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(ABSTRACT) 

New methods for calculating the stochastic and seismic design response of linear 

and nonlinear structures are presented. 

For linear structures, two approaches are developed: (1) the modified mode dis- 

placement approach for classically as well as non-classically damped structures, and 

(2) the generalized force derivative approach for classically damped structures. Both 

techniques improve the calculation of the pseudostatic contribution of the truncated 

modes without including them in the analysis. In particular, the modified mode 

displacement approach is a useful tool for the calculation of seismic design responses 

affected by the contributions of higher modes. It properly considers the modal cor- 

relations as well as the correlation between retained and truncated modes. It is as 

fast as the mode acceleration method of structural dynamics and it only requires 

the commonly used ground response spectra employed by the classical mode dis- 

placement approach. On the other hand, the generalized force derivative approach 

requires the input to be defined in terms of its power spectral density funcion, but it 

improves even further the estimation of the missing mass effect due to the trucation 

of modes.



For nonlinear structures, the stochastic equivalent linearization technique is em- 

ployed to develop response spectrum approaches for hysteretic shear buildings and 

for two dimensional frames with plastic hinges. For this purpose, a generalized 

modal analysis technique is successfully employed. The proposed response spectrum 

approaches require the input be defined in terms of the response spectrum of first 

order oscillators as well as in terms of the commonly used ground response spectra. 

For shear buildings, the work is extended to include the calculation of floor response 

spectra. A simulation study is performed to compare the results obtained by the 

proposed approach.
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Chapter 1 

Introduction 

The seismic design of important civil engineering structures are usually per- 

formed by employing a time history analysis or a response spectrum analysis. In 

the first, the seismic motions are defined by ground acceleration time histories and 

it requires a laborious step-by-step calculation scheme. This method can be used 

to determine the response of linear as well as nonlinear structures. The response 

spectrum method, on the other hand, is used to calculate design response for input 

prescribed by design ground response spectra. However, it is restricted to linear 

structures. It uses modal analysis to uncouple the equations of motion and calcu- 

lates the design response by an appropriate combination of the maximum responses 

for each mode. The maximum modal response values are directly defined in terms 

of ground response spectra. 

For the combination of the maximum modal responses, several modal combina- 

tion rules have been developed. The earliest of these combination rules is commonly 

referred to as the square root of the sum of the squares (SRSS). This is based on the 

assumption that the maximum modal responses do not occur at the same time and



are statistically uncorrelated. This assumption is obviously not true. It is especially 

not true when the structural modes are close to each other. It is also not true for the 

well separated modes, if at least one of the two modes is beyond the frequency range 

of the input. These especial cases required modifications to the SRSS approach. 

Several methods have been developed which account for the correlation between the 

modes. The first very popular method was developed by Rosenblueth and Elorduy. 

This was based on the assumption that the input was a white noise. The restriction 

of the white noise was removed by Singh and Chu [45], where an improved modal 

combination rule was proposed. Since then there have been other combination rules, 

but usually are some minor modifications of the Rosenblueth and Elorduy’s rule. The 

background details of these various methods are presented in chapter 2 and 3 where 

we now propose a new rule which, of course, considers the correlation between the 

closely spaced modes as well as the correlation between the higher and low frequency 

modes. However, the proposed method does not require explicit calculation of these 

high frequency modes. Therefore, it is especially effective when mode truncation is 

performed in the response calculation. This new approach is called as the modified 

mode displacement (MMD) response spectrum approach. The development of this 

approach for the classically damped structures is presented in chapter 2 and for the 

non-classically damped structures is presented in chapter 3. 

The calculation of the higher modes of a system is usually associated with larger 

numerical errors than the error for the lower modes. Fortunately, however, in most 

dynamic analyses, especially in seismic analyses, the contribution of higher modes 

to a response quantity is usually quite insignificant. Thus it is a common practice 

to ignore the higher modes in a modal analysis procedure. Which higher modes can 

be ignored in the calculation, depends upon the range of frequencies present in the



input motion. The modes which are much higher than the highest frequency of the 

input, can be comfortably ignored. However, ignoring the modes with frequencies 

close to the highest frequency of the input, can cause error. How can one reduce 

this error of mode truncation is the subject of the study presented in chapter 4. A 

procedure called force derivative method is presented to minimize this error. The 

higher the order of the force derivative approach used, the smaller will be the error 

in the calculated response. In this chapter, a recursive, easy to implement, scheme is 

developed to obtain the higher order terms in the proposed approach. This method 

has practical implication inasmuch as it can be used with advantage to improve the 

accuracy of modal synthesis methods, see Suarez and Singh [51]. 

A common modal analysis approach or the spectrum approaches developed 

above are not, of course, applicable to nonlinearly behaving structures. Thus they 

can not be used for buildings or structures which yield during a strong ground shak- 

ing. However, in the current design practice, buildings are expected to yield and 

behave nonlinearly during a design level ground shaking. In this work, a generalized 

response spectrum method, based on the concept of equivalent linearization, is devel- 

oped to analyze nonlinear hysteretic structures and calculate their design response in 

terms of site ground response spectra. A more complete background and the details 

of the proposed approaches are described in two chapters. chapter 5 considers shear 

buildings with nonlinear shear stiffnesses distributed along the interstory elements, 

and chapter 6 considers two-dimensional structural frames with concentrated plastic 

hinges. 

The nonlinear hysteretic characteristics of the materials are modeled by the 

versatile constitutive differential equations provided by Bouc-Wen [9, 56, 57]. A



stochastic linearization procedure determines a linear system which is statistically 

equivalent to the nonlinear governing equations. The coefficients of the linear sys- 

tem are selected such that they minimize the mean square error introduced by the 

linearization process. The linearization coefficients are functions of the response 

statistics of the actual nonlinear system which are not known a priori. An iterative 

scheme, such as the fixed point iterations or the faster Newton method, are employed 

to overcome this difficulty. The linearization is based on the assumption that the 

response statistics of the nonlinear system are equal to the gaussian response statis- 

tics of the linear system. Since the linearized system is not self adjoint, the right 

and left complex eigenproperties are required in the analysis. Complete details of 

the proposed method are given in chapters 5 and 6. 

The final concluding remarks, and recommendations for future studies are given 

in chapter 7.



Chapter 2 

Modified Mode Displacement 

Response Spectrum Method for 

Classically Damped Structures 

2.1 Introduction 

The aseismic design of important civil engineering structures requires the ap- 

plication of methods and procedures of structural dynamics and random vibrations. 

This chapter presents a new response spectrum approach based on a suitable com- 

bination of the mode displacement (MD) and mode acceleration (MA) methods of 

structural dynamics. The proposed method includes the effect of the higher modes 

even though they may be truncated and no explicitly considered in the analysis. 

The analysis to calculate the design response of elastic multi-degree-of-freedom 

structures, when subjected to ground excitation, can be performed deterministically 

or stochastically. The deterministic approach is characterized by the use of one 

or several ground acceleration time histories. For this purpose, any good direct 
°



integration technique can be applied to solve the coupled equations of motion. A 

major drawback of the time history analysis is that it requires a large amount of 

computer time as such analyses are to be performed for a large set of ground motions 

to obtain the design response. Often a large set of design ground motions may also 

not be available for a site. For design purposes, the site motion characteristics are 

often defined in terms of ground response spectra. In fact, in the current seismic 

design practice, the ground response spectra are considered to be best workable tool 

to prescribe the design ground motion. The methods which use such inputs directly, 

in the calculation of design response are called as the response spectrum methods. 

The response spectrum methods are developed on the basis of random vibration 

analysis of structures. They all use the well known modal analysis technique. Since 

the higher modes usually do not contribute significantly to the seismic response, and 

also since their calculation involves larger error, it is common to use only a first 

few lower modes and completely ignore higher modes in response spectrum analyses. 

This omission of higher modes is known as the truncation of modes. 

The error in the response caused by the truncation of higher modes is usually 

acceptable. But in some cases, this error can also be too large to be ignored com- 

pletely. This can happen in the calculation of the response of stiff structural systems. 

Also, some response quantities which have a significant contribution from the high 

frequency modes may also be sensitive to this mode truncation error. These errors 

are present in the time history analyses as well as in the response spectrum method 

of analyses. The error caused by the truncation of modes has also been called as the 

missing mass effect [39].



The most commonly used formulation in modal analysis is the mode displace- 

ment formulation. However, to reduce this error in the time history and response 

spectrum analyses for seismic motions, the mode acceleration formulation [60] of 

structural dynamics can be effectively utilized. Successful application of this formu- 

lation for time history analysis was demonstrated by Singh and Ghafory-Ashtiany 

[46]. For design response calculations also, mode acceleration-based response spec- 

trum approaches have been proposed by Singh [44] and Singh and Mehta [50] for 

classically damped structures. These response spectrum approaches required that 

the seismic design inputs be defined in terms of the relative acceleration and relative 

velocity response spectra. The design inputs in terms of the relative acceleration 

spectra (similar to the design inputs in terms of the pseudo-acceleration spectra) 

could also be developed, but this is rarely done. Since the current practice of seismic 

structural analysis is oriented towards the use of the pseudo-acceleration spectra, 

it would be desirable to have a spectrum approach which could employ pseudo- 

acceleration spectra rather than relative acceleration spectra and which would also 

be able to account for the missing mass effect caused by the truncation of modes. 

Gupta and Cordero [19] and Gupta and Chen [18] have proposed a response spec- 

trum approach, which, they claim, provides acceptable results through the use of 

some empirical factors. 

Besides the problem of missing mass effect, a response spectrum approach must 

also be able to account for the correlation between modes. In the earliest versions 

of the response spectrum methods, this correlation was ignored and the method of 

the square root of the sum of the squares (SRSS) was commonly used to obtain the 

design response from the maximum modal responses. Rosenblueth and Elorduy [41] 

were probably the first to provide a rational approach to account for this correlation.



Their approach is still the most popular. The calculation of the modal correlation 

term in this approach is based on the assumption of the base input being a white 

noise. CQC [59] is another approach which is based on the assumption of a white 

noise as the base input. These two approaches provide similar results. For struc- 

tures whose dominant modes fall within the dominant excitation frequency range, 

these approaches can include modal correlation properly and thus provide accurate 

response results. However, because of the assumption of a white noise input, there 

could be errors in the response calculated by these approaches for stiff structural 

systems whose dominant modes are outside the range of the input motion frequen- 

cies. A comparative study of the method proposed in references [50], [41] and [59] 

has also been made by Villaverde [55]. 

Singh and Chu [45] had proposed a response spectrum approach where the 

modal correlation between the low and high frequency modes was properly included 

without making the assumption of the base input being a white noise. However, the 

missing mass effect caused by the truncation of modes cannot be corrected in this 

approach if only a limited number of modes are used. 

In this chapter, the mode acceleration and the mode displacement approaches 

are combined to develop an approach which is called the modified mode displacement 

approach for classically damped structures. A similar approach is also developed for 

non-classically damped structures in the next chapter. An initial and a reduced ver- 

sions of this method is published in references [47, 48]. This approach can effectively 

reduce the missing mass effect error, without explicitly including the high frequency 

modes in the analysis. Also, the correlation between the lower modes themselves 

as well as their correlation with the truncated higher modes is included. Numerical



examples are presented to demonstrate the effectiveness of the proposed approach as 

well as to compare its efficiency with other commonly used approaches. 

2.2 Modified Mode Displacement Approach 

The equations of motion for a linear elastic structure with n degrees of freedom 

and subjected to ground excitation in one direction, can be written in general form 

as: 

[M] {X(t)} + [C]{X(#)} + [K]{X()} = —[M] {Z}2,(t) (2.1) 

where [M], [C], and [K] are matrices of dimension (n x n), and they indicate, re- 

spectively, the mass, damping and stiffness matrices of the system; {X(t)} is the 

vector of relative displacements with respect to the ground, and a dot over a variable 

indicates its time derivative; the vector {Z} contains the ground motion influence 

coefficients; and z,(t) is the ground acceleration. 

For linear systems, equation (2.1) can be decoupled by employing the modal 

analysis, which uses the following change of coordinates: 

{X(4)} = [8] {2} , (2.2) 

where the columns of the modal matrix [%] are the n eigenvectors {¢}j corresponding 

to the undamped and homogeneous version of equation (2.1). The vector {Z(t)} 

contains the so called principal coordinates of the system. The eigenanalysis also 

provides the n eigenvalues \; = w?, where w; is the natural frequency of the 7" 

mode. The matrix [©] is orthogonal to the mass and stiffness matrices and can be 

normalized with respect to the mass matrix to get 

[S]" [M] [#] = [7], (2.3)



where [J] is the (n x n) identity matrix. Also, 

[#]" [K] [#] = [A], (2.4) 

where [A] is the diagonal modal stiffness matrix, entries of which contain the eigenval- 

ues A; = w?. For classically damped systems, the modal matrix [4] is also orthogonal 

to the damping matrix [C], that is 

[S}" [C] [4] = [D], (2.5) 

where [D] is the diagonal modal damping matrix whose n entries are (28;w;) j = 

1,...,n. The uncoupling of equation (2.1) is achieved by the substitution of equation 

(2.2) into (2.1), premultiplying it by [6]7, and considering the orthogonality prop- 

erties given in equations (2.3-2.5). This leads to the following system of uncoupled 

equations: 

{Z(t)} + [D] {Z(t)} + [A] {Z(t)} = —[8]" [M] {7} 2,(t) (2.6) 

Or in a single equation format as: 

Z,(t) + 2Bjw; 2;(t) +} z(t) = -y2,(t) , g=l,...,2, (2.7) 

where 7; is the 7** participation factor defined as 

13 = {6}; [M]{Z}. (2.8) 

The solution of equation (2.7) for quiescent initial conditions is 

t 

zi(t) = -y [bilt-r)8 (rar, GH. (2.9) 

where h(t) is the unit impulse response function: 

e~ Bjwyt 

  

h,(t) = sin(wg;t) , (2.10) 
dj 
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and wy; is the 7** damped frequency: 

way = wyyl—B;. (2.11) 

By invoking equation (2.2), we can write for the original vector {X(t)} as 

{XO} = (ZH = DBs 20). (2.12) 
Any response quantity R(t), obtained as a linear combination of the components of 

vector {X(t)}, can also be expressed as 

Re) = {RI LK} = Dos alt), (2.13) 
j= 

where {R} is the vector containing the coefficients of the linear transformation, and 

p; is the 7** modal response quantity defined by 

pj = {R}" {9}; . (2.14) 

Equation (2.12) or (2.13) constitute the basis of the mode displacement (MD) 

approach of structural dynamics [15]. It is assumed that the modes and their respec- 

tive frequencies are ordered by increasing frequencies. It should be noticed that these 

equations consider the contribution of all nm modes. However, for a large number of 

cases the contribution of the high frequency modes is negligible, and the summation 

can be truncated to consider just the first r lower modes, (r <n). That is, 

R(t) = 24 Pi z;(t) , (2.15) 
j= 

which is just an approximation to the actual value of R(t). It has been shown earlier 

Singh and Chu [45] that a response spectrum approach based on this MD method 

requires the base input to be defined in terms of the relative displacement (or the 

more commonly used pseudo-acceleration) and relative velocity ground spectra. 
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For some response quantities, the error due to the truncation of modes can be- 

come significant. It depends upon the contribution of the forcing function to the 

response quantity at the truncated frequencies of the structure. The mode acceler- 

ation (MA) approach of structural dynamics [15] was first proposed to approximate 

the contribution of the truncated higher modes and reduce the error. In this ap- 

proach equation (ref1.13) is modified, with substitution of z;(¢) in terms of z(t); and 

z;(t) from equation (2.7), as follows: 

Rie) = Do; (= fall) — 21 ~ 2 Ps =i) , (2.16) 
j=1 J 

which can be rearranged to provide: 

Re) = ~4,(t) 3 (2%) BHO) +26; 0)4(0)- a7) 
j= \ j= Yj 

The first summation term of this equation has been shown [50] to be the static 

response caused by the inertial forces corresponding to a ground acceleration of unit 

magnitude. For completeness, this is shown here also in a slightly different form. By 

considering the vectors 

{ep} = {R} [8], {7} = [8] (MI {Z}, (2.18) 

which, respectively, contain the modal response quantities and the modal participa- 

tion factors, it is possible to write for this summation term as follows: 

  > (#234) = {o}" [A]-* {7} = {R} [S] [A]? [I] [M1] {7}. (2.19) 
j=l j 

The diagonal matrix [A]~* can be deduced from equation (2.4) as 

[A]* = [8° [kK] [8]. (2.20) 

Substitution of this equation into equation (2.19) provides us: 

  > (2 = {RIKI IMI} = {R(X} = RB, (221) 
j=1 j 
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where {X,} is the solution of the following static system 

[K]{X.} = [M]{Z}, (2.22) 

and #, is the corresponding static solution of the response quantity of interest. 

Equation (2.21) can be substituted into equation (2.17) to get 

- Pj ps . 
R(t) = —2,(t) Ra — Dd) (2,(t) + 28; 0; 2,(t)) - (2.23) 

j=l “39 

If the truncation of modes is effected, this expression becomes 

: ". Pj ye . 
R(t) = — B5(t) Ra — D3 (4i(t) + 2854; (2) 5 (2.24) 

jg=1 9 

which is the basis of the MA approach. The term —2Z,(t)R, is known as the pseudo- 

static contribution of all modes, whereas the summation terms provides the different 

modal increments, from the pseudo-static response, to reach the actual dynamic 

response. 

The MA method represents an improvement with respect to the truncated MD 

approach since the MA procedure considers the pseudo-static contributions of the 

truncated modes, which contribute to the total dynamic response in a static fashion 

when the higher frequencies of the forcing function are much lower than the frequen- 

cies of the upper modes. A mode acceleration-based response spectrum approach was 

developed by Singh [44] and Singh and Mehta [50]. However, such approach required 

that the base input motion be defined in terms of relative velocity and acceleration 

response spectra. The relative acceleration spectra similar to the commonly used 

pseudo-acceleration spectra can also be developed for design purposes [32], but they 

are rarely used. This seems to limit the utility of the previously proposed [50| mode 

acceleration-based response spectrum approach. 
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To circumvent this practical limitation of the mode acceleration formulation, 

equation (2.24) is modified with the help of equation (2.7) as follows. The term in 

the parenthesis of equation (2.24) is substituted again to get 

p; 
R(t)» —2,(t) R, -oe 7 (walt) — wf 23(0) (2.25) 

which can be rewritten as 

R(t) ~~ z(t) C, + > Pj z;(t) ) (2.26) 

j=l 

where the coefficient C, is given by 

  C,=R, - ee . (2.27) 
j=l 

Equation (2.26) constitutes the modified mode acceleration (MMA) approach. In a 

slightly different form, equation (2.26) has been used earlier [18], [27]. Recently its use 

in modal analysis has also been advocated by Leger and Wilson [26]. The summation 

term in equation (2.26) is the classical mode displacement expression with a reduced 

number of modes. The first term represents the pseudostatic response correction to 

account for the missing contribution of only the truncated higher modes. 

All quantities in equation (2.26) are still expressed in terms of the characteristics 

of the first r modes. Also, the dynamic response term is now expressed in terms 

of the modal displacement z;, unlike equation (2.24) where the dynamic term was 

expressed in terms of modal velocity, z; and acceleration z;. As it is shown in the next 

two sections, this will be of direct help in the development of a response spectrum 

approach which will not require the relative acceleration spectrum of the base input. 
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2.3 Mean Square Value Response 

For calculating the design value of a general response quantity R(t) in the 

stochastic approach it is common to obtain its root mean square value and amplify it 

by a suitable peak factor. This approach also directly leads to the response spectrum 

approach. 

In general, seismic motions can be considered as zero mean random processes. 

Consequently, the responses of linear systems to this type of excitations are also 

zero mean processes. For responses with zero mean values, their standard deviations 

coincide with the square root of the mean square values. That is, 

on = VE[R2(t)] , (2.28) 

where E[.] denotes the expected value of [.], and op is the standard deviation of R(t). 

To obtain the mean square value, we first obtain the response autocorrelation 

function. By considering equation (2.26), autocorrelation function can be expressed 

as 

E(R(t) R(ts)] = E (206.4 Sn “(t) Gane C+ n(s)) , 

  

j=1 k=1 

(2.29) 

It can be expanded, and the expected values distributed to provide 

E[R(t) R(tz)] = Cy Elzg(t1) 2,(t2)| 

— C, ¥1 p; (Elz;(t1) 24(t2)] + Elz ,(t1) z5(t2)]) 
j=1 

+ DD 5 pe E[zj(t1) ze(t2)] - (2.30) 
j=1k=1 
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This equation provides the mean square value of the response R(t), by setting t; = 

tz = ?# as: 

E[R*(t)] = Cp Elz5(t)]-C, 2a Pi (Elz,(t) 24(t)] + Elzg(t) 2;(¢)]) 
j= 

ror 

+ SO > 6; pe Elz;(t) 2(t)] . (2.31) 
j=l k=1 

It is assumed that the input motions are samples of a stationary random process, 

although earthquake motions are not stationary process in a strict sense. In most 

seismic accelerograms, three different stages can be recognized. That is, (1) a initial 

stage, where the acceleration magnitudes are small and begin to increase, (2) a 

strong motion stage, characterized by large magnitudes and containing the maximum 

accelerations and maximum structural responses, and (3) a final stage, where the 

accelerations decrease till the motion subsides. A conservative assumption is to 

consider the earthquakes as being composed of the strong motion phase with infinite 

duration and stationarity characteristics. This assumption has been found to be 

acceptable in several earlier studies. 

For stationary ground motion, the autocorrelation function for the ground ac- 

celeration can be written in terms of its spectral density function ®,(w) as: 

Elf,(ts) Z(t2)] = [~ &_(w) ef) du. (2.32) 

From which we can obtain the mean square value of the ground acceleration as: 

E[z?(t)] = / ” &,(w) dw = 0, (2.33) 

where o, is the standard deviation of the ground acceleration Z,(t). 
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By considering the expression of z;(t) given by equation (2.9), the crosscorrela- 

tion E[z;(t,) 2,(t2)] can be expressed as follows: 

Bles(ts) 8,(t2)] = — 25 [aj —n) Be )a(t)en, (2.34) 

Utilizing equation (2.32) with the appropriate arguments, one obtains 

Elzs(ts)Gg(t2)] = ay [f° Se(w) slr — rie“ dry dv. (2.38) 

A change of variable (u = t; — 7) and rearrangement of integrals yields 

Elzi(tr) 34(t2)] = —15 | Bp(w) eH) HG(w,tr) dw, (2.36) 

where 

t . 
H5(w, 41) = I h;(u) e*" du (2.37) 

is the complex transient frequency response function of a damped single-degree-of- 

freedom oscillator. A superscript c indicates a complex quantity and the superscripts 

ce denote its complex conjugate. In the limit as t; — oo, HS(w,t:) becomes the 

stationary transfer function H}(w): 

im, H3(w,t1) = Hi(w) = [wf —w? +i2B;w;u], (2.38) 

which satisfies the following equations: 

Z;(t) + 28jw; 2,(t) + w7 z(t) =e ,  2,(t) = H5(w)e. (2.39) 

Thus, as ¢; and ¢2 tend to infinity, that is, when the system has been acted upon for 

a long time relative to its period, and the response has attained stationarity at the 

limit, as t; — tz — t — oo, equation (2.37) becomes 

Elzj(tr) Gq(t2)] = — 25 f Bgl) Hj(w) ef) de (2.40) 

17



Similarly, one can show that as t; — oo and tz — oo 

lim | Elz ,(ts) 25(t2)] = 75 [ Bg(w) HF (w)e-) dw, (2.41) 
t; ,t2-—+00 

One can also express the crosscorrelation E(z,(t,) z,(t2)] in terms of the spec- 

tral density and frequency response function. With the help of equation (2.9), this 

crosscorrelation can be rewritten as 

E|z;(t1) ze(t2)] = 3% f Lr hj(ti—T1) he(t2—T2) ElZy(71) Zg(72)| dry drz , (2.42) 

Substituting equation (2.32), with the appropriate arguments, one obtains: 

oO t t2 . 

E[z;(t,1) 2,(t2)| = 3 Vk I / | ,(w) h;(t, _- 71) hi (te _- T2) ei(m1—72) dr, dT. dw . 

(2.43) 

Again with a change of variables as u = t; — 7), v = t2 — T2, and a rearrangement of 

integrals yields 

oo . ty . t2 : 

E[z;(t1) ze(ta)) = 15 Te [. B(w) f(s -#2) I h;(u)e“**" du | hi(v) e” du dw , 

(2.44) 

where equation (2.37) and its complex conjugate can be invoked to write 

Blas(ts) 2u(ts)] = aye [ By(e2) eM) 74G(u, th) HE (yt) deo (245) 
Again for large time values of t; and tz, the crosscorrelation attains a stationary 

value as 

Elzi(ts) 2x(ta)) = 9% [ Bq(w) H5(w) HE (w) ef -*) dw. (2.486) 

Equations (2.33), (2.40), (2.41), and (2.46) with t; = ¢, = ¢, can now be substi- 

tuted into equation (2.32) to get the stationary mean square value of the response 
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R(é) as 

BIR] = C202+0, osas [ Bw) [Hi(w) + HF(w)] de 
j=1 

+ DY spew [ Belw) Hilo) HE) de (2.47) 
j=1 k=1 

The double summation terms can be decomposed into two terms. Terms with 7 = k 

(also called as the diagonal terms), and terms with j + k (off-diagonal terms). The, 

equation (2.47) is rewritten as follows: 

BIR] = C0240, Dosa [ B(u) [Hile) + HF(e)] dw 
j=l 

+ Dead [~ 8,(w) AG(w)P do 
= 

+ LV espen [ Fe(w) Hilo) HE (w) de (2.48) 
ns: 

This equation possesses four general terms. The first term represents the pseudostatic 

contribution of the truncated higher modes. The second term is the correlation 

between the pseudostatic response due to the truncated modes, and the dynamic 

response due to the retained modes. The last two terms are the same as those in 

the truncated mode displacement-based approach. The single summation part of the 

third term represent the squared contributions of individual modes, it is the base of 

the classical square root of the sum of the squares (SRSS) approach. The double 

summation part of the third term, on the other hand, represents the contributions 

due to the modal correlations between the retained modes. 

To be able to obtain a response spectrum approach, it is necessary to simplify 

equation (2.48) further. We first examine the second term, where the sum H§(w) + 

H(w) can be written as 

|H5(w) + Hi (w)| = 2 Re[Hf(w)] = 2(w? — w)|Hj(w))? , (2.49) 
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where 

|Hj(w)|? = Hj(w) Hi (w) = [wi + (467 — 2) wi w? + w4]?. (2.50) 

By utilizing equation (2.49), the integral in the second term of equation (2.48) can 

be written as 

/ _ 8(w) [Hj(w) + He (w)] do = 2(w} Tf - Tf). (2.51) 

where the quantities J ¢ and I} denote the following frequency integrals 

Ii = [ G,(w)|Hiw)Pdo , =f &(w)w*|H3(w)[?dw. (2.52) 
_ 

These integrals are, respectively, the mean square values of the relative displace- 

ment and relative velocity responses associated with the j** single-degree-of-freedom 

oscillator, with frequency w; and damping ratio B;, subjected to the base accelera- 

tion Z,(t). For zero mean processes, these mean square values coincide with their 

respective variances. That is, 

G=0, , F=%,, (2.53) 
J 

where o4, and o,, are the standard deviations of the relative displacement and relative 

velocity responses of the j*" oscillator. Appendix G provides closed form expressions 

for I ¢ and J} when the spectral density function of the input is defined by a white 

noise or by a Kanai-Tajimi type of function. 

It is noted that the frequency integral in the third term of equation (2.48) is 

just IZ. We will now express the integral in the fourth term, denoted as ¢;,, in terms 

of the frequency integrals in equation (2.52). 

Gn =f Sp(w) H5(w) HE (w) de (2.54) 
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In this expression, the product H$(w) Hy*(w) can be written in terms of the squared 

modulus of the transfer functions, that is, 

H(w) Hew) = [HS (w) HE(w)| |H§(w)/? |HE(w)? 

= [E(w) +iO(w)]"? |H5(w)?? |HE(w)/? , (2.55) 

where E(w) and O(w) are, respectively, even and odd polynomials in w: 

Ew) = wt + (48; Bewjwy — 0? — uf )u® + w2 uf , (2.56) 

O(w) = 2 [(8; 05 — Pawn) w* + (Bews — Byun) wy un] (2.57) 

Substitution of equation (2.55) into equation (2.54) renders 

Gu = [7 Bow) (E(w) +i O(w)] |HGw)P LHE(w)P? dw. (2.58) 

It can be noticed that the only odd function of w, in this expression, is O(w). As 

a consequence, the imaginary term containing O(w) vanishes when integrated from 

—co to co. Therefore, the expression for ¢;, is reduced to 

bin = Gag = [ &o(w) E(w) [HS (w) |? Hew)? de (2.59) 

The symmetry of ¢;, with respect to the indexes j and k is due to the symmetry 

of the polynomial €;,. The factors E(w) |H§$(w)|? |H{(w)|? can be expanded into the 

following partial fractions, by using the procedure given in Case IV of appendix A: 

E(w) |H5(w)/? |Hg(w)? = (TH + w? TH) |Hs(w)/? + (TH — w? TH) |HFw)? , 
(2.60) 

where the partial fraction coefficients are: 

TH, = [93, +48; 4.93, — (1-46?) 04,] dye , (2.61) 
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= |0},-1] wd, (2.62) 

Tit = — | + 4B + 4B; Be OQ 5k + 03, ak ’ (2.63) 

with 05% = w; [Wr and 

dj, = 1+48; BeQye + (487 +467 — 2) 03,448; Pe 5, + 4, (2.64) 
J 

After substitution of equation (2.60) into (2.61), the modal correlation coefficients 

become 

Gu =f S(w) [ (Th +0? TH) LHG(w)P + (THT —w? TH) [HE(w)/)] de 
(2.65) 

which can be written in terms of the frequency integrals of equation (2.52) as: 

Ge = TEU +TH (G-R) +E. (2.66) 

The above mentioned symmetry ¢;, = ¢,; demands that 

T=Ti , TH=-TEY, (2.67) 

which can be easily shown to be true. 

By substitution of equations (2.51), (2.52), and (2.66) into equation (2.48), we 

obtain the following expression for the mean square value of the response R(t): 

E[R*(t)) = C202+2C, > p375 (w3 1? - 1) + eazy 
j=1 j=l 

+ SY espera (TRIE+TH (1 —) + TH TZ] , (2.68) 
j=l k=1 

kj 

and, due to the symmetry of the double summation terms with respect to 7k, the 

number of calculations can be substantially reduced by just duplicating the contri- 
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butions of only the upper off-diagonal terms. Thus, 

E[R'(t)] = of = C?02+2C, 3957; (w} If - 17) (2.69) 
j=1 

+ yi l 405; > psp ie [TRIG +TH (7 -M) + 7H |. 
j=1 j=1 k=j+1 

This expression presents the advantages of both, the MD and the MA ap- 

proaches. That is, except for the calculation of C, by a simple static analysis, no 

extra information than that required by the classical MD method is needed and it 

also considers the contribution of the truncated modes. Equation (2.69) is used in 

the following section to develop a response spectrum approach. 

2.4 Response Spectrum Method by the MMD 

approach 

In the previous section, we obtained the expression for the mean square response 

defined in terms of the frequency integrals, which were in turn defined in terms of 

the ground motion spectral density functions. We will now use this expressions to 

obtain the design response, expressed in terms of the ground response spectra. 

The design response values can be chosen to be a suitable amplified root mean 

square response value OR as: 

Mr = PR OR, (2.70) 

The amplification factor Pa is often called as the peak factor for the response R(t). 

The root mean square value op is defined by equation (2.69). Equation (2.70) thus 

defines the design response in terms of the mean square value of the ground accelera- 
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tion, as well as the mean square values of the relative displacement and relative veloc- 

ity responses of the single-degree-of-freedom oscillators expressed in equation (2.52). 

These mean square values, however, can also be defined in terms of their maximum 

values through their respective peak factors. For example, the mean square value of 

the ground acceleration can be written as: 

M? = 3 
g P2 ° 

(2.71) 

Where M, is the maximum ground acceleration and P, is the peak factor for the 

ground acceleration. 

Similarly, the variances represented by the frequency integrals Ig and J?, can 

also be expressed in terms of their maximum values and associated peak factors as: 

  

2 2 Mi. Mi. i Ih =o? = —% 2 ) J 7 “vy 7 2)? Pi, 3 Pi, 
I? = a4, = 

(2.72) 

where Mz, is the maximum relative displacement of the z** single degree of freedom 

oscillator when subjected to the seismic ground acceleration 2,(t), and M,, is the 

maximum relative velocity of the same oscillator. The peak factors Py, and Py, are 

associated to the relative displacement and relative velocity respectively. 

The maximum value Mg, is known as the relative displacement response spec- 

tra. It can be obtained from the commonly used pseudo-acceleration spectra Mya; 

as: 

Ma; 
3 

= wr? Mga; - (2.73) 

M,, is the relative velocity spectra. If such spectra are not available, they can be 

approximated by the pseudo-velocity spectra M,,, as: 

M,; ~ My; = w5? Mpa; . (2.74) 
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This approximation, however, can introduce some error in the calculation of the 

design response. Utilizing equations (2.69), (2.71) and (2.72) into equation (2.70) we 

obtain for the design response as: 

M? Mi, _ r M2. 

Mi = Ph jot 38 P? 242C, 31545 CE Me FE) + Laas oe (2.75) 

2 
d; 

    

j=1 j j=1 

    

r-l_ r 1M Me M? 2 
+ 2 . y Ee +TH ( wy =) 4 THT Wc ale 

» » Pj Ph Vi Vk jk P3 P2 Pz gk Pz 
j=l k=j+1 

The peak factors appearing in equation (2.75) can be defined in terms of a predecided 

probability of exceedance level. Usually they all will be slightly different from each 

other. However, if only a few dominant modes primarily contribute to the response 

quantity, then the peak factor associated with these modes will be nearly equal to 

the peak factor of the response. This usually is the case in seismic response analysis. 

It is therefore fairly accurate to assume all the peak factors to be equal. That is, 

(Ft) = (Fe a) ~ (F ) an (2.76) 

With this assumption one obtains M?, to get 

  

Mh © C?M2+2C, >) p57; (w} M3, -— M )+Lado (2.77) a 
r-l or 

+ 230 DS espera (TMI, + TH (M2, — M2.) + TH M3, | , 
j=1 k=j+1 

If the pseudo acceleration spectra are used to define the relative displacement spectra, 

equation (2.76) can be written as 

    

Mia; Moa; 
Mi, & C? M? +2C, Sein ( 3 t—m,) +a} 4 (2.78) 

j=1 wW; j=l 

  

a 1 Meas, lt (442 2 tr Moa 
+ 2D) DD Pipetite rs wae + Tye (MG, — Mi) + Te ae | 

j=l k=j+1 3 k 

Equation (2.78) is the statement of the proposed response spectrum approach 

for calculating the design response from prescribed ground response spectra. Again, 

25



as mentioned in the previous section, the last two terms in equation (2.78) are the 

same as those in the mode displacement-based response spectrum approach, imple- 

mented with the first r modes. The single summation part of these two terms is 

the classical SRSS approach. The first term of equation (2.78) is the pseudostatic 

response contribution of the truncated higher modes to the squared response. The 

second term represents the correlation between the pseudostatic response due to the 

truncated modes and the dynamic response due to the retained modes. The relative 

contributions of these terms with respect to the total response are reported in the 

following section for various numerical examples considered herein. 

By considering the expression of C’',, equation (2.27), it can be noticed that this 

coefficient depends on the number of retained modes. It becomes zero when all n 

modes are included in the dynamic analysis, and consequently, the MMD approach 

of equation (2.78) reduces to the MD approach without truncation of upper modes. 

Both equations (2.77) and (2.78) use the relative velocity spectra My,,, but 

such spectra are not always available. The earthquake engineering community have 

commonly used the pseudo-velocity spectra Mp,, as a replacement. M,,, can be 

obtained from the pseudo-acceleration spectra Mya; as 

Myo; = Moa; /¥j; - (2.79) 

However, substitution of equation (2.79) into equations (2.77) or (2.78) shows that 

the second term in these equations vanishes. This implies that the contribution due 

to the correlation between truncated and retained modes becomes zero with this 

assumption. It introduces error in the double summation terms as well. The use of 

the pseudo-velocity as a replacement of the relative velocity is also analyzed in the 

numerical examples presented in the next section. 
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2.5 Numerical Results 

To demonstrate the effectiveness of the proposed approach with regard to its 

capability to reduce the missing mass effect error, herein some numerical results are 

presented. The results are obtained for structures with well separated as well as 

closely spaced frequencies. The structure with separated frequencies considered here 

is a five-span continuous beam excited at its support. The model of the beam is 

shown in figure 2.1. The beam is discretized into 26 finite elements with 48 degrees 

of freedom. The mass of the beam is included through the consistent mass matrix in 

the analysis. In addition, each node also supports a lumped mass. The results are 

presented for (i) a rather stiff beam and (ii) a flexible beam. The first few frequencies 

of the two beams are shown in table 2.1 and it is seen that they are well separated. 

