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(ABSTRACT)

This dissertation deals with variance reduction techniques (VRTs) for improving
the reliability of the estimators of interest through a controlled laboratory-like simu-
lation experiment. This research concentrates on correlation methods of VRTs which
include common random numbers, antithetic variates and control variates. The basic
idea of these methods is to utilize the linear correlation either between the responses
or between the response and control variates in order to reduce the variance of es-
timators of certain system parameters. Combining these methods, we develop pro-

cedures for estimating a system parameter of interest.

First, we develop three combined methods utilizing antithetic variates and control
variates for improving the estimation of the mean response in a single population
model. We explore how these methods may reduce the variance of the estimator of
interest. A combined method (Combined Method |) using antithetic variates for the
non-control variate stochastic components and independent streams for the control
variates yields better results than by applying methods of either antithetic variates

or control variates individually for several selected modeis.

Second, we develop variance reduction techniques for improving the estimation

of the model parameters in a multipopulation simulation model. We extend Com-



bined Method | showing good performance in estimating the mean response of a
single population model to the multipopulation context with independent simulation
runs across design points. We also develop another extension of Combined Method
I that incorporates the Schruben-Margolin method to estimate the parameters of a
multipopulation model. Under certain conditions, this method is superior to the
Schruben-Margolin method. Finally, we propose a new approach (Extended
Schruben-Margolin Method) utilizing the control variates under the Schruben-
Margolin strategy for improving the estimation in a first-order linear model. Extended
Schruben-Margolin Method yields better resuits than the Schruben-Margolin method

in estimating the model parameters of interest.
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CHAPTER 1. INTRODUCTION

Computer simulation has become a widely used technique to study systems too
complex to be evaluated analytically. Kleijnen (1974) defined simulation as building
a mathematical-logical model of a stochastic system, experimenting with it over time
and collecting data to evaluate the system parameters of interest. We will consider
discrete-event simulation throughout this research. That is, experimentation of a
simulation model involves the changing of the state of the system model only at a fi-
nite number of points in time (discrete), simulation evolves with time (dynamic), and
the simulation model contains more than one stochastic variable (a more detailed
presentation of this framework for simulation is given in Section 1.2 of Law and Kelton

(1982)).

Through a controlled laboratory-like simulation experiment, an experimenter is
concerned with estimating the system parameters of interest from the outputs of the
simulation model. Estimation of the system parameters and reliability of these esti-
mators involve many statistical principles of experimental design and regression
analysis. This dissertation focuses on a simulation technique for reducing the vari-
ability of the estimators for the parameters of interest in a designed simulation ex-

perimental model.
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The precision of the estimators of the parameters is associated with collecting the
necessary amount of simulation output data. Frequently large-scale systems analysis
through simulation requires extensive experimentation with a simulation model to
obtain acceptable precision in the estimators of the system parameters of interest.
Although we expect the cost of experimenting with the simulation model to become
less as the computer technology continues to increase, there remain many situations
where estimating model parameters is difficult with adequate precision at an accept-
able cost. Also, if we can reduce the variance of the estimator of interest at little cost,
we can obtain greater precision of the estimator with the same amount of simulation.
Thus, in this work we are proposing ways of obtaining significantly better information

from a set of simulation runs with little additional effort.

To this end, variance reduction techniques (VRTs) have attracted considerable
interest. The variance reduction problem consists of obtaining unbiased estimators
of the system parameters of interest with smaller variances than the simple estima-
tors obtained by independent replications (without applying any transformations on
the input domain or the output space of the simulation experiment (see Wilson
(1984))). VRTs offer a broad selection of methods useful in reducing the variance of
the estimator for the system parameter. Wilson (1984) classified all VRTs into two
major categories — importance methods and correlation methods. The importance
methods include the techniques of importance sampling, conditional Monte Carlo,
stratified sampling, and systematic sampling. The basic idea of these techniques is
that most of the contribution to the value of the parameter of interest comes from
more important subregions of the input domain. The accuracy of the estimators can
be improved by concentrating the sampling effort in those subregions of the input

domain. Correlation methods include the techniques of common random numbers,
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antithetic variates, and control variates. The techniques of common random numbers
and antithetic variates require the induction of positive and negative correlations, re-
spectively, between pairs of responses from different simulation runs. The method
of control variates attempts to take advantage of the correlation between the simu-
lation response and the control variates. Under the normality assumption of the re-
sponse and control variates, this method is a special case of covariance analysis in
classical regression theory (see Chapter 8 in Searle (1972) and Lavenberg, Moeller

and Welch (1982)).

In this research, of particular interest are correlation methods that utilize the
correlations between simulation output either within a single run or across different
replications. For a single population model, usually antithetic variates and control
variates are applied to reduce the error of the estimator for the mean response of
interest. In contrast to the approach of antithetic variates, the method of control
variates attempts to exploit any inherent correlations between the response and se-
lected concomitant variables {control variates) within a single run. We hypothesize
that through correlated replications of simulation runs, we get a reduced variance of
the estimator for the mean response and yet maintain the same correlation between
the response and control variates as those obtained under independent replications.
Then it is conjectured that we may take advantage of both antithetic variates and
control variates together in one simulation run, and reduce the variance of the esti-
mator further by applying either antithetic variates or control variates separately.
Although the control variates can be external (that is, similar variates in a much
simplified version of the original model which is driven by the same random number
streams as the original model), this research deals only with internal {(concomitant)

control variates.
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For a designed simulation model having multiple design points (we refer to it as
a multipopulation simulation model throughout this research), several authors have
developed methods combining correlation methods for estimating the model param-
eters of interest. To improve the precision of the estimator of the model parameters,
Schruben and Margolin (1978) developed a correlation induction strategy for com-
bining the use of common random numbers and antithetic variates in the same de-
signed experiment. Also Tew and Wilson (1989) proposed a combined approach of
the Schruben and Margolin (1978) correlation induction strategy and control variates.
Under certain condition, this method yields better results than the Schruben-Margolin

method in estimating the model parameters of interest.

The above two studies exploit the correlation between the responses at different
design points. The combined method proposed earlier, which is fundamentally dif-
ferent from these two approaches, focuses on reduction in variance of the mean re-
sponse of interest in a single population model. We consider that the responses with
reduced variances at the design points of the experimental model may ensure im-
provement in the estimation of the parameters of the multipopulation model. Based
on this conjecture, we explore a way of extending the combined method proposed in
a single population model to the multipopulation context. Also, in extending the
combined method, we consider a strategy incorporating the correlations between the
responses at different design points for further improving the precision of the pa-
rameter estimation. In the same spirit of the methods mentioned above for improving
the precision of the multipopulation estimation, we propose a new approach of uti-

lizing the control variates under the Schruben-Margolin method.
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1.1 Research Objectives

The objectives of this research -are threefold. First, we develop methods combing
antithetic variates and control variates for a single population model. Specifically,
we develop three methods utilizing induced correlations between: (a) the responses
of interest, (b) the response and a set of control variates, and (c) the control variates,
obtained by an appropriate assignment of random numbers streams through repli-
cations, and try to improve upon the simulation efficiency of the control variates
method. Second, we explore the extension of a combined approach for a single
population model to a simulation experiment designed to estimate the parameters
of interest of a multipopulation simulation model. Third, we develop a new method
which deals with the application of the control variates under the Schruben-Margolin

method for the multipopulation described as a first-order linear model.

1.2 Organization of the Dissertation

Chapter 2 presents a review of notation and the relevant literature. This review
includes analysis of covariance in general and the method of control variates specif-
ically. Chapter 3 develops the three combined methods utilizing control variates and
antithetic variates in a single population model. Chapter 4 applies the three com-
bined methodologies developed in Chapter 3 as well as methods of control variates
and antithetic variates to various simulation models, and presents a summary of the
simulation results as well as inferences for these results. Chapter 5§ provides a de-
velopment for extending the first combined method proposed in Chapter 3 to the
multipopulation model, and also presents a new approach for improving the

Schruben-Margolin method with the additional application of control variates. Chap-
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ter 6 describes the simulation results from the application of the two methods devel-
oped in Chapter 5 as well as the Schruben-Margolin method for the multipopulation
model, and presents a summary and analysis of these simulation results. Chapter 7

summarizes the research findings and outlines directions for future research.
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CHAPTER 2. LITERATURE REVIEW

This chapter presents a brief overview and review of the literature for analysis
of covariance for the general linear statistical model and the variance reduction

technique of control variates for simulation experimentation.

2.1. Analysis of Covariance

In this section, we briefly review analysis of covariance in terms of the structure
of a linear statistical model. This review includes methods of estimation of model

parameters and distributions of these estimators.

In statistical experimentation, the response of interest may be related to two types
of independent variables: (a) factor variables and (b) concomitant variables
(covariate or covariable). Factor variables are under the control of an experimenter,
in that we assume that the experimenter can select and set levels of a factor variable
without error. In contrast, the levels of the concomitant variables are not set by the
experimenter but merely observed in the course of conducting the experiment. If the
experimenter is interested in the effect of the levels of the factor variables to the re-
sponse, he carefully chooses the levels of the factor variables in a region of interest.
A concomitant variable is observed independently, typically, at each of the levels of
the factor variables during the experiment and assumed to be correlated with the

corresponding response. For instance, the experimenter may wish to compare the
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effects of different drugs on a patient by measuring a response variable of interest.
It is assumed that the body weight of the patient is correlated with the response var-
iable, but is independent of drug type. In this example, drug type is the factor vari-
able and the body weight of the patient is the concomitant variable (see Seber (1977),
pp. 279-281). If the concomitant variables are strongly correlated with the response
variable, then by subtracting an appropriate linear function of the concomitant vari-
ables from the response variable, the unknown error term of the response variable
can be counteracted. Thus a statistical model including the concomitant variables

may describe the response more accurately than that with the factor variables only.

Consider the linear statistical mode!l with a combination of factor variables and
concomitant variables. While the factor variables are typically nonrandom variables,
the concomitant variables are usually assumed to be random variables which have
a multivariate jointly normal distribution with the response variable of interest. Given
the concomitant variables, we analyze the conditional distribution of the response
variable appropriately represented by the linear function of the factor variables (see
Graybill (1976), Chapter §). Analysis of a combined model with factor variables and
concomitant variables is generally referred to as analysis of covariance. Analysis of
covariance is based on the analysis of the factor part of the model suitably amended

by the presence of the concomitant variables.

Throughout this section we present, in summary, the major results found in the
literature regarding the use of concomitant variables in the context of the general
linear model. In Section 2.1.1, we identify the structure of the linear statistical model
with concomitant variables and contribution concomitant variables make to the over-

all variance of the response. Section 2.1.2 discusses the estimation of model pa-
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rameters and their interpretation. Section 2.1.3 identifies the distributions of these

estimators and some related quadratic functions of the response variable of interest.

2.1.1. Linear statistical model with concomitant variables

We consider the case where the experimenter is concerned with estimating the
mean of a univariate response of interest and the relationship of this mean to the
levels of the factor variables. We also assume the presence of at least one concom-
itant variable that is correlated with the response variable of interest. As indicated
earlier, the factor variables must be variables whose values can be established
without error by the experimenter. A variable is classified as a concomitant variable
if the experimenter thinks that deliberate manipulation of its value is an impossibility
(for example, natural physical phenomena), or because the experimenter is not at-
tempting to learn about its effect (see Pratt and Schiaifer (1984)), yet it is assumed to
be correlated with the response variable of interest. Thus the experimenter cannot

control the concomitant variable.

Since the experimenter is interested in the effect of the factor variables, he may
want to explore the response surface over a factor region of interest. The consider-
ations connected with the exploration of the response surface over a factor region of
interest include: (a) the choice of a proper model to approximate the response sur-
face over a factor region, (b) the suitable design of a factor region, and (c) the testing
of the adequacy of the model to represent the response surface (see Cornell (1981),
Section 1.2). To this end, we assume that there exists some linear functional re-
lationship between the response and the experimental variables (factor and con-

comitant).
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First, we consider the relationship of the response y to the settings of just the

factor variables. We let
y = u() + ¢ (2.1)

where & = (&1, &, ..., &)’ is a specific setting of the d factor variables, u(&) is a linear
function in some unknown parameters that relate the response y to the levels of the
factor variables, and ¢ represents the inability of the postulated function u(&) to de-
termine y. Although the relationship u(¢) between the response and the factor vari-
ables is generally unknown, a polynomial function often is used to represent u(&).
The justification is due to the ability to expand u(¢) by using a Taylor Series expan-
sion (see Corneli (1981), p. 9). Normally low-degree polynomials such as first or
second-degree polynomials are sufficient to adequately represent the response sur-
face (see Myers (1971), p. 26). Suppose we have p functions of the factor variables
of interest and we select m (m > p) experimental points (settings of the factor vari-

ables); &, &, ..., &n. The linear statistical model in (2.1) can be written as

(2.2)

I
n
3

D
yi = ﬂ0+ Zﬂkxk(él) +e, i
k=1

where fi(k=0, 1,...,p) are model parameters, x(&)(k=1,2,...,p) represent p
known functions of the settings of the factor variables, ¢ (i=1, 2, ..., m) is the error
term at the ith design point, and y; (i = 1, 2, ..., m) is the response of interest at the ith
design point. We assume that the ¢’s are 1ID ~ N(0, ¢?) for all experimental points.
Under this assumption, the linear statistical model given by (2.2) implies that the
distribution of y; is N(ﬂo+kiﬁkxx(§,~), o?) if we experiment repeatedly at a given point

&(i=1, 2,...,m). The model (2.2) can be written in matrix form as
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y = XB+¢, (2.3)

where y = (y1, ¥, ..., ¥m)' is the (m x 1) vector of responses, = (fo, f1, ..., Bp) is the
((p + 1) x 1) vector of unknown model coefficients, ¢ = (&1, &2 ..., &m)’ is the (m x 1)
vector of error terms, and X is a (m x (p + 1)) matrix whose first column is the
(m x 1) vector of 1’s (1») and whose ith column consists of (x(&:), x{(&.), ..., x{(&n))’

(i=2 3, .., p+ 1)

Second, we consider the linear statistical model with both factor variables and

concomitant variables:

P s

yi = Bo+ Zﬂkxk(é,-)+ Zc,,a,+e,- , i=12..,m (2.4)
k=1 I=1

where y;, B, B« and x(&) are defined in (2.2); ci(/=1, 2, ..., s) is the /th concomitant

variable at the jth design point; o (/=1, 2,...,5) is the coefficient of ¢, and

e (i=1,2, .., m) represents the inability of the postulated model to determine y..

Analogous to the assumption on the distribution of ¢ in (2.2), we assume that the
¢’s are 1ID ~ N(0, a+%) across all experimental points. We also assume that the
ci={(cn, Ca .., Cis) (i=1, 2,..., m)are lID ~ N0, X.). Under these assumptions, the
linear statistical model given by (2.4) implies that the distribution of y; is
N(Bo +ki1ﬂ,,xk(é,-), a'Ec.x + 0%), where a = (a4, a, ..., ay), if we experiment repeatedly

at a given point & (i=1, 2, ..., m).

It is often convenient to represent (2.4) in matrix form as
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y= Xp + Ca + £, (2.5)

where y, B, and X are defined in (2.3), &= (&), €, ..., &), &= (ots, %z, ..., @5)" and C is
a (m x s) matrix whose ith row consists of ¢’;=(cs, Cq, ..., Ci). In this model, § de-
scribes the effect of the factor variables on the response y,, given ¢’;. However, we
can not interpret the parameter a as the effect of ¢’; on y,. We will discuss how the
parameter @ may be interpreted and how the inclusion of concomitant variables may

improve the estimate of § in the next section.

Obviously the model in (2.2) is a special case of the model in (2.4). A difference
in the observed responses is attributed to the factor variables only if the responses
are obtained under the same external conditions which influence them. By the defi-
nition of the concomitant variables, they are correlated with the response, hence if
the relationship between the concomitant variables and the response variable is
known, we can reduce the residual variation of the statistical linear model signif-
icantly. For specifying the difference between the variance of the response variable
in (2.2) and that in (2.4), we compare the variance of ¢ with that of ¢. If we subtract

the effect contributed by the concomitant variables from both sides of (2.4), we have

p

Yi— Zakcik = fo+ Zﬂkxk(gi) +£i’- i=12.,m (2.6)
K=1

k=1

This equation represents the relationship of the adjusted response to the settings of
the factor variables. When the concomitant variables ¢'; =(ca, Cp, ..., Cis) are ob-

served at a specific design point, the variance of ¢ will be
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S
Var(s’,) = Var(y,— Zakc,k) = Var(y,— ¢’ &), i=1,2,..m. (2.7)
=1

The minimum variance of ¢ (i =1, 2, ..., m) is achieved when the vector of coefficients

for concomitant variables, «, is established as

o« =o' I, (2.8)

where ¢',. is a (1 x s) row vector of covariances between y, and ¢;(i=1, 2, ..., m),
and Z. is the (s x s) covariance matrix of the ¢/ s (see Anderson (1958), p. 32). The
vector of coefficients a in (2.8) induces the maximum correlation between y; and the
linear combination of the set of concomitant variables c¢'; (i=1,2,..,m) (see

Morrison (1976), p. 95). If « is known, the variance of ¢ (6%) is

Var(e') = o> = 0,2~ o'y L 0, = 0, (1 =R, i=12 .,m (29

where RZ = 0,7%' L. "g,. is the square of the multiple correlation coefficient between
a single response variable y, and a set of s concomitant variables ¢;(i=1, 2, ..., m).
The correlation coefficient between y; and ¢’« is given by R,. = a'ayc/(ay\/a—’ﬂ) (see
the covariance operators in Seber (1977). pp. 10-11). When o’ is equal to o', Z:", we
have the maximum R, = (¢',.Z:'0,)"?/0, (see Morrison (1976), p. 95), which is equiv-
alent to the greatest correlation coefficient between y; and the linear combination of
c¢’'s (i=1,2,.., m) (see the definition of the multiple correlation coefficient in
Muirhead (1982), p. 164). Therefore, in the case where the coefficient vector « is
known, we can reduce the effective variation of the response variable of interest by

the amount o2R%. .
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2.1.2. Estimation of model parameters

In this section, we review the results on the estimation of @ and g in (2.5) using

the least squares method and interpret these estimators.

The least squares method is designed to provide estimators for the parameters
in the linear statistical model so that the residual error sum of squares, &"¢", is mini-
mized (see Searle (1971), p. 87). To obtain the least squares estimators of « and f in
(2.5) from one normal vector equation, we define G = (X, C) and y = (f’, a’)’, where X
and C are defined in the previous section. Then the linear model given in (2.5) can

be written as
y = Gy + £. (2.10)

It is assumed that C has full column rank s and is independent of X, and that X has
full column rank (p + 1). Then the matrix G has full column rank (p + s + 1)( < m) and
also G’'G has full column rank p+ s+ 1. Thus (G'G) is positive-definite and there

exists an inverse of (G'G) (see Seber (1977), Theorems A2.4, A4.1 and A4.2). The

least squares estimator for y in (2.10) is given by
Yo = (G'G)'GYy. (2.11)

By using the technique for the inverse of a partitioned matrix, we recognize that the

((p+s+ 1) x(p+s+ 1)) matrix (G'G)-' may be partitioned as

—1
=1 _ [X'X X'C
e = [c'x C'c]
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ryy=1 sy =Ty R VTV e V7
_ [(XX) + (X'X) X CWCX(X'X) (X'X) xcw]’ 212

— WC'X(X'X)™ W
where  (X'X)-' + (X'X)-"X'CWC'X(X'X)"' is  (e+ 1) x(e+1) (X'X)"X'CW is
((p + 1) x s), and the (s x s) matrix W is given by

W=(C'C-CcXXX) X0 =, -XxX"'x)c] =Py (2.13)

(see Searle (1971), p. 27). Thus the least squares estimator ys can be written as

N
A ﬂG
A

y = = -
P [ —WeX(x'x)™! W

XX~ + (X)) xewe x(x'x)”t - (X'X)'1X’CW}[ X'y]
Cy

(X' X)Xy — (X'X)7"X'ewe (1, — X(X'X) "Xy |
WC'[l,, — X(X'X)"'X]y

rorn—1wr _ PR [ , _ =Ty’
_ [(xx) Xy — (x'x)"'x'ewe’(l, — X(X'X) X)V]. (2.14)

[c'(l,, — X(X'X)~"'x)c17 "1, — X(X'X)~'X' ]y

Instead of using the inverse of (G'G), we can obtain the least squares estimator
¥e by directly solving two normal equations. Consider the linear statistical model

(2.5). If we differentiate, with respect to 2 and B, the residual error sum of squares
£'e = (y— XB—Ca)(y — XB — Ca) (2.15)

and set it equal to 0, then the normal equations for § and a« of the model (2.5) are

[exsell2] - &)
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(see Searle (1971), p. 341). As assumed earlier, X and C have full column ranks
(p + 1) and s, respectively, and the inverses of both (X'X) and (C'C) exist. Suppose

that ag and /}o are the solutions to (2.16). Then the first set of equations in (2.16) gives
Bo = (XX)'X(y — Cg) = Bx— (X'X)7'X'Ca, (2.17)

where ﬁx = (X'X)-'X'y is the solution of the normal equations for the linear model

without concomitant variables. The second equation from (2.16) is
b6 = (€0)7'C'(y - XBo). (2.18)
Substituting for ﬁs into (2.18) gives
&g = (C'C)"C'[(1, — X(X'X)"'X")y + X(X'X)”"'X'Cagl. (2.19)
Multiplying both sides of (2.19) by (C’'C) and arranging (2.19) with respect to ag gives
[C'C — C'X(X'X)'X'Clag = C'[1,, — X(X'X)™"Xy. (2.20)
Define P as
P =1,— XXX X, (2.21)

In (2.3), the least squares estimated response y is the m-dimensional vector in the
space of X by the projection of X(X’X)-'X’. Also Py is equivalent to y —y which is
orthogonal to y. Thus P can be interpreted as the linear transformation representing
an orthogonal projection of y (in m-dimensional Euclidian space) onto the range of
space orthogonal to the space of X (see Seber (1977), p. 46). Since P’ =P and
P'P =P, P is symmetric and idempotent. Symmetry and idempotency of P ensure

that C'PC and PC have the same rank since rank(PC) = rank(C’'PP’'C) =rank(C’'PC)
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(see Seber (1977) p. 385). Furthermore, PC has full column rank and hence C'PC is

nonsingular (see Searle (1971), p. 342). Then &g can be written as
Zg = [C'(1— X(X'X)~'X)cT'e’ [l — X(X'X)"'X']y = (C'PC)”'C'Py,  (2.22)

which is the same as in equation (2.14). Substitution of (2.22) into (2.17) then gives

ﬁc as
B = By— (X'X)'x'c(c’PC)"'C'Py (2.23)

(see Searle (1971), p. 342). These results are the same as the estimator y¢ in (2.14)
which is known to be the best linear unbiased estimator (b.l.u.e.) of y (see Rao (1973),
p. 229 and Graybill (1976) Section 6.10). (The procedures given above are discussed

in Chapter 8 of Searle (1971) and Chapter 3 of Seber (1977)).

The least squares estimator [ASG can be interpreted as the effect of the factor vari-
ables on the response y adjusted by the concomitant variables. The effect of the least
squares estimator ag is discussed in the remainder of this section. The (m x 1) vector
of residuals, e,, obtained by fitting the linear statistical model y = Xf + ¢ is defined to

be
e, =y — Xpx = (I — X(X'X)~"'X")y = Py. (2.24)

Similarly, we consider the linear statistical model which fits the design matrix X to the

(m x 1) vector of the ith concomitant variables ¢;(i=1, 2, ..., s):
c,=Xp+e , (2.25)
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where & = (&7, &, ..., &n) are [ID ~ N, (0, o~,). Then the (m x 1) vector of resi-

duals, e, obtained by fitting the linear statistical model ¢; = X + &” is

e, = Pc;, i=12, ..5s. (2.26)

Hence we can consider the matrix PC as the residual matrix resulting from fitting the
linear statistical model ¢;=Xf+¢"(i=1, 2, ...,s). The least squares estimator of «

in the linear statistical model
Py =PCx +¢ (2.27)

is (C'PC)-'C'Py, which is equivalent to the least squares estimator of ag in (2.22).
Therefore, ag can be viewed as the effect of the matrix of residuals, due to fitting the
model to the concomitant variables, on the residuals due to fitting the model to the

response of interest (see Searle (1971), p. 343).
2.1.3. Distributions of model estimates, regression sum of squares and

residual error sum of squares

In this section, we review the results on the distributions of the parameter esti-
mators for the models in (2.3) and (2.5) identified in the previous section under the
assumptions of Section 2.1.1. We also identify the residual error sum of squares, the
regression sum of squares and the variance estimators for the models in (2.3) and

(2.5) and their distributions under the assumptions of Section 2.1.1.

First, we consider the distributions of I}x, the regression sum of squares (SSR),
and residual error sum of squares (SSE) for the model in (2.3) under the assumption

that ¢ ~ Na,(0, oi,). Itis known that ilx has the following distribution:
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By ~ Ny 1(B X)) (2.28)
(see Graybill (1976), p. 176).

To identify SSR and SSE, we partition the total sum of squares (SST) of the re-
sponse variables into two components. That is, SST is composed of the sum of

squares due to fitting the linear model (SSR(ﬁx)) and the residual error sum of

A

squares (SSE(fx)):
SST(By) = SSR(By) + SSE(By) (2.29)

(see Myers (1986), p. 16).

Let yx be the vector of the predicted responses corresponding to the vector of the
observed response variables y obtained by fitting the model in (2.3). Then the vector

of deviations of the observed y from their corresponding predicted vector is
y—¥x = y—XBy = y— XXXy = (1 - XXXy, (2.30)
and SSE(,&X) is given by
SSE(BY) = (v — 'y = #0) = ¥'y —y' XXXy (2.31)

(see Seber (1977), p. 45). In this equation, the first part of the right-hand side in
SSE(iIx) is SST and the second part is SSR(iix) (see Searle (1971), p. 94). If we rewrite

SSR(iix) as the inner product form of two vectors, then we get
p - ’ ’ - ’
SSR(Bx) = y'X(X'X) X'y = y'Xpyx = y'¥x (2.32)
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since Bx = (X'X)-'X'y and Xpx = §x. To determine the distributions of SSE(Bx) and
SSR(ﬁx) which are quadratic functions of the response variables, we note two theo-

rems associated with the distribution of quadratic forms of the response variables:

Theorem 2.1: When y ~ N,(u, oil.), then y’'Ay/ai ~ x¥r(A), 4), where 4 (noncentrality

parameter) = #'Ayu, if and only if A is an (m x m) idempotent matrix of rank r(A)

2
201

(see Graybill (1976), Theorem 4.4.2).

Theorem 2.2: When y ~ N.(u, L), then y’Ay and y’'By are distributed independently if
BLA = 0, where A, B and £ are (m x m) matrices respectively (see Graybill (1976),

Theorem 4.5.3).

Since y ~ N.(XB, oll.) and X(X'X)-'X' is symmetric and idempotent with rank
(p + 1), we have, from Theorem 2.1, that

SSRBD L o1, (2.33)

gy
where the noncentrality parameter, 4, is given by

L= = pXXXX)TXXE = — BXXB (2.34)
20, 20,

(see Searle (1971), p. 175). Similarly, SSElﬁx) = y'Py, where P is defined in (2.21), is

distributed as

SSE(S
SSEW L m-p-) (2.35)

Oy
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since P is symmetric and idempotent with rank (m — p — 1) (see Seber (1977), p. 174).
From Theorem 2.2, equation (2.31) and (2.32), SSR(Bx) and SSE(Bx) are distributed

independently because
XOXX)T'XP = X(XUX) X (1, — X(X'X)T'X') =0 (2.36)

by the definition of P in (2.21). From (2.35), the unbiased estimator of ¢ is

e L U (2.37)

(see Graybill (1976), Theorem 6.2.1).

Next we review the results on the distributions of ﬁc and ag, respectively, under
the assumptions of Section 2.1.1. We also identify SSR(ys), SSE(Jo) and the unbiased
estimator of o> for the model in (2.5) and review these distributions under the same

assumptions.

Since ag and Bs in (2.14) are represented, respectively, as the product form of
Py, C and (C’'PC)-' which are dependent, their unconditional distributions are not
simply identified. Thus, we review the distributions of Py, C and (C'PC) respectively
instead of identifying the unconditional distribution of Js. It is known that
Py ~ N.(0, o?P) since PXf = 0 for the mean and Ps?l,,P’ = o?P for the variance, by the
definition of P. As assumed before, since ¢’;(i=1, 2, ..., m) are IID ~ N,(0, Z.), the

(m x s) random matrix C has the matrix normal distribution:
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C=| " | ~ Ny 40 15 (2.38)

where O is a (m x s) matrix of zeroes, |, represents the independence of the rows of
C, and X. denotes the covariance matrix of the columns of C (see Arnold (1981), pp.
310-311). Also, the (s x s) random matrix (C'PC) has the Wishart distribution with

C'PC ~ W(m—p—1, L) (see Theorem 17.7a in Arnold (1981)).

