;,1 = 1,...,n possess values close to 1, whereas the b; coefficients have values near
to zero. As the stiffness element goes into inelastic range, the value of the coefficient
a; becomes less than 1. After performing a parametric study, considering different
shear buildings and different parameters of the Bouc-Wen model (with B; = (;),
it has been observed that the a; coefficients, for structures behaving well inside the
plastic zone (high ductilities), never reach a value less than n/(n+1). The knowledge
of these minimum and maximum values is especially useful to provide an adequate

initial guess for a; at the start of the iteration process.
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Figure 5.5: Maximum shear force vs. maximum ground acceleration in various stories
of the structure.
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Figure 5.6: Maximum ductilities vs. maximum ground acceleration in various stories
of the structure
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Figure 5.8 shows that the coefficients b; have negative values, but unlike the
a; coefficients, the parametric study was unable to provide a recognizable minimum
value. However, it can be said that in general they increase their absolute value as

the structure penetrates into the plastic zone.

Figure 5.9 shows the variation of the interstory shear forces with the yield level
when the structure is subjected to the same maximum ground acceleration of 0.2 g.
This is equivalent to change the constitutive law of the material. The purpose of
doing this, is to check, at least qualitatively, the behavior of the equivalent linear
structure. That is, for large values of yield level, the structure should behave as a
linear elastic structure, and as the yield level decreases (or the ductilities increase) the
structure should present plastic characteristics, such as a decrease in the maximum
interstory shear forces. Both tendencies are clearly shown in this figure, where the
shear forces approach the value corresponding to the elastic structure for high yield

levels and they diminish as the ductilities increases (or yield levels decreases).

Figure 5.10 is basically the same figure 5.9 where now only the shear forces for
the first and fourth floor have been plotted. The purpose of the figure is to show
the different levels of shear forces as the exponent parameter 7 varies. As the yield
levels increase the structure approaches the behavior of the corresponding elastic case
(horizontal lines), but the approach is faster as the exponent parameter increases.
This is in agreement with the effect of the exponent parameter of the Bouc-Wen
model (see appendix E). However, for low yield levels (high ductilities) the curves

cross and higher shear forces are provided by the lower exponents.

Next we present same results for the same structure but with nearly elasto-
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plastic behavior. This is achieved by choosing a small value for the post-yield stiffness
parameter a = 0.05 and a high value for the exponent = 9. The hysteretic
parameters for this structure are shown in table 5.3. The yield level parameter u,
has been assumed to be the same for different stiffness elements. The seismic inputs
defined in terms of a Kanai-Tajimi type of spectral density function as well as ground

response spectra have been used.

Table 5.3: Hysteretic parameters of the nearly elasto-plastic 4-DOF structure.

Parameters
Interstory | a || A| B=C
1 0059 1]05u;°
2 0.05(9|1]|05u,°
3 0.059|1]0.5u;°
4 005/9|1]|05u;°

The results shown in figures 5.11, 5.12, 5.13, 5.14, and 5.15 are for the structure
with exponent parameter 7 = 9. The seismic input for these results is again defined

in terms of the ground response spectra.

Figure 5.11 shows the maximum interstory ductility ratios as the maximum
ground acceleration increases. The yield level is u, = 0.4 in. This figure is similar to

figure 5.6 but for different hysteretic parameters.

Figure 5.12 (A) shows the maximum accelerations of various floors for increas-
ing levels of maximum ground acceleration. The story yield level was fixed at 0.4
in. Decreasing slope of the curves for various stories indicates the softening of the
structure due to yielding at higher intensities of the ground motion. Part (B) shows
again the same response, but now for a fixed level of ground motion intensity (0.4

g) and increasing value of yield levels. The response increases asymptotically to its
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elastic response level as the yield level is increased. Thus, yielding in the supporting
structure is seen to reduce the maximum acceleration which a supported secondary

system will experience.

Figures 5.13, 6.14 and 6.15 show the frequency content of a floor acceleration
in terms of floor response spectra for equipment damping ratio of 0.005. Figure 5.13
shows the floor response spectra obtained for floor 1, whereas figure 5.14 shows the
floor response spectra for floor 4. The different yield levels are indicated by the
letter Y. The elastic spectra is seen to provide the highest peaks always. For the
lower floors, however, the valleys in the elastic spectra are also the lowest. Thus, the
secondary systems at some frequencies may even experience a higher level of response
when the supporting structure yields. But in general, the highest peaks in the floor
response spectra are reduced by yielding. The floor spectra for decreasing yielding
levels (increasing ductilities) are seen to flatten out, showing the effect of increased

damping provided by the hysteresis cycles.

In figures 5.15 (A) and (B) we plot the ratio of the inelastic to elastic floor
response spectra for floors 1 and 4 respectively. Several yielding levels are consid-
ered. It is seen that the inelastic floor response spectrum values are not always less
than elastic floor spectrum values as ratios greater than one are also seen for some

frequencies.

Figure 5.16 shows the root mean square value of the floor response spectra for
floor 2 obtained for a Kanai-Tajimi type of spectral density function. For this par-
ticular case the exponent parameter has been changed to 7 = 3. Even though the

ground motion is specified in a different form, this figure presents similar character-
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Figure 5.12: Maximum absolute accelerations for various floors of the structure vs.
(A) maximum ground acceleration and (B) yield level (a = 0.05; n = 9)
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Figure 5.14: Floor response spectra of absolute acceleration in floor 4 for different
yield levels. (Max. ground accel. = 0.4 g; a = 0.05; 7 = 9; equip. damp. ratio =
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istics to those of figures 5.14 and 5.15 for ground response spectra.

Next we present the results for a five-story shear building used in the work by

Sewell et. al. [42]. Only the first interstory (bottom element) is considered to behave

nonlinearly. The remaining elements were modeled as elastic by choosing a very high

yield level. The corresponding structural characteristics and hysteretic parameters

are given in tables 5.4 and 5.5 respectively.

Table 5.4: Structural characteristics of the 5-DOF structure.

5-DOF Structure
Story Mass Elastic Stiffness | Modal Damping Ratio
Ib-sec’ [in Ib/in (%)
1 1 4500 mode 1: 5.00
2 1 4500 mode 2: 5.00
3 1 4500 mode 3: 6.68
4 1 4500 mode 4: 8.17
5 1 4500 mode 5: 9.15

Table 5.5: Hysteretic parameters of the 5-DOF structure.

Interstory a

1

v W

Parameters
7|A| B=C
0.10 [3 |1 |(0.5(uy,)°
Elastic | - | - -
Elastic | - | - -
Elastic | - | - -
Elastic | - | - -

The base input for the results of this structure was also defined by ground

response spectra. The pseudo-acceleration, relative velocity and first order oscillator

response spectra are shown in figure 5.17 and 5.18 (A). They represent the mean of

the maximum values obtained for 100 synthetically generated accelerograms. These
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Figure 5.16: Floor response spectra for the root mean square value of absolute accel-
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acceleration time histories are also used in the simulation study later on. The peak
factor spectra for these inputs were also obtained as described previously. The strong
motion phase duration used to calculate the peak factor values from equations (5.166)
and (5.167) was 11 seconds. They are shown in figures 5.19 and 5.18 (B).

Figure 5.20 shows the normalized modal damping ratios of the equivalent linear
structure with the variation of the yield level (ductility) when the maximum ground
acceleration is 0.53 g and the exponent parameter is 3. The damping ratios have been
normalized with respect to the five modal damping ratios corresponding to the elastic
structure and given in table 6.3. It is observed that as the yield level decreases, the
equivalent damping ratios increase. These increments are logically expected since
the statistically equivalent linear structures have to dissipate energy to approach the
behavior of the real nonlinear structures, and the only form of dissipation allowed
to linear structures is through viscous damping. Also it is observed that the lower
modes are associated with larger increments of the damping ratio values. This is
due to the fact that the only nonlinear element is in the first interstory and its

corresponding drift is mainly due to the contribution of the first mode.

Figure 5.21 shows the behavior of the equivalent normalized frequencies with
respect to the yield level. They have been normalized with respect to the frequencies
of the elastic case. It can be seen that they decrease as the behavior of the structure
change from elastic to plastic, but for high ductilities ratios (low yield levels) they
began to increase again. For some structural cases and some model parameters, they

become even higher than the frequencies due to the elastic behavior.
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Simulation study

The purpose of this simulation study is to compare the design response
obtained by the proposed response spectrum approach with the average of maximum
responses obtained by 100 time history analyses of the nonlinear equations of mo-
tion. The study used the same 100 artificially generated time histories of ground
acceleration which were employed to generate the ground response spectra used to

obtain the results in figures 5.20 and 5.21.

Three different cases of structures were analyzed by time history analysis: 1)
the perfectly elastic case, 2) a moderate plastic case with ductility ratio equal to
2, and 3) a highly plastic case with ductility ratio of 4. To achieve this ductilities,
several trial and error cases were considered with different yield levels till the desired
maximum ductility ratio was obtained. The maximum ductilities were determined
by using the assumption of equal peak factors. Thus, for the first interstory, the
maximum ductilities of 2 and 4 corresponded to yield levels of u, = 0.24585 and
u, = 0.13574 inches respectively. Table 5.6 provides the equivalent frequencies and

damping ratios corresponding to the stochastically equivalent linear structures

First, we compare the interstory shear responses. The design values provided by
the proposed approach were also calculated by assuming equal peak factors. There-
fore, equation (5.82) has been used. The corresponding components of the linear
transformation vector R can be deduced form equation (5.88). Thus, the maximum

shear forces were calculated by the following expression:

M2 = K {a? (P E[z}] - 2P2 Elzzia] + P2 Elzly]) (5.168)

5

+ 20(l - o) (P:. E[z.v] — P2 E[:v,-_.lv,-]) +(1- )P E[vf]} ,
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Table 5.6: Equivalent frequencies and damping ratios of the stochastically equivalent
linear structures

Modal Characteristics
Case | Mode | Equiv. Frequency | Equiv. Damp. Ratio
Hz %
Elastic 1 3.039 5.00
» 2 8.870 5.00
» 3 13.983 6.68
? 4 17.963 8.17
” 5 20.488 9.15
Duct. 2 1 2.987 8.69
” 2 8.729 6.07
” 3 13.834 7.14
” 4 17.868 8.35
» 5 20.459 9.12
Duct. 4 1 2.920 22.06
” 2 8.547 9.41
7 3 13.661 8.32
” 4 17.770 8.73
» 5 20.432 9.27
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where the amplified expected values are given by equation (5.85).

Table 5.7 lists the maximum values and the relative percent error of the in-
terstory shears for floors 1, 3 and 5 obtained by the proposed response spectrum
approach and by the time history analyses. The relative percent error is defined as:

(Resp. spec. value) — (Time hist. value)
(Time hist. value) ’

Percent error = 100 (5.169)

Also, table 5.7 contains a column with relative errors marked with a superscripted
asterisk. These errors were calculated by replacing the quantities P2 E[v?] by the
square of the yielding levels when the former were bigger than the latter. This is
a clear error introduced by the Gaussian equivalent linearization since the auxiliary
variables should not take values greater than its ultimate value. For models with
parameters A; = 1 such limiting values are equal to the yield levels of the principal

variables.

Table 5.7: Comparison of interstory shears obtained by the proposed response spec-
trum approach and by time history simulation

Mazimum Interstory Shears
Case | Interstory | Response | Time | Relative | Relative
Spectra | History | Error | Error*
1b 1b % %0
Elastic 1 2210 2102 5.1 -
” 3 1640 1587 33 -
” 5 619 608 1.8 -
Duct. 2 1 1742 1283 35.7 -0.2*
» 3 1287 1057 21.7 21.7*
» 5 487 490 —0.6 —0.6*
Duct. 4 1 1124 915 22.8 -13.0*
” 3 834 729 14.5 14.5*
” 5 320 385 -17.0 | -17.0"

It is observed that the responses calculated by the response spectrum approach
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present differences with the values obtained by the time history analysis. Even
for the elastic cases, some differences, though small, still persist. In general the
response spectrum approaches formulated with the assumption of large stationary
strong motion phases, provide conservative values for elastic responses since the real
and artificial time histories have shorter strong motion phases. From the analysis of
Just this example it is difficult to predict tendencies for the plastic cases since in some
stories the error is bigger for ductility 2, and in another floors it is bigger for ductility
4. Also the sign of the error changes. However, after introducing the above mentioned
limitation for the value of P2 E[v}], the error associated to the hysteretic element of
the first interstory decreases. This suggests that the error is due to the assumption
of Gaussianness in the probability density functions of the nonlinear structure. As
expected, the errors at the interstories 3 and 5 do not diminish because they are
modeled to behave linearly. Since no adjustment to limit the value of P2 E[v]] are

needed for these stories, the errors in the shear values are not affected.

Finally, the floor response spectra calculated by the proposed approach are
compared with those floor spectra generated by the time history analysis. In all cases,
the floor spectra have been calculated for equipment with 5% of critical damping,
and three different structures have been considered: 1) the elastic structure, 2) the
structure with ductility 2, and 3) the structure with ductility 4. Figures 5.22, 5.23
and 5.24 show the floor spectra for stories 1, 3 and 5 respectively. Part (A) of these
figures shows the spectra calculated by the proposed response spectrum approach

whereas part (B) shows the spectra calculated by the simulation analysis.