The numerical results are obtained for the bending moment in the beam at node 

11. For this structure, the product (p;7;) is relatively high, even for high frequency 

modes, thus showing the importance of these modes in the calculation of response. 

A Kanai-Tajimi spectral density function with the cut-off frequency of 16 Hz and 

a set of pseudo-acceleration and relative velocity response spectra are considered as 

seismic inputs applied to this structure. For the stochastic input, the root mean 

square value of the response has been obtained, whereas for the response spectrum 

input, the response value of design interest has been obtained. 

For the sake of comparison, the response values have been obtained by the fol- 

lowing approaches: (i) the modified mode displacement (MMD) approach developed 

herein; (ii) the mode acceleration (MA) approach proposed in Reference [50]; (iii) 

the mode displacement (MD) approach of Reference [45] with truncated number of 
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S 10 x 25.4 Concentrated Masses 

  

    

Figure 2.1: Schematic of the beam analyzed. 

Table 2.1: Natural frequencies of the flexible and stiff beams. 

  

  

  

Frequencies (Hz) 
Mode | Flezible beam | Stiff beam 

1 5.006 19.969 
2 7.038 28.556 
3 7.880 32.378 
4 9.905 41.406 
5 10.689 44.166 
6 17.714 73.031 
7 18.656 81.050 
8 19.763 83.454 
9 26.937 108.375 
10 28.860 115.999 

48 4230.627 4238.074         
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modes; (iv) the CQC approach of Reference [59] and the Rosenblueth and Elorduy 

approach of Reference [41] (they give almost identical results); (v) the classical square 

root of the sum of the squares (SRSS) approach; and (vi) the absolute sum (ABS) 

approach. The response value obtained by the mode displacement approach with the 

complete set of modes used in the analysis (that is, the values obtained from equation 

(2.69) with r = n and C, = 0, for the stochastic response, and the corresponding 

response spectrum expression presented in Reference [45] and in equation (2.78) with 

r =n and C, = 0, for the design response) are the benchmark values against which 

the values obtained by the above approaches have been compared. The differences 

between the benchmark response and the response values obtained by the various 

approaches are presented as per cent errors. All response values are obtained for a 

modal damping ratio of 0.03. 

Figure 2.2 shows the error in the root mean square response of a bending moment 

in the stiff and flexible beams obtained by various approaches for increasing number 

of modes. The stiff beam results are shown in the top-half portion and the flexible 

bean results in the bottom-half portion of the figure. It is observed that for both 

beams the proposed approach and the mode acceleration approach both provide 

results with the least error for a given number of modes. The errors in the results 

obtained by the SRSS and CQC approaches are high even when a large number of 

modes are considered in the analysis; when all modes of the beam have been included 

this error is about 45 per cent for the stiff beam and about 20 per cent for the flexible 

beam. In the CQC approach, this large error is due to an improper consideration of 

modal correlation of the high frequency modes. For stiff structures the absolute-sum 

approach will usually provide better results than the SRSS and CQC approaches; this 

is because even the well separated modes in such structures, especially the ones with 
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frequencies outside the frequency range of the input, will be strongly correlated. For 

flexible structures, on the other hand, the absolute-sum approach provides absurd 

results. 

In figure 2.3 we compare the contributions of various terms of equation (2.69) 

towards the total mean square response. The curve identified by PS shows the 

contribution of the pseudostatic term with increasing number of modes. When only 

the first few modes are considered, this contribution is quite large, especially in 

the stiff beam. Of course, this contribution decreases as more and more modes are 

considered. The symbol MD identifies the curve showing the contribution of the mode 

displacement term. As expected, this contribution approaches the total response as 

more and more modes are considered. This figure also shows the contribution of the 

term associated with the correlation of the pseudostatic and dynamic parts of the 

response. It is seen that this correlation is not insignificant, especially when only a 

few lower modes are considered. This is contrary to what was assumed by Gupta 

and Chen [18]. It is seen form equation (2.69) that this term will be zero only when 

the mean square values of the relative and pseudo-velocities are equal. This happens 

only when the input is a true white noise. 

The results shown in figure 2.4 are obtained for the support input defined by 

response spectra. The pseudo-acceleration spectra resembled the spectra defined in 

reference [38] which are prescribed for the design of nuclear power plants by the Nu- 

clear Regulatory Commission. Here, the benchmark response value is obtained from 

the response spectrum approach developed in Reference [45] without truncation of 

any modes. The validity of this approach has been verified by a numerical simulation 

study reported in Reference [17|. As mentioned before, the differences between the 

30



  

SRSS 
, A. Stiff beam 

a
 

Oo
 i 

i 

on
 Qo i 

  

  

>
 Oo jo
 

P
E
R
C
E
N
T
 

E
R
R
O
R
 

IN
 

RM
S 

V
A
L
U
E
 

oS 
a
 

| 

nN
 

o
 j 

L 

©
 

_I
 

    
7 . B. Flexible beam 

ABS 

/ 
   

o
 

o
 

_i
 

    

   

  

P
E
R
C
E
N
T
 

E
R
R
O
R
 

IN
 

RM
S 

VA
LU

E 

  

  

      

      
  

40- 

707 SRSS 

20- } 

1 PMMD & COC —” 
10- 

0 T 
0 10 15 

NUMBER OF MODES 

Figure 2.2: Percent error in the root mean square value of a bending moment obtained 
for Kanai-Tajimi spectral density function by different approaches with increasing 
number of modes for: (A) stiff beam, and (B) flexible beam, 
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Figure 2.3: Percent contribution of various terms in the equation for the the total 

mean square response obtained with different number of modes for: (A) stiff beam, 

and (B) flexible beam, 
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benchmark result and the results obtained by the proposed approach are superior to 

those obtained by all other approaches. This superiority is especially impressive for 

the stiff beam. Again, the errors in the CQC and SRSS approaches are quite high, 

and especially so for the stiff beam. 

Next some similar numerical results obtained for a 18-degrees-of-freedom build- 

ing (6 stories) are shown in figure 2.5. The stiffness properties of the structure were 

chosen such that the frequencies are closely spaced, causing a strong correlation be- 

tween the modes. Again, a relatively stiff and a relatively flexible structure were 

considered. The first few frequencies of the structures are shown in table 2.2. This 

structure was also analyzed for two inputs: (i) a Kanai-Tajimi spectral density func- 

tion with a cut-off frequency of 16 Hz and (ii) the response spectra used to obtain 

the results in figure 2.4. 

Table 2.2: Natural frequencies of the flexible and stiff building 

  

  

  

Frequencies (Hz) 
Mode | Flexible Steff 

1 4.997 19.987 
2 5.002 | 20.006 
3 9.081 36.322 
4 11.118 | 44.471 
5 11.123 | 44.491 
6 15.735 | 62.941 
7 16.393 | 65.571 
8 16.551 | 66.204 
9 20.885 | 83.541 
10 20.934 | 83.736 

18 75.508 | 302.032         
  

Figure 2.6 depicts the percent error in the root mean square response for the stiff 
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Figure 2.4: Percent error in the bending moment design response obtained for re- 

sponse spectrum input by different approaches with increasing number of modes for: 

(A) stiff beam, and (B) flexible beam, 
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Figure 2.5: Schematic of the structure analyzed in the example problem. 
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and flexible structures obtained by various approaches for the stochastic input. It 

is clear from the figure that the proposed approach performs the best again, giving 

least error in the response for a given number of modes. For the stiff structure, 

the performance of the proposed approach is especially remarkable, as with just 2 

modes considered in the analysis the mode truncation error is practically eliminated. 

The SRSS approach performs worst, even with the flexible structure, because of 

ignoring modal correlation completely. For the reasons cited earlier, the absolute 

sum approach again gives very good results for the stiff structure; also for the flexible 

structure the error increases again. The CQC does very well for the flexible structure, 

but for the stiff structure the error, even with the complete set of modes considered 

in the analysis is rather high, at about 20 per cent. The errors for this structure 

are, in general, smaller than the error for the beam, discussed earlier. It is primarily 

due to the fact that, even in the stiff structure, the product (p;+7;) was significant 

only for the first three modes whereas in the beam this product was relatively large, 

even for several higher modes. Thus, ignoring higher modes did not make as much 

difference in this structure as it did in the case of the beam. 

Figure 2.7 shows results similar to those in figure 2.6, but for the response 

spectrum input. Here again, the proposed approach performs the best and errors in 

the results by other methods are similar to those in figure 2.6. 

Many of the proposed spectrum approaches implicitly assume that the relative 

and pseudo-velocity responses of an oscillator excited by ground motion are equal. 

This assumption avoids the need of especifying the relative velocity response spectra 

for the base input motion, as this can now be obtained from the commonly pre- 

scribed pseudo-acceleration response spectra. However, this assumption introduces 
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Figure 2.6: Percent error in the root mean square value of a bending moment obtained 
for a Kanai-Tajimi spectral density function by different approaches with increasing 

number of modes for: (A) stiff frame, and (B) flexible frame. 
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Figure 2.7: Percent error in a bending moment design response obtained for response 

spectrum input by different approaches with increasing number of modes for: (A) 

stiff frame, and (B) flexible frame. 
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inaccuracy in the calculated response, as is shown by the dashed curves (identified by 

PMMD) in figures 2.2 and 2.6 obtained for the Kanai-Tajimi spectral density func- 

tion input and in figures 2.4 and 2.7 obtained for the response spectra as the input. 

These curves show the error in the response calculated by the proposed approach 

but with the incorrect assumption of the relative velocity response being equal to 

the pseudo-velocity response. It is seen that the effect of this assumption in the 

proposed approach is to increase the error in a stiff structure. This shows that it is 

important to define design input in terms of the relative velocity spectra in addition 

to the pseudo-acceleration spectra, if one wants to calculate the response accurately. 

Also as one would expect, the results obtained with this approximation approach the 

results of methods in references [41] and [59] as we increase the number of modes. 

2.6 Conclusions 

A response spectrum method is presented for an accurate calculation of the 

design response. The method combines the advantages of the mode acceleration and 

mode displacement formulations. It reduces the error caused by the truncation of 

modes, and it uses the same input required by the mode displacement-based response 

spectrum approach. The relative acceleration spectra, which were required as input 

in the mode acceleration-based response spectrum approach, are not required in 

this approach. It is shown through numerical examples that, for a given number of 

modes used in the analysis, this approach gives much less error in the response than 

some other currently used response spectrum approaches. The approach is effective 

in providing accurate seismic response of stiff as well as flexible structures equally. 

However, the improvements in the accuracy of the response of stiff structural systems 
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are more impressive. To capture the contribution of all significant modes, one should 

consider at least the modes which are within the cut-off frequency of the input plus 

a few more following modes. The higher modes need not be calculated; their effect 

is included through a pseudostatic response term. 
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Chapter 3 

Modified Mode Displacement 

Response Spectrum Method for 

Non-classically Damped 

Structures 

3.1 Introduction 

In many situations, it may not be justified to assume the energy dissipation 

characteristics of a structural system to be classically damped. This precludes the 

use of the undamped modes in their dynamic analysis. However, by utilizing the 

damped eigenproperties one can still analyze non-classically damped systems by a 

mode superposition approach [33]. This approach has been used by several inves- 

tigators [43, 46, 21, 20, 53, 54] for time history and response spectrum analyses of 

non-classically damped systems. 
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As is commonly done in the analysis of classically damped structures, one can 

also truncate high frequency modes in the dynamic analysis of non-classically damped 

systems as well. In most cases, this truncation does not cause any accuracy problems 

in the calculated response. Yet in some situations involving stiff structural systems 

and the response quantities affected by the high frequency modes, this truncation can 

cause such problems. The previous chapter presented a response spectrum method 

to reduce the error due to truncation of modes in classically damped systems. This 

chapter presents now a similar method to reduce the mode truncation error in non- 

classically damped structures. 

In the past, two formulations have been used to develop the response spectrum 

methods for non-classically damped structures: (1) mode displacement formulation 

and (2) mode acceleration formulation. The methods developed by Singh [43], Igusa, 

Der Kiureghian and Sackman [21] and Villaverde [54] are based on the mode dis- 

placement formulation whereas the method developed by Singh and McCown [49] is 

based on the mode acceleration formulation. The mode acceleration approach has 

been shown [49] to be very effective in reducing the error due to the truncation of 

modes. But as it was the case with classically damped structures, this approach 

requires that the base input be described in terms of the relative acceleration and 

relative velocity response spectra. Since these spectra are not commonly used in the 

earthquake engineering community, the mode acceleration-based response spectrum 

approach has lacked practical appeal. The mode displacement approaches, on the 

other hand, do not have this problem, but they are not as efficient and accurate as 

the mode acceleration approach in reducing the mode truncation error. That is, for 

a given number of modes used in an analysis the mode displacement approach do 

not provide as accurate response as the mode acceleration approach. 
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Basically, this chapter extends the idea presented in the previous chapter to 

develop a response spectrum method for non-classically damped structures. In this 

formulation, the advantages of both approaches, the mode acceleration-based ap- 

proach and the mode displacement-based approach, are combined to obtain a re- 

sponse spectrum method which (1) utilizes the commonly prescribed form of base 

response spectra like a mode displacement approach does and (2) reduces the mode 

truncation error as effectively as a mode acceleration approach would without using 

the high frequency modes explicitly. The main idea behind the formulation presented 

here is the same as the one used in the previous chapter, but the details are quite 

different. 

3.2 Response by Modified Mode Displacement 

The equations of motion for an elastic structure with n degrees of freedom, and 

subjected to ground acceleration Z,(t) at its base, can be expressed as: 

[M] {X(t)} + [C] {X(t)} + [A] {X(#)} = —[M] {Z}2,(¢) , (3.1) 

where [M], [C] and [K] are the (n x n) symmetric structural matrices for the mass, 

damping and stiffness respectively; {X(t)} is the vector of structural displacements 

with respect to the ground; {Z} is the vector of ground motion influence coefficients 

and a dot over a variable represents its time derivative. 

For the general case in which the damping matrix [C] is non-proportional or 

non-classical, equation (3.1) can be written as a the following system of first order 

equations: 

lew leroy =~) { 13 bao, (3.2) 
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where {Y(t)} is the (2n x 1) state vector. Its first n elements are the elements of the 

relative velocity vector {X(t)}, and the remaining n elements belong to the relative 

displacement vector {X(t)}. The matrices [A], [B] and [D] of dimension (2n x 2n) 

are defined as: 

i={in to] > @=[“g a] + @=[i an]: 
(3.3) 

Equation (3.2) can be decoupled by utilizing the eigenproperties of the following 

associated eigenvalue problem: 

ALA] {dhs = [Bhs 5 F=1)---52n (3.4) 

The solution of equation (3.4) provides 2n eigenvalues A; and their correspond- 

ing 2n eigenvectors {¢};. However, due to the characteristics of the system, these 

eigenproperties are given in n pairs of complex and conjugate quantities. That is, 

the eigenanalysis provides n pairs of complex and conjugate eigenvalues (A5, AS, 

j =1,...,n) and their corresponding n pairs of complex and conjugate eigenvectors 

({$°};, {@¢};, j=1,...,n)- The eigenvalues are considered to be ordered with in- 

creasing magnitude with the ones with positive imaginary part preceding those with 

negative imaginary part. That is, the eigenvalue with the smallest magnitude and 

positive imaginary part is denoted as 41 = Af, its complex conjugate as Ag = Af, 

the one with largest magnitude and positive imaginary part is 2,_, = AS, and its 

complex conjugate is A2, = AS. Similarly, the order of the eigenvectors is determined 

by the order of their associated eigenvalues. 

The modal matrix [$] contains the eigenvectors, and after normalization with 
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respect to matrix [A], presents the following orthonormal properties: 

(S]}" [A] [2] = 7] , [8] [8] [4] = [A], (3.5) 

where [J] is the (2n x 2n) identity matrix and [A] is a diagonal matrix containing the 

eigenvalues. 

As indicated by Singh [43], the system frequencies w;, and the modal damping 

ratios 6;, can be related to the real and imaginary parts of the eigenvalues as: 

c . e Re(A; . 
AU = Bj wjtiw; /1 — BF , wz = |A5| , g; = Bes) | > j=l,...,n. (3.6) 

Wj 

Equation (3.2) can be decoupled by premultiplying it by [6]7, by using the 

following standard transformation of coordinates 

{Y(é)} = [#] {2}, (3.7) 

and by considering the orthogonality properties indicated in equation (3.6). The 

resulting 2n decoupled equations for the principal coordinates z;(t) are 

z;(t) + A; z;(t) = —-%V z(t) } j = 1, eeey 2n ) (3.8) 

where 7; is the j participation factor defined as 

~= qo} (oyd 2 lS ata os gaa...2 3.9 VG = {PH IDL) pry = {PH IMIIZ} GG =L---2m. (3.9) 

In this equation, the quantity indicated as {$}; is the lower half of the j** eigenvector 

{$};. 

For a given ground motion Z,(t) and quiescent initial conditions, equation (3.8) 

can be solved for all z;(t) to get 

t 
z,;(t) = -4; [ z(rye Ndr, g=1,...,2n. (3.10) 
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Such solution, can then be used to calculate the relative displacement vector as 

follows: 
2n 

{X(é)} = {Y(é)} = [8] {Z(t)} = dD {95 a(t), (3.11) 
j=1 

where a bar over a quantity indicates its lower half. Also, any response quantity 

R(t), which is linearly related to the relative displacement vector, can be written in 

terms of the solutions z;(t) as follows: 

ny = { SY wer = ey ex@r = Soi). (22) 
4 

Where {R} is the vector containing the n constant coefficients to linearly combine 

the n elements of the relative displacement vector {2(t)}, and p; is the j** modal 

response R(t). It is obtained by a simple linear transformation of {¢}, as: 

p; = {R}" {6}; ; 7G =1,...,2n. (3.13) 

Equation (3.12) is a statement of the mode displacement formulation for cal- 

culating the response of non-classically damped systems. To avoid calculation of 

all eigenproperties, one can use only a first few eigenproperties in the summation 

of equation (3.12). This is equivalent to the procedure of mode truncation, com- 

monly used with classically damped systems. The implementation of the truncation 

requires the above mentioned rearrangement of the modal frequencies in increasing 

order to identify the lower modes. These lower modes and their complex conjugate 

are, then, used in the summation in equation (3.12) and the remaining higher modes 

are discarded. As was the case with classically damped structures, this omission or 

truncation of higher modes from the analysis does not cause any significant error in 

the calculated response in most structures. But in some stiff structures and some 

response quantities affected by high frequency modes, this truncation of modes can 

also cause significant error in the calculated response. 
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For non-classically damped structures also this truncation error can be con- 

trolled, and in fact practically eliminated, by adopting the mode acceleration for- 

mulation as shown by Singh and McCown [49]. The method proposed herein is an 

improvement of the approach proposed by Singh and McCown. 

In the mode acceleration formulation, one rewrites equation (3.12) by substitut- 

ing the principal coordinates z;(t) by the expression —[y; Z, + 2;]/Aj, obtained from 

equation (3.8), to get 

R(t) = —,(t) yo -» asi (3.14) 

As it was the case in the previous chapter, for classically damped structures, the 

summation factor in the first term of equation (3.14), though expressed in terms of 

the eigenproperties, can also be calculated by a simple static analysis as it is shown 

below. For this purpose, such term is denoted by R, and it can be expressed as 

Ry = Yi = (RITA), (3.18) 
where the vectors {p}" and {7} contain the modal response quantities and the par- 

ticipation factors respectively. Their expressions are 

r= 1 Ve, meorm{ 8). er 
Equation (3.6) can be used to obtain matrix [A]~* as 

[AJ-? = [8]"* [B]* [8]. (3.17) 

Substitution of equations (3.16) and (3.17) into equation (3.15) provides 

— fpr fh 2 reir _ Rit n= { OO) wri] if = eteron = ok | 
3.18 
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where {X,} is the static solution of the following system 

[A] {X,} = [M] {Z}. (3.19) 

The above analysis demonstrated that R, is the static response associated to the 

response quantity R(t) when the system is subjected to the load [M]{Z}. In terms 

of R, equation (3.14) can be rewritten as 

R(t) = —4,(t) R, - > 2D) a) (3.20) 
ja 

where now the summation is carried over the first r modes or eigenproperties. Equa- 

tion (3.20) is known as the mode acceleration approach, and it formed the basis of 

the response spectrum method proposed by Singh and McCown [49]. As in the case 

of classically damped structures (previous chapter), this formulation required that 

the ground input be defined in terms of the relative acceleration and relative velocity 

spectra. As mentioned earlier, this particular form of input requirement is the main 

practical drawback of this approach. To eliminate this limitation, it is possible to 

reuse equation (3.8) to substitute for z; in terms of 2,(t) and z,(t) in equation (3.20), 

and obtain 

R(t) = —R, AOEDD i, [ns talt) +5 2K(8) (3.21) 
or in a more compact notation 

2r 

R(t) = -C, z,(t) + > Pj z;(t) ’ (3.22) 
j=l 

where C, is defined as 

C, = R,- — yi Pri (3.23) 
j=l Aj 

and it represents the response (per unit ground acceleration) of only the truncated 

modes. It should be noticed that this quantity depends on the number r of truncated 
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modes. In particular, for r = n, C, is zero and equation (3.22) reduces to the classical 

mode displacement approach with the total number of modes. 

Equation (3.22) is as effective in eliminating the error due to mode truncation as 

equation (3.20), but it is expressed in terms of z;(t) in lieu of z,(¢). It will now be used 

to develop a response spectrum approach for calculating the design response. Since 

the design response can be expressed as an amplified value of the root mean square 

response, the next sections presents the formulation leading to the autocorrelation 

function of R(t). equation (3.22) as follows: 

3.3 Mean Square Value of the Response Quan- 

tity R(t) 

The mean square value of the response quantity R(t) can be obtained as a 

limiting value of its autocorrelation following a similar procedure as the one used in 

the previous chapter. As it was assumed in chapter 2, here also it will be considered 

that the input motion is a zero mean stationary process, and since the structures are 

linear, it implies that their responses are also stationary with zero means, and their 

mean square values coincide with their respective variances which can be written in 

terms of the autocorrelation function as 

dim, E[R(t) R(t2)) = E[R?(t)] = of - (3.24) 

where op is the standard deviation of R(t). 

To implement the proposed approach, the autocorrelation of R(t) is written 
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with the help of equation (3.22) as follows 

BIR(4) R(ta)] = B (- Ov glts) + Dp a(t) (-c.80(4) +o a(s)) , 
- (3.25) 

After expanding the above equation and distributing the expected values, it becomes 

E(R(t) R(t)| = C} E[z,(t1) z,(t2)] 

~ ¢, De: (Elzj(tr) &4(t2)] + E[S_(t1) 25(t2)1) 

+ S00 5 pe Elzs(t1) ze (t2)] - (3.26) 
j=1 k=1 

By setting t; = t2 = 17, this equation provides 

BIR(t)] = 0? B[82(t)] — C, O° ps (Blas(t) &,(t)] + BlB,(t) 24(t)]) 

+ Y > ei Pr Elz;(t) 2.(2)) - (3.27) 

The first expected value to be considered is the autocorrelation of the ground 

acceleration, which is the fourier transform of its stationary PSD function denoted as 

,(w). In chapter 2, equations (2.32) and (2.33) express such autocorrelation. The 

mean square value of ground acceleration in equation (4.27) can be expressed as 

Elgg(ts) ép(ta)] = Blé3(e)] = [" B,(w) dw = 02, (3.28) 

where o, is the standard deviation of the ground acceleration. 

The crosscorrelations E[z;(t1)Z,(t2)] and E[z,(t,) z;(t2)| are analyzed next. 

With the help of equation (3.10), the first crosscorrelation can be written as 

Blzi(tr)8p(t2)] = —y [eo Ba, (n)a(tadn, (8-29) 
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where the indicated autocorrelation of z,(t) is given by 

E[z,(r:) 2,(t2)) = / . B(w) eM) duy | (3.30) 

Substitution of the above equation into equation (3.29) provides 

Blzs(ts) #9(t2)] = — 15 [ Bolu) ete ew" dy f eOsti9)™ dry. (3.31) 

After integrating the time integral and some rearranging, equation (3.31) becomes 

. co swt eves _ e7 4s th 

E[z;(t1) #,(t2)] = 7; | ®,(w)e**” (ss) du) . (3.32) a ; 

At the limit, as t,; — 00, e~*st becomes zero because of the positive real part of ;, 

and equation (3.32) can be written as 

  Bleslts) Bp(ta)] = — 15 [7 By(w) lO (5: a) ds, (8.38) 

This equation provides the stationary value of the cross correlation terms. At t, = ft 

it renders 

  Best) 80) = -a5 [7 ole) (55) ee (3.34) 
Similarly, the limit of the other crosscorrelation E[Z,(t1) z;(t2)], as t1 = t2 = t > oo, 

is given by 

  Bist) 20) = ~1y [~ Bw) (57) ae. (3.35) 
Aj —tw 

The limit of the remaining crosscorrelation E[z;(t:) z,(t2)], is considered next. 

For this, equation (3.10) is used to write 

t; t3 

Eles(ts) ze(t2)] = age fo fo eH) eM) Ble g(r) 8,(ma)] dri dra 
0 0 

(3.36) 
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where substitution of the autocorrelation of the ground acceleration by its fourier 

transform, and some rearrangement produce 

oo t ; 

E[z;(t1) zz (t2)] = 7k / &,(w) Ca ty [ et (Astin) dn) 

—co 0 

t . 
x (ee I e72(An-tw) dr) dw . (3.37) 

0 

After integrating the time integrals, equation (3.37) becomes 

e 
oo twt, e74s ft e~twts _ e7rk to 

Best) a(t) = aye [7 85(w) (SS) (SE) a, 
(3.38) 

  

At the limit, as t; — oo and tz — oo, with At = t, — tz as a finite value, the limits 

of e~s# and e~**" become zero, and equation (3.38) renders 

  Belts) atta] = ym [ Sa(w)ev™) (5) (<4) du, (8.39) Ajtiw] \A,-—tw 

Substituting ¢; = t2 it provides the covariance terms appearing in the last term of 

equation (4.27) as: 

  Blex(t) al] = aye [” 85(u) (5. wis) ( 1) dy. (8.40) 
Ap — tw 

Equations (3.28), (3.34), (3.35) and (3.40) can now be substituted into equation 

(3.27) to express the mean square value of R(t) as 

C24C s qj 4 qj 

, , Aj tiw Aj —-tw 
  EIR] = f° ,(w) 

  

    

j=l 
2r 2r 45 dk 

dw 3.41 
+¥D (yes) (5455) (3.41) 

where q; is a complex quantity defined as 

Q3 = P3753 = 55 +176; , (3.42) 
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with 6; and €; being its real and imaginary parts. 

Equation (3.41) expresses E[R?(t)], which is a real quantity, in terms of complex 

quantities. To express it in terms of real quantities only, it is necessary to manipulate 

it even further. First consider a typical summation of 2r terms, on the right hand 

side of equation (3.41), as a summation of r complex and conjugate terms 

    yH ->( Go r), (3.43) 
pa rgstw sa \Afjtw Af +w 

where the superscripts c and cc indicate a complex number and its conjugate, re- 

spectively. These summation terms can be written in the following form, after some 

  

simplification: 
2r r 

Go ¢ ¢ d, Gti = 2 d p5(w) HS(w) , (3.44) 

where H;(w) is the transient transfer function of a second order single-degree-of- 

freedom oscillator with frequency w; and damping ratio §; [see equation (2.38)], and 

p;(w) is the following complex quantity 

Ref at XS 
Pw) =Cjtidjw , (= AAG) _ o, (6,6; + eI FF) - (3.45) 

Equation (3.44) is developed in detail by equations (5.38-5.43). Similarly, the re- 

maining summation term in equation (3.41) can be written as 

2r 

yi —#_ = 2 > AE (4) He(w) . (3.46) kal Ak — Ww 

Substitution of equations (3.45) and (3.46) into equation (3.41) provides 

  

E[R?(t)| = 3 + Se + Ss ) (3.47) 

where the three terms $,, Sz and Sz contain frequency integrals and they are defined 

as follows 

3, = C? / ” &,(w) dw = C2o?, (3.48) 
—co 

53



s, = 40, [ - 8,(w) Jo Re (p(w) H$(w)] dew , (3.49) 
j=l 

B= 4 [ 8(v) OY Pile) (w) Hie) HE(e)dw. (3.80) 
j=1 k=1 

The term %, provides the pseudostatic contribution of the truncated modes, GY 

considers the correlation between the pseudostatic response of the truncated modes 

and the dynamic response of the retained modes, and the term G3 is the same as 

provided by the classical mode displacement approach. It represents the dynamic 

contributions of the retained modes. The expressions for G, and Sz still need to be 

simplified further in order to be expressed in terms of real quantities only. 

Substitution of p5(w) and Hj(w) by their real and imaginary components, allows 

Sq to be written as 

3 = 46, f Bo(w) D> [6507 + (5; 8545 — Gj) w?] |HF(w) dw, (3.51) - ja 

or in a more compact notation 

S. = 40, D> [6503 If + (6;8;0; -— G) UI] , (3.52) 
j=1 

where the frequency integrals I? and Ij, have been defined in chapter 2 by equations 

(2.52) and (2.53). As mentioned there, they respectively represent the mean square 

values of the relative displacement and relative velocity responses of an oscillator 

excited by the ground acceleration Z,(t). Closed form expressions for I? and J} are 

given in appendix G for commonly used power spectral density functions. 

To analyze the term Ss, it is convenient to separate it into two parts: G3; 

containing the diagonal terms with 7 = k, and S32 containing the off-diagonal terms 

with 7 # k. Sg; represents the dynamic contribution of each retained mode and S32 
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represents contributions due to the modal correlations between the retained modes. 

Thus, 

Ss = Sar + Saez (3.53) 

with 

Gx = 4 [” 8,(u) > IPS)? G(w) Pao (3.54) 
and 

Su =4 f° %,(w) > 95 (w) pe (w) HS (w) HE (w) do (3.55) 
k#j 

Substituting for p§(w) from equation (3.45), we obtain for equation Sg; as: 

B= 4 [” 8(0) D> (28) LAG) PPde, (3.56) 
j=l 

Equation (4.55) is simplified further (see section 5.5) to express it in terms of real 

quantities only. This simplification leads to the following: 

r—1 ? 

Ga = 8 [ 8(v) OY [CoH LAW)? 
—o j=1 k=jt+l 

+ (TH +w? TH) |Hg(w)P] dw, (3.57) 

where the quantities TH, ,TH ; Ti and TH are the partial fraction coefficients defined 

as 

TH, = {2nje [1 — 0}, + 2(8703, — BR)| — win (03, — 057)} AZ , (3.58) 

TH = {nin (03, — 52) — 2057 wy, [1 — 03, + 2 (8203, — B})]} w7? ARE, (3.59) 

Tie = 5G OR - TOR , (3.60) 

TY = —_ 6; é, — TH ) (3.61) 

where 

05, = Wj/We , (3.62) 
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Pik = Ae (25, _ 1) + W555 br l(a _ 487)7, + AB; PROQ 5k — 1] 

+ Qu jn (6504 — be l5) (Be — Bj Q5x) , (3.63) 

nik = Ge [1 — 46? + 46;A,.05, — 03,] + w76;5, (1 — 03,) 

+ 2w; (5;Ce — 5465) (8; — PeQse) 5 (3.64) 

Aik = 16 (8; + Be — BF — Be) — 24, — N5ZR —6 

+ 4(03, +057) [1 — 2(6} + 62 — 26762)] . (3.65) 

After invoking the frequency integrals I? and J?, the terms %3, and S3, become 

S$ = 4) (Gi+87). (3.66) 
j=1 

r—1 ? 

Se =8 >> Do [TLE + TE B+ T+ TH | . (3.67) 
j=l k=j+1 

To avoid the calculation of Ti and TY, equations (3.60) and (3.61) can be substi- 

tuted into equation (3.67) as follows 

r-1 r 

Sao = 8 » 2 [Th (17 - Ost) + TH Oy — ) + G G0 1 + 556 TE] 
J=1 k=j 

(3.68) 

Finally, substitution of equations (3.48), (3.52), (3.66) and (3.68) into equation 

(3.47) provides the mean square value of the response R(t) as 

E{R°(t)] = C2024+40, > [G;w? 12 + (6854; -G)B) +40 (G+ 2 yy) 
j=1 j=1 

r-l or 

+ 83> > [TL if - ot) + TH (Gg - ) + GG. 952 E+ 58 i] 
j=l k=j+1 

(3.69) 

This expression is used in the next section to develop a response spectrum method 

based on the modified mode displacement approach. 
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3.4 Response Spectrum Method by the MMD 

approach 

The proposed response spectrum method provides an approximation to the 

maximum value of the response quantity R(t), which is also known as the design 

value of the response R(t). Here the design response value is Mp. 

Mp is approximated by amplifying the root mean square value of R(t) by a 

peak factor Pr. For linear systems excited by zero mean processes the root mean 

square values of the responses coincide with their respective standard deviations. 

Thus, 

Mr = Pry E[RXt)] = Pror, (3.70) 

where op is the standard deviation of R(t). To facilitate the notation, the following 

formulation provides the square of the maximum value, that is 

M2, = P2 E[R2(t)] = P20. (3.71) 

The same rationale presented in the previous chapter to obtain the square of the 

design response, from the mean square response, is used here to express the design 

response in terms of the pseudo-acceleration spectrum value, M,,,, and the relative 

velocity response spectrum value, M,,, as follows: 

M2 

Mh = CiMi+4C, » |e yr t+ (853 Bw; — Mi, 
J j=1 

ay (Soe GME + a) 485 So |B (Ma a; ~ May) 
j=l j=1 k=j+1 

  TH (M2. ~ M?.) + 63 6 Mi, + 5; bk mM, ; (3.72) 
Ww; 
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where M, is the maximum ground acceleration. 

Expression (3.72) has been obtained by assuming that all peak factors (for 

the ground motion and the modal responses) are approximately equal. The main 

advantage, of making such an assumption is that the peak factors are eliminated 

from the expression of M?, accuracy is lost. 

Equation (3.72) represents a response spectrum approach for non-classically 

damped systems. It is seen that the last two summation terms in this equation 

represent the response which would be obtained if the mode displacement formula- 

tion with a reduced number of modes is used. Among these two terms, the second 

summation term accounts for the correlation between various modes; this term gains 

importance when two modal frequencies are closely spaced. 

The first term in equation (3.72) accounts for the contribution of the higher 

modes which have been truncated. This contribution appears as a pseudostatic term 

as these modes are relatively rigid compared to the input frequency. In rigid struc- 

tures where many modes have frequencies outside the range of the input frequencies, 

this term will contribute significantly. The correlation between the pseudostatic re- 

sponse of the higher modes and the dynamic response of the retained lower modes 

is considered through the second term in equation (3.72). The relative contribution 

of this term and other terms, of course, depends upon the frequency characteristics 

of the input as well as the number of modes considered in the analysis. 

To obtain the design response from equation (3.72), one needs to have the modal 

properties, the results from a simple static analysis, as well as the input defined 

in terms of the pseudo-acceleration and relative velocity response spectra. Often, 
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however, the latter spectrum is not available in practice. In such case, it is usually 

assumed to be equal to the pseudo-velocity spectrum. This, of course, introduces 

error in the calculated response. As done in the case of classically damped systems 

in the previous chapter, the effect of such an assumption on the accuracy of the 

calculated response is also evaluated in this chapter. 

3.5 Numerical Results 

To illustrate the effectiveness of the proposed response spectrum approach 

for non-classically damped systems, here numerical results obtained for a structure 

with three different stiffness characteristics are presented. Figure 3.1 shows the 

schematic of this structure which consists of rigid slab diaphragms supported on 

columns and shear walls. The mass centers of the diaphragms are eccentrically 

placed with respect to the stiffness centers. Thus, each slab has three degrees of 

freedom —two translations in the x- and y-directions in the horizontal plane and 

a rotation about vertical z axis— with a total of 18 degrees of freedom in each 

structure. The stiffness and mass characteristic of the structure in various stories 

are chosen to give closely spaced frequencies. The first ten modal frequencies and 

damping ratios obtained from the complex eigenvalues in the three different stiffness 

cases are shown in table 3.1. The structures with these frequency characteristics are 

designated as flexible, medium stiff and stiff structures. 