Given C, it is known that the conditional distribution of y¢ is

YolC ~ Np 4 s+1v6: Uf’(G'G)_1) (2.39)

(see (2.28) and (2.11)). Since yg = (ii’c, a's)’, the conditional distributions of ¢ and
ilg are s-variate and (p + 1)-variate normal and their means and covariances can be
obtained by taking the proper components of y and ¢*(G'G)~" in (2.38) respectively
(see Anderson (1958), Theorem 2.4.3). The mean and covariance of &g correspond
to @ and the lower-right (s x s) submatrix of 6%(G'G)-" in (2.12), respectively. Thus, the

conditional distribution of ag is

86| C ~ Nya, o>(C'PC)™). (2.40)

Similarly, since the mean and covariance of ﬁc are given by B and the upper-left
((p + 1) x (p + 1)) submatrix of ¢%(G’'G)™", respectively, the conditional distribution of

ﬁc has the following (p + 1)-variate normal distribution:
B |C ~ Ny 4(B. o>[(X'X) ™"+ (x'X)”'x'c(C’PC)'C'X(X'X)™"]). (2.41)
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In order to identify SSR(j¢ | C) and SSE(3s | C) in (2.5), we define ys as the vector
of the predicted responses corresponding to the vector of the observed responses y

obtained by fitting the model in (2.5). As before, SSE(ys | C) is given by
SSE(¥s | C) = (y— ¥o)'(y = ¥o) = ¥y —y'G(G'G) "Gy, (2.42)

in which the first part of the right hand side is SST(ys | C) and the second part is
SSR(y¢ | C) (see Seber (1977), p. 45 and Searle (1971), p. 94). If we rewrite

SSR(ye | C) as the inner product form of two vectors, then we get
SSR(3g | C) = ¥'G(G'G) G’y = y'Gls =¥'Vs (2.43)

since $c = (G'G)-'G'y and ys = Gys. Since y ~ N,(Gy, o*l,) and G(G'G)-'G’ is sym-
metric and idempotent with rank (p + s + 1), we obtain, from Theorem 2.1, that

SSR(js | C)

2
O+
€

Po+s+1, 4), (2.44)

where the noncentrality parameter, 4, is given by

1
25%
€

1

g

¥'G'G(G'G)'G'Gy =

> y'G'Gy (2.45)

£

(see Searle (1971), p. 175). Also, SSE(ys | C) = y'(l» — G(G'G)-'G’)y is distributed as,

from Theorem 2.1,

SSE(¥g | C
——ﬁng ~ YPm—-p—-s—1) (2.46)

)
€

since (I» — G(G'G)'G’) is symmetric and idempotent with rank (m—p —s— 1), and

the noncentrality parameter, 4, is
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1

c

=761 - G(G'G)'G")Gy = 0 (2.47)

(see Searle (1971), p. 344). From (2.46), the unbiased estimator of ¢% is given by

/\2- . SSE(?’G’C)
e m-—-p—s—1°

(2.48)

To partition SSR(ys | C) into two parts (SSR due to the models in (2.3) and (2.27)),

we rewrite equation (2.43) as
A A " A
SSR(yg | C) = y'Gyg = y'XBs + y'Cug. (2.49)
If we substitute fIG and ag in (2.49), we get
SSR(Jg | C) = y'X(X'X)"'X'y + y'PC(C'PC)”"C'Py (2.50)

(see Searle (1971), p. 343). Clearly, the first part of the right hand side in (2.50) is the
sum of squares for regression due to fitting the model in (2.3). The second part in
(2.50) is the sum of squares for regression due to fitting the linear statistical model
Py = PCa + ¢", which is the sum of squares for regression attributable to fitting the
concomitant variables, having already fitted the factor variables’ part of the model in
(2.5) (see Searle (1971), p. 344). We use the notation SSR(xg | iix, C) for SSR in this

case:
SSR(%s | By, C) =y’ PC(C’'PC)~'C'Py. (2.51)
Then we can write (2.49) as

SSR(J6 | C) = SSR(y | C) + SSR(4g | By, C). (2.52)
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Since X(X'X)-'X’ is symmetric and idempotent, from Theorem 2.1, we have

SSR(By | C)

2
fog
4

Llo+1, ), (2.53)

where the noncentrality parameter, 4, is given by

L (XB + Cay X(X'X) "X (XB + Ca)

o2
€

A:

——1 (B'X'XB + 2B'X'Ca + a’C'X(X'X)"'X'Ca) (2.54)

2
o
€

(see Searle (1971), p. 344). Also, the conditional distribution of SSR(ag | Bx) is ob-

tained, from Theorem 2.1, as

SSR(3¢ | . C)

2
g
g

~ ¥(s, 4), (2.55)

where the parameter of noncentrality, 4, is given by

L (Xp + cayPC'(C'PC)'C'P(Xp + Ca)

O *
[

] =

12 a’C’PC(C’PC)_‘C'PC:z: 12 o'C’'PCa. (2.56)
205- 202-

From Theorem 2.2, SSR(in | C) and SSR(z¢ | ﬁx. C) are distributed independently be-

cause

X(X'X)~'x’Pc(c’Pc)'c’P =0 (2.57)
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by the definition of P in (2.21). Also, from Theorem 2.2, both SSR(Bx | C) and the

SSR(ds | Bx, C) are independent of SSE(ys | C) since
[, — X(X'X)~'x’ — pc(c’PC)”'C’'PIIX(X'X)""'X'] =0 (2.58)
and
[1, — X(X'X)"'x’ — Pc(c’Pc)~"c’PI[PC(C’PC)~'C’'P] =0 (2.59)
(see Searle (1971), p. 344).

2.2. Method of Control Variates

This section presents a summary of the method of control variates for variance
reduction for estimating the model parameters of interest. This summary includes
the concept, effects and applications of control variates to the output from a simu-

lation experiment.

Consider a simulation run which yields a single response variable of interest as
well as a set of concomitant variables. In simulation, these concomitant variables are
referred to as contro/ variates. Analysis of covariance in Section 2.1 tries to improve
the estimation on the response(s). As a special case of analysis of covariance, in a
simulation experiment, the method of control variates is applied to reduce the vari-
ability of the estimator of the mean system response of interest by taking advantage
of the correlation between the simulation response and the control variates. In this
section, as in Section 2.1, it is assumed that the response and control variates have

a multivariate normal distribution, and that the control variates are observed inde-
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pendently on each setting of factors and that they are highly correlated with the re-

sponse variable of interest.

Throughout this section, we summarize the major findings of the method of control
variates applied to the following modeils: (a) single population with single response
and single control variate (Section 2.2.1), (b) single population with single response
and multiple control variates (Section 2.2.2), (¢) multipopulation with single response
and multiple control variates (Section 2.2.3), (d) single population with multiple re-
sponses and multiple control variates (Section 2.2.4), and (e) multipopulation with'

multiple responses and multiple control variates {(Section 2.2.5).

2.2.1. Single population with single response and single control variate

This section summarizes the method of control variates for estimating the mean

response of interest and the statistical problems related to this method.

Suppose that an experimenter is concerned with estimating the mean value of the
response of interest through simulation experimentation. Let y be a response and ¢
be a control variate corresponding to y. It is assumed that an appropriate function f
of the control variate ¢ has a significant relationship with response y and that the

expected value of f is known.

The method of control variates tries to counteract an unknown deviation of
(y — uy,) by subtracting a known deviation [f — E(f)] from y. Lewis, Ressler and Wood

(1987) set the generalized form of an controlled estimator for u, as
by = y—[flc; o) — E(flc; @)1, (2.60)
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where « is a constant parameter of the function f. For any fixed constant «, 4, is an

unbiased estimator of yu,, and

Var(ii,) = Var(y) — 2Cov(y, f(c; a)) + Var(f(c; a)). (2.61)

Hence, if 2Cov(y, f(c; o)) > Var(f(c; «)), i, has a smaller variance than y. It is desira-
ble that the function f should be chosen so that the variance of g, is as small as pos-

sible.

Moy (1965) and Radema (1969) used a quadratic representation of the function f
which was linear in the unknown pérameters. Their experimental results indicated
that the correlation between the response and the control variates is not strength-
ened by including higher degree terms of the control variate into the function f (see
Section Il 4.2 in Kleijnen (1974)). Lewis, Ressler and Wood (1987) investigated the
potential effectiveness of nonlinear (piecewise linear or power transformation) ad-
justed controls in estimating the mean of the Anderson-Darling goodness-of-fit sta-
tistic (Anderson and Darling (1952)) and suggested the results that nonlinear types
of control variates may be effective in reducing the variance of the estimator when the

statistic of the estimator is a nonlinear function of the random variables.

However, in most applications of control variates, the linear parametric function,
f(c; a) = ac, is assumed when considering one control variate. Thus, the controlled

response is
ﬁy =y—(c— .uc)a' (2.62)

This parameterization of f is considered in this section. From (2.62), we see that the

variance of 4, is
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Var(ﬁy) = Var(y) — 2aCov(y, c) + aQVar(c), (2.63)

and the value of a which minimizes Var(g,) is

o= aycac_z, (2.64)

where o,. is the covariance between y and ¢ and ¢ is the variance of the control

variate ¢. The resulting minimum variance of 2, is

2

Var(h,) = 0,2 — 6,00, 2 = (1 = p,)o,’ (2.65)

where o¢,? is the variance of y and p,. is the correlation coefficient between the random
variables y and c. As shown in the above equation, the variance of g, decreases as
the correlation between y and c increases. Therefore, the selection of a control
variate that is highly correlated with the response is an important factor to the effec-
tiveness of this methodology (see Lavenberg, Moeller and Welch (1982), Wilson and

Pritsker (1984a, b), Bauer (1987), and Lewis, Ressler and Wood (1987)).

When the length of simulation run / is sufficiently large, we consider that y and ¢
are samples from the N(u,, ¢2) and N(u., o2) distributions, respectively by the central
limit theorem. Hence, it seems reasonable to assume that (y, ¢) ~ Nao((g,, 4c), X),

where

2 g,
T = [ay yg] ' (2.66)

CHAPTER 2. LITERATURE REVIEW 29



(see Lavenberg, Moeller and Welch (1982), Cheng and Feast (1980), and Cheng
(1978)). Under this assumption, the conditional distribution of y, given ¢, is the

univariate normal distribution with expectation
Elylc] = py+(c— poo, (2.67)

where o = o,.0.7 and variance

Var(y | ¢) = 0,/ — 05c0. 2 = o2, (2.68)

where o> is the same as in (2.9) when s = 1. Therefore, conditional on ¢, if we per-
form m independent replications of the simulation run, we can represent the simu-

lation model as a classical regression model

yi =y + (6 —pa +e, i=12..,r (2.69)

where y, and ¢; are the ith observations of the response and the control variate re-
spectively, u. = E(c;), and ¢ ~ IID N(O, o%) (i=1, 2, ..., r). In matrix form, equation

(2.69) is written as

y =pd +ca+t £ (2.70)
where y = (y1, Y2 oo ¥1)'5 €=(C1r — Ue, Co — Mev ..., C — ic)'s and &7 = (&), &, ..., &)'.

First, we consider the case where ¥ is known. When X in (2.66) is known, the
coefficient of the control variate is « = 0,.0.?. Thus, the controlled estimator in (2.69)

is given by
by =7 — o€ — po), (2.71)
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where y and ¢ are the sample means of the response and the control variate, re-

spectively. From (2.65), the variance of j, is
A 1 2 2 -2 1 2y 2
Var(u,) = T("y — 0,0 ) = + (1 = pyloy (2.72)

Lavenberg, Moeller and Welch (1982) defined the minimum variance ratio, which is
the ratio of the variance of the adjusted estimator to the variance of the unadjusted

estimator when the optimal value of a is known:

Var(//ly) _ (Uy2 - Uyczac—z) 1 2 ©(@279)
Var(y) o2 =T e '

which represents the theoretical potential for variance reduction by adopting a single
control variate c. From regression theory, g, ~ N(p,, o/r). Thus, the (1 —a) con-

fidence interval of yu, is given by
Ay 66.
+ Z,,—, (2.74)
r

where Z,, is the upper a/2 percentile of the standard normal distribution.

Next we consider the case where X given in (2.66) is unknown. Since « is un-
known in this case, we must develop an estimator. From (2.22) and (2.23), the least

squares estimators of @ and [, are, respectively,

-1
& = (c'Pc)"c'Py =[c'ce-c1(1 '1)_11’c] [c'y — c’1(1'1)'11'y]

-1

r r
=[Zcf—r5" Y cyi—riy | =5.7's, (2.75)

i=1 i=1
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where P = (I, —1(1'1)-'1") and

by = (M (y—ct)=7 — € — u). (2.76)

Al

From (2.40) and (2.41), a and i, are conditionally unbiased estimators for a and ,.

The variance of g, if it is finite, is given by
Var(n,) = E[Var(i,|c)] + Var(E[4,|c]) (2.77)

(see Bickel and Doksum (1977), p. 76). Since the conditional expectation of 4, is u,,

the second term in (2.77) reduces to 0. Hence,

2
-2 g
)1 = py) (2.78)

Var(i,) = E[Var(g, | ¢)] = (

(see Lavenberg and Welch (1981)).

Lavenberg, Moeller and Welch (1982) defined the /oss factor as the amount by

which the variance is increased due to estimating «, that is:

joss factor = ~—2 (2.79)

which is the ratio of the variance of the estimator p, when the a is unknown to that
when the a is known. The efficiency of the control variate is measured by the product

of the minimum variance ratio and loss factor, that is:

efficiency = L= g (1 = 5, (2.80)
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Therefore, the control variate is effective if 1/(r —2) < p,2 (note that the efficiency
should be less than 1). From (2.39), u, ~ N(u,, 6%s.), where sy is the first-row first-

column element of (G'G)~" with G= (1, ¢). Then,
t=(Ry =)\ Sosiy ~ t(r—2), (2.81)

where 6% is the sample estimator of ¢ 0% =Yy'[l.— G(G'G)'G']y/(r — 2) (see (2.42)

and (2.48)). Thus, the (1 — a) confidence interval of y, is given by
ﬁy i tfl_zzec‘\/ST‘ ’ (2.82)

where £/2, is the upper a/2 percentile of the student-t distribution with (r — 2) degrees

of freedom.

Finally, we consider the case where the normality assumption placed on the re-
sponse and control variate is untenable. From (2.76), the expectation of 4, is repres-

ented in general as
E[Y — a(€ — u)) = py — E[a(€ — uo)] # py—E[AE[C —ul=p, (289

since a and ¢ are not independent. Thus, the point estimator f, is biased. In this
situation, the Jackknife Method is applied to reduce the bias of estimator p, in (2.76)

(see Kleijnen (1975), pp. 158-159, and Lavenberg, Moeller and Welch (1982)).
2.2.2. Single population with single response and multiple control

variates

The discussion of Section 2.2.1 can be extended to the case of more than one

control variate. Lavenberg and Welch (1981) studied the use of multiple control
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variates for a single population with single response. Lavenberg, Moeller and Welch
(1982) developed types of some control variates and applied them to a closed queu-
ing network problem and Wilson and Pritsker (1984a, 1984b) developed procedures
for using standardized control variates in conjunction with replication analysis as well
as regenerative analysis. We summarize the development presented by these au-

thors.

Suppose we have s control variates associated with the response variable of in-
terest from a single simulation run. By extending a simple linear function of a single
control variate in (2.62) to a linear combination of s control variates, the adjusted re-

sponse u,, which is an estimator of y,, is given as follows:
py = y—(c—p)a, (2.84)

where ¢ is a (s x 1) vector of control variates, u. = E(c) and « is a (s x 1) coefficient

vector. For a fixed a, £, is an unbiased estimator of p,, and
Var(f,) = o2 — 26" 2 + a'La, (2.85)

where Z. is the (s x s) covariance matrix of the random vector ¢ and a,. is a (s x 1)
covariance vector between the random response, y, and c¢. The value of & which

minimizes (2.85) is given by

o =6y Z (2.86)

and the resulting minimum variance of g, is

Var(ﬁy) = ay2 - o'yc'zc—1oyc =(1— Rycz)ay2 = af—, (2.87)
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where R,? = ¢,7%,.'L. "0, is the square of the multiple correlation coefficient be-
tween y and c (see Lavenberg, Moeller and Welch (1982)). When s =1, the multiple
correlation coefficient in (2.87) is equal to the correlation coefficient between y and ¢
in (2.65). Thus, the minimum variance ration in (2.87) is the generalized form of that
in (2.65). As in the case of a single control variate, the stronger the correlation be-
tween a set of control variates ¢ and y, the greater the variance reduction of the es-
timator. Thus, choosing a set of control variates which is highly correlated with the
response is an important factor in determining the efficiency of a simulation study

(see Lavenberg and Welch (1981)).

By the extending the assumption of a single control variate in the previous section

to the multiple control variates case, we have that

(v, €) ~ Ngyqllny, 0o 2) (2.88)
where
24
L= [ 7y v”il. (2.89)
dyC -c

Under this assumption, the response is represented as

yi=ny + (6—p)x+e, i=12..,r (2.90)

where y; and ¢; are the ith observations of the response and the control variates re-

spectively, and & ~ [ID N(0, 6%). In matrix form, equation (2.90) can be written as

y =yl + Cate, (2.91)
where y and ¢ are defined in (2.70), C is a (r x s) matrix of control variates.
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First, we consider the case where L is known. In this case, we have an unbiased
minimum variance estimator i, in (2.84). Lavenberg, Moeller and Welch (1982) de-
fined the quantity (1 — RZ) in (2.87) as the minimum variance ratio. The adjusted re-

sponse p, in (2.84) is given by
p, =y — € — u)e, (2.92)

where y is a sample mean of the response and ¢ is a mean vector of the control
variates. The (1 — a) level confidence interval of u, is the same as in (2.74) if g~ in

(2.74) is replaced by o, in (2.87).

Next, we consider the case where X is unknown. The least squares estimators

of £ and g, in (2.91) are, respectively,
a' = (C'PC)'C'Py=5",S. (2.93)
where S,. and S. are the sample estimators of ¢, and I, respectively, and
i, =111y — (1"1)"1'c(c’PC) " C'Py
=7 —@—n)a=7—C—n)Sc 'Sy (2.94)

From (2.39), &, ~ N(u,, a%syy), where s, is the upper left-hand corner element of

(G'G)™" with G =(1,, C). Let o be the sample estimator of 6. Then
t=(Ry = p)I\/8, 51 ~ tr—s—1). (2.95)

Therefore, the (1 — a) level confidence interval of yu, is given by
By = 68181y (2.96)
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(see Lavenberg and Welch (1981) and Lavenberg, Moeller and Welch (1982)).

Lavenberg, Moeller and Welch (1982) showed that the variance of z, is

2

Var(p,) = (75—_2—2- 1 = Ry —a-,y— : (2.97)

and defined the loss factor as the amount by which the variance is increased due to
the use of 2 instead of a, that is:

r — 2
loss factor = ey (2.98)

The effect of control variates is measured by the product form of the loss factor and

the minimum variance ratio which yields:

r— 2

(=== = R (2.99)

Consequently, the use of control variates is effective if s/(r—2) < R, By the
trade-off relationship between the loss factor and the multiple correlation coefficient,
it is important to keep the number of control variates not too large (see Lavenberg
and Welch (1981), Lavenberg, Moeller and Welch (1982), Wilson and Pritsker (19844,

1984b), and Venkatraman and Wilson (1986)).

For a general class of closed queuing networks (s service stations, d different
types of customers and N customers of all types) which allow priorities and blocking,
Lavenberg, Moeller and Welch (1982) developed three types of control variates (ser-
vice time variable, flow variable and work variable) to estimate the response of in-
terest. For each type of customer at station k, (a) the service time variable is defined

as
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a(k,t)

—u.l (2.100)

where a(k, t) is the number of service times at station k during the simulation time
period [0, ¢], s(k) is the random observation of the kth service station
(=1, 2, ...,alk, b)), and u., = E[s(k)], (b) the flow variable (the relative frequency of
each type of customer visiting station k) is defined as a(k,t)/a(f) with a(t) =k§s:’a(k, 0,

and (c) the work variable is defined as

a(k,b a(k,)

Kt
a(k t) Z[S #Ck a( t)) = t) Z[s] uck (2101)

j=1

which incorporates information about the flow effect and service time effect. Impor-
tant results obtained from an extensive experiment across many different networks
by the authors included: (a) Confidence intervals of the responses of interest using
the control variates method were substantially reduced in length compared to those
obtained without the control variates method; (b) A loss factor appeared to inflate the
minimum variance of the estimator correctly; (c) Work control variates yielded the
smallest variance of the estimator provided the loss factor is not too large; and (d) A
regression based method of applying the control variates method produced confi-

dence intervals having proper coverage.

Beja (1969), Kleijnen (1974), Lavenberg and Welch (1981) and Lavenberg, Moeller
and Welch (1982) used the type of control variates in (2.99). Wilson (1982) showed
that the control variates in (2.99) have asymptotic mean and variance zero as the

length of the statistics accumulation period increases and the covariance matrix of
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control variates is asymtotically singular. To improve this problem, Wilson and

Pritsker (1984a) developed the standardized control variates defined for the k stations

of a queuing system over the simulation time interval [0, {] as

a(k,t)

1
= — K) — o 2.102
) = ;[s,m g )log, (2.102)

where a(k, t), s(k), and u, are in (2.100) and o?, is the variance of s;(k), and showed

that

c(t) B N0, 1) ast — oo, (2.103)

where = denotes converge in distribution, and ¢(t) = [c:(f), ¢z ..., c()] is a (s x 1)

vector of standardized control variables.

Using these standardized control variates, Wilson and Pritsker (1984a, 1984b)
conducted a set of simulation experiments on a variety of closed and mixed queuing
networks (machine repair systems). With the replication estimation scheme, the
standard control variates yielded variance reductions ranging from 20% to 90% and

confidence interval reductions between 10% and 70%.

2.2.3. Multipopulation with single response and multiple control variates

Nozari, Arnold and Pegden (1984) extended the results of a single population case
considered by Lavenberg, Moeller and Welch (1982) to a multipopulation case in a
direction different from the work by Rubinstein and Marcus (1986). In a mulitipopu-
lation model, we allow the population of the response variable to vary over m design

points. We summarize the results derived by Nozari, Arnold and Pegden (1984): the

CHAPTER 2. LITERATURE REVIEW 39



statistical procedures of the simuitaneous inference for the linear combinations of
parameters of § in (2.5), and the efficiency of control variates for the cases of known

and unknown covariance matrix X.

Nozari, Arnold and Pegden (1984) considered the effect of the control variates
method by comparing the variance of the least squares estimator fx in (2.3) with that

of B¢ in (2.5) under the assumption that

(y,, C"); ~ |ID Ns+ 1((/1},‘_, 0')1, 2), i=1 2, ..,m, (2104)

where y; and ¢, are the response and the (s x 1) vector of control variates, respec-
tively, at the ith design point, u,, is the mean response of the ith design point, and £
is the covariance matrix defined in (2.89). Under this assumption, the responses of
interest at the m design points can be represented as the linear statistical model in

(2.5).

First, we consider the case where X is known. Nozari, Arnold and Pegden (1984)

showed that the effect of control variates is
Var(lAfx) — Var(f) = (0,2~ af~)(X'X)°’. (2.105)

where ¢% is defined in (2.9). (see Nozari, Arnold and Pegden (1984), p.162). Since the
amount of difference in (2.105) is always positive, it is better to use the control

variates than not to use them.

For some known (g x (p + 1)) constant matrix H, Hiig ~ Ng(HB, o>H(X'X)'H’) and

under Hy: HB =0,
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A s JPE TS B
X2= ﬂGH [H(x xz H] HﬂG ~ X2(q) (2106)

o *
£

(see Anderson (1958), p. 54). Hence, the statistical procedure for testing the general
linear hypothesis Hy: HB =0 vs Hy: HB # 0 is based on the x? test: Reject H, if
x?> x3 » where x% , is the upper (1 — a) percentile of the y* distribution with g degrees
of freedom. The ratio of the expected value of the square of the half-length of
Scheffe’s simultaneous confidence interval with control variates to that without con-

trol variates is given by

2.2 -1 2
otxr AHX'X) Hh o

T ——=— forheR", (2.107)
o2 2 WHXX)'Hh ol

which is equivalent to the minimum variance ratio originally defined by Lavenberg,

Moeller and Welch (1982). (see Nozari, Arnold and Pegden (1984), p. 162).

Next we consider the case where X is unknown. When X is unknown, the least
squares estimators iIG and ag for parameters in (2.5) are given in (2.23) and (2.22) re-
spectively. Their corresponding conditional distributions are given in (2.41) and (2.40)
respectively. Nozari, Arnold and Pegden (1984) showed that the unconditional vari-
ance of ifc is

p—s—1

Var(Be) = (—= XN i m > pts (2.108)

and measured the effect of the control variates as

Var(By) — Var(Bo) = (o - m"l;’i ;1 = a)XX) 7 (2.109)
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When p =1, this efficiency measure is equivalent to that obtained by Lavenberg,
Moeller and Welch (1982). Inspection of (2.109) suggests use of control variates is

effective if o%f/ol>(m—p—s—1)/(m—p —1).

Similarly, as with the case of £ known, for some known (g x p) constant matrix

H, Hf ~ Ny(HB, 0*H(G'G)z. o, oH'), Where (G'G)l. norr IS @ (p +1) X (p + 1) subma-
trix associated with ,&G in (2.12). Under Hq: HB =0,
R ray= Y,

ﬂ GH [H(G G)(p+1)(p+1)H J HﬂG

= ~

A2
qo,

a m—p—s—1s (2.110)
where F,,_,_.- is the F distribution with g and (m — p —s — 1) degrees of freedom
(see Nozari, Arnold and Pegden (1984), p. 164). Thus, the statistical procedure for
testing the general linear hypothesis Hy: HB = 0 vs Hy: HB # 0 is based on the F test:
Reject Hy if f>Fin_,-s_1, Where F3,_,_._1 is the upper (1 —a) percentile of the F
distribution with g and (m —p —s— 1) degrees of freedom. Nozari, Arnold and
Pegden (1984) showed that the ratio of the expected value of the square of the half-
length of the simultaneous confidence interval when the control variates are neg-

lected to that when the control variates are used, is

2.Fa
G Fam-p—s—1 m-—p-—1

(
“f'Fg,m—pﬂ m=—p=s—1

). (2.111)

Note that, by the definition of 0%, we have 6% < g2. However, this condition does not
guarantee that using the control variates will always improve the results since

Fomp-s-1>Fm_psand(m—p—-1)>(m-p—s—1).
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Nozari, Arnold and Pegden (1984) suggested two methods of selection of the set
of control variates, which are variations of the All Regression Procedure and the
Forward Selection Method, respectively, in the classical regression theory. The for-
mer method searches all set of control variates which yields the best results. The
latter method requires less computational effort, however, it may not always produce

the best results.

2.2.4. Single population with multiple responses and multiple control

variates

The control variates method in Section 2.2.2 can be extended to the case of more
than a single response. Rubinstein and Marcus (1985) developed a procedure for
applying control variates to the situation of multiple response variables of interest.
They defined the minimum generalized variance ratio and derived the loss of vari-
ance caused by the estimation of the coefficients of control variates to measure the
efficiency of the control variates method. Venkatraman and Wilson (1986) developed
an alternative procedure to quantify the loss of variance, which was substantially
simpler. These two studies are extensions of the results obtained by Lavenberg,

Moeller and Welch (1982).

Consider a multipopulation case in which we seek to estimate a g-dimensional
response vector of interest. As before, we observe the s control variates associated
with the response vector of interest from a simulation run. Then, for a (g x s) coeffi-

cient matrix A of control variates, the adjusted estimator can be defined as
i\‘y = y—A(c—u), (2.112)

CHAPTER 2. LITERATURE REVIEW 43



where y = (yi, y2, .., ¥q)'s €=(cy, Cp ..., C)" and p.=E(c). For a fixed matrix A, the

covariance matrix of 4, is given by

Cov(fy) = E,+AZA’ — E, A" — ALy, (2.113)

where X, and X. are the covariance matrices of the random vectors, y and ¢, re-
spectively, and L. is the covariance matrix between y and ¢. Rubinstein and Marcus
(1985) showed that the coefficient matrix A which minimizes the generalized variance

of u, is equal to

A=zx,.r (2.114)

and the resulting minimum generalized variance is
K
|Covliy)| = 12, = B, 278 el = -2, 27 Iz, | = [ [0 - D)1, 1., 2115)
=1

where k=min (g, s) and 4;(i=1, 2, ..., k) are the canonical correlation coefficients

between y and c¢ that satisfy 43 > A3 > ... > i? (see Anderson (1958), p. 293).