As it was observed by Sewell et. al. [42] the floor spectra of nonlinear structures

at the high frequency range may show peaks higher than the peaks associated to
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Figure 5.22: Floor response spectra of absolute acceleration for floor 1 (equip. damp.
ratio = 5%). (A) Stochastic equivalent linearization, (B) Time history analysis.
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Figure 5.23: Floor response spectra of absolute acceleration for floor 3 (equip. damp.
ratio = 5%). (A) Stochastic equivalent linearization, (B) Time history analysis.
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Figure 5.24: Floor response spectra of absolute acceleration for floor 5 (equip. fla.mp.
ratio = 5%). (A) Stochastic equivalent linearization, (B) Time history analysis.
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elastic structures. This is, however, not captured by the proposed approach. This
fact can be better seen from the figures 5.25, 5.26 and 5.27, where we have plotted the
inelastic to elastic spectrum values for the three floors. It is seen that the inelastic
spectra calculated by the proposed approach are always lower than the elastic spectra

in the high frequency range.

In table 5.8 we compare the magnitudes of the floor spectra obtained by the
proposed approach and time history analysis for the three floors. Table 5.8 shows
the percent error at the vicinity of the first two peaks. These errors have been
calculated by using equation (5.169). It can be noticed that, for the low frequency
range, that is for the first peak of these spectra, the magnitudes calculated by the
proposed approach show slightly conservative results for ductility 2, and a small error
for ductility 4. However, for peaks in the high frequency range, the results provided

by the proposed approach differs from the time history results.

It is believed that the main cause of error in the stochastic equivalent lineariza-
tion technique is due to the assumption of Gaussianness in the density functions of
the nonlinear systems. Such assumption directly affects the characteristics of the
equivalent linear system since the linearization coefficients are calculated as func-
tions of the response statistics, which are assumed to be Gaussian. In figures 5.28
and 5.29 we compare the joint density functions of the normalized auxiliary variable
(with respect to the yield level) and the normalized interstory drift velocity (with
respect to its maximum value), obtained in the simulation study, with the assumed
Gaussian distributions. Part (A) shows the density function obtained in the sim-
ulation study whereas part (B) shows the gaussian density function determined by

the statistics of the equivalent linear system. The assumed Gaussian distributions

179



()

FRS RATIO for FLOOR 1

AA / (AA Elastic)

O.G 1 lj LA 1 7 T T TTT1T I T LRI
0 1 10 100

(B)
FRS RATIO for FLOOR 1

from TIME HIST. ANALYSIS

)
%
]
u
5 1.5 N
1.0 L
s 4
O-G 1] 1 T T T Tr7T L 1 T T H T T Trrr
0.1
- FREQUENCY, Hz

Figure 5.25: Floor response spectra ratio of absolute acceleration for floor 1 (equip.
damp. ratio = 5%). (A) Stochastic equivalent linearization, (B) Time history anal-
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Figure 5.26: Floor response spectra ratio of absolute acceleration for floor 3 (equip.
damp. ratio = 5%). (A) Stochastic equivalent linearization, (B) Time history anal-
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Figure 5.27: Floor response spectra ratio of absolute acceleration for floor 5 (equip.
damp. ratio = 5%). (A) Stochastic equivalent linearization, (B) Time history anal-
ysis.
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Table 5.8: Percent error in the floor spectra at the vicinity of the first and second
peaks

PERCENT ERROR NEAR FIRST PFAK
Freq. Floor 1 Floor 8 Floor 5

Hz | Elas. | Du. 2| Du. 4 | Flas. | Du. 2| Du. 4 | Elas. | Du. 2| Du. 4
2432 | 3.5 7.8 -2.9 5.4 13.0 -0.6 6.0 14.0 0.1
2.680 | 9.0 13.4 2.2 12.8 | 19.1 1.5 13.4 | 20.7 1.6
2.928 | 14.0 | 15.9 5.8 18.8 | 12.7 | -0.2 | 19.4 | 123 -1.5
3.176 | 10.1 | 34.3 | 14.5 | 144 | 32.2 1.8 15.0 | 30.8 -1.1
3424 24 | 221 145 | 3.5 15.5 -1.9 3.7 13.6 -5.5
PERCENT ERROR NEAR SECOND PEAK
Freq. Floor 1 Floor 8 Floor 5

Hz | Elas. | Du. 2| Du. 4 | Elas. | Du. 2| Du. 4 | Elas. | Du. 2| Du. 4
8384 | 0.4 | -41.5 | -446 | -3.6 | -30.0 | -484 | -5.1 | -38.3 | -46.8
8632 | 0.9 | -43.5 | -32.2 | -2.9 | -41.3 | -40.3 | -4.2 | -441 | -37.6
8880 | 0.8 | -16.9 | -31.6 | -2.4 | -16.6 | -35.0 | -4.0 | -21.5 | -35.3
9.128 | 0.2 | -27.3 | -35.8 | -2.9 | -21.1 | -35.1 | -4.3 | -28.4 | -37.9
9.376 | -1.0 | -31.5 | -38.5 | -3.4 | -23.1 | -35.8 | -5.8 | -31.1 | -39.9

are shown truncated at the limiting value of the auxiliary variable for comparison
purposes only. The actual range of this variable is, however, unlimited. Figure 5.28
is for the first interstory element when the ductility ratio is 2, and figure 6.33 is
also for the first element but when the ductility is 4. It is seen, especially in figure
5.29, that the actual density functions of the nonlinear system strongly differ from
the assumed Gaussian ones. They differ not only on the shape but also on their

domains.

5.12 Conclusions

The response of shear buildings with material nonlinearities has been studied.

A response spectrum method is presented to obtain the force and displacement re-
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sponse of nonlinear primary structures. The formulation has also been provided to
calculate the maximum floor acceleration as well as the floor response spectra. An
iterative stochastic linearization is used to provide equivalent linear systems associ-
ated with the nonlinear structures. The linearized equations of motion are solved
by the successful utilization of a generalized modal analysis approach which allows
the use of ground response spectra in the calculation of response. The proposed
response spectrum method is based on the classical mode displacement combination
rule of structural dynamics, and employs the commonly used pseudo-acceleration
and relative velocity ground response spectra plus a new spectrum associated with

the response of a first order oscillators.

Several numerical results have been presented to study the response character-
istics of the equivalent linear systems. It has been observed that the behavior of
such nonlinear systems is in general well described by the resulting equivalent lin-
ear structures. To facilitate the initial guess of the linearization coefficients, upper
bounds have been provided to both of them, and also a lower bound to the a; coef-
ficients is presented in terms of the exponent parameter 7 of the constitutive model.
The Newton’s method have been successfully used, in addition to the fixed point

iterations, to improve the convergence rate of the iterative process.

To examine the accuracy of the proposed equivalent linear response spectrum
approach, a simulation study has been performed. It involved 100 artificially gen-
erated earthquakes, which were applied to three different structures with the same
characteristics but with different degrees of plasticity. The comparison of the re-
sponses obtained by the equivalent linear and by the time history analysis shows

that there are discrepancies in the two values, although qualitatively the two re-
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sponses are similar. In majority of cases, however, the equivalent linear approach

was seen to provide a more conservative value of response.

The proposed response spectrum method to generate in-structure response spec-
tra has also been compared against the simulation study. In these cases the proposed
approach provided conservative results for equipment in the low frequency range.
However, in the high frequency range the, responses were in general lower than the

results obtained by the simulation study.

An analysis of the assumptions adopted by the proposed approach suggests that
the main cause of the observed errors is most probable due to the assumed shape
of the probability density functions used in the linearization process. It is presumed
that the errors may be decreased by employing a suitable non-Gaussian linearization

technique.

Finally it is relevant to mention that the proposed approach is computationally
very efficient, especially when compared against the time history analyses. This
suggests that the proposed method can be used as a powerful tool for the iterative
design tasks. However, if a more accurate value of response is desired then time

history analysis with several ground motion accelerograms may be necessary.
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Chapter 6

Response Spectrum Method for
2D Frames with Plastic Hinges

6.1 Introduction

In this chapter, we present a formulation to incorporate the nonlinear plastic
hinges which can develop at the joints in two dimensional frames during a strong
seismic excitation. This formulation is used to develop a response spectrum method

employing the general modal analysis approach presented in chapter 6.

The main difference between this chapter and chapter 5 are found on the struc-
tural localization of the inelastic zones. The potential hinges are assumed to be
developed at specific regions of the different frame members. On the other hand,
the shear building elements were considered to have the inelastic characteristics dis-

tributed along all their length.

The incorporation of plastic hinges results in a softening model of the total

structural stiffness, which will depend not only on the level of deformation but also

188



on the load history. This hysteretic behavior is due to the hysteretic characteristics
assigned to the plastic hinges. Again the Bouc-Wen [9, 56, 57] constitutive law is used
to model the inelastic behavior of plastic hinges. The nonlinear equations of motion
are linearized by the stochastic linearization approach. The resulting linearized gov-
erning equations are generalizations of the works by Casciati and Faravelli [11, 12]
and Baber and Wen [8]. The linearization process is iterative involving repetitive
modal analyses and combinations of modal responses. Thus, the methodology used in
this chapter is closely related to that applied on chapter 5. However, the formulation

to include the plastic hinges and the governing equations are quite different.

6.2 Equations of Motion

The equations of motion of an n-degree-of-freedom structural frame with in-

elastic stiffness, and subjected to ground acceleration Z,(t), can be written as:
[MI{X ()} + [CIH{X ()} + K] {X(£)} = —[M]{Z}%,(t) (6-1)

where {X(t)} is the vector containing the n nodal displacements with respect to the
undeformed state fixed to the ground, [M] and [C] are the (n X n) mass and damping
matrices respectively, [K]. is the (n X n) inelastic tangent stiffness matrix, and {Z}
is the influence vector. In this chapter, all the quantities related to inelastic behavior

will be identified by a subscripted asterisk.

It is assumed that the mass and damping matrices remain linear and constant
during all the deformation process. In particular, a lumped mass or a consistent mass
matrix can be used. Also, the system can be modeled by a classical or a non-classical

damping matrix. The term involving the inelastic stiffness matrix [K]., provides the
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only inelastic restoring forces of the present model:

{F(1)}. = [K]. {X(£)} (6.2)

To model the restoring forces due to inelastic stiffnesses, their behavior is com-
pared against that of forces corresponding to perfectly elastic stiffness. It can be
observed that, for a fixed displacement configuration, an elastic structure generates
larger restoring forces than an structure with the same geometric characteristics but
with inelastic behavior. Therefore, the inelastic restoring forces corresponding to a
particular set of displacements, may be calculated by an appropriate reduction of
the elastic forces associated to the same displacements. The present study models
these reductions in the forces by considering the development of plastic hinges at
specific sections of the structural elements. That is, any rotation at the hinges in-
volves a relaxation of the deformations associated to the remaining elastic part of
the element. Consequently, the restoring elastic forces are reduced to become the
inelastic restoring forces. In this chapter, the rotations at the plastic hinges are often
called imposed rotations because their effects are equivalent to the effects caused by

imposing hypothetical external forces.

The inelastic restoring forces, thus, can be expressed by the difference between

the elastic forces and those forces associated to the imposed rotations as:

{F(1)}. = [K]{X(8)} - [P]{©(1)}, (6.3)

where [K] is the (n X n) constant elastic stiffness matrix. [P] is an (n X m) matrix
relating the m imposed rotations, one at each plastic hinge, with the total n nodal

forces. {©(t)} is the vector containing the imposed rotations at the m plastic hinges.
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The equations of motion can be rewritten by substituting equation (6.3) into

equation (6.1) as:
[M]{X()} + [CHX()} + [K]{X (D)} - [PI{O()} = ~[M]{T}5,(t). (6.4)

The vector {O(t)} incorporates m additional unknowns, which not only depend on
the time, but also on the amplitude of the excitation, on the material characteristics
of the plastic hinges, and on the load history. Consequently, the problem requires m

additional constitutive equations to become determinate.

To develop the extra equations it is necessary to use some concepts concerning
the mechanics of the frame element with potential hinges. Therefore, the follow-
ing section presents the matrix equations that define such element, as well as the
procedure to assemble the different element matrices to obtain the global governing

equations.

6.3 Plane Frame Element with Plastic Hinges

The well known two dimensional elastic frame element is modified here to
incorporate two potential plastic hinges. However, a similar three dimensional el-
ement can be easily developed by following the concepts expressed in this section.
To simplify the analysis, the hinges are assumed to be localized at both ends of the
element. However, some eccentricities can be allowed by adding simple geometric
considerations. Also, the element requiring just one potential hinge (cantilevered
beam), are not explicitly developed in this work, but it can easily be done following

the formulation given for the element with two potential hinges.
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The element mass matrix and the element damping matrix are assumed to re-
main constant during the inelastic process and their formulation is available in several
books on structural dynamics. In particular, the damping matrices corresponding to
the numerical examples of this chapter, were obtained by using the eigenproperties
of the undamped linear structure and assumed damping ratios (see equation (D.6)

in appendix D).

Some known characteristics of the 2D elastic frame element are recalled in the
next subsection, and the formulation leading to the inelastic nodal forces as well as

to the constitutive equations is presented in the subsequent two subsections.

6.3.1 2D Elastic Frame Element

For the 2D elastic frame element, the relation between nodal forces and nodal
displacements through the elastic stiffness matrix is well known. However, the rela-
tion between equivalent efforts and the corresponding axial and flexural defofma.tions
are not commonly used. Since the latter are employed in this work to formulate an in-
elastic element, it is considered appropriate to provide in this section all the relations

among forces, displacements, efforts and deformations of the elastic element.

Figure 6.1 (A) shows a 2D elastic frame element at an angle ¢°® with the global
X axis. The element is denoted as e, and it possesses three degrees of freedom at
each node, two translational and one rotational. They are denoted as z5, z3, and z3

at the initial node, and z§, z¢, and z§ at the final node. The (6 X 6) elastic stiffness
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matrix [k°] of the e** element can be written in standard form as:

- i
ki k5 Symm.
R = | M BOK , (6.5)

—k§ —k; —ki K
—ki —k§ -k ki K5
ks k§ S —kg —kp kS

where the six different quantities required in equation (6.5) are

kK = A°E°(L°)™" cos® ¢ + 12 E°I°(L°)™2 sin’p®, (6.6)
ki = A®E°(L°)™! sin? o + 12 E° I°(L°)™* cos® ¢°, (6.7)
kS = 4E°I° (L), (6.8)

k; = (A°E*(L°)™" — 12 B I*(L*)™®) cos® sing®, (6.9)
kS = 6 E°I° (L)% cos¢®, (6.10)

ki = —6E“I°(L°)~? sin¢p®. (6.11)

The element quantities A%, I, E® and L° are, respectively, the cross section area, the
area moment of inertia, the modulus of elasticity and the length of the e'* element.