To demonstrate the effectiveness of the proposed approach in reducing the error 

due to truncation of modes, the numerical response results obtained by the proposed 

approach utilizing a smaller number of modes are compared with the bench-mark 
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Figure 3.1: Schematic of the structure analyzed, 
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Table 3.1: First ten natural frequencies and damping ratios for the three structures 

  

Structure 

Mode Flezible Medium Stiff Steff 

w; (Hz) | 8; (%) | w; (Hz) | Bj (%) | w; (Hz) | 8; (%) 
5.0075 | 0.91 | 19.9872 | 1.37 | 29.9610 | 2.01 
5.0078 | 2.24 | 19.9883 | 3.65 | 29.9628 | 5.52 
5.3644 1.69 21.4069 2.69 32.0750 4.04 

13.0025 | 2.17 | 51.9146 | 3.42 | 77.8514 | 5.07 
13.0034 | 5.99 51.9212 9.62 77.8766 | 14.47 

13.9180 | 4.38 55.5021 6.99 83.0796 | 10.48 

21.0909 | 3.47 84.2308 5.47 | 126.3230 | 8.10 

21.0937 | 9.77 | 84.2636 | 15.67 | 126.4331 | 23.61 
22.5476 | 7.10 | 89.8509 | 11.34 | 134.4355 | 16.96 
26.3587 | 4.31 | 105.2759 | 6.79 | 157.8753 | 10.07 
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results of the mode displacement approach utilizing the complete set of modes. The 

difference in the two results is plotted as percent error for increasing number of modes 

considered in the analysis in figures 3.2-3.7. All these results pertain to the bending 

moment response in a column in the first story. A small error indicates that the 

method is effective in reducing the error due to truncation of modes. 

The results obtained by the proposed approach are identified by the acronym 

MMD (Modified Mode Displacement). Also shown in these figures are the truncation 

errors in the results of the (1) mode displacement approach of Reference [43], identi- 

fied by letters MD and (2) mode acceleration approach of Reference [49], identified 

by letters MA. 

Figures 3.2, 3.3 and 4.4 are for the base input defined by Kanai-Tajimi spectral 

density function with a cut-off frequency of 16 cps. The plotted error is in the root 

mean square response. Figure 3.2, 3.3 and 3.4, respectively, are for the flexible, 
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medium stiff and stiff structures, the dynamic properties of which are shown in table 

3.1. It is seen that for any number of modes utilized in the analysis the errors in the 

results of the proposed approach (MMD) and mode acceleration (MA) are always 

the lowest. (These two approaches also provide almost identical results). Also the 

rate of convergence to the correct response is fastest with these two approaches. 

For the low frequency structure, Figure 3.2, the mode displacement approach also 

provides acceptable results with just a few modes considered in the analysis, as 

dominant modes are within the frequency range of the input. The error in the mode 

displacement approach, however, increases as the structure becomes more rigid, with 

several dominant frequencies outside the input frequency range. As seen in Figure 

3.4, the error becomes insignificant in the proposed approach with only three modes 

considered in the analysis, whereas it remains fairly high even when a large number of 

modes are considered in the classical mode displacement formulation. The advantage 

of using the proposed modified mode displacement formulation, with rigid as well as 

flexible structures, is thus obvious. 

The effect of the assumption that the relative velocity is the same as the pseudo- 

velocity on the error in the root mean square response is also shown in Figures 3.2, 

3.3 and 3.4. The curve identified as PMD shows the results obtained by the mode 

displacement approach but with the assumption of the equality of the two velocities. 

Similarly, the PMMD curve shows the results obtained by the proposed modified 

mode displacement approach with the same assumption (The prefix P signifies that 

the pseudo-velocity has been used in place of the relative velocity in the calculation 

of these results). Comparison, of these curves with the curves obtained without any 

assumption about relative velocity response indicates that, when a first few modes 

are considered, the error in the response could be more or less without any specific 
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pattern. Also, when a large number of modes have been included, the error is always 

larger because of this assumption. Thus, in general, the assumption that relative 

velocity is equal to the pseudo-velocity is not acceptable. 

Figures 3.5, 3.6 and 3.7 are similar to the preceding three figures except that 

they are for the base input defined by response spectra. These spectra are similar to 

the spectra commonly used for the design of nuclear power plants [38]. The results 

shown are thus for the design bending moment in a lower story column. The percent 

difference in the response values obtained by the proposed method and the bench- 

mark value obtained by the untruncated mode displacement-based response spectrum 

approach are presented as percent errors in these figures. Validity of the mode 

displacement approach as well as the mode acceleration approach were established 

by numerical simulation studies using ensemble of seismic motion, as reported in 

References [17] and [49]. The results in these figures are similar to those in figures 

3.2, 3.3 and 3.4. That is, for the low frequency structure, the mode displacement 

method as well as the proposed method provide accurate results. However, in the 

medium and high frequency structures the error in the mode displacement results 

remains high even when a large number of modes are used. In general the proposed 

method always provides the results with least error, whether the structure is stiff or 

not. The figures 3.5, 3.6 and 3.7 also show the results obtained with the assumption 

that the pseudo-velocity spectrum is the same as the relative velocity spectrum. The 

effect of this assumption on the error in the response is similar to the one discussed 

above for the root mean square response in figures 3.2, 3.3 and 3.4. 
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Figure 3.5: Percent error in the design value of a bending moment obtained for 
response spectrum input by different approaches with increasing number of modes 

— Low frequency structure 
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3.6 Conclusions 

As done in the normal mode approach for classically damped structures, the 

truncation of modes can also be effected in the analysis of non-classically damped 

structures. This truncation can cause error in the calculated response. One way 

to eliminate this error in the seismic analysis of structures is to adopt the mode 

acceleration method of structural dynamics. The use of this method with response 

spectrum approach, however, requires that the seismic input be defined in terms 

of, rather, uncommon relative acceleration and relative velocity spectra. Herein, an 

approach combining the good features of both the mode acceleration and mode dis- 

placement methods is developed. The proposed approach does not require the input 

in the form of the relative acceleration spectrum; the conventionally used pseudo- 

acceleration spectrum can be used, yet the effect of mode truncation is virtually 

eliminated. The effect of the higher modes which are truncated is included in the 

formulation through a pseudostatic response term. The proposed methods includes 

the correlation between the retained modes as well as the correlation between the 

pseudostatic response of the truncated modes and the dynamic response of the re- 

tained modes. The numerical results show that the approach provides more accurate 

results than the mode displacement based approach both for the stiff as well as flex- 

ible structures. However, the improvement in the accuracy of the results of a stiff 

structure due to utilization of the proposed approach is quite dramatic. 
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Chapter 4 

Random Response of Structures 

by a Force Derivative Approach 

4.1 Introduction 

To reduce the error in the response caused by a straigth foward truncation of 

higher modes in a modal analysis procedure, the use of mode acceleration and mod- 

ified mode displacement procedures was mentioned in the preceding two chapters. 

In these two methods, the effect of truncated higher modes is included through a 

pseudostatic response term. This assumes that the dynamic inertial effects of the 

higher modes are negligible. The validity of the assumption that a high frequency 

mode does not contribute dynamically to the response depends on how high the 

modal frequency is relative to the highest frequency in the input force. For modes 

with frequencies much higher than the forcing function frequencies, this assumption 

is quite justified as these modes virtually ride with the load without any significant 

dynamic distortions. However, if the highest frequency in the input is not very much 

smaller than the lowest frequency of the truncated modes, then the contribution of 
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the truncated modes can no longer be calculated by a simple static analysis as it is 

ussually done in the mode acceleration method. 

To increase the accuracy of the response in such cases, Leung [28] proposed 

an improvement of the mode acceleration approach for undamped structures by 

performing successive integration-by-parts of the convolution integral of undamped 

structures. As in the case of undamped systems, the accuracy of the calculated 

response can also be improved for damped systems by increasing the number of suc- 

cessive integration-by-parts. This extension of Leung’s approach to damped systems 

has been proposed by Camarda et al [10]. They have called this approach as the 

Force Derivative approach since it involves the terms related to time derivative of 

the forcing function. Each integration-by-parts increases the order of the derivative 

of the force by one. Thus, the resulting response expressions for the damped case 

become quite complicated as the number of integration-by-parts is increased. To 

obtain numerical results for different time varying forcing functions, Camarda et al 

used four integration-by-parts terms involving the force derivatives of order four. 

In this chapter, the force derivative approach it is further examined with the final 

aim of utilizing it to calculate the random response. First, the approach is generalized 

to include the N** order force derivative terms expressed in their simplest and easy- 

to-calculate forms. This is achieved through a recursive definition of the terms which 

appear in the process of successive integration-by-parts. The N** order expression is 

used to obtain the second order statistics of the response for stochastically defined 

loads. In the approaches presented in references [28] and [10] the convolution integrals 

involved the force derivative terms. This is, however, not the case in the formulation 

presented herein. This is of help in a random vibration analysis of the response. An 
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effective use of the force derivative approach in the development of an improved mode 

synthesis precedure has recently been made by Suarez and Singh [51]. Numerical 

results demonstrating the applicability of the proposed response calculating scheme, 

and the effectiveness of the approach in improving the accuracy of mode truncation 

analysis are presented. 

4.2 Modal Analysis and Truncated MD Approach 

For a classically damped linear structure with n degrees of freedom, the equa- 

tions of motion can be written as: 

[M] {2(¢)} + [C] {2(¢)} + [KA] {X()} = {O(¢)} (4.1) 

Where [M] is the mass matrix, [C] is the classical damping matrix, [K] is the stiffness 

matrix, {X(t)} is the response vector and {Q(t)} is the loading vector. Also, a 

dot over a variable denotes its time derivative. Is assumed that the force vector is 

differentiable up to order N. We will also assume the following initial conditions, 

although they are not required to be satisfied by the following formulation. 

{2(0)} = {2(0)} = {0}. (4.2) 

The modal analysis provides the following uncoupled equations of motion: 

2;(t) + 2B; w; 2;(t) +7 2,(t) = p(t), jJ=l....2, (4.3) 

Where w; and ; are the frequency and damping ratio for j** mode, p,(t) is the 

generalized modal load defined as: 

pi(t) = {9} {Q(4)} (4.4) 
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The vector {z(t)} contains the principal coordinates related to {X(t)} as: 

{X(t)} = [8] {2(t)} = YE4}5 2:(2) (4.5) 
j=1 

The columns of matrix [6] contain the normalized modal vectors {¢}1, {@}2, ..., 

{¢},, which are ordered in accordance to their associated increasing frequencies: w, 

< we <... < wy. This matrix, after being normalized with respect to the mass 

matrix, satisfies the following identities: 

[e]7[M][%] = [7] , [#]7[C][#]=[D] , [#]7[K][%] = [A], (4.6) 

where [I] is the (n x n) identity matrix, [D] is the diagonal modal damping matrix 

with its 7** element defined as (28; w;), and [A] is the diagonal modal stiffness matrix 

which entries contain the eigenvalues (A; = w}). Equation (4.3) is solved for z,(t) 

and substituted in equation (4.5) to define the response vector {X(t)} as 

n t 
{X()} = Didhs [ hslt—7) pile) ar , (4.7) 

j=l 

where h,(t) is the unit impulse response function of equation (4.3) 

—Bjw;t 

h,(t) = sin(wg,t) , Wa; = wj1/l — 6}, (4.8) 
Wd; 
  

If all n modes of the system are used in equation (4.7), one obtains the exact response. 

However, in practice only a first few modes are used. Thus, if only the first r modes 

are considered, one obtains an approximate value of the response as: 

{Xho = Stbhs f° hslt—r)ps(t)ar (4.9) 
j=l 0 

Equation (4.9) is the classical truncated mode displacement approach. Here it 

is desired to improve this estimate of the response without including any further 

modes in the expression. That is, it is desired to include the effect of the higher or 

truncated modes without explicitly calculating them. 
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4.3 First Order Force Derivative Approach 

The first order FD approach is based on the first integration by parts of equation 

(4.7). The details concerning any number of integrations by parts of the Duhamel 

integral are provided in appendix B. Therefore, following appendix B, the integration 

of equation (7) once by parts can be written as: 

LX} = Ls cen) - Leos |(F) mos Shuto] v0) (40) 

_ Seas | » | (4) ['se-anteyees (2) [isle nose) ar] . 
j=1 3 

It is easy to show, [15, 50], that the first summation term of equation (4.10) can be 

obtained as the static solution of the following expression: 

Y {4s art = [8] [A]-*[#]" {Q(¢)} = [K]* {Q(t)} (4.11) 
j=l 

Substituting equation (4.11) in (4.10) and truncating the second and third sum- 

mations up to r modes, one obtains, what here is called, the first order approximation 

of the true response as follows: 

{X(t} = [K]* {Q(t} - dite (=e) h;(t) + = ato] p;(0) (4.12) 

- Lites » |) [ hs(t— 7) By(r) dr + (Yo?) [isle — yor) 

Also, if the truncation of modes is effected in equation (4.10), one obtains the zero 

order approximation {X(t)}o. That is, 

[X()}o = LAs Gold) - Ds | (E) aster + Zehsto] ws(0) (4.9) 
j=l j=1 

_ 26) (2) f h; (tr) pale) dr + (yh) [byte —r) (0) ar| 
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Eliminating the second and third summation terms from equation (4.12) and (4.13), 

one obtains: 

{X(t)}i = {X(é)}o + |[K]* {Q(€)} - deh (5 =) ni] (4.14) 
j= 

This relates the classical truncated mode displacement solution {X(t)}o to the first 

order solution {X(t)}1. Obviously, the terms in parentheses represent the first order 

pseudo-static contribution of the higher modes to the response. Equation (4.14) is 

nothing but an alternative form of the classical mode acceleration approach. Actually 

it is just the modified mode displacement approach developed in chapter 2. This 

was also obtained by Leger and Wilson [26] through a quite different analysis. An 

advantage of the form of equation (4.14) over the classical mode acceleration form, 

is that here the improved response is expressed in terms of the response obtained 

by the classical truncated mode displacement approach. Also in equation (4.14), the 

absence of any force derivative terms is noted. This was, however, not the case in 

the formulation developed by Leung [28] and Camarda et. al. [10]. This absence the 

of derivative terms simplifies the analysis. 

4.4 Second Order Force Derivative Approach 

To further improve the truncated mode solution, equation (4.10) is integrated 

by parts again. After some rearrangements of terms and simplification (see appendix 

B) it can be shown that 

{x()} = S14 (5 z) P(t) S10), (22) sito 
j=l W5 

- Ses |) 0 + Gf) iso] 10 
j=l 
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  + Stas (ME) 0+ 2) io] a0 (4.15) 
j=1 J 

+ Yih Gers =) [axe T)p;(r)dr + (7 =B: [rise - near , 
j=1 J Ww 

  

The first summation term is expressed as a static solution in equation (4.11). 

To avoid the use of the higher modes in the calculation of the second summation 

term, one can also express it in terms of the matrices [K] and [C] as follows: 

2 Sths (2) se) = S10 (5) Cds) (Ze) ail = [TUTTO 
j=1 j=1 Ww; 

(4.16) 

Substituting equations (4.11) and (4.16) into equation (4.15), and then perform- 

ing the truncation of modes in the remaining terms, one obtains the second order 

estimate of the response as follows: 

{X(t)}2 = [K]-* {Q(t)} — [K]*[C] [K}* {Q(é)} 

  

    

- Loto), |Z) mo + (hs) to] 20 

+ Yt, (FE) w+ (ZB) Ko] no 

+ to (AS -) [ h3(t — r)ps(r)dr + (4) f h(t — 7)p,(r)dr| . 

(4.17) 

It is also observed that if the summations in equation (4.15) are only extended up 

to r, it becomes equal to {X(t)}o. That is, 

{xO} = Dies (3 =) w(t) Sieh; (72) 200 
j=1 j=1 Ww; 

— Loto, | (7%) asc + (ped) bxco| ax 

+ Sto |(FE+) aos FB) Ko] HO 
J 

7



  

1 OF (“= =) f h,(t — 7)p;(r)dr + (72) [ hilt a)ps(rder |. 
j=1 5 3 

(4.18) 

Eliminating the last three summation terms from equations (4.17) and (4.18) one 

obtains 

{X(}e = (Xho + LAT {QW}— Ds () 2s 
j=l wW5 

~ [KS [01 ow + teh (4 2) Be. (4.19) 
j=l 

This equation expresses the second order estimate of the response in terms of the 

classical truncated mode displacement estimate plus some terms which represent the 

first and second order pseudostatic contributions of the higher modes. It is also 

noted that the first three terms are the same as {X(t)},. The remaining two terms 

represent the improvement over {X(t)}, due to consideration of the force derivative 

terms which are evaluated by a simple static type of analysis. 

4.5 N** Order Force Derivative Approach 

Equation (4.19) will now be generalized to the N* order estimate of the re- 

sponse by successive integration by parts N times. After some algebra and simplifi- 

cation (see appendix B), it can be shown that 

  

{x()} = Sie [> STs Pit6| 
n rN . <k-1l> 

+ DBs [Ds (6F Naa lO — Tonal) Pit) (4.20) 

+ St0s ful Taares [holt r) aolE) br — Tyee [sft 7) vale) or 
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where a number between angles, at the top of a variable, indicates the number of 

time derivatives, and the coefficients T;, are defined in appendix B by a second 

order recursive formula as: 

_2 1 
Vik = Et — Tin 1™~ oa bak-2 ) T 50 = 0 ? T5,-1 = —1 ° (4.21) 

ws 

As it was done for the first and second order cases earlier, it is indeed possible 

to express the first summation in equation (4.20) in terms of the mass, stiffness and 

damping matrices by introducing the matrix [F'],: 

8h; p> Lin it 5) = Sirk (OE, (4.22) 
j=1 

where [F], is a type of flexibility matrix, herein called the k’* pseudo-flexibility 

matrix, and it is defined by the following expression: 

Fle = S{6}5 Vin (OH (4.23) 
j=1 

which, in terms of the structural matrices, can be expressed by the following recursive 

formula (appendix C): 

[Fle = —[K]* {(C] [Fler + [M][F]le-2} » [Flo=[0] , [Fh =[K]". (4.24) 

Substituting equation (4.22) into equation (4.20) and considering the modal 

summation only up to r modes in the second and third summation terms, we obtain 

the N* order approximation of the response as 

{X(t)}w = DIF {Q(t} + {4}; OG Teta hj(t) — Tye ah) 70 vl 
— k=1 

/ (4.25) 
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One can also obtain {X(t)}o from equation (4.20) by carrying out the modal 

summation up to r modes. Subtracting such an expression of {z(t))} from equation 

(4.25) one obtains 

{X()}w = (X()}o+ VlFle OG} —EL DAP Tae (4.286) 
k=1 k=1 j=1 

Since p;(t) = {¢;}" {Q(t)}, one can also write equation (4.26) as: 

N 

{X(t)}w = {X(t)}o+ DAXA(t)} (4.27) 

where 

  

[Fale 

{Xie = (wr - {8s Tix On {Q(t} (4.28) 

{X;,(t)}, can now be interpreted as the k** order pseudo-static contribution of the 

higher modes to the response. It can be shown that as N — oo, the vector {X(t)}w 

approaches the correct response {X(t)}. 

Equation (4.28) is not quite suitable for numerical work. It is better to obtain the 

matrix shown in the parentheses of equation (4.28) directly, and not as a difference of 

two matrices. This matrix will be denoted as [F},], where the superscript h signifies 

that this is the contribution from the ”higher” modes. Using the definition of [F'], 

given by equation (4.23) and substituting in equation (4.28), one obtains: 

[Fale = [Fla i{G}5 VialOl? = Lo {6}; Tie {9}; - (4.29) 
j=1 j=rtl 

Since [Fi], is defined in terms of higher modal vectors, it will be called as the 

kt pseudo flexibility matrix associated with higher modes. It can be easily shown 

(appendix C) that this matrix is obtained by the following recursive formula, without 
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explicitly using the higher modes: 

[File = —[K]*([C] [Fala + [M] [Fale-z ) 

Flo = 1. (ih = (KI- Stes (4) 420) 

The substitution of [F),],, in equation (4.28), by the expression given in equation 

(4.30), provides the N™ order estimate of the response as: 

N <k-1> 
{X(t)}w = {X(t)}o + Do[Fale {Q(é)} (4.31) 

k=1 

Equation (4.31) defines the procedure for calculating the improved estimate of the 

response, using only the first r modes. An observation of the recursive formula for 

(Fale, suggests that this matrix need not be defined explicitly, rather, each term of 

the summation can be obtained by successive solutions of simultaneous equations. 

However, depending upon how many successive steps are required in the calculation 

of each summation term for k = 1,...,N, it may be computationally more efficient 

to store [K]~* once and utilize it whenever needed. 

For the convergence of the summation terms in equation (4.31), it is necessary 

that all structural frequencies, which are lower than the highest frequency component 

in the input, are included in calculating {X(t)}o. That is, the summation term in 

equation (4.31) only represents the contribution from the modal frequencies which 

are larger than the highest frequency in the input. 

A response quantity, R(t), linearly related to {X(t)} can be easily approximated 

R(t) = {R}" {X(t)} = {R}T{X(t)}w , (4.32) 

where {7} is the vector containing the coefficients of the linear transformation. 
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The characteristics of the second and fourth order force derivative approaches, 

with regard to their effectiveness and limitations for calculating the time history 

response, have been thoroughly explored by Camarda et al [10] for different deter- 

ministic forcing functions. Though they presented an alternative formulation, their 

results are expected to possess the same characteristics as the results obtained by the 

N* order formulation proposed here, since the latter is just an extension of Camarda 

et al’s formulation but expressed in a different way. That is, the results will depend 

upon the frequency characteristics of the sustained loads, the duration of the tran- 

sient loads and the response quantity being calculated. Here, these characteristics 

will not be investigated. Rather, the effectiveness of this approach for calculating 

the stationary response for stochastically stationary loads is examined. 

4.6 Random Response: Auto-Correlation Func- 

tion of R(t) 

For a random forcing function vector, one can use equation (4.32) to obtain the 

auto-correlation function of the response quantity R(t) as: 

E[R(t1) R(ts)] = {R}? E|{X(ta)}w {X(to)tn] {RP (4.33) 

where E/.] denotes the expected value of the quantity in the brackets. Here equation 

(4.33) will be explicitly evaluated for only proportional load. That is, for the forcing 

function vector {Q(t)} defined as: 

{Q(t)} = {Qo} a(é) (4.34) 

where q(t) represents a common time variation of all forces and {Qo} is the amplitude 

vector. Here q(t) will be assumed to be a zero mean stationary random process, de- 
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finable by its spectral density function @,(w) which is related to the auto-correlation 

function of q(t) as: 

Coo(ti — te) = E [q(ts) q(t2)] = / - Bo(w) ells") dy , (4.35) 

Using equation (4.9) in (4.31) and, in turn, (4.31) into (4.32), the expression of 

the response R(t) for this proportional loading can be written as: 
r ' N <k-1> 

RE) = LARID, ff halt — 7) LOH (Qob alr) dr + VARY Ala Qo} aCe) 
(4.36) 

or in a more compact form 

e t N r <k-1> 

R(t) = >) 57; [ hj(t—1)q(r)dr+ > {R}7 {Un}, a(t) , (4.37) 
j=l k=1 

where p; is the 7 modal response quantity, 7; is the j** modal participation factor, 

and {U,}, is the k pseudo-static response of the higher modes to the amplitude 

vector. These quantities are defined, respectively, as: 

p3 = {R}° {$}5 5 7% = {O}F {Qo} 3 {Uke = [Fale {Qo}. (4.38) 

It is noted that, like [Fi,]k, {Un}, can also be defined recursively as the solution 

of the following simultaneous equation: 

[AK] {Un}, = —[C]{Un}n-1 — [M] {Un}x-2 

(Undo = Oh , UKI{Uah = {Qo - 1 32 
j=l 

1 
2 

Ww; 
{é}s75 (4.39) 

From equation (4.37), the auto-correlation function for R(t) can be expressed as: 

r t N <k-1> 
(3: P55 | A;(t1 — 71) (71) dry + DARE ih q(t1) 

J 

E[R(t,) R(t2)]| = £ 

  

r te N <k-1> 

< (Soon [halts —n) alr) dre + L{RI idm ates | 
{=1 m=1 

(4.40) 
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and after expanding this equation and distributing the expected values, it becomes 

E[R(t,) R(t2)| = =,(é, to) + Uv(th, t2) + An(ti, to) ’ (4.41) 

where the quantity =,(¢,, ¢2) contains the terms associated to the retained modes and 

it is due to the truncated mode displacement approach, Uy(t,,¢2) contains the terms 

associated to all N pseudostatic contributions of the truncated modes, and Ay(é, t2) 

possesses the terms associated to the correlation between the dynamic response of 

the retained modes and all N pseudostatic contributions of the truncated modes. 

These three quantities are defined as follows: 

Pr P ti te 

=,(é1, to) = > > Pj PLY Tl I I h(t _ 7) hi(te _ T2) Coo(T1 _ 72) dr, dT. (4.42) 

g=1 I=1 

N WN 

Wy (tite) = >) > ap Om Ce-1,m-1 (ti; t) , (4.43) 
k=1m=1 

N -r ty 

An(tts) = Yo Dompsyy f° hsltr — 11) Com-a(tista) dri 
m=1j=1 

N - ta 

+ » >» Ae PLY [ h;(ta _ T2) Ch-1,0(f1, T2) dr . (4.44) 

k=1 1[=1 0 

where 

a, = {R} {Ui}: ; (4.45) 

and the cross-correlation function of the m* and k* derivative of q(t) is defined as: 

i) _ g*ktm Coo(ts, te) <k> 

(tito) = E \qlt,) q(t 4.46 Cr,m(t1, t2) a 1) q(t2) at at,” (4.46) 

4.7 Random Response: Stationary Mean Square 

Value of R(t) 

For a stationary input q(t), with power spectral density function $,(w), the 

response statistics of a linear system are also stationary. In particular, the stationary 
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mean square value of the response R(t) can be obtained by considering the limit of 

equation (4.41) as t; = tg = t + oo. Here, this limiting process will be performed 

independently on each term of equation (4.41). During this process it will be useful 

to consider the following relationships: 

a(t1) a(t2) 
Chm(t1,t2) = B late)ate| = [Beas cnx(w) MO“) des, (4.47) 

where it can be easily shown that: 

cis cm>(w) = (iw)*(—iw)™ B,(w) = iF ™ wFt™ B(w) . (4.48) 
a(t1) (#2) 

4.7.1 Contribution of the Retained Modes 

The limit of =,(t1,t2) as t; = tz = t — oo is denoted as &,, and has already 

been developed in chapter 2 to get 

= Sop243 1:0) (4.49) 
j=l 

r—1 r 

+ 235 DY pp eerste [TH I(0) + TH (1;(2) — 1e(2)) + TH 1.(0)] 
j=l k=j+1 

where I;(s) denotes the following frequency integral 

I(s) = fw" p(w) |Hj(w)P? de (4.50) 

and H¢(w) = [wi — w? + 218;w;w]* is the stationary complex frequency response 

function of a single-degree-of-freedom oscillator with frequency w; and damping ratio 

@;. The partial fraction coefficients Ti, TH and TH are provided in equations (2.61- 

1.65). 
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4.7.2 Contribution Due to the Correlation Between Re- 

tained and Truncated Modes 

To obtain the limit of Vy(t1,t2) as t; = tz = t — 00, first equation (4.47) is 

substituted into equation (4.43) (with the appropriate subscripts), to get 

N ON oo 
Vv(t1,t2) = dd Oth Oty, i°-™ [ . whtm—2 B (wy) eilta—t2) dus, (4.51) 

At the limit, ¥y(t1,t2) is denoted as Vy and its expression is 

N WN 

By = >>>. #™ a, am], (k +m -— 2), (4.52) 
k=1 m=1 

where it should be noticed that 7*-™ = i*+3™, and J,(s) is the following frequency 

integral: 

I,(s) = / . w’ B,(w) dw . (4.53) 

To compact even further the notation, equation (4.52) can be written as 

N WN 

ty = >> PO dem (4.54) 
k=1 m=1 

where 7; is given by 

Pk, = Ymk = Ak Am I,(k +m — 2) . (4.55) 

The calculation of Wy can be performed with significant numerical advantage 

by recognizing the symmetry and pattern of the terms involved in the summation 

process. First it should be noticed that I,(s) = 0 for s being an odd number. In 

that case, the integrand is an odd function which will be integrated from —oo to oo. 

Therefore, for various values of k and m, the entries in the summation of equation 
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(4.54) are shown in the following (N x N) matrix 

vi 0 -t*iz 0 Vi 5 0 —Py7 
0 po2 0 -tr2, 0 p26 0 

—%3 0 3,3 0 -35 O 3,7 
0 --te, 0 Waa 0 --tae 0 

1,5 0 -t35 0 Ws,5 0 —s,7 
0 2,6 0 -ae 0 Vee 0 

—Yi7 0 3,7 0 -¥s7 0 v7,7 

For increasing values of N the elements in the leading (N x N) matrix are required 

to be summed up in equation (4.54) to obtain Vy. This summation can be given by 

the following recursive formula: 

Jn . 
2N — 3 —_ —1 N 

Vy = Vy ton +2 D(-1)! Yw-2yn , Yo=0 , In= 4 - j=l 
(4.56) 

4.7.3 Contribution of the Truncated Modes 

Similarly, appropriate substitutions of equation (4.47) into equation (4.44) pro- 

duces 

An(t1,t2) = 
N rf th co 

+ D7 Ds Om P55 | h(t, —7,)¢ "9 / w™) B(w) ef —"2) diy dr, 
m=1 j=1 0 —0o 

y ” 1 [~ k-1 in(ti—72) 
+ S So pry [ h;(t2 — T2)4 / w" @,(w) 1— 72) dw drg. (4.57) 

k=1 l=1 
oo 

After a change of variables (u = ¢; — 7,) and (v = t2 — 72) and some rearrangement, 

equation (4.57) becomes 

N fr co . 

An(tite) = SS iY) an 957; f w™? Ba(w) ell) HE (w, ty) dw 
m=1j=1 
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N fr co ; 
+ » Soi Ok PLT / wea} &,(w) eiu(ts —t2) Hy (w, t2) dw , 

k=1 I=1 —oo 

(4.58) 

where HS(w,t,) and Hy*(w,t,) are complex and conjugate transient frequency re- 

sponse functions of single-degree-of-freedom oscillators: 

“1 —iwu ce ta iwy HS(w, ty) = I hj(ujet’"du , HS(w,t) = | hi(v)e* dv. (4.59) 

At the limit, as t) = tz = t — 00, An(t1,t2) is denoted as Ay and its expression is 

N + 00 

An = » Si) on 9575 [. wt $,(w) Hj(w) dw 
m=1 j=1 

N fr co 

+ SV orn / ww) &,(w) Hew) dw . (4.60) 
k=1 l=1 

By renaming the index m as k and I as j, and considering that i~(*-)) = (—1)*-12*-?, 

the above equation becomes 

N -r oo 

Ay = >) Oi" a4 957; / wk! B(w) (-1)* Hj(w) + H*(w)| dw. (4.61) 
k —0o =1 3=1 

For convenience of analysis, equation (4.61) can be written in terms of somewhat 

simpler integrals. For this purpose, Hf(w) and H;*(w) are multiplied and divided by 

their respective conjugates to get (after some rearrangement): 

N fr 

An = >t an o5 75 {[(-1)F 2 +1) [o} (ek - 1) - L(+ 1) 
k=1 j=1 

+42 {(-1)* +1] Bjw; 1;(k)} . (4.62) 

Where the quantities i#-! = (—1)(*-1)/? and i* = (—1)*/? can be substituted in 

equation (4.62) to get 

N + 

An = YYonesy {(-? [1 - (-1)*] [oF 4k - 1) - GR +) 
k=1 j=1 

+2(—1)*/? [1 +(-1)*] Bjw; 1;(k)} , (4.63) 
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which can be compacted to the following expression: 

N 
An = D {sede + 55 5 

k=1 

or in recursive form: 

An = An-it+snint+syoy , Ac=0. 

where 

Bx = on D> 0575 [uf 1y(k- 1) - 14(k+1)] , j=l 

5, = 2ar > p57; 8; 0; 1;(k) , 
j=1 

s = (-1)6? [1 —(-1)'] , 

s, = (-1)*? [1 +(-1)4] . 

(4.64) 

(4.65) 

(4.66) 

(4.67) 

(4.68) 

(4.69) 

The quantities s, and s, can only take two values: +2 and 0. It can be noticed 

that their zero value also coincides with the zero value of their respective factors 5, 

and 6,, which are zero because of the integration of odd functions from —oo to oo. 

The first seven values of A, are provided in table 4.1 for illustrative purposes. 

Table 4.1: First seven values of A; 

  

A. 
2 64 

2 (5 — 8) 
2 (6: — 6 — 63) 

2 (6 — 8 — by +8) 
2 (6; — & — 3 + 64 + 5s) 

2 (b; — 5 — & + 6 + bs — 5) 
2 (6 — 5, — 55 + 8 + 5 — 5 — br) 

  

    A
I
O
 
o
R
 

&
 

ND 
FE

! 
x
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4.7.4 Final Expression for E[R?(t)] 

The expression of the mean square value of the response R(t) is given by 

lim  E[R(t,) R(t2)] = E[R2(t)] = = + Un + An. (4.70) 
t; =t2=t—r0o0 

Therefore, substitution of equation (4.49), (4.52) and (4.63) into equation (4.70) 

renders 

E[R(t)] = yy i*+3™ On, Om I,(k +m — 2) + > p; 7; 1;(0) 

+ 20 pspnrsm [Th5(0) +74 (152) — 12) + 78" 10) 

+ > Ya p33 {(—1)*-1/? [1 — (-1)*] [w? (k - 1) - E(k + 0) 

~ + 2(~1)*? [1+ (—1)*] Bj 0; 15(k)} , (4.71) 

or the recursive expressions for Wy and Avy, given in equations (4.56) and (4.65), 

can be especially helpful when one is interested in examining the effect of increasing 

number of integration by parts on the convergence of the calculated response. In such 

a study, the values of these quantities calculated in the previous step are directly used 

in the current step. In this case, the expression for E[R?(t)] is simply indicated as 

E[R°(t)) = UntAnt >> 0377 1;(0) (4.72) 
j=l 

r-l or 

+ 25° SY) pj eerste [Th (0) + TH (52) — 1e(2)) + TH (0) | 
j=1 k=j4+1 

In principle, other statistics of the response quantity R(t) can be similarly ob- 

tained. However in this work, only the mean square value has been calculated for 

the example problem by utilizing equation (4.71), and the effect of increasing the 

number of integrations by parts on the calculated response is shown. 
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4.8 Numerical Results 

To verify the effectiveness of the proposed approach, the example problems 

of a multi-span beam are considered. There are six spans and each is four meters 

long. The moment of inertia of the beam about the axis of bending is 2700 cm’, 

the area is 43.68 cm?, the modulus of elasticity is 206 x 10° N/m? and the mass 

density is 0.00786 kg/cm*. The beam also has concentrated masses of 768 kg at each 

meter. For dynamic analysis, each span was subdivided into four beam elements, 

each of length 1 m. The consistent mass matrix was used in the analysis. The beam 

was discretized in 43 degrees of freedom, with vertical displacement and rotational 

degrees of freedom at each node. Figure 4.1 shows some beam details. 

The forcing function was due to a uniform support motion at all supports. The 

time variation of the motion is random and is characterized by a band-limited white 

noise with the cut-off frequency +w,, shown in figure 4.1 (B). For this random process, 

the derivatives of all order exist in the mean square sense. As the convergence to 

the final result is affected by the frequency characteristic of the force, several cut- 

off frequencies values of the force spectral density function have been considered. 

Herein, the numerical results for the bending moment in the beam at the middle of 

the 4** span (from the left) are obtained. 

The mean square value of the bending moment is obtained by (1) the classical 

mode displacement approach with truncated modes and with all modes, (2) by the 

mode acceleration approach with the same number of modes as the number used in 

the truncated mode displacement approach and (3) by the proposed approach. In the 

proposed approach, the increasing number of integration by parts are used to show 
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Figure 4.1: (A) Schematic of the multi-span beam and (B) Band-limited white noise 

spectral density input considered in the analysis. 
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the convergence to the final results. The numerical value obtained with the complete 

set of modes is taken as the bench mark value. The response values obtained by the 

other methods are presented as ratios to the correct bench mark value. Thus, a ratio 

close to 1 indicates nearly perfect results. 

The energy dissipation in the system is defined through the modal damping 

ratio, §;. It is assumed that each mode used in the analysis has a damping ratio of 

5% of the critical value. This characteristic could also be defined through a system 

damping matrix. However, for the formulation developed herein it is required that 

such a damping matrix be classical. 