Rubinstein and Marcus (1985) defined the efficiency of control variates by the ratio
of the generalized variance (volume of confidence ellipsoid) of the controlled esti-

mator to that of the uncontrolled estimator under the assumption that
(' €)Y ~Ngyollw'y #'c)s T (2.116)
where
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T, T

y yc

L=, . (2.117)
|:2yc Zc:'

When the covariance matrix X is known, from (2.115), the ratio of the generalized

variance of g, to that of y is given by

| Cov(ny)]
52 = —IZ—I"— = ﬂu — 3. (2.118)
y i=1

When Z is unknown, Rubinstein and Marcus (1985) estimated g, by the controlled

vector estimator given as
— A _ — 1
;‘y=y—A(c_”c) =y—sycsc (c_'”c), (2.119)

where y and c are the sample mean vectors of y;and¢; (i=1, 2, ..., r), and S, and
S,. are the sample estimators of £, and X,. respectively. Given ¢/s, the controlled

response vector p, is distributes as

iy ~ NoLpy, d'd(Z, — £, Z7'E0)], (2.120)

where d'd=r"'+4+(r — 1)'(c — u.)S:'(c — u.)’ (Rao (1967)). Rubinstein and Marcus
(1985) showed that the ratio of the expectation of the generalized sample variance of

i, to that of y is

EE[IZ, (dd)l | k
L1y )] i) =c(rs. )] J(1 -, (2.121)

2
2= -
Ey[lr 1Sy|] i=1

where §, is the sample estimator of X,,
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Ay le = TE_;—l_»]— (Sy — sycs;:—1s'yc)v (2.122)
and
(r—s—1) r—1) s(s + 2)...(s +2(i — 1))
C(r,s,q)= 1_[ r—s—1) [1+Z() r—s-2. (I‘-—S—QI)] (2.123)

Verkatraman and Wilson (1986) formulated a different efficiency of the loss of the
generalized variance due to the estimation of the optimal coefficient matrix from that
of Rubinstein and Marcus (1985). Since the covariance of the controlled estimator g,
is

Cov(h,) = E[Cov(iy | €)] = —L=2— (5, — £,.53'E",0) (2.124)
y rir—s—2) Y TyeTe Tye
(Rao (1967)), the ratio of generalized variance of Cov(a,) to the generalized variance

of Cov(y) is given by

| Cov(p,)|
2 __ v
= T =2 ,I_ |1(1 (2.125)

which is the generalized form of the efficiency of simulation presented by Lavenberg,
Moeller and Welch (1982). The difference between the loss factors w? and 63 is that
the operators for taking expectation and determinant do not communicate if the di-

mensioh of y is greater than 1:

E[ICov(n, | €)|]1 # |E[Cov(n,|c)]l (2.126)
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(Venkatraman and Wilson (1986)).

For g =1, the efficiency measures of the control variates method developed by
Rubinstein and Marcus (1985) and Venkatraman and Wilson (1986) are equivalent to
the efficiency measure of the control variates method originally formulated by
Lavenberg, Moeller and Welch (1982). The loss factor C(r, s, g) developed by
Rubinstein and Marcus (1985) is too complicated to apply it to choosing the appro-
priate number of of the control variates. The loss factor suggested by Venkatraman
and Wilson (1986) is a simpler and more tractable measure for estimating the effi- .
ciency of the control variates method than the loss factor of Rubinstein and Marcus

(1985).

As with the single response case, because of the trade-off relationship between
the loss factor and the minimum generalized variance ratio, the empirical results
showed that we should keep the number of control variates small. Venkatraman and
Wilson (1986) recommended a guideline for limiting the number of control variates
when the user supplied the number of the response variables of interest, the nhumber
of the independent replications taken, and specified the upper limit of the loss factor
A due to the estimation of the optimal coefficient matrix of the control variates. At

most,

s = (r—2)1-A""9 (2.127)

control variates should be used to be effective in the simulation experiment using the

control variates method.
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2.2.5. Multipopulation with multiple responses and multiple control

variates

Porta Nova (1985) extended the results of Nozari, Arnold and Pegden (1984) to the
case of more than one response in a multipopulation model with multiple control
variates. He generalized the minimum variance ratio in (2.118) of Rubinstein and
Marcus (1985), and the loss factor in (2.98) defined by Lavenberg, Moeller and Welch

(1982).

Consider the simulation output at the ith design point from a single simulation run:
a g-dimensional vector of the response y; and s control variates ¢, Under the as-

sumption that

Yi [ly’. ,
[Cl] ~ N"“I:[l‘c]' Z], i=1,2, ..., m, (2.128)

where X is defined in (2.117), Porta Nova (1985) represented y, as the linear statistical

model:
y,=xXB+cA+e;, i=1,2 ..m; (2.129)

where x’; is the ith row of X defined in (2.5), y; and ¢; are the (g x 1) vector of the re-
sponses and the (s x 1) vector of control variates, respectively, at x’; B is a (p x q)
matrix of unknown parameters; A is a (s x g) matrix of control variates coefficients;
and &'; = (&n, € ..., €q) is @ vector of residuals. In matrix form, this model can be

written as

Y=XB+CA+E, (2.130)
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where Y is @ (m X g) matrix of the responses (each row of Y, y’;, constitutes Y); X is
a (m x p) design matrix; C is a (m x s) matrix of control variates; and E" is a (m x q)

matrix of residuals.

First, we consider the case where ¥ is known. When X is known, Porta Nova

(1985) showed that the least squares estimator for B in (2.130) is
B(A) = (X'X)”'X'(Y — CA), (2.131)

where A’ = X, .L'Z", and defined the minimum variance ratio as

p

| Var(vecB(A)) | _ [H“ _ /112)] , (2.132)

| Var(vecé) |

where vec B denotes the operation that the columns of B are stacked into a single
mp-dimensional vector, r=min(q,s) and 4; (i=1, 2, ..., r) are the canonical corre-
lations between y; and ¢, When m =1 (a single design point), equation (2.132) is
equivalent to (2.118). Thus, the minimum variance ratio in (2.132) is the generalized
form of that of Rubinstein and Marcus (1985). The level (1 — a) confidence region for

vec B is given by
Pr{vec(B — B [Z,®(X'X) "' "vec(B — B) < x% ,o} =1 -3, (2.133)

where y3% ., is the upper a percentile of chi-square distribution with d.f. pg and ® is

the Kronecker product of two matrices (see (3.47) in Porta Nova (1985)).
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Next we consider the case where X is unknown. When X is unknown, Porta Nova
(1985) derived the least squares estimators of B and A in (2.130), which are given

respectively by

B(A) = (X'X)”'X'[I — C(C'PC)”"C'P]Y (2.134)
and
A=(c'Pc)"'cPY, (2.135)
where P =1 — X(X’'X)"'X'. Also, he showed that the efficiency of control variates is
p
A a r
Var(vecB(A m-p—1
| Var( (A))'=[ n-p _1] [Ta-]. (2.136)
| Var(vecB) | m-p—=s f=1

where [(m —p —1)/(m — p — s — 1)]7 is the generalized form of the loss factor defined
by Lavenberg, Moeller and Welch (1982). The level (1 — a) confidence region for

vec B is given by

—p—5§— 1
m-—p—s—pg+ T2 < F? _4lCl=1—a, (2.137)

Pr{ pq(m—p—s) m—-p—q—= " "pgm=p—s—pq

where T%_,_, is the Hotelling’s T? statistic with d.f. (m —p —q) and Fy m-p-s-pg-1 IS

the upper a percentile of the F-distribution with d.f. pg and (m — p —s — pg + 1) (see

(3.71) in Porta Nova (1985)).
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CHAPTER 3. EFFICIENCY OF CONTROL VARIATES

WITH CORRELATED REPLICATIONS

This chapter develops three combined approaches utilizing control variates and
antithetic variates to improve the estimation of the mean response of interest in a

single population model.

One of the important characteristics of computer simulation is the system analyst’s
control over the random number streams that drive a simulation model. In computer
simulation, streams of random numbers completely determine the simulation re-
sponse output. Usually, antithetic variates is applied to reduce the error of the esti-
mator of the mean response in a single population model (discussions of this method
are given in Section 11.3 in Law and Kelton (1982), Section 2.2 in Bratley, Fox and
Schrage (1983), and Section 1ll.6 in Kleijnen (1974)). This method assigns comple-
mentary random numbers to pairs of simulation runs taken at a single design point
to induce a negative correlation between the responses. Let y; and y, denote two
responses obtained by antithetic replicates at a single design point. Suppose that
we estimate the mean response of interest by the sample mean response. Then we

observe that in general,
1 1 1 1
Var[ > vy +y2)l= T Var(y,) + vy Var(y,) + > Cov(ys, ¥o).
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In this equation, if the covariance between y; and y, obtained by antithetic replicates
is negative, then the variance of the estimator for the mean response is less than that

obtained by two independent replicates.

Typically, in applying the method of control variates, we perform the simulation
independently through replications (see Bauer (1987), Lavenberg, Moeller and Welch
(1984), Nova (1985), Rubinstein and Marcus (1985), Nozari, Arnold and Pegden (1984),
and Wilson and Priksker (1984a, 1894b)). However, suppose, through correlated rep-
lications, we get a variance reduction in the response of interest, but maintain the
same correlations between the response and control variates as those obtained un-
der independent replications. Then, it is conjectured that we may take advantage of
both antithetic variates and control variates together in one simulation run, and re-
duce the variance of the estimator further than by applying either antithetic variates

or control variates separately.

We now consider the random number assignment strategy of utilizing antithetic
variates and control variates for a simulation model with a single response and mul-
tiple control variates. Tew (1989) suggested correlation induction techniques, across
replications, for fitting a second-order metamodel in simulation experiments with 2h
replications at each design point. We apply his correlation induction strategy (see
Table 2, Tew (1989)) to induce correlations across 2h replications for a single popu-
lation model that also includes control variates. Let the random number stream r;
denote the sequence of the random numbers used for the jth stochastic component
of the simulation model for the ith replication. Assume that the simulation model re-
quires g such random number streams to drive all of its stochastic components for a

single replication. Also let R; be the set of g random number streams for the ith
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replication: R;=(ru, 2y .,y Tg) (i=1, 2, ..., 2h). We separate R, into two mutually
exclusive and exhaustive subsets of random number streams, (R4, Rp)
(i=1, 2, ..., 2h), and assign R, to non-control variate stochastic components and R,
to control variate stochastic components. Through an appropriate assignment of a
set of random number streams to the stochastic components in the simulation mode!,
we may induce correlations between responses, between control variates, and be-

tween responses and control variates, across replications.

For instance, if we employ antithetic variates using R4 across h pairs of repli-
cations while leaving R, randomly c‘hosen through the 2h replications, then we have
negatively correlated h pairs of the responses. However, the control variates are in-
dependently observed through the 2h replications. Of particular interest is the cor-
relation between the response and the control variates when we apply antithetic
replications to either the non-control variables or the control variates in the model.
If this correlation is consistent with that resulting from independent replicates, we
will have the additive effect of both methods in reducing the variance of the estimator

for the mean response.

In this research, we develop three combined methods of antithetic variates and
control variates, and investigate their simulation efficiency in estimating the mean
response of interest in a single population model with a single response and s control
variates. Specifically, we consider the following correlated replication strategies: (a)
use antithetic variates for all stochastic components except the control variates
through 2h replications, (b) use antithetic variates on only the control variates through
2h replications, and (c) use antithetic variates for all stochastic components through

2h replications. Through statistical analysis and simulation experimentation, we will
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explore: (a) how these methods may improve the simulation efficiency, (b) what
conditions are necessary for each method to ensure an improvement in variance re-
duction, and (c) a way of extending these methods to the estimation of the parameters

of a multipopulation simulation metamodel.

The remainder of this chapter is organized as follows: Section 3.1 develops
Combined Method | based on the first correlated replications described above
(antithetic variates on all stochastic components except the control variates through
2h replications) and identifies the variance of the estimator in a single population
model with a single response and a single (multiple) control variate(s). We also
evaluate the simulation efficiency of this method. Section 3.2 presents the procedure
of applying Combined Method Il, that is, antithetic replications on control variates
through 2h replications and investigates the efficiency of this method. Section 3.3
considers Combined Method Il which uses antithetic variates on all stochastic com-
ponents in the model. Finally, Section 3.4 compares the simulation efficiency of these
three combined methods with respect to the unconditional variance of the estimator
for the mean response obtained for each method. We ailso compare the three com-
bined methods with control variates, respectively, and examine necessary conditions

for each combined method to yield a better result than the method of control variates.

3.1. Combined Method |

In this section, we present the method for combining antithetic variates and
control variates based on correlated replications through the non-control variate
stochastic components in the model for two cases: (a) a single population model with
a single response and a single control variate and (b) a single population model with

a single response and multiple control variates.
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For the single control variate case, the problem is given in Section 2.2.1, where
the response of interest y; and the control variate ¢, (i =1, 2, ..., r) are assumed to be
obtained by independent random .number streams at each replication. In contrast
with the independent case, we now consider the simulation output driven by
antithetic variates through the h pairs of replications. We assign R, and R;; to the
non-control stochastic variables and to the control variable, respectively, for the jth
replication as follows: we use antithetic variates on R;; through the h pairs of repli-
cations while leaving R, randomly chosen through the 2h replications. The complete
assignment of random number streams across 2h replications is given in Table 1,
where R, _11,Ry_12@and Ry, (i=1, 2, ..., h) are sets of randomly selected random
number streams, and Ry_14(i=1, 2, ..., h) are their antithetic sets of random num-

ber streams.

With this replication rule, within h pairs of replications corresponding to
(Rzi—11s Ryi—12) and (Ry_11, Ruz) (i=1, 2,..., h), we try to induce a negative corre-
lation, but across pairs we leave the observations independent. Thus, we have neg-
atively correlated responses across h pairs of the response:
y=(Ys Y2 .-y Y1, Yan)', Where the response y,_, is obtained by random number
streams (Ry .11, Ry_12) @and y is obtained by random number streams (ﬁz,_“, Rzi2).
However, through the 2h replications, the control variates ¢ =(¢y, €z, ..., Can_1, Can)’ are

independently generated by random number streams Ry _1; and Ry, (i=1, 2, ..., h).

In order to completely determine the joint distribution of the response and the
control variate obtained through the 2h antithetic replications described above, we

assume the following:
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Table 1. Random Number Assignment of Correlated Replication |

Replication Control Variates Response
1 C«(Rn) Y1(R11, Rm)
2 Cz(Rzz) Yz(_R-ﬂ, Rzz)
3 Ca(Raz) )’3(Rz1, Rsz)
4 cs(Rs2) y«(Rat, Re)
2h-1 Czh—1(R2h—1.z) an—1(Rh-1‘1th—1,2)
2h Can(Ran2) }’zn(—R-h,n Rznz2)
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1. Var(y) =06} fori=1, 2,..., 2h (homogeneity of response variances across repli-

cates),

2. Coviy,y)=—piot(ph>0), ifj=i+1(i=1, 3, ...,2h— 1) (homogeneity of

in-

duced negative correlations across replicates pairs). Otherwise, Cov(y, y,) =0,

3. Cov(y.c)=o0,>0, fori=1, 2, ..., 2h (homogeneity of control variates-response

covariances across replicates), and Cov(y, ¢;) =0, for i #}j,

4. Var(c)=ga? fori=1, 2,.., 2h (homogeneity of control variate variances across

replicates), and

5. Cov(ci c)=0, forisj(independence of control variates between replicates).

Under these assumptions, we can identify the joint distribution of the h mean re-

sponses and mean control variates within a pair of replications: y=(vi, Yz ..., ¥u)'

and ¢ = (E1 y Ez, veny Eh)', where )71 = (y?i—1 + Y2/)/2 and E, = (Cz,'_1 + Cz,‘)/z (I = 1, 2, veny h).

The variances of y; and ¢; are given by, respectively:

— 1
Var(y) = Y [Var(yy; _ 4) + Var(y,) + 2Cov(y,; _ 1, ¥2)]

1 2 2 2 1 2
= T [oy + gy — 2p1ay] = '—2- (1- p1)0y-
and

1 2
Cc

- 1 1 2
Var(c)) = vy [Var(c,; _4) + Var(cy) + 2Cov(c,; _ 4, C3))] = vy (o, + oi] =7 9c

Also the covariance between y; and ¢; is given by
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- - 1
Cov(y, ¢) = vy Cov(yyi — 1+ Yain Coi 1 + Cp))
1
=7 [Cov(yy; — 1, €31 —1) + Cov(yy; _ 4, Cz)) + CoVv(yyy, €y — 1) + Cov(yy;, )]

1 1
=7 [oyc+o,]= > e (3.3)

Under the joint normality assumption of the response and control variates (see
Lavenberg, Moeller and Welch (1982) and Cheng (1978)), the joint distribution of y; and

C: is given by

Vi _ 2 Oy¢
KRR

where the mean of the control variate is assumed to be 0 (this can be always
achieved by subtracting its known mean u. from ¢; without loss of generality). Theo-

rem 2.5.1 in Anderson (1984) gives the conditional variance of y;, given ¢, as follows
— = 1 -
Var(7, | &) = 5 [(1 = pr)ay — oyc0c "] (3.5)

From equations (3.4) and (3.5), and the independence of the simulation output across
the h pairs of replications, the mean vector of the response pairs, y, can be repres-
ented as the linear model in (2.70) if ¢ is replaced by ¢. Therefore, with the same
procedure that was used in the development of (2.76), the controlled estimator for the

mean response of interest is given by
1'[y — E(€Pe) '€ Py] = —,17— 11, — &€’ PS) "€ PTy, (3.6)
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where y and ¢ are the sample meansof y;and ¢, (i=1, 2, ..., h). respectively, 1 is the
(h x 1) column vector of 1’s, I, is the (h x h) identity matrix, and P =1,—1(1"1)-"1".

Taking the operation of conditional expectation on (3.6) yields
Var(g, | ©) = # 1'[1, — &E'PE)~ € P]Var(y | €)1, — PE(€'PE) e’ 11 (3.7)

Since the two-variate mean simulation output, (¥, ), of the jth pair of replications is
independent of that of a different pair of replications, the joint distribution of y and ¢

is given by

_ 2

Yl on s 2= pioyly Iycln (3.8)
c Lo 2 I 2,10 '
[+ Gyc h GC h

where 1 and |, are given in (3.6), and 0 is the (h x 1) column vector of 0’s. From

Theorem 2.5.1 in Anderson (1984), the conditional variance of y, given ¢, is given by
- = 1 - 1 2 -
Var(y |8) = 7 [(1 = p)ayly = (aycln)(0etn) ™ (0cln)] = 7 [(1 = p1)oy = o0z 11y (3.9)

This equation shows that, given ¢, the conditional variance of y; (that is, the ith diag-
onal element of Var(y | c)) obtained by antithetic replications is less than that of y; re-

sulting from two independent replications (see (2.68)). Plugging (3.9) into (3.7) yields

2 2 2
[(1 = p1)oy — 0yc0. "]
2h? g

Var(z, | €) =
[11 — 1'6(EPS)”'&’P1 — 1'P(€'PE)"&1 + 1’&(€'PS) '&'1]

[(1 = py)o} — ayca°]
- ‘222 C - h+ 1@ Pe)Te], (3.10)
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since P1=1'P=0. From Theorem 2.2, (1'c) and (c'Pc) are independent. Also, we

have
= 222
el _ L ni, (3.11)
g¢ ¢
and
O¢
where P is given in (3.6). Thus, we have
1'cc’1
TPeI(h—1) hF(1, h —1). (3.13)

Since the expectation of the random variable with distribution given by F(1, h— 1) is

(h=1)/(h — 3), we have

1ee1 ] h
E[ TPe ]‘ h—3 " (3.14)

Therefore, taking expectation on (3.10) gives the unconditional variance of 4, as fol-

lows:
A A (1 —.01)0)21_055”;2 ) ey = e
Var(u,) = E[Var(u, | €)] = o E(h +1'¢(c’'Pc) c¢'1]
_ (1 —p1)a§-05ca;2 [h+ h _ (1 —91)05"05&722 h—2
- oh? h—3 1= 2h h—3 )
7, h—2
y —
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where p,. is the correlation coefficient between y;and ¢; (i =1, 2, ..., 2h). As we see
in (3.15), the minimum variance ratio is decreased by the amount of p,, but the loss

factor is increased ((h — 2)/(h — 3) > (2h — 2)/(2h — 3)).

Next we consider the combined method for the case of multiple control variates.
The resuits of a single control variate can be straight forwardly extended to the case
of s control variates. Instead of a single control variate corresponding to y,, the sim-
ulation response, we assume that we have a collection of control variates, from the

ith run, given by ¢;=(cs, Ca, ..., Cs).
In addition to the assumptions (1)-(2) made before, we assume the following:

3. Cov(y,c)=o0y, fori=1, 2, .., 2h (homogeneity of control variates-response

covariance across replicates), and Cov(y;, ¢) =0, for i+,

4. Cov(c)=ZX, fori=1, 2,.., 2h (homogeneity of control variates covariance

structure across replicates), and
5. Cov(c; ¢;) = 0,,,, fori#j (independence of control variates between replicates).
Under these assumptions, similar to (3.2) and (3.3), we have
Cov(E) =+ [Cov(ey 1) + Covl(ey) + 2Cov(ey _ 1, )] =+ Ze,  (3.16)
and
Cov(y; ¢) = 711' Cov(yai—1 + Yair €31 + €)= —;" o yer (3.17)
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where y; is given by (3.6), and €, = (C; -+ + ¢;;)/2. Similar to (3.4), the joint normality
assumption of the response and control variates gives the joint distribution of

y; and ¢; as follows:

Yi Byl 1 (1“91)05 'y
I O R

From this joint distribution, the conditional variance of y, given ¢, is as follows
- = 1 2 J—
Var(yi | &) = - [(1 = p1)oy — 0'ycZc oyc] (3.19) .

(see Theorem 2.5.1 in Anderson (1984)). As with the case of a single control variate,
the vector of the mean responses within a pair, y, is represented as the linear model
in (2.91). Regression analysis on this linear model yields the controlled estimator for

the mean response as

b, = —;— 1'[y — C(C’'PC)~'C'PY] = % 1'[l, — C(C'PC)”'C'PTy, (3.20)

where y is given in (3.6), C is a (h x s) control variates matrix whose ith row is ¢’;, and

P is defined in (3.6). Given C, taking operation of variance on (3.20) yields
Var(;’ly |C)= —h1—2- 10, — C(C'PC)_1C’P]Var(7 [ C)[I, — PC(C'PC)AC']1. (3.21)

By extending the results in (3.9) to the s control variates case, the conditional vari-

ancey, given C, is
- 1 R
Var(y | ©) = [(1 = p1)ay — o'y 27 oyl (3:22)
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since the (s + 1) variate mean response, (¥, ¢,), of the ith pair of replications is inde-
pendent of that of a different pair of replications. Substituting for Var(y | C) into (3.21)

gives

[(1- p1)02 - G,yc2;1ayc]
2hn® *

Var(g, | €) =
[11 —1'C(C’PC)~'C'P1 — 1’P(C’PC)~'C1 + 1'C(C'PC) ™" C"1]

1-p)o>—o' 2 's
_ L0 = piay yeze re] [h+1'Cc(C'PC)""C"1], (3.23)

2h?

since P1=1P=0. From the result of (3.18), the (h x s) random matrix C has the
matrix normal distribution: C ~ N, (O, I, X./2), where O is a (h x s) matrix of zeroes

(see (2.38)). By definition of the Wishart distribution (see Chapter 17 in Arnold (1981)),
C(Z/2)7'C" ~ Wy(s, 1), (3.24)

and, by Theorem 17.7a in Arnold (1981), the (s x s) random matrix (C’'PC) follows the

Wishart distribution:
(C'PC) ~ W(h—1, +E) (3.25)

since P is the idempotent matrix with rank (h — 1). We note that (1'C) and (C’PC) are
independent (see Theorem 4.5.1 in Graybill (1976)). Thus, the expectation of the

conditional variance in (3.23) can be written as

[(1- P1)Gf, - d’yc2:1dyc]

2h?

Var(i,) = E[Var(d, | C)] = E[h + 1’CE[(C’PC)~"]C’1]. (3.26)
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Theorems 17.6a and 17.15d in Arnold (1981) gives, respectively,

E[C(E,/2)"'C'] =5, (3.27)
and
E[(C’PC) "] = (2 if h>s+1 (3.28)
T h—s-=-2 ' ‘
Therefore, plugging (3.28) into (3.26) finally yields
. [(1=p)oy =o'y Eo'oy]  E[1'C(E,/2)”'C1]
Var(y,) = oh? [h+ Pyp—
which further reduce to, by equation (3.27),
2, et
_ (1 —p1)ay—:yczc Oy [h+ ; hs ]
2h —s—2
o h—2
= 7,};‘ (1—py — R T—s———z— ), (3.29)
where R,. is the multiple correlation coefficient between y;and ¢, (i=1, 2, ..., 2h). The

result in (3.29) indicates that the minimum variance ratio of this method is

(1 — p+ — R%), and the loss factor is (h — 2)/(h — s — 2).

3.2. Combined Method II

This section considers the second combined method of control variates and

antithetic variates, which is based on correlated replications through the control

variates for the two cases addressed in Section 3.1.
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As before, we divide the set of g random number streams used to drive the simu-
lation model, R,, into two mutually exclusive and exhaustive subsets Ry and R,. The
first subset, Rs, consists of (g — s”) random number streams and is used to drive the
stochastic components of the model other than the control variates. The second
subset, R, consists of s random number streams and is used to drive the control
variates. Contrary to the random number assignment in Section 3.1, we now use
correlated replications on the control variate components and independent replicates
on all other stochastic components in the model. Through the 2h replications, as-
signment of R,=(Rs, Ry) (i=1, 2, ..., 2h) is given in Table 2, where Ry_,,
(i=1, 2, ..., h) are sets of randomly selected random number streams, and ﬁz,_u

(i=1, 2, ..., h) are sets of random number streams antithetic to Ry _1,.

With this replication strategy, we induce negative correlations between the re-
sponses, between the control variates, and between the response and the control
variate(s) within h pairs of the responses and the control variates, respectively, ob-
tained from (Ry_11, Re_12) and (Ru, Ry_12) (i=1, 2, ..., h). However, across pairs of

replications, we get independent outputs.

For the case of a single control variate, we analyze the combined method under

the following assumptions:

1. Var(y)=a% fori=1, 2,.., 2h (homogeneity of response variances across repli-

cates),

2. Cov(y,y)=—p0%(p.>0), ifj=i+1(i=1, 3, ..,2h—1) (homogeneity of in-

duced negative correlations across replicates pairs). Otherwise,Cov(y;, y;) =0,
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Table 2. Random Number Assignhment of Correlated Replication Il

Replication Control Variates Response
1 C1(R12) Y1(R11, R12)
2 Cz(ﬁn) Y2(Ra, ﬁrz)
3 CiRz2) ¥1(Ra1, Rz)
4 Cz(h—zz) }’Z(Ru, Ezz)
2h-1 Con - 1(Rn2) yZh—1(R2h—1,1Rh2)
2h Cz,,(ﬁhz) yZh(RZH,h ﬁh'z)
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3. Cov(yic)=u0,>0, fori=1, 2, .. 2hand Cov(y, ¢)=0@<0(—0,<o@<0)if
j=i+1(=1,3, ...,2h—1) (homogeneity of control variates-response
covariances across replicates and homogeneity of the induced control variates-

response covariances between replicates pair). Otherwise, Cov(y,c,) =0,

4. Var(c)=o0% fori=1, 2,..., 2h (homogeneity of control variate variances across

replicates),

5 Cov(cic)=—poi(p.>0)ifj=i+1(i=1, 3, ..., 2h — 1) (homogeneity of control

variates variances across replicates). Otherwise, Cov(c, ¢;) = 0.