Here it is assumed that shear deformations are negligible.

Figures 6.1 (A) and (B) show the six nodal displacements z{, and the corre-
sponding six nodal forces ff. The elastic constitutive relation between these nodal
quantities is given by

{r°} = [F]{=°}. (6.12)
However, the element only possesses axial and flexural deformations, and just three
quantities are needed to completely determine its deformed state. Those are the

axial deformation d§ (along the length), the flexural deformation d§, (rotation), at
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its initial node, and the flexural deformation d% , at the final node. The deforma-
tion vector {d°} groups these three quantities in that order. Figure 6.1 (C) shows
the element e in its undeformed and deformed configurations, as well as the nodal

displacements and the equivalent nodal deformations.

For small deformations, which also implies a small change of the element di-
rection (small angle Ay®), the deformation vector is linearly related to the vector
containing the six nodal displacements. Such linear relations are now deduced for
each deformation quantity. The quantity d%, which equals the difference in length
between the deformed and the undeformed element, can be approximated by the
total displacement of the final node minus the total displacement of the initial node,

both projected in the direction of the undeformed element. Thus,
83 X L topmea — L° = T4 cOs® + z sinp® — z] cos p° — z3 sinp° . (6.13)

The deformation d§, is equal to the rotation of the cross section at the initial node
with respect to the deformed direction of the element. From figure 6.1 (C), the

following relation can be written
dp. = z3— Ap®. (6.14)
Similarly, the rotation of the section at the final nodes is

dp, = zg — Ap°. (6.15)

The small angle Ag® can be expressed in terms of the nodal displacements by using
simple geometric relations. Thus, from figure 6.1 (C) it can be inferred that

Yy +a3-Yi—af  Ap+tanyt

~ 6.16
Xy +25—X;— 2§ 1 — Ayp® tan p° (6.16)

tan(Ap® + ¢°) =
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Figure 6.1: Two dimensional elastic frame element: (A) Nodal displacements, (B)
Nodal forces, (C) Undeformed and deformed states
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where (X;, Y;) and (X;, Y7) are the global nodal coordinates of the undeformed
element. In this equation, (tan Ap®) has been approximated by Ap®. The right

hand side of equation (6.16) can be multiplied and divided by (cos ¢°) to get

Y+z5 —Yi—2z3 _ Ap® cosp® 4 sin p°

~ . 1
Xs+25— X; — =% cos p° — Ayp® sin ¢° (6.17)
After some rearrangement, and taking into account the following identities
(Y; —Y:) cosp® — (X; — X;) sing®* =0, (6.18)
(X — Xi) cosp® + (Y7 — ;) sing® = L°, (6.19)

equation (6.16) can be rewritten as:

(25 — z3) cos p° + (2§ —z7) sinp® = Ap® [(z§ — 2]) cos ¢ + (2§ — z3) sinp® + L°] ,
(6.20)

With the help of equation (6.13), equation (6.20) can be expressed in term of d5 as:
Ap® + Ap® &y (L) = [(25 — 25) cosp® — (2§ — =) sing®] (L),  (6.21)

Since Agp®d5 (L¢)™! is a second order differential, it can be neglected to get
Mgt ~ [(25 —23) cos ¢* — (5 — ) sing?] (L) (6.22)

Substitution of equation (6.22) into equations (6.14) and (6.15) provides the expres-

sions of df, and df ; as linear functions of the nodal displacements:
&y, = 25— (a5 — 25) cos® — (a5 — af) sing®] (L), (6.23)

and

T, = 75— [(af — 25) cosg® — (2§ — =) sing’] (L) (6:24)
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Equations (6.13), (6.23) and (6.24) can be written in matrix form as

4 z; N
dg —cosp® —sing® 0 cosp® sing® 0 :Z
dh p= | -BE me et et g% (625)
d;‘f T L L* 0 —L?— —z 1 z¢

\ z; ’

or in a shorter notation

{&} = [¢°]{=°}, (6.26)
where [¢°] is the (3 X 6) geometric matrix containing the constant coefficients neces-
sary to linearly transform the nodal displacements of element e into the corresponding

element deformations. Equation (6.25) also appears in reference [23].

Each of the three element deformations can be considered to be caused by an
associated effort. d% is associated to the axial effort (force) €%, d%, is associated to
the flexural effort €34, (moment), and dy, is associated to the flexural effort (moment)
€3, The element vector denoted {e°}, contains these three efforts, which are shown

in figure 6.2 (B).

The elastic constitutive relation between deformations and efforts can easily be

A K 0 0 ds,
€ » = | 0 Rk k2 s (6.27)
&5, 0 kS/2 kS %,

where k5 is defined by equation (6.8), and k§ is the axial stiffness of the element

deduced to get

kS = A°E* (L) . (6.28)

The (3 x 3) matrix in equation (6.27) is denoted as [£°] and is the axial-flexural

stiffness matrix of the element. So, by using a shorter notation, equation (6.27) can
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be written as

{e} = [F]{"} . (6.29)

The two matrices [k¢] and [k°] are related. The mathematical relationship can
be obtained by considering the total internal energy for element e, which is the same

for an element subjected to the six nodal forces or to the three equivalent element

efforts that produce the same deformations. See figure 6.2 (A) and (B). Thus,
Internal energy = %{f}f {F} = -;—{f}T (e}, (6.30)
where equations (6.12) and (6.29) can be used to get
(=} K] {=°} = {&} [F]{d} . (6.31)

In this equation, {d®} (and its transpose) can be substituted by the expression given

in equation (6.26) (and its transpose) to produce
{=¥ [F]{=} = {=} (6] [F] 9] {=°} - (6.32)
From equation (6.32) we can infer that

k] = (o] [¥] [g"] - (6.33)

Finally, the vectors {¢°} and {f°} can also be explicitly related. For this purpose
consider equation (6.29), and substitute the vector {d°} by the expression given in
equation (6.26) to get

{e} = F][g°){="} - (6.34)

Premultiplication by [¢°|T gives

g1 {e} = [g°1" (¥ [9°] {="} = [K]{="}, (6.35)
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Figure 6.2: Deformed elastic element: (A) due to nodal forces, and (C) due to
equivalent nodal efforts.

where [k*]{z®} = {f¢}, and equation (6.34) becomes
{r} = [T {e} - (6.36)
Equations (6.12), (6.26), (6.29) and (6.36) provide all the relationships between

nodal forces, nodal displacements, axial and flexural deformations, and equivalent

efforts corresponding to a 2D elastic frame element.

6.3.2 Inelastic Nodal Forces

The elastic element presented in the previous subsection is now modified to
incorporate the inelastic behavior by adding two plastic hinges. The proposed ele-

ment consists of three different parts, an elastic part located between the hinges, a
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plastic hinge at the initial node and other plastic hinge at the final node. The plastic
behavior of the two element hinges not necessarily has to be the same. To develop
this element, the approach proposed in section 6.2 is followed. That is, for a given
displacement configuration, the nodal forces acting at the ends of the elastic part, as
a consequence of the inelastic behavior, are denoted as {f¢}. (inelastic nodal forces),
and are obtained by decreasing the hypothetical elastic nodal forces {f¢}, associated
to such deformations. The reduction is caused by the imposition of rotations at
the plastic hinges. The amounts of the reduction depend on the magnitude of the

imposed rotations as well as on the constitutive law of each hinge. Thus,

{fh ={f}-{rl, (6.37)

where {f°}4 contains the six elastic nodal forces to be released due to the imposition

of the rotations at the initial and final hinges of the element, 6§ and 6%, respectively.

The forces {f°}s can be written as functions of the imposed rotations. For
this purpose, the rotations at the plastic hinges are considered to be transmitted to
the ends of the remaining elastic part of the element as two flexural deformations
with no axial effect. Thus, the elastic efforts to be released (due to these imposed
"rotations”) are the moments yf and u$, at the initial and final nodes respectively.

They can be obtained by using equation (6.27):

0 k5 0 0 0
pip=| 0 ke kg2 |9 65 b, (6.38)
15 0 k/2 kS 62

where the (3 x 3) matrix is [k¢]. That is, the axial-flexural stiffness matrix of the

element e.

As it is indicated in equation (6.36), the six nodal forces, equivalent to these

200



efforts, can be obtained by premultiplying them by [¢°]7,

0 0

{£}e = [¢°1F { B } = [g°]T [k°] { A } : (6.39)
B3 03

Since the first components of the vectors in equation (6.39) are zero, the vectors and

matrices used there can be reduced in size to write:
{f}e = [¢°1F {p°} = [o°I7 [k*). {6°}, (6.40)

where the subscript = indicates a reduced matrix. Thus, [g¢], is a (2 x 6) matrix
composed of the last two rows of [¢°], [k], is a (2 x 2) matrix that results from
not considering the first row and first column of [£], {1} is a vector with just two
components, the moments uf and p%, and {#°} is also a vector with two components,
the imposed rotations 85 and 6. The product [¢°]T [k€], is a (6 x 2) matrix that is

denoted as [p°], and has the following components:

ke ok
ks ks
= L = | S B2 (6.41)
-k -k
| k3/2 k3

where kS, kS and ki were given in equations (6.8), (6.10) and (6.11) respectively.

Substitution of this expression into equation (6.40) produces

{F}e = [P]{6°}, (6.42)

which expresses {f°}s as a function of the imposed rotations at the plastic hinges.
Finally, by substituting equations (6.12) and (6.42) into equation (6.37), the inelastic

nodal forces become

{rh = [ {="} - ] {6°} - (6.43)
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This equation shows that the nodal inelastic forces of the e** element require the use
of two element matrices, [k°] and [p®], which remain constant during the deformation
process. This equation is the element version of the assembled expression given in

equation (6.3).

To complete the definition of the inelastic element, it is necessary to satisfy
two additional requirements. One is the equilibrium of moments at the interface
sections that separate the elastic part of the element from the plastic hinges, and the
other is to provide an appropriate inelastic constitutive law to model the relationship
between the imposed rotations at the plastic hinges with the actual moments acting
on those hinges. Both topics are covered in detail in the next subsection where the

constitutive equations for each element and for the structure are presented.

Here the assemblage of equation (6.43) for all elements requires that the equi-
librium of the inelastic nodal forces, as well as the compatibility of the nodal dis-
placements, be satisfied. However, no compatibility is required between the imposed

rotations of different elements.

The equilibrium of the inelastic nodal forces requires to balance all the contri-
butions of the elements that share the same node with the external loads applied
at such node. This is performed by superposing the rows of the equations (6.43)
associated to all the elements that share the same node. On the other hand, the
compatibility of the nodal displacements requires that all the elements, that share
a particular node, have the same displacements at such node. This requirement is
satisfied by adding the appropriate columns of the different stiffness matrices [k°]

that are associated with the same nodal displacements. As a result, the assemblage
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of matrix [K] is performed in the same way as it is usually done for elastic structures,
that is, by the adequate superposition of rows and columns of the different element
matrices [k°]. Whereas the assemblage of matrix [P), is performed by superposing

only the appropriate rows of the element matrices [p°].

6.3.3 Constitutive Equations

The constitutive equations of the e*? element, are based on the constitutive law
selected to model the plastic behavior of the hinges, as well as on the satisfaction of
equilibrium between the moments acting on the hinges and the end moments at the

extremes of the elastic part of the element.

First, the moments at the ends of the elastic part of the element are considered.
They can be expressed in terms of the nodal displacements at those ends, and in
terms of the imposed rotations at the hinges. Such expressions can be obtained by
recalling equation (6.37)

{Fh ={r1-{r}, (6-44)

where the vector {f¢}., containing the forces and moments at the ends of the elastic
part, is modeled as the difference between hypothetical elastic forces {f¢}, and re-
lease forces {f}4, due to the imposed rotations at the plastic hinges. The resulting
deformed configuration can also be reproduced by applying equivalent axial-flexural

efforts at the same nodes. That is,

{e}. = {} - {¢}o, (6.45)
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Where equation (6.29) can be invoked to write
) ) 0
{eh = [F]{d} - [k { 6 ¢, (6.46)
%
The vector, {d°} can now be substituted by its expression given in equation (6.26)
to get
| . (0
{e}h = [+ o] {="} - [#] { & ¢ - (6.47)
63
The last two components of the vector {¢°}. contain the moments of interest, that
is, the moments M; and M} at the elastic ends of the element. The part of vector
{e}. containing these moments is now denoted as {M*},. Therefore, by disregarding
the first component, equation (6.47) is reduced to get
M;
e
f

(MY, = { } = [k [o%) {=°} = (R {6} (6.48)

where all the quantities on the right hand side have been defined in the previous
section. Also, from equation (6.41), it can be recognized that [k],[¢%], = [p°]T, and

{M*}, is finally written as

{M}. = [p°I7 {=°} - [F°). {6°} - (6.49)

On the other hand, the moments acting on the initial and final hinge of the
element are denoted as M, and Mf, respectively. The inelastic moment-rotation
relationship of the plastic hinges is modeled by the same Bouc-Wen'’s constitutive law
that was used for shear buildings in the previous chapter (see also appendix E). The
moments at the hinges are considered to be composed of an elastic part in parallel

with an hysteretic part, as it was the case in equation (5.4). Thus,

Mg, = af k5, 6 + (1 - af) 5, of , (6.50)
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u, = az ki, 63+ (1 —a}) kj, v3, (6.51)
where k7. and kj are the initial stiffness parameters of the initial and final hinges,
a and o} are the proportionate contributions of the linear elastic part for each
hinge, and v{ and v} are the auxiliary variables of the hysteretic part of each hinge.