In order to utilize the recursive relationships of equations (4.30) and (4.39) 

we need to have the explicit form of the damping matrix. The method proposed 

presupposes that not all modal vectors will be available. In such a case, one can 

construct a damping matrix, with prescribed damping ratios for the first r modes 

but with increasing or decreasing damping or a combination of these for the truncated 

modes as shown in appendix D. Such a damping matrix can be defined as follows: 

[C] = [M] [Fi] [D2] [Fy]? [| 

+ & ([K] — [M) [Fy [Ad [Fa? (M1) 

+ & ([M] —[M] [Fy] [FaJ” [M]) (4.73) 

where [%,] is a (n x r) modal matrix containing only the first r modes; ¢, and 

C2 are two constants which can be adjusted to obtain the damping ratios in the 

truncated modes within a desired range; the diagonal matrix [D,] is of size (r x r) 

with its elements defined as (26,;w,;); and [A;] is also a diagonal matrix of size (r x r) 

containing the first r eigenvalues (A; = w7). It is simple to see that a damping matrix 
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constructed according to equation (4.73) will have the preselected damping ratios §; 

in the first r modes. The damping ratios in the higher modes, though not explicitly 

used in the approach proposed, will vary according to the following equation: 

1 - 

B; = = uw; + 2 > g=rtiyrt2,...,0 (4.74) 
2 WwW; 

Equations (4.73) and (4.74) are simple generalizations of the formulation by Craig 

[15], which now includes a combination of increasing and decreasing modal damping 

ratios. 

While performing numerical analysis with equation (4.71) or (4.72), sensitivity 

of the results to numerical roundoff errors was noticed. For large k and m values, 

the frequency integrals J(m) and I;(m) start to become large. At the same time, 

however, the coefficients a, = {R}7{U,}, tend to became small with increasing 

value of the index k; it happens because, the vector {U;,}; is obtained by successive 

solution of equation (4.39) which, in principle, involves successive inversions of the 

[K] matrix. The product of a, with the frequency integral, however, diminishes with 

increasing k, as in most cases the contribution of the higher order integration-by- 

parts term usually also diminishes. The problem of rapid increase in the frequency 

integral values and commensurate decrease in the values of a, can be balanced by 

considering the normalized values of the frequency integrals as follows: 

. 1 . . 1 . s 
i,(2m) = / w™$(w)dw , £(2m) = / w?™ |H5(w)|? b,(w) dw , (4.75) 

a | -1 

where now 

$4(w) = S,(wew) , |AS(w)/? = { (22) - or} +403 (2) (4.76) 
c c 

where w, is the cut-off frequency of the spectral density function. Consistent with 
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this change in the frequency integral, the corresponding value of &; is defined as: 

& = {RHO (4.77) 

with the vector {U,}, obtained as a solution of the following recursive equation: 

[K]{Un}e = —we[C]{On}e-1 — w2(M]{Un}e-2 (4.78) 

{Gnko = (OF , [KI Ouh = 02400} - 1K (=) srs. 

In terms of these new d, and the frequency integrals, the expression for the 

mean square response in equation (4.72) becomes: 

E[R'(t)] = Wy + Ay + >> p27 7,(0) (4.79) 
j=l 

r—-1 Pr 

+ 2 p; petite [Th £;(0) + w2 TH (4,(2) — #.(2)) + THY 4,(0)| , 
j=l k=j+1 

with 

a a a Jn _ # a 

Uy = Wyitdunt2 >) (-1) dw-aw, , Yo = 0 
j=l 

2N —3-(-1)% p on 
Jy = yee ) Vkm = Apan I(k +m — 2) ; (4.80) 

and 

Ay = Ay-.+swbw+sydy , Ay=0 

by = dn 0057; [(wj/we)? EN - 1) - FN +0) 
j=1 

by = Gu D055 (28; (ws/we) 1(N)] - (4.81) 
j=1 

In the numerical work it was observed that the use of equation (4.79) provided 

stable numerical values, especially for large N. 
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In figure 4.2 is shown the normalized mean square value of the bending moment 

at the middle of the fourth span, obtained by the proposed approach, for an increasing 

number of integration by parts. The normalization is with respect to the exact mean 

square value obtained with the complete set of modes. For the results of this figure, 

the cut-off frequency of the spectral density function of the force is 45 rad/s. The 

first three frequencies of the structure are 51.34, 55.30 and 65.78 rad/s. Since all 

structural frequencies are higher than the cut-off frequency, one need not consider 

any modes in the proposed analysis. Here in this figure, the results obtained by the 

proposed method with no modes (curve I) and with two modes (curve IJ) are shown. 

It is relevant to mention here that the normalized response obtained by truncated 

mode displacement approach with only two modes was about 8%. 

From curve I, which corresponds to the case with no modes used in the analysis, 

it is seen that the first integration by parts (which is also the same as the mode 

acceleration approach) captures about 81% of the total response. More response can 

also be captured by including more integration-by-parts terms and it takes about 

18 of these terms to capture the full response (within 0.1% of the total response). 

This number of integration-by-parts can be reduced by reducing the ratio of the 

input cut-off frequency to the frequency of the first truncated modes. This ratio is 

denoted by r, in this and other figures. In this particular case this ratio is 0.876. 

For a given input cut-off frequency, this ratio can be decreased by including more 

modes in the calculation of the mode displacement part of the response, and thus 

reducing the number of modes to be truncated. This effect is clearly seen by the 

results represented by curve II, where now two modes have been included in the 

analysis and the remaining modes are to be truncated. In this case, two modes and 

one integration by parts term (mode acceleration formulation) captures about 96% 
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of the total response; the remaining 4% can be captured by nine integration by parts 

terms. In this case the ratio of the cut-off frequency to the first truncated frequency, 

which now is the third structural frequency, is 0.684. 

In figure 4.3 are shown results similar to those shown in figure 4.2, but for the 

input cut-off frequency of 50 rad/s, which is now very close to the first structural 

frequency, with the frequency ratio of 0.974. Since the cut-off frequency is still 

smaller than all structural frequencies, one need not use any modes in the proposed 

approach. Curve I shows these results. It is noted that the first integration by parts 

(mode acceleration formulation), but with no modes, can now capture only 73% of 

the total response. This value can be improved again by including more integration 

by parts terms, and it requires about 27 integrations to achieve convergence to within 

0.1% of the total response. Here again, this number of the integration by parts terms 

can increase significantly if the ratio of the cut-off frequency to the first truncated 

frequency is closer to 1. This is shown by curve II, where this ratio is now 0.9999; 

here, no mode included in the mode acceleration formulation captures about 70% of 

the total response, and the remaining 30% is captured by about 53 integration-by- 

parts terms. 

In figure 4.4 are shown the results for a case in which the input cut-off frequency 

is now larger than the first structural frequency. This necessitates that at least 

the first mode be included in the analysis. Curve I shows the results for a cut- 

off frequency of 54 rad/s, which provides a frequency ratio of 0.976 with respect 

to the second modal frequency. Mode displacement formulation with one mode 

captures about 0% of the response, with two modes 19%, whereas one mode with 

one integration by parts (i. e. mode acceleration formulation) captures about 61%. 
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Further improvements in the response estimates are again possible with increasing 

number of integration by parts. Curve II shows the effect of including one more mode 

in the analysis. Here the number of integrations required to capture the remaining 

response is about 15. 

Figure 4.5 is similar to the previous figures but now the first five modes fall 

within the range of the input cut-off frequency (100 rad/s), and thus a minimum of 

five modes must be considered in the analysis. The convergence characteristics of 

the response is similar to those of the earlier cases. 

A question which immediately arises is: How many integration by parts terms 

are necessary to achieve convergence to the total response? The answer to this query 

is probably as elusive as is the answer to the question: How many modes should one 

consider to capture the full response in the classical mode displacement approach? 

The total response being sought is not known a priori. One can thus only check for 

the mutual convergence of the results obtained with successively increased number of 

integration by parts. This, however, only checks for the flatness of the curves shown 

in the preceding figures. A problem arises here, as these curves are not monotonically 

increasing or decreasing to the final value of the response. Although the calculation 

of successive terms of the integration-by-parts scheme is very efficient, one can not 

indefinitely increase the number of integrations because of the accumulation of the 

round-off errors in the process of solving simultaneous equations successively. 
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4.9 Conclusions 

An N* order force derivative approach is presented to reduce the error due to 

truncation of modes in modal analysis of structures. In this method the response is 

expressed in terms of a dynamic part and a pseudostatic part. The dynamic part is 

the same as used in the classical (truncated) mode displacement formulation. The 

pseudostatic part represents a correction which accounts for the contribution of the 

truncated modes. By increasing the order of the force derivatives in the approach, the 

contribution of higher modes can be more accurately calculated. In this chapter, this 

contribution is calculated without evaluating any convolution integrals: rather, only 

a simple inversion of the system stiffness matrix or the solution of a system of linear 

equations is required for calculating this contribution. Simple recursive formulas are 

presented to facilitate the calculation of this contribution for successively increasing 

orders of the force derivative terms. 

The formulation is used to calculate the second order statistics of the response 

for random forcing functions. The numerical results of an example problem show 

how the convergence to the correct response is achieved by increasing the order of 

the derivatives in the approach. It can be proved that as the order of the derivative 

is increased indefinitely the calculated response will approach the correct response 

in the limit. For practical applications, however, it may not be necessary to adopt 

very high order of derivatives in the approach. Of course, the approach is only ap- 

plicable to differentiable forcing functions. Also, it is necessary that all structural 

modes below the highest frequency in the input be included in the calculation of 

the dynamic part. It is only the contribution of modes with frequencies higher than 
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the highest input frequency that can be improved by the force derivative approach. 

Furthermore, the greater the separation between the highest frequency of the input 

and the frequency of the lowest truncated mode, the faster is the convergence with 

increasing order of the highest derivative in the approach. This separation can ob- 

viously be increased by including more modes in the dynamic part of the response. 

This fact is also clearly shown by the numerical results presented herein. 
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Chapter 5 

Response Spectrum Method for 

Hysteretic Shear Buildings 

5.1 Introduction 

Civil engineering structures, affected by strong earthquake induced ground 

motions, need to be properly designed to avoid the damages leading to their collapse 

and the consequent loss of lives. Several structural systems have been designed to 

withstand such seismic forces elastically. That is, they are allowed to work within 

the elastic range of its constitutive materials. This design philosophy may, however, 

result in large and expensive structural members. To reduce the size of structural 

members, it is a common practice in building designs to permit some yielding of 

members. Structures so designed, dissipate vibratory energy through the hysteretic 

behavior of structural members subjected to cyclic loading caused by earthquake 

induced dynamic loads. As a result of this energy dissipation, these structures have 

slender structural members and are less expensive than those that behave elastically. 

However, it is understood that the structure may be partially damaged whenever 
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a design level earthquake would occur. The maximum amount of damage to be 

tolerated, is determined by the maximum ductility levels to be reached during a 

design earthquake. 

For the calculation of design forces for such yielding structures, in a dynamic 

earthquake environment, the use of response modification factors, which depend upon 

the type of construction, has been suggested in some recent codes such as ATC 3 [2] 

and NEHRP [35]. The recommendations have also been made to include such behav- 

ior through the use of the inelastic ground response spectra developed for different 

ductility ratios. All these methods, however, provide just approximate solutions and 

have been proposed primarily to simplify the analysis. It is always possible to accu- 

rately evaluate the nonlinear behavior by using a step-by-step procedure for a given 

ground motion time history of the design earthquake. However, to use this approach 

it is necessary to employ several ground acceleration time histories as base inputs. 

Such analyses can become quite involved and cumbersome; they are not suitable for 

design purposes. 

For multi-degree-of-freedom linear structures, a faster approach, known as the 

response spectrum method, is commonly utilized to calculate response for design 

purposes. It makes use of the smoothed response spectra of the design ground motion 

[38, 2, 35]. These spectra, define the random inputs in terms of the maximum 

responses of different single-degree-of-freedom oscillators. Multi-degree-of-freedom 

elastic structures can be easily decomposed into a set of single-degree-of-freedom 

oscillators by using modal analysis. The modal response combination rules such as 

those described in chapters 2 and 3 can be used to calculate the design response. 

Such approach, however, can only be used with linear systems. 
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This study presents a response spectrum method which can provide approxi- 

mate, but still reasonably accurate values of design response for nonlinear structures 

with hysteretic elements. To be able to develop this response spectrum approach, 

the nonlinear equations of motion are first linearized using the stochastic equivalent 

linearization technique. The equivalent linear system of equations are then solved by 

a generalized modal analysis approach employing the adjoint sets of system eigen- 

properties. In this approach the seismic design inputs, commonly defined in terms of 

pseudo acceleration and relative velocity ground response spectra, can now be used. 

In addition to these conventionally used spectra, the need for defining the seismic 

input in terms of the relative displacement spectrum of a massless oscillator is also 

identified. 

In this chapter, this approach is first developed for structures that can be mod- 

eled as shear buildings with one nonlinear hysteretic element for each story of the 

building structure. In the following chapter this approach is extended further for two 

dimensional structural frames with concentrated plastic hinges. 

5.2 The Shear Building Model 

The response of most structural buildings with rigid floor slabs, when subjected 

to horizontal seismic excitation, can be well approximated by just considering a few 

degrees of freedom at each floor level. Since these structures consist mainly of several 

stiff horizontal slabs connected by flexible columns and or shear walls, it is possible 

to allow just three degrees of freedom per floor, two horizontal translations and one 

rotation about the vertical axis, to obtain a good approximation to the response. In 
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some structures the mass centers of each floor coincide with the respective stiffness 

centers and the rotational degree of freedom can be avoided allowing the two trans- 

lational components to be studied independently. In this case, just one horizontal 

translation per floor will suffice to study the response in one direction. This simpli- 

fied model is widely known as shear building. Such models have been commonly used 

in earthquake engineering studies of multi-story building structures. In this chapter, 

we have also used this model to represent multi-story building structures. 

5.3. Governing Equations 

Figure 5.1 (on page 144) shows a schematic of a shear structure where the 

floor masses m; have been concentrated at the story levels and are interconnected by 

elements that represent the columns and or shear walls of the actual structure. The 

relative displacement of the i** mass with respect to the ground is indicated by 2; 

and the deformation of the i** connecting element (or interstory drift) is denoted as 

uj = 2; — 2;_1. It will be assumed that the i** element, when dynamically deformed, 

provides stiffness forces s; and damping forces d;. 

Using Newton’s law the equation of motion for the i** mass can be written 

§i41 — 3; + d344 _ d; = Mm; ZS (5.1) 

where 2? is the absolute acceleration of the i** floor. The damping force d; is assumed 

to be viscous and is thus proportional to the drift velocity through the damping 

coefficient c;,: 

dj = ct; = co; (2; — 2-1). (5.2) 
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The model for the restoring stiffness force depends upon the constitutive character- 

istics of the structural materials. For structures with material deformation within 

the linear elastic range the stiffness force is simply given by 

8; = kyu; = kj (2; — 2-1) (5.3) 

where k; is the elastic stiffness coefficient. To represent the inelastic behavior here we 

will use the model proposed by Wen [57] which consists of an elastic part in parallel 

with an hysteretic part: 

8; = a; k; (2; — 2-1) + (1 — a) kv; (5.4) 

where k; is now the initial stiffness parameter of the hysteretic model, a; is the 

proportionate contribution of the linear elastic part (0 < a; < 1), and 2; is the 

auxiliary variable (auxiliary drift) of the hysteretic part. The deformation variable 

u; is assumed to be related to the auxiliary variable v; by the Bouc-Wen [9, 56, 57] 

hysteretic constitutive model of the following form: 

Vi = A; u; _ B; uj |a;|™ _ C; Vv; [az | |v; |"? . (5.5) 

This ingenious differential equation was first proposed by Bouc [9] and has been 

extensively used by Wen [56, 57, 58], Baber and Wen [5, 6, 7] and many others in 

their studies of stochastic response of engineering structures. It can represent a wide 

variety of hysteretic characteristics depending upon the values of their parameters 

[5, 30]. Also, deterioration and pinching effects may be modeled by the introduction 

of additional parameters [4]. The meaning of the different parameters involved in 

equation (5.5) are discussed in appendix E. 

The figure in appendix E shows the general shape of the hysteresis loop which 

has been adopted in the numerical examples. To model the softening behavior of the 
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which nonzero entries have the following pattern: 

(c; + C2) —C2 

—Co (cg +¢3) —¢3 

[C] = , , (5.9) 
Cn-1 (Cn-1 +n) —en 

—Cn Cn 

The linear part of the stiffness matrix is denoted by [K@] and its structure is 

(AE +k) —ky 
ky (ky + kg) —k 

[K@] = ., (5.10) 
ke-1 (Ra-1 t+ he) ke 

ke” ke 
where k? = a;k;. Matrix [H°] contains the hysteretic elements with following ar- 

rangement: 

Ay —hz 
hy —hjZ 

[H*] = Tete, (5.11) 
he —h 

n—-1 

where h? = (1 — a;)k;. 

The n dynamic equilibrium conditions expressed by equation (5.8) contain n un- 

knowns in vector {X} plus n unknowns in {V}. Additional n equations are provided 

by the constitutive equations of each deforming element, equation (5.5). 

The assembled constitutive equations for all n connecting elements, together 

with the equations of motion, fully describe the dynamic response of an inelastically 

behaving shear building subjected to ground excitation. To develop a response spec- 

trum approach, the constitutive equations (5.5) must be linearized. The linearization 

procedures have been widely used in practice since the first proposal by Krylov and 

Bogoliubov [25]. The book by Roberts and Spanos [40] provides an excellent de- 

scription of this technique. The analytical form of the Bouc-Wen model is especially 
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which nonzero entries have the following pattern: 

(cr +¢.)  —e, 
—C2 (eg +¢3) —cg 

[Cc] = e, , (5.9) 
Cn-1 (Cn-1 ton) —Cn 

; —Cn Cn 
The linear part of the stiffness matrix is denoted by [K%] and its structure is 

(Ag + ke) ke 
kp (ke + hg) —kg 

[K°] = . me me (5.10) 

kia (kaa + ha) —ke 
—ky ke   

where k? = a;k;. Matrix [H“] contains the hysteretic elements with following ar- 

rangement: 

hy —hy 
hg —hg 

[H*] = Tete (5.11) 
he_, —hAe 

n—-1 

where h? = (1 — a;)k. 

The n dynamic equilibrium conditions expressed by equation (5.8) contain n un- 

knowns in vector {X} plus n unknowns in {V}. Additional n equations are provided 

by the constitutive equations of each deforming element, equation (5.5). 

The assembled constitutive equations for all n connecting elements, together 

with the equations of motion, fully describe the dynamic response of an inelastically 

behaving shear building subjected to ground excitation. To develop a response spec- 

trum approach, the constitutive equations (5.5) must be linearized. The linearization 

procedures have been widely used in practice since the first proposal by Krylov and 

Bogoliubov [25]. The book by Roberts and Spanos [40] provides an excellent de- 

scription of this technique. The analytical form of the Bouc-Wen model is especially 
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suitable for stochastic linearization processes. The equivalent linear form of equation 

(5.5) is defined by the following expression: 

v= au +b; = a; (2; — %-1) +b; 4; ) t=1,...,7 (5.12) 

where a; and 6; are the coefficients of linearization, yet to be defined. Assembling 

equation (5.12) for all deformable elements, we can rewrite them in the following 

form: 

{V} = [A] {X} + [B]{V} (5.13) 
where matrix [B] is diagonal and matrix [A] has the following structure: 

ay 

—d2 a2 
[A] = ao , (5.14) 

—Aan an 

Equations (5.8) and (5.13) constitute the equivalent linear system of governing 

equations. The linearization coefficients a; and b; are chosen such that they minimize 

the mean square value of the error introduced by the linearization itself. This leads 

to expressions of the coefficients as functions of the response statistics of the actual 

nonlinear system which are not known a priori. Simplified closed form expressions 

can be obtained for a; and b; in terms of the response statistics if the response can 

be assumed to be Gaussian. See Atalik and Utku [3]. In appendix F, it is shown 

that these coefficients are: 

  a: = Ayo am /m [BSB + (my Ce Ea], (6-15) 

  

_ , hk 1 i b= — oR oi, 2m [mr | nic BB + (mC OPE |, (5.16) 
where 7; is the exponent of the model in equation (5.5) which is a positive odd 

integer, o, expresses the standard deviation of the subscripted variable x, p; is the 
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correlation coefficient between u; and v;, and Yq, and Xp, are defined by the following 

  

summations: ~ (n=t)/ HR [ng — 29 — 1) / 2]! (1 — 9?) 
Ye; = j=0 ji (n: _ 27)! (2 pi)? 

en) 
—_ (62! (ni — 25 — 1) /2! (1 — 03)5 (5.18)   

& iM 27-! Bays 
Other expressions for these coefficients have also been obtained, (57, 11, 4]. 

Since the response statistics o4,, oy, and p; are still unknown, which in turn can 

be obtained only after the determination of the linearization coefficients, an iterative 

approach has to be implemented to solve this problem. Till now, several investigators 

have used the Fired Point iterative scheme which can be described as follows: the first 

iteration starts with some assumed values of the linearization coefficients then the 

response statistics of the linearized system are determined, which in turn are used in 

equations (5.15) and (5.16) to obtain a new set of coefficients to be compared against 

the initial ones. If the comparison does not satisfy some tolerance requirement, the 

newly obtained coefficients can be used to initiate the next iteration. This scheme 

was observed to be rather slow to converge. Here, therefore, a faster approach has 

also been used, which is based on a modification of the well known Newton method 

[13]. Some further details of these methods are provided in section 5.7. 
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5.4 Solution of the Linearized Governing Equa- 

tions 

To solve the linearized governing equations (5.8) and (5.13) they will be combined 

into a system of first order equations 

[Li] {¥} + [La] {¥} = {F} (5.19) 

where vectors {Y} and {F'} have dimension 3n and are defined as 

{X} {0} 
{v} = {x3 , {F}= —[M]} {Z} &, , (5.20) 

{V} {0} 

The dimension of matrices [Z,] and [ZL] is (3n x 3n) and they are given by: 

YW] [0] [0] io} -f] 
[Zi] = | [0] [M4] [Oo] | , [oJ= | {[K] [Cc] [fl (5.21) 

oo] 7] (0) —-[A] —[8] 

    

where [0] and [J] are the (n x m) null and identity matrices respectively. 

Since [L.] is a general nonsymmetric matrix, to decouple equation (5.19) it is 

necessary to obtain its right and left complez eigenproperties by solving the corre- 

sponding right and left eigenproblems: 

[Zo] [®] = [Zi][B][A] ,  [W]* [Ze] = [A] [¥]* [Li] (5.22) 

where [A] is a diagonal matrix the entries of which contain the 3n eigenvalues 4; 

ordered by increasing modulus with A, at entry (1,1); [@] and [W] are the right and 

left modal matrices respectively, which have been normalized with respect to matrix 

[LZ] so the following conditions are satisfied: 

[B]? [Zs] [2] = [2], [WY]? [La] [8] = [A]. (5.23) 
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The columns of matrices [$] and [W] are ordered in accordance to the entries of matrix 

[A], that is, the z** columns of [] and [¥] contain respectively the i“ right eigenvector 

{4}; and the i* left eigenvector {V};. The solution of each eigenproblem will provide 

n real and n pairs of complex conjugate eigenvalues with their corresponding real 

and complex eigenvectors. To distinguish between real and complex quantities the 

real eigenproperties will be indicated by a superscript r whereas the complex and 

complex conjugates by the superscripts c and cc respectively. All real eigenvalues as 

well as the real part of all complex eigenvalues are positive. We will write the n pairs 

of complex conjugate eigenvalues as [43] 

AS = Byw; + iw; ./1 — 6? ; AF = By wj — iw; /1 — B} ’ j=l,...,n (5.24) 

where, #8; is the equivalent damping ratio and w; is the equivalent frequency for the 

j** pair of complex conjugate modes. Equations (5.24) can be solved for w; and (; 

to obtain: 

wi = |A5) » By = Re(A§)/w, , g=l,...,n (5.25) 

Equation (5.19) can be uncoupled by using the following transformation of co- 

ordinates: 
3n 

{Y} = [8] {2} = ) {8}; z(t), (5.26) 
j=1 

where z,(t) is the j** component of vector {Z}. Substitution of equation (5.26) 

It into equation (5.19) and then premultiplication by [W]* provides the following set of 

uncoupled equations: 

{Z} + [A] {Z} = [8]? {F}. (5.27) 

Thus, the n uncoupled equations are 

z;(t) + A; 2z;(t) = —y@(t) , J=1,...,3n (5.28) 
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where 4; is the j** modal participation factor defined as 

{0} 
1 = {¥}; [M} {7} (5.29) 

{0} 

The solution of the first order differential equation (5.28) for zero initial condi- 

tion can be written as: 

t 

z;(t) = — 4; [ eu s (r)dr  , g=1,...,3n. (5.30) 

By performing the linear transformation indicated in equation (5.26), the [** com- 

ponent of the response vector {Y} can be written 

3n t 

y(t) = —- >> a; | ests (r)dr ; =1,...,3n (5.31) 
j=l ° 

where q; = $1; 7; and ¢); is the (1,7) component of the right modal matrix [4]. 

Equation (5.31) defines the deterministic response of the linearized system of 

governing equations. The formulation to the response statistics of equation (5.19), 

for random ground motions, is presented in the following section. 

5.5 Response Covariance Matrix of the Linearized 

System 

To obtain the linearization coefficients, we will need some elements of the 

correlation matrix of the response vector {Y(t)}. Such matrix is denoted here as 

(Y(t, t2)| and its (I,m) typical element can be defined as: 

Vim(ts, t2) = Elyr(ts) ym(t2)) - (5.32) 
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To define this correlation in terms of the input motion and the eigenproperties we 

use equation (5.31) to obtain: 

3n 3n 

Vin (#1, t2) = » >> Gj Imk f i eT sl—n) eo“ Ma(4—™) B10 (7,) B,(7T2)] dry dro. 

_ (5.33) 
As considered in the previous chapters, we will assume the ground motion to be a 

stationary random process with power spectral density function ®,(w). Its autocor- 

relation function can then be written [29] 

Elé,(n1)24(72)] = [ Sp(w) el) de. (5.34) 

Substitution of equation (5.34) into equation (5.33) and integration of the time in- 

tegrals provides 

3n 3n eit eo Aith en iwts _ p—Anta 

Vim(t1, t2) = 2.2. Qj Imk [ $,(w) (SS) (SS) dus 

(5.35) 

For large values of ¢; and t2, this response correlation will also approach stationarity, 

as shown in previous chapters. For a finite value of the time difference, At = t; — to. 

This stationary correlation can be expressed as: 

oo 3n an 

Vim (At) = [. $o(w) eA! (3 na) (= xs) du. (5.36) 

The evaluation of the frequency integration for real and imaginary eigenproperties 

requires a different treatment. It is, therefore, necessary to consider these separately 

in the summations appearing in equations (5.36) as 

  

3n n r n c ce 

qj qi; 1; Qj 
” = . + ° + ° 3 5.37 

25, +e i+ iw > (5H gia) ( ) 

where the quantities gf, are obtained from only the real eigenproperties, and gj; and 

qf; from the complex and complex conjugate eigenproperties. Equation (5.37) can 
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be written in terms of the real and imaginary components of qf, as 

3n 

    

y Qj _ Late - 5 >: (Az + iw) (51; + #15) + Os + iw) (51; — t€1;) 

Aj tiw Mptiw 5 (AS + iw) (AX + iw) 

(5.38) 

where 

bb; = Re(q;) , €5 = Im(qy). (5.39) 

By substituting for A? and A¥ from equation (5.24), equation (5.38) can be rewritten 

as: 

3n 

D5, 4 iw = Lai G3(w) + 2 > i) H5(w) (5.40) 
where Gi(w) is the ‘complex frequency response function of a first order system, 

  

defined as: 

ap+Magae™ , 25=Giw)e™ , Gw)= [tiv] ; (5.41) 

and H$(w) is the complex frequency response function of a damped single-degree-of- 

freedom oscillator with natural frequency w; and damping ratio §;; defined in chapter 

2 by equation (2.37). The other quantities appearing in (5.40) are defined as: 

. Re( qf, AS 
p;(w) = CF + tb; w ) F = Relais *F = W; (B51; + Engyy/ 1— p? ) . (5.42) 

The second summation term in equation (5.36) can be similarly rearranged to 

provide: 
an 
iow = > Gap Ge(w) + 2 > re) Hy (w) , (5.43) 
  

k=1 

where the quantities in (6.49) with superscript cc are the complex conjugates of the 

respective quantities defined in equations (5.41) through (5.42). After substitution 

of equations (5.40) and (5.43) into equation (5.36), with some further rearrangement 

of terms, the cross covariance term at At = 0 can be expressed as: 

Yim = f™ 8,(w) [ER (w) + 2ER6(w) +408, (w)] de, (5.44) 
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where 
n n 

Ui(w) = 2 2 ij Tak G5(w) GE (w) , (5.45) 

BRC) = y > i P24 (w) C5(w) HEE (w) + a Pi (w) CF (w) Hi(w), (5.46) 

BE (w) = > > Pio) ral) H$(w) HE (w) , (5.47) 

Since ®,(w) is an even function of w, the integrand terms defined by odd functions 

of w will vanish when integrated from —oo to oo. 

To be able to express the integration in equation (5.44) in terms of just a few 

frequency integrals, the summation terms given by equations (5.45-5.47) will be 

considered independently for further simplification 

5.5.1 Terms associated with only real eigenproperties: Df (w). 

By multiplying and dividing equation (5.45) by G#(w) Gj(w) and after some 

readjustment of terms, we obtain 

Bhi (w) = D2 do ahs ane |G5(w)? |GE(w)? [(w? + AZAR) +H (AG-AZ)] (6.48) 
j=l k=1 

where |G°(w)|? = [(Av)? + w?]7* is an even function of w. Since the imaginary part 

of equation (5.48) is an odd function of w, its contribution will become zero when 

integrated in equation (5.44). Therefore, only the real part of this expression which 

generates a nonzero contribution will be considered. This part is re-written as: 

Re[Zin(w)] = D7 De 95 Yaw [G5(w)I? |GE(w) |? (w? + Az AR) - (5.49) 
j=l k=1 
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The product term in equation (5.42) can be expressed as a sum of two terms by 

partial fractions (see Case I in appendix A) as: 

Re[Zim()] = D7 D. Timse |G5(w) I? + Timag |GE(w)I? ; (5.50) 
j=l k=1 

where the coefficients of the partial fractions, Tha jk and Tj1,,;, are: 

a Xr, I — ~? fF I _ ? oP k 
Timnjk = 95 Imk y+ ) Timkj = 43 Imk +45 (5.51) 

5.5.2 Terms associated with real and complex eigenprop- 

erties: DPC(w). 

The terms in equation (5.46) will now be simplified so that the product of the 

response functions are avoided. For this purpose, the subscripts 7 and k in the second 

term of equation (5.46) are interchanged to get 

Lim (W) = D> Gi; Prne() G5(w) Hyr(w) + ong Pie(w) GF (w) Hew). (5.52) 
j=l k=1 

Multiplication and division of each term by the corresponding conjugates of the 

frequency response functions yield 

ERG(w) = So So 1Gsle)P laatwr? {ais [aah ED] + ans [aH |}. jai k=l GF (w) Hi(w) G5(w) Hew) 
(5.53) 

In this equation the quantities enclosed by brackets are the only complex quantities. 

The real and imaginary parts of p™,(w)/[G3(w) Hg(w)], which are even and odd 

function of w, respectively, are explicitly defined as: 

Re eee = (CnbAZ — Satu”) (we — w?) + 2Bpwe (Crake + SmkAZ) w” 

= Smpwt+ Xmjk w? + (mk rj wi ; (5.54) 
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Im eel = 2B.Wk (Cm AGW _ Smkw”) _ (Gnk 4 Sink; ) (ww _ w) ; (5.55) 

where Xm;k iS given by 

Xmjk = (2 Be wk — AZ) Gk + (2 Bu we AZ — WE) Sak - (5.56) 

and its imaginary part, can be expressed by the following odd function of w: 

Similarly, the real and imaginary components of the remaining complex factor 

in equation (4.57) can be defined as: 

Pin(~) . 
Re lath ar| = btk w* + Xljk ww? + Cir Aj w? } (5.57) 

Im let = — 2B. we (CRAjw — Sixw*) + (Cie + beA5) (wiw —w*). (5.58) 

In this case also the real and imaginary parts are even and odd functions of w 

respectively. Again at this stage, the complex terms can be completely dropped 

from any further consideration since they provide zero contributions to equation 

(5.44) when integrated from —oo to oo. Thus, considering only the real parts in 

equation (4.57), we write we write 

Re Bim (w)] = D2 D2 IG5(u)P? Le())? Pie) (5.59) 
j=lk= 

where Ptmj,x(w) is a fourth degree polynomial in w 

Prin (W) = (41j5 meting Ste) O° +(41;Xmmik+ InjXtik) W +(91;6me+ Inj Ste) AGH » (5-60) 

The product |G§(w)|? |H{(w)|? Pimje(w) can now be expanded into partial fractions 

(see Case II in appendix A) to provide: 

Re [BRO(u)| = > OTH IG(w)P + (TE tw Tin) |AE(w)/? (5.61) 
j=l k=1 
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IV where the coefficients Th ik) Tt and T;,,;, are 

Tiki = { |(alsxmie + Gagxtse) — (05)? (aFj5me + arnj5ue)] (05)? (5.62) 

— (aFjCone + ansCin) Nye? } {4 BF? (A4)? - (I)? + w2P?} 

THE, = { [wh (4 BR — 2) — (A5)7] (aij Cone + GajCue) AZwR — wh [(alpxmse + CajXtik) 

— (5)? (akSinu + 4fn55ue)] } {482 02 (AG)? — (5)? + 2/7} (8.68) 

Tins = (Qfj5me + 55) — Tse (5.64) 

5.5.3 Terms associated with only complex eigenproperties: 

win (w). 

Here we will work with equation (5.47) to identify inconsequential odd terms 

and then express it as a sum of |H‘(w)|? and no their product. 

To achieve this Equation (5.47) is first decomposed into two parts. The first 

part contains only those terms with 7 = k (diagonal terms) and the second part 

contains the remaining terms with j # k (off-diagonal terms) as: 

Lim(w) = >) Pij(w) Pez (w) |AF(w)/? + D0 Do pij(w) Pa (w) HG (w) Hew). (5-65) 
j=l j=l k=1 

k#j 

The real and imaginary parts of the single summation terms can be easily identified 

by expanding the product pj,(w) p%,(w) into its real and imaginary parts. Again, at 

this stage the odd parts can be ignored as explained before. The remaining real part 

can now be expressed as: 

Re |S) ris(w) aS (w)LHS(w)I?| = Yo (Gas Gms + 8 Fas 02) LHG(w)P? (5.66) 
j=1 
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To simplify, the double summation term of equation (5.65), it is first multiplied 

and divided by the complex conjugates of the frequency response functions. At 

this stage again the imaginary part can be completely deleted for obvious reasons 

explained earlier. The remaining real part of a product term can be written as: 

Re [pi(w) Prax (w) H5(w) HE (w)| = Pimse(w) |HG(w)P AE(w)P, (5.67) 

where Prngk(w) is a sixth degree polynomial in w: 

Pimse(w) = [6ij5mu]w® + [(4B;Bawjure — WF — WH) bij5me + Cigbnk 

+ 2(Cme51; — C1j5mk) (Bewe — Bjw;)] w* + (48 ;Bawjwe — wi — wh) mk 

+ bijbimniedo} + 201; (Gmndiz — CijSme)(B;ve — Baws] w? 

+ [65S w3 | w? (5.68) 

It is relevant to mention that the above polynomial is symmetric with respect to the 

indexes 7 and k. That is, Pimjr(w) = Piet (w). This symmetry reduces by half the 

number of calculations required for the off-diagonal terms. 