First we identify the joint distribution of y;and ¢; (i=1, 2, ..., h), the mean re-
sponse and the mean control variate of the ith pair of replications, respectively. Un-
der the assumptions (1)-(5) stated above, the variance of y; is of the same form as in
(3.1) if p, replaces p,, but note that, in general, ps# p,. The variance of ¢; and

covariance between y; and ¢; are given by, respectively:
- 1 1
Var(c)) = [Var(cy;_ 1) + Var(cy) + 2Cov(cy; _4, ¢2)] =% (1 — pJos,  (3.30)
and

- = 1
Cov(y;, ¢) = vy Cov(yy 1 + Yair Ci— 1 + C2))

1
=7 [Cov(yy; — 1, Cg— 1) + CoVlyy; _ 1, €3) + CoV(Yy), Cj — 1) + CoV(yy; €3))]

1
=5 [oyc + 03], (3.31)
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Similarly to (3.4) and (3.5), the joint distribution of ¥; and ¢, is given by

()

1—
m ~N, [uy]’ 5 (1= oot || (3.32)

@
Ci 0 Oy + Gyc) (1- Pc)ac

and, given ¢, the conditional variance of y; is

2
(0,0 + 0207
T=pc

Var(7, | &) =2 [(1 = pp)o% ~ (3.33)

(see Theorem 2.5.1 in Anderson (1984)). Based on the results of (3.32) and (3.33), we
can represent the mean vector of the response pairs, ¥ = (¥1, ¥2, ..., ¥»)’, @s the linear
model in (2.70) if c =(¢y, C ..., Cn)’ replaces c. Hence, from (2.76), the controlled es-

timator for the mean response of interest is given by
f,=y—ch= —1h- 1'[y - &EPe) '&Py] = — 1'[| _&ePe) TPy,  (3.34)

where ¥, ¢, and P are as defined in (3.6). Since (¥, ¢) and (¥, C) (i # k) are inde-

pendent, the normality assumption on the response and control variates ensures

2

[7] N. [“ y1] 1| = p2doyln (oyc+ oyl (3.35)

- ~ 2h N —~ . .
c 01 2|(a,c+ D, (1—-p)dl,

Similar to (3.9), by Theorem 2.5.1 in Anderson (1984), we have the conditional vari-

ance of y, given ¢, as follows:

Var(y |8) == [(1 = )}l — (0, + oS! = )T (040 + o1n)

=1 [(1 = )5} = (oyc + S2PL(1 = poZT ™y (3.36)
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With the same procedure in (3.9), if we take the conditional variance on (3.34) with

respect to y, then
Var(fi, | €) = % 1'[l, — €E'PE) "¢ PVar(y | ©) —;— 1[1, — PEE'PT) ],

which reduces to, by substituting for Var(y | €) in this equation,

232 _—2
(Uyc+ ai/c)) O¢

10h + 18 Pe) "e'1] (3.37)
1—pc

1
=2 [(1— pplo? —

Sincec (i=1, 2, ..., h) are independent, by equation (3.14), we find

A A= 1 2 (Gyc + Ufc))gagz 1
Var(uy) = ElVar(u | €)]] = 7~ [(1 = po)oy - ——— —— lh + 77
(1- P2)02 o h=2
=—5 (=55 =5) (3:38)
where
Bre=[(1—pp)a7] (0,c + o°[(1 = p)ol ™. (3.39)

By definition of the correlation coefficient, p,. can be interpreted as the correlation
coefficient between y; and ¢; (i=1, 2, ..., h). Equation (3.39) indicates that the cor-
relation coefficient between y; and c; increases by reducing the variances of both y;
and c;, but it also decreases by the covariance between y; and ¢, (62 < 0). That is, the
trade-off effect to the correlation coefficient is a major factor for determining the effi-
ciency of this method. I[nspection of equation (3.38) also shows that the minimum
variance ratio is (1 — p,)(1 — p%) and the loss factor is (h — 2)/(h — 3), which is equal

to that in (3.14).
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For the case of s control variates, we can extend these results. Let ¢; be the vector
of s control variates at the ith replication: ¢, =(cs, Ca, ..., Cis), Which corresponds to

yi (i=1,2, ..., 2h). In addition to the assumptions (1)-(2), we assume that

3. Cov(y,c)=¢'y, fori=1, 2, ..., 2h and Cov(y,, ¢)=6'Rifj=i+1
(i=1, 3, ...,2h—1). (homogeneity of control variates-response covariances
across replicates, and homogeneity of induced control variates covariances across

replicates pair). Otherwise, Cov(y; c,) =0,

4, Var(c)=2Z., fori=1, 2,..., 2h (homogeneity of control variates covariance

structure across replicates), and

5. Cov(ci c) = & fj=i+1(@(=1, 3, ..., 2h — 1) (homogeneity of the induced control

variates covariancs between replicates pair). Otherwise, Cov(c; ¢,) = O,,,.
Under these assumptions, as with the case of a single control variate, we get
Var(g) = 71- [Var(ey _ ;) + Var(cy) + 2Cov(ey _ 1, 65)] = —;— E,+Z?), (3.40)
and

Cov(y;, €) = — Cov(yy; 4 + ¥2i» €j 1 + €,

.x:-|—-

1
=4 [Cov(yy; 1, €1~ 1) + Covly,, _ 1. &) + Covlyy;, €5 _ 1) + Cov(yy; €,))]

[o,c + oo, (3.41)

1
2

CHAPTER 3. EFFICIENCY OF CONTROL VARIATES WITH CORRELATED REPLICATIONS 70



where €, =(c;_1+¢,)/2 (i=1, 2, ..., h). As before, based on the normality assump-
tion on the response and control variates, we find the joint distribution of y; and ¢; as

follows:

— 2 ’ (2)
Y N My 1 (1= po)oy o ye T 0 y¢ (3.42)
|7+ lo] 2 @ @ || '

’ Oyc T 0yc Lo+ I¢

Theorem 2.5.1 in Anderson (1984) gives the conditional variance of y;,, given ¢, as

follows:
S 1 , -
Var(7 | €) = o [(1 = p)o) = (oyc + 0 (£ + ED) oy + 0] (3.49)

Equations (3.42) and (3.43) imply that the mean vector of the response pairs, ¥y, can
be written as the linear model in (2.91). Hence, the controlled estimator of the mean

response of interest is given by
A, = % 1'[j — C(C’PC)"C'Py] = % 1’1, — C(C’PC)"'C'PTy, (3.44)

where C is the (h x s) matrix of control variates whose ith row is ¢; and P is defined

in (3.6). In the same manner as in (3.22), we have the conditional variance of 4, as
A 1 2 2)\, 2)—1 2
Var(ly 18) = — - [(1 = p2)o} = (o) + 00) (Zc + ) (0yc + 0] X

[h+1'c(C'PC)”'C"1]. (3.45)

Sincec; (i=1, 2,.., h) are independent, in the same way for finding the unconditional

variance of 4, in (3.29), we obtain
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A 1 , - h—2
Var(y) = 55 [(1 = p)o} = (0 + 03) (Be + ) (0yc + DN 727

2h
(1=p)o) . h—2
=5 (1 =Ry h_s—37 ) (3.46)
where
RZ = [(1= 0021 (oyc + 62 (Ec + Z)(ayc + o). (3.47)

Similar to (3.39), by extending the dimension of control variates from 1 to s, R,. can
be interpreted as the multiple correlation coefficient between y; and ¢,. Also equation
(3.46) shows that the minimum variance ratio of the combined method Il is

(1 — p2)(1 — R%) and its loss factor is the same as that given in (3.29).

3.3. Combined Method IlI

This section presents Combined Method Ill of control variates and antithetic
variates based on correlated replications through all stochastic components in the

simulation model for the two cases addressed in Section 3.1.

In the same way as considered in Section 3.2, we separate the set of g random
number streams, R,, into two mutually exclusive and exhaustive subsets Ry and R;,
which consist of (g — s") and s" random number streams respectively. We assign R,
to the (g — s") stochastic components of the non-control variates and R;; to the control
variates. Unlike the random number assignment strategies discussed in Section 3.1
and 3.2, we apply antithetic variates to all stochastic components of control variates
and non-control type variates in the model. The assignment rule of R;=(Rx, Rj)

through the 2h replications is given in Table 3, where R,.,y and Ry _,, are sets of
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randomly selected random number streams, and Rz _4, and Ry, : are sets of random

number streams antithetic to R, _4, and R, _1,, respectively (i=1, 2, ..., h).

This assignment strategy induces correlations across h pairs of the responses of
interest and control variates similar to those considered in Section 3.2. That is, neg-
ative correlations are induced between the responses, between the control variates,
and between the response and the control variate(s) within h pairs of the responses
and the control variates. The induced correlation between the responses is greater
than that obtained by Combined Method i and Il. However, the induced correlation
between the response and control variates is different from that of Combined Method
I and Il, respectively. In contrast, across the h pairs of replications, the mean re-
sponse and the mean control variates (within a pair of replication) are independently
observed by the assignment of different sets of randomly chosen random number

streams.
For the case of a single control, we assume that

1. Var(y)=o} fori=1, 2,..., 2h (homogeneity of response variances across repli-

cations),

2. Covly,y)=—pci(ps>0), ifj=i+1(i=1, 3, ...,2h—1) (homogeneity of in-

duced negative correlations across replicate pairs). Otherwise, Cov(y, y;) =0,

3. Cov(y,c)=ga,>0, fori=1,2, .., 2h and Cov(y, ¢)=02<0(—0, < o2<0)
if j=i+1(i=1,3, ..,2h—1) (homogeneity of control variates-response
covariances across replicates and homogeneity of control variates-response

covariances between replicates pair). Otherwise, Cov(y; c;)) =0,
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Table 3. Random Number Assignment of Correlated Replication Ill

Replication Control Variates Response
1 C1(R1z) }’1(R11, sz)
2 Cz(-ﬁ‘)z) }/z(ﬁn, ﬁu)
3 ¢s(Rz2) Y3(Ra1, Rz)
4 C4(§zz) Y4(Ez1, _R-ZZ)
2h-1 Cz,,_1(ha) }’th(Rzn—uha)
2h Czh(ﬁnz) }’Zh(-R—Zh,h _R-hz)
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4. Var(c)=a? fori=1, 2,.., 2h (homogeneity of control variates variances across

replicates), and

5. Cov(c.c)=—pot(p.>0)ifj=i+1(i=1, 3, ...,2h — 1) (homogeneity of induced
negative control variates covariances across replicates). Otherwise,

Cov(c, ¢;) =0.

Under these assumptions, the variance of the mean response of the ith pair of
replications, y,, is given by the same form as in (3.1) with p, replacing p,. Generally,
we expect that p; is greater than either py or p, since we apply antithetic variates to
all stochastic variables in the model. However, the variance of the mean control
variate of the ith pair of replications, ¢, is the same as in (3.30), and the covariance

between y; and ¢, is given by

- = 1
Cov(y €)= 3 Covlyy 1 + ¥z Cg—1 + C2)

1
=7 [CoV(Ya; _ 14 €= 1) + CoV(Yy, _ 4, Coi) + Cov(¥yy €y 4) + Cov(yy, €5))]

1 3
= ? [Gyc + GI/C) . (348)

Under the normality assumption of the response and control variate, the joint dis-

tribution of y; and ¢; (i=1, 2, ..., h) is given by

)

—_ 2
v u (1 —p3)oy, o,.+0
[_’]~N2 [y] % Yy Sye T e | (3.49)

(3) 2
0 Oy +ayc (1—pcloc

Therefore, given ¢, the conditional variance of y; is
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3
(Uyc + Uﬁfc))

1—p¢

- = 1
Var(y | &) = 7 [(1 = pa)oy, — ] (3.50)
(see Theorem 2.5.1 in Anderson (1984)). This equation shows that Combined Method
Il can reduce the variances of the response and control variate, but it also reduces
the covariance between the response and control control variate (note that ¢® in
(3.49) is negative). This trade-off effect is a major factor in reducing the variance of

the estimator for the mean response.

As before, equations (3.49) and (3.50) enable the mean vector of the response
pairs, Y= (v, Y2 ..., ¥n), to be represented as a linear model. Hence, the least
squares estimator of the linear model (the controlled estimator for the mean re-
sponse) is the same form given in (3.6). Since the random observation of (y;, ¢;) ob-
tained by Combined Method Ill are also independent as the previous two methods,
the conditional and unconditional variances of the controlled estimator for u, can be
found by the same procedures shown in Section 3.2 with replacing the Var(y;| ¢) in
(3.50) with that in (3.33). That is, as is the case with (3.37) and (3.38), the conditional

variance of i, and its unconditional variance are given by, respectively:

3
(o) + a( ))

Var(h, | €) = —2/17—2 [(1 = pa)a? — ][h +1E@PE'E1] (3.51)

1—p¢
and
()Y
AN A __1_ 2 (ayc+ 0’ ) 1
Var(uy)-— E[Var(.uy)] ~ 2h [(1 - p3)ay - 11— e ](h + h—3 )

— pa)o e B
(—2‘-’3—y [1 = (1 = p3)a) (oyc + o2 (1 = ) U L=2)
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(1- Pa)af/

=2 h—2
=——5 [ =pel(—5) (3.52)
where
72 =[(1 = p)021 (0,c + oS’L(1 = po)o2l ™, (3.53)

which is the correlation coefficient between yabr; and ¢; by definition. In applying this
method, the minimum variance ratio is (1 — ps)(1 —p%), and the loss factor is

(h — 2)/(h — 3), which is equal to that in either (3.15) or (3.38).

The results of a single control variate can be directly extended for the case of s
control variates. We let ¢;=(cs, Ca, ..., Cs) be the vector of s control variates ob-
served at the ith replication (i=1, 2, ..., 2h). In addition to assumptions (1)-(2), we

assume that

3. Cov(y.c) =o'y, fori=1, 2, ..., 2h and Cov(y, ¢)=6X if j=i+1
(i=1,3, ...,2h—1) (homogeneity of control variates-response covariances
across replicates and homogeneity of induced control variates-response covariances

between replicates pair). Otherwise, Cov(y; c;) =0,

4, Var(e)=2Z., fori=1,2,..,2h (homogeneity of control variates covariance

structure across replicates), and

5. Cov(e,c)=XQ ifj=i+1(i=1, 3, ..., 2h — 1) (homogeneity of the induced

covariances between replicates pairs). Otherwise, Cov(c;, ¢;) = O, ..

Under these assumptions, similar to (3.40) and (3.41), we have
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1
- (Z.+X),  (354)

— 1
Var(c) = T [Var(c, _,) + Var(cy) + 2Cov(cy; _ 1, €3))] =

and

o1
Coviy,, &) = 7 Covlyai— 1+ Y2 Cai_ 1+ C;))

1
=7 [Cov(yy; _ 1, €5 — 1) + CoV(Yy; _ 4, €3)) + COV(Ya;s € _ 1) + CoV(yy;, €5))]

1 3)-,
=5 loyc+ oyl (3.55)
where € =(c;_1+¢)/2 (i=1, 2, ..., h). Under the normality assumption of the re-

sponse and control variates, the joint distribution of y; and ¢, is given by

_ 2, @3y
Y m] A | Pedoy o'yet oy (3.56)
| e+ Lo] 2 @) @ || '

! Oyt oy Lo+ g

Thus, given ¢, the conditional variance of y; is
— = 1 2 2)5, 3)y—1 3
Var(;|8) = 5 [(1 = po)oy = (0,0 + 0)) (B + D) (o +0fd)]. (3.57)

(see Theorem 5.2.1 in Anderson (1984)). Based on the results of (3.55) and (3.56), we
can represent the mean vector of the response pairs, ¥, as a linear model. Therefore,
the controlled estimator of the mean response of interest is the same as in (3.20) if
y and the (h x s) matrix of control variates C are substituted by those of the simulation
outputs obtained by this combined method. Thus, with the same in procedures

(3.21)-(3.23), we get the conditional variance of g, as
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Var(ly 1 ©) = —= [(1 = po)oy = (oyc + 632) (2 + E) (0, + 0j0)] x

[h+ 1'VC(C’PC)“1C'1 1. (3.58)

Also using the procedures in (3.24)-(3.29), we find the unconditional variance of the

estimator 4, by replacing the covariance matrix in (3.22) with (3.57):

A h-—2
Var(,) = 5~ [(1 = p3)} = (ayc + o32) (Ec + ) (0yc + ol DN g )

1—
— ( 293) (1 _ yc)( h 2 — )’ (359)

where

= - 3 - 3

Rye=[(1 = p3)oy] ' (oyc + 03) (Zc + ZO) (0, + 00)- (3.59)
By definition, F?yc is the multiple correlation coefficient between y;, and ¢, Equation
(3.59) shows that the minimum variance ratio of this method is (1 — p3)(1 — I?}c) and its

loss factor is the same as that in (3.46).

3.4. Comparison of Combined Methods

In this section, we compare the three methods developed in the previous sections
and the method of control variates with respect to the unconditional variances of the
estimators for the mean response, and summarize these results. We present com-
parisons of these methods as follows: (a) three combined methods for a single con-

trol variates case, (b) three combined method for multiple control variates case, and
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(c) three combined methods with the method of control variates, respectively, for

multiple control variates case.

For the case of a single control variate, comparing Combined Methods | and Il via
equations {3.15) and (3.38) yields that Combined Method | is preferred to Combined

Method Il if:
(1= p1 = pa) < (1= po)(1 — Pac)- (3.61)

Similarly, working with (3.15) and (3.52) yields that Combined Method | is better than

Combined Method Iil, provided
(1= by = pye) < (1 = pa)(1 = B3). (3.62)

Also, working with (3.38) and (3.52) yields that Combined Method Ill is better than

Combined Method Il if

(1= pa)(1 = Poe) < (1 = pp)(1 — Bo). (3.63)

As we discussed earlier, the loss factors for the three combined methods are the
same and given by (h — 2)/(h —s — 2). Thus, the preference of the three methods is
determined according to their minimum variance ratios in (3.15), (3.38) and (3.52),
respectively. Generally, we conjecture that (a) p; is greater than p, and p, since the
more stochastic components used for implementing antithetic variates, the higher the
correlation of the response within a pair of replicates, and (b) p, is greater than p, if
the control variate stochastic components are highly correlated with the response;
that is, antithetic variates through the strongly correlated stochastic components

yields greater correlation in the responses than antithetic variates through the non-
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control variates components. Based on this conjecture, we can assume that
p1< p2 < ps. However, it is not easy to identify an ordered relationship among
pi, P%, and pi since these terms include the unknown factors: @2, oy, 62, 02, pc P2
and p;. Our empirical simulation results show that, generally, p,. is greater than p,.
and p,.. Based on the conditions in (3.61)-(3.63), and the above discussion, it is con-
jectured that (a) if pi > > p;, then Combined Method | is preferred to Combined
Method lll, and (b) Combined Method |l may be comparable to Combined Method | if
P2 + D% = p1 + pi, and if p, + P& = ps + pZ, then it may be comparable to Combined
Method IIl since the terms p,p% and psp2 are small comparing to the other terms in

equations (3.61)-(3.63).

Second, we consider the more general case of s control variates. Comparisons
of the unconditional variances of i, in (3.29), (3.46), and (3.60) show that Combined

Method | is better than Combined Methods Il and llIl, provided

(1= p1 =Ry < (1= p)(1 = RY). (3.64)
and

(1= p1 = RY) <(1 = ps)(1 — RZ). (3.65)

Similarly, in comparing (3.46) with (3.60), we get that Combined Method Il is better

than Combined Method Il if

(1= pa)(1 — R%) < (1 — p)(1 — RZ). (3.66)

As in the case of a single control variate, it is conjectured that (a) if R, > > p,, then
Combined Method | is preferred to Combined Method Ill, and (b) Combined Method

Il may be comparable to Combined Methods | and |l under the conditions that
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pz+§$c;p1 + R% and p, + R% = ps +F?§c. Empirically, our simulation studies for se-
veral models show that (a) ps + R%& and pg+f?§c are greater than pz+§5c, and (b)

o1+ R% is greater than p; + /_?—:fc except for one case.

Finally, we compare the three combined methods with the method of control
variates for the case of s control variates. A comparison of equations (3.29) and (2.97)

yields that Combined Method | is better than the control variates method if

2 h—2 P2 2h—2
(1_p1—RyC)( h—s—2 )<(1 Ryc)( 2h—g5—2 ) (367)
Also comparing equations (3.46), (3.60) and (2.97) shows that Combined Method i is

better than the control variates method if

=2 h—2 _p2 2h —2 .
(1 - p2)(1 - Ryc)( h—s—2 ) < (1 Ryc)( Sh—s5—2 )' (368)
and Combined Method Il yields a better result than the control variates method,

provided

(1= p)(1 = REN =25 ) < (1 - REN 52=25). (3.69)

As shown in equations (3.67)-(3.69), the loss factor of each combined method is
greater than that of the control variates method:
(h—2)/(h—s5—2)>(2h —2)/(2h — s — 2). Hence, for preference of each combined
method to the control variates method, the minimum variance ratio of each combined
method should, at least, compensate for an increase in the associated loss factor.
The effects of antithetic variates and control varaites to the minimum variance ratio

for Combined Method | is represented by an additive form in reducing the variance
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of the estimator for the mean response. Also, the minimum variance ratios for Com-
bined Methods Il and 1ll can be described as trade-off effects of the correlation be-
tween the paired responses and that between the response and control variates: (a)
an increase of the correlations between the responses by antithetic streams through
the control variates, and (b) a decrease of the correlation between the response and
control variates (the reduced variances of the mean response and mean control
variate in a pair of replications increase the correlation between the response and
control variate, and the reduced covariance between the mean response and mean
control variate decreases the correlation between the response and control variate.
Totally these effects result in a decrease of the correlation between the response and
control variates). Our simulation studies indicate that, for the case where good con-
trol variates can be defined, it seems to be undesirable to apply antithetic variates
only through control variates (Combined Method Il) for all cases. Also it shows that
(a) Combined Method | yields better results than the method of control variates for
most cases, and (b) Combined Method Ill yields better resuits than the method of

control variates for some cases.
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CHAPTER 4. APPLICATIONS OF COMBINED

METHODS TO SIMULATION MODELS

In this chapter, we apply the three combined methods developed in Chapter 3 as
well as methods of control variates and antithetic variates to various simulation
models. Through experimentation on these selected models, we explore the effi-
ciency gains of the combined methods which are expected to show additive effects
of both antithetic variates and control variates in reducing the variance of the esti-
mator for the mean response. The examples we consider are: {(a) a closed and mixed
machine-repair network (Wilson and Pritsker (1984a, 1984b)), (b) an open machine-
repair network, (c) a hospital resource allocation model (Schruben and Margolin
(1978)), and (d) a port operations model (Schriber (1974), and Pritsker (1986)). We
conduct a set of simulation experiments on these models to evaluate the perform-
ance of the variance reduction techniques proposed earlier. To this end, for each
example, we offer a summary and analysis of the results obtained by employing

antithetic variates, control variates and each of the three combined methods.

The remainder of this chapter consists of five sections: Section 5.1 applies Com-
bined Method | to the closed machine-repair network. Section 5.2 applies Combined
Method | to the mixed machine-repair system. Section 5.3 implements Combined

Methods | and Ill for an open machine-repair network which is a variation of the
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mixed machine-repair system. Section 5.4 applies the three combined methods to
the hospital resource allocation model. Finally, Section 5.5 applies the three com-
bined methods to the port operations model. In each section, we give a detailed de-
scription of the system and the simulation environment in which it is modeled. We
also summarize the experimental results and provide inferences about these results

obtained by each of the applied methods.

4.1. Closed Machine-Repair Network

This section conducts a simulation experiment on a closed machine-repair net-
work. We summarize the simulation results and present inferences as to these re-

sults.

4.1.1. System and model description

A diagram of the closed machine-repair system is depicted in Figure 1. Initially,
there are s, machines operating at Station 1 with a backup queue of s’y spares. The
times to failure for operating machines are exponentially distributed with mean u,.
With probability py, a failed unit requires a major repair at Station 2; there it joins a
FIFO queue to wait for service from one of s, repairmen having exponential service
time with mean u,. A minor repair has probability (1 — p,), and it is performed on a
FIFO basis at Station 3 by s; repairmen having exponential service times with mean
us. Both types of repaired units then proceed to Station 4 where s, inspectors test the
units in FIFO order. Inspection times are exponentially distributed with mean p,. A
unit fails the test with probability (1 — p,). Then it is sent back to Station 3 for an ad-
ditional minor repair. A repaired unit has probability p, of passing the test. A passed

unit returns to the pool of spares and goes directly into service if less than s, units
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OPERATING
UNITS

Figure 1. Closed Machine-Repair System
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are operating. Otherwise, it waits for operation at Station 1 in FIFO order (For a more

detailed description of this system, see Wilson and Pritsker (1984b)).

In this system, the following system responses are to be estimated: (a) the av-
erage number of operating units at Station 1; (b) the average time for a failed unit to
return to Station 1; and (c) the average number of busy servers at Stations 2, 3 and
4. We conducted 200 simulation runs of this system with the same parameters as

given in Wilson and Pritsker (1984a), which are presented in Table 4.

The closed machine-repair network consists of six stochastic components in-
cluding two probabilistic branches. For the ith replication, we used six separate

random number streams, that is,
Ri=(riy, g, o Fig),

for driving each stochastic component as indicated in Table 5. For a replication of
each simulation method, six selected seeds are given for the six random number
streams, R, used by the SLAM Il program. In all, the simulation program uses 200
sets of six randomly selected random number seeds. Of course these random num-
ber seeds are selected differently across replications according the methodological

prescriptions given in Chapter 3.

Direct simulation (independent replications across replicates with no use of con-
trol variates) uses the 200 different sets of randomly selected set of six random
number streams, R, Antithetic variates uses randomly selected random number
streams, R;, and its complementary random number streams, R; within a pair of rep-

licates. However, antithetic variates uses randomly selected six streams across the
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Table 4. Parameter Specification for Closed Machine Repair System

Parameter Station 1 Station 2 Station 3 Station 4
Number of Servers: $=581=2 1 1 1
Mean Service Time: 10.0 1.5 1.0 0.5
Branching Probability: py=0.25 p.=0.9
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Table 5. Random Number Assignment for Closed Machine-Repair Network

Stream Number Stochastic Process to be Sampled
1 Operating Time at Station 1
2 Branching Probability at Station 1
3 Service Time at Station 2
4 Service Time at Station 3
5 Test Time at Station 4
6 Branching Probability at Station 4
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100 pairs of replications. The method of control variates applies the same assign-

ment strategy as direct simulation.

As we discussed earlier, the efficiency of the control variates method is dependent
on the selection of good control variates. For the closed machine-repair network,
we can consider four control variates associated with the observed service times at
each of the four stations. Usually, we select an appropriate set of control variates for
each response of interest based on regression analysis on the pilot runs (see Wilson
and Pritsker (1984b) and Nozari, Arnold and Pegden (1984)). Wilson and Pritsker
(1984b) performed stepwise regression analysis on this set of four control variates
and identified which set of yielded the optimal efficiency gain for estimating each re-

sponse of interest (see Table 10 of Wilson and Pritsker (1984b)).

In implementing the method of control variates, we only consider two control
variates based on regression analysis since the purpose of this example is to study
the efficiency gain of control variates with the Combined Method I. First, we used the
two best control variates with respect to the average time for a failed unit to return
to Station 1. Second, we used the two worst control variates for the same response.
That is, the first experiment uses the control variates of the machine operating times
at Station 1 and the service times at Station 3, and the second uses the control
variates of the service times at Stations 2 and 4. For both cases, we constructed the
following standardized control variates defined, for the ith replication and the kth

stochastic service time component as:

afk,t) (
Cik = 1 Z S ) fork=1,2,3, 4 (4.1)
NN =
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where u, and g, are the known mean and standard deviation of the service time at
station k; si(k) (j=1, 2, ..., alk, t)) are the random observations of the kth station
service time in the jth replication; and ai(k, t) is the number of observations of the
kth station service time in the ith replication during the simulation time (0, t) with

t =950.

Next, we discuss how Combined Method | was implemented for this system. In
conducting the simulations based on Combined Method |, we separated the set of six
random number streams, R, into two mutually exclusive and exhaustive subsets
(R, Rz). The first subset, Ry, consists of four random number streams used for the
non-control variates components in the model. The second subset, R, of two random
number streams is used for driving the control variate components. Combined
Method | uses randomly selected R; =(Ra, R;) across the 100 pairs of replications.
However, within each pair of replications, it uses randomly selected random number
streams (Ris, Rz) for the first replicate, and employs random number streams
(Rs, R,) for the second replicate, where Ry is antithetic to R4 and R, is randomly se-
lected. For instance, consider the case where the standardized control variates of the
major repair time and test time are used. Then, we randomly select seeds for ran-
dom number streams 3 and 5 across the 200 replications. The other four streams
used to drive the non-control variates have randomly selected seeds for the first
replicate in each of 100 pairs of replications, and its antithetic seed selected for the

second replicate in each of the 100 pairs of replicates.

The simulation model of the closed machine-repair system was coded in SLAM
Il and run on the IBM 3090 computer at Virginia Polytechnic Institute and State Uni-

versity. The code is given in Appendix B-1. One replication consists of simulating the

CHAPTER 4. APPLICATIONS OF COMBINED METHODS TO SIMULATION MODELS 91



machine repair process for 1000 time units. To eliminate the initial condition bias, the

necessary statistics are collected after a warm-up period of length 50 time units.

4.1.2. Experimental results

To provide an assessment of the efficiency gain obtained by Combined Method |,
we calculated performance statistics on it as well as the control variates method and
the antithetic variates method based on: (a) the percentage reduction in variance and
(b) the percentage reduction in width of a nominal 90% confidence interval. Before
we present an experimental evaluation of Combined Method |, we address the com-
putational procedure for obtaining the estimator of the mean response and its vari-
ance, and the confidence interval of the mean response based on the simulation
outputs in the context of (1) direct simulation (simple estimator), (2) antithetic

variates, (3) control variates, and (4) Combined Method I.

First, we considered the case where we estimated the mean response of interest
without using control variates. Let 2h be the number of independent replications and
y; be the observation of the response on the ith replication. When we perform inde-
pendent runs through 2h replications, the mean response p, is estimated by its sam-

2h
ple mean, y = 3 y,/2h, and the (1 — a)-level confidence interval of y, is given by
i=1

i=

ytt —a;2(2h -1y \;1/2’7 ) (4.2)

where V, is the sample variance of y; (i =1, 2, ..., 2h) and & _,(2h — 1) is the upper
a/2-percentile point of the t-distribution with (2h — 1) degrees of freedom. In the

context of antithetic variates, the mean response is also estimated by the sample
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mean response y and the confidence interval of u, with confidence level (1 —a) is

given by

7+t _aplh— 1)/ Valh (4.3)

where V; is the sample variance of the A mean pair responses, yi(i=1, 2, .., h),and
t_.2(h — 1) is the upper a/2-percentile point of the t-distribution with (h — 1) degrees

of freedom.