Equations (6.50) and (6.51) can be written in matrix form as:

{Mg} = [R]{6°} + R3] {v} (6.52)
where the vector {M§} contains the two moments at the plastic hinges, the vector
{v°} has both auxiliary variables, the vector {#°}, as it was already specified, contains
the imposed rotations at both hinges and the matrices [kZ] and [AZ] are (2 % 2)

diagonal matrices defined as follows:

= [ gy | Ba= (O G [ e

The auxiliary variables v{ and v} are related to the principal variables 6 and

6% through the nonlinear Bouc-Wen differential equation (see appendix E) applied
at both hinges:

9 = A 0F — Br 6 [of[™ — CE of 1651 o[, (6:54)

v = A} 6% g5 — B; é: |'vf|"! - C; v |0‘| ik (6.55)

where the model parameters A§, B, C§ and 7§, for the hinge at the initial node, and

the corresponding set for the hinge at the final node, should be appropriately selected

to model the desired characterstics of the hysteresis loops. In the next subsection,

further consideration is provided to these parameters, as well as to other parameters

necessary to completely determine a particular kind of hysteresis loops.

The nonlinear constitutive equations can be linearized to obtain an statistically

equivalent set of linear equations. Thus, the linearized version of equations (6.54)
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and (6.55) can be written in matrix form as
{57} = [@{6°} + I {v°} (6.56)

where matrices [a®] and [b°] contains the linearization coefficients for the hinges of

the e** element. Both matrices are diagonal and have dimension (2 x 2):

[a‘]=['§f;] , [b’]=[’§ IH (6.57)

The constitutive equations at the plastic hinges have introduced the additional
variables {v°} in their definition. As a result, it is necessary to provide extra condi-
tions to completely determine the proposed inelastic element. These conditions are
given by the satisfaction of equilibrium at the interface sections that separate the
hinges from the elastic part of the element. Thus, the following moment equilibrium

equation is written:
{M°}. = {Mg}, (6.58)
where equations (6.49) and (6.52) are substituted to write
)7 {=} — [k {6°} = [kE]{6°} + [AS] {v"} - (6.59)
This equation is solved for {v*} to get
{v} = 2™ {7 {=} - (IR + [K2]) {673} (6.60)
and the first derivative of {v°} with respect to time is
{5} = e {7 {2} = (IR)e + R2) {61} - (6.61)

Substitution of equations (6.60) and (6.61) into the linearized constitutive law, given

in equation (6.56), provides

[hel* {l°17 {2} — (k). + [R2]) {6}} =
[a¢] {8} + [b%] [Re] {[pe]r {2} — ([’;c]r + [k;]) ) . (6.62)
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Premultiplication by [h] and after some rearrangement, this equation becomes
P17 {2°} - [51{6°} — ("] {="} + [s] {6°} = {0} (6.63)

which is the linear constitutive equation for the e* element. The new element ma-

trices [§°], [u®] and [s°] are defined as follows

5] = (k%] + [k] + [AS) [a] (6.64)
[ = [ 7, (6.65)
[s] = (6] (1) + [52]) - (6.66)

After performing the matrix operations indicated in equations (6.64), (6.65) and

(6.66), the final components of these matrices are:

o _ | K3 +afkg + (1 - af) K of k5/2
] = [ ks /2 L g, 4 (1 a3, a5 ] (6.67)

kgb; kb k3b; —kgby —kgbi k3b/ 2] (6.68)

] = [ Rgby kgby RSbs —koby —kgby kSbs/2

e L atke)he e Be
= | BLEAT B | (6.69)
To assemble the element constitutive equations it is necessary to realize that,
in equation (6.63), only the vectors {z°} and {z°} contain the nodal displacements
and velocities compatible with all the elements sharing the same node. On the other
hand, the rotations at the plastic hinges are inherent to each element and need no
compatibility among the different elements. Thus, the columns of the assembled ma-
trix [P]T, are constructed by adding up the contributions of the appropriate columns
of those element matrices, [p°]7, that share the same nodal displacements. This is
commonly known as column superposition. Similarly, the assembled matrix [U] is

constructed by column superposition of the element matrices [u¢]. The assembled
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matrices [J] and [S] need no superposition at all of the elements matrices [7¢] and
[s°]. They have just to be placed at the positions dictated by the vector containing
the hinge rotations of all the elements or by the vector containing the hinge angular

velocity, respectively.

The resulting assembled constitutive equation is
[PI"{X} - [J1{6} - [U]{X} + [S]{6} = {0}. (6.70)

The dimensions associated to the different matrices can be given in terms of the total
number of degrees of freedom n and the total number of potential plastic hinges m,
(two per element). Thus, [P]T and [U]T are (m x n) matrices, whereas [J]T and [S]T

are (m x m) matrices.

To fully determine these constitutive equations, it is necessary to specify the
parameters associated to the Bouc-Wen model. The following section analyzes these

parameters and the associated conditions.

6.3.4 Parameters of the Constitutive Model

The parameters involved in the Bouc-Wen constitutive law, should be appro-
priately selected to model a particular hysteresis loop. Appendix E provides some
relationships between the model parameters denoted as A, B, C, 5, and a with quan-
tities that also characterize the shape of a particular hysteresis loop. The latter are
the initial stiffness k;, the postyielding or final stiffness kp, the yielding displace-
ment z, and/or the yielding force F,. These relationships are useful to determine
the model parameters, and are presented here for the plastic hinges of the proposed

element.
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Each hinge of the e** element may have different constitutive characteristics. To
avoid the repetition of similar equations, this subsection provides only the expressions
corresponding to a general hinge denoted as h, which can be the initial or final hinge

of the et® element.

In the previous subsection, the moments acting at the initial and final hinges
have been given by equations (6.50) and (6.51), which for the general hinge can be
written as

Mg

= k5, 01+ (1 — af) B, of - (6.71)
The moment Mf, is defined by two terms, one representing a proportional elastic
contribution and the other representing a proportional inelastic contribution. The
latter is due to the hysteretic behavior of the auxiliary variable v5; with respect to the
principal variable 6;. Figure 6.3 shows the relationships between auxiliary variable

and hinge rotation, as well as the relationship between moment and rotation, both

due to the use of the Bouc-Wen hysteretic model described in appendix E.

For the hinge at node h, the initial and final rotational stiffnesses are kj, and kg,
respectively. It should be recalled that the Bouc-Wen model requires the quantity
Aj, be equal to 1 for kf being the initial stiffness. For a perfectly plastic hinge
the initial stiffness should be infinity and the post yielding stiffness (final stiffness)
should be zero. An approximation to this ideal behavior can be obtained by defining

the initial and final stiffnesses as
B,=Bk . kn o= anks (6.72)

where kS is given in equation (6.8), Bf is a large number and & is a small number.

209



(a)

|
l
; I
s
L/ 45 \
I e ,
4
L/ !
:/ '
| 7 -
A ¥ h
(B)

Figure 6.3: Constitutive law of the plastic hinges: (A) Moment at the hinge vs. hinge
rotation, (B) Auxiliary variable vs. hinge rotation
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For Aj = 1, of, is the ratio between the final and initial stiffnesses,

ke _ ai
e _kn _ a3 6.73
ap k;l ﬂf; ( )

Therefore, the selection of the factors & and f§, to model the initial and final
stiffnesses in equations (6.72), determines automatically the coefficient af,. The hinge
moment Mg , can be written in terms of &j, B5; and kS by substituting equation (6.73)
into (6.71):

B =GRk 05+ (Br — &7) ks i, (6.74)
and the element matrices [7°] and [s°] become:

o _ [ RS[1+af+ (B —af) ] k3/2
b = [ k$/2 k5 [1+ &35 + (B3 — a3) a5] ] (6.75)

(14+a5)ksh;  kSbg/2 ]
sf) = e ' N pere | - 6.76
[+° [ Kb/2  (1+a5) kb (6.76)

On the other, hand the parameters Bj and Cj can be chosen to be equal to a
positive number to model a softening dissipative hysteresis loop, with curved loading
paths and straight lines for the unloading paths. In appendix E it has been shown
that for such characteristics, the parameter B§ = Cf is given in term of the yielding

rotation 6, or in term of the yielding moment M, as

Ge e\ Th
B =ct= 20— 05 (M) , (6.77)

(65,7
where 67 and M, are the coordinates at the intersection point of the initial and

final stiffnesses. These two quantities are linearly related by the following expression

M: = k5 0: = BrkS6:, (6.78)

Up

Finally, the only remaining parameter, 7§, is a positive integer that controls the

sharpness of the transition from the initial to the final stiffness, and its value should
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be specified by comparisons of the analytic model with the actual hysteresis loops
obtained experimentally for a particular material and structure. In general, a value of
1 produces a smooth curved transition, and values of 9 or 11 model hysteresis loops
that almost follow the initial and final tangent stiffnesses, by closely approaching

their intersection point.

6.4 Response of the Linearized Governing Equa-
tions

The n equations of motion given in section 6.2 along with the m linearized con-
stitutive equations presented in section 6.3.3 form the linearized governing equations

of the present problem. They are rewritten here as
[M]{X()} + [C1{X ()} + [KI{X ()} - [P1{O()} = —[M]{T}2,(t) (6.79)

[PIT{X ()} - V1{O(®)} - [U1{X()} + [S]{O(2)} = {0} . (6.80)

where the global matrices [J] and [S] contain four linearization coefficients (af, b,
af and &) for each of the total m/2 elements. That is, the system possesses 2m

linearization coefficients (two per hinge).

The linearization coefficients can be determined by the same gaussian stochastic
linearization scheme described in chapter 5. Thus, the resulting expressions, in terms

of the response statistics, are:

H e e R 1 e e e \nt
o = A - VIR /w [ B (o G R B |, (68)

A e e e pre R—1 e (., e e \nt—
= — "zf la'é: V2™ [ = [”hphBh(m‘2 M+ Ci (m3)t (o5)™ 12}5;] , (6.82)
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where 7j, is a positive odd integer, o is the standard deviation of its subscripted vari-
able, p§ is the correlation coefficient between é,‘, and v§, and the quantities denoted

by Ea: and 25: are the following summations:

(ng-1)/2 . 215

_ R [(ng - 25 — 1) /20! [1 - ()%
et = ,go 3 (nf — 25)! (2p)% (6:83)
S i (et BtV Y (e i (6.54)

L m-2z-D @)

Here, as it was the case in chapter 5, the response statistics, o, o4 and

L A
pi = E[vg 65) /(o Uéi)’ are not known a priori. As a consequence, an iterative
scheme, similar to that described in 5.3, has to be implemented to determine them.

In section 6.5, these quantities are further considered.

The governing equations can be written as a system of first order linear differ-
ential equations through the use of vector {Y'(¢)}, which has 2n + m components: n
nodal displacements, n nodal velocities and m imposed rotations at the hinges (in
that order).

{Y&)F = {X@O¥, (XY, {(6@)}} . (6.85)

Thus, equations (6.78) and (6.79) become
(L) {Y ()} + (L] {Y (£)} = {F(8)}. (6.86)

Where {F(t)} is the forcing vector which first n elements are zero, the following n
elements are given in the vector —[M]{Z}Z,(t), and the last m elements are also zero.

The matrices [L,] and [L,] have dimension (2n +m) X (2n 4+ m), and are defined as:
o -[1 [0
K] (0] [P
-(R] —-[P]" [S]

. (6.87)

[7] [0]  [0]
[L1] = [0] [M] [0] ) [Lz] =
[0] [0] —[J]

213



The decoupling of these (2n + m) equations is obtained by the same approach
used for the (3n) equations of section 5.3. That is, by using the properties associated
to the right and left eigenanalysis, as well as the linear transformation of coordinates
{Z(t)} = [®]{Y(t)}, where [®] is the right modal matrix. The set of eigenvalues,
corresponding to systems with subcritically damped modes, contains m real quanti-
ties and n pairs of complex conjugates. The real and imaginary parts of the complex
eigenvalues are associated to the modal frequencies and damping ratios as indicated

by equations (5.24) and (5.25). The resulting (2n + m) decoupled equations are
ij(t) + A_.,' Zj(t) = - 7:' 5g(t) ’ ] = 1, cee ,2n +m (688)

where «; is the j** modal participation factor defined in term of the normalized j*

left eigenvector {¥};,

{0}
7 = {2} { [M{]ng} } : (6.89)

Finally, the deterministic solution of the first order uncoupled equations leads to the
following expression for each component of the response vector {Y(¢)}:
2n+m ¢
u(t) = - Y, qj / et g (r)dr ; 1=1,...,2n4m (6.90)
i=1 °
where g;; is an auxiliary quantity involving the product of the (I,j) component of

the right modal matrix and the j** participation factor:

Qi = ;75 - (6.91)

214



6.5 Response Covariance Matrix and Response
Spectrum Method

The covariance matrix [Y] of the response vector {Y(¢)} can be obtained by
adopting the same assumptions and procedure presented in section 5.5. However, it
should be noticed that here the quantity of real eigenvalues is m and not n. Conse-

quently, the variables associated to that number should be appropriately considered.

Thus, the resulting expression for the (I,7) component of the covariance matrix
1s
m m

Vi = 23 (Thudi+Th; ) +2 33 (T J; + T I + TIL 1Y)

F=1k=1 =1 k=1

+ 4 (Cleij I + 6163 I_'})
=1
n-1 n
+ 8 Y (Tl +T I+ T L+ T L) (6.92)

=1 k=j+1

where all the quantities involved have already been defined in chapter 5.