By using equations (5.66) and (5.67), and the symmetry of Pim;j,(w), this real 

component of equation (5.47) can be written as 

Re [ZP,(w)] = J (ils +51j5mj0) |Hj(w)|?-+2 x > Pima (w) |H§(w)|? |e (w)/?. 
j=1 j=l k=jt1 

(5.69) 

Finally, the product in the double summation term of equation (5.69) can be ex- 

pressed as a sum by partial fractions (see Case III in appendix A) to provide the 

following equation: 

Re [Zi,(w)] = D(Gibms + Fj6mjw”) |HF(w)/? (5.70) 
j=l 

n—1 n 

+270 (Tirik + w? Thin) | 15 (w)|? + ( Tipit + w > Tn) |x (w)|’ , 
j=1 k=j+1 
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VIII where the coefficients Tihjk Tires Tink and Tinj, are given by 

Timjk = {2 Timjk ae — 2%, + cae jk Fa) — Hime (Q% — 032)} Ain 

Tih = {nina (0 a — 2037 Himjk 1 — 0, +2 (B25, — 83 )| } we ; An 

Timi = C1; Gmk — Thnk OF 

Timjk = 913 5k — 1 (5.71) 

with 

254 = w;j/wK (5.72) 

Bimik = Gibb (23 — 1) + w}5ij5ma [(1 — 47)03, + 48:80 — 1| 

+ 2wi QM; (b1;Cmk — Smelrj) (Be — B3Q5x) (5.73) 

Timjk = (1jGmk E — 48% + 48;A.Qi — 02, | + w36138 mk (1 — 23,) 

+ 20; (biz¢me — Smelrz) (By — BeOQ;x) (5.74) 

Aje = 16(67 + Bf — 83 — Bf) — 03, — 03 

+ 4(93, + 052) [1 — 2(6? + 8? — 2626?)| (5.75) 

5.5.4 Final Expression for each Component of the Covari- 

ance Matrix 

Since only the real parts of UZ,, DFC and XE, need to be used in equation 

(5.44), it can be expressed in terms of simple frequency integrals as: 

Vim = >>> (This Is + Tha Jk) +2 0D (TH J; + THE 1 + 1% TE) 
j=l k=1 j=1 k=1 

+40 (156m I? + 835: Is) 
j=l 
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n-l in 

+ 80 SO (Tian TF + Ta Tf + Tome Te + Tite Te) - (5.76) 
j=1 k=j+1 

where J;, I ¥ and I} are frequency integrals defined as 

Jy= [ Fo(w) |G5(w)? de/;, (5.77) 

w= f _8,(0) Hiv) dw, p= / © B,(w)u2|Hs(w)[? dw. (5.78) 

Ig and I? were defined in chapter 2 as the mean square values of relative displace- 

ment and velocity response of a single-degree-of-freedom oscillator excited by ground 

motion. J; is the mean square value of the response of a first order system, with 

parameter A%, excited by ground motion. 

For some commonly used forms of spectral density functions these integrals may 

be obtained in closed-form. Appendix G provides some closed-form expressions for 

white noise and Kanai-Tajimi type of seismic inputs. 

5.6 Response Spectrum Method 

The objective of a response spectrum method is to express the maximum value 

of a design quantity by an appropriate combination of the maximum modal responses. 

These maximum responses, of the individual modes, are defined in terms of the input 

response spectra. 

Any design quantity of interest R(t), which is a linear combination of the re- 

sponse vector {Y(t)} may be written 

R(t) = {R}7{Y(}, (5.79) 
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where {RR} contains the coefficients of the linear transformation. For linear systems 

subjected to zero mean stationary inputs, the mean square value of R coincides with 

its covariance 

on = E(R(t)] = {R}? ELY HY) 1{R} = {R}¥ D1{R}, (5.80) 

where [J] is the covariance matrix of the response vector {Y(t)}. The (1, m) element 

of this covariance matrix is Yj, which is defined in equations (5.76-5.78). 

The maximum value of R, denoted as Mp, can be approximated for some small 

probability of exceedance by scaling its standard deviation with an appropriate peak 

factor Pr: 

Mr PROR, (5.81) 

Using equations (5.81) and (5.80) the squared maximum value can be approximated 

as 

Mi = {R}" (PRIV]) {R}. (5.82) 

This equation expresses the maximum value of R as a function of the scaled stationary 

covariance matrix P}[)]. Therefore, it is of primary interest to relate the integral 

inputs used for Yim in equations (5.76-5.78) with the ground inputs defined by the 

response spectra. 

Approximate expressions for the frequency integrals in equations (5.77) and 

(5.78) can be obtained in terms of the response spectrum values and their respective 

peak factors: 

M: 2 Maz. 2 , My, 2 

Jj ® (3) , gx (4) , ea (4 ; (5.83) 
J 3 “3 

    

where M,; is the spectrum value of the first order oscillator, and Mg, and M,, are 
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the values of the relative displacement and relative velocity spectra, respectively, of 

the second order oscillator. 

In terms of these frequency integrals we can define (Pim) as 

M3 M3 
Ph J im ~ Pr na PP 2 + Tiinkj +) ‘

M
a
 

  

uu 
j=1 k=1 

ax M2 M?. 
+ 2 2d (Tin Imjk “D2 + Tinth PE + Tin et P2 =) 

j=l k= 

n M?. 
+ 4 (ae (mj 44g i (5.84) 2 3 J BE J | P2 

nt Mi}, M?, M3 M2, 
+ 8 (Msn Get aed; + 7VF Sup +70 ood + TUT =) 

» » lmj Pi lmjk P2 Imjk Pz j P2 
j=l k=J+1 

However, if we assume all the peak factors to be equal, equation (5.84) simplifies to: 

PR Yim ~ > » (Tink Mj + T, ‘ene Mi) 
j=1 k=1 

non 

+ 2 > (a imjk Mj + Tirajk Mi, + Timi Mi, ) 
j=1 k=1 

+ 4 » (65 6ons Mi, + 6138mj Mz :) (5.85) 

a,
 tl 

s
O
 

+ 8 ss > (Tr sn M3, + Tike Mi, + Tie M3, + TY M?,) : 

j=1 k=J+1 

Substitution of equation (5.85) in equation (5.82) provides the squared design re- 

sponse value of interest. The numerical results have been obtained both from equa- 

tion (5.84) and (5.85), that is, with and without the assumption of equal peak factors. 

5.7 Summary of the Iterative Scheme 

As it has been mentioned, the numerical solution of the proposed equivalent 

linear approximation to the hysteretic response, requires an iterative scheme. This 
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is due to the definition of the linearization coefficients as functions of the unknown 

response statistics. 

Several iterative schemes may be adopted to reach the desired convergence. In 

particular, the fixed point [13] procedure has commonly been considered by several 

investigators. The fixed point approach is based on the solution of the following 

equations: 

F?(a;, b;) = a; ) F?(a;, b;) = b; ) 2,7 = 1, eee. (5.86) 

The functions F% and F? express the linearization coefficients as functions of the 

coefficients themselves. In the current problem, these functions can be defined only 

numerically. That is, equations (5.15-5.18) provide the coefficients a; and 6; in terms 

of the response statistics, which are given by the appropriate elements of the covari- 

ance matrix. In turn, the components of the covariance matrix are functions of the 

eigenproperties of the linearized governing equations, which involve the linearization 

coefficients. 

By considering equations (5.86), the fixed point scheme provides the following 

recursive formulas: 

aft) = Fe (a), ) | ot) = RP (al), 0M) | ij 1,...,m. 

(5.87) 

where the iteration steps are indicated by superscripts. Thus, the coefficients at step 

(k +1) are functions of the coefficients at the previous step (k). 

The different tasks required by each step, of the fixed point iterative scheme, 

can be summarized as follows: 
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. Start with some assumed values of the linearization coefficients. For this pur- 

pose it is useful to notice that the linearization coefficients for a linear system 

are a; = 1 and 6; = 0 fori =1,...,n. 

. Assemble matrices [A] and [B], and modify accordingly matrix [Ly]. 

. Obtain the right and left eigenproperties corresponding to the homogeneous 

version of equation (5.19). Calculate the quantities required to determine all 

partial fraction coefficients. 

. Determine the response statistics by calculating only the necessary elements of 

the covariance matrix. For inputs defined in terms of power spectral density 

functions (Kanai-Tajimi), use equations (5.76-5.78). For inputs defined by 

ground response spectra, use equation (5.84). The latter requires the use of 

the peak factors associated to the ground motion. 

. Calculate the new linearization coefficients by using equations (5.15-5.18). 

. Compare the newly obtained coefficients with the initial coefficients. If the 

comparison satisfies some tolerance requirements, the process can be finished. 

Otherwise, the new coefficients are utilized to initiate the next iteration at step 

number 2. 

. After achieving convergence, the standard deviation of any quantity R, linearly 

related to the response vector {Y}, can be obtained by using just the covari- 

ance matrix: op = \/{R}7[¥|{D}. The maximum value of R requires the 

knowledge of its associated peak factor: Mp ~ Vi {R}¥ (P} [Y]) {R}. 
  

To attain convergence, the fixed point approach requires the satisfaction of the 
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conditions given in reference {13]. The convergence of this scheme is linear because 

the error corresponding to the (k + 1)" step depends linearly on the error of the 

(k)** step. However, this type of convergence is characterized by its slow progress. 

Alternatively, the Newton method can be employed to accelerate convergence. It 

possesses the faster quadratic convergence. However, this method presents some 

drawbacks. It requires initial guesses not far from the actual values, and also the 

jacobian of F2 and F? need to be provided. In the present problem only a numerical 

jacobian can be calculated. 

The numerical solution of the examples presented in this work have used both 

iterative methods. For this purpose, the fixed point iteration has been fully imple- 

mented in a Fortran code, and a subroutine provided by the IMSL package [22, 34] 

has been employed to apply a modified version of the Newton method. Both ap- 

proaches has been used independently or the fixed point iteration has been used 

first, to obtain an approximation to the convergence values, and a later refinement 

has been carried out by the Newton method. 

5.8 Interstory Shear Responses 

For the design of columns in a story it is of interest to calculate the interstory 

shear force. The shear force s; affecting the column members between the i** and 

the i — 1** floors, is given by equation (5.4). Also, it can be written in terms of the 

response vector {Y} as 

8; = {R}" {Y} = ky [a: (ai — 24-1) + (1 —ax) vy] . (5.88) 
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The mean square value (or covariance for zero mean processes) corresponding 

to this shear force can be obtained by using equation (5.80), or by calculating the 

expected value for the square of equation (5.88): 

Elsi] = kf El[{oy (2; — 2i-1) + (1 — ox) i} , (5.89) 

which yields 

Elsi] = ¥ {of (B[z}] - 2 E[eie1] + Ele?) 

+ ei (1 — o%) (Blzev] — Elzi1vi]) + (1 — 0%)? Elv3]} , (5.90) 

where all the expected values of the right hand side are defined by the covariance 

matrix [J]. 

The maximum value of s; can be obtained by amplifying the root mean square 

value by its peak factor. To simplify the calculations, the peak factors can be assumed 

to be equal as done in the derivation of equation (5.85). The calculation of peak 

factors by a procedure such as Davenport’s approach [16], requires the calculation of 

the mean square value of the derivative of s; with respect to time. From equation 

(5.88) this derivative can be defined as: 

a, = hy [ax (#s — 25-1) + (1— a4) & . (5.91) 

It can be noticed that s; is a function of ¥;, which is not contained in the response 

vector {Y}. However, it can be expressed in terms of the components of {Y} by using 

the equivalent linear constitutive law given in equation (5.12). Thus, 3; becomes 

8; = k; (a; (2; — 2:-1) + (1 — a) fa; (@; — 2:_1) + ; v;}] . (5.92) 

From equation (5.92) we can obtain the mean square value as: 

Ela?] = RP {lax + a;(1 — a4)]? (B[e7] — 2 Blaes-1] + Ele 1)) (5.93) 
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+(1 - a)? b? E(v?] +2 [a; + a; (1 — a;)] (1 _ a;) b; (E[2:;] _ E[z:-1»;)) } ) 

where all the expected values on the right hand side are now defined in term of the 

elements of the covariance matrix [)]. 

If Davenport’s formula is used to calculate the peak factor then the mean of 

maximum values of s;, is denoted as M,,, and can be obtained from: 

0.5772 
M,,; = (3 In(p Ta) + ae | Os; (5.94) 

where 

Oi; 
  

os; = E[s}] ’ oi; = E{s?] ’ P= (5.95) TOs, 

and Ty is the duration time for the strong motion part (stationary part) of the design 

earthquake. 

5.9 Absolute Acceleration Response of a Floor 

For design of light secondary systems it is of interest to calculate the abso- 

lute acceleration of a floor and floor response spectra. The vector of absolute floor 

acceleration can be defined by 

{X*} = {X} + {Z}2,(t) (5.96) 

Since the acceleration vectors {X} and {X*°} are not included in the response 

vector {Y}, it is necessary to express them as functions of the quantities contained 

in {Y} to avoid the calculation of new responses. For this purpose, the relative 

acceleration vector {X} is obtained by derivating once with respect to time the part 
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of the response vector {Y} that contains the relative velocity vector. 

(%} = ft} = Sr (5.97) ~ dt = A 

where {Y} is the middle third part of {Y} containing just the elements n+1,...,2n. 

By considering equation (5.26), the response vector {Y} may be written as a linear 

combination of the principal coordinates, so the relative acceleration vector becomes 

(} = 4 salt) = DD 40 (5.98) 

where {}; is the middle third part of the j** right eigenvector. The decoupled 

equations (5.28) can be solved for z;(t) to obtain 

2;(t) = —[Aj z,(t) + 75 24(¢)] (5.99) 

which can be substituted into equation (5.98) to get 

3n 3n 

{X} = — DA; 25(t) {6}; — e6(t) D5 {4}; - (5.100) 
j=1 j=1 

Now, it will be proved that the factor 03", 7; {¢}; is equal to the influence 

vector {Z}. For this, consider the 3n vectors {¢}; which are linearly independent 

and form a base for the 3n dimensional space. Since any vector belonging to such 

space can be obtained as a linear combination of the base vectors, the following 

equation can be written 

{0} an 
{Z} ) =) 0; {9}; (5.101) 
{0} j=1 

where the coefficients 9; can be determined by premultiplying both sides of equation 

(5.101) by {¥}e [Li] 

{0} 3n 

{U}; [Zi] ty = 2 ei {P}e [Z1] {9}; - (5.102) 
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The left hand side of this equation is equal to the k'* participation factor (see equation 

(5.29)) 

fi to I] f 10 {10 
{VW}, | [0] [a4] [0] | 4 {2} p = {¥h. 4 [6] {2} p = %- (5.103) 

[o] fo) [J] {0} {0} 

On the other hand, by considering the orthonormal property given by equation (5.23), 

the right hand side of equation (5.102) equals the coefficient 9,. Therefore, 0, = + 

and the influence vector in equation (5.101) becomes 

{I} = oy {8}; (5.104) 
j=l 

which proves the initial hypothesis. 

Substitution of equation (5.104) into equation (5.100) produces the following 

expression for the relative acceleration 

{X} = - Soa, alt) {9}; — S(t) {2}. (5.108) 
j=1 

and a new substitution of this equation into equation (5.96) provides the final ex- 

pression of the absolute acceleration vector as a function of the eigenproperties and 

the principal coordinates 

3n 

{X°} = —) 7A; z;(t) {4}; (5.106) 
j=1 

To obtain the maximum acceleration of a floor, we will first obtain its mean 

square value. The correlation matrix [%*%(t,, tz)], corresponding to the absolute ac- 

celeration vector, can be defined by the following expected value by using equation 

(5.106) 

[¥9(t1,t2)] = E[{X°(t:)} {Xe(é2)}7] = >> Aj An {O}5 {P}f Elzj(t1) 20 (t2)] - 

(5.107) 
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The diagonal elements of this matrix defines the autocorrelation function of absolute 

acceleration for various floors. This autocorrelation function for the f** floor can be 

written as: 

KF (t, t2) = Elz$(t1) 2 (t2)] = x y Aj Ak Pf; P th E[z;(t1) 2e(t2)] - (5.108) 
j=l k=1 

Equation (5.30) allows to write the cross correlation of z;(t,) and z,(t2), required in 

equation (5.108) as 

ty ta 

Elz;(t1) ze(t2)] = 15 Ve [ [ elon) M(B) ELS, (7,) 2,(72)] dry dra « 

(5.109) 

Substituting for the correlation function of ground acceleration in terms of spectral 

density function we obtain: 

qt te oo . 

E[z;(t1) ze(t2)] = 75 Ye | [ / $,(w) ei(1—72) eAs(ts—71) e~An(42—-72) do dry dw . 
0 0 —0oo 

  

(5.110) 

For large ¢, and t2 and finite ¢, — t2 = At, it is simple to show that 

°° $,(w) elw(At) . = 4; . 111 Bles(t)2a(4)] = we | Asay Oeste) (5.111) 

From equation (5.111) one can identify the cross power spectral density function of 

the principal coordinates, here denoted by ®,,,,(w), as 

®.;2,(w) = Oy Je) ia)’ (5.112) 

Substituting equation (5.111) into equation (5.108) and setting At = 0, we obtain 

  

the mean square value of the absolute acceleration of the f* floor as: 

Xf, = [. $,(w) > ee ats| > atl (5.113) 
I= 

where q;; is defined as 

G43 =AjOs775. «Of =1,--..n , J=l,...,3n (5.114) 
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For a fixed value of f, there are 3n quantities gs;, of which n are real values denoted 

as q;; and the remaining 2n are n pairs of complex conjugate values denoted as 4}; 

and q};. Denoting the real and imaginary parts of 5, as 

q5; = by; +4Es;. (5.115) 

Substituting for the eigenvalues A; in terms of real and imaginary parts, the summa- 

tion factors in equation (5.113) can be written as: 

3n “ 
q c ¢ were rm = 374, Gi(w) + 2 SOHC (5.116) 

j=1 j=l j=1 

3n a n 
q cc ACC cc YA = a CF w) +2 Dol) HE w). (5.117) 

k=1 “k k=1 k=1 

where GS(w) and H§(w) have been defined by equations (5.41) and (2.37) and the 

complex quantity p}; is given by 

Py;(w) = CH + ib sj w , Cr = Wj; (63533 + Egjy/1 — 6? ) ; (5.118) 

Substituting equations (5.116) and (5.117) in equation (5.113) we obtain 

ah = ftw) (Sas co) +2 SoA (0 ) H5( ) 
j=l j=l 

x (s: if, O(w) + 2 WS (w) He(w)) dw. (8.119) 
k=1 k=1 

This expression is very similar to equation (5.44). It can therefore, be simplified 

similarly to express this in terms of frequency integrals and real quantities as: 

Xf = 2 » (1 5s0Js + Thpnj Ju) +2 dX 2 (THis + THe Te + Thu Te) 
j= = I= — 

+ 4 >> (C4, 17 + 4,73) a 

+ 8 s Dy alt G+ T+ THA Wi) (5.120) 
j=1 k=j+1 
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where J;, IZ, and J? are the frequency integrals defined by equations (5.77) and 

(5.78). For some commonly used spectral density function, they can be evaluated 

easily (see appendix G). They can also be expressed in terms of ground response 

spectra by utilizing the proper peak factor values, as explained before. The partial 

fraction coefficients T! tik ~ Tye have similar expressions as those corresponding to 

the coefficients T,., — Til! (see equations (5.51), (5.62-5.64) and (5.71)): mike mik 

A Ys A Mr 

T? ein = 995 Wk woe Tl = 4:9, — 5.121 ffjk = fz Ifk M+ 2% » +ffkej = 7 Ufk M+ 2% ( ) 

Titi = 2 { faa — (45)? G7 js (a5)? (5.122) 

ap > r r r -1 
_- O56 tk Nw, \ {4 By we (05)? _ [(A})? + wi]? } 

Fie = 2 { [we (482 — 2) — (A5)7) 455 Cre Agu? — wh [5s 4s" — (A5)? Gadrel } 
-1 

x {4 Bp wh (5)? — [(05)? + wi]? } (5.123) 

nlV ap ¢ nIt 

Th pj = 29556 pe — T7452 (5.124) 

TF ie = {2 tigsin E — 0, +2 (8325, —- 63) — [LF tik (0%, — 52)} Ax (5.125) 

Th pin = {fissin (2, — OF2) — 252 iy sie [1 — 0}, + 2 (0203, — B})| } wz? Aj 

(5.126) 

Ti jim = 645 Cp jk ~ TF pin Ve (5.127) 

ie = 543 bth — The (5.128) 

where the variables 2, and A;, were defined in equations (5.72) and (5.75) and the 

auxiliary variables Xfjz, ff fjk aNd Mp fjk are 

Xtik = (2B, wR — A) Crh + (2 Be we 5 — wy) bye. (5.129) 
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figsie = CysCpe (3, — 1) + 075, ;5yn [(1 — 487)03, + 48; 6.0% — 1 

+ 2wj Msn (5¢50 pe — 89643) (Be — Bin) (5.130) 

figsie = Crspe [1 — 46} + 48;Ax Qj, — 03,| + 03538 yn (1 — 03,) 

+ 25 (5550 5% — 54045) (Bj — BaQjx) - (5.131) 

To obtain the maximum value of floor acceleration, the root mean square value 

obtained from (5.120) can be amplified by its peak factor. The peak factor can 

be calculated by a suitable formula such as Davenport’s formula. Or to simplify 

the calculation all peak factors can be set equal to calculate the maximum floor 

acceleration in terms of ground response spectra. 

5.10 Floor Response Spectra 

To obtain floor response spectra, we need to obtain the maximum acceleration 

of a single degree of freedom oscillator subjected to the acceleration of the floor at 

its base. The equation of motion of a single-degree-of-freedom oscillator attached to 

the f** floor of a shear building can be written as 

Zo +2Bowot.+w2, = —25, (5.132) 

where the subscript o indicates variables that are associated to such oscillator, z, is 

the relative displacement of the oscillator with respect to the f* floor and z¢ is the 

absolute acceleration of such floor. 2% can be obtained from equation (5.106) 

Bt = SA ailt) dys (5.133) 
j=l 
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Thus, the equation of motion of the oscillator becomes 

an 

Zo t+ 2 Bow, Lo + w? 24 = SoA; z;(t) Pf; } (5.134) 

j=l 

and its solution for zero initial conditions is 

z(t) = y A; bs; f h(t _- T) z;(T) dr. (5.135) 

The absolute acceleration of oscillator o is defined as: 

ro 

Zo fo4+ 2% = —2B.Wo Lo — w? 2. (5.136) 

Using equation (5.136), we can define the autocorrelation formula of oscillator accel- 

eration as: 

Elzo(t1) 5(t2)] = w> E[zo(ts) zo(te)] + 482 wo Eleo(t1) 0(t2)] 

+ 2Bow, (E[zo(t1) 2o(t2)] + B[zo(ti)zo(t2)]) (5.137) 

where the four expected values will now be considered independently. 

By using equation (5.135) the auto correlation function of relative displacements 

becomes 

3n 3n _ _ 

Efwo(ti) to(t2)] = D2 > AG bes AR Ofh (5.138) 
j=1 k=1 

x | " [ ” ho(ts — 71) ho(te — 72) Elz;(71) ze(72)] dry dre - 

For stationary inputs, and response, E[z;(71) z.(72)] can be expressed by equation 

(5.111) as 

Elzs(r1) za(72)] = f Bazy(w) ef") dea (5.139) 

where ®,,,,(w) is given in equation (5.112). Substitution of equation (5.139) into 

(5.138) and considering large values of t; and t2, we can show that 

3n 3n 

Blzo(ts) 2alts)] = Yo DAs Fp Mn Gyn [Besa ww) eM) HG)? do , (8.140) 
j=l k=1 
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where HS(w) is defined as 

HS(w) = lw? —w? + 21 Aww] (5.141) 

The remaining three expected values in equation (5.137) can be obtained by 

appropriate derivations of equation (5.140) with respect to time. Thus 

3n 3n 

E[z2(t1) Zo(t2)] = = » » A; bf; Ak on f w * ®,,2,(w) elw(ti—t2) | H§(w)|? dw 

(5.142) 
j=1 k=1 

3n 3n 

Blao(tr) 2olta)] = Lo AG Ae Soe [ (Gee) Bases) eM) [SCP de 
(5.143) 

j=l k=1 

and 

3n 3n 

E[z.(ti) Zo(t2)] = D> 0 As OF Ak Oye [ (—iw) &,,.,(w) e-*) | HS(w) |? dw 

(5.144) 
j=l k=1 

Substituting the above equations in equation (5.137) and setting t; = t2 = ¢ 

we obtain the mean square value of the absolute acceleration of the oscillator as 

3n A 

o(w) (3 + 485 u3u*) dS y Or in. a Helw)P de 
(5.145) 

  
j=l 

Easy] = [4 

Where g;; and gs, were defined by equation (5.114). Substituting for the summation 

terms defined in equations (5.116) and (5.117), and after some rearrangement of 

terms we obtain 

J Bale) (oS + 463 02 u*) |HS(w))? E((#2)"] 

x [BF (w) + 2577 (w) + 409,(w) | dw (5.146) 

where 

(5.147) Lis) = 0d. a5; Te GG(w) GE (w) 
j=l k=1 
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BPE (w) = D> Hj B(W) Cf(u) E(w) + du d5slw) CE (w) HG(e) 
j=l k=1 

Be s(w) = > sys) BF p(w) Hj (w) Hyr(w) 
j=l k=1 

(5.148) 

(5.149) 

G5(w), Hf(w) and p}; have been defined by equations (5.41), (2.37) and (5.118) 

respectively. 

Since equations (5.146-5.149) have a structure similar to equations (5.44-5.47), 

the analysis used to simplify these equations can also be used here to simplify the 

expression for E[(£%)*] in terms of real quantities only and the frequency integrals. 

After some pages of algebra, the mean square value of the oscillator acceleration can 

be written as: 

7 . 

E{(#3)"] = > [BY] , 
t=1 

where 

EY = ~ > Si. Ji + Sf), Id + + Sei, o 
j=1 k=1 

EM) = > SY + SO 1 + SOL, 
j=l k=1 

E®)(w) = 2 ue SO) Js + SQ. 17 + SR 
j=1 k=1 

EBM) = 2) SOD rd SOD re + SOD 1d 4 SOD Ie, 
j=l k=1 

Bw) = 492 800 14 + $0 rr + $00 12 + SOP I, fijo~j Sf jj0 j jjoto 
j=1 

n-1 n 
6 18) rd 19 20) rd 21 

EY\w) = = 8 » » Sid + sie j y+ Sh), I, + + S02 o? 
j=1 k+j+1 

E™(w) = 8 > » SOD Td + SC) re + SOD 124 SOM Te. 
j=1 k=j+1 
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(5.153) 

(5.154) 

(5.155) 

(5.156) 
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J,, I/ and I’ are the frequency integrals defined by equations (5.77) and (5.78) with 

the appropriate change of subscripts. The factors of partial coefficients are defined 

in appendix A. As mentioned before, the frequency integrals can be expressed in 

terms of the spectral density functions or in terms of ground response spectra by 

using appropriate peak factor values. 

Thus, equations (5.150-5.157) provide the mean square value of the absolute 

acceleration of oscillator ”o” attached to the f** floor. To obtain the maximum value 

of the oscillator acceleration, Mz., the mean square value needs to be amplified by 

the peak factor of the acceleration. However, if the peak factors are assumed equal, 

the maximum values of the oscillator acceleration can be defined in terms of the 

ground response spectrum values as: 

7 

Maz © 4) >. [My], (5.158) 
i=1 

where 

MY) = >> > SH, M3 + SQ, M3, + SH, M2, , (5.159) 
j=1 k=1 

Mw) wz 3278), M2 + SE) M2, + 8) M2, (5.160) 
j=1k=1 

Myo(w) = 2 y° = $0), M2 + 80), M3, + SO), M2, (5.161) 
j=l k= 

M})(w) = 2 2, oO, M2, + SU) M2. + S09) M2 + SO2) M2, (5.162) 
ae 

Mw) 457 SO0 M3. + $08 M2, + 808) 424+ $09 M2, 5.163 
M3, (w) 2 fijo?™'d; + f3jo fjjo’™ "do + fijo ( . ) 

j= 

n-1 n 

MY(w) & 8 > DD SUD M2. + SUD M2. + SUD M2, + Sh) M2,, (5.164) 
j=1 k=j+1 

-1 +n 

MO (w) 85> 32 8) M2, + $2) M2, 4 62) M2 4 822 M2. (5.165) 
j=1 k=j+1 
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It should be noticed that the expression for the maximum value of the absolute 

acceleration of the oscillator ”o” is given in terms of: 1) the relative displacement 

spectrum M,,, which can be easily obtained from the pseudo acceleration spectrum, 

2) the relative velocity spectrum M,,, which can be approximated by the pseudo 

velocity spectrum, and 3) the relative displacement spectrum of the massless oscil- 

lator M,;. This last spectra is required whenever hysteretic behavior is involved in 

the analysis. 

5.11 Numerical Results 

In this section we present numerical results for two example problems of multi- 

story shear structures. The first structure is used to demonstrate the application of 

the response spectrum approach presented in the previous section. The formulation 

presented has also been used with the second structure, but in addition a numerical 

simulation study has also been conducted to ascertain the accuracy of the response 

calculated by the proposed equivalent linear approach. 

Figure 5.1 shows the schematic of the first structure. The mass, stiffness and 

damping ratios for this structure are shown in table 5.1. Also all four interstory stiff- 

ness elements are assumed to behave nonlinearly. The parameters of these hysteretic 

elements are given in table 5.2. 

The seismic input for this case is defined in terms of mean pseudo-acceleration 

and relative velocity response spectra of an ensemble of time histories. These spectra 

are shown in figure 5.2. We also need the spectra for the first order oscillator which 

is shown in figure 5.3 (A). 
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1       

WILMA SL H- 

Figure 5.1: Schematic of the 4-story shear building» 

Table 5.1: Structural characteristics of the 4-DOF structure 

  

4-DOF Structure 
  

Story Mass Elastic Stiffness Modal Damping Ratio 
  

  

        

kips-sec* /in kips/in (%) 
1 3 3200 mode 1: 5 

2 2 2400 mode 2: 5 

3 2 1600 mode 3: 5 
4 1 800 mode 4: 5 
  

Table 5.2: Hysteretic parameters of the 4-DOF structure 

  

  

  

    

Parameters 

Interstory| a |7n|/A}] B=C 
1 0.25) 1] 1 | (2u,)-° 

2 0.25} 1] 1 | (2u,)7? 

3 0.25/11 | (2u,)-? 

4 0.25/11 | (2u,)7?         
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Figure 5.2: Ground response spectra for the second order oscillator: (A) Pseudo- 
acceleration spectra, (B) Relative velocity spectra. 
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Figure 5.3: Spectra for the first order oscillator: (A) Ground response spectra for 

relative displacement, (B) Peak factors for relative displacements. 

146



The calculation of the linearization coefficients requires the use of the spectra for 

the peak factors of the pseudo-acceleration, relative velocity and first order oscillator 

response. These peak factor spectra were obtained from the mean and standard 

deviation spectra of the maximum responses using the following formulas derivated 

by Davenport [16]: 

  

_ pma(z) _ | fray, _ 0.8772 

NOx Cz 
Cnae(z) = OOOO ) p= . 

*) V6 \/2 In(p Ta) Oe 
These two equations define the mean and standard deviations of the maximum re- 

(5.167)   

sponse in terms of the response standard deviation o,, zerocrossing rate g and du- 

ration of the response process Tg. Knowing fmaz(z) Nd Omaz(z) for the input, and 

assuming a strong motion phase of 7 seconds, equations (5.166) and (5.167) were 

solved to obtain p and o,. These known values were then utilized to calculate the 

peak factor from equation (5.166). Figures 5.4 and 5.3 (B) show these peak factor 

spectra for the pseudo-acceleration, relative velocity and massless oscillator response. 

In the following set of figures we show the maximum values of story shears 

and story ductilities. To obtain the maximum value of a response quantity, the 

standard deviation of the quantity obtained form equation (5.80) was amplified by 

its peak factor value. The peak factor of a response quantity was also calculated 

using equation (5.166). 

Figure 5.5 shows the variation of the maximum shear force in each story with the 

maximum ground acceleration. The values of the ground response spectra have been 

appropriately scaled to vary the level of the maximum ground acceleration. The yield 

level for the interstory drifts is considered to be the same for all stories: u, = 0.4 in. 
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Figure 5.4: Peak factor spectra for the second order oscillator: A) Peak factors for 
pseudo-acceleration, B) Peak factors for relative velocity. 
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For comparison purposes, the figure also shows two straight lines that correspond 

to the interstory shears (for the first and fourth floor) of the same structure but 

with perfectly linear elastic behavior. As it is expected, the shear forces due to the 

inelastic behavior, follow curved paths which initial tangents (at zero acceleration) 

coincide with the straight lines of the elastic structure. It is seen that the structure 

has been excited well inside the plastic zone since the two tangent stiffness of the 

constitutive law intercept at the points with ordinates 1280, 960, 640, and 320 kips 

for the first, second, third and fourth floor respectively. This fact is best appreciated 

in figure 5.6 where the maximum interstory ductilities have been plotted against the 

maximum ground accelerations. The interstory ductility is defined here as the ratio 

between the maximum interstory drift and the yield level. 

In the iterative process, it is important to have some idea about the values of 

the linearization coefficients a; and b; Figures 5.7 and 5.8 show the different values 

of the linearization coefficients (at convergence) with increasing maximum ground 

acceleration. It is noted that for low levels of ground acceleration the structure 

behaves almost elastically. For those cases, the coefficients of linearization, denoted 

as a;,1 = 1,...,n possess values close to 1, whereas the 6; coefficients have values near 

to zero. As the stiffness element goes into inelastic range, the value of the coefficient 

a; becomes less than 1. After performing a parametric study, considering different 

shear buildings and different parameters of the Bouc-Wen model (with B; = C;,), 

it has been observed that the a; coefficients, for structures behaving well inside the 

plastic zone (high ductilities), never reach a value less than n/(n+1). The knowledge 

of these minimum and maximum values is especially useful to provide an adequate 

initial guess for a; at the start of the iteration process. 

149



  

  

  

  

  

      

  

  

        
    

    
  

  

  

        

          

3500 

Yield level = 0.4 in a 
ti Floor 1 
& 3000- 
wh 

a a 

i a hy 2500- ae we 

ann" 
g ge 

ee 
d 2000 Floor 1 ee 

« (Elastic case) rd ” 
eo Floor 3 

> Floor 2 “ . 
hy o worn” 
Oo ia eee 

~ 1500- , eee 

F eee 
~~ att 

& pare Floor 4 
g 1000" Le lds (Elastic case) 
J Be Floor 4|7 
g o , en ween 

om o a ,? Upon 

Bae [oo 
Pee 
a 

0 TTT oT 
0.0 0.5 1.0 1.5 2.0 

Maximum ground acceleration, g-units. 

Figure 5.5: Maximum shear force vs. maximum ground acceleration in various stories 
of the structure. 

150



  

  

  

    

Yield level = 0.4 in oo 
87 | v 

Floor 1} / 
    

  

        

  

    
  

7- er 

, ve 

6- / 4° Lf 

‘IFloor 2 

5- 7 

     Floor3 
    

  

  

    
  

M
a
x
i
m
u
m
 

i
n
t
e
r
s
t
o
r
y
 

d
u
c
t
i
l
i
t
i
e
s
 

      
4- 

Floor 4 
37 

2- 

1- 

0 a ee I [ l I { i { { i en | tf { { { i 

0.0 0.5 1.0 1.5 2.0 

Maximum ground acceleration, g-units. 

Figure 5.6: Maximum ductilities vs. maximum ground acceleration in various stories 
of the structure 

151



  

  

  

      

  

      

    

            

1.0 

Yield level = 0.4 ny 
\ 

NN 
\ 

~ Xs dj 0.9 ~ 

vA 
VN 
+N 

fs N\A 

0 Ny Floor 1 
2 WN 
a WON 

N 0.8- \ \ 

d os 
® AL 
E NS Floor 2 
om 

. A 

ms 

‘ ‘a 

NOY , \ ORS 

+ 0.77 SS “ “ty 

“SY “Ds 

0 ‘, Rey ey 
‘5 se, * Ane magne a et 

ey 
vA “SIT eaweweacscencsn cert!” 

x SI 

6 
] Wrenn - eon 

0 0 6- 

A ~4 

Floor3 Floor 4 

0.5 _       1 I to ' i i 

00 02 O04 O6 O8 10 12 14 #16 #18 2.0 
Maximum ground acceleration, g-units. 

Figure 5.7: Coefficient of linearization a; vs. maximum ground acceleration in various 
stories of the structure 

152



Figure 5.8 shows that the coefficients b; have negative values, but unlike the 

a; coefficients, the parametric study was unable to provide a recognizable minimum 

value. However, it can be said that in general they increase their absolute value as 

the structure penetrates into the plastic zone. 

Figure 5.9 shows the variation of the interstory shear forces with the yield level 

when the structure is subjected to the same maximum ground acceleration of 0.2 g. 

This is equivalent to change the constitutive law of the material. The purpose of 

doing this, is to check, at least qualitatively, the behavior of the equivalent linear 

structure. That is, for large values of yield level, the structure should behave as a 

linear elastic structure, and as the yield level decreases (or the ductilities increase) the 

structure should present plastic characteristics, such as a decrease in the maximum 

interstory shear forces. Both tendencies are clearly shown in this figure, where the 

shear forces approach the value corresponding to the elastic structure for high yield 

levels and they diminish as the ductilities increases (or yield levels decreases). 