Second, we calculate the estimator of the mean response based on the control
variates method. Let ¢; be a vector of s control variates observed at the ith inde-
pendent replication: ¢’;={(c4, Ca ..., Cis). Also let C be the (2h x s) matrix of control
variates whose ith row consists of ¢’;. Based on regression analysis, the controlled

estimator of the mean response is

L=y -ae=7—8,8:%, (4.4)
where ¥ and € are the sample means of y; and ¢; respectively; @ is the estimator for
the coefficient vector of control variates; S. is the sample covariance of ¢; and S, is
the sample covariance matrix between y; and ¢; (i=1,2, ..., 2h). In terms of the

residual mean square of the linear model in (2.70),

2h
> - b,

/\2_ i=1 (4.5)

%= 2h—s—-1 "
the estimator for the variance of fi, is given by

A A2
Va =840,
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where s;; denotes the first row entry in the first column of (G’'G)-!, with G = (12, C)

(see equation (2.95)). Then the (1 — a)-level confidence interval of u, is given by

Lyt p2h—s—1)x sy o, (4.6)

where & _,,(2h—s—1) is the upper a/2-percentile of the t-distribution with

(2h — s — 1) degrees of freedom.

Now we present computational procedures on the sample estimator for the vari-
ance of the mean response and the (1 — a)-level confidence interval of u, when
Combined Method | is applied. The estimators for the coefficients of control variates,

@, and the mean response, u,, are given by, respectively,

(4.7)

and

p,=y —a'c, (4.8)

where y and ¢ are the sample mean of h pairs of ¥, and ¢,. Note that ¢; is the ith

sample pair mean control vector described in Section 3.1. Also,

h

So=—1r D &~ 3E -V (4.9

i=1

and

h
Syc=7,1—1 Z(E—Y)(E;—E)- (4.10)

i=1
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Based on regression analysis, the residual mean square of this method is given by

h
— A <2
ZEYI_“y]
/\2‘_ i=1
T h—s—1

(see Myers (1986), p. 53), and the variance estimator of 4, is given by
A
Vo =5140.,

where sy denotes the first-row and the first-column element of (D’'D)-', with

1 &
1 ¢,
D =
1
L

Thus, the (1 — a)-level confidence interval of u, is given by

Byt _ap(h—s~1)x sy o,

(4.11)

(4.12)

(4.13)

(4.14)

where t,_,,(h — s — 1) is the upper a/2-percentile of the t-distribution with (h—s— 1)

degrees of freedom.

We measure the performance of each method by percentage reductions in vari-

ance of the estimator V,, (m=1, 2, 3), and half-length of the (1 — a)-level confidence

interval of u, with respect to those obtained by direct simulation (that is, independent
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streams across all replications with no use of control variates). For the kth response
in a given model, we let

\7,,,‘,, = the sample estimator of the variance of z,, and

Homge = half-length of the (1 — a)-level confidence interval corresponding to \7,,,‘,,.

With respect to this notation, we have

A A
[Vik— Vil
variance reduction (%) = 100 x —lir—mk— (4.15)
Vik

and

A N
, , . [Hi = Hm ]
confidence interval half-length reduction (%) =100 x —————. (4.16)
Hi k

Now we summarize the final results on two sets of simulation experiments ob-
tained by direct simulation, antithetic variates, control variates and Combined Method
|. Note that antithetic variates is applied through Station 1 and 3 service times for the
first experiment (Table 5), and through Station 2 and 4 service times for the second
experiment (Table 7). For the case where the two controls of Station 1 and 3 service
times are used, (a) Table 6 presents the results on the estimators of the mean re-
sponses of interest, their variance estimators and percentage reductions of the vari-
ance estimators, respectively, (b) Table 7 gives the results on haif-length of the 90%
confidence intervals and their percentage reductions. Table 8 and 9 summarize the
simulation results on the same statistics as given in Table 6 and 7, respectively, when

the service times of Stations 2 and 4 are used as the two control variates.
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Table 6.

Percentage Reduction in Variance for Closed Machine-Repair Network: use two control

variates of operating time and minor-repair time.

Direct Simulation Antithetic variates Control Variates Combined Method 1
Estimator of Mean Variance Mean Variance | Variance Mean Variance | Variance Mean Variance Variance
Parameter Reduction Reduction Reduction
Response 2665 0.467 2679 0.468 0.08 2.648 0.362 22.52 2.654 0.449 3.87
time x 10=1 x 10~1 x 10~ x 10=1
Utilization 4780 0.195 4776 0.220, -12.78 4.788 0.995, 43.04 4.786 0.102 47.59
of Station 1 x 10—2 x 10~ x 103 x 102
Utilization 0.180 0.552 0.178 0.387 31.52 0.178 0.517, 0.92 0.177 0.380 31.18
of Station 2 x 103 x10-3 x 10-3 x 10-3
Utilization 0.413 0.777 0.418 0.804 =347 0.408 0.161 79.62 0.409 0.168 78.38
of Station 3 x 10-3 x 10=3 x 10-3 x 1073
Utilization 0.266 0.251 0.265 0.173 31.08 0.284 0.171 32.08 0.263 0.070, 7211
of Station 4 x 103 x 103 x 10~3 x 10-3
CHAPTER 4. APPLICATION OF COMBINED METHODS TO SIMULATION MODELS 97



Table 7. Percentage Reduction in 90% Confidence interval and for Closed Machine-Repair Net-

work: use two contro! variates of operating time and minor-repair time.

Half-Length of Confidence Interval

Reduction (%)

CHAPTER 4. APPLICATION OF COMBINED METHODS TO SIMULATION MODELS

Estimator Direct Control Combined Control Combined
of Parameter Simulation Variates Method | Variates Method |
Response Time 0.0251 0.0221 0.0249 11.93 0.88
Utilization 0.0051 0.0037 0.0038 28.60 26.81
of Station 1
Utilization 0.0027 0.0026 0.0023 3.22 16.12
of Station 2
Utilization 0.0032 0.0015 0.0015 54.48 52.99
of Station 3
Utilization 0.0018 0.0015 0.0010 17.46 46.61
of Station 4
98



Table 8.

Percentage Reduction in Variance for Closed Machine-Repair Netwcrk: use two control
variates of major-repair time and test time.

Direct Simulation

Antithetic variates

Control Variates

Combined Method |

Estimator of Mean Variance Mean Variance | Variance Mean Variance | Variance Mean Variance | Variance
Parameter Reduction Reduction Reduction
Response 2659 0.385 2.687 0275 28.66 2658 0.356 7.67 2687 0.262 31. 91

Time x10~1 x10-1 x 10~1 x 10~1
Utilization 4.780 0.205 4778 0.101 $0.85 4.780 0.203 1.22 4.779 0.925 54.90
of Station 1 x 10—2 x 10~ x 10~ x 10~
Utilization 0.179 0.536 0.178 0.497 7.28 0.180 0.287, 46.48 0.179 0.195 64.00

of Station 2 x 103 x 10~3 x 103 x 1073
Utilization 0.411 0.804, 0.411 0.334 58.46 0.411 0.812 -0.98 0411 0.338 58.70
of Station 3 x 10-3 x 10-3 x 1073 x 1073
Utilization 0.268 0.268 0.267 0.200 25.37 0.28% 0.123 54.18 0.266 0.081 77.24
of Station 4 x 10~ x 103 x 103 x 10~3
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Table 9. Percentage Reduction in 90% Confidence Interval for Closed Machine-Repair Network:
use two control variates of major-repair time and test time.

Half-Length of Confidence Interval Reduction (%)
Estimator Direct Control Combined Control Combined
of Parameter Simulation Variates Method | Variates Method |
Response Time 0.0228 0.0218 0.0191 3.91 16.58
Utilization 0.0053 0.0052 0.0036 0.61 32.11
of Station 1
Utilization 0.0027 0.0020 0.0016 28.83 39.34
of Station 2
Utilization 0.0033 0.0033 0.0021 -0.50 35.04
of Station 3
Utilization 0.0019 0.0013 0.0009 32.25 52.17
of Station 4
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4.1.3. Inferences

When antithetic variates is applied through the two stochastic variates of the major
repair time and test time, the variance reduction is in the range of -10% to 30%. On
the other hand, when antithetic variates is implemented through the operating time
and the minor service time, the variance is reduced from 5% to 60%. For the method
of control variates, we observed the following: (a) with two controls consisting of the
operating time and the minor-repair time, variance reduction of the estimators is in
the range from 20% to 80% and confidence interval reduction is from 10% to 55% for
the mean response time and the three utilizations of major-repair, minor-répair and
test stations; and (b) with two controls consisting of the major-repair and test time,
variance reduction in the range from 7% to §5% and confidence reduction in the
range from 4% to 30% for the mean response time, and two utilizations of the

major-repair and minor-repair stations.

As we expected, we observe that the variance reduction of the Combined Method
| shows the additive effect of both antithetic variates and control variates. The only
exception to case is the estimator of the mean response time when the two controls
of the operating time and minor-repair service time are used. Except this case, the
reduction ranges in variance and confidence interval of Combined Method | are re-

spectively, from 30% to 80% and from 16% to 50%.

4.2. Mixed Machine-Repair Network

To gain more insight into Combined Method I, this section treats two sets of sim-
ulation runs on a mixed machine-repair network under the same scenarios as in

Section 4.1. We present the summary of experimental results and their inferences.
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4.2.1. System and model description

Consider a situation in which the closed machine-repair system in Section 4.1.1
starts to receive orders for major repairs from the exogenous system in addition to
the repairs of regular operation units. Also, suppose the exogenous orders have
higher priority than the regular units. A mixed machine-repair system arises by
superimposing an exogenous stream of higher priority units on the closed machine-
repair model (see Figure 2). Priority orders arrive at Station 2 for major repair with
their interarrival times exponentially distributed with mean 8.0. At each station they
visit, the priority units are served ahead of any regular units that are waiting in queue.
After testing at Station 4, a priority unit has probability 0.1 of going to Station 3 for a
minor adjustment. Otherwise, it leaves the system. The process of regular units and
the system parameters are the same as in the closed machine-repair network in

Section 4.1.1 (see the description of Wilson and Pritsker (1984b)).

For the mixed machine-repair network, our interest focused on the mean sojourn
time of priority units in addition to the utilizations of the four stations, and the mean
response time of regular units. To generate observations from the eight stochastic
variables in this system, we used eight separate random number streams in the
SLAM |l program. Assignment of the corresponding random number seeds is given
in Table 10. Direct simulation and the method of control variates use the different 200
sets of randomly selected eight random number streams. Antithetic variates uses
random number streams across the 100 pairs of replications as the same way in di-

rect simulation, but it uses antithetic streams within a pair of replicates.

In applying the method of control variates, we collected five control variates

comprised of the service times at the four stations and the arrival process of priority
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Figure 2. Mixed Machine-Repair System
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Table 10. Random Number Assignment for Mixed Machine-Repair Network

Stream Number Stochastic Process to be Sampled
1 Regular Unit Operating Time at Station 1
2 Branching Probability at Station 1
3 Service Time at Station 2
4 Service Time at Station 3

Test Time at Station 4
Branching Probability of Regular Unit at Station 4

Arrival Process of Priority Unit

o N OO O

Branching Probability of Priority Unit at Station 4
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units, and chose the best subset of control variates for each response of interest. To
see the effect of Combined Method | in comparison to the effects of control variates
and antithetic variates, we employed the same sets of control variates used in Sec-
tion 4.1.1. That is, the first experiment used the two standardized service times con-
trol variates at Stations 1 and 3, and the second used the two standardized service
times control variates at Stations 2 and 4. Thus, for both experiments, we built the

same type of control variates as in (4.1).

In using Combined Method |, we separated the set of eight random number
streams into two mutually exclusive subsets including six streams and two streams,
respectively. We then assigned the first set of six streams to each non-control
variates stochastic process and the second set of two streams to the random proc-
esses generating the two control variates. Across 100 pairs of replicates, this method
randomly selects eight random number streams. Within a pair of replications, the
first replicate uses eight randomly selected random number streams for the corre-
sponding stochastic components, but the second replicate uses random number
streams antithetic to those used in the first replicate for the non-control variates and

randomly selects streams for the control variates.

SLAM Il program for this model was run on the IBM 3090 computer at Virginia
Polytechnic Institute and State University. The program code is given in Appendix
B-2. We simulated this model for the same period as in the experimentation of the
closed machine-repair model for each method. We also started the collection of sta-

tistics after 50 time units in an effort to reduce the effect of initial bias.
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4.2.2. Experimental results

Based on the computational procedures in Section 4.1.2, we obtained the estima-
tors of the mean responses described before, their sample variance, and the 90%
confidence intervals of the mean responses. For the case of the two service time
control variates at Stations 2 and 4, Table 11 presents the final results on the esti-
mators of the mean responses, their variance estimators and percentage reductions
in variances; Table 12 provides the results on half-length of the 90% confidence in-
tervals and the percentage reduction of each method. Table 13 and 14 summarize the
results for the same statistics as shown in Tables 11 and 12, respectively, when the

two service time control variates for Stations 1 and 3 were used.

4.2.3. Inferences

As shown in Tables 11 and 13, Combined Method | shows the additive effect of
antithetic and control variates in reducing the variance of the estimator for the mean
response. Notably, Table 11 indicates that the percentage reduction of the combined
method | seems to be close to the sum of percentage reductions of both antithetic

variates and control variates individually.

Antithetic variates through the two service time variates at Stations 2 and 4 re-
duces the variance of the estimator in the range from 10% to 55% except for the
mean response time of priority unit. Also antithetic variates through the two service
time variates at Stations 1 and 3 gives percentage reduction in variance from 10% to
45% for the response times of priority and regular units, and the utilizations at

Stations 2 and 4. However, the variances of utilizations at Stations 1 and 3 are in-
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Table 11.

Percentage Reduction in Variance for Mixed Machine-Repair Network: use two control
variates of major-repair time and test time.

Direct Simuiation Antithetic variates Control Variates Combined Method |
Estimator of Mean Variance Mean Variance Variance Mean Variance | Variance Mean Variance | Variance
Parameter Reduction Reduction Reduction
Response Time 2.961 0.514 2.978 0.454 11.75 2.958 0477 7.34 2.974 0.416 19.15
of Regular Unit x 10~ x 101 x 10—1 x 101
Response Time 3.106 0.920, 3.090 0.104 -13.15 3.101 0.466 49.42 3.098 0.586 36.30
of Priority Unit x 10~1 x 10~1 x 10~1
Utilization 4.733 0.293 4.732 0.230 21.51 4733 0.271 N 4.733 0.208 28.73
of Station 1 x 10-2 x 10~2 x 10-2 x 10-2
Utilization 0.368 0.109 0.363 0.813 25.34 0.368 0.525, $1.75 0.364 0.301 72.38
of Station 2 x 102 x 10=3 x 10-3 x 10-3
Utilization 0.422 0.815 0.422 0.366 55.09 0.422 0.824 -1.11 0.422 0.380 53.37
of Station 3 x 10~ x 103 x 10~3 x 10~3
Utilization 0.333 0.363 0.334 0.264 22.27 0.332 0.144 60.18 0.333 0.074 79.61
of Station 4 x 10— x 10-3 x 103 x 10~
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Table 12. Percentage Reduction in 90% Confidence Interval for Mixed Machine-Repair Network:
use two control variates of major-repair time and test time.

Half-Length of Confidence Interval

Reduction (%)

Estimator Direct Control Combined Control Combined
of Parameter Simulation Variates Method | Variates Method |
Response Time 0.0264 0.0254 0.0240 3.74 9.10
of Regular Unit
Response Time 0.0353 0.0251 0.0258 28.88 19.32
of Priority Unit
Utilization 0.0063 0.0061 0.0054 3.93 14.66
of Station 1
Utilization 0.0038 0.0027 0.0023 30.57 40.20
of Station 2
Utilization 0.0033 0.0033 0.0023 -0.55 30.97
of Station 3
Utilization 0.0022 0.0014 0.0010 37.02 54.36
of Station 4
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Table 13. Percentage Reduction in Variance for Mixed Machine-Repair Network: use two control
variates of operating time and minor repair time.

Direct Simulation

Antithetic variates

Control Variates

Combined Method |

Estimator of Mean Variance Mean Variance | Variance Mean Variance | Variance Mean Variance | Variance
Parameter Reduction Reduction Reduction
Response Time 2.991 0.593 2.998 0.537 9.36 2.976 0.544 8.18 2.967 0.398 32.83
of Regular Unit x 10~1 x 10~1 x 10~1 x 10~
Response Time 3.089 0.874 3107 0.768 12.12 3.088 0.925 -5.82 3.109 0.908 -3.90
of Priority Unit x 10-1 x 10~1 x 10-1 x10~1
Utilization 4729 0.248 4.725 0.284 -14.57 4.737 0.136 44.92 4.738 0.151 39.16
of Station 1 x 10~2 x 10—2 x 102 x 102
Utilization 0.366 0.103 0.364 0.559 45.57 0.365 0.103 -0.49 0.363 0.646, 37.10
of Station 2 x 10—2 x 103 x 10-2 x 103
Utilization 0.422 0.837 0.426 0.900, -7.53 0.417 0.188 77.58 0.419 0.176, 78.97
of Station 3 x10-3 x 10-3 x 10-3 x 10~
Utilization 0.333 0.309 0.332 0.188 39.81 0.331 0.243 21.28 0.330 0.102 66.99
of Station 4 x 10-3 x 10~ x 10-3 x 10-3
CHAPTER 4. APPLICATIONS OF COMBINED METHODS TO SIMULATION MODELS 109



Table 14. Percentage Reduction in 30% Confidence Interval for Mixed Machine-Repair Network:
use two control variates of operating time and minor-repair time.

Half-Length of Confidence Interval

Reduction (%)

Estimator Direct Control Combined Control Combined
of Parameter Simulation Variates Method | Variates Method |
Response Time 0.0283 0.0271 0.0235 418 17.15
of Regular Unit
Response Time 0.0344 0.0354 0.0354 -2.87 -3.05
of Priority Unit '
Utilization 0.0058 0.0043 0.0046 25.79 21.15
of Station 1
Utilization 0.0037 0.0037 0.0009 -0.24 25.38
of Station 2
Utilization 0.0034 0.0016 0.0016 52.61 53.64
of Station 3
Utilization 0.0020 0.0018 0.0012 11.31 41.92
of Station 4
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creased by around 10%. The method of control variates reduces the variances in the
range from 40% to 80%, except for the response time of regular unit, when an effec-
tive set of two control variates for each response of interest is selected. Variance
reduction due to Combined Method | is in the range from 20% to 80% for the two
service time control variates at Stations 2 and 4, and from 30% to 80% for the two
control variates at Stations 1 and 3 (except for the response time of priority unit).
With reference to the confidence intervals, we see a similar trend of reduction as

shown in variance reduction.

We now compare the performance of each method for this model with that re-
sulting in the closed model. We first note that the performance of each method for
both models is similar in estimating the utilizations of the four stations. The method
of control variates yields a better result for the closed model than for the mixed model
in estimating the response time of the regular unit. However, Combined Method |

shows better results for the mixed model.

4.3. Open Machine-Repair Network

This section conducts simulation experiments on an open machine-repair network
for two different arrival processes using the variance reduction techniques consid-
ered in Sections 4.1 and 4.2 and Combined Method Ill. We summarize the simulation

results and provide inferences as to these results.

4.3.1. System and model description

Consider a mixed machine-repair system which only deals with the orders for

major repair from the exogenous system. An open machine-repair system arises in
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Figure 3. Open Machine-Repair System
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this situation, whose diagram is presented in Figure 3. Machines which require ma-
jor repair arrive at Station 1 with exponentially distributed interarrival times having
mean 8.0 time units. The service time at the major repair station is exponentially
distributed with mean 1.5 time units. At this station, one repairman performs repair
service on a FIFO basis. After completing the major repair, a machine unit proceeds
to Station 2 where one inspector tests units in a FIFO order. Inspection time is ex-
ponentially distributed with mean 0.5 time units. After test, a unit leaves the system
with probability 0.9. If it fails test, it goes to Station 3 for the minor repair, where one
repairman adjusts the failed unit with a service duration that is exponentially distrib-
uted with mean 1.0 time units. An adjusted machine unit at Station 3 is sent back to

test station for the additional test.

Based on 200 simulation runs conducted on this system, the average mean
sojourn time of the machine unit is to be estimated in addition to the average service
utilizations of the three service stations. For implementing each replication, we used
five separate random number streams for driving stochastic components as shown
in Table 14. 200 independent sets of randomly selected streams were used in the
direct simulation. Antithetic variates uses randomly selected five streams for odd
replications, and complementary streams for even replicates, respectively. Thus,
across 100 pairs of replications, antithetic variates selects a set of five random num-
ber streams in the same way as direct simulation. In using the control variates
method, we can select a effective set of control variates associated with the random
observations of the interarrival times, and the service times at the three stations by
regression analysis on the pilot run. However, we simply use the three standardized

service-time control variates in experimentation of this model.
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Table 15. Random Number Assignment for Open Machine-Repair Network

Stream Number Stochastic Process to be Sampled
1 Arrival Process of Priority Unit
2 Service Time at Station 1
3 Service Time at Station 2
4 Test Time at Station 3
5 Branching Probability at Station 3
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In applying Combined Methods | and Ill, we employed the same set of control
variates used in the control variate method. We divided the five random number
streams into two mutually exclusive subsets; the first subset consists of random
number streams 1 and 5 which are assigned to the two non-control variates random
components, and the second set consists of random number streams 2, 3 and 4 which
are assigned to the three control variates (see Table 15). Within a pair of replications,
the first replicate of either Combined Method | or Combined Method IIl uses randomly
selected random number streams, the second replicate of Combined Method | uses
the antithetic streams to streams 1 and 5 used in the first replicate, and randomly
selects streams 2, 3 and 4. The second replication of Combined Method Il uses
streams that are antithetic to those used in the first replicate. However, across the
100 pairs of replicates, both methods use randomly selected random number

streams.

This model was also coded in SLAM [l and run on the IBM 3090 at Virginia
Polytechnic Institute and State University. The program code is given in Appendix
B-3. Simulation run time and the collection period of statistics are the same as in

Section 4.1.

As an embellishment of this model, we considered a case where Station 1 has a
high utilization. Note that the original model has a small utilization factor at station
1 by excluding the regular units from the mixed machine-repair model (queue length
of at each station will be small). We explore the performance of each method for the
different arrival rate of the machine units to the system. The embellished system

changes only the mean interarrival time of major repair orders to the system from 8.0

CHAPTER 4. APPLICATIONS OF COMBINED METHODS TO SIMULATION MODELS 115



to 2.0 time units. Using the methods described above, we simulated this model under

the same conditions as in the original model.

4.3.2. Experimental results

In this section, we summarize the simulation results on both the original and
embellished models described above. Using the computational procedures in Sec-
tion 4.2.1, we estimated the responses of interest, their sample variances and the
90% confidence intervals for the responses. For Combined Method Ill, we obtained
the sample estimator of the variance of 4, and constructed the confidence interval of
u, with the same procedure as in Combined Method I. The estimator of each re-
sponse is the same as in (4.8) if we substitute y, ¢, and @ with those obtained by
Combined Method Ill. Similar to (4.12) and (4.14), we have the variance estimator of

i, and the (1 — a)-level confidence interval of y, is given by
la) A2
V6= 51105" (4.17)

where 6% is the residual mean square under Combined Method Il and s, denotes the
first-row and first-column element of (D'D)-! with replacement of ¢; in (4.13) with that

obtained by this method; and

Byt _aph—s—1)x sy 0., (4.18)

where t,_,.(h —s — 1) is the upper a/2-percentile of the t-distribution with (h—s—1)

degrees of freedom.

Table 16 presents the results on the estimator of each response and its sample

variance. Tables 17 and 18 summarize percentage reductions in variance and half-
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length of the 80% confidence interval with respect to the original model. Tables 19,

20 and 21 summarize the results on the same statistics as presented in Tables 15, 16

and 17, respectively, for the embellished model.

4.3.3. Inferences

From the simulation results of both models, we observe the following: (a) the
performance of control variates in estimating the mean response time and utilization
of Station 2 is better than that of antithetic variates. On the contrary, in estimating
utilizations of Stations 1 and 3, antithetic variates yields better results; (b) the effi-
ciency of Combined Method | shows the additive effects of antithetic variates and
control variates, and its performance generally is better than either antithetic variates
or control variates; (c) Combined Method Ill reduces the variance of each estimator
more than antithetic variates in the range from 10% to 50%, and the 90% confidence
interval in the range from 7% to 30%; and (d) the performances of Combined Meth-
ods | and Ill are similar in estimating utilizations of Stations 1, 2 and 3. However, in
reducing the variances of the estimators for the response times of the original and

embellished models, Combined Method | is superior to Combined Method Ill.

The performance of each method for ihe embellished model is better than that for
the original model except for the control variates in estimating the mean system time.
The reason for these results is considered as follows: for the embellished model, (a)
the effect of the service time control variates at each station to the system response
time is less than that for the original model, and (b) Combined Methods | and Ili take
advantage of the stronger synchronization effect of random number streams for the

arrival process than that for the original model. Also, compared with the previous two
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Table 16.

Mean and Variance of the Estimator for Open Machine-Repair Network: interarrival time

= exponential with mean 8.0.

Direct Antithetic Control Combined Combined Combined
Simulation Variates Variates Method | Method Il Method IlI
Estimator of Mean |Variance] Mean |Variance] Mean |Variance] Mean |Variance] Mean |Variance| Mean |Variance
Parameter
Response Time] 2552 [ 0.721 2557 | 0.411 2.551 0220 | 2562 | o0.211 NA NA 2553 | 0.275
Utilization 0.188 | 0010 | o188 | 0.257 0.187 | 0298 | 0188 | 0.135 NA NA 0.188 | 0.145
of Station 1 x 102 x 10-3 x 10-3 x 10-3 x 10-3
Utilization 0.014 | 0.035 0.014 | 0026 | 0014 0.0t9 | 0.014 | 0014 NA NA 0.014 | ©.015
of Station 2 x 1073 x 10-3 x 10-3 x 10-3 x 103
Utilization 0069 | 0092 | 0069 | 0040 | 0069 | 0044 | 0070 | 0021 NA NA 0.070 | 0.024
of Station 3 x 10-3 x 103 x 103 x 10~3 x 103
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Table 17. Percentage Reduction in Variance for Open Machine-Repair Network: interarrival time
= exponential with mean 8.0.

Estimator Antithetic Control Combined Combined Combined
of Parameter Variates Variates Method | Method Il Method I
Response Time 43.02 69.47 70.76 NA 61.80
Utilization 57.87 51.08 77.87 NA 76.23
of Station 1
Utilization 25.71 44,96 60.00 NA 57.14
of Station 2
Utilization 56.52 51.62 77.17 NA 73.91
of Station 3
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Table 18. Percentage Reduction in 90% Confidence Interval for Open Machine-Repair Network:
interarrival time = exponential with mean 8.0

Estimator Antithetic Control Combined Combined Combined

of Parameter Variates Variates Method | Method I Methed Il

Response Time 23.71 4475 45.32 NA 37.51

Utilization 34.40 30.11 52.44 NA 50.71

of Station 1
Utilization 12.89 26.32 36.05 NA 33.81

of Station 2 i
Utilization 33.36 30.84 51.69 NA 48.36

of Station 3
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Table 19.

Mean and Variance of the Esimator for Open Machine-Repair Network: interarrival time

= exponential with mean 2.0.

Direct Antithetic Control Combined Combined Combined
Simulation Variates Variates Method | Method Il Method 1l
Estimator of Mean [Variance] Mean |Variance] Mean |Variance] Mean |Variance] Mean |Variance] Mean |[Variance
Parameter
Response Time| 6.765 2.681 6.780 2.259 6.791 1.682 6.796 1.177 NA NA 6.810 1.935
Utilization 0.751 0222 0.751 0.894 0.752 0.171 0.751 0.436 NA NA 0.751 0.433
of Station 1 x 102 x 10-3 x 10~3 x 10~3 x 10~3
Utilization 0.056 0.154 0.056 0.138 0.055 0.075 0.056 0.066 NA NA 0.056 0.066
of Station 2 x 10-3 x 10~3 x 103 x 103 x 103
Utilization 0.279 0.329 0.277 0.139 0.278 0.177 0.278 0.081 NA NA 0.278 0.080
of Station 3 x 10-3 x 103 x 10—3 x 10-3 x 10-3
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Table 20. Percentage Reduction in Variance for Open Machine-Repair Network: Interarrival time
= exponential with mean 2.0.