The response spectrum procedure, used in section 5.6, can also be applied here

to approximate the (,7) element of the covariance matrix [Y], as

m m M2 M2
e Eg (Té"‘ P’J + Tis P2, )
2 2 ,
+ 2 J—illg ( lijk A;: TI{JIIf A,:z =’ + Tlg; %)
i M u ? M,n *
+ 4 E (CIJ ij rpz + 61;6;; ,Pz ) (6.93)

=1l & Mz Mz vII M:. VIII Mg{’
+ 8 Z Z Tli]k Pz +Tla_1k Pz +Tl|,1k Pz +TI:JI¢ ?‘F .

i=1 k=j+1

215



The quantity M,’g is the relative displacement response spectrum value of the mass-
less oscillator, whereas M:JU and M,-,’gz are the response spectrum values correspond-
ing to the relative displacement and relative velocity, respectively, of the second order
oscillator. The quantities ’Pz;,r, ’P,,u, and ’Pé)u are the peak factors associated to the

above variables.

The response spectrum approach can also be used to obtain the maximum re-
sponse value Mg, of a certain response quantity R(t), which is linearly related to

the response vector {Y'(¢)}. That is,

Mg = J{R}T (P4 [V]) {R}. (6.94)

where Pg is the peak factor of the response R(t), {R} is the constant vector corre-
sponding to the linear transformation R(t) = {R}*{Y'(¢)}, and the (I,7) component
of P%[))] is approximated by assuming equal peak factors as
m m
Padi = E § (Tzfjk M:J! + T M:{)

+ 22 ) (T My + T Mg+ T, Ma)

1k=1

(Cszmj Mzsr + 8156m; M;Jy) (6.95)

M3

<.
Il

30 (T Mg + T Mg + T M2 + TR M)

1 k=j+1

it} 57

+ 8

J

The final expressions presented in this section are similar to those fully devel-
oped in chapter 5. However, the former can be easily deduced from the latter by
considering m real eigenproperties in lieu of n, and by the adequate renaming of the

subscripts.
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6.6 Response Statistics Required by the Lineariza-
tion Coefficients

Equations (6.81)-(6.84) provide the linearization coefficients as functions of the
standard deviations and correlation coefficients corresponding to variables v and 65.
Such variables are not contained in the response vector {Y'(¢)}. However, they are

linear functions of its elements.

The auxiliary variables v{ and v%, of the et element, are expressed in terms of
the nodal displacements as well as of the rotations at the hinges, in equation (6.60).

On the other hand, equation (6.63) can be solved for {6} to get
{6} = G [PTT {37 — 1" (il {=} + (] (o] {67} (6.96)
which is a linear function the nodal displacements, the nodal velocities, and the

rotations at the hinges. The inverse of the (2 X 2) symmetric matrix [5°], can easily

be written in terms of the elements of [§°] as

] = [iﬁ J:fz] G = 1 [ 722 “jfz] . (6.97)

Ji2 Iz C Jnin - (R | i Jh

For zero mean processes, the statistics oy, Tje and pj, are defined as follows

o = VE5)] , o5 =VEIG)] , sh= Ela bl

The variances af: and o7}, are the diagonal elements of the (2x2) covariance matrices
.3

(6.98)

E [{v‘} {v‘}T] and E [{0‘} {é‘}T], respectively. On the other hand, the expected
values E[vf 05] are given by the diagonal elements of the (2 x 2) cross covariance
matrix E [{v’} {0‘}1'] Substitution of equations (6.60) and (6.96) into the above

expected values, provides the expressions of these covariance matrices for the et*

element.
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In particular, the covariance matrix of vector {v°} is

E[{v} (oY) = E[B {7 {=°} - [kelrra {6°}}
x {{z°}" [p7] - {6°Y" [F)osa} [BE)Y] , (6.99)

where the (2 X 2) symmetric matrix [k¢],,, is given by
[’:‘e]r+a = [’;e]r + [k:x] (6-100)
Distribution of the expected values in equation (6.99) produces

E[{v} o} = (] {17 [BL] 7] — [Rolrra [BE] [0°] — 07" (2] [Ar s
+ [FetalEgol [F]va } (B2, (6.101)

where the element matrices [EZ,] and [E§,], are the following covariance matrices:
(Bl = E[{="}{=*}] , [Egl = E{6°}{6°}"]; (6.102)
and [Ej,] and [EZ,] are the following cross covariance matrices:

[Bs.] = E[{8°}{=}] , [E] = E[{="}{6"}"]. (6.103)

Similarly, the matrices E [{0‘} {Ge}T] and E [{v‘} {0’}T] can be expressed as:

E {6}y = lel {[f] ([Bo) w]” — (B2l o) — (Bl [s°]7)
+ 17 (= (B (W + [EL] [p°] + [ES] [s5]7)  (6.104)
+ 5% (= [Be] [T + [Bg] [p°] + [Eg] [s5)7) } [i2] 7,

E[{v}6Y] = el {017 (- [Bol ] + (B [p°] + [BS] [s]7)  (6.105)
+ (Bl ([Bo] T — (B 0] — (B3] [s°]7) } Lic]™,
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where the quantities [E:,] are covariance or cross covariance matrices of the vectors

indicated by the subscripts x and e.

It can be seen that the matrices given by equations (6.101), (6.104) and (6.105),
are linear combinations of the element matrices [E¢], which components are also
components of the global response covariance matrix [Y]. It should be noticed that
these element matrices do not need to be calculated completely since only their

diagonal elements are required by the expressions of the linearization coeflicients.

6.7 Numerical Results

In this section we present numerical results obtained by the proposed approach.
For presentation of these results, all calculated responses have been normalized with

respect to the response values corresponding to a perfectly elastic structure.

Two different steel structures have been considered. Figures 6.4 (A) and (B)
show their dimensions and finite element discretizations. The potential plastic hinges

are indicated by filled circles and the different nodes are indicated by arrows.

The single-story structure has 6 degrees of freedom and it has been dicretized
by 3 frame elements with a total of 6 potential plastic hinges. Its three elements
possess the same structural shape, S4x8.5. Due to the symmetry of this structure,
it is especially useful to partially check the numerical results. The second structure
is a two-story frame with 15 degrees of freedom and discretized by 8 elements with
a total of 16 plastic hinges. The same shape used previously is also employed here

for the elements 1, 4, 5, 6, 7 and 8, whereas for elements 2 and 3 the stronger S8x23
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Figure 6.4: Schematic of the structures considered in the numerical results: (A)
Single-story frame, (B) Two-story frame
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shape is utilized.

The seismic excitation has been defined in two forms: (1) by the ground response
spectra, used in chapter 5 and calculated for 100 artificial time histories, and (2) by a
Kanai-Tajimi type of spectral density function. In both cases the maximum ground

acceleration is 0.5 g.

Figures 6.5, 6.6, and 6.7 provide results for the single-story structure. All hinges
are assumed to have the same constitutive characteristics. Thus, the following pa-
rameters have been chosen to model their a quasi-plastic constitutive: & = 1074,
B = 10*, which provide the following stiffness ratio af = k%, [k5, = 107°. The
parameters Aj are considered to be equal to 1, and the parameters Bf = Cj are
given by equation (6.77) in terms of the yielding moments at the hinges M, . The

exponent parameters are equal to 1.

Figure 6.5 shows the increase of the normalized equivalent damping ratios as
the yielding moment at the plastic hinges is decreased. This decrement is equivalent
to an increase in the ductilities. This fact has also been observed in the previous
chapter for shear buildings, and it is due to the necessity of the equivalent linear
structure to dissipate energy in order to approximate the actual nonlinear hysteretic
structure. On the other hand, the frequencies of the equivalent linear structures

remain almost constant as the yielding moment decreases.

Figure 6.6 shows some normalized maximum forces as the yielding moment at
the plastic hinges is decreased. It is seen that these forces decrease as the ductility
levels increase (or the yielding moments at the hinges diminish). This is in complete

agreement with the behavior of plastic structures.
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Figure 6.5: Normalized equivalent damping ratios of the single-story frame for dif-
ferent levels of yielding moment at the plastic hinges
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Figure 6.6: Normalized maximum shear forces of the single-story frame for different
levels of yielding moment at the plastic hinges
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Figure 6.7 is for a an excitation defined by a Kanai-Tajimi spectral density
function. The normalized standard deviation of the horizontal drift is plotted against
several values of the yielding moments at the plastic hinges. As expected, such drift

increases as the structure penetrates into the plastic range.

A similar behavior has been observed for the two-story structure. In this case
only the exponent parameter has been changed to 3. All other parameters remain
the same as those used by the single-story structure. As the size of the structure and
the ductilities increased, it became difficult to achieve convergence in the results. To
facilitate the initial guess of the linearization coefficients, it is noted that the same
limits provided in chapter 5 are still valid for the present case. Figure 6.8 shows
the behavior of the linearization coefficient af for hinges 1, 3 and 5 as the yielding
moment of the hinges is decreased. It is relevant to mention, that the ultimate lower
values for these coefficients are still given in terms of the exponent parameter by the
expression 77/(n + 1). In this case such limit is 0.75 and figure 6.8 clearly shows that

fact.
Finally, figure 6.9 shows the variation of the shears forces at the base of elements

1, 3 and 5. Again, such forces decrease as the ductility increases.

6.8 Conclusions

A response spectrum approach has been presented to approximate the seismic
design response of two-dimensional frames with potential plastic hinges. The non-
linearities are concentrated at determined regions, plastic hinges, and it is due to

the nonlinear behavior of the materials. The Bouc-Wen constitutive law has been
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Figure 6.7: Normalized standard deviation of the horizontal drift of the single-story
frame for different levels of yielding moment at the plastic hinges. The input is
defined by a Kanai-Tajimi spectral density function
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Figure 6.8: Coefficient of linearization, a;, of the two-story frame for different levels
of yielding moment at the plastic hinges
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the two-story structure for different levels of yielding moment at the plastic hinges
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proposed to model the plastic hinges.

The formulation leading to the proposed nonlinear equations of motion is pro-
vided in detail. Stochastic equivalent linearization is used to determine an equivalent
system of linear equations which is solved by a generalized eigenanalysis. The real
and complex eigenproperties are combined by the same modal combination rule pre-
sented in chapter 5 for shear buildings. As a consequence, the same ground response
spectra are required. That is, the commonly used pseudo acceleration and rela-
tive velocity spectra of second order oscillators, as well as the relative displacement

spectrum of the massless oscillator.

The numerical results show that the responses due to the actual nonlinear be-
havior can be approximated by the proposed approach. However, for larger size
structures with large ductilities the convergence in the linearization process may be-
come difficult to achieve. The qualitative characteristics of the response observed in
the previous chapter were also observed here for the frames. The errors associated

with the assumption of Gaussian density function for the response still remain in the

response calculated in this chapter.
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Chapter 7

Summary and Recommendations
for Future Work

This work presents various approaches to calculate the stochastic and seismic
design response of linear and nonlinear structures. The approaches developed for the
linear structures are presented in chapters 2, 3 and 4 whereas those for nonlinear
structures in chapter 5 and 6. The details of the formulation and more specific
conclusions pertaining to the proposed approaches are presented in their respective
chapters. Here we only summarize the work, provide general conclusions and suggest

future extensions.

For linear structures, a response spectrum method, based on the proposed mod-
ified mode displacement technique is presented for classically damped as well as
non-classically damped structures. The approach is especially designed to include
the pseudostatic contribution of the truncated modes in the dynamic and stochastic
analyses. The numerical results, as well as the comparison against commonly used
methods show the ability of the technique to capture the contribution of the trun-

cated modes without using them in the analysis. The proposed response spectrum
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approaches combine the efficiency of the mode acceleration-based response spectrum
approaches with the practical advantage of the mode displacement-based response
spectrum approach. It uses the more common pseudo-acceleration response spectra
in lieu of the relative acceleration spectra. Future work should be able to extend
the approach to general systems like the linearized systems presented in chapters 5
and 6. Also its extension to the generation of in-structure response spectra for the
calculation of secondary structures is feasible. A further generalization of this ap-
proach, to improve even further the calculation of the contribution of the truncated
modes, is also presented in this work for structures subjected to stochastic loads
defined in terms of power spectral density functions. This technique is called as the
force derivative method since it is based on the successive integration by parts of the
Duhamel integral of the response, and higher derivatives of the forcing function are
required for each integration. It presents a fast calculation scheme due to the use
of recursive formulas to calculate the boundary terms generated by the integrations
by parts. Future work is expected to extend the approach to non-classically damped

structures as well as to general structures.

For nonlinear structures, a response spectrum method is proposed to approxi-
mate the response of hysteretic shear buildings as well as of two-dimensional frames
with plastic hinges. The approach is based in the well known stochastic linearization
technique. The proposed method requires that the seismic input be defined in terms
of pseudo-acceleration and relative velocity spectra as well as a response spectrum
of the first order oscillator. The approach can be utilized as a useful numerical tool
for preliminary evaluation of a design incorporating inelastic behavior of structures,
especially for shear building structures. However, for two-dimensional frames with

plastic hinges, difficulty in achieving convergence may be encountered in the cal-
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culation process. A simulation study provided a quantitative measure of the error
introduced by the linearization technique. It is believed that the errors are primarily
due to the assumption of Gaussian density functions for the responses. Future work
using more realistic assumptions for the density functions are suggested to improve

the accuracy of the equivalent linearization technique.