Figure 5.10 is basically the same figure 5.9 where now only the shear forces for 

the first and fourth floor have been plotted. The purpose of the figure is to show 

the different levels of shear forces as the exponent parameter 7 varies. As the yield 

levels increase the structure approaches the behavior of the corresponding elastic case 

(horizontal lines), but the approach is faster as the exponent parameter increases. 

This is in agreement with the effect of the exponent parameter of the Bouc-Wen 

model (see appendix E). However, for low yield levels (high ductilities) the curves 

cross and higher shear forces are provided by the lower exponents. 

Next we present same results for the same structure but with nearly elasto- 
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plastic behavior. This is achieved by choosing a small value for the post-yield stiffness 

parameter a = 0.05 and a high value for the exponent 7 = 9. The hysteretic 

parameters for this structure are shown in table 5.3. The yield level parameter u, 

has been assumed to be the same for different stiffness elements. The seismic inputs 

defined in terms of a Kanai-Tajimi type of spectral density function as well as ground 

response spectra have been used. 

Table 5.3: Hysteretic parameters of the nearly elasto-plastic 4-DOF structure. 

  

  

  

  

Parameters 

Interstory| a |4|A| B=C 
1 0.05 |9}] 1 | 0.5 us” 

2 0.05;9) 1/05 u,? 

3 0.05) 9] 1 | 0.5 us? 

4 0.05; 9}; 1 | 0.5 u,?             

The results shown in figures 5.11, 5.12, 5.13, 5.14, and 5.15 are for the structure 

with exponent parameter 7 = 9. The seismic input for these results is again defined 

in terms of the ground response spectra. 

Figure 5.11 shows the maximum interstory ductility ratios as the maximum 

ground acceleration increases. The yield level is u, = 0.4 in. This figure is similar to 

figure 5.6 but for different hysteretic parameters. 

Figure 5.12 (A) shows the maximum accelerations of various floors for increas- 

ing levels of maximum ground acceleration. The story yield level was fixed at 0.4 

in. Decreasing slope of the curves for various stories indicates the softening of the 

structure due to yielding at higher intensities of the ground motion. Part (B) shows 

again the same response, but now for a fixed level of ground motion intensity (0.4 

g) and increasing value of yield levels. The response increases asymptotically to its 
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elastic response level as the yield level is increased. Thus, yielding in the supporting 

structure is seen to reduce the maximum acceleration which a supported secondary 

system will experience. 

Figures 5.13, 6.14 and 6.15 show the frequency content of a floor acceleration 

in terms of floor response spectra for equipment damping ratio of 0.005. Figure 5.13 

shows the floor response spectra obtained for floor 1, whereas figure 5.14 shows the 

floor response spectra for floor 4. The different yield levels are indicated by the 

letter Y. The elastic spectra is seen to provide the highest peaks always. For the 

lower floors, however, the valleys in the elastic spectra are also the lowest. Thus, the 

secondary systems at some frequencies may even experience a higher level of response 

when the supporting structure yields. But in general, the highest peaks in the floor 

response spectra are reduced by yielding. The floor spectra for decreasing yielding 

levels (increasing ductilities) are seen to flatten out, showing the effect of increased 

damping provided by the hysteresis cycles. 

In figures 5.15 (A) and (B) we plot the ratio of the inelastic to elastic floor 

response spectra for floors 1 and 4 respectively. Several yielding levels are consid- 

ered. It is seen that the inelastic floor response spectrum values are not always less 

than elastic floor spectrum values as ratios greater than one are also seen for some 

frequencies. 

Figure 5.16 shows the root mean square value of the floor response spectra for 

floor 2 obtained for a Kanai-Tajimi type of spectral density function. For this par- 

ticular case the exponent parameter has been changed to 7 = 3. Even though the 

ground motion is specified in a different form, this figure presents similar character- 
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istics to those of figures 5.14 and 5.15 for ground response spectra. 

Next we present the results for a five-story shear building used in the work by 

Sewell et. al. [42]. Only the first interstory (bottom element) is considered to behave 

nonlinearly. The remaining elements were modeled as elastic by choosing a very high 

yield level. The corresponding structural characteristics and hysteretic parameters 

are given in tables 5.4 and 5.5 respectively. 

Table 5.4: Structural characteristics of the 5-DOF structure. 

  

  

  

  

      

5-DOF Structure 
Story Mass Elastic Stiffness | Modal Damping Ratio 

lb-sec* /in lb/in (%) 

1 1 4500 mode 1: 5.00 

2 1 4500 mode 2: 5.00 

3 1 4500 mode 3: 6.68 

4 1 4500 mode 4: 8.17 
5 1 4500 mode 5: 9.15     
  

Table 5.5: Hysteretic parameters of the 5-DOF structure. 

  

  

  

    

Parameters 

Interstory a n| A B=C 
1 0.10 | 3] 1 | (0.5(u,)-% 

2 Elastic | - | - - 

3 Elastic | - | - - 

4 Elastic | - | - - 

5 Elastic | - | - -         
  

The base input for the results of this structure was also defined by ground 

response spectra. The pseudo-acceleration, relative velocity and first order oscillator 

response spectra are shown in figure 5.17 and 5.18 (A). They represent the mean of 

the maximum values obtained for 100 synthetically generated accelerograms. These 
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acceleration time histories are also used in the simulation study later on. The peak 

factor spectra for these inputs were also obtained as described previously. The strong 

motion phase duration used to calculate the peak factor values from equations (5.166) 

and (5.167) was 11 seconds. They are shown in figures 5.19 and 5.18 (B). 

Figure 5.20 shows the normalized modal damping ratios of the equivalent linear 

structure with the variation of the yield level (ductility) when the maximum ground 

acceleration is 0.53 g and the exponent parameter is 3. The damping ratios have been 

normalized with respect to the five modal damping ratios corresponding to the elastic 

structure and given in table 6.3. It is observed that as the yield level decreases, the 

equivalent damping ratios increase. These increments are logically expected since 

the statistically equivalent linear structures have to dissipate energy to approach the 

behavior of the real nonlinear structures, and the only form of dissipation allowed 

to linear structures is through viscous damping. Also it is observed that the lower 

modes are associated with larger increments of the damping ratio values. This is 

due to the fact that the only nonlinear element is in the first interstory and its 

corresponding drift is mainly due to the contribution of the first mode. 

Figure 5.21 shows the behavior of the equivalent normalized frequencies with 

respect to the yield level. They have been normalized with respect to the frequencies 

of the elastic case. It can be seen that they decrease as the behavior of the structure 

change from elastic to plastic, but for high ductilities ratios (low yield levels) they 

began to increase again. For some structural cases and some model parameters, they 

become even higher than the frequencies due to the elastic behavior. 
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Simulation study 

The purpose of this simulation study is to compare the design response 

obtained by the proposed response spectrum approach with the average of maximum 

responses obtained by 100 time history analyses of the nonlinear equations of mo- 

tion. The study used the same 100 artificially generated time histories of ground 

acceleration which were employed to generate the ground response spectra used to 

obtain the results in figures 5.20 and 5.21. 

Three different cases of structures were analyzed by time history analysis: 1) 

the perfectly elastic case, 2) a moderate plastic case with ductility ratio equal to 

2, and 3) a highly plastic case with ductility ratio of 4. To achieve this ductilities, 

several trial and error cases were considered with different yield levels till the desired 

maximum ductility ratio was obtained. The maximum ductilities were determined 

by using the assumption of equal peak factors. Thus, for the first interstory, the 

maximum ductilities of 2 and 4 corresponded to yield levels of u, = 0.24585 and 

uy = 0.13574 inches respectively. Table 5.6 provides the equivalent frequencies and 

damping ratios corresponding to the stochastically equivalent linear structures 

First, we compare the interstory shear responses. The design values provided by 

the proposed approach were also calculated by assuming equal peak factors. There- 

fore, equation (5.82) has been used. The corresponding components of the linear 

transformation vector R can be deduced form equation (5.88). Thus, the maximum 

shear forces were calculated by the following expression: 

M?, = K {a? (P? E[z?]—2P? Elz:2;-1] + P?, B[z?_,}) (5.168) 
ty 

+ 2a;(1-—a) (P2 Elzzu;] — P?, Elzs-svi]) + (1 — a4)? P2 E{v?]} ; 
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Table 5.6: Equivalent frequencies and damping ratios of the stochastically equivalent 

linear structures 

  

  

  

  

  

Modal Characteristics 
Case | Mode | Equiv. Frequency | Equiv. Damp. Ratio 

Hz % 
Elastic 1 3.039 5.00 

” 2 8.870 5.00 

” 3 13.983 6.68 

” 4 17.963 8.17 

” 5 20.488 9.15 

Duct. 2 1 2.987 8.69 

” 2 8.729 6.07 

” 3 13.834 7.14 

” 4 17.868 8.35 

” 5 20.459 9.12 

Duct. 4 1 2.920 22.06 

” 2 8.547 9.41 
” 3 13.661 8.32 

” 4 17.770 8.73 

” 5 20.432 9.27           
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where the amplified expected values are given by equation (5.85). 

Table 5.7 lists the maximum values and the relative percent error of the in- 

terstory shears for floors 1, 3 and 5 obtained by the proposed response spectrum 

approach and by the time history analyses. The relative percent error is defined as: 

(Resp. spec. value) —(Time hist. value) 

(Time hist. value) 
  Percent error = 100 (5.169) 

Also, table 5.7 contains a column with relative errors marked with a superscripted 

asterisk. These errors were calculated by replacing the quantities P? E[v?] by the 

square of the yielding levels when the former were bigger than the latter. This is 

a clear error introduced by the Gaussian equivalent linearization since the auxiliary 

variables should not take values greater than its ultimate value. For models with 

parameters A; = 1 such limiting values are equal to the yield levels of the principal 

variables. 

Table 5.7: Comparison of interstory shears obtained by the proposed response spec- 

trum approach and by time history simulation 

  

  

  

  

  

Mazimum Interstory Shears 

Case | Interstory | Response | Time | Relative | Relative 

Spectra | History| Error | Error* 

lb lb % % 
Elastic 1 2210 2102 5.1 - 

” 3 1640 1587 3.3 - 
” 5 619 608 1.8 - 

Duct. 2 1 1742 1283 35.7 —0.2"* 
” 3 1287 1057 21.7 21.7* 
” 5 487 490 —0.6 —0.6* 

Duct. 4 1 1124 915 22.8 —13.0* 
” 3 834 729 14.5 14.5* 
” 5 320 385 —17.0 | —17.0*               
  

It is observed that the responses calculated by the response spectrum approach 
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present differences with the values obtained by the time history analysis. Even 

for the elastic cases, some differences, though small, still persist. In general the 

response spectrum approaches formulated with the assumption of large stationary 

strong motion phases, provide conservative values for elastic responses since the real 

and artificial time histories have shorter strong motion phases. From the analysis of 

just this example it is difficult to predict tendencies for the plastic cases since in some 

stories the error is bigger for ductility 2, and in another floors it is bigger for ductility 

4. Also the sign of the error changes. However, after introducing the above mentioned 

limitation for the value of P? E[v?], the error associated to the hysteretic element of 

the first interstory decreases. This suggests that the error is due to the assumption 

of Gaussianness in the probability density functions of the nonlinear structure. As 

expected, the errors at the interstories 3 and 5 do not diminish because they are 

modeled to behave linearly. Since no adjustment to limit the value of P?, E[vj] are 

needed for these stories, the errors in the shear values are not affected. 

Finally, the floor response spectra calculated by the proposed approach are 

compared with those floor spectra generated by the time history analysis. In all cases, 

the floor spectra have been calculated for equipment with 5% of critical damping, 

and three different structures have been considered: 1) the elastic structure, 2) the 

structure with ductility 2, and 3) the structure with ductility 4. Figures 5.22, 5.23 

and 5.24 show the floor spectra for stories 1, 3 and 5 respectively. Part (A) of these 

figures shows the spectra calculated by the proposed response spectrum approach 

whereas part (B) shows the spectra calculated by the simulation analysis. 

As it was observed by Sewell et. al. [42] the floor spectra of nonlinear structures 

at the high frequency range may show peaks higher than the peaks associated to 
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Figure 5.22: Floor response spectra of absolute acceleration for floor 1 (equip. damp. 

ratio = 5%). (A) Stochastic equivalent linearization, (B) Time history analysis. 
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Figure 5.23: Floor response spectra of absolute acceleration for floor 3 (equip. damp. 

ratio = 5%). (A) Stochastic equivalent linearization, (B) Time history analysis. 
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Figure 5.24: Floor response spectra of absolute acceleration for floor 5 (equip. damp. 

ratio = 5%). (A) Stochastic equivalent linearization, (B) Time history analysis. 

178



elastic structures. This is, however, not captured by the proposed approach. This 

fact can be better seen from the figures 5.25, 5.26 and 5.27, where we have plotted the 

inelastic to elastic spectrum values for the three floors. It is seen that the inelastic 

spectra calculated by the proposed approach are always lower than the elastic spectra 

in the high frequency range. 

In table 5.8 we compare the magnitudes of the floor spectra obtained by the 

proposed approach and time history analysis for the three floors. Table 5.8 shows 

the percent error at the vicinity of the first two peaks. These errors have been 

calculated by using equation (5.169). It can be noticed that, for the low frequency 

range, that is for the first peak of these spectra, the magnitudes calculated by the 

proposed approach show slightly conservative results for ductility 2, and a small error 

for ductility 4. However, for peaks in the high frequency range, the results provided 

by the proposed approach differs from the time history results. 

It is believed that the main cause of error in the stochastic equivalent lineariza- 

tion technique is due to the assumption of Gaussianness in the density functions of 

the nonlinear systems. Such assumption directly affects the characteristics of the 

equivalent linear system since the linearization coefficients are calculated as func- 

tions of the response statistics, which are assumed to be Gaussian. In figures 5.28 

and 5.29 we compare the joint density functions of the normalized auxiliary variable 

(with respect to the yield level) and the normalized interstory drift velocity (with 

respect to its maximum value), obtained in the simulation study, with the assumed 

Gaussian distributions. Part (A) shows the density function obtained in the sim- 

ulation study whereas part (B) shows the gaussian density function determined by 

the statistics of the equivalent linear system. The assumed Gaussian distributions 
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Figure 5.25: Floor response spectra ratio of absolute acceleration for floor 1 (equip. 

damp. ratio = 5%). (A) Stochastic equivalent linearization, (B) Time history anal- 
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Table 5.8: Percent error in the floor spectra at the vicinity of the first and second 
peaks 

  

PERCENT ERROR NEAR FIRST PEAK 

Freq. Floor 1 Floor $ Floor 5 

Hz | Elas.| Du. 2| Du. 4| Elas. | Du. 2| Du. 4 | Elas. | Du. 2| Du. 4 

2.432 | 3.5 7.8 -2.9 5.4 13.0 -0.6 6.0 14.0 0.1 

2.680 | 9.0 13.4 2.2 12.8 | 19.1 1.5 13.4 | 20.7 1.6 

2.928 | 14.0 | 15.9 5.8 18.8 | 12.7 -0.2 | 19.4 | 12.3 “1.5 

3.176 | 10.1 | 34.3 14.5 | 14.4 | 32.2 1.8 15.0 | 30.8 -1.1 

3.424 | 2.4 22.1 14.5 3.5 15.5 -1.9 3.7 13.6 -5.5 

PERCENT ERROR NEAR SECOND PEAK 

Freq. Floor 1 Floor 3 Floor 5 

Hz | Elas. | Du. 2| Du. 4| Elas. | Du. 2| Du. 4| Elas. | Du. 2| Du. 4 

8.384 | 0.4 | -41.5 | -44.6 | -3.6 | -30.0 | -48.4 | -5.1 | -38.3 | -46.8 

8.632 | 0.9 | -43.5 | -32.2 | -2.9 | -41.3 | -40.3 | -4.2 | -44.1 | -37.6 

8.880 | 0.8 | -16.9 | -31.6 | -2.4 | -16.6 | -35.0 | -4.0 | -21.5 | -35.3 

9.128 | 0.2 -27.3 | -35.8 | -2.9 | -21.1 | -35.1 | -4.3 | -28.4 | -37.9 

9.376 | -1.0 | -31.5 | -38.5 | -3.4 | -23.1 | -35.8 | -5.8 | -31.1 | -39.9 

  

  

  

            
  

  

  

  

                        

are shown truncated at the limiting value of the auxiliary variable for comparison 

purposes only. The actual range of this variable is, however, unlimited. Figure 5.28 

is for the first interstory element when the ductility ratio is 2, and figure 6.33 is 

also for the first element but when the ductility is 4. It is seen, especially in figure 

5.29, that the actual density functions of the nonlinear system strongly differ from 

the assumed Gaussian ones. They differ not only on the shape but also on their 

domains. 

5.12 Conclusions 

The response of shear buildings with material nonlinearities has been studied. 

A response spectrum method is presented to obtain the force and displacement re- 
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Figure 5.28: Joint probability density functions for the normalized auxiliary variable 

and the normalized interstory drift velocity for floor 1 and ductility 2 
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Figure 5.29: Joint probability density functions for the normalized auxiliary variable 
and the normalized interstory drift velocity for floor 1 and ductility 4 
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sponse of nonlinear primary structures. The formulation has also been provided to 

calculate the maximum floor acceleration as well as the floor response spectra. An 

iterative stochastic linearization is used to provide equivalent linear systems associ- 

ated with the nonlinear structures. The linearized equations of motion are solved 

by the successful utilization of a generalized modal analysis approach which allows 

the use of ground response spectra in the calculation of response. The proposed 

response spectrum method is based on the classical mode displacement combination 

rule of structural dynamics, and employs the commonly used pseudo-acceleration 

and relative velocity ground response spectra plus a new spectrum associated with 

the response of a first order oscillators. 

Several numerical results have been presented to study the response character- 

istics of the equivalent linear systems. It has been observed that the behavior of 

such nonlinear systems is in general well described by the resulting equivalent lin- 

ear structures. To facilitate the initial guess of the linearization coefficients, upper 

bounds have been provided to both of them, and also a lower bound to the a; coef- 

ficients is presented in terms of the exponent parameter 7 of the constitutive model. 

The Newton’s method have been successfully used, in addition to the fixed point 

iterations, to improve the convergence rate of the iterative process. 

To examine the accuracy of the proposed equivalent linear response spectrum 

approach, a simulation study has been performed. It involved 100 artificially gen- 

erated earthquakes, which were applied to three different structures with the same 

characteristics but with different degrees of plasticity. The comparison of the re- 

sponses obtained by the equivalent linear and by the time history analysis shows 

that there are discrepancies in the two values, although qualitatively the two re- 
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sponses are similar. In majority of cases, however, the equivalent linear approach 

was seen to provide a more conservative value of response. 

The proposed response spectrum method to generate in-structure response spec- 

tra has also been compared against the simulation study. In these cases the proposed 

approach provided conservative results for equipment in the low frequency range. 

However, in the high frequency range the, responses were in general lower than the 

results obtained by the simulation study. 

An analysis of the assumptions adopted by the proposed approach suggests that 

the main cause of the observed errors is most probable due to the assumed shape 

of the probability density functions used in the linearization process. It is presumed 

that the errors may be decreased by employing a suitable non-Gaussian linearization 

technique. 

Finally it is relevant to mention that the proposed approach is computationally 

very efficient, especially when compared against the time history analyses. This 

suggests that the proposed method can be used as a powerful tool for the iterative 

design tasks. However, if a more accurate value of response is desired then time 

history analysis with several ground motion accelerograms may be necessary. 
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Chapter 6 

Response Spectrum Method for 

2D Frames with Plastic Hinges 

6.1 Introduction 

In this chapter, we present a formulation to incorporate the nonlinear plastic 

hinges which can develop at the joints in two dimensional frames during a strong 

seismic excitation. This formulation is used to develop a response spectrum method 

employing the general modal analysis approach presented in chapter 6. 

The main difference between this chapter and chapter 5 are found on the struc- 

tural localization of the inelastic zones. The potential hinges are assumed to be 

developed at specific regions of the different frame members. On the other hand, 

the shear building elements were considered to have the inelastic characteristics dis- 

tributed along all their length. 

The incorporation of plastic hinges results in a softening model of the total 

structural stiffness, which will depend not only on the level of deformation but also 
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on the load history. This hysteretic behavior is due to the hysteretic characteristics 

assigned to the plastic hinges. Again the Bouc- Wen (9, 56, 57] constitutive law is used 

to model the inelastic behavior of plastic hinges. The nonlinear equations of motion 

are linearized by the stochastic linearization approach. The resulting linearized gov- 

erning equations are generalizations of the works by Casciati and Faravelli [11, 12] 

and Baber and Wen [8]. The linearization process is iterative involving repetitive 

modal analyses and combinations of modal responses. Thus, the methodology used in 

this chapter is closely related to that applied on chapter 5. However, the formulation 

to include the plastic hinges and the governing equations are quite different. 

6.2 Equations of Motion 

The equations of motion of an n-degree-of-freedom structural frame with in- 

elastic stiffness, and subjected to ground acceleration Z,(t), can be written as: 

[M] {X(t)} + [C] {X(¢)} + [K]. {X(é)} = —[M] {Z} 2,(¢) (6.1) 

where {X(t)} is the vector containing the n nodal displacements with respect to the 

undeformed state fixed to the ground, [M] and [C] are the (n x n) mass and damping 

matrices respectively, [K], is the (n x n) inelastic tangent stiffness matrix, and {Z} 

is the influence vector. In this chapter, all the quantities related to inelastic behavior 

will be identified by a subscripted asterisk. 

It is assumed that the mass and damping matrices remain linear and constant 

during all the deformation process. In particular, a lumped mass or a consistent mass 

matrix can be used. Also, the system can be modeled by a classical or a non-classical 

damping matrix. The term involving the inelastic stiffness matrix [K]., provides the 
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only inelastic restoring forces of the present model: 

{F(t)}. = [K].{X(é)} (6.2) 

To model the restoring forces due to inelastic stiffnesses, their behavior is com- 

pared against that of forces corresponding to perfectly elastic stiffness. It can be 

observed that, for a fixed displacement configuration, an elastic structure generates 

larger restoring forces than an structure with the same geometric characteristics but 

with inelastic behavior. Therefore, the inelastic restoring forces corresponding to a 

particular set of displacements, may be calculated by an appropriate reduction of 

the elastic forces associated to the same displacements. The present study models 

these reductions in the forces by considering the development of plastic hinges at 

specific sections of the structural elements. That is, any rotation at the hinges in- 

volves a relaxation of the deformations associated to the remaining elastic part of 

the element. Consequently, the restoring elastic forces are reduced to become the 

inelastic restoring forces. In this chapter, the rotations at the plastic hinges are often 

called tmposed rotations because their effects are equivalent to the effects caused by 

imposing hypothetical external forces. 

The inelastic restoring forces, thus, can be expressed by the difference between 

the elastic forces and those forces associated to the imposed rotations as: 

{F(t)}. = [K] {X(¢)} - [PI {9}, (6.3) 

where [K] is the (n x n) constant elastic stiffness matrix. [P] is an (n x m) matrix 

relating the m imposed rotations, one at each plastic hinge, with the total n nodal 

forces. {O(t)} is the vector containing the imposed rotations at the m plastic hinges. 
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The equations of motion can be rewritten by substituting equation (6.3) into 

equation (6.1) as: 

[M] {X(t)} + [C] {X(¢)} + [K] {X(#)} — [P]{O(e)} = —[M]{Z}4,(t). (6-4) 

The vector {O(t)} incorporates m additional unknowns, which not only depend on 

the time, but also on the amplitude of the excitation, on the material characteristics 

of the plastic hinges, and on the load history. Consequently, the problem requires m 

additional constitutive equations to become determinate. 

To develop the extra equations it is necessary to use some concepts concerning 

the mechanics of the frame element with potential hinges. Therefore, the follow- 

ing section presents the matrix equations that define such element, as well as the 

procedure to assemble the different element matrices to obtain the global governing 

equations. 

6.3. Plane Frame Element with Plastic Hinges 

The well known two dimensional elastic frame element is modified here to 

incorporate two potential plastic hinges. However, a similar three dimensional el- 

ement can be easily developed by following the concepts expressed in this section. 

To simplify the analysis, the hinges are assumed to be localized at both ends of the 

element. However, some eccentricities can be allowed by adding simple geometric 

considerations. Also, the element requiring just one potential hinge (cantilevered 

beam), are not explicitly developed in this work, but it can easily be done following 

the formulation given for the element with two potential hinges. 
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The element mass matrix and the element damping matrix are assumed to re- 

main constant during the inelastic process and their formulation is available in several 

books on structural dynamics. In particular, the damping matrices corresponding to 

the numerical examples of this chapter, were obtained by using the eigenproperties 

of the undamped linear structure and assumed damping ratios (see equation (D.6) 

in appendix D). 

Some known characteristics of the 2D elastic frame element are recalled in the 

next subsection, and the formulation leading to the inelastic nodal forces as well as 

to the constitutive equations is presented in the subsequent two subsections. 

6.3.1 2D Elastic Frame Element 

For the 2D elastic frame element, the relation between nodal forces and nodal 

displacements through the elastic stiffness matrix is well known. However, the rela- 

tion between equivalent efforts and the corresponding axial and flexural deformations 

are not commonly used. Since the latter are employed in this work to formulate an in- 

elastic element, it is considered appropriate to provide in this section all the relations 

among forces, displacements, efforts and deformations of the elastic element. 

Figure 6.1 (A) shows a 2D elastic frame element at an angle y* with the global 

X axis. The element is denoted as e, and it possesses three degrees of freedom at 

each node, two translational and one rotational. They are denoted as z{, xj, and z§ 

at the initial node, and 2§, z§, and 2§ at the final node. The (6 x 6) elastic stiffness 
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matrix [k*] of the e” element can be written in standard form as: 

kf 
kg kg Symm. 

«) _ | Be he Os 

ke —ky —he ke ky 
he kg REG 

where the six different quantities required in equation (6.5) are 

ki = A* E°(L*)* cos? y* +12 E* I*(L*)? sin’ ¢* , (6.6) 

kj = A® E*(L*)~* sin? y* + 12 E* I*(L*)-* cos’ y* , (6.7) 

ks = 4E°I°(L*)"?, (6.8) 

kg = (A° Et (L*)-* — 12 B* I*(L*)-*) cosy* sing*, (6.9) 

kf = 6E*I*(L*)~? cos¢® , (6.10) 

ke = —6E°I*(L*)~? sing*. (6.11) 

The element quantities A‘, J*, E* and L* are, respectively, the cross section area, the 

area moment of inertia, the modulus of elasticity and the length of the e** element. 

Here it is assumed that shear deformations are negligible. 

Figures 6.1 (A) and (B) show the six nodal displacements zf, and the corre- 

sponding six nodal forces ff. The elastic constitutive relation between these nodal 

quantities is given by 

{f°} = [A] {2°} . (6.12) 

However, the element only possesses axial and flexural deformations, and just three 

quantities are needed to completely determine its deformed state. Those are the 

axial deformation d4 (along the length), the flexural deformation dh, (rotation), at 
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its initial node, and the flexural deformation dp,,, at the final node. The deforma- 

tion vector {d*} groups these three quantities in that order. Figure 6.1 (C) shows 

the element e in its undeformed and deformed configurations, as well as the nodal 

displacements and the equivalent nodal deformations. 

For small deformations, which also implies a small change of the element di- 

rection (small angle Ay‘), the deformation vector is linearly related to the vector 

containing the six nodal displacements. Such linear relations are now deduced for 

each deformation quantity. The quantity d4,, which equals the difference in length 

between the deformed and the undeformed element, can be approximated by the 

total displacement of the final node minus the total displacement of the initial node, 

both projected in the direction of the undeformed element. Thus, 

d4 * Liesormea — L° = 24 cosy’ + z¢ siny* — 2} cosp*— zp sing®. (6.13) 

The deformation dh. is equal to the rotation of the cross section at the initial node 

with respect to the deformed direction of the element. From figure 6.1 (C), the 

following relation can be written 

dp, = 73 — Ay’. (6.14) 

Similarly, the rotation of the section at the final nodes is 

de, = 2§-Ag*. (6.15) 

The small angle Ay* can be expressed in terms of the nodal displacements by using 

simple geometric relations. Thus, from figure 6.1 (C) it can be inferred that 

Yy+25-Yi- 23 Ag* + tan y* 
€ e) — ~ 6.16 

tan(Ay + y ) Xx; + xf _ xX; —_ xf 1 —_— Age tan ye ( ) 
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Figure 6.1: Two dimensional elastic frame element: (A) Nodal displacements, (B) 
Nodal forces, (C) Undeformed and deformed states 
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where (X;, Y;) and (X;, Y;) are the global nodal coordinates of the undeformed 

element. In this equation, (tan Ay*) has been approximated by Ay*. The right 

hand side of equation (6.16) can be multiplied and divided by (cos y*) to get 

Yy+25—Yi—23 _ Ay® cosy*+siny*® (6.17) 

Xz+ 2g — X; — 2f ~ cos yt — Aye sin yt 
  

  

After some rearrangement, and taking into account the following identities 

(¥) — ¥;) cos y* — (Xy — Xj) siny* = 0, (6.18) 

(Xs — X;) cosy® + (Y; — Y;) siny® = L*, (6.19) 

equation (6.16) can be rewritten as: 

(x5 — 23) cosp® + (24-24) sing’ ~ Ap® [(z4 — 2{) cos y* + (25 — 25) sing’ + L*] , 

(6.20) 

With the help of equation (6.13), equation (6.20) can be expressed in term of d% as: 

Ag* + Ay* di (L*)"* & [(2§ — 23) cos p* — (2§ — 2{) sing’] (Z*)"*. (6.21) 

Since Ay* di (L*)~! is a second order differential, it can be neglected to get 

Ay! ~ [laf — 24) cos y* — (af — 2f) sing] (Zt)? (6.22) 

Substitution of equation (6.22) into equations (6.14) and (6.15) provides the expres- 

sions of dp. and dj, as linear functions of the nodal displacements: 

di, = 2 — (ef — 2$) cosy" — (2-24) sing*] (Z)?, (6.28) 

and 

dp, = & — [(xg — 23) cosy — (24 — 2}) sing] (L*)"*. (6.24) 
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Equations (6.13), (6.23) and (6.24) can be written in matrix form as 

vy 

d%, — cos y* —sing® 0 cos y* sing’ 0 2 

de = | BE WBE Of yar 28) qr, Le Le Or a t rg 

26 

or in a shorter notation 

{a} = [9°] {=*} , (6.26) 

where [g‘] is the (3 x 6) geometric matrix containing the constant coefficients neces- 

sary to linearly transform the nodal displacements of element e into the corresponding 

element deformations. Equation (6.25) also appears in reference [23]. 

Each of the three element deformations can be considered to be caused by an 

associated effort. d4 is associated to the axial effort (force) €4, dp. is associated to 

the flexural effort e4,, (moment), and dh, is associated to the flexural effort (moment) 

€,- The element vector denoted {e*}, contains these three efforts, which are shown 

in figure 6.2 (B). 

The elastic constitutive relation between deformations and efforts can easily be 

e% k=O 0 d, 
ey, $= | 0 ke kE/2 dz. \ , (6.27) 
eM, 0 kg/2 kg Ry 

where kg is defined by equation (6.8), and k4 is the axial stiffness of the element 

deduced to get 

ki, = A° E*(L*)"). (6.28) 

The (3 x 3) matrix in equation (6.27) is denoted as [k*] and is the axial-flexural 

stiffness matrix of the element. So, by using a shorter notation, equation (6.27) can 
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be written as 

{e*} = [] {a'}. (6.29) 

The two matrices [k*] and [k*] are related. The mathematical relationship can 

be obtained by considering the total internal energy for element e, which is the same 

for an element subjected to the six nodal forces or to the three equivalent element 

efforts that produce the same deformations. See figure 6.2 (A) and (B). Thus, 

1 e\T s ge 1 T sine Internal energy = 5 {2 {ft} = 5 id} {e°} , (6.30) 

where equations (6.12) and (6.29) can be used to get 

{x*}? [hk] {2°} = {a°}” [A] {a}. (6.31) 

In this equation, {d°} (and its transpose) can be substituted by the expression given 

in equation (6.26) (and its transpose) to produce 

{2°}? [k*] {2°} = {2°}? [9°]? [F*] [o] {2°} . (6.32) 

From equation (6.32) we can infer that 

[k*] = [9] [FJ [9]- (6.33) 

Finally, the vectors {e°} and { f*} can also be explicitly related. For this purpose 

consider equation (6.29), and substitute the vector {d°} by the expression given in 

equation (6.26) to get 

{e"} = [h*] [9°] {2°} . (6.34) 

el? Premultiplication by [g*]* gives 

lg*]” {e°} = [9°] [A] [9°] {2°} = [a]{2°} , (6.35) 
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Figure 6.2: Deformed elastic element: (A) due to nodal forces, and (C) due to 
equivalent nodal efforts. 

where [k*]{z*} = {f*}, and equation (6.34) becomes 

{f°} = [g°]" {e°} . (6.36) 

Equations (6.12), (6.26), (6.29) and (6.36) provide all the relationships between 

nodal forces, nodal displacements, axial and flexural deformations, and equivalent 

efforts corresponding to a 2D elastic frame element. 

6.3.2 Inelastic Nodal Forces 

The elastic element presented in the previous subsection is now modified to 

incorporate the inelastic behavior by adding two plastic hinges. The proposed ele- 

ment consists of three different parts, an elastic part located between the hinges, a 
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plastic hinge at the initial node and other plastic hinge at the final node. The plastic 

behavior of the two element hinges not necessarily has to be the same. To develop 

this element, the approach proposed in section 6.2 is followed. That is, for a given 

displacement configuration, the nodal forces acting at the ends of the elastic part, as 

a consequence of the inelastic behavior, are denoted as { f*}, (inelastic nodal forces), 

and are obtained by decreasing the hypothetical elastic nodal forces { f°}, associated 

to such deformations. The reduction is caused by the imposition of rotations at 

the plastic hinges. The amounts of the reduction depend on the magnitude of the 

imposed rotations as well as on the constitutive law of each hinge. Thus, 

{f°}. = {f°} — {fhe , (6.37) 

where { f*}, contains the six elastic nodal forces to be released due to the imposition 

of the rotations at the initial and final hinges of the element, 6f and 9}, respectively. 

The forces {f*}, can be written as functions of the imposed rotations. For 

this purpose, the rotations at the plastic hinges are considered to be transmitted to 

the ends of the remaining elastic part of the element as two flexural deformations 

with no axial effect. Thus, the elastic efforts to be released (due to these imposed 

rotations”) are the moments pf and y}, at the initial and final nodes respectively. 

They can be obtained by using equation (6.27): 

0 kKO«OCtCO 0 
we} =| 0 ae mg/2 | y orf, (6.38) 
HY 0 ks/2 kg 5 

where the (3 x 3) matrix is [k*]. That is, the axial-flexural stiffness matrix of the 

element e. 

As it is indicated in equation (6.36), the six nodal forces, equivalent to these 

200



efforts, can be obtained by premultiplying them by [9°], 

0 0 

{f*}o = [9°]? HE = [9°] [e*] oF (6.39) 
Hy 5 

Since the first components of the vectors in equation (6.39) are zero, the vectors and 

matrices used there can be reduced in size to write: 

{ft}e = [9°]? {u°} = [9°]? [e*]- {9°} , (6.40) 

where the subscript r indicates a reduced matrix. Thus, [g*], is a (2 x 6) matrix 

composed of the last two rows of [g°], [&*], is a (2 x 2) matrix that results from 

not considering the first row and first column of [k*], {u°} is a vector with just two 

components, the moments yf and 4, and {9°} is also a vector with two components, 

the imposed rotations 6% and 6¢. The product [g°]? [ke], is a (6 x 2) matrix that is 

denoted as [p*], and has the following components: 

ke kg 
ke ks 

pl= We =| 3. BET, (6.41) 
-Ke Ky 
ks/2 = kg 

where k§, kg and kg were given in equations (6.8), (6.10) and (6.11) respectively. 

Substitution of this expression into equation (6.40) produces 

{f*}o = [p°] {4°} , (6.42) 

which expresses {f°}, as a function of the imposed rotations at the plastic hinges. 

Finally, by substituting equations (6.12) and (6.42) into equation (6.37), the inelastic 

nodal forces become 

{f°}. = [k*] {2°} — [p*] {9°} . (6.43) 
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This equation shows that the nodal inelastic forces of the e** element require the use 

of two element matrices, [k*] and [p*], which remain constant during the deformation 

process. This equation is the element version of the assembled expression given in 

equation (6.3). 