Estimator Antithetic Control Combined Combined Combined
of Parameter Variates Variates Method | Method Il Method HlI
Response Time 15.74 37.26 56.11 NA 27.84
Utilization 59.72 47.24 80.36 NA 80.50
of Station 1
Utilization 10.39 51.56 57.14 NA 57.14
of Station 2
Utilization 57.75 46.25 75.38 NA 75.68
of Station 3
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Table 21. Percentage Reduction in 90% Confidence Interval for Open Machine-Repair Network:
interarrival time

exponential with mean 2.0

Estimator Antithetic Control Combined Combined Combined
of Parameter Variates Variates Method | Method Il Method Il
Response Time 7.20 20.79 33.02 NA 14.11
Utilization 35.87 27.37 55.19 NA 55.35
of Station 1
Utilization 433 30.21 33.81 NA 33.81
of Station 2
Utilization 34.31 26.65 49.83 NA 50.14
of Station 3
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machine-repair models, generally, antithetic variates shows better performance in
estimating the responses of interest. Thus, Combined Method | seems to show good
performance in estimating the parameters of this model compared to its perform-

ances obtained in the previous two models.

4.4. Hospital Resource Allocation Model

In this section, we consider the application of all th'ree combined methodologies
to the hospital resource allocation model first considered by Schruben and Margolin
(1978). For this model having a different queueing discipline, we explore the effi- .
ciency of each combined method. Also, we present the simulation results and their

inferences.

4.4.1. System and model description

Figure 4.1 shows the operation of the hospital unit in terms of patient paths and
types of resource (see Figure A in Schruben and Margolin (1978)). In this model, the
hospital unit consists of three types of resources that are devoted to specialized care:
intensive care, coronary care and intermediate care. Patients arrive at the hospital
unit according to a poisson process with an arrival rate of 3.3 per day. Upon entering
the hospital, 75% of the patients need intensive care, and 25% need coronary care.
The service time distribution at intensive care is lognormal with mean 3.4 days and
standard deviation 3.5 days, that of coronary care is lognormal with mean 3.8 days
and standard deviation 1.6 days. After intensive care, 27% of the patients leave the
hospital and 73% go to the intermediate care unit. Also, completing the coronary
care, 20% of the patients leave the system and 80% go to the intermediate care unit.

Intermediate care stay for intensive care patients is distributed lognormaly with mean
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15.0 days and standard deviation 7.0 days. Finally, the length of intermediate care for
coronary patients is distributed lognormaly with mean 17.0 days and standard devi-
ation 3.0 days. When the patients request admission to special care units which are

unavailable, they can not be accommodated and balk from the system.

Schruben and Margolin (1978) simulated this system and studied the effects of the
numbers of resources (beds) of three different types to the mean failure rate (number
per month) of the patients who can not be accommodated into system. They used a
2® factorial design and explored the response of interest (mean failure rate) in the
region of eight design points. However, in this example, we are interested in the
mean failure rate of the current system where the number of resources for intensive
care, coronary care and intermediate care are, respectively, 15, 6 and 17 (considered
as one design point). Additionally, we estimate the mean system time of the patients

who complete any type(s) of service at special care units.

The simulation of this system was performed under direct simulation, antithetic
variates, control variates and the three combined methods. We conduct 200 simu-
lation runs under each method. A single replication uses eight separate random
number streams for driving stochastic model components as presented in Table 22.
Direct simulation uses 200 sets of randomly selected random number streams.
Antithetic variates applies the same strategy as direct simulation across 100 paired
replications. However, within a pair of replications, the first replicate uses randomly
selected random number streams and the second employs the streams that are
antithetic to these. In applying the method of control variates, we collected the four
control variates: average interarrival times of the patients, and the average observed

service times at the three hospital units. We expected that these control variates
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Table 22. Random Number Assignment for Hospital Resource Allocation Model

Stream Number " Stochastic Process to be Sampled
1 Arrival Process of Patients to Hospital
2 Random Path Selection upon Entering the Hospital
3 Intensive Care Stay of Patients
4 Coronary Care Stay of Patients

5 Random Path Selection for Intensive Care Patients
6 Random Path Selection for Coronary Care Patients
7 Intermediate Care Stay for Intensive Care Patients
8 Intermediate Care Stay for Coronary Care Patients
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would be correlated with the response of interest since it is expected that the mean
failure rate will be high when most interarrival times of the patients are low and most
service times of each specific unit are high. Further, we also expected the interar-
rival control variate would be strongly correlated with the mean failure rate. Based
on this reasoning, we used a single control variate of interarrival times of the patients

to system in using the three combined methods.

The three combined methods apply the same assignment rule of random number
streams as direct simulation across 100 pairs of replications. For the first replicate
within a given pair of replications, the combined methods randomly select eight ran-
dom streams. For the second replicate, (a) Combined Method | randomly selects
random number stream 1 (used to drive the interarrival time process), and assigns
antithetic streams to the other streams, (b) Combined Method Il used random number
streams 1 antithetic to those used for the first replicate, and randomly selected the
other streams for the stochastic processes of the non-control components in the
model, and (c) Combined Method IIl employed random number streams antithetic to

those of the first replicate.

The simulation program of this model was coded in SLAM |i and run on the IBM
3090 computer at Virginia Polytechnic Institute and State University. The program
code is given in Appendix B-4. In applying each method, we simulated this system
for 1500 days, and begin collecting statistics after a warm-up period of 300 days to

reduce‘ the initial bias.
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4.4.2. Experimental resulits

In computing the efficiency of the method of control variates, regression analysis
on four control variates shows that all service time control variates are very poor
ones. It is considered that the failure rate depends upon the capacity of each spe-
cialized care unit rather than the service times of each specific unit. Thus, we con-
sidered a interarrival time control variate in estimating the performance of control
variates. For Combined Method Il, we obtain the sample estimator for each response
of interest, its variance, \}5, and the 90% confidence interval of the mean response in .
the same way as in Combined Method |ll {see Section 4.3.2). When we apply the
other methods mentioned above, appropriate statistics are obtained by the computa-

tional procedures outlined in Sections 4.1.2 and 4.3.2.

Table 23 summarizes the simulation results on the mean responses of interest and
their sample variances. Also Tables 24 and 25 present a summary of the simulation
results on percentage reductions in variance and half-length of the 90% confidence

interval, respectively.

4.4.3. Inferences

From the simulation results of this model, we note the following: (a) Combined
Methods | and Il are more effective in reducing the variance of the estimator for each
response than antithetic variates and control variates even if the latter two methods
are effective, whereas the performance of Combined Method Il is similar to that of
control variates; (b) percentage reductions in variance and 90% confidence interval

of Combined Method | are more than those obtained by the control variates method

CHAPTER 4. APPLICATIONS OF COMBINED METHODS TO SIMULATION MODELS 129



Table 23. Mean and Variance of the Estimator for Hospital Resource Allocation Model

Direct Antithetic Control Combined Combined Combined

Simulation Variates Variates Method | Method I Method Il

Estimator of Mean |Variance] Mean |Variance] Mean |Variance] Mean |Variance] Mean [|Variance] Mean |Variance
Parameter

Failure Rate | 43.233 | 2008 | 43086 | 0.753 | 43.093 | 0505 | 43065 | 0387 | 43.117 | 0492 | 43.055 | 0.360
Sojourn Time | 12230 | 0242 | 12.221 | 0180 | 12237 | 0.206 | 12225 | 0.178 | 12.236 | 0.208 | 12.223 | 0.170
in System x 10-! x 10~1 x 101 x 101 x 10! x 10~1
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Table 24. Percentage Reduction in Variance for Hospital Resource Allocation Model

Estimator Antithetic Control Combined Combined Combined
of Parameter Variates Variates Method | Method il Method llI
Failure Rate 60.50 74.87 80.72 75.50 82.06
Sojourn Time 25.64 14.99 26.59 16.24 29.87
in System
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Table 25. Percentage Reduction in 90% Confidence Interval

for Hospital Resource Allocation

Model.
Estimator Antithetic Control Combined Combined Combined
of Parameter Variates Variates Method | Method 1l Method I
Failure Rate 38.11 49.87 55.62 49.97 57.18
Sojourn Time 12.85 7.80 13.40 6.27 15.35
in System
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by around 6%, respectively, in terms of the failure rate. These resulits imply that the
efficiency gain of Combined Method | has the additive effects of antithetic variates
and control variates, Combined Method Il reduces the variance of the estimator for
the failure rate, over antithetic variates by 20%, and the 90% confidence interval by
20%, and among the three combined methods, Combined method Ill yields mar-
ginally better results than Combined method |I. Overall, both Combined Method | and

(Il yield superior results to those by Combined Method Il.

This model is considered as a little complicate one comparing to all the
machine-repair models because of the service times of the intermediate care unit
depending on the patients paths, and balking of the patients at each care unit. As
we discussed earlier, using one more control variates does not show a greater re-
duction in the variance of the estimator. In this case, by applying the correlated
replications through either the non-control variates {Combined Method 1) or all
stochastic components in the model (Combined Method Ill), we may have better re-

sults than by using the control variates or antithetic variates separately.

4.5. Port Operations Model

In this section, we conduct a simulation experiment on the port operations model
given by Pritsker (1986) in Chapter 6. This model is more complex than the previous
four models. For a complex model, generally, finding the best control variates is
more difficult comparing to a simple model. We expect that the method(s) using
antithetic variates and control variates would yield better results than the methods
of either antithetic variates or control variates in this example. We summarize the

simulation results and provide inferences as to these results.
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4.5.1. System and model description

The SLAM Il network model for the port operation is presented in Figure 2 (see
p. 197 in Pritsker (1986)). A port in Africa is used to load tankers with crude oil for
overwater shipment. The port has facilities for loading as many as three tankers si-
multaneously. The tankers, which arrive at the port according to a uniform distrib-
ution with range [4, 18] hours, are of three different types. The relative frequency of
the various types, their loading time requirements, and their distributions of loading

time are as follows:

type Relative Frequency loading Time (Hours) distribution
1 0.25 18 + 2 uniform
2 0.55 24 + 3 uniform
3 0.20 36 + 4 uniform

There is one tug at the port. Tankers of all types require the services of this tug to
move into a berth, and later to move out of a berth. When the tug is available, any
berthing or deberthing activity takes about one hour. Top priority is given to the

berthing activity.

A shipper is considering bidding on a contract to transfer oil from the port to the
United Kingdom. He has determined that 5 tankers of a particular type would have
to be committed to this task to meet contract specifications. These tankers would
require 21 + 3 hours, uniformly distributed, to load oil at the port. After loading and

deberthing, they would travel to the United Kingdom, offload the oil, and return to the
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port for reloading. Their round-trip travel time, including offloading, is estimated to
be 240 + 24 hours with a uniform distribution. A complicating factor is that the port
experiences storms. The time between the onset of storms is exponentially distrib-
uted with a mean of 48 hours, and a storm lasts 4 + 2 hours, uniformly distributed.

No tug can start an operation until a storm is over.

Before the port authorities can commit themselves to accommodating the pro-
posed 5 tankers, the effect of the additional port traffic on the in-port residence time
of the current port users must be determined. It is desired to simulate the operation
of the port over a two-year period (19,280 hours) under the proposed new commit-
ment to measure in-port residence time of the proposed additional tankers, as well

as the three types of tankers which already use the port.

Applying all methods considered in Section 4.4, we conducted a simulation of this
system 200 times for each method. The port operations model includes nine
stochastic components to which nine separate random number streams are assigned.
The assignment of these random number streams is given in Table 26. A single
replication of each method uses a set of nine randomly selected random number
streams. Direct simulation and the control variates method used randomly selected
sets of nine random number streams. Also, antithetic variates used randomly se-
lected sets of nine random number streams for the first replications within a pair of
replications, but it used nine random number streams antithetic to those of the first

replication for the second replication.

In using the control variates method, seven possible control variates present
themselves. That is, interarrival times of tankers of three different types which are

already in the system, oil loading times of each tanker {three regular types tankers
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Table 26. Random Number Assighment for Port Operations Model

Stream Number " Stochastic Process to be Sampled
1 Interarrival Times of Tankers of Three Types to Port
2 Random Path Selection of Takers

of Three Types upon Arriving to Port
Oil Loading Times of Type 1 Tanker
Oil Loading Times of Type 2 Tankers
Oil Loading Times of Type 3 Tankers
Oil Loading Times of Tankers on Contract
Round-Trip Travel Times of Tankers on Contract

interarrival Times of Storm

© oo N OO O s~ W

Duration of Storm
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Table

27. Correlation Matrix between the Responses and Control Variates.

Cy C, C3 Cs Cs Cs

Ys -0.689 0.133 0.288 -0.049 -0.029 -0.040
Y2 -0.675 0.113 0.278 -0.039 -0.015 -0.038
Ya -0.639 0.108 0.252 -0.040 -0.028 -0.033
Vs -0.698 0.114 0.267 -0.059 -0.011 -0.042

Note:

y: = in-port residence time of type 1 tankers

y: = in-port residence time of type 2 tankers

ys = in-port residence time of type 3 tankers

Yy« = in-port residence time of contract tankers

¢ = interarrival time control variates for regular tankers

c. = oil loading time control variates for type 1 tankers

¢; = oil loading time control variates for type 2 tankers

cs = 0il loading time control variates for type 3 tankers

¢s = oil loading time control variates for contract tankers

¢s = round travel time control variates for contract tankers
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and tankers on a contract), round trip travel times of tankers on a contract, and du-
ration of storm. We collected six control variates except the storm duration control
variates since we expected that the frequency of storm is low and its in-port resi-
dence time is small. Table 27 shows the correlation matrix between the four re-
sponses of interest and the six collected control variates obtained by 200 independent
replications. As we see in this table, (a) the interarrival time control variate is
strongly correlated with each response of interest (correlation coefficients are in the
range from 0.64 to 0.70), (b) each response is correlated with two control variates
based on oil loading times of tankers 1 and 2 with the correlation coefficients in the |
range from 0.11 to 0.13 and from 0.25 to 0.29, respectively, and (c) the other control
variates have little correlations with each response. Regression analysis on all six
control variates indicates reduction in variance for each response in the range from
40% to 50%. When we chose the three most effective control variates (¢, ¢;, ¢; in
Table 27), regression analysis shows an increment of reduction in variance for each
response of interest by around 3%. Based on these results, we employed the three
control variates of interarrival times of tankers already in system and oil loading
times of tankers of type 1 and 2 for implementing the control variates method and fhe

three combined methods.

Similarly as before, for the first replicate within each pair of replications, the three
combined methods employ the same assignment rule as direct simulation. For the
second replication, (a) Combined Method | uses a set of nine streams, those that
correspond to the control variates (stream 1, 2 and 3) are randomly selected, and the
others are set antithetic to their counterparts in the first replication, (b) Combined
Method Il randomly selects streams corresponding to the non-control variates and

uses the other streams (1, 2 and 3) antithetic to those in the first replicate, and (c)
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Combined Method IlI applies the same assignment strategy as antithetic variates.
However, across the 100 pairs of replications, each of these methods randomly se-

lects a set of nine random number streams.

A simulation model of this system was coded in SLAM Il and run on the IBM 3090
computer at Virginia Polytechnic Institute and State University. The code is pre-
sented in Appendix B-5. For each method, we simulated the model for 21000 hours,
and collected statistics after clearing data for the first 1000 hours to reduce the in-

itialization bias.

4.5.2. Experimental results

Next, we summarize the simulation results in applying all variance reduction
methods mentioned in Section 4.5.1. Table 28 presents the results on the estimators
for the port residence times of the four types of tankers, and their variances. Tables
29 and 30, respectively, summarize the results on percentage reductions in variance

and 90% half-length confidence intervals for each response of interest.

4.5.3. Inferences

Based on the simulation results of this model, we provide inferences in applying
variance reduction techniques as follows: (a) antithetic variates and control variates
reduce the variance of the estimator for each response in the range from 45% to
55%, and their performances are similar; (b) the efficiency gain of Combined Method
| shows the additive effects of antithetic variates and control variates, and reduces the
variance of each estimator more than antithetic variates and control variates in the

range from 5% to 8%, and the 90% confidence interval in the range from 3% to 6%;
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Table 28.

Mean and Variance of the estimator for Port Operations Model.

Direct Antithetic Control Combined Combined Combined
Simulation Variates Variates Method | Method Il Method il
Estimator of Mean [Variance] Mean |Variance] Mean |[Variance] Mean |Variance] Mean [Variance] Mean |Variance
Parameter
Sojourn Time | 40.958 | 20.186 | 40.979 9.768 40.825 9.441 40.888 8.063 41252 | 15.775 | 40.979 9.385
of Tanker t
Sojourn Time | 46.926 | 21.095 | 46.987 | 10.304 | 46.792 | 10.470 | 46.759 9.113 47.259 | 16.493 | 46.987 | 10.325
of Tanker 2
Sojourn Time | 58.823 | 22.714 | 58.917 | 12.289 | 58.693 12.594 | 58.731 11.334 | 59.225 | 18.414 | 58.912 | 12.236
of Tanker 3
Sojourn Time | 43.277 | 16.651 ] 43.352 7.680 43.158 7.821 43.210 6.414 43.599 | 12.793 | 43.357 7.602
of Tanker
on Contract
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Table 29. Percentage Reduction in Variance for Port Operations Model.

Estimator Antithetic Control Combined Combined Combined
of Parameter Variates Variates Method | Method i Method 1l
Sojourn Time 51.63 53.23 60.06 21.85 53.50

of Tanker 1
Sojourn Time 51.16 50.37 56.80 21.82 51.05
of Tanker 2
Sojourn Time 45.90 44.55 50.10 18.93 46.13
of Tanker 3
Sojourn Time 54.00 53.03 61.15 23.17 54.35
of Tanker
on Contract
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Table 30. Percentage Reduction in 90% Confidence Interval for Port Operations Model.

Estimator Antithetic Control Combined Combined Combined
of Parameter Variates Variates Method | Method I Method Il
Sojourn Time 29.70 31.61 36.10 10.62 31.06

of Tanker 1
Sojourn Time 29.37 29.55 33.55 10.60 29.26
of Tanker 2
Sojourn Time 25.66 25.54 28.58 8.97 25.79
of Tanker 3
Sojourn Time 29.21 29.31 35.58 8.59 29.54
of Tanker
on Contract
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(c) performance of Combined Method Ill is similar to that obtained by antithetic
variates; and (d) among the three combined methods, Combined Method | yields
better results than Combined Methods Il and lil, and performance of Combined
method |l yields inferior results to those of Combined Methods | and Ill. For instance,
the percentage reduction in 90% confidence interval of each response using Com-

bined Method Il is less than other two combined methods by 20% in most cases.

As we expected, Combined Method | yields better results than the methods of
control variates and antithetic variates. Generally, for a complex model, an effective
set of control variates is small. Also, the marginal effect of including one more con--
trol variate is very small when there is a strong correlation between a set of control
variates already used in the system and the control variates to be added (see the
discussion of Beja (1967)). Thus, the combined method which is based on using the
effective control variates and additionally trying to reduce the variance of the esti-
mator by the correlated replicates (Combined Method 1) may yield better results than

applying either the control variates or antithetic variates separately.

From the simulation experiments on the five selected models, we note that (a)
Combined Method | shows the additive effects of antithetic variates and control
variates in reducing the variance of the estimator, (b) Combined Methods | and Il are
superior to Combined Method Il, and (¢} Combined Method Ill shows a good per-
formance when the use of random number streams in the paired runs is synchro-
nized. Also, we consider that, in general, the performance of Combined Method |

would be better than that of control variates for a complex model.
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CHAPTER 5. COMBINED CORRELATION METHODS

FOR MULTIPOPULATION MODEL

This chapter develops three variance reduction techniques for improving the es-
timation of the model parameters in the multipopulation context. The first and second
developments are extensions of Combined Method | to the multipopulation environ-
ment, respectively, with independent replications and the correlated replication
strategy of Schruben and Margolin (1978) across the design points. The third ap-
proach is for improving Schruben-Margolin method by combining it with the method

of control variates.

In the context of designed simulation experiments for the multipopulation model,
several authors have developed procedures that improve the reliability of the esti-
mators for the model parameters. Schruben and Margolin (1978) developed a method
for combining the use of common random numbers and antithetic variates in one
simulation experiment designed to estimate the parameters for the first-order multi-
population model in (2.3). Nozari, Arnold and Pegden (1984) added control variates
to the model in (2.3), and evaluated the simulation efficiency of control variates for the
general linear model in (2.5). Tew and Wilson (1989) proposed a combined approach

using the Schruben-Margolin correlation induction strategy in conjunction with con-
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trol variates to improve the estimation of the parameters in the first-order linear

model in (2.5).

These studies exploited the correlations between the responses of the different
design points, and between the response and control variates from the same design
point. In the same spirit, we consider a way of extending Combined Method | to the
multipopulation model. The results of Combined Method | in the previous chapter
show that we may improve the estimator for the mean response in a single popu-
lation model when the combined method of control variates and antithetic variates is
applied. Based on these results, we first explore a method of extending Combined
Method | to the estimation of the model parameters in the general linear model in
(2.5). Second, we extend Combined Method | to the multipopulation context in con-
junction with Schruben-Margolin method to improve the estimation of the parameters

in a first-order linear model.

Next, we propose a new approach for improving the Schruben-Margolin method
in estimating the parameters of the first-order linear model in (2.3). For the linear
model which admits orthogonal blocking into two blocks, the Schruben-Margolin
method assigns common random number streams to the design points in the first
block, and their antithetic streams to the design points in the second block. Consider
a 27 factorial design together with a model that excludes the highest-order interaction
effect of the factor variables (the design matrix admits orthogonal blocking into two
blocks). Note that the levels of each factor variable can be represented as -1 and 1
by an appropriate reparameterization. In this case, the Schruben-Margolin method
uses the same random number streams for the design point in which the level of the

excluded highest-order interaction term is 1 (first block), and uses antithetic streams
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for the design point in which the level of this term is -1 (second block). For a more

detailed discussion, see p. 514 of Schruben and Margolin (1978).

The assignment of the same random number streams to the design points in the
same block (either first or second) allows the observed control variates (assumed to
be independent of the factor variables) at these design points to be the same if we
conduct the simulation experiment of each design point for the same simulation time.
Also, by antithetic streams for the different block, the control variates observed at the
first (second) block are negatively correlated with those observed at the second (first)
block. Similar to the factor variables in the model, by the reparameterization of the
control variates the levels of each control variate are given by, respectively, 1 for the
first block, -1 for the second block. Hence, adding the control variates to the consid-
ered linear model gives the same effect as including the highest-order term to the
given model. However, the highest-order term is negligible in the assumed model.
In this situation, we present a new approach using the information of control variates
under Schruben-Margolin strategy for improving the accuracy of the estimators for

the parameters.

The remainder of this chapter is organized as follows: Section 5.1 provides an
extension of Combined Method | to the multipopulation context. Section 5.2 presents
a brief review of the Schruben-Margolin correlation induction strategy. Section 5.3
develops a method utilizing both Combined Method | and the Schruben-Margolin
method. Section 5.4 proposes a new approach for applying the Schruben-Margolin
method to the multipopulation model with control variates. Finally, Section 5.5 com-

pares the simulation efficiency of the methods considered in this chapter.
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5.1. Extension of Combined Method |

This section extends Combined Method | for a single population model to a

multipopulation context with independent replications across the design points.

Consider an experimental design that specifies the combination of m factor set-
tings in the multipopulation simulation model. Suppose we estimate the mean re-
sponse at a single design point i by the sample mean, y; of 2h replicates simulation
runs. Lety=(y, ¥» ..., ¥=) be the mean response vector across the m design points.
As reviewed earlier in Chapter 2, the relationship between the responses and the
function of factor settings across all m design points can be written as the linear

model given in (2.3):
y=Xp+e, (5.1)

where X, B and ¢ are given in (2.3). During the simulation experiment, often we ob-
serve control variates that are highly correlated with the response of interest. Let ¢
be the vector of control variates corresponding to y; at design point i. Adding the
control variates to (5.1), we have the following linear model with factor variables and

control variates given in (2.5):
¥=XB + Ca + ¢, (5.2)

where y, X and B are given in (5.1); C is a (m x s) matrix whose ith row consists of
c’; and ¢ is a (m x 1) vector which represents the inability of the postulated model to

determine y.
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The correlated replication rule of Combined Method | (for a single population
model) in Section 3.1 can be straight forwardly extended to the multipopulation model
in (5.2). As in Section 3.1, let R; be the set of g random number streams for the jth
replication of simulation run at the ith design point (j=1, 2, ..., 2h, i=1, 2, ..., m).
' ‘2 separate R; into two mutually exclusive subsets, (Rj;, Rj2). We use the first sub-
set of (g — s°) streams, R, for driving the non-control variate stochastic components,
the second subset of s* streams, R, for driving the control variate stochastic com-
ponents. We employ Combined Method | for the 2h replications at each design point,

and use independent streams across the m design points.

Under this replication rule, we can easily find the simulation efficiency of this
method. Let y; and ¢; be the response of interest and a vector of control variates,
respectively, at the jth replication and the ith design point. To specify the joint dis-
tribution of the mean responses and mean control variates across the m design

points, we extend Assumptions 1-5 in Section 3.1 to m design points as follows:

1. Var(y,)=o fori=1, 2,..., m,j=1, 2,..., 2h (homogeneity of response vari-

ances across design points and replicates),

2. Covlyy, yw)=—p0t(p,>0)fori=1,2, .., mifk=j+1(=1, 3, ..,2h—1) (ho-
mogeneity of induced negative correlations across design points and replicates

pairs). Otherwise, Cov(y;, yx) =0,

3. Cov(y,, ew)=0o'y if i=k and j=/. (homogeneity of control variates-response

covariance across design points and replicates). Otherwise, Cov(y;, ¢,) =0’,
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4. Cov(cy)=Z, fori=1,2,.., m and j=1, 2, .., 2h. (homogeneity of control

variates covariance structure across design points and replicates), and

5. Cov(c;, cy) =0,,, foris k and j#/ (independence of control variates across de-

sign points and replicates).

Under these assumptions, we identify the joint distribution of ¥y and C:
Y=,z ., ¥m) and C=(S,,C, ..., C»)’. The variances of the mean response and
mean control variates, and the covariance between the mean response and mean
control variates can be obtained by similar procedures in Section 3.1. First, we con-
sider just one design point. At the ith design point, from Corollary 5.2.1 in Mood,

Graybill and Boes (1974), the variance of y, is given by

2h
— 1
Var(7) = Var(5 ) v) =~ [ZVar (v;) + 2 Covly;. y)]

j=1 j=1 j<k

E E 2
= 4 [ Var(y,}) +2 COV y/ 2f =1 Yi 2})] [2hay 2hpy0y]
j=1 j=1
1 2
=— (1 — py)ay (53)
2h

since Cov(yy, y«x) = 0 if either k #j or k #j+ 1 by Assumption 2. Similarly, we get

Cov(E) = Var( - Z o) =" ZVar(cu)+2ZcOv epel=5-Z, (54)

j=1 j=1 <k
by Assumptions 4 and 5. Also the covariance between y; and ¢; is given by
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2h

=1

j=1 /=1 j#k
— g (5.5)

by Assumptions 3. Thus, from (5.3)-(5.5), under the normality assumption of the re-

sponse and control variates, the joint distribution of y; and ¢, is given by

7 x' B 1 [(1=p)d> 'y
[a,]~Ns+1[[ ] 3;7[ 0 ZH (56

where x’; is the ith row of X, and x’,8 is the mean response at the ith design point.

The application of independent streams across the m design points allows that the
(s + 1)-variates simulation output, (y, ¢’), at the ith design point is independent of
(y;, ©;) obtained at the different design point (i#j). Therefore, under the joint
normality assumption of the responses and control variates, from equation (5.6), we

find the joint distribution of ¥ and C as follows:

y Xp
[Vec(E)J ~ N"’““)[[oms]' 2]; 5.7

where Vec(E) denotes the operation that the columns of C are stacked into a single

ms-dimensional vector;
oln o, ®I
z=_1_[6 ym T ye ’"], (5.8)
m

CHAPTER 5. COMBINED CORRELATION METHODS FOR MULTIPOPULATION MODEL 151



where @ denotes a Kronecker operation of two matrices. From Theorem 2.5.1 in

Anderson (1984), the conditional variance of ¥ given C is as follows:

Var(y | ©) = 5 [0yl — (0'yc®1m)(Ec®lm) (0@ m)]
=27 [0l = (6", B )(EL @10, ®lm)] = 5= [0, = (6,22 @ 1)(6,c® )]

1 -1 1 P
= —77' [Gy m— (o’ ycE "yc®|m)] S [Uylm iy ycr'c "yclm]

‘752/ 2
=-—é—(1 - py—Ryc)lm’ (59)

where R,. is the multiple correlation coefficient between y; and ¢;. The least squares

estimator of f in (5.2) is given by
Bo|T=(XX)""Xl, — CC'PC) TPy (5.10)
(see (2.23)). Taking the operation of variance on (5.10) gives
Var(fxG | C) = (X'X)"'X'[1,, — C(C’'PC)""C'PVar(¥ | C)([l,, — PC(C'PT)'C'IX(X'X)~",

which is developed into, by substituting for Var(y | C) with (5.9),

2
Var(fg | C) = ;—; (1—p, — RZX'X)'X[I,, - C(C'PC)"C'PI[l,, ~ PC(C'PC) T IX(X'X)™"

(1= p, = REIX'X) ™" + (X X)X TE'PC)'CXX'X)™"] (5.11)

since X'P =PX =0. Since the least squares estimator ﬁc is an unbiased estimator

conditionally on C from (2.41), the unconditional variance of i’c is given by
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2
A - —p—2 _
Var(Bo) = ELVar(lo | € = 5 (1 — o, — il it =5 JX0 ™ (512

(see the proof of (5.12) in Appendix A). This equation indicates that this method re-
duces the variance of the estimator for 8, (i=0, 1, ..., p) by (p, + R%)o3/2h and its loss
factor is (m — p — 2)/(m — p — s — 2) due to the estimation of « in (5.2), respectively,
compared with the results obtained by independent streams across the 2h repli-

cations and m design points.