Although, the equivalent linear approach may not be able to provide very ac-
curate values for the design response, compared to the time history analyses, the
author feels that it still is the best workable tool for seismic evaluation of hysteretic

structures.
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Appendix A

Common Partial Fractions

A.1 Casel

This section determines the partial fraction coefficients T},:) and Tj(f) corre-

sponding to the following expansion
PH(w) |G5() 1G3 ()’ = T4 1G3(«) + T3 IGi(@)I* (A1)
where P!(w) is a second degree polynomial in w with coefficients denoted as p]
Pl(w) = po+p30°, (A.2)

G5(w) is the stationary frequency response function of a first order oscillator (massless

oscillator)
Gi(w) = [Xj +iw]™ (A.3)

with its squared modulus given by

Gi(w)* = G5(w) GF(w) = [(A7)* +w?]7". (A.4)
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Equation (A.1) can be solved for P/(w) to get

. i re
Pl (w + 2 ) A.5)
)= e * ieswr (
Substitution of equation (A.4) into (A.5) produces
Pl(w) = [T () + T30 ()1 + [T + TP (A.6)

A system of two equations with two unknowns can be written by equating the coef-

ficients of the terms with equal powers of w in equations (A.2) and (A.6)

o)) 4). w

J

The determinant of which is

A = () - (X)) (A.8)

Solving the above system, the coefficients T},:) and TJ(,: ) become

TS = (g5 — o3 (X521 (AR (A.9)
T = [pL () — p1(AL)! = ~[p] - 2L 5?1 (AL (A.10)
Since Af, = —Aj;, the coefficient T( ) can also be written as

TR = 1) (A.11)

It can be noticed that the partial fraction coefficients are not determined when the

determinant is zero, that is when |A}| = [AL].
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A.2 Case Il

This section provides the partial fraction coefficients T,k , T(4) and TJ-(:) corre-

sponding to the following expansion
PH(w) [G5(w)? |H}(@) = TR 1G5(w) + (TR + o TR |Hi(w)  (A.12)
where P!!(w) is a fourth degree polynomial in w with coefficients denoted as pf!
P(w) = gy +p5 0 +p5 w*, (A.13)

G%(w) and its squared modulus are respectively given by equations (A.3) and (A.4)
respectively. Whereas H(w), is the stationary frequency response function of a

second order oscillator:
Hij(w) = [w; —* +2i a0 (A.14)
with squared modulus
|Hi(W)I* = Hi(w) H(w) = [wi+ (48, — 2)wpw’ +w' |70 (A.15)

From equation (A.12), P!(w) can be written as

TS (TH +w?TH)

P(w A.16
“ = Er G (410

where substitution of equations (A.4) and (A.15) produces
Pl(w) = [Twi+ T3 (5)]w’ (A7)

+ [(482 -2 TR + T + ()P TR w? + [T + TH ot

A system of three equations with three unknowns can now be constructed by equating

the coefficients of the terms with equal powers of w in equations (A.13) and (A.17)

= TR wi + TH (A)?, (A.18)
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= (48 - TR + TR + (P T, (A.19)

=1 4+T. (A.20)

From equation (A.20) the coefficient T( ) can be written as a function of the coefficient
T},f):

T = pff — T (A.21)

and by substituting this equation into (A.18) and (A.19) the following system is

written

2 wz _ r\2 (3) —()")2
R B - e

with determinant given by
A = (482 - D)k — (] (35 - i
= 46w (A7) = [(A7)* +wi]”. (A.23)
For A7 > 0, wx > 0 and 0 < B, < 1, the determinant will vanish only if 8 = 1 and

/\; = wg. In such a case the partial fraction coeflicients become undetermined. For

nonzero determinant, the solution of the system provides
T = [ (o — O3 ") () - mi'] (A3 (A.24)

T = [{(4B2 - 2)ui — ()} ai" - (8 - (972" }ei] (AJD)7 (A25)
The remaining coefficient, TJ(,,), can be obtained by substituting equation (A.24) into

equation (A.21).

If the original expression to be expanded were PY(w)|G5(w)|* |HS(w)|?, where
the subscripts have been interchanged, the corresponding partial fraction coefficients

TS), T(4) and T(4) can be obtained from equations (A.24), (A.25) and (A.21) by

considering the appropriate change of subscripts j « k.
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A.3 Case II1

This section presents the partial fraction coefficients T( ) TJ(,?, T}:) and T}:)

corresponding to the following expansion

PH(w) |Hy(w) 1HiW) = (T +w* T30) | H5(@)1* + (T3 + & T}Y) | By (w)]?
(A.26)
where PI'I(w) is a sixth degree polynomial in w with coefficients denoted as pf’'
PUI(G) = pl 4 pHIT 2 4 pIH (4 4 pHIT 8 (A.27)

Hg(w) and its squared modulus are given by equation (A.14) and (A.15) respectively.

From equation (A.26), P/(w) can be written as

(T +? TR) | (TR +w?TH)

III
PR = = H )P

(A.28)

where equation (A.15) can be substituted to get

Pw) = [T wh+ TR w!w®
+ [(48-2) 2 T + TP wl + (482 — 2) w2 TH + TH w! ] w?
+ (TR + (48] — 2) Wi TL) + TR + (487 — 2)w} TR |

+ (TR + TP wb. (A.29)

A system of four equations with the four coefficients as unknowns, can be written
by equating the coefficients of the terms with equal powers of w in equations (A.27)

and (A.29)
pl = T® +T(8) 4 (A.30)

i = (462 - 2)u}? Tj(:) + wp T},? + (4,@,2 -2) wJ? T_,g:) + w; T}:) (A.31)
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P = T + (467 - 2) w2 T + T + (462 — 2)? T (A.32)
it = T+ 7D, (A3
By using equations (A.30) and (A.33), the unknowns T}:) and T}z) can be written

as functions of T}: ) and TJ(,: )

T = i wit — QA TS (A.34)

J

T = ' -1, (A.35)

7

where Qi = w;/wg. These last two equations can now be substituted into equations
(A.31) and (A.32), which are then divided by w} to get the following (2 x 2) system

of equations
105 TR +2 (04 - 1) +2(82 - B204)] TR = pawi?  (A.36)

2 [(Q,Tkz ~1)+2(6 - B; 9,713)] T}s) + wi [1 - Q] ] ,k = Njk » (A.37)

where the quantities p;, and 7;, are defined as

pie = 0% [P — it o — w2 (487 - 2) "] (A.38)
2 [Pz 2 11T _ , -4 2 II1
Tk =le¢ [7 w; Pe wy (4:6 —2)po ] (A.39)
7

The (2 x 2) matrix of this system possesses the following determinant

AIII = 16(ﬂ2+ﬂk ) —6
+ 4(9% +0;?) [1—2(ﬂ}+ﬂ:—2ﬂ;ﬁz)] : (A.40)

After solving equations (A.36) and (A.37), the coefficients T( ) and TJ(,Z) become

TS = {205 [1- 0% +2(829% - B7)] — pie (W — 951} (AHDT (A41)
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= {ﬂjk (Q_?k ) 29,,. ik [1 - Q + 2(ﬂ29§k 32)]} -2 (A’” -1
(A.42)
Which, in turn, can be substituted into equations (A.34) and (A.35) to get the

remaining coefficients T( ) and T(o)

It should be noticed that for w; = wy the determinant becomes
ALT = 16(262 62 - B! - BL) . (A.43)

In addition, if B; = Pk, then Aﬁ’ = 0 and the partial fraction coefficients are

undetermined.

A.4 CaselV

This case is just a particularization of Case III, but due to its widespread use in
this study for the calculation of the stochastic response by the mode displacement,
the modified mode displacement and the force derivative approaches, it has been
considered convenient to analyze it as a different case. Thus, this section presents
the partial fraction coefficients TJ(,:O), TJ(,:I), T(,: ?) and T(1 ) associated to the following

expansion

PYV(w) | Hi(w)? [Hy()]? = (TS +w? TGD) [Hi () + (TS + o TRY) [Hy(w)[?,
(A.44)

where Hi(w) and its squared modulus have been previously defined in equations
(A.14) and (A.15) respectively. PV (w) is a fourth degree polynomial in w which

coefficients are denoted as p”

PV(w) = pf¥ +pi¥ w? + 9’ (A.45)
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with

v
Py =wijwp , p; =4fiPwjwr—wi—wp , Py =1.  (A46)

These partial fractions can be obtained by considering the procedure presented
in Case III for pl’f = 0. Thus, the coefficients T}:z) and T},:s) are obtained by using

equations (A.34) and (A.35) for this particular case:
THD = gtV wit — QA TS = 72 — Q2 TR, (A.47)
T},ﬁ” = -TWY, (A.48)

where Qi = w;/wk. On the other hand, the coefficients T % and T(u) are given by
equations (A.38-A.42) after being particularized for this case. Thus,

pie = O [P —wjtpl’] = 0% (A.49)

ik = % [% —-wi* (465 - 2)pg" ] = 1-487 +48; 8 Qe — QF,  (A.50)
AHT = 16(81 +B; - B — Bi) — Q% — Q3 —

+ 4%+ 03 [1-2(8F + 87 - 2638))] (A.51)

TEY = {2na [1- Q% +2(819% — 8])] — i (9% - 32)} (AHD™,  (A52)

THY = {njx (% — Q51 — 2057 pa [1 - Q% +2(820% - 6D} wi? (AFN.
(A.53)

The substitution of equations (A.49), (A.50) and (A.51) into equations (A.52) and

(A.53), and some simplifications, render
TG = [(482 — 1) Q4 +46; 6 Q% + 0% ] d7d (A.54)

TG = [Q3 - 1] wi?d, (A.55)
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where the quantity djy is
dj}, = Q:k + 4ﬂjﬂkﬂgh + (4ﬂ3 + 4ﬂ: - 2) ng + 4,Bjﬁk Qj], +1. (A56)

Finally, the expression for T J(,: ?) can be obtained by substituting equation (A.54) into
(A.47). Thus,
TEY = [Q% +46; 8 Qs + 462 — 1] d7t . (A.57)

Since T},:s) = —T}:l), equations (A.54-A.57) completely determine the partial fraction

coefficients for this particular case.

It can be noticed that all four coefficients TJ-(,:O), T},:l), T}:z) and T},:a) are also

defined for the especial case in which w; = w; and 8; = B;. That is,
0 1 13
T8 =10 =12, TN =14V = 0. (A.58)

This warrants the determination of such coefficients even when the frequencies w;

and wy are closely spaced.
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Appendix B

Integration by parts of the
Duhamel Integral

The Duhamel integral can be expressed as
¢
Do(t) = /0 h(t — 7)p(r) dr , (B.1)

where
—Bw(t—T)
€ .
h(t —7) = o sinfwg(t —7)] , wyg =wy1-02. (B.2)
Successive integrations by parts of this integral provide several different expressions
for the same quantity Do(t). Thus, if D;(t) denotes the result of the first integration
by parts, D,(t) of the second, and Dy(t) of the N*# integration, it is possible to

write the following identities

Do(t) = Dy(t) = Dyft) = ... = Dy(t). (B.3)

To perform such integrations it is useful to consider the following two well known

indefinite integrals:

ca= [a sin(bz) — b cos(bz))

) , (B.4)

/ e*® sin(bz) dz =
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/ e** cos(bz) dz = € [@ cos(bz) + b sin(bz)] , (B.5)

= +9)
which are used to provide the subsequent two expre s
[ me-ryar = (‘B) B(t — )+( ) Rt —1), (B.6)
/ h(t —7)dr = (f) h(t — )+ (ﬂ 1) h(t —T1), (B.7)
where
h(t — 1) = e Pt coswy (t — 7)) . (B.8)

Thus, by considering equation (B.6), the first integration by parts becomes

i - [{(8) - (e} ]
= [{(G) re-n+ (Z) be-n)smar, @)

where the evaluation of the limits renders

ot = (5) r0-{(2) o+ (&) b} 20

_ (5) [ #e=nsr)ar = (55) [ he-nsmar. (8.10)

The expression for Dy(t) can be obtained from equation (B.10) with the help of
equations (B.6) and (B.7) as

) - { () e+ (5) B} 200

{(8) me=n+ (&) e} o]

(&) se—)+ (Z5) be= )} stryar
B)ia-m+ (6 -1) me-n) )]

(&) b=+ (8- 1) be -} strder, (B0

=

D,(t) =

— o\_-‘ '

N——”’ S
o~
——

-~ € E|™ €

- N—

&I~ &

+

+
TN TN TN TN N
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and after evaluation of the limits Dy(t) becomes
D) = (55) w0 - (%) w0~ {(Z) w0+ () b} 20
+ {(2"2 ) h(t)+( ) h(t)} #(0) (B.12)

+ (2'3:2‘ ) /o h(t-r)ﬁ(r)dr+(§§) /o' i(t - ) p(r) dr .