To complete the definition of the inelastic element, it is necessary to satisfy 

two additional requirements. One is the equilibrium of moments at the interface 

sections that separate the elastic part of the element from the plastic hinges, and the 

other is to provide an appropriate inelastic constitutive law to model the relationship 

between the imposed rotations at the plastic hinges with the actual moments acting 

on those hinges. Both topics are covered in detail in the next subsection where the 

constitutive equations for each element and for the structure are presented. 

Here the assemblage of equation (6.43) for all elements requires that the equi- 

librium of the inelastic nodal forces, as well as the compatibility of the nodal dis- 

placements, be satisfied. However, no compatibility is required between the imposed 

rotations of different elements. 

The equilibrium of the inelastic nodal forces requires to balance all the contri- 

butions of the elements that share the same node with the external loads applied 

at such node. This is performed by superposing the rows of the equations (6.43) 

associated to all the elements that share the same node. On the other hand, the 

compatibility of the nodal displacements requires that all the elements, that share 

a particular node, have the same displacements at such node. This requirement is 

satisfied by adding the appropriate columns of the different stiffness matrices [k*] 

that are associated with the same nodal displacements. As a result, the assemblage 
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of matrix [K] is performed in the same way as it is usually done for elastic structures, 

that is, by the adequate superposition of rows and columns of the different element 

matrices [k°]. Whereas the assemblage of matrix [P], is performed by superposing 

only the appropriate rows of the element matrices [p*]. 

6.3.3. Constitutive Equations 

The constitutive equations of the e** element, are based on the constitutive law 

selected to model the plastic behavior of the hinges, as well as on the satisfaction of 

equilibrium between the moments acting on the hinges and the end moments at the 

extremes of the elastic part of the element. 

First, the moments at the ends of the elastic part of the element are considered. 

They can be expressed in terms of the nodal displacements at those ends, and in 

terms of the imposed rotations at the hinges. Such expressions can be obtained by 

recalling equation (6.37) 

{f°}. = {f°} —{f he, (6.44) 

where the vector {f*}., containing the forces and moments at the ends of the elastic 

part, is modeled as the difference between hypothetical elastic forces {f*}, and re- 

lease forces { f*}g, due to the imposed rotations at the plastic hinges. The resulting 

deformed configuration can also be reproduced by applying equivalent axial-flexural 

efforts at the same nodes. That is, 

{e*}. = fe°} — fe*}o, (6.45) 
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Where equation (6.29) can be invoked to write 

. . 0 

fe°}. = [KR] {a} — [hk] 9 FF 7, (6.46) 
o 

The vector, {d°} can now be substituted by its expression given in equation (6.26) 

to get 

| (0 
fe}. = [k°] [9°] {2°} — [A] 9 FP (6.47) 

9 
The last two components of the vector {e*}, contain the moments of interest, that 

is, the moments Mj and M$ at the elastic ends of the element. The part of vector 

{e}. containing these moments is now denoted as {M*},. Therefore, by disregarding 

the first component, equation (6.47) is reduced to get 

(ah. = {He} = ie lat C2} - fe}, (6.48) 
where all the quantities on the right hand side have been defined in the previous 

section. Also, from equation (6.41), it can be recognized that [k*],[9*], = [p*]7, and 

{M*}, is finally written as 

{M*}. = [p*]? {2°} — [k*], {8°} - (6.49) 

On the other hand, the moments acting on the initial and final hinge of the 

element are denoted as Mf, and My , Tespectively. The inelastic moment-rotation 

relationship of the plastic hinges is modeled by the same Bouc-Wen’s constitutive law 

that was used for shear buildings in the previous chapter (see also appendix E). The 

moments at the hinges are considered to be composed of an elastic part in parallel 

with an hysteretic part, as it was the case in equation (5.4). Thus, 

My, = of ky, OF + (1 — af) ky, uf (6.50) 
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H, = %% ky, 85 + (1 — af) ky, v7 , (6.51) 

where kj, and kj, are the initial stiffness parameters of the initial and final hinges, 

af and a are the proportionate contributions of the linear elastic part for each 

hinge, and vf and vj are the auxiliary variables of the hysteretic part of each hinge. 

Equations (6.50) and (6.51) can be written in matrix form as: 

{Mi} = [ha] {0°} + [ha] {v°} (6.52) 

where the vector {Mj} contains the two moments at the plastic hinges, the vector 

{v°} has both auxiliary variables, the vector {8°}, as it was already specified, contains 

the imposed rotations at both hinges and the matrices [k¢] and [hé] are (2 x 2) 

diagonal matrices defined as follows: 

[Kg] = “O asky | , [ae] = Oasys, | (658) 

The auxiliary variables vf and vj are related to the principal variables 6f and 

65 through the nonlinear Bouc-Wen differential equation (see appendix E) applied 

at both hinges: 

BE = AEOS — BE OS lus |" — CF vf |6F| fogh—, (6.54) 
0 = AS 65 — BS 65 |vs|"F — C5 v5 [65| [vg|"F +, (6.55) 

where the model parameters Af, Bf, Cf and nf, for the hinge at the initial node, and 

the corresponding set for the hinge at the final node, should be appropriately selected 

to model the desired characteristics of the hysteresis loops. In the next subsection, 

further consideration is provided to these parameters, as well as to other parameters 

necessary to completely determine a particular kind of hysteresis loops. 

The nonlinear constitutive equations can be linearized to obtain an statistically 

equivalent set of linear equations. Thus, the linearized version of equations (6.54) 
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and (6.55) can be written in matrix form as 

{a} = [a°] {6°} + [B°] {v°} , | (6.56) 

where matrices [a*] and [b°] contains the linearization coefficients for the hinges of 

the e** element. Both matrices are diagonal and have dimension (2 x 2): 

e af 0 e bf 0 el-|F so] > w=| Fe]. (6.57) 

The constitutive equations at the plastic hinges have introduced the additional 

variables {v*} in their definition. As a result, it is necessary to provide extra condi- 

tions to completely determine the proposed inelastic element. These conditions are 

given by the satisfaction of equilibrium at the interface sections that separate the 

hinges from the elastic part of the element. Thus, the following moment equilibrium 

equation is written: 

{M*}. = {Me}, (6.58) 

where equations (6.49) and (6.52) are substituted to write 

[p°]” {2°} — [A*], {8°} = [hS] {0°} + [AS] {v°} - (6.59) 

This equation is solved for {v*} to get 

for} = ey? {Ip {0} — (lee + (HE) {053} (6.60) 
and the first derivative of {v‘} with respect to time is 

{o*} = [h5]"* {[p°]" {2°} — ([e]- + [F5]) {6°3} - (6.61) 

Substitution of equations (6.60) and (6.61) into the linearized constitutive law, given 

in equation (6.56), provides 

[as]-? { [pt]? {2} — ([e]- + [ee]) {6°}} = 

fa] {6°} + [be] (ae ]-? {[p*]? {2°} — ([ee]- + [h5]) {9°3} . (6.62) 
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Premultiplication by [A¢] and after some rearrangement, this equation becomes 

bp}? {2° — [7°] {0°} — fu") {2°} + [5°] {9°} = {0} (6.63) 

which is the linear constitutive equation for the e** element. The new element ma- 

trices [j*], [u°] and [s*] are defined as follows 

(i°] = [k°], + [5] + [h6] [a°] , (6.64) 

[u*] = [6°] p}, (6.65) 

[5°] = [8°] ([A*]- + [¥5]) - (6.66) 

After performing the matrix operations indicated in equations (6.64), (6.65) and 

(6.66), the final components of these matrices are: 

ve ks + af ke. + (1 — af) ky af kg /2 
= . e i e e Le e e e 6.67 

*] ks /2 kg + af ky, + (1 — a§) ki, a} ( ) 

«| REOE REDE REDE —REOE REDE ELE /2 
[u“] = i KEbE REDE —hEGE REDE REDE /2 (6.68) 

(kE + af ke) bf kg bf /2 | 
e) — e : ‘ £ e e e e 6.69 Is*] | hgbe/2 (hg + af he, ) bg (6.69) 

To assemble the element constitutive equations it is necessary to realize that, 

in equation (6.63), only the vectors {z°} and {z*} contain the nodal displacements 

and velocities compatible with all the elements sharing the same node. On the other 

hand, the rotations at the plastic hinges are inherent to each element and need no 

compatibility among the different elements. Thus, the columns of the assembled ma- 

trix [P]7, are constructed by adding up the contributions of the appropriate columns 

of those element matrices, [p°]?, that share the same nodal displacements. This is 

commonly known as column superposition. Similarly, the assembled matrix [U] is 

constructed by column superposition of the element matrices [u*]. The assembled 
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matrices [J] and [5S] need no superposition at all of the elements matrices [j*] and 

[s*]. They have just to be placed at the positions dictated by the vector containing 

the hinge rotations of all the elements or by the vector containing the hinge angular 

velocity, respectively. 

The resulting assembled constitutive equation is 

[P]? {X} - [J] {O} — [UV] {X} + [5] {0} = {0}. (6.70) 

The dimensions associated to the different matrices can be given in terms of the total 

number of degrees of freedom n and the total number of potential plastic hinges m, 

(two per element). Thus, [P]? and [U]? are (m x n) matrices, whereas [J]? and [S]7 

are (m x m) matrices. 

To fully determine these constitutive equations, it is necessary to specify the 

parameters associated to the Bouc-Wen model. The following section analyzes these 

parameters and the associated conditions. 

6.3.4 Parameters of the Constitutive Model 

The parameters involved in the Bouc-Wen constitutive law, should be appro- 

priately selected to model a particular hysteresis loop. Appendix E provides some 

relationships between the model parameters denoted as A, B,C, 7, and a with quan- 

tities that also characterize the shape of a particular hysteresis loop. The latter are 

the initial stiffness k;, the postyielding or final stiffness ky, the yielding displace- 

ment z, and/or the yielding force F,. These relationships are useful to determine 

the model parameters, and are presented here for the plastic hinges of the proposed 

element. 
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Each hinge of the e** element may have different constitutive characteristics. To 

avoid the repetition of similar equations, this subsection provides only the expressions 

corresponding to a general hinge denoted as h, which can be the initial or final hinge 

of the e** element. 

In the previous subsection, the moments acting at the initial and final hinges 

have been given by equations (6.50) and (6.51), which for the general hinge can be 

written as 

My |= ob kf, Of + (1 of) Rf, vf. (6.71) 
The moment Mj, is defined by two terms, one representing a proportional elastic 

contribution and the other representing a proportional inelastic contribution. The 

latter is due to the hysteretic behavior of the auxiliary variable vf with respect to the 

principal variable 6. Figure 6.3 shows the relationships between auxiliary variable 

and hinge rotation, as well as the relationship between moment and rotation, both 

due to the use of the Bouc-Wen hysteretic model described in appendix E. 

For the hinge at node h, the initial and final rotational stiffnesses are kf, and ke, 

respectively. It should be recalled that the Bouc-Wen model requires the quantity 

Aj, be equal to 1 for kf, being the initial stiffness. For a perfectly plastic hinge 

the initial stiffness should be infinity and the post yielding stiffness (final stiffness) 

should be zero. An approximation to this ideal behavior can be obtained by defining 

the initial and final stiffnesses as 

Ki = BERS, hE, = Oh RS (6.72) 

where ké is given in equation (6.8), 6¢ is a large number and Gf is a small number. 
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Figure 6.3: Constitutive law of the plastic hinges: (A) Moment at the hinge vs. hinge 
rotation, (B) Auxiliary variable vs. hinge rotation 
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For Af, = 1, af is the ratio between the final and initial stiffnesses, 

ki as 
an = Fo — —h 

ke Be 

Therefore, the selection of the factors Gf and ff, to model the initial and final 

(6.73)   

stiffnesses in equations (6.72), determines automatically the coefficient af. The hinge 

moment M;, , can be written in terms of Gj, Bg and kg by substituting equation (6.73) 

into (6.71): 

Mi, = Gf 5 65 + (Bf — a) KE vf , (6.74) 
and the element matrices [7°] and [s*] become: 

ey — | As [1 + af + (6F — af) af] kg/2 
b*] = | ig /2 ks 1434 fas ~ apy) | (6.75) 

o) _ | (L+as)kgbe hg be /2 
[s*] = | kg b¢ /2 oes | (6.76) 

On the other, hand the parameters Bf and Cf can be chosen to be equal to a 

positive number to model a softening dissipative hysteresis loop, with curved loading 

paths and straight lines for the unloading paths. In appendix E it has been shown 

that for such characteristics, the parameter Bf = Cf is given in term of the yielding 

rotation 6§, or in term of the yielding moment M§&, as 

ce OB Be ks\" BE = Cf = Gye = 0.5 ( i) , (6.77) 

where 65 and M¢. are the coordinates at the intersection point of the initial and 

final stiffnesses. These two quantities are linearly related by the following expression 

MS, = Ki, 65, = Bek 6s (6.78) 
3 up, ? 

Finally, the only remaining parameter, nf, is a positive integer that controls the 

sharpness of the transition from the initial to the final stiffness, and its value should 
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be specified by comparisons of the analytic model with the actual hysteresis loops 

obtained experimentally for a particular material and structure. In general, a value of 

1 produces a smooth curved transition, and values of 9 or 11 model hysteresis loops 

that almost follow the initial and final tangent stiffnesses, by closely approaching 

their intersection point. 

6.4 Response of the Linearized Governing Equa- 

tions 

The n equations of motion given in section 6.2 along with the m linearized con- 

stitutive equations presented in section 6.3.3 form the linearized governing equations 

of the present problem. They are rewritten here as 

[M] {X(t)} + [C] {X(e)} + [K] {X(#)} — [P] {O(é)} = —[M] {Z}2,(¢) (6.79) 

[P]? {X(¢)} — [J] {O(E)} — [U] {X()} + [5] {O(#)} = {0}. (6.80) 

where the global matrices [J] and [S] contain four linearization coefficients (af, b€, 

af and 6§) for each of the total m/2 elements. That is, the system possesses 2m 

linearization coefficients (two per hinge). 

The linearization coefficients can be determined by the same gaussian stochastic 

linearization scheme described in chapter 5. Thus, the resulting expressions, in terms 

of the response statistics, are: 

  

. e e r—1 e/,e e\ne af = Ay —o7F 2m fx | BEA) + CR (ni)! (RI Bag], (6-81) 

  

a e e .e pe r—1 € (ant e\n°— 
, = Oye * Oe y 2% / 1 | ng of BE )! + Ch (ni)! (o5)™ Eis | ,» (6.82) 
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where 7 is a positive odd integer, o is the standard deviation of its subscripted vari- 

able, pé is the correlation coefficient between 6¢ and vf, and the quantities denoted 

by dae and Lie are the following summations: 

  

  

(n{-1)/2 . 213 _ 2 ng — 25-1) /2l! [2-4 
a CC ee) 

Sg = ae nk = 29 = 1)/21 BL CoH (6.84) 
jzo | (MR - 297-1)! (2 ph) 

Here, as it was the case in chapter 5, the response statistics, ye, Cgc and 

pt = Elug 6¢]/ (ove O Ge); are not known a priori. As a consequence, an iterative 

scheme, similar to that described in 5.3, has to be implemented to determine them. 

In section 6.5, these quantities are further considered. 

The governing equations can be written as a system of first order linear differ- 

ential equations through the use of vector {Y(t)}, which has 2n + m components: n 

nodal displacements, n nodal velocities and m imposed rotations at the hinges (in 

that order). 

{Y()}? = {XH {XO}, {OF} . (6.85) 

Thus, equations (6.78) and (6.79) become 

[La] {¥(t)} + [La] {¥(é)} = {FO}. (6.86) 

Where {F(t)} is the forcing vector which first n elements are zero, the following n 

elements are given in the vector —[M]{Z}z,(t), and the last m elements are also zero. 

The matrices [Z,] and [L2] have dimension (2n + m) x (2n + m), and are defined as: 

o} -) 
ik] [C]_ -(PI 

—[R] -[P! [5] 
. (6.87) 

  
7] [o) [0 

[Zi] = | [0] [MM] [)} , [Za] = 
[o} [Oo] —[J] 
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The decoupling of these (2n + m) equations is obtained by the same approach 

used for the (3n) equations of section 5.3. That is, by using the properties associated 

to the right and left eigenanalysis, as well as the linear transformation of coordinates 

{Z(t)} = [S]{Y(t)}, where [$] is the right modal matrix. The set of eigenvalues, 

corresponding to systems with subcritically damped modes, contains m real quanti- 

ties and n pairs of complex conjugates. The real and imaginary parts of the complex 

eigenvalues are associated to the modal frequencies and damping ratios as indicated 

by equations (5.24) and (5.25). The resulting (2n + m) decoupled equations are 

2,;(t) +A; 2z,;(t) = —7;2,(t) , gul,...,2n+m (6.88) 

where 7; is the j** modal participation factor defined in term of the normalized j** 

left eigenvector {¥},, 

{0} 
w= {¥} sar ae (6.89) 

Finally, the deterministic solution of the first order uncoupled equations leads to the 

following expression for each component of the response vector {Y(t)}: 

2n+m t 

n(t)}=—- Y gy | ert Ns (r)dr ; l=1,...,2n+m (6.90) 
j=1 ° 

where qj; is an auxiliary quantity involving the product of the (i,j) component of 

the right modal matrix and the j** participation factor: 

Qj = $155 - (6.91) 

214



6.5 Response Covariance Matrix and Response 

Spectrum Method 

The covariance matrix [)] of the response vector {Y(t)} can be obtained by 

adopting the same assumptions and procedure presented in section 5.5. However, it 

should be noticed that here the quantity of real eigenvalues is m and not n. Conse- 

quently, the variables associated to that number should be appropriately considered. 

Thus, the resulting expression for the (1,7) component of the covariance matrix 

is 

Mi = YOY (Thee + Th; Ik) +230 (TH + THEE + TH) 
j=l k=1 j=1 k=1 

+ AD (isles TF + 615645 5) 
j=1 
n—-1 n 

+ 8) Do (Mel + AG + Tie + THA WE) - (6.92) 
j=l k=j+1 

where all the quantities involved have already been defined in chapter 5. 

The response spectrum procedure, used in section 5.6, can also be applied here 

to approximate the (1,7) element of the covariance matrix [)], as 
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The quantity M.! is the relative displacement response spectrum value of the mass- 

less oscillator, whereas Myr and M s]7 are the response spectrum values correspond- 

ing to the relative displacement and relative velocity, respectively, of the second order 

oscillator. The quantities Pets Patt, and Psu are the peak factors associated to the 

above variables. 

The response spectrum approach can also be used to obtain the maximum re- 

sponse value Mn, of a certain response quantity R(t), which is linearly related to 

the response vector {Y(t)}. That is, 

  

Mr © y{R}? (PRD) {R} (6.94) 

where Pr is the peak factor of the response R(t), {R} is the constant vector corre- 

sponding to the linear transformation R(t) = {R}7{Y(t)}, and the (1,7) component 

of P2|)] is approximated by assuming equal peak factors as 

PRI: DD. (Tha My + Th; M2) 
j=l k=1 

d (TH lijk Mi + Tie Mo + Titik M:; 2) 
k=1 

D (Gibms M2 alt + 134m M; 2) (6.95) 

+ 2, 

2S (The M ait + T, "ik Min + Tix je Min + Tiki Miz 1). 
=1 k=j+1 
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The final expressions presented in this section are similar to those fully devel- 

oped in chapter 5. However, the former can be easily deduced from the latter by 

considering m real eigenproperties in lieu of n, and by the adequate renaming of the 

subscripts. 
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6.6 Response Statistics Required by the Lineariza- 

tion Coefficients 

Equations (6.81)-(6.84) provide the linearization coefficients as functions of the 

standard deviations and correlation coefficients corresponding to variables vf and 6¢. 

Such variables are not contained in the response vector {Y(t)}. However, they are 

linear functions of its elements. 

The auxiliary variables vf and v;, of the e'* element, are expressed in terms of 

the nodal displacements as well as of the rotations at the hinges, in equation (6.60). 

On the other hand, equation (6.63) can be solved for {6°} to get 

{9°} = [5°]? [pe]? {2°} — Li]? [uw] {2°} + LT? [9°] 18°} (6.96) 

which is a linear function the nodal displacements, the nodal velocities, and the 

rotations at the hinges. The inverse of the (2 x 2) symmetric matrix [j*], can easily 

be written in terms of the elements of [7°] as 

ye] Ii1 Ji2 ey—1 _ 3} Jaa Sia 6.97 

4 ! E Jaa | Ly ! Iii J32 — (3f2)? | Siz St ( ) 

For zero mean processes, the statistics oye, Tie and p;, are defined as follows 

on = VEOH) » 0% = VED) , =. (6.98) Tye The 

The variances Ooze and Te are the diagonal elements of the (2 x 2) covariance matrices 

E [{u*} {v*}7| and E {6°} {6*}"], respectively. On the other hand, the expected 

values E[uf 6¢] are given by the diagonal elements of the (2 x 2) cross covariance 

matrix E [{u°} {6*}7] . Substitution of equations (6.60) and (6.96) into the above 

expected values, provides the expressions of these covariance matrices for the e** 

element. 
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In particular, the covariance matrix of vector {v‘°} is 

E [{o*}{ot}7] = 2B [fae]? {pe} {0°} — [hela {0°}} 

x {{2°}" [p"] — {6°} [ke ]e+a} (al) , (6.99) 

where the (2 x 2) symmetric matrix [k*],,. is given by 

[Aleta = [he], + [hE] (6.100) 

Distribution of the expected values in equation (6.99) produces 

E |{v°} {o°}7]_ = [Ag]-? { f°)” [BS.] f°] — [les [Efe] [P*] — [p*]” [B56] [F]e+0 

+ [h ler [EGe] []-+0} [hS]*, (6.101) 

where the element matrices [F<] and [E§,], are the following covariance matrices: 

[Eze] = El{z"}{2*}"] , [Bgo] = E[{°} {9°}"] ; (6.102) 

and [E5,] and [H£,] are the following cross covariance matrices: 

[Ese] = E[{O°} {x*}"] , [E56] = El{zx"} {6°}"] . (6.103) 

Similarly, the matrices E {6°} {6°}7] and E [{u°} {6¢}7] can be expressed as: 

E |{6*} {6°}7] = [gs]? { fut] ((BSe] [u*]” — [%,] [p*] - [E%6] [s°]” ) 

+ [p*]” (— [3] [u‘]” + [E55] [°] + [2%] [s°]”) (6.104) 

+ [s*] (— (£§2] fut]? + [£53] [p*] + (Gol (8°17) } Gel, 

E |{v°} {6°}7] = [hg}-? {[p*]? (— [HL] fut]? + [BEs] [p*] + [BS] [s°]") (6.105) 

+ [kleza ( [Ebel ful” — [EGe] [o*] - [$6] [s°17 ) } Gel, 
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where the quantities [E¢,] are covariance or cross covariance matrices of the vectors 

indicated by the subscripts * and e. 

It can be seen that the matrices given by equations (6.101), (6.104) and (6.105), 

are linear combinations of the element matrices [E*,], which components are also 

components of the global response covariance matrix [J]. It should be noticed that 

these element matrices do not need to be calculated completely since only their 

diagonal elements are required by the expressions of the linearization coefficients. 

6.7 Numerical Results 

In this section we present numerical results obtained by the proposed approach. 

For presentation of these results, all calculated responses have been normalized with 

respect to the response values corresponding to a perfectly elastic structure. 

Two different steel structures have been considered. Figures 6.4 (A) and (B) 

show their dimensions and finite element discretizations. The potential plastic hinges 

are indicated by filled circles and the different nodes are indicated by arrows. 

The single-story structure has 6 degrees of freedom and it has been dicretized 

by 3 frame elements with a total of 6 potential plastic hinges. Its three elements 

possess the same structural shape, $4x8.5. Due to the symmetry of this structure, 

it is especially useful to partially check the numerical results. The second structure 

is a two-story frame with 15 degrees of freedom and discretized by 8 elements with 

a total of 16 plastic hinges. The same shape used previously is also employed here 

for the elements 1, 4, 5, 6, 7 and 8, whereas for elements 2 and 3 the stronger S8x23 
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Figure 6.4: Schematic of the structures considered in the numerical results: (A) 

Single-story frame, (B) Two-story frame 
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shape is utilized. 

The seismic excitation has been defined in two forms: (1) by the ground response 

spectra, used in chapter 5 and calculated for 100 artificial time histories, and (2) by a 

Kanai-Tajimi type of spectral density function. In both cases the maximum ground 

acceleration is 0.5 g. 

Figures 6.5, 6.6, and 6.7 provide results for the single-story structure. All hinges 

are assumed to have the same constitutive characteristics. Thus, the following pa- 

rameters have been chosen to model their a quasi-plastic constitutive: &f = 107+, 

B< = 10*, which provide the following stiffness ratio af = ki, /ki, = 107°. The 

parameters Af are considered to be equal to 1, and the parameters Bf = Cf are 

given by equation (6.77) in terms of the yielding moments at the hinges M§,. The 

exponent parameters are equal to 1. 

Figure 6.5 shows the increase of the normalized equivalent damping ratios as 

the yielding moment at the plastic hinges is decreased. This decrement is equivalent 

to an increase in the ductilities. This fact has also been observed in the previous 

chapter for shear buildings, and it is due to the necessity of the equivalent linear 

structure to dissipate energy in order to approximate the actual nonlinear hysteretic 

structure. On the other hand, the frequencies of the equivalent linear structures 

remain almost constant as the yielding moment decreases. 

Figure 6.6 shows some normalized maximum forces as the yielding moment at 

the plastic hinges is decreased. It is seen that these forces decrease as the ductility 

levels increase (or the yielding moments at the hinges diminish). This is in complete 

agreement with the behavior of plastic structures. 
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Figure 6.7 is for a an excitation defined by a Kanai-Tajimi spectral density 

function. The normalized standard deviation of the horizontal drift is plotted against 

several values of the yielding moments at the plastic hinges. As expected, such drift 

increases as the structure penetrates into the plastic range. 

A similar behavior has been observed for the two-story structure. In this case 

only the exponent parameter has been changed to 3. All other parameters remain 

the same as those used by the single-story structure. As the size of the structure and 

the ductilities increased, it became difficult to achieve convergence in the results. To 

facilitate the initial guess of the linearization coefficients, it is noted that the same 

limits provided in chapter 5 are still valid for the present case. Figure 6.8 shows 

the behavior of the linearization coefficient af for hinges 1, 3 and 5 as the yielding 

moment of the hinges is decreased. It is relevant to mention, that the ultimate lower 

values for these coefficients are still given in terms of the exponent parameter by the 

expression 7/(7 +1). In this case such limit is 0.75 and figure 6.8 clearly shows that 

fact. 

Finally, figure 6.9 shows the variation of the shears forces at the base of elements 

1, 3 and 5. Again, such forces decrease as the ductility increases. 

6.8 Conclusions 

A response spectrum approach has been presented to approximate the seismic 

design response of two-dimensional frames with potential plastic hinges. The non- 

linearities are concentrated at determined regions, plastic hinges, and it is due to 

the nonlinear behavior of the materials. The Bouc-Wen constitutive law has been 
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proposed to model the plastic hinges. 

The formulation leading to the proposed nonlinear equations of motion is pro- 

vided in detail. Stochastic equivalent linearization is used to determine an equivalent 

system of linear equations which is solved by a generalized eigenanalysis. The real 

and complex eigenproperties are combined by the same modal combination rule pre- 

sented in chapter 5 for shear buildings. As a consequence, the same ground response 

spectra are required. That is, the commonly used pseudo acceleration and rela- 

tive velocity spectra of second order oscillators, as well as the relative displacement 

spectrum of the massless oscillator. 

The numerical results show that the responses due to the actual nonlinear be- 

havior can be approximated by the proposed approach. However, for larger size 

structures with large ductilities the convergence in the linearization process may be- 

come difficult to achieve. The qualitative characteristics of the response observed in 

the previous chapter were also observed here for the frames. The errors associated 

with the assumption of Gaussian density function for the response still remain in the 

response calculated in this chapter. 
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Chapter 7 

Summary and Recommendations 

for Future Work 

This work presents various approaches to calculate the stochastic and seismic 

design response of linear and nonlinear structures. The approaches developed for the 

linear structures are presented in chapters 2, 3 and 4 whereas those for nonlinear 

structures in chapter 5 and 6. The details of the formulation and more specific 

conclusions pertaining to the proposed approaches are presented in their respective 

chapters. Here we only summarize the work, provide general conclusions and suggest 

future extensions. 

For linear structures, a response spectrum method, based on the proposed mod- 

ified mode displacement technique is presented for classically damped as well as 

non-classically damped structures. The approach is especially designed to include 

the pseudostatic contribution of the truncated modes in the dynamic and stochastic 

analyses. The numerical results, as well as the comparison against commonly used 

methods show the ability of the technique to capture the contribution of the trun- 

cated modes without using them in the analysis. The proposed response spectrum 
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approaches combine the efficiency of the mode acceleration-based response spectrum 

approaches with the practical advantage of the mode displacement-based response 

spectrum approach. It uses the more common pseudo-acceleration response spectra 

in lieu of the relative acceleration spectra. Future work should be able to extend 

the approach to general systems like the linearized systems presented in chapters 5 

and 6. Also its extension to the generation of in-structure response spectra for the 

calculation of secondary structures is feasible. A further generalization of this ap- 

proach, to improve even further the calculation of the contribution of the truncated 

modes, is also presented in this work for structures subjected to stochastic loads 

defined in terms of power spectral density functions. This technique is called as the 

force derivative method since it is based on the successive integration by parts of the 

Duhamel integral of the response, and higher derivatives of the forcing function are 

required for each integration. It presents a fast calculation scheme due to the use 

of recursive formulas to calculate the boundary terms generated by the integrations 

by parts. Future work is expected to extend the approach to non-classically damped 

structures as well as to general structures. 

For nonlinear structures, a response spectrum method is proposed to approxi- 

mate the response of hysteretic shear buildings as well as of two-dimensional frames 

with plastic hinges. The approach is based in the well known stochastic linearization 

technique. The proposed method requires that the seismic input be defined in terms 

of pseudo-acceleration and relative velocity spectra as well as a response spectrum 

of the first order oscillator. The approach can be utilized as a useful numerical tool 

for preliminary evaluation of a design incorporating inelastic behavior of structures, 

especially for shear building structures. However, for two-dimensional frames with 

plastic hinges, difficulty in achieving convergence may be encountered in the cal- 
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culation process. A simulation study provided a quantitative measure of the error 

introduced by the linearization technique. It is believed that the errors are primarily 

due to the assumption of Gaussian density functions for the responses. Future work 

using more realistic assumptions for the density functions are suggested to improve 

the accuracy of the equivalent linearization technique. 

Although, the equivalent linear approach may not be able to provide very ac- 

curate values for the design response, compared to the time history analyses, the 

author feels that it still is the best workable tool for seismic evaluation of hysteretic 

structures. 

231



Appendix A 

Common Partial Fractions 

A.1 Case l 

This section determines the partial fraction coefficients To and TY corre- 

sponding to the following expansion 

PP(w) |G5(w)P? IGi(w)P? = Th 1GG(w)P? + Tye 1G)? (A.1) 

where P!(w) is a second degree polynomial in w with coefficients denoted as p! 

Pl(w) = po +720, (A.2) 

G$(w) is the stationary frequency response function of a first order oscillator (massless 

oscillator) 

G5(w) = [Apt+iw]-? (A.3) 

with its squared modulus given by 

IGi(w)? = Gi(w) GF(w) = [(A9)? +7}. (A.4) 
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Equation (A.1) can be solved for P’(w) to get 

  

, 7) re) 
P*(w) = + d . A.5 ) = TeECF * Te5(WyP 

Substitution of equation (A.4) into (A.5) produces 

Pl(w) = [TH (ag)? + TY (05)? ]w? + [TP + TH] w? (A.6) 

A system of two equations with two unknowns can be written by equating the coef- 

ficients of the terms with equal powers of w in equations (A.2) and (A.6) 

[op ont) {me} {Hy (A.7) 

The determinant of which is 

Ain = (Ak)? — (9)? (A.8) 

Solving the above system, the coefficients TY and T. ty become 

TY) = [ph — phat)? ] (A4)7 (A.9) 

T?) = [ph (AL)? — ph] (AL)? = —[pt — pl (4)? ](A4,)7 (A.10) 

Since A}, = —Aj,, the coefficient TY ) can also be written as 

T?) = To) (A.11) 

It can be noticed that the partial fraction coefficients are not determined when the 

determinant is zero, that is when |A%| = |Aj|. 
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A.2 Case II 

This section provides the partial fraction coefficients To, TY and TY? corre- 

sponding to the following expansion 

PM (w) |G5(w))? |He(w)? = TH? |G5(w)P + (TH? + w TH?) |He(w)? (A. 12) 

where P?!(w) is a fourth degree polynomial in w with coefficients denoted as p!/ 

PM (w) = po t+ pz w? + py w%, (A.13) 

G$(w) and its squared modulus are respectively given by equations (A.3) and (A.4) 

respectively. Whereas Hf(w), is the stationary frequency response function of a 

second order oscillator: 

Hj(w) = [wg — w? + 278, u,w]~*. (A.14) 

with squared modulus 

|Hy(w)|? = Hew) Hew) = [wy + (46¢ — 2)upw? tut]. (A.15) 

From equation (A.12), P!“(w) can be written as 

T2 (7H) + w? TH?) 
  Pla) = ik ; A.16) = THF + TGs(WP 

where substitution of equations (A.4) and (A.15) produces 

PM(w) = [TH we + TY (d5)? ]w" ((A.17) 

+ [(462 —2)u2 TE) 4 TE) 4 (ar)? TO] w? + (TE) + TH) wt, 

A system of three equations with three unknowns can now be constructed by equating 

the coefficients of the terms with equal powers of w in equations (A.13) and (A.17) 

pet = TY of + TH (02)? , (A.18) 
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Pai = (485 — 2)uh TH + TH + (05) Th (A.19) 

pl = Ty) +TR?. (A.20) 

From equation (A.20) the coefficient Te ) can be written as a function of the coefficient 

T 

Th. = pi - TD (A.21) 

and by substituting this equation into (A.18) and (A.19) the following system is 

written 

2 _ 9)? — (7)? (3) II _ ()r)2 pl (488 —2)ut — 097 aby | 1 7% | - { * curr \, (A.22) 

with determinant given by 

Aj = ((408 — 2) we — (A5)"] (AZ)? — we 

= 46202 (3)* —[(5)* + a2). (A.23) 
For 5 > 0, w, > 0 and 0 < &, < 1, the determinant will vanish only if 8, = 1 and 

Aj = wy. In such a case the partial fraction coefficients become undetermined. For 

nonzero determinant, the solution of the system provides 

Tye) = | (pi! — (05)? pi?) (5)? — va" | (AR) (A.24) 

TH) = [{(462 — 2) uw — (A5)?} wh! — {pl — (a3)? pi} ws] (AH)? (A.25) 

The remaining coefficient, TS ) can be obtained by substituting equation (A.24) into 

equation (A.21). 

If the original expression to be expanded were P!"(w) |G{(w)|? |Hj(w)|?, where 

the subscripts have been interchanged, the corresponding partial fraction coefficients 

Ti, TY and Ti) can be obtained from equations (A.24), (A.25) and (A.21) by 

considering the appropriate change of subscripts j «+ k. 
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A.3 Case III 

This section presents the partial fraction coefficients To) , To), To) and Te) 

corresponding to the following expansion 

PT (w) |HS(w)|? |Hg(w)[? = (TH? + w? TP) |Hs(w)/? + (TY + w? TY) |HE(w)? 
(A.26) 

where P!/(w) is a sixth degree polynomial in w with coefficients denoted as p/!" 

PHI) = pl pET a? 4 plat 4 plus , (A.27) 

H§(w) and its squared modulus are given by equation (A.14) and (A.15) respectively. 

From equation (A.26), P/(w) can be written as 

(TH 4? TM) (TE) + wy? TO) 
ITT 

Pe) = Top Aw) (A.28)   

where equation (A.15) can be substituted to get 

PIM(y) = [TH wt + Ty wh] w° 

+ [(462 -2)u2 TS) 4 TO wh + (46? — 2) 0? TS) 4+ TO) wt eu? 