5.2. Schruben-Margolin Correlation Induction Strategy

This section presents a brief summary of the Schruben-Margolin method for

multipopulation simulation experiments.

Consider an experimental design together with the linear model given in (5.1).
By a reparameterization of the function of the factor levels, the design matrix X may
be chosen as an orthogonal matrix in the experimental design. For the design mafrix
X admitting orthogonal blocking into two blocks, Schruben and Margolin (1978) ex-
ploited the random number assignment rule which uses a combination of common
random numbers and antithetic streams across m design points. Their assignment
rule uses the same set of random number streams R for all m; design points in the
first block, and uses the same set of antithetic random number streams R for all m,
design points in the second block (m = m, + m;) within a replication. Based on the
empirical results of simulation and the standard assumptions in statistical modeling,

they assumed the following:
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1. When the same set of random number streams is used at two design points, a

positive correlation is induced between two observations of the responses, i.e.,

Cov(y, y;) = p-oi.

2. Using the antithetic set of streams at two design points induces a negative cor-

relation between two responses, i.e., Cov(y, y,) = p_o?.

3. When two observations are made with different, randomly selected streams, the

responses have zero correlation, i.e., Cov(y, y;) =0.

4. p_and p_ are constant and p, > — p_>0.

Under these assumptions, if we assign the random number streams R; for the first

m, points of the design and the random number streams R; =1 — R; for the second

m, design points, and randomly select R, (i=1, 2, ..., 2h) through the 2h replications

at the ith design point, then we have the covariance matrix of the mean responses y

as follows:

1 P+

2h S

1 1 Py Py

COV(_QFZY’)=COV(7)=E/7_G§ p_ p_
i=1

p_ p_

Py
Py

Py

Py

Py

,(5.13)

(this covariance matrix is also given in Hussey, Myers and Houck (1987)); which can

be represented as
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Cov(y) =

3‘l‘<m

L L (o, + 0 IXG, X+ (o p )22+ (1= p ), (5.14)

where G,., is a ((p + 1) X (p + 1)) matrix whose first row and first column entry is 1
with all other entries 0, and z,, is a (m x 1) vector whose first m, elements are 1’s and
remaining elements are -1’s. For the dispersion matrix given in (5.13), it is known
that the ordinary least squares (OLS) and the weighted least squares (WLS) estima-
tors of B in (5.1) are identical (see equation (63) in Rao (1967)). Taking the variance

operation on the OLS estimator,
B=xX7X7, (5.15)
and substituting in the form for Cov(y) given in {5.13) yields

Cov(B) = (X'X)~ X' Cov(HX(X'X)™"

2
o AVaSL 1 4 1 ! 'X)”
=5 XXX T (o) + pIXCp oy X' + 5 (b + p)2n2 + (1= pIIXXX)

[ (0 P)Gp s + (1= £ )X0] (5.16)

[\
3"<m

since X'z, = z,X=0. Comparison with the result in (2.28) (divided by 2h) indicates
the value of the diagonal element corresponding to f; (i=1, 2, ..., p) decreases by

p., but the variance of f, increases by (p, + p_)/2 — p./m.

With respect to the design criterion of D-optimality (that is, the determinant of the
dispersion matrix), Schruben and Margolin (1978) showed their assignment rule

yields the OLS estimator with a smaller D-value than (a) the assignment of one com-
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mon R to all design points, or (b) the assignment of a different R to each design point,

in the latter case, provided

[1+4 (m—1p, —2m ™ 'mymy(p, + p_)1(1 — p,.)Y° < 1. (5.17)

5.3. Extended Combined Method | with Schruben-Margolin
Strategy

This section extends Combined Method | for a single population model to a
multipopulation model in conjunction with Schruben-Margolin Method, and identifies
the simulation efficiency of this method with respect to the unconditional variance of

the estimator.

In Section 5.1, we extended Combined Method | to the multipopulation exper-
iments with the general linear model. Here, we consider a way of extending Com-
bined Method | in Section 3.1 to the multipopulation model in (5.2) where a design
matrix X admits orthogonal blocking into two blocks. Basically, this extension to the
multipopulation model involves combining in an additive manner the Schruben-
Margolin correlation induction strategy and Combined Method I. Instead of directly
applying Schruben-Margolin method across m design points, we first partition a set
of the stochastic components in the model into two subsets of the non-control variate
components and control variate components. Then we use correlation methods of
common random numbers and antithetic variates partially through the non-control
variate stochastic components in the model. Even though this correlation induction

strategy may weaken the desired correlation of the responses at two design points,
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it allows the control variates to be observed independently at each design point. This

last point is critical in order to achieve an additive effect from the two methods.

In this extension of Combined Method | to m design points, parallel to the work
of Schruben and Margolin (1978), we partition m design points into two orthogonal
blocks consisting of my and m, design points respectively. At the jth design point,
similar to the method given in Section 3.1, suppose that the jth replication of the
simulation run has been structured so that the set of g random number streams R;
driving the simulation can be partitioned into two mutually exclusive subsets
(Riy1, Rjz): the first subset of (g —s") streams, R;;, generates the random p'rocesses
of the (g —s") non-control stochastic components and the second subset of s random
number streams, R;;, completely determines the observations of the s control
variates under consideration. For the ith design point in each block, the first set of
streams R, is selected according to the Schruben-Margolin assignment rule, and the
second set of streams, R, are randomly selected through the 2h replications in the
experiment (j=1, 2, ..., 2h). On the other hand, for the 2h replications at the ith
design point, Combined Method | is employed. For instance, within the first pair of
replications, two different design points i and k in the same block use (a) (Ri1, Ri)
and (Rin, Rey) respectively for the first replication; and (b) (Ra, Rizz) and (Riy, Rez)s
respectively, for the second replication; where R.i;, Rz, and Ry (/ = 1, 2) are randomly

selected, but R, is antithetic to R

For extending Combined Method | to the multipopulation model, Table 31 presents
the complete assignment of random number streams for the 2h replications at m de-
sign points: the first my design points are in the first block, and the second m, design

points are in the second block; Ry, consists of (g —s”) random number streams used
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Table 31. Random Number Assignment Rule of Correlated Replications for m design points.

Design Replication
Point 1 2 2h -1 2h
' y11(R111, R112) y12(R111, Ry22) Yi.2n - 1Rt Rozn - 1,2) y12n(Rapt, Razm2)
2 y21(R111, R212) y22(R111, Rzz2) y2.2n - 1(R1n1, Raan - 1,2) y22n(R1p1, Raam2)
m ymq1(R111, Rmq12) ymz(im. Rmy22) Ymzn - 1(R1n1, Rmq2n - 1,2) ymyzn(Rimt. Rme2n2)
my +1 Ymq +1, 1(i111. Rnn +1,12) Ymyq «1‘2(“111- Rm1 +1, ) Ymq +1.20 - 1(i1h1- Rﬂn +1.2h - 1‘2)ym1 +1,2/1(R1h1. Rm1 +1,2n2)
m ym1(R111, Rm12) ym2(R111, Rm22) Ymen — 1(R1a1, Rman —1.2) Yman(R1nt. Rman2)
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for the non-control stochastic components in the model (j=1, 2, ..., h); R, consists

of s° random number streams used for the control variates in the model

(i=12 ...,m,j=1,2, ..., h); Ryu is a set of randomly selected random number
streams for the (2j — 1)th replication (j=1, 2, ..., h); Ry, is a set of streams antithetic
toRys (i=1, 2, ..., h); and R, is a set of randomly selected random number streams

for the jth replication at the ith design point (i=1, 2, ... m, j=1, 2, ..., 2h).

The assignment rule in Table 31 forces the mean responses at the m design points
to have a covariance structure different from that obtained by the Schruben-Margolin
method. Let y; and ¢; be the response of interest and a vector of control variates, |
respectively, at the jth replication and the ith design point. We first specify the
covariance matrix of the responses and control variates obtained by the assignment
procedure described above. To this end, we extend Assumptions 1-5 in Section 3.1
to m design points and adopt Assumptions 1-4 of Schruben and Margolin (1978) in
Section §.2. Since the induced correlations by partial common random numbers and
antithetic variates (for the non-control stochastic components in the model) across
design points will be different (common experience suggests smaller than p, and p_
in Section 5.2), we use notation p. and p-, respectively, for analogs to p, and p_. We

now establish the assumptions as follows:

1. Var(yy))=a fori=1, 2,..., m,j=1, 2,..., 2h (homogeneity of response vari-

ances across design points and replicates).

2. Cov(yy, yx)=—p0i(p,>0)fori=1,2, ., mifk=j+1(=1,3, ..,2h—1) (ho-
mogeneity of induced negative correlations across design points and replicates

pairs). Otherwise, Cov(y;, yi) = 0.
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Cov(y, yu) = p.o? if two design points i and k are in the same block, and /=j;
Cov(yy;, yu) = p-o? if two design points i and k are in the same block, and /= j + 1
(=1, 3, ..., 2h —1); (homogeneity of induced correlations across design points:

adopted from Schruben and Margolin (1978)). Otherwise, Cov(y,, yu) = 0.

Cov(y,;, yu) = p_a? if two design point i and k are in two different blocks, and j =/,
Cov(y,, yu) = p_o? if two design points i and k are in two different blocks, and
I=j+1 (=13, .. 2h—1); (homogeneity of induced correlations across de-
sign points: adopted from Schruben and Margolin (1978)). Otherwise,

Cov(yi yu) = 0.

p. and p. are constant and p. > — p. >0 (standard statistical assumption and

empirical simulation results: adopted from Schruben and Margolin (1978)).

Cov(y,, cu) =0’y if i=kandj=/ (homogeneity of control variates-response

covariance across design points and replicates). Otherwise, Cov(y;, ¢u) =0

Cov(cy) =X, fori=1,2,., m and j=1, 2, ..., 2h (homogeneity of control

variates covariance structure across design points and replicates).

Cov(c,, cu) =0,,, for i # k and j #/ (independence of control variates across de-

sign points and replicates).

Assumptions 3, 4 and 5 are from Schruben and Margolin (1978) in Section 5.2, the

other assumptions are the same as those in Section 5.1. Under these assumptions,

we identify the conditional distribution of y given C, where ¥ = (Vi , ¥z ..., ¥m)" and

E= (61 ’ _Qs sery Em) .

r
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Since this extension uses the same random number strategy as that considered
in Section 5.1 at the ith design point, the variance of y,, the covariance of ¢, and the
covariance between y, and ¢, are, respectively, equivalent to those given in (5.3), (5.4),
and (5.5). Thus, under the joint normality assumption of the responses and control

variates, the joint distribution of y; and ¢, is same as that in (5.6).

Next we specify the covariance of the mean responses between two different de-
sign points. When y; and y, are the mean responses observed at two design points

in the same block, we find (see Theorem 5.2 in Mood, Graybill and Boes (1974)),

2h 2h

Cou 7 = Conl gy D sy S =15 [, Cont

j=1 I=1 j=1=1

=_i_

4h*

IIMz

2h
Z [Cov(y; o) — 1, Yu) + COV(Y; 25 Yii)]

h
’
= Z [CovlYizj— 1 Yizj— 1) + COVYigj_ 1. Vi) + Z Cov(yizj 1+ Yu)]
4’ /=1 1#2j=1, 2

1
+—( E Cov(y 2 Vi) + COV(Y, s Yh2j—1) + § Cov(y;p Y]
ahm = 12— 1,2

1
= ? [ZCOV(}/U, ykj) + Z{COV(Y, 2j =1 Ykzj) + Cov(y; \2j yk2}—1)}]
j=1 i=1
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1 - - 1 * *
=7 [2hp 0% + 2hp_o3] = > oy + p_)ol (5.18)

by Assumption 3. Also, for the mean response y; and ¥, in two different blocks, we

have the same result as in (5.18):
- 1 . 2
Cov(y Vi) =75 (b4 + )y (5.19)
Next, the covariance between y; and ¢, for i # k is given by

2h 2h 2h

2h
_ 1 1 1
Cov(7, §) = Cov( 5= ) v 5= ) €)= - [>. D Covly, e)]=0. (520

j=1 =1 j=1=1

by Assumption 6. Finally, we have

2h 2h

2h 2h
- - 1 1 1
CoV(E, E) = Covl( e ) €p5r D ,Ch) = — [ Cov(e;. e)] = Oy, (5.21)

j=1 1=1 j=1=1
by Assumption 8.

Under the joint normality assumption of the response and control variates, from

equations (5.3)-(5.5) in Section 5.1, and (5.18)-(5.21), we find the joint distribution of y

y Xp _
[Vec(E)] ~ Nm(s+1\[[oms]v E]’ (5.22)

where Vec(C) denotes the operation that the columns of C are stacked into a single

and C as follows:

ms-dimensional vector;
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L, o ,0l
s_ | B @ (5.23)
2h | 6, ®1n Z®lp

where ® denotes a Kronecker operation of two matrices; and

1_py Pyt p_ Pp+pP_ Pyt p_ pytop_ Py +po_
prtp T=py prto_ pytp_ pito Pyt P
5 2 Petpo Pt o N=by gl plpl L putp
y = Oy + * * + . . . * * N * 4 : * *
R e
Petpo Pyt o Pkl ppte =y plgp
Pyt p_ prtpo Pytp_ pptp_ pyetp 1=py
2
Gy * * * ,
= 2—/7 [(1 —~Py— Py — p_)lm + (p+ + p—)1m1 rn]- (5-24)

From Theorem 2.5.1 in Anderson (1984), the conditional variance of ¥ given C is as

follows:

Var(y | ©) = 5 [, ~ (0'yc®n)(E®1m) " (0,c® )]
=S (2 = (0, ®)(EL ®l)(0,c®1m)] = 51 [E, = (6',cES ®lir)(6,c®1 )]
f—“ %' [Ey - (o"yczc—1°'yc®|m)] = _2—1,')_ [Ey - a'ycz:‘dyclm:l

[(1=py—pr—pINn+(op+p )11 — 0;26'y02;16yc|m]

I
n
> |’<Q~
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2
G * * * *
= 2_; [(1 = Py = P = p= = Rillm + (py + P11 ] = ylpp + 511, (5.25)

where R,. is the multiple correlation coefficient between y; and ¢;. A sufficient con-
dition for the equivalence of OLS and WLS estimators is that the dispersion matrix in

(5.25) is representable as
Var(y | E) = X=X' + 262’ + azlm, (5.26)

where z is an (m x 1) vector such that z’X =0, and =, 6, and ¢? are arbitrary (see
equation (63) in Rao (1967), and equation (3.6) in Schruben and Margolih (1978)). ‘

Clearly, the covariance matrix in (5.25) is of the form in (5.26) since
Var(§ | €) = 5= (1 = py = p = - — RE)om + 5= (0 + pL)0IXGp X', (5.26)
where G, ., is defined in (5.14). The OLS estimator of f in (5.2) is given by
Bo | C = (X'X)"'X[I,, — S(C'PC)"'CPly (5.28)
(see (2.23)). Taking the operation of variance on (5.28) gives
Var(fg | C) = (X'X)"'X'[1,, — C(C'PC)""C'PVar(y | C)[I,, — PC(C'PC) " IX(X'X)™",
which is developed into, by substituting for Var(y | C) with (5.25),
Var(Bg | ©) = y(X'X)"'X'[1,, — C(C'PC)"CP][l,, — PC{C'PC) T IX(X'X)™"
+ 86X’ X)7'X'[1,, — C(C'PC)'C P, 1" [, — PE(E'PE)"E']X(X'X)”‘. (5.29)
The first term in this equation reduces to
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y(X'X)~'X'[1,, — C(C’'PC)~'€'P][1,, — PC(T'PT)~"C IX(X'X)™"
= y(X'X)"" + p(X’X) X' PC) T X(X'X)™ (5.30)
since X'P =PX = 0. After some computations, the second term is equivalent to
S(X'X)”'X'[I,, — C(C'PC) TP 1" [l — PC(C'PC) T IX(X'X) ™" =66, , 1, (5.31)

where G, ., is defined in (5.14) (see the proof of (6.31) in Appendix A). Substituting

(5.30) and (5.31) into (5.29), we find the conditional variance of iIG, given C, as follows:
Var(Be | ©) = y[(X'X)™" + (XX) X TECPC)TXXX) T+ 66, .,  (532)

Since the least squares estimator fs is an unbiased estimator conditionally on C from

(2.41), the unconditional variance of ﬁg is given by

—p
p—

Var(Bg) = E[Var(Bs | ©)] = (==L =2 )% 456, (539

{see the proof of (5.33) in Appendix A).

9.4. Extended Schruben-Margolin Method

This section proposes a new approach utilizing the Schruben-Margolin method
and control variates method simultaneously in a desighed simulation experiment.
As Schruben and Margolin (1978) noted, the efficiency gain of their method highly
depends on the induced correlation between two responses in the same block. Also
the simulation efficiency of the control variates method is determined by the corre-

lation between the response and a set of selected control variates. Thus, in com-
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bining both methods, a key issue is how to maintain the correlation coefficient

between two controlled responses (having smaller variances) in the same block.

During simulation of the jth replication at the ith design point, in addition to the
response variable y; suppose we collect a (sx 1) vector of control variates c;
(i=1,2,..,m, j=1,2,..2h). The control variates are assumed to be independent
of the factor variables (see the discussion in Section 2.1). The Schruben-Margolin
method yields the same control variates at all design points in the same block by
common random number streams if we perform simulation replication during the
same period at each design point: ¢;=c¢y (j=1, 2, ..., 2h) if two design points
i and k are in the same block. Also the control variates observed from two different
blocks are negatively correlated by antithetic streams. That is, the Schruben-
Margolin correlation induction strategy allows the observation of the control variates

across m design points for the 2h replications as follows:

e, e, |
~ !
—_ my C1
c=|_ == (5.34)
C my +1 my +1
- E’
c m my +1

where the first m; design points are in the first block, and the second m, ={(m — m,)
design points are in the second block. A reparameterization of each control variate
in {5.34) gives that each control variate in the first block of the design is at low (high)
level and that in the second block is at high (low) level. Therefore, adding the matrix
of the mean control variates C (number of control variates is s) to the linear model in

(5.1) gives the same effect as including the variable with its high level in the first
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block and its low level in the second block. In applying the Schruben-Margolin
method, the effect of the variable described above is assumed to be negligible since
this effect is compounded with the blocking effect of random number streams which
needs to be incorporated into the model for decomposing the random error term ¢ in
(5.1). Thus, regression analysis on the linear model with the factor variables and the
control variates is not desirable although we can identify the control variates which

are strongly correlated with responses, and independent of the factor variables.

We now consider a different way of utilizing the control variates under the
Schruben-Margolin method: instead of including the matrix of the mean control
variates of the 2h replicates to the linear model (5.1), and conducting regression
analysis on the response with both factor variables and control variates (on the linear
model in (5.2)), we first adjust the jth mean response using the control variates c¢;
(=1, 2, ..., 2h) obtained at the corresponding design point, and then apply re-
gression analysis on the controlled responses with factor variables. Since the con-
trolled response at a single design point follows the normal distribution under the
joint normality assumption of the response and control variates (see p. 36 and also
equation (2.39)), the controlled responses across the m design points have the
m-variates normal distribution. Also, conditioning on the control variates, the con-
trolled mean response at each design point is an unbiased estimator of the mean
response (see the discussion on p. 32). Therefore, the controlled response can be

written as follows:
y@)=y,-¢a,=xpf+¢c fori=1 2 .., m, (5.35)

where y; and ¢, are the mean response and a (s x 1) mean vector of control variates

at the ith design point, respectively, a; is a (s x 1) coefficient vector of control variates,

CHAPTER 5. COMBINED CORRELATION METHODS FOR MULTIPOPULATION MODEL 167



and & ~ N(0, ka2), where k will be specified lately in this section. In matrix form, we

can write the linear model in (5.35) as follows:
VA)=XB+¢, (5.36)
where X, B and & are in (5.2), J(A) = (i(&1), Ve@2), s Vin(&m))'-

In this model, since we adjust the response based on the control variates obtained
at each design point {(considered as a single population), this approach allows using
more control variates than the approach of Nozari, Arnold and Pegden (1984) for the
multipopulation simulation model with control variates. The number of control
variates depends not on the number of design points but the efficiency of control
variates in a single population model (see equation (2.108) and the ensuing dis-

cussion of the number of control variates in a single population model).

If we use independent random number streams across the m design points, then
the controlled responses, yi(a,) (i=1, 2, .., m), are observed independently. Thus,
the estimator for f can be obtained by the ordinary least squares method. However,
in applying the Schruben-Margolin method, the control variates obtained at a design
point are same as those at the other design points in the same block (either the first
block or the second block) by common random number streams (see (5.34)). Also,
the control variates obtained at any two design points not in the same block are
negatively correlated with an equal amount since the Schruben-Margolin method
uses random number streams antithetic to those used in the first (second) for the
second (first) block, and the same random number streams for either the first block
or the second block. Of course, the Schruben-Margolin method induces the corre-

lation between the responses across all design points. Thus, a covariance matrix of
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the controlled response is different from that of the response given in (5.13). In the
remainder of this section, we first specify the covariance matrix of the controlled re-
sponses, then develop a procedure to estimate the model parameters, and finally find

the covariance matrix of the estimators.

For the responses and control variates obtained by the Schruben-Margolin corre-
lation induction strategy across the m design points for each replication, and inde-
pendent random number streams through the 2h replications, in addition to the
assumptions established by Schruben and Margolin (1978), we can assume the re-
lationships between the response variable and control variates, and between the

control variate across the design points and replicates as follows:

1. Cov(y;, cu)=¢", if two design points i and k are in the same block, and j=/
(homogeneity of control variates-response covariance across design points in the

same block and replicates). Otherwise, Cov(y;, c4) =0".

2. Cov(y,, cu) = o, if two design points i and k are not in the same block, and j=/
(homogeneity of control variate-response covariance across design points in the

different blocks and replicates). Otherwise, Cov(y;, ¢u) =0".

3. Cov(c))=Z, fori=1,2,.., m and j=1, 2, .., 2h (homogeneity of control

variates covariance structure across design points and replicates).

4. Cov(c;, cu) =X, if two design points i and k are in the same block, and j =/ (ho-
mogeneity of control variates covariance structure across design points in the
same block and replicates); Cov(c;, cu) = Z: if two design points i and k are not

in the same block, and j =/ (homogeneity of control variates covariance structure
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across design points in the different blocks and replicates); Otherwise,
Cov(c;, cw) = 0,,, (independence of control variates across design design points

and replicates).

Under these assumptions, we find the covariance structure of the controlled re-
sponses for the two cases that the optimal coefficient vector of control variates, a, is

known and unknown.

When the optimal value of & = X;'e,. is known, the variance of the mean controlled

estimator at the jth design point is given by

Var(y;— ¢’ &) = Var( = 2h Zy,/ ETS Z i ZVar(yU c'ja (5.37)

i=1 j=1

by Assumption 1. If we develop this equation according to the formula of Corollary
5.2.1 (Mood, Graybill and Boes (1974)), and replace « with X:'s,., then we find, by

Assumption 1,

2h

1 ’
Var(y,—¢'@) = 4_/7— Z[Var(y,,) — 2Cov(y;, ¢’ ;@) + a’Cov(c))a]
j=1

- Z[o 26, + 2'Eea] = o 21 — 0" .23 0,0)
j=1

= —=—a>(1 - RZ), (5.38)
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where R,. is the multiple correlation coefficient between y; and c¢;(orcy). This
equation shows that the response adjusted by the control variates with known coef-
ficient vector a has a variance reduced by (1 — RZ) over that given in (5.13). By Cor-
ollary 5.2.1 in Mood, Graybill and Boes (1974), the covariance between two controiled

responses at design points i and k in the same block is given by
Cov(y; — €@, ¥, — ¢',@) = Cov(y, y,) — Cov(y;, ¢ ,&) — Cov(y,, ¢’ &) + &' Cov(c; ¢,)x,(5.39)
where each term is developed as follows:

_ - 1 '
Cov(F, Ti) = 5 P+ (5.40)

from equation (5.13); Corollary 5.2.1 in Mood, Graybill and Boes (1974) gives

2h 2h

Cov(F, &) = Cov( 5 Zy,,. - Z )= ), ) Covlyy )

j=1 =1 j=1=1

which reduces to, by the assumption 1 and replacement of a into this equation,

_2h_ P
}ZCOV Yip € ) uh? — 0= T S0y Ec Oy (5.41)

similar to (6.41), we have
Cov(yy, @) =—5-0") X o‘ (5.42)

by Assumption 1, Using the formula of Corollary 5.2.1 in Mood, Graybill and Boes

(1974), we develop
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2h 2h 2h
, - = , 1 1 1
a’'Cov(c;, ¢, )a = a'Cov( ETy Zc"f’ ETy ch,)a = F 3 Z(CU, Cyj

j=1 S = =1
which reduces to, by Assumptions 3 and 4, and substitution of a with X:'e,.,

2h ., 1, v
= h? « an=a—ayczc 6y

Plugging (5.40)-(5.43) into (5.39) gives

- -, = o 1 2 R 1 2 2
Cov(y;— €&, ¥, — ¢'\) =E’(p+‘7y—0yc2c Gyc):'ﬁ'ay(/)-o-“Ryc)’

(5.43)

(5.44)

where R,. is defined in (5.38). As we see in this equation, the covariance between two

controlled responses in the same block also decreases by the same amount as in the

variance reduction of the controlled response in (5.38).

If two controlled responses i and k are not in the same block, in a similar proce-

dure given as above, we find each term in (5.39) as follows:

- _ 1
Cov(y, ¥i) = 25 p_c;

from equation (5.13);

2h 2h 2h
= = 1 1 ' 1 '
CovF, &) = oW ) ¥y 5 D €'it) =5 ) Covly;, €45)
j=1 =1 j=1

£ X _1
ayczc Oyc
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by Assumption 2 and Corollary 5.2.1 in Mood, Graybill and Boes (1974); similar to

(5.46), we find

.
Cov(Fi € @) = 5~ 0,cEc Oyc (5.47)
by Assumption 2;
1 2h 1 2h
a’'Cov(c, ¢, )a = a'Cov( Ty Zc,-j, ETS ch,)a Z(c,}, i)
j=1 =1 j=1
=%a’22a =02 22 o (5.48)

by substitution of @ and Assumptions 3 and 4. Substitution of each term in (5.39) with

equations (5.45)-(5.48) yields
- =, = =, 1 2 PR PR e |
Cov(y; — ¢/a, ¥y — Ca) = Sh (P-Gy — 20 yczc 6, t+o ycz'c XL Uyc)

== oXo_~ Ry0) (5.49)

where R;. = 0;%(26',.X;'6,. — ¢', L' L.E:'6,.). The term o?R;. can be interpreted as a
difference between the covariance of the two responses and that of the two re-
sponses adjusted by the control variates when there exist the correlations among y;,,
¥x €, and ¢, with the known a. For the case of a single control variate (s = 1), the term

R} in (5.49) can be written as

* 2

g (eg

* -2 -2 * 2 yc yc ye
Ryc=0,%0;. [20y0,c — oyc( — chC)O’C ] 2 0,0 0,0, + P o202
y%c
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=2p,cpyc + PePoc (5.50)

where p,. is the correlation coefficient between y; and c¢;; py. is the correlation coeffi-
cient between y; and c;, where y; and ¢, are in two different blocks; and — p. (p. > 0)
is the correlation coefficient between c; and cy; in the two different blocks. Instead
of identifying the relationship among p,., py., and p. analytically, we computed this
relationship based on the data set obtained from the simulation run for the hospital
example (we will discuss this problem in detail in the next chapter). The computa-

tional results show that

+*

Pyc = — PcPyc- (5-51)

(see Table 40). Under this relationship, R;. in (5.50) reduces to

. 2 2 2
Ryc = =2pcPyc + PcPyc = — PcPyc < 0, (5.52)
which implies the negative correlation between the two controlled response in the
two different blocks is reduced by approximately p.p? for the case of a single control

variate.