The function () can be written in terms of h(t) and its time derivative A(t) as
h(t) = h(t) + Bwh(t) . (B.13)

Therefore, the substitution of equation (B.13) into equations (B.10) and (B.12) pro-

vides the following expressions for D,(¢) and D,(t):

Do) = () #0-{(2£) s+ (5) ko) s

- (%) [ we-npmyar - (5) [ e—)rydr. (B

D) = (5) #0- (B) s0-{(2) s+ (55) b} 20
+ { (‘ww; )h(t)+ (M) h(t)} #(0) (B.15)
4

+ ( ﬁ;"l) A h(t—r)ﬁ(r)d'r+(2:€—) [ e =ity ar

By a similar procedure it is possible to determine the remaining expressions
D;(t), Dy(t), ..., Dy(t). Every new integration by parts provides new, and more
intricated, boundary terms at 7 = 0 and at r = t. However, the coefficients involved
on these terms are recursively related. This facilitates their calculation, and allows

to write the following general expression after N integrations by parts:

DN(t) _ g (:_)) k+1 'i‘k <;(—t1)>
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¢ E{Q) twntr= () oo} [35]

+ (—Zl’-) TN+1/ h(t — 1) ;{Yr)) dr — (%)NH 'i'N/ot h(t — 1) ;(I:?) dr,
(B.16)

where an upper number delimited by < . > indicates the number of derivatives, with
respect to time, of the lower variable. The coefficients T+ can be determined by

using the following second order recursion

~

‘i‘k = —2ﬂ‘i‘k_1 —_ Tk_z , To = 0 , T_l = —1 . (B17)

It can be noticed that the recursive coefficient T, depend only on the coefficient g,
but to furhter simplify equation (B.16), it is possible to involve also the variable w
in the recursive formula. That is, a new recursive coefficient T is defined by the

following product:
1 k41 .
T = (;) Te, (B.18)

and the resulting recursive relationship can be written as

T, = (M) Tpoq — (iz) Tya , To=0, Toy=-1.  (B.19)
w w

By using the recursive equation (B.19), the expression for Dy(t) becomes

- S5 +3° [ Tura (O — Tu 1) [p(t }

+ W Ty /o h(t — 1) p(r) dr — TN/O\ h(t — 1) p('r) dr .
(B.20)
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Appendix C

Recursive Formula for
Pseudo-Flexibility Matrices

C.1 Pseudo-Flexibility Matrices for all Modes

The dynamic behavior of a linear structural system, with n degrees of free-
dom and classical damping, is completely characterized by three well known (n x n)
structural matrices: the mass matrix [M], the classical damping matrix [C], and
the stiffness matrix [K]. However, the force derivative method, proposed in chapter
4, makes use of the so called pseudo-flexibility matrices, which can be defined by a
recursive relationship involving the previous three matrices. This appendix presents

the formulation leading to such recursive expression.

The k** pseudo-flexibility matrix is denoted here as [F]; and is defined by the

following expression:

Fle = {8} Tsa {6}7 = (2] [X)u (8] (C.1)

=1

where [®] is the normalized (with respect to the mass) modal matrix which columns
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contain the n eigenvectors {#};, and [Y] is a diagonal recursive matrix which j**
entry contains the recursive coefficient T;;. These coefficients results from the inte-
gration by parts of the Duhamel integral and they are defined recursively (appendix

B) in terms of the natural frequency w; and the damping ratio 8; as

28; 1
Tj’k - - (ﬁ) Tj'k_l - (‘7) Tj’k_z ) ‘rj’O = 0 ) Tj'_.l - - 1 . (0.2)

The orthonormality eigenproperties of a classically damped linear system can

be expressed as
(2] [M][®] = [1] , [®)"[C][®] = [D] , [®J"[K][®] =[A], (C3)

where [I] is the (n X n) identity matrix, [D] is the diagonal modal damping matrix
with its j*» entry given by (28;w;), and [A] is the diagonal modal stiffness matrix
2

which entries contain the n eigenvalues A; = wj.

By considering the expressions in equation (C.3) it is possible to rewrite the

recursive relationship of equation (C.2) in matrix form. That is,
[T == (A7 {[D][X)e-1 + [Tz } , [Tlo=[0] , [Tla=-[], (C4)

where [A]™! can be obtained from equation (C.3) as

163
e e e M D)

1/w),

and a matrix with the superscript —T indicates the inverse of its transpose.

Equation (C.5) can be substituted into equation (C.1) to get the following re-

cursive expression of [F]; in matrix form:

[Fle = —[@][AI" { [DI{The-s + [T [T]-2 } (2]
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[Flo = [8][Th(@" =[0] , [Fl. = [2I[][®" = ~[M]™". (C6)

Finally, the expressions for [I] and [D] in equation (C.3), and the expression of [A]™*

in equation (C.5), can be substituted into equation (C.6) to get

[Fle = —[K]™ { [C][&][T]s-1[2]" + [M][&] [T]x— [8]" }

[Flo, = [0] , [Fl.=-[M]7, (C.7)

where it can be recognized that [®][T],_1[®]7 and [®][T]k_2[®]T are equal to [Fli_,

and to [FJi—; respectively. Thus, the expression for [F]; becomes

[Fle = —[K]7" {[C][Fle-1+ [M][Fli-2 }

[Fl, = [0 , [Fla = —[M]". (C.8)

It should be noticed that the first pseudo-flexibility matrix is just the actual
flexibility matrix. That is,

[Fl = - 1K) { [C]0] - [M][M] ™ } = [K]™?, (C-9)

as a consequence, there is no need to invert the mass matrix since it is possible to
calculate all [F; for k = 2,3,..., N by initiating the recursion with [F]; = [K]™!
and [Fo = [0].

C.2 Pseudo-Flexibility Matrices for Lower and
Higher Modes

The formulation of the previous section presents the recursive formulas nec-

essary to generate a set of pseudo-flexibility matrices associated to all n structural
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modes. However, the force derivative method, developed in chapter 4, requires the
use of a different set pf pseudo-flexibility matrices. That is, the pseudo-flexibility ma-
trices associated only to the higer modes. This section presents the recursive formulas
corresponding to two different sets of pseudo-flexibility matrices: (1) a set associated

to the lower modes, [Fy]i, and (2) a set associated to the higher (truncated) modes,

[Fhlk-

By assuming that the first » modes constitute the lower modes and the remaining
n — r modes are the higher modes, it is possible to rewrite equation (C.1) as
[Fle = {6} Tia o} + X {8}i Tin{8}" = [Fili + [Filx (C.10)
j=1 j=r41
where the pseudo-flexibility matrices associated to the lower and higher modes are

defined, respectively, as

[P = 308 Ts 1Y = (24 [Tds (247, (C11)
Bl = 30 {8} Tia 06F = (8] [Talu (2] . (C.12)
j=r+1

The dimensions of the different matrices involved in equations (C.11) and (C.12)

are presented in table C.2.

Substitution of equation (C.10) for the subscripts k, ¥ — 1, k — 2, 0 and 1 into

equations (C.8) and (C.9) produces

[Fle = [Fie + [Fuls
= —[K]™ { [C] ([Filk-1 + [Fulx — 1) + [M] ([Felr-2 + [Fhle-2) }

[Fly = [Fh+[F , [Flo = [Fio+[Filo, (C.13)
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Table C.1: Dimensions of the matrices associates to the lower and higher modes

Matriz Dimension
(2] = [{¢}1,{¢}2, .-, {}+] nXT
[Qh] = [{¢}r+1: {¢}r+27 RS} {¢}n] n X (n - 1‘)
[T,] diagonal (first = elements) rXT
[Th] diagonal (last (n — ) elements) | (n —7) X (n —7)
[F] nXn
[Fh] nXn

where

Bl = [T (807 = 06 () 4 (C.14)

J=1

(P = [Fh - [Fih = (K] = 34}, (i, @) (C.15)

i=1

[Flo = [Fio = [Filo = [0] . (C.16)

Equation (C.15) can be easily splited in the following two expressions:

Fle = —[KI™ { [C] (Fiducs + [M] [Fiaos }
F), = >:{¢},( ){¢}T  Fe = (0], (c.17)

[Frlx — K] { [C] [Fhle-1 + [M] [Fi]x-2 }
(R, = K- Z{¢},( ){¢}T , (Bo= 0. (C18)

i=1
Equation (C.17) is the recursive relationship that defines the pseudo-flexibility ma-
trices associated to the lower modes and equation (C.18) is the recursive formula to
generate the pseudo-flexibility matrices associates to the higher (truncated) modes.
In both cases the matrices are expressed in terms of the retained lower eigenproperties

and in terms of the complete mass, stiffness and damping matrices of the system.

249



Appendix D

Calculation of a Classical

Damping Matrix from a
Truncated Modal Analysis

In general, the dynamic analysis of classically damped linear structures does
not require the knowledge of the damping matrix [C]. If modal analysis is used on a
system with n degrees of freedom, only the values of r < n damping ratios are needed
to apply the modal combination rule leading to the dynamic response. However, some
calculation procedures require the complete knowledge of the damping matrix, i.e.
any direct integration scheme, or the force derivative method developed in chapter 4.
In particular, the latter uses the damping matrix for the calculation of the recursive
pseudostatic contributions of the truncated (higher) modes. This appendix presents
a generalization of the procedure given by Craig [15] to approximate the complete
damping matrix in terms of the retained eigenproperties as well as the mass and

stiffness matrices: [M] and [K].
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The orthonormal modal properties of these systems can be written as:

(8] [M][®] = [1],

2P wy 0

@7 [C][3] = D] 26303

-

(@] (K] (3] = [A]

(D.1)

(D.2)

(D.3)

where 3; and w; are the j®* modal damping ratio and modal frequency respectively,

(1] is the (n x n) identity matrix, [®] is the modal matrix which columns contain the

modal vectors {¢};, and the diagonal matrices [D] and [A] are the modal damping

and modal stiffness matrices respectively.

Equation (D.2) can be solved for matrix [C] to express it in terms of all n

eigenproperties as

[C] = [&]""[D] (2],

(D.4)

where there is no need to invert matrix [®], nor its transpose. With the help of

equation (D.1), it is possible to write
(2] = (87 [M] , (2] = [M][3],

which can be substituted into equation (D.4) to get

(€] = [M)[2) (D] (8] [M] = [M] Y-{¢}; (2Bjw;) {8}] [M] .

=1

Similarly, the stiffness and mass matrices can be written as

K] = [M][8][A][3]7 [M] = [M] > {#}; (w?) {4}F [M],

i=1
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n

[M] = [M][2][3]" [M] = [M] 3 {¢}; {#}] [M]. (D-8)

j=1

Equation (D.6) is the commonly used expression to reconstruct the damping
matrix from the total eigenproperties. However, in general, not all n eigenproperties
are available. Only a truncated set of them, containing the properties associated
to the lower r frequencies, are known. Therefore, matrix [C] is here decomposed
into two matrices: matrix [C,] associated to the retained (known) lower modes and

matrix [C}] associated to the truncated (unknown) higher modes. That is,
[C] = [C] +[Ch], (D.9)
where the two new damping matrices are defined as follows

(Cd = [M] 3{6}; (26:05) {87 [M] = [M][&]([Dj[2J7[M],  (D.10)

i=1

[Ch] = [M] Zn: {8}; (28;w;) {#}] [M] = [M][®4] [Da][84]" [M].  (D.11)

j=r+1

Matrix [®,] has dimension (nxr) and its columns contain only the first » eigenvectors.
Matrix [D,] is diagonal with dimension (r X 7) and its diagonal entries are the same as
the first » diagonal entries of matrix [D]. Matrix [&4] contain the (n — #) truncated
eigenvectors and has dimension [n x (n — r)]. Matrix [Dy] is also diagonal with
dimension [(n —r) X (n — )] and its diagonal entries are the same as the last (n —r)

diagonal entries of matrix [D)].

Since [C}] is given in terms of the unknown truncated eigenproperties, it is
proposed here to express it as a linear combination of the stiffness and mass matrices

associated to the truncated upper modes. That is,

[Ch] = &1 [Kn] + é2[M4] (D.12)
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which can be substituted into equation (D.9) to get the proposed damping matrix

[C] = [Cd) + & [Kn] + &2 [Ma] . (D.13)

The matrices [Kj] and [Mjy], though associated to the truncated modes, can
still be expressed in terms of the retained modes and the total stiffness and mass

matrices as follows:

[Ku] = [K]-[Kd], (D.14)
[Mn] = [M] - [M], (D.15)

where K] and [M;] can be calculated by the same procedure used for the calculation
of [Cy] and then substituted into equations (D.14) and (D.15) to get

[Kn] = [K] - [M][®d[A][2]" [M], (D-16)

[Mi] = [M] - [M] (2 [2,]" [M] . (D.17)

Matrix [A,] is diagonal with dimension (7 X r) and its diagonal entries are the same

as the first » diagonal entries of [A].

The final expression for the proposed classical damping matrix is obtained by
substituting equations (D.10), (D.16) and (D.17) into equation (D.13) to get

(€] = [M][&,][D][&,]" [M]
+ & ([K] - [M][®][Ad[84" [M])
+ & ((M] - [M][8][8]" [M]) . (D.18)

The damping matrix defined by equation (D.18) possesses its first r associated

damping ratios equal to the damping ratios of the retained lower modes, and its
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remaining (n —r) associated damping rations can be adjusted by the proper selection
of the constants ¢; and ¢,. Thus, the damping ratios of the upper (truncated) modes

are related to the constants ¢; and ¢; by the following expression:

1 - C2
Bi = 3 (Cle+w—

J

) , J=r+1,r4+2,...,n (D.19)

In particular, for ¢, = 28, /w, and é; = 0, the damping ratios associated to the

truncated modes are

Wy Wy Wn
Brn=p="= ) Ba=F= o, Pa=BT (D-20)

Therefore, in this case, the upper damping ratios are increasing and proportional to

the frequency ratios w;/w, for j =r+1,...,n.

Similarly, if ¢, = 0 and ¢; = 20,w,, the upper damping ratios become

w

w, r Wy
ﬁr+1 = ﬂr ) ﬁr+2 = ﬂr y et ﬂn = ﬂr ) (D'21)
Wri1 Wr42 Wn

and the upper modes possess decreasing damping ratios proportional to the inverse

frequency ratios of the previous case.
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Appendix E

Bouc-Wen Constitutive Model

The inelastic constitutive law proposed by Bouc [9] and Wen [56, 57] is briefly
described in this appendix. The physical meaning corresponding to some of the model
parameters is presented here to assist the analysis of the constitutive equations used
in chapters 5 and 6. However, a more complete study of this constitutive law has

been provided by Baber and Wen [5] as well as by Maldonado [30].

To model the behavior of the force-displacement relationship of inelastic materi-
als, Wen has proposed to define the material as composed of two elements in parallel.
One element possesses elastic behavior and the other behaves in an inelastic fash-

ion. The different contributions of each element to the total force F' is dictated by

weighting factors. Thus,
F =akz+(1-a)kv(z) (E.1)

where k is an elastic stiffness, z is the principal displacement associated to the total
force F, v(z) is an auxiliary displacement dependent on z and associated to the

inelastic behavior, and « is the weighting constant representing the relative partic-
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ipations of the elastic and inelastic terms, (0 < a < 1). Figure E.1 schematically

describes the relationship between F and z as well as the relationship between v(z)

and z.