+ [TY + (462 —2)u2 TY 4 TO) 4 (46? — 2) 0? TY] wt 

+ [T+ Tw | (A.29) 

A system of four equations with the four coefficients as unknowns, can be written 

by equating the coefficients of the terms with equal powers of w in equations (A.27) 

and (A.29) 

put — TO) uy 4 £478) wy Fi (A.30) 

pit — (402 — 2)u2 TS) + wf TY + (467 — 2)? TY) + wt TY (A.31) 
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pit TY) + (46? _ 2) w? T TY +7 TY 4 (46? — 2)w? To (A.32) 

pet = TH + Tp - (A.33) 

By using equations (A.30) and (A.33), the unknowns Tt? and T?) can be written 

as functions of Te ) and TY ) 

TY) = pl wrt — 0587?) (A.34) 
Wi; 

Th = Te, (A.38) 
where 0, = w;/w,. These last two equations can now be substituted into equations 

(A.31) and (A.32), which are then divided by w? to get the following (2 x 2) system 

of equations 

wy? [1 — O54] TY) +2 [(02, — 1) + 2(62 — 6703,)| TY = pjewz7? ——(A.36) 

2 (O52 — 1) + 2(62 — 67 052)| TH? + w} [1-04] TY? = nye, (37) 

where the quantities u;, and 7;, are defined as 

pin = 0, [pit — w5* ppl? — wi} (4 8} — 2) 70""| (A.38) 

2 | P27 III III nin = | Be — oh ott — w* (40 ~ 2) 08] (A.39) 
a 

The (2 x 2) matrix of this system possesses the following determinant 

An = 16 (6 +B — 8} — Bi) — 05, — I — 

+ 4(03, + 952) [1 — 2(67 + Bf — 26762)| . (A.40) 

After solving equations (A.36) and (A.37), the coefficients To and TY become 

1D = {ona [19% +2(6308, — 6D] ~ na —952)} (AN)? (A. 
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THD = {nin (93, — 052) — 205? wy [1 — 03, + 2 (6203, — ?)] } wz? (ANT). 
(A.42) 

Which, in turn, can be substituted into equations (A.34) and (A.35) to get the 

remaining coefficients TY) and To). 

It should be noticed that for w; = u, the determinant becomes 

AMT = 16 (26? 6? — 64 — Bf). (A.43) 

In addition, if 8B; = 6,, then All! = 0 and the partial fraction coefficients are 

undetermined. 

A.4 Case IV 

This case is just a particularization of Case III, but due to its widespread use in 

this study for the calculation of the stochastic response by the mode displacement, 

the modified mode displacement and the force derivative approaches, it has been 

considered convenient to analyze it as a different case. Thus, this section presents 

the partial fraction coefficients TH, Th, Th?) and Te ) associated to the following 

expansion 

PY (w) |H;(w)? |Hg(w)? = (TR +0? TE”) [As (w)/? + (Th? +o? TH”) |HE(w)P, 

(A.44) 

where Hf(w) and its squared modulus have been previously defined in equations 

(A.14) and (A.15) respectively. P/”(w) is a fourth degree polynomial in w which 

coefficients are denoted as piv 

PIV (w) = phY + pl¥ w? + pl wt, (A.45) 
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with 

2,2 
Po = Wi We P23” = 4B; Bh w5 we — wi — Wi ? PAY = 1. (A.46) 

These partial fractions can be obtained by considering the procedure presented 

in Case III for pi! = 0. Thus, the coefficients To) and To) are obtained by using 

equations (A.34) and (A.35) for this particular case: 

TH?) = plY w5* — O58 TO) = 057 — 058 TD, (A.47) 
w5" 

TY) = 7) | (A.48) 

where 0.5, = w;/w,. On the other hand, the coefficients TS °) and To) are given by 

equations (A.38-A.42) after being particularized for this case. Thus, 

bn = 0 we = uj" 7h] = 9%, (4.48) 

J 

AT = 16(6? +62 - 64 - Bt) - 04, - 054 —6 
+ 4(03, + 052) [1 — 2(6? + 62 - 28782)] , (A.51) 

TH) = {2nje [1 — 03, + 2 (8303, — B2)| — win (03, —952)} (AZZ)? , (A.52) 

The = {nse (}, — A52) — 2OGP ws [1 -— 03, + 2(6703, — 87)]} wy? (ART). 
(A.53) 

The substitution of equations (A.49), (A.50) and (A.51) into equations (A.52) and 

(A.53), and some simplifications, render 

TE = | (467 -1)08, +46; 6.03, + :03,| dz , (A.54) 

Th” = [93,-1] wy? dy , (A.55) 
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where the quantity d;, is 

dj, = 1%, +48; Br, + (487 +482 — 2)03, 448; A. 2% +1. (A.56) 

Finally, the expression for T. ) can be obtained by substituting equation (A.54) into 

(A.47). Thus, 

TH?) = [03,+48; Qn + 462-1] de. (A.57) 

Since To) = -To 1) equations (A.54-A.57) completely determine the partial fraction 

coefficients for this particular case. 

It can be noticed that all four coefficients To), To), TY) and TS) are also 

defined for the especial case in which w; = uw, and 8; = f,. That is, 

0 2 1 13 TO) = TI) 12 , THY = TH) =0. (A.58) 

This warrants the determination of such coefficients even when the frequencies w; 

and w, are closely spaced. 
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Appendix B 

Integration by parts of the 

Duhamel Integral 

The Duhamel integral can be expressed as 

t 
Do(t) = | h(t — 7) p(r) dr , (B.1) 

0 

where 

e7 u(t-7) 

h(t — = ———— 5] t— = 1—f?. B.2 (¢-1) = ——— sinlua(t-7)} wa sw fi=.  (B2) 
Successive integrations by parts of this integral provide several different expressions 

for the same quantity Do(t). Thus, if D,(¢) denotes the result of the first integration 

by parts, D2(t) of the second, and Dy(t) of the N* integration, it is possible to 

write the following identities 

Do(t) = Di(t) = D,(t) =... = Dy(t). (B.3) 

To perform such integrations it is useful to consider the following two well known 

indefinite integrals: 

[a sin(bz) — 6 cos(bz)] ER (B.4)   je sin(bz) dz = e** 
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/ ** cos(bz) dz = e** [a cos(bz) + b sin(bz)] (B.5) 

ere) 
which are used to provide the subsequent two expre 

/ h(t —r)dr = (2) h(t —r) + (3 } 1) A(t —r), (B.6) 

/ h(t —r)dr = (2) A(t —r)+ (a? - —1) h({t—r), (B.7) 

where 

A(t —r) = e~®-7) cos[wa(t —7)]. (B.8) 

Thus, by considering equation (B.6), the first integration by parts becomes 

Di(t) = (2) h(t — +(S 3) ie ot we )) 

~ i {(2) A(t — )+( 3) ie ry} He )dr , (B.9) 

where the evaluation of the limits renders 

Dit) = (5) 0 -{(2) 0+ (5) eo} 000 
- (2) [ h(t — r) p(t) dr — (=) f A(t —r)p(r)dr. (B.10) 

The expression for D2(t) can be obtained from equation (B.10) with the help of 

equations (B.6) and (B.7) as 

a) Pte) (2 ) a+ (3) io} (0) 

{(2) h(t — r)+(= =) ye - )} ie )) - 

"{ (E) ae-+ (J) te aver 

(6) #e-7)+ (@-1) Me oh ato] 

‘{(5) h(t —7) + (6-1) hte r)} ie )dr, (B.11) 
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and after evaluation of the limits Da(t) becomes 

pat) = (5) a (2) wo -{ (2) + (J) ao} 000 

+ {(P7A) a+ (3) bo} 0 (B.12) 

+ (72> *) f h(t — r) p(r) dr + (72) [ h(t — 1) p(r) dr. 

  

  

The function A(t) can be written in terms of h(t) and its time derivative h(t) as 

A(t) = A(t)+ Bw h(t). (B.13) 

Therefore, the substitution of equation (B.13) into equations (B.10) and (B.12) pro- 

vides the following expressions for D,(t) and D2(t): 

Dye) = (5) 0 {(22) a+ (5) 1} v0 

- (72) [ we-n)arar - (5) f ite-namer. By) 
Ww 

Die) = (5) 0 - (32) «0 -{(22) s+ (4) to} 200 
+ (t= me + (28 = ico p(0) (B.15) 

+ (=>) f Mer) ar) dr + (2) [ e-na@ar, 

  

  

By a similar procedure it is possible to determine the remaining expressions 

D;(t), D,(t), .... Dn(t). Every new integration by parts provides new, and more 

intricated, boundary terms at r = 0 and at r = t. However, the coefficients involved 

on these terms are recursively related. This facilitates their calculation, and allows 

to write the following general expression after N integrations by parts: 

Dy(t) = »(2)" t. De) 
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+ E{ (pana Q)" sho} [FT] 
+ 2)" tru f h(t — r) Ar) dr — (sy"" Ty f h(t — rT) ar) dr, 

(B.16) 

where an upper number delimited by < . > indicates the number of derivatives, with 

respect to time, of the lower variable. The coefficients YT, can be determined by 

using the following second order recursion 

tT. = —28 Tri _— T.-2 ’ To = 0 ) T_3 =-—l. (B.17) 

It can be noticed that the recursive coefficient T, depend only on the coefficient 6, 

but to furhter simplify equation (B.16), it is possible to involve also the variable w 

in the recursive formula. That is, a new recursive coefficient T, is defined by the 

following product: 
1 k+1 A 

T, = (-) Tt, (B.18) 
Ww 

and the resulting recursive relationship can be written as 

1, = - (72) Tia (=) Ti2, To=0, Ta =-1 (B.19) 
WwW Ww 

By using the recursive equation (B.19), the expression for Dy(t) becomes 

<k-1> 

Dy(t) -» T. p(t) +b lw? Tea A(t) — T A(t)| | * I. 

+ w? Twas [ h(t— 7) p(t) dr — Ty f it —r) p(r) dr. 

(B.20) 
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Appendix C 

Recursive Formula for 

Pseudo-Flexibility Matrices 

C.1 Pseudo-Flexibility Matrices for all Modes 

The dynamic behavior of a linear structural system, with n degrees of free- 

dom and classical damping, is completely characterized by three well known (n x n) 

structural matrices: the mass matrix [M], the classical damping matrix [C], and 

the stiffness matrix [K]. However, the force derivative method, proposed in chapter 

4, makes use of the so called pseudo-flexibility matrices, which can be defined by a 

recursive relationship involving the previous three matrices. This appendix presents 

the formulation leading to such recursive expression. 

The k** pseudo-flexibility matrix is denoted here as [F'], and is defined by the 

following expression: 

(Fl, = D0); Tie}? = (8) [Th BI? (C.1) 

where [9] is the normalized (with respect to the mass) modal matrix which columns 
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contain the n eigenvectors {¢};, and [Y], is a diagonal recursive matrix which j" 

entry contains the recursive coefficient T;,. These coefficients results from the inte- 

gration by parts of the Duhamel integral and they are defined recursively (appendix 

B) in terms of the natural frequency w; and the damping ratio §; as 

28; 1 
Tie = — () Tje-1 — (5) Tie-2» Tyo=0 , Tyr =-1. (C.2) 

The orthonormality eigenproperties of a classically damped linear system can 

be expressed as 

[e)"[M][S] = [7] , (8) (Cl#] = [D] , [)[K][#] = [A], (C3) 

where [J] is the (n x n) identity matrix, [D] is the diagonal modal damping matrix 

with its j** entry given by (28;w;), and [A] is the diagonal modal stiffness matrix 

2 which entries contain the n eigenvalues A; = w3. 

By considering the expressions in equation (C.3) it is possible to rewrite the 

recursive relationship of equation (C.2) in matrix form. That is, 

[The = —[A]~* { [D] [Thea +([The2} , (Tlh=(0] , [Ylh1=-[7], (C4) 

where [A]~* can be obtained from equation (C.3) as 

1a 
a=) eee, (os) 

1/w? 

and a matrix with the superscript —T' indicates the inverse of its transpose. 

Equation (C.5) can be substituted into equation (C.1) to get the following re- 

cursive expression of [F'], in matrix form: 

[Fle = —(S][AP? { [D] [Thea + [7] [Tea } [2]? 
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[Flo = [S}[To[#]* = [0] , [Fla = [@) [8]? = -[M)*. (C6) 

Finally, the expressions for [I] and [D] in equation (C.3), and the expression of [A]~* 

in equation (C.5), can be substituted into equation (C.6) to get 

[Fle = —[K] { [C][®] (Y]a-a[8]” + [M1 [3] [T].-2[8]” } 

[Fl = [0] , [Fl = -[MI", (C.7) 

where it can be recognized that [®][Y],_1[®]? and [®][T],_2[%]? are equal to [F],_1 

and to [F'],-2 respectively. Thus, the expression for [F'], becomes 

[Fle = —[K]™* { [(C] [Fle-1 + [M] [Fle-2 } 

[Fl = [0] , [Fl- = —[M]°. (C.8) 

It should be noticed that the first pseudo-flexibility matrix is just the actual 

flexibility matrix. That is, 

[Fl = ~[K]™* { [C][0] — [a] [My } = [KT*, (C.9) 

as a consequence, there is no need to invert the mass matrix since it is possible to 

calculate all [F], for k = 2,3,...,N by initiating the recursion with [F], = [K]~' 

and [F']o = [0]. 

C.2 Pseudo-Flexibility Matrices for Lower and 

Higher Modes 

The formulation of the previous section presents the recursive formulas nec- 

essary to generate a set of pseudo-flexibility matrices associated to all n structural 
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modes. However, the force derivative method, developed in chapter 4, requires the 

use of a different set pf pseudo-flexibility matrices. That is, the pseudo-flexibility ma- 

trices associated only to the higer modes. This section presents the recursive formulas 

corresponding to two different sets of pseudo-flexibility matrices: (1) a set associated 

to the lower modes, [F;],, and (2) a set associated to the higher (truncated) modes, 

[Fa]e- 

By assuming that the first r modes constitute the lower modes and the remaining 

nm — r modes are the higher modes, it is possible to rewrite equation (C.1) as 

[Fle = Ditohs Tino}? + D0 {6}5 Vin {O}" = [Fula + [Fale (C.10) 
j=l j=r+1 

where the pseudo-flexibility matrices associated to the lower and higher modes are 

defined, respectively, as 

(Fda = Do{O}s Tan (O¥" = (Fl [Meh [Ba (C.11) 

Fale = So {hs Tin {O}" = [Fs] [Tale [B]”. (0.12) 
g=rt+l 

The dimensions of the different matrices involved in equations (C.11) and (C.12) 

are presented in table C.2. 

Substitution of equation (C.10) for the subscripts k, k — 1, k — 2, 0 and 1 into 

equations (C.8) and (C.9) produces 

[Fe = (Fie + [Pile 

= —[K]" { [C] ((Fue-1 + [Fale — 1) + (M] ([Fele-2 + [Fale-z2) } 

[Fl], = [Fdit([Fa 5 [Flo = [Filo + [Palo (C.13) 
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Table C.1: Dimensions of the matrices associates to the lower and higher modes 

  

Matriz Dimension 

[®,] = [{o}1, {o}2,.--, {P}e] nmxr 

[fa] = [{P}-+1, {o}-+2; teey {$}n] nx (n — r) 

  

      
[Y,] diagonal (first r elements) rx? 

[Yn] diagonal (last (n — r) elements) | (n —1r) x (n—1) 
[Fy] nxn 
[Fi] nxn 
  

where 

Fd = [bd (Yeh (8d? = Shs (3 , {a} (0.14) 

[Fal = (F]. - (Fh = [A] - D0 (3 {$}7 (C.15) 

[Fo = [Filo = [Falo = [0] . (C.16) 

Equation (C.15) can be easily splited in the following two expressions: 

[File = —[K]~ { [C] [Fde-1 + [M] [Fiu]e-2 } 

Fl, = Shs (3 =) oY | [Flo = (01, (0.17) 

[File = —[K]™ { [C] [Pale-1 + (M] [File-2 } 

Wh, = [KI - hs (3 =) | Ul = [0]. — (€.18) 

Equation (C.17) is the recursive relationship that defines the pseudo-flexibility ma- 

trices associated to the lower modes and equation (C.18) is the recursive formula to 

generate the pseudo-flexibility matrices associates to the higher (truncated) modes. 

In both cases the matrices are expressed in terms of the retained lower eigenproperties 

and in terms of the complete mass, stiffness and damping matrices of the system. 
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Appendix D 

Calculation of a Classical 

Damping Matrix from a 

Truncated Modal Analysis 

In general, the dynamic analysis of classically damped linear structures does 

not require the knowledge of the damping matrix [C]. If modal analysis is used on a 

system with n degrees of freedom, only the values of r < n damping ratios are needed 

to apply the modal combination rule leading to the dynamic response. However, some 

calculation procedures require the complete knowledge of the damping matrix, i.e. 

any direct integration scheme, or the force derivative method developed in chapter 4. 

In particular, the latter uses the damping matrix for the calculation of the recursive 

pseudostatic contributions of the truncated (higher) modes. This appendix presents 

a generalization of the procedure given by Craig [15] to approximate the complete 

damping matrix in terms of the retained eigenproperties as well as the mass and 

stiffness matrices: [M] and [K]. 

250



The orthonormal modal properties of these systems can be written as: 

[5]? [a] [3] = [1], (D.1) 
2 By wy 0 

(8)? [C][8] = [D) = Pate / (Da) 
0 2 Bn Wn 

wi , 0 

SPIKI@=(={ 7. |, (D.3) 
0 w? 

where §; and w, are the j** modal damping ratio and modal frequency respectively, 

[I] is the (n x n) identity matrix, [%] is the modal matrix which columns contain the 

modal vectors {@};, and the diagonal matrices [D] and [A] are the modal damping 

and modal stiffmess matrices respectively. 

Equation (D.2) can be solved for matrix [C] to express it in terms of all n 

eigenproperties as 

[C] = [a)-* [D] [4], (D.4) 

where there is no need to invert matrix [®], nor its transpose. With the help of 

equation (D.1), it is possible to write 

[)* = (S]"[M] , ([8)-* = [M)][4], (D.5) 

which can be substituted into equation (D.4) to get 

[C] = [04] [8] [D] [#8]? [mM] = [04] S74}; (28;5) {4}; [M] . (D.6) 
j=l 

Similarly, the stiffness and mass matrices can be written as 

[K] = [MJ [8] [A] [8] [M] = [M] 010}; {6 IM], = (D7) 
j=1 
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[M] = [M] [8] [8]? [Mt] = (M] {4}; {937 [a] - (D.8) 
j=l 

Equation (D.6) is the commonly used expression to reconstruct the damping 

matrix from the total eigenproperties. However, in general, not all n eigenproperties 

are available. Only a truncated set of them, containing the properties associated 

to the lower r frequencies, are known. Therefore, matrix [C] is here decomposed 

into two matrices: matrix [C,] associated to the retained (known) lower modes and 

matrix [C,] associated to the truncated (unknown) higher modes. That is, 

[C] = [Cx] + [Ch] , (D.9) 

where the two new damping matrices are defined as follows 

(Ca) = [M] 3314}5 (26;05) {0} [M] = [M][S) [Dd [87M], (D210) 
j=l 

[Cn] = [M] > {$}; (28;5) {635 [M] = [M] [a] [Da] [S.]" [M]- — (D.11) 
j=rt+l 

Matrix [®,] has dimension (n xr) and its columns contain only the first r eigenvectors. 

Matrix [D,] is diagonal with dimension (r xr) and its diagonal entries are the same as 

the first r diagonal entries of matrix [D]. Matrix [®,] contain the (n — r) truncated 

eigenvectors and has dimension [n x (n — r)]. Matrix [D,] is also diagonal with 

dimension [(n —r) x (n —r)| and its diagonal entries are the same as the last (n —r) 

diagonal entries of matrix [D]. 

Since [C,] is given in terms of the unknown truncated eigenproperties, it is 

proposed here to express it as a linear combination of the stiffness and mass matrices 

associated to the truncated upper modes. That is, 

[C;,] = Ct; [Ka] + Co [M,] ; (D.12) 
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which can be substituted into equation (D.9) to get the proposed damping matrix 

[C] = [Ce] + & [Ka] + e2 [Mh] . (D.13) 

The matrices [K;] and [M,], though associated to the truncated modes, can 

still be expressed in terms of the retained modes and the total stiffness and mass 

matrices as follows: 

[Ki] = [K] -— [Ki], (D.14) 

[M,] = [M]— [Mi], (D.15) 

where [K,] and [M;] can be calculated by the same procedure used for the calculation 

of [C;,] and then substituted into equations (D.14) and (D.15) to get 

[Kn] = [K] — [M] [#2] [Ad [®2]7 [4] , (D.16) 

[Mi] = [M] — [M] [2] [€2]" [M] . (D.17) 

Matrix [A;] is diagonal with dimension (r x r) and its diagonal entries are the same 

as the first r diagonal entries of [A]. 

The final expression for the proposed classical damping matrix is obtained by 

substituting equations (D.10), (D.16) and (D.17) into equation (D.13) to get 

[C] = [M] [#2] [Dg] [f2]7 [M] 

+ & ([K] —[M] [£2] [Ad] [42] [M]) 

+ & ([M] —[M] [4d] [8]" [M)) - (D.18) 

The damping matrix defined by equation (D.18) possesses its first r associated 

damping ratios equal to the damping ratios of the retained lower modes, and its 
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remaining (n—7r) associated damping rations can be adjusted by the proper selection 

of the constants ¢, and ¢,. Thus, the damping ratios of the upper (truncated) modes 

are related to the constants ¢, and ¢, by the following expression: 

(05+ 2) > g=rti,rt2,...,n (D.19) 
j 

8; = 
n
o
l
 

In particular, for ¢, = 26,/w, and ¢, = 0, the damping ratios associated to the 

truncated modes are 

    

W, Wy Wr, 
Brti = Br o » Brt2 = Br oe » see » Bn =Pe wp : (D.20) 

Therefore, in this case, the upper damping ratios are increasing and proportional to 

the frequency ratios w;/w, for j =r+1,...,n. 

Similarly, if ¢; = 0 and ¢, = 26,u,, the upper damping ratios become 

Ww, Ww, Ww, 
Br4a = Bb, ’ Br+e = By y oth y Bn = By Ww ’ (D.21) 

Wr41 Wr+2 

    

and the upper modes possess decreasing damping ratios proportional to the inverse 

frequency ratios of the previous case. 
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Appendix E 

Bouc-Wen Constitutive Model 

The inelastic constitutive law proposed by Bouc [9] and Wen [56, 57] is briefly 

described in this appendix. The physical meaning corresponding to some of the model 

parameters is presented here to assist the analysis of the constitutive equations used 

in chapters 5 and 6. However, a more complete study of this constitutive law has 

been provided by Baber and Wen [5] as well as by Maldonado [30]. 

To model the behavior of the force-displacement relationship of inelastic materi- 

als, Wen has proposed to define the material as composed of two elements in parallel. 

One element possesses elastic behavior and the other behaves in an inelastic fash- 

ion. The different contributions of each element to the total force F is dictated by 

weighting factors. Thus, 

F = akz+(l—a)kv(z) (E.1) 

where k is an elastic stiffness, z is the principal displacement associated to the total 

force F, v(x) is an auxiliary displacement dependent on z and associated to the 

inelastic behavior, and a is the weighting constant representing the relative partic- 
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ipations of the elastic and inelastic terms, (0 < a < 1). Figure E.1 schematically 

describes the relationship between F and z as well as the relationship between v(z) 

and z. 

The hysteretic behavior is included through a nonlinear relationship between 

v(z) and a. For this, Wen have proposed the use of Bouc’s endochronic law: 

vo(z) = Az—Bzlv(z)|" —Cv|z| |v(z)|"""*. (E.2) 

where the different model parameters, A, B, C, and 7 have been analyzed by Baber 

and Wen [5], and by Maldonado [30]. 

The tangent to the nonlinear path described in the plane v—z, is given by 

dz(z)/dz which can be obtained by dividing equation (E.2) by z. Thus, 

  

dv(z) n zu(z) (2) _ 4-2) 5+ ewe | (E.3) 

and at the limit, as v(z)  z — 0, this tangent becomes 

dv(2) = =A. (E.4) 
  

The ultimate value of v(z) is denoted as v,, and is defined as the value at which 

dv/dz = 0. Therefore, from equation (E.3), the absolute value of v, can be written 

as 

1/n 
lv,| = goa . (E.5) 

The tangent stiffness of the inelastic behavior is defined by the derivative of F 

with respect to z: 

dF du(z) “= —a)k m% k+(1-a) de   . (E.6) 
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Figure E.1: Bouc-Wen hysteretic model: (A) Force vs. displacement, and (B) Aux- 

iliary variable vs. displacement 

207



The corresponding initial tangent stiffness at x = v = 0 is denoted as ky; and its 

expression is 

dF du(z) 
kr = — = ak+(l—a)k —— E.7 T dz ak + ( a) dz ? ( ) 

2-=-v=-0 e2=-u-0 

where equation (E.4) can be substituted to get 

ky = ak+(l—a)kA. (E.8) 

For A= 1, ky becomes 

kr =k. (E.9) 

The final stiffness ky, can be defined at the asymptotic value of v when du/dz = 0 

as 

kp =ak. (E.10) 

Therefore, the parameter a is the ratio of the final stiffness to the initial stiffness 

when A = 1, 

a= kr/ky (E.11) 

A commonly utilized softening model uses A = 1 and straight lines as unloading 

paths, which implies that B = C > 0. Therefore, ky, ky and a are given by equations 

(E.9), (E.10) and (E.11) respectively, and the values of B or C can be obtained from 

equation (E.5): 

B=C=—2° (E.12) 
— [v..|" 

  

where the exponent 7 is a positive integer number that controls the proximity of 

the nonlinear path to the initial and final tangents. Bigger exponents correspond to 

closer paths to the tangents. If A = 1, |v,| is equal to the yielding displacement z,, 

and can be written in terms of the yielding force, F,, and the initial stiffeness as: 
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Fi, 

lv,| = zy = Fy/k, (E.13) 

equation (E.12) becomes 

0.5 B=C = = 05(k/F)" ; (E.14) 

where B or C is written in term of the yielding displacement or in term of the 

yielding force. It should be noticed that the yielding force F,, is not the actual force 

that corresponds to the yielding displacement z,, but it is the force level associated 

to the intersection point of the initial and final stiffnesses. 
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Appendix F 

Linearization Coefficients 

This appendix presents the formulation leading to the expressions for the lin- 

earization coefficients of the Bouc-Wen model. 

The stochastic linearization scheme adopted here, is that proposed by Atalik 

and Utku (3]. It is characterized by the assumption of gaussian probability density 

functions for the response quantities of the nonlinear system. As a consequence, it 

is also known as gaussian linearization. However, such assumption is probably the 

main cause of the error introduced by this procedure. 

The Bouc-Wen nonlinear constitutive equation for a single hysteretic element 

can be written as 

v= g(z, v) (F.1) 

where the nonlinear function g(z,v) is given by 

g(z,v) = Az—Be|v|"—Cv|z||v|"" , (F.2) 

and the different variables have been defined in chapter C.4 and appendix E. The 
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equivalent linear equation for v is 

v=az+bv+e, (F.3) 

where a and 6 are the linearization coefficients and € is the unknown error introduced 

by the linearization. The coefficients a and b can be obtained by minimizing the mean 

square value of the error e with respect to them. Thus, the following two equations 

can be solved for a and b: 

OE[e)] _ 

da 

dE[e?] 
0 , a = 0. (F.4) 

However, if the conditions given by Atalik and Utku [3] are satisfied, both coefficients 

can also be given by 

c= [22] 5 = 2 [2882] es 
where the expected values correspond to a joint gaussian distribution function of the 

variables z and v, which have zero means. The partial derivatives of g(z,v) are 

O9(%)%) _ A_ Bly —Cvlul4 [al , (F.6) 
Oz 

Og(z,v . _ . _ 
ale, 2) = —7Bzv|v|"-? —7C |z| |v|" . (F.7) 

Substitution of equations (F.6) and (F.7) into (F.5), and distribution of the expected 

values render 

a = A—BE||v|"| —C Elv |v|"-* z |z|-"] , (F.8) 

b = — 1B Elev [ol] —0¢ Bila [oP]. (F.9) 
For odd integer values of the exponent 7, it is possible to obtain simpler closed form 

expressions for the expected values. Thus, equations (F.8) and (F.9) become 

a = A~BE||v|"| —C Elvz|z|-"] , (F.10) 
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b= — 7B Elzv|v|"~7] — nC E|l2| v7] . (F.11) 

The integrals involved in the above expected values, are not generally included in 

common integral tables. For this reason, they closed expressions have been developed 

during this study and their final forms are presented here. 

The first expected value to be considered is E[|v|"]. Since the mean value of v 

it is assumed to be zero, its expression is: 

co " * 7} 

Blur] = [~ a etal dy = “| r (2) ; (F.12) 

where o, is the standard deviation of v and I'(.) is the gamma function. For positive 

  

odd integer values of 7 the value of the above gamma function is '(2#*) = (35+)! 

Ej] = of (7)! (F.13) 

The calculation of E[v"z |z|~*] and E[|z|v7~1] for odd values of 7 requires the 

and E||v|"| becomes 

use of the following expression: 

k<n k 

E[z"| = >> of wrt (7 | (=) , k=0,2,4,...,even (F.14) 
k=0 | 

where z possesses a gaussian probability density function with mean p, and standard 

deviation o0,. This expression has been derived from the following recursive equation 

provided in reference [36]: 

E[z")] = pe E[z"™] + (q — 1) 03 Elz" (F.15) 

Equation (F.14) is valid for odd or even values of 7. In particular, for odd values of 

7 it becomes 

  

1 (n-1)/2 o? 5 yn-2i n! 
E[z"] = 2 5; - a ; (F.16) 
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and for even values of 7 it is 

  

n{2 o2s n—2j t 

Be = F @- am : (P07) 
By assuming a jointly gaussian distribution function with zero means for the variables 

v and 2, the final expressions for E[v"z |z|~'] and E[|z|v"~*] (for 7 = odd) are: 

[on 
E[v" 2 |z|~*] = 9! (ov pus)” = De (F.18) 

Qn 
E||z| v"~*] = (n — 1)! (oy Pue)™ Cx / 7 Dip. (F.19) 

where py; = E[vz]/(c, oz) is the correlation coefficient, and the quantities denoted 

as D, and %, indicate the following summations: 

(n—-1)/2 . 274 
_ [(7 — 27 — 1)/2]! J 1— pes 

Ze De 7 (n — 23)! | 4 pis | (7-20) 
  

  

_ 2” f= 25 - 1/21! [1-65]? 
m= 2 eT a I me 

By considering the same jointly gaussian distribution as before and odd values of 7, 

the remaining quantity E[zv|v|"~?] can be written as 

[on /n— 
Elev |v|?-7] = o2 oF" prs ” € 9 “)! (F.22) T 

Substitution of equations (F.13), (F.18), (F.19) and (F.22) into equations (F.10) 

  

and (F.11), renders the final expressions for the linearization coefficients a and b: 

n—-1 — —ot 7 ! Ip! De F.23 a = Ao} yan /x | B(A =)! +C (9)! 0% (F.23) 

b= oF tos 2" /m [apeB(1)+C() eS] (F-24) 
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Appendix G 

Frequency Integrals 

This appendix presents closed form solutions to the frequency integrals involved 

in the stochastic response of single-degree-of-freedom oscillators. The following three 

integrals are analyzed: 

Jy = [ B(w) |G5(w)P de , (G.1) 
It = [ _8(u)Hiw)Pdo , = /  B4(w)u|Hi(w)? dw, (G2) 

where |G5(w)|? and |H§(w)|? are the squared modules of the frequency response 

functions corresponding to a massless oscillator (first order oscillator), and to a 

second order oscillator, respectively. 

a | -1 

|Gz(w)? = [(A5)? +07|~ , [AS(w)? = [(w? —w)? +46? uw} v7]. (G.3) 

The existence of closed form solutions to these integrals depends mainly on the com- 

plexity of the function $,(w), which is the power spectral density function (PSDF) 

of the excitation. For a unit PSDF, the integrals are denoted by Jj, I 3 and Iz. The 

first is given by: 

: oo 1 w 
= ic 2 =_- — — J; = [ |G5(w)|° dw Y arctan (=) 

J 

=. (G.4) 
  —co 
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The expressions for Id and I j can be found in the random vibration literature [29], 

and are given by 

  

  

jd _ °° c 2 lw = w 

tz _ [~ 2177 2 _ T Iya fo H§lw)P du = se (G.6) 

The simplest PSDF to be considered is that of a white noise since its expression 

is a constant value: 

G,(w) = S. (G.7) 

However, a white noise is an idealization that it is not present in natural phenomena. 

A more adequate model for earthquake engineering, is the well known Kanai-Tajimi 

[24] PSDF. It models the seismic motion at the surface of soil layers that rest on 

a bedrock. The soil layers are considered as a single degree of freedom oscillator, 

which filters an assumed white noise motion acting at the rock level. A three term 

Kanai-Tajimi PSDF has the following expression: 

3 

@,(w) = 7S: (wi + 46} wiw*) |HF(w))? , (G.8) 
i=1 

where the parameters 5; depend on the maximum level of excitation (white noise 

amplitude), and the parameters w; and §; depend on the characteristics of the soil. 

White Noise PSDF 

In this case, the PSDF is given by equation (G.7), and the integrals are straight 

    

forward: 

J; =55,= 5, (G.9) 
Xj 

t#=Sh-§—. , p=sp=as— G.10 
j j 2B; w? 7 7 2 Bj w; (6-10) 
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Kanai-Tajimi PSDF 

For a three-term-Kanai-Tajimi PSDF, the integral J; become 

J, = 32S [oh +4 pt uFw*) (Gu)? [e(w)Pdo. —— (G.11) 1 —oo 

The integrand of the above expression can be expanded into partial fractions by 

using the procedure described in case II of appendix A. Thus, 

J = 8 [7 [7 exw? + (29) +027) [HWP] dw, (6.12) i 00 

where the partial fraction coefficients are 

TH) = [47 0} (At)? — wf] (A), (G.13) 

TY) = —w [2u? +(A5)?] (AZ), (G.14) 
3 3 tT) = -TY), (G.15) 

with 
I r , 

AH = 46? w} (25)? — (05)? +09]? . (G.16) 

Equation (G.12) can be rewritten as 

3 

Jg= OS; (TP G+ 7P 47) PI (G.17) 
i=1 

? 

Equations (G.4), (G.5), (G.6), (G.13), (G.14) and (G.15) can be substituted into 

equation (G.17) which, after some algebra, becomes 

Siw; (46? Nj + 2850; + dr) Tv (G.18) 
243 in_—(Bi (2 i; w; X5 + (AZ)? + w? ) 
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The next integral to be considered is If, which for the PSDF given in equation 

(G.8) is 
3 00 

IE = 0S: [oh +462 u2 uo?) |H(w)P |HG(w)P dw. (G19) 
t=1 

The integrand can be expanded into the following partial fractions: 

3 oo 

B= ss f(t) +o? TP) sw)? + (TY) +o? TY) |HG(w)/"] de , 
i=1 —oo 

(G.20) 

where the coefficients TT), TS), Te) and TS! can be obtained by the procedure 

described in case III of appendix A. 

TS) = { 03, [4-302 + 8 (67.03, — 87) -1} (AN) (G.21) 

TH = [2 (0%, — 03) +4 (6703, — 6?) ] wy? (AH?) (G.2) 

T) -1-07'7T! , 1h = —7f), (G.23) 

with 0;; = w;/w;, and 

Aj’ = 16(6? + BF — Bi — B}) — 05; — 9;;* - 6 

+ 4(3, +957) [1 — 2 (6? + 6? — 26?6?)] . (G.24) tj 

By considering equations (G.23), equation (G.20) can be rewritten as 

f= > si [7 (it-99' 1) +79 (f-B)+] (6.28) 
t=1 

where the integrals J,, id and I? are given by equations (G.4), (G.5) and (G.6). 

Substitution of these expressions into the above equation renders: 

3 T) (1 oF\ TT! (1 9; 1 w=2y sg, | (E- e) + (E- #) + G.26 
i=1 é 

        

Finally, the remaining integral I? is 

3 oo 

I = Sf whet +462 ut 4) E(w) |AG(w)[? de (G.27) 
s=1 
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After expanding the integrand into partial fractions, it becomes 

3 

Bap Ss J [cr +0? TP) aso)? + (TY + 0? TY) |AG(w)P?] de, 
(G.28) 

where the coefficients T®), T®), T?” and Toy) can also be obtained by the procedure tyoyrtw era 

described in case III of appendix A. 

TY = 2u? 02 (1-02, — 267 + 267.0;7) (AN), (G.29) 

TT!) = {0% -1—- 8? [1-02 +2 (67202, — 6?) |} (AH), (G.30) 

10 - 8 11 9 

Tg =--oFTY , TY =-TP, (G.31) 
where 1;; and AfJ’ have already been defined. Substitution of equations (G.31) into 

equation (G.28) produces 

iy = y [TP (if -o7 12) +79 (2? -B)] , (G.32) 
i=1 

where the indicated integrals can be substituted by their closed expressions, given in 

equations (G.4), (G.5) and (G.6) to render 

xr 3 Te) /4 a) 79) (3 Q.: 
r=—> s,|-£ (—--—2)44% (=- a . G.33 P= 9h 3G By) \B Bs; (6-38) 
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