We now consider the covariance matrix of the controlled responses across the m
design points for the case of the known «. From equations (5.38), (5.44) and (5.49), if
we divide the covariance matrix by the variance of the controlled response in (5.38),

then we obtain the covariance matrix of the m controlled responses as follows:
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1r r qq q
r " qgq q
2 . * *
_ (1—R§C)oy rr 1 qq g
Cov(F(@) =—%—|q q D ' (5.53)
qq q r 1 r
qgq 9 rr 1
where y(a) =y — Ca,
p.—R] p_—R,
r=——FX and g=—7/". (5.54)
1—-R,. 1-R,.

This covariance matrix can be written in another form given by

2, 2
(1=R,J)a,

Cov(j(a) = ——;

1 , 1 ,
[—2- (r+g)XG, . 4X' + > (r+9)z,2' »+ (1 =rl,], (5.55)

where G,., and z, are as defined in (5.14). The covariance matrix in (5.53) has a
structure similar to that in (5.13). For a dispersion matrix having the above pattern,
the WLS estimator for f is equal to the OLS estimator (see equation (63) in Rao

(1967)), which is given by
B = X'X)"'X'(¥(x). (5.56)

Taking the variance operation on this equation and substituting Cov(y(a)) with (5.53)

yields
Cov(B) = (X'X)™' X' Cov(F(a))X(X'X)™"
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(1= Ry)a, ny=Tyrr b A ' X)™!
=—2h———(x X)”'X [7(r+q)XGp+1X +?(r+q)zmzm+(1 — I, ]X(X'X)

1—R%)o’
=(—2hyﬂ[—;_-(r+ q)G, 4 1 + (1= )XX)™"] (5.57)

since X'z, = 2’',X=0. Substitution for r and g in (56.54) into (5.57) gives

Ao _Rgc)"f' 1 p+-—Rfc p—_R;c p+_R§c -1
Cov(f) = [~ )G, ., + (1 — —L )™
(8) oh 2Ry, 1-m, Pt 1-R2
2
— L R2 +R.,)}G 1 X'X)™" 5.58
“'2h[2{(P++P—)—( ye t yc)} p+1+( —p)(X'X) ] (5.58)

As we see in this equation, the variances of §; (i=1, 2, .., p) are same as those ob-
tained by the Schruben-Margolin method (see (5.13)), but the variance of g, is less
than that in (5.13) provided R% + R;. > 0. Under the relationship in (5.51), this condi-

tion holds since
2 . 2 2 2
Ryc + Ryc=pyc_pcpyc=(1 _pc)pyc> 0 (5.59)
for the case of s =1.

Next we consider the case that the optimal value of & is unknown. For the ith
design point, we estimate it by (see the estimator of a in Section 2.2.2 for a single

population model)

8 =S¢, 'Sye, = [(C,—EN)NC; — 1)1 (C, — E1)(y, — ¥i): (5.60)

where C; is a (s x 2h) matrix of the control variates; y; is a (2h x 1) response vector;

c is a (s x 1) mean vector of control variates; y; is the mean response; respectively,
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at the ith design point; and 1 is a (2h x 1) column vector of ones. The sample esti-

mator of @ at the ith design point can be represented as
%= [(C,—E1)(C;— 1)1 (C; =1y, = M;(C,— &1y, (5.61)
since

(C,— 1)y = j(CA — T1'1) = j(2ht, — 2hc)) = 0. (5.62)

From the result of a single population model (see (2.97)), the variance of the mean
controlled estimator at the ith design point is given by

- A 1 2h —2
Var(y,— ¢’} = ETY (1- Ric)oi( Sh—s—2 ). (5.63)

We now consider the joint distribution of y; and y,, and their corresponding control
variates C; and C,, where the two design points i and k are in the same block. The
matrices of control variates C; and C, are same since both C; and C, are obtained by
common random number streams across two design points i and k. For the jth rep-
licate of simulation output, the joint distribution of the response and control variates
is given by, according to Assumption 1 in this section and Assumption 1 of Schruben

and Margolin (1978) (see Section 5.2),

2 2
yij M, ay .0+0y 4 yc
o~ u 2 2 ¢
Yig Ns+op| | H |- p.a, o, Tye|| (5.64)
clj dyC o-yc ZC

where p; = x";f and y, = x"sf. Thus, given c, (or ¢), the conditional distribution of the

responses is as follows:
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-1

pit+o'y X c, 2 -1 2 -1
Vi | c; y J oy, — "’yczc Gy POy, — 6 Lo Oy
(5.65)

N2 4 -1
) e+, X ¢ | 2 P 2 R
Vil € 8’ / puo0y— 6y Lo Gy 0, — 0" Lo Oy

by Theorem 2.5.1 in Anderson (1984). The off-diagonal element of this covariance

matrix indicates that
2 R 2,2 ...
Cov(y,-}-, Yial ci/‘) =p4y0y—0 yczc Oyc = (p+ - Ryc)o'y ifj=1, (5.66)

where R is defined in (5.38). Since we use independent random number streams for

the jth and /th replications (j # /), we have

Cov(yy, Yl € €)=0 if j#/, (5.67)

by Assumption 1 of this section and Assumption 3 of Schruben and Margolin (1978).
Equations (5.66) and (5.67) imply that the conditional variance between y; and y,, given

C. or C,, is the diagonal matrix having its diagonal element as in (5.66):
Cov(y; yx|C;, Cy)=Covly, ¥4I C)=1(py — Rfc)of,lzh. (5.68)

By substitution of &, and &, in (5.61) for the controlled responses i and &, respectively,
we develop the covariance of the controlled responses as follows: (note that

yi=1"y,[2h)
Cov(y; — 5':&;'- Yi— E,k&\k)
1 = ag—1 — . 1’ — — 4
= Cov[ oh yi—¢' M, (C;—c1)y, BTy Yi — €M (Cr—c17)y,]

’

1 o a- S 1 — ap— = 41
= Cov[(57—¢'M; 1(Ci -1y, (5 —¢'«\M, 1(ck = 1))yl
2h 2h
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' = - — 4 1’ ! - - ’
E[CoVI( - — &M (€, = §A)Y, (37 — EM¢ (€, — §Di | € C]
1’ ' - =1’ 1 - = 4\ =
= E[( 25~ c'M; 1(Ci —€1")Cov(y;, ¥« | Cj Ci)( oh T Mk1(ck —c1')c’y)]
which reduces to, by substituting (5.68) for Cov(y, y«|C, Ci) into the above equation,
2 2 1’ = aa—"1 — 47 1’ = -1 = 41\
= (py — RyaE[( ohp € iM;(C; — 1)) o ¢ M (Ce— 1)1,

which further reduces to

— (p, — R%)o%El % — T M€~ 81 5 — @M (€ —E1) Sy
+EM;(C; = E1)(C — T )M ]
= (0, — RE)oE[ 5 + & M 5] (5.69)
since
=8 and C,=C, (5.70)

by the assignment of common random number streams for the two design points

i and k;
eMc, -1 =eM(Cc1—c11) =¢ M (2hE - 2hE) = 0; (5.71)
and by (5.70),
M;(C,— §1')'(C — E1)MK" = M '(C,—E1')(C — 1 )M; = M7 MM = M;". (5.72)
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We note that (see Theorem 5.2.2 in Anderson (1984)),
N

T2 = 2n(2h — 1)E' MG, (5.73)

is Hotelling’s T? statistic. Also, Corollary 5.2.1 of Anderson (1984) gives

T2 2h — a1z, 2h —
(57 (5 %) = 2he M; "5 ( =) ~ F(s, 2h —3s), (5.74)
and Kenny and Keeping (1951) gives
E[F(s, 2h —s)] = %f—?_- . (5.75)

Using (5.73)-(5.75), we find (5.69) as follows:
_ A - A 1 -
Cov(F; — €, Vi = € ) = (b4 — Ryc)oy[ 5 + E[EM] €11

1 21524 4 ——8 1 2, 2 _2h—2
=E"(p+_Ryc)0y(1 + oh—s—2 )=-§77—(p+—Ryc)ay(m). (5.76)

When two controlled responses are not in the same block, we can obtain their
covariance with a similar procedure to that given above. With the same reasoning

as in (5.67), we get

COV(y,‘j, Ykl , clj’ Ck,) = 0 ifj % /. (5.77)

Also, under the normality assumption of the response and control variates, the joint
distribution of y; and ¢, is given by, according to Assumption 1-4, and Assumption 2

of Schruben and Margolin (1978) (see Section 5.2),
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! *!
@ye o ]
Yij Hi % POy TYe Oy

; 2 2 ’
Yij ~ N M p_o, oy Oy Oy (5 78)
C;j S B B A P e i ’
c 0 U0 T

kj * *

| Cyc Oyc . X ]

where u; and u, are given in (5.64). Thus, given ¢; and ¢, by Theorem 2.5.1 in

Anderson (1984), the covariance of the responses is as follows:

Cov(yy, Yu l € €)= (o — 5)05 ifj=1 (5.79)
where ¢ is the first-row second-column entry of the following matrix:
0" *r 2 * -1 o ¢ *
_ yc o z y
i BEERGE | Nt . e, (5.80)
Oyc O yc DIPED 2P Oyc COyc
Thus, from (5.77) and (5.79), we find
(5.81)

2
Cov(y, ¥x|Ci C)=(o_— 5)0y|2h-
Similar to the development of equation (5.69), we have the covariance of two con-
trolled responses in different blocks as follows:
7 ! A vl ! 7 i d s7 =’
Cov(y; — T &, ¥ — €4dy) = E[Cov(V, — & &), ¥ — €4&x | C;r Cy)]

1, =’ - =47 1 - - A
= E[( oh c I‘Mk1(ci —¢1"))Cov(y; ¥, | C; Cu( ETEE Mk1(ck - 1')c’)]

which reduces to, by substitution of (5.81) for Cov(y,, y«| Ci, Ci),
2 1' =4 -1 ‘~A4’ 1’ -1 - A%=44
= (p_ — §)o,E[( S5 — €My (C;— 1)) 25— M (Ck — S 1) )]
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which further reduces to, by equation (5.62),
1 = - [AY4 ’ ==
= (p— = )oJEL 5 + & M, '(C,— €)' (C — e 1M G, (5.82)
To represent (5.82) as a similar form in (5.76), we now define

Rye=(BE=2=2 )12 — 2h(p_ — EIE M'(C,— 'Y (€ — c M1 (5.89)

(it is difficult to obtain the expectation in (5.82)). Then, we have

2 2h —

— [ - — 1 2 *
Cov(y, — 3, ¥ = €4o) = 3 0 5 —o 75 )(P— — Ryo)- (5.84)

Without loss of generality, we now assume that C; and ¢; are obtained at the first
block, and C, and ¢, are obtained at the second block. Since C; and ¢, are same for
any design point i in the first block, and C, and ¢, are same for any design point & in
the second block, the expectation of the function of random variates in (5.82) is same
for any two design points iand k in the two different blocks. Therefore, the
covariance between any two controlled responses in two different blocks is given by

(5.84).

Thus, dividing the covariances in (5.76) and (5.84) by the variance in (5.63) yields

the covariance matrix of the m controlled responses as follows:
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r‘1 r r vv v |
r1 r vy v
2. 2 ' D S T PP
A (=RJo,  2p_2 S I 2
CovyA) = (Fr—s—z)|vv - - * v 4r - - r [{589
vV VvV R v 1 R ¢
v v v rr 1
where r is defined in (5.54) and
(o_—Rye)
v=—— (5.86)
(1_Ryc)

We represent this covariance matrix in another form given by

2, 2
(1_Ryc)°y( 2h =2

Covy(A) =—; 2h —s — 2

1 , '
)[7(r + V)XG, 41X +?(r +v)Z2,2' m + (1 =Dl

(5.87)

where G,,, and z, are defined in (5.14). From equation (63) in Rao (1967), the WLS
estimator for f in (5.35) is equal to the OLS estimator in (5.56) for a dispersion matrix

having the above pattern. Similarly to (5.57), taking the variance operation on ,;},
B=(X'X)""X(§(A)), (5.88)

yields

A

Cov(B) = (X'X)~"X'Cov(FANXX'X)™" = (=21=2

2h—s-2)%
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2,2
(1- Ryc)oy

L (X)X -12— (r + VIXG, , X' + % (v + 122’ + (1 = N1LIXXX)™

_ (1 - Rfc)o’f, 2h -2 l G : X _ 8
- 2h (2h—s——2)[2(r+v) pa1 T (1—NXX)"] (5.89)

since X'z, = 2',X=0. If we replace r and v with (5.57) and (5.87) for (5.89), respec-
tively, then we have
2h —

S =E L oy + p0) = (Rl + Ry} 4 + (1= p)(XX)™. (5.90)

A Gf,
CoviB) =5 (Zh—5

When the optimal coefficient of control variates, «, is unknown, the variances of f;
(i=1, 2, ..., p)isinflated by the loss factor (2h — 2)/(2h — s — 2) due to the estimation
of . Thus, the performance of this method in reducing the variance of f;
(i=1, 2, ..., p) is inferior to the Schruben-Margolin method. For the case where the
number of replications 2h is not small compared with the number of control variates,
s, the Schruben-Margolin method is marginally better than this method. On the other
hand, this method is superior to the Schruben-Margolin method in estimating S, if the
effect of control variates (R% + R;.) compensates the loss factor. The term R}, is
considered as the expectation of the sample analogue of R} in (5.49). Similar to the
case of the known a, Ry, is conjectured as the multiple correlation between the re-
sponse and control variates in two different blocks. Since R, is the maximum corre-
lation between the response and control variates, under the above conjecture, this

method yields better results than the Schruben-Margolin method.
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5.5. Comparison of Methods

In this section, we compare the Schruben-Margolin method with (a) Extended
Combined Method | in Section 5.3 and (b) Extended Schruben-Margolin Method in
Section 5.4. This comparison is based on the variance of the estimator for

Bi(i=0, 1, ..., p), and the D-value of the estimator covariance matrix.

Applying the Schruben-Margolin method requires the design matrix X to admit
orthogonal blocking into two blocks. Interestingly, inspection of the covariance ma-
trix of the responses induced by Extended Combined Method | in Section 5.3 indi- .
cates that only the orthogonality of the design matrix is a sufficient condition for
additionally reducing the variance of the estimator provided p. is greater than — p_
in covariance matrix in (5.24). The reason is that the resulting covariance matrix in
(5.24) is the same form induced by common random number streams through all de-
sign points (see the covariance matrix of the response obtained by common random
numbers across all design points in Schruben and Margolin (1978)). However, as
Extended Combined Method | basically focuses on reducing the variance of the re-
sponse at each design point, the induced correlations p, and p_. may be less than

p. and p_, respectively.

In comparing methods, without loss of generality, we let the variance of the mean
response obtained from the 2h replicates, ¢%/2h, be a unit for convenience. We also

use the following notation:
® Var(f).s = variance of §; obtained by the Schruben-Margolin method.

® Var(f).m = variance of 5, obtained by Extended Combined Method |.
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e Var(f)e = variance of §; obtained by Extended Schruben-Margolin Method.

¢ D, = D-value of the covariance matrix of [3 obtained by the Schruben-Margolin

method.

® D.» = D-value of the covariance matrix of [I obtained by Extended Combined

Method I.

¢ D.. = D-value of the covariance matrix of II obtained by Extended Schruben-

Margolin Method.

First, the covariance matrix ofii in {5.16) indicates that

Var(Bo)ass = (04 + p_) + 7 (1= o) (5.91)

N 1 .
Var(B)ass= (1—py) fori=1,2, .., p; (5.92)
and

1 1 v
Dass =[5 (04 + P+ (1= p )] IX X[

1 m *t * —
= L5 (o + )+ (1= p )10 =P I XX |7, (5.93)
where X" is the (m x p) partitioned matrix of X such that X = (1, | X').
Second, from the covariance matrix of& in (56.33), we find that

m-—-p-—2 . .
m_p_s_z)(1"'py'_p+"P_—R,5c); (5.94)

Var(z}o)com = (p;_ + p:) + —I;"i- (
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m — “‘-2 * *
£ —5 (1 =py=p = p_—Ry) for 1=1, 2, ..., pi(5.95)

Var(fgi)com = % ( m

—
and
Deom = [6 + m(fnm__pp =2 Ra! (nyf'f s _2)2) ] IXx
s D e ok
= [mé + K P IXX (5.96)

whered=p.+p., y=(1—-p,—pi.—p.—R)and /I=(m—-p—-2)/{(m—p—s—2).

Also based on the covariance matrix of ﬂ in (56.90), we find that (for the case of the

unknown a):

Var(Bext = (g2 Lo ((ps + p2) = (R + Ry} + 7 (1= )T (597)

A 2h—2 1 .
Var(Blex=(Zp— -5 ) m (1—py) fori=1,2 .., p (5.98)

and

2h—2 Pt 1 - 1 “o.
Doxt=(gp—o—7) [ {pe+p)=(R+R}+7(1=p )1 =0 )P XX |

— p e *r o
= (=2 ) T oy + )~ RE+ RN+ (1= p )11 = p P IXX [,

(5.99)
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We first compare methods with respect to the variance of fio. Comparison of
equations (5.91), (5.94) and (5.97) indicates that (a) Extended Combined Method |
yields better result than the Schruben-Margolin method if

m-—p-—2
m-—-p—s—

m(py +p2)+[(1 = py = Rye) = (01 + P2 )< (et o)+ (1= p,),

(5.100)

and (b) Extended Schruben-Margolin Method gives a smaller variance than the

Schruben-Margolin method provided

(04t p) + 7 (1= p,) < (h = DRI + Ryo). (5.101)

In estimating 8;(i=1, 2, ..., p), comparison of equations (5.92), (5.95), and (5.98)
shows that (a) Extended Combined Method | yields better result than the Schruben-
Margolin method provided

m—p—2
m-—-p—s—2

(1~ py = Py — o= RE) )< (1= py). (5.102)

and (b) the Schruben-Margolin method yields better results than Extended

Schruben-Margolin Method marginally.

With respect to the determinant of the estimator covariance matrix, comparison
of the D-value in (5.93), (5.96), and (5.99) shows that (a) Extended Combined Method

| yields better results than the Schruben-Margolin method if
[mé + 1Y <[5 (oy + p2) + (1 = p 101 = 2,7, (5.103)
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and (b) Extended Schruben-Margolin Method yields better result than the Schruben-
Margolin method under the following condition:

2h—2 )"“

(g ==5) [ los+p) = RE+RI}+(1=p )1 <5 (op +p) + (1= ).

(5.104)

Based on the comparison of the methods considered in this chapter, we now
discuss the overall performance in estimating the parameters of interest and the ap-
plicability of these methods. The basic approaches of the Schruben-Margolin method
and Extended Combined Method | are quite different. The former method utilizes the
correlations between two responses at the different design points, and the latter
method exploits the inherent correlation between the response and control variates
in a single design point and tries to take advantage of the additional effect from the
Schruben-Margolin correlation induction strategy. In estimating the overall mean
response of the system, as shown in (5.100), the preference of these two methods is
determined by the magnitudes of m(p. + p-) and m(p, + p_)/2 since the other terms
in (5.100) are small compared to these two terms. Thus, if 2(0} + p-) < (p, + p_), Ex-
tended Combined Method | would yield better results than the Schruben-Margolin
method. Independent streams through the control variates highly correlated with the
response may yield the correlations, p. and p-, between the responses (not con-
trolled) across the design points much less than p, and p_ obtained by the
Schruben-Margolin method. (our experiments support this claim). In this case, Ex-

tended Combined Method | is preferred to the Schruben-Margolin method.

In estimating the main and interaction effects of the factor variables, the per-

formance of Extended Combined Method | is represented as a product form of the
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minimum variance ratio and a loss factor. Hence, this method should compensate
the loss factor by the reduced variance of the response to guarantee a variance re-
duction of the estimator. Thus, for the cases that the experimental model includes a
small number of design points (compared with the number of the parameters), and
synchronization of random number streams can be easily achieved in the model, the
Schruben-Margolin method is preferred to Extended Combined Method I. In the
contrary case, Extended Combined Method | may vyield better results than the

Schruben-Margolin Method.

As we noted before, Extended Schruben-Margolin Method shows the similar per-
formance as the Schruben-Margolin method in estimating the main and interaction
effects if the loss factor is small, and better performance in estimating the overall
mean of the responses under the condition of (5.101). Our simulation results strongly

suggest the above conjecture.
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CHAPTER 6. APPLICATION OF COMBINED
CORRELATION METHODS TO MULTIPOPULATION

MODEL

In this chapter, we apply two of the combined methods developed in Sections 5.3
and 5.4 as well as the Schruben-Margolin correlation induction method to a multi-
population model. Specifically, we perform two sets of simulation experiments on the
hospital resource allocation model (Schruben and Margolin (1978)) to evaluate the
experimental performances of these variance reduction techniques. We then sum-

marize the simulation results and present inferences as to these results.

6.1. Description of System and Model

Consider the hospital resource allocation model given in Section 4.4, where we
measured the performance of the current hospital system by the failure rate. Sup-
pose that the hospital administration considers construction of a new facility to pro-
vide better service to the patients. The administration’s decision is complicated by
conflicting interest of several groups because no one knows how the numbers of

each type of bed will affect the frequency with which the patients can not be accom-

CHAPTER 6. APPLICATION OF COMBINED CORRELATION METHODS TO MULTIPOPULATION
MODEL 191



modated. To help resolve this conflict, a statistically designed simulation experiment

is conducted.

Schruben and Margolin (1978) illustrated this problem to investigate the simulation
efficiency of their correlation induction strategy. For estimating the effect of the
number of beds of each type to the failure rate of the patients, they implemented a
2% factorial design: three factor variables (three types of beds) having two levels for
each factor. The experimental conditions for the eight design points in the 22 factorial
design are given in Table 32. They also proposed a linear model which includes a
overall mean and all main effects and pairwise interactions. Their simulation results
showed that two factor interaction effects are negligible. Based on these results, in
the application of each method to this model, we consider a linear model consisting
only of the overall mean response and all main effects. Thus, for the applying
Schruben-Margolin strategy, we assumed that the responses across the eight design

points can be written as the following:

3
yi=Bo+ Zﬂ,x,,ﬂ,, i=1,2, ..8, (6.1)

j=1
where y; is the average failure rate (the response of interest) at the ith design point;
Bo is the overall mean; §; is the main effect of the jth factor variable (number of the
specialized care beds); x; is 1 (-1) if the jth factor is at the high (low) level for a design
point i (by a reparameterization of the factor variables); and ¢; is the error for the ith

observation.
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Table 32. Experimental Design Points in 22 Factorial Design

Experimental Number’ of Beds Number of Beds Number of Beds
Design Point (Intensive) (Coronary) (Intermediate)
1 13 (-1) 4 (-1) 15 (-1)
Block 1 2 13 (-1) 6 (1) 17 (1)
3 15 (1) 4 (-1) 17 (1)
4 15 (1) 6 (1) ' 15 (-1)
5 13 (-1) 4 (1) 17 (1)
Block 2 6 13 (-1) 6 (1) 15 (-1)
7 15 (1) 4 (-1) 15 (-1)
8 15 (1) 6 (1) 17 (1)
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Clearly, the (8 x 4) design matrix X = (x;) given in (6.1) admits orthogonal blocking
into two blocks. For applying the Schruben-Margolin strategy, we partitioned the
eight design points of the design matrix X into two blocks: the first block includes the
design points 1-4, and the second block includes the design points 5-8 (see Table 32).
For a given design point, we conducted 200 runs independently using 200 different
sets of random number streams. Each replication used eight randomly selected
random number streams for driving the stochastic model components as given in
Table 22. Across the design points, we used the same random number streams
(common random number streams) for design points 1-4 in the first block, and their

antithetic random number streams for design points 5-8 in the second block.

In applying Extended Combined Method | developed in Section 5.3 to this model,
we used the single standardized control variate of interarrival time of the patients to
the system. The interarrival times of the patients to the system would be independ-
ently observed at each level of the factor variables (service times at the three hospital
units) by using different number streams for driving the arrival process of the patients
to the system. Thus, we can assume that this control variate is independent of the
three factor variables (see the discussion of concomitant variables in Section 2.1).

Adding this control variate to the linear model in (6.1), we have
3
}7/=Bo+ZBjX,‘j+Ei+8n i=1,2, ..8, (6.2)
j=1

where y,, B, f; and x; are given in (6.1); ¢, is the mean control variate at the ith design

point; and ¢ is the error for the ith observation.
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For a given design point, Extended Combined Method | was comprised of 200
replications according to the random number assignment rule given in Section 4.4.1
(for a single population model). As before, each replicate used randomly selected
random number streams for driving the stochastic model components as in Table 22
in Chapter 4. Across the design points, this method used independent random num-
ber streams for generating the interarrival time process (control variate), but em-
ployed the Schruben-Margolin random number assignment rule for driving the

non-control variates stochastic model components (see Table 31).

Extended Schruben-Margolin Method developed in Section 5.4 (method utilizing ‘
the control variate under Schruben-Margolin method) uses the same random number
assignment strategy as that given in the Schruben-Margolin method. For this
method, we used the same simulation output obtained by the Schruben-Margolin
method and additionally collected the standardized control variate of the interarrival
times of the patients to the system during the simulation. As in Extended Combined
Method |, this control variate is independent of the three factor variables for a single
design point. Note that we conducted the 200 replications independently at a given
design point. Based on the methodology given in Section 5.4, we have the foilowing

model for this example:

3
TA&) = 7= hy=Po+ ) Bry+er, i=1, 2 .8, (6.3)
j=1
where y, B, (j=0,1, ..., 3) and x; are given in (6.1); ¢; is the mean control variate at
the ith design point; ¢ is the error for the ith observation; and a; is the coefficient
estimator of the control variate for the ith controlled response (see equation (2.75)).
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We used the same simulation program coded in SLAM Il as given in Appendix
B-4 in applying each method. The simulation run for a given design point used the
number of the hospital units corresponding to the given design point in SLAM Il code.

We simulated this system under the same conditions as given in Section 4.4.

6.2. Experimental Results

To provide an assessment of the efficiency gains of the three methods considered
in Sections 5.2-5.4, we computed the performance statistics of the D-value of the es-
timated covariance matrix of the parameters, and the variances of the estimators for

the parameters based on each method.

We first address the computational procedure for obtaining the covariance matri-
ces of the (controlled) responses at the eight design points resulting from the three
methods. Let 2h be the number of replications at each design point and
Y, = (¥ Y2 -, Ys;) be the response vector of the eight design points for the jth rep-
lication. Also let ¢;=(cy, Cy, ..., Cg)" be the vector of control variates corresponding
to y,. For the Schruben-Margolin method, the sample covariance matrix of the re-

sponses at the eight design points is given by

2h
1 = o~
S, == D .~ Dy~ ), (6.4)
j=1
2h
where y = > y,/2h is the mean response vector at the eight design points. Applying
i=1
Extended Combined Method | to this model gives the adjusted mean responses for

the eight design points as follows:
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y(a) =y — ac (6.5)

where €= (Cy, C, ..., Cs)’ is the mean vector of control variates at the eight design

points, and a is the least squares estimator of the linear model in (6.2), given by
& = (€'Pe)'e'Py. (6.6)
(see equation (2.22)). Thus, the covariance matrix of the adjusted responses at the

eight design points is estimated by

2h

S, =5 /(&) — TR, 3) — FE), 6.7)
j=1

where y,(a) =y, — ac;. For Extended Schruben-Margolin Method, the adjusted mean

response at the ith design point is given by
}71(&;') = 7; - &iEiv (6.8)
where ¢; is the mean control variate at the ith design point, and
2h 2h
-1 - - - -
8=57"Sye = 1) (e = ey — BT,y = 7le; — E)]. (6.9)
j=1 j=1

where y; and ¢; are the response and control variate, respectively, obtained at the
ith design point and the jth replication. Similar to (6.7), the sample covariance matrix
of the adjusted responses at the eight design points is given by
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2n
1 A —/A A — A\vs
S, =3 Z(y,(ao—y(a))(y,(a)—y(a)), (6.10)
vj=
where y,(@) = (yi(1), Yo (&), ..., ¥s(2s)) and y(z) is the mean vector of the adjusted

responses at the eight design points.

Next, we present the computational procedures for obtaining the sample
covariance matrix of the estimators for the parameters. Note that the estimators for
the parameters, g = (0o, fi...., Bs)’, are equivalent to the least squares estimators of
the linear models in (6.1)-(6.3), respectively, for each applied method. When the
Scruben-Margolin method is implemented, the sample covariance matrix of the esti-

mator for B is given by
Cov(B) = (X'X)™'X'S, X(X'X)™" (6.11)

(see equation (5.16)). Also, given the control variates, substituting for the sample
covariance matrix of the responses, S, in (6.11), with those given in (6.7) yields the

sample covariance matrix of ﬂ for Extended Combined Method I:

Cov(B) = (X'X)'X'S_ - X(X'X)™". (6.12)

y(x)

Similar to this equation, given the control variates, the sample covariance matrix of

ii is given by

Cov(B) = (X'X)7'X'S 5 X(X'X)™", (6.13)

for Extended Schruben-Margolin