The hysteretic behavior is included through a nonlinear relationship between

v(z) and z. For this, Wen have proposed the use of Bouc’s endochronic law:
9(z) = Az —Bz|v(z)]" - Cv|z||v(z)["". (E.2)

where the different model parameters, A, B, C, and 1 have been analyzed by Baber
and Wen [5], and by Maldonado [30].

The tangent to the nonlinear path described in the plane v-z, is given by
dz(z)/dz which can be obtained by dividing equation (E.2) by z. Thus,

%:) = A- |v(z)|" [B+ ;:Ez;ch ) (E.3)

and at the limit, as v(z) — z — 0, this tangent becomes

du(z)

o = A. (E.4)

=v=0

The ultimate value of v(z) is denoted as wv,, and is defined as the value at which
dv/dz = 0. Therefore, from equation (E.3), the absolute value of v, can be written

as
1/n

ou| = [B—ﬁ’c'] . (E.5)

The tangent stiffness of the inelastic behavior is defined by the derivative of F’

with respect to z:
dF dv(z)

(E.6)
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(a)

(B)

Figure E.1: Bouc-Wen hysteretic model: (A) Force vs. displacement, and (B) Aux-
iliary variable vs. displacement
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The corresponding initial tangent stiffness at z = v = 0 is denoted as k; and its

expression is

dF dv(z)

z=v=0 z=v=0

ky =

where equation (E.4) can be substituted to get
kr = ak+(1—a)kA. (E.8)

For A =1, k; becomes

kr = k. (E.9)

The final stiffness kp, can be defined at the asymptotic value of v when dv/dz = 0

as

kF = ak. (E].O)

Therefore, the parameter a is the ratio of the final stiffness to the initial stiffness
when A =1,
a = kr/kr (E.11)

A commonly utilized softening model uses A = 1 and straight lines as unloading
paths, which implies that B = C > 0. Therefore, k1, kr and a are given by equations
(E.9), (E.10) and (E.11) respectively, and the values of B or C can be obtained from

equation (E.5):
0.5

B I'”uln '

B=C (E.12)

where the exponent 7 is a positive integer number that controls the proximity of
the nonlinear path to the initial and final tangents. Bigger exponents correspond to
closer paths to the tangents. If A = 1, |v,| is equal to the yielding displacement z,,

and can be written in terms of the yielding force, F,,, and the initial stiffeness as:
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F,,

|‘"u| =Ty = Fu/k ) (E.13)
equation (E.12) becomes
B_c 0.5 e/ F T
=C=_= 0.5 (k/F,)" , (E.14)

where B or C is written in term of the yielding displacement or in term of the
yielding force. It should be noticed that the yielding force F, is not the actual force
that corresponds to the yielding displacement z, but it is the force level associated

to the intersection point of the initial and final stiffnesses.
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Appendix F

Linearization Coefficients

This appendix presents the formulation leading to the expressions for the lin-

earization coefficients of the Bouc-Wen model.

The stochastic linearization scheme adopted here, is that proposed by Atalik
and Utku [3]. It is characterized by the assumption of gaussian probability density
functions for the response quantities of the nonlinear system. As a consequence, it
is also known as gaussian linearization. However, such assumption is probably the

main cause of the error introduced by this procedure.

The Bouc-Wen nonlinear constitutive equation for a single hysteretic element

can be written as

v = g(:é,‘v) (Fl)

where the nonlinear function g(,v) is given by
9(2,v) = Az —Bz|v|"—Cuv|z||v|"?, (F.2)

and the different variables have been defined in chapter C.4 and appendix E. The
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equivalent linear equation for v is
v =az+bv+e, (F.3)

where a and b are the linearization coefficients and € is the unknown error introduced
by the linearization. The coefficients a and b can be obtained by minimizing the mean
square value of the error e with respect to them. Thus, the following two equations

can be solved for a and b:

OE[¢] OE[eY]
S =0, T =0. (F.4)

However, if the conditions given by Atalik and Utku [3] are satisfied, both coefficients

can also be given by

B I o) s

where the expected values correspond to a joint gaussian distribution function of the

variables z and v, which have zero means. The partial derivatives of g(z,v) are
39_(6‘:”_) = A-Bp["-Col[" 22|, (F.6)

8g(z,v ) _ . -
292.0) _ _pBiupulrt —nelél i (F.7)

Substitution of equations (F.6) and (F.7) into (F.5), and distribution of the expected

values render

a = A—BE[p|" - CEf o] 2|27, (F.8)
b= —nBE[zv|p|"? —nCE[|z| [v[""]. (F.9)

For odd integer values of the exponent 7, it is possible to obtain simpler closed form

expressions for the expected values. Thus, equations (F.8) and (F.9) become

a = A—BE[p|" -CEp"%|2|™], (F.10)
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b= —nBE[zv|v|"? —qCE[|z|v""]. (F.11)

The integrals involved in the above expected values, are not generally included in
common integral tables. For this reason, they closed expressions have been developed

during this study and their final forms are presented here.

The first expected value to be considered is E[|v|"]. Since the mean value of v

it is assumed to be zero, its expression is:

g p|7 _1[=13 2n +1
Elll = | ‘/L_Jm el ay = o',,‘/? r(ﬂ?—) , (F.12)

where o, is the standard deviation of v and I'(.) is the gamma function. For positive

odd integer values of 7 the value of the above gamma function is I'(Z) = (%32)!

E[jo] = 0,,\/?”2 ("—;—1)' (F.13)

The calculation of E[v"z |z|™!] and E[|¢|v"!] for odd values of 7 requires the

and E[|v|"] becomes

use of the following expression:

k<n &
Elz"] = ) orpl™ \/2; (Z) F(%) , k=0,24,...,even (F.14)

k=0

where z possesses a gaussian probability density function with mean p, and standard
deviation o,. This expression has been derived from the following recursive equation

provided in reference [36]:
E[z"] = p. E[z" '] + (9 — 1) o2 E[z"?] (F.15)

Equation (F.14) is valid for odd or even values of . In particular, for odd values of

7 it becomes

(=1)/2 25 n—2j !

e 7!
Ez = Y =5 : —1, F.16
=" s > [J!(n-%)!] (E-16)
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and for even values of 7 it is

n/2 25 n-2j !

o u 7!
Elz" = E z =z - - . F.17
=7} = ¥ [J!(n—21)!J (F.17)

By assuming a jointly gaussian distribution function with zero means for the variables

v and z, the final expressions for E[v"z |z|™!] and E[|z|v""!] (for n = odd) are:

E["& 371 = 5! (00 pos)” \/%r"i . (F.18)

on

E[j4]9™] = (1= 1) (00 pus)"™ 05 { = Zs . (F.19)

where p,; = E[v&]/(o,0:) is the correlation coefficient, and the quantities denoted

as ¥, and X, indicate the following summations:

_ 3 (g -2 —1)/2)t [1- g2’

He = =0 { stm-24)t [ 40 ] | (F-20)
_ O [ (=2 =12 1= i)

= i=0 {J'! (m—2-1! | 46l | [~ (721

By considering the same jointly gaussian distribution as before and odd values of 7,

the remaining quantity E[z v |v|""?] can be written as

n _
Elzv[v|"?] = 05077 pus 2; (7’ 5 1)! (F.22)

Substitution of equations (F.13), (F.18), (F.19) and (F.22) into equations (F.10)

and (F.11), renders the final expressions for the linearization coefficients a and b:
n—1 ]
= A—o" /o 1+ C () pl. Za F.23
¢ = Aoy [x [ BN +C() ol (F.23)

b= -0l o2/ [qp,,éB(nz;l)! +C(n) p2? 25] (F.24)
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Appendix G

Frequency Integrals

This appendix presents closed form solutions to the frequency integrals involved
in the stochastic response of single-degree-of-freedom oscillators. The following three

integrals are analyzed:

Ji= [ 3,(w) Gy W) d, (G1)

i=[" s Hwrew , 5= : By(w) | Hi W) dw,  (G.2)

where |Gi(w)|* and |H§(w)|® are the squared modules of the frequency response
functions corresponding to a massless oscillator (first order oscillator), and to a

second order oscillator, respectively.
-1 -1
Ci@)F = [0+, IH@) = [0} —w)+4B}e}e’] . (G3)

The existence of closed form solutions to these integrals depends mainly on the com-
plexity of the function ®,(w), which is the power spectral density function (PSDF)
of the excitation. For a unit PSDF, the integrals are denoted by J;, I¢ and I7. The
first is given by:

w

7= [T G () P dw = — vl - &
J,-/_mlGj(w)|dw_,\; arctan(A;_) = . (G.4)

-0
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The expressions for f;’ and [ 3 can be found in the random vibration literature [29],

and are given by

24 geparg, . T

I; = /_oo | H(w)|* dw = __2ﬂjw? , (G.5)
7o _ % 2 g 2 = 3
I; = [_w w* |Hi(w)|* dw = 2B;w; (G.6)

The simplest PSDF to be considered is that of a white noise since its expression
is a constant value:
P(w) =S. (G.7)
However, a white noise is an idealization that it is not present in natural phenomena.
A more adequate model for earthquake engineering, is the well known Kanai-Tajimi
[24] PSDF. It models the seismic motion at the surface of soil layers that rest on
a bedrock. The soil layers are considered as a single degree of freedom oscillator,
which filters an assumed white noise motion acting at the rock level. A three term
Kanai-Tajimi PSDF has the following expression:
3
By(w) = D Si(wi + 48] wiw?) [H(w)?, (G.8)
i=1
where the parameters S; depend on the maximum level of excitation (white noise

amplitude), and the parameters w; and f; depend on the characteristics of the soil.

White Noise PSDF

In this case, the PSDF is given by equation (G.7), and the integrals are straight

forward:
Jj=8J=585=, (G.9)
Aj
II=8SH=5_"C I'=8"=85— (G.10)
j j 2 8; w;’ ) E J 2 B; w;
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Kanai-Tajimi PSDF
For a three-term-Kanai-Tajimi PSDF, the integral J; become
5= Y5 7@ +4B ) G )P )P de . (GD)
= ~o0
The integrand of the above expression can be expanded into partial fractions by
using the procedure described in case II of appendix A. Thus,
5= 8 [ 1016500 + (12 + o T |Hi)?] dw,  (G.12)

i=1 —oo

where the partial fraction coefficients are

T = 48707 (5 - uf] (AF), (G.13)
7@ — _ 4 [952 + (A7)?] (AT)-! G.14
= —of 207 + (5] (AN, (G.14)
7 = -1, (G.15)
with
AL = 4B7 w0} (A7) = [(X7)* + i1 (G-16)
Equation (G.12) can be rewritten as
3
Ji= Y 8 [T+ TP R+ 1D I (G-17)
i=1

.

Equations (G.4), (G.5), (G.6), (G.13), (G.14) and (G.15) can be substituted into
equation (G.17) which, after some algebra, becomes

3. Siwi (482 X5 +2Biw; + X;)

. G.18
1 b (2ﬂ;w;A;+(A;)2+w3) (G.18)

T
Jj=2l\,'

J 3
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The next integral to be considered is I ;i', which for the PSDF given in equation
(G.8) is
3 oo
=Y 5 [ (4w} o)) |HyW)} |Hj@) do . (G.19)
=1 —oo
The integrand can be expanded into the following partial fractions:
3 oo
=Y 5[ [@®+o 1) H W) + @+ ) |H3 ()] do
i=1 —oo
(G.20)

where the coefficients T, T T8 and T,-(j-') can be obtained by the procedure

17 » “i7 2 +ij

described in case III of appendix A.

T = {0 [4-305+8(87 05 - 81| -1} (A (G.21)
TS = [2 (4 - 0%) +4 (8207 - 82) | wi? (AF) (G.22)
9 =1-0z1 , 1P = -1P, (G.23)

with Q;; = w;/w;, and

AT = 1687 +8; -8 -8 - - Q' -6
+ 404 +07) [1-2(8 +8: - 2878))] - (G-24)

ij

By considering equations (G.23), equation (G.20) can be rewritten as

3
=Y &[T (-7 1) + 19 (- 1p) + I¢] (G.25)
=1
where the integrals jj, I.;’ and I._;' are given by equations (G.4), (G.5) and (G.6).

Substitution of these expressions into the above equation renders:

.-Z;S.-[w; ([7.-— ﬂ,-)+w,. (E_ﬂ,-)"Lw?ﬂ,} (G.26)

3

d

|

Finally, the remaining integral I7 is

3 oo
Il = > S; _/_m(w‘;4 w? + 467 w? w*) | Hf (w)|? | Hf (w)|? dw . (G.27)

=1
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After expanding the integrand into partial fractions, it becomes

B=%5 [ [0+ T)HI + (157 + o T) [H )] do,
(G.28)

where the coefficients T, T, T8 and T,-(ju) can also be obtained by the procedure

tj 2 i3 14

described in case III of appendix A.

T = 2020 (1- 0% 262 +26707) (AH)™, (G.29)

T = {af -1-8p2 [1-04 +2 (B20% - 67) ] } (&I, (G.30)
10 - 8 11 9

T,(J = - 9.-,-“5”.-(,-) , T§Y = - T.-(,-), (G.31)

where ;; and A[{! have already been defined. Substitution of equations (G.31) into

equation (G.28) produces
3
=Y s[9E-0z )+t (I -1)], (G.32)
i=1
where the indicated integrals can be substituted by their closed expressions, given in

equations (G.4), (G.5) and (G.6) to render

v r S T,-g-s) 1 Q,-_jl 1}2-9) 1 Q;;
potha[D (W) (8] e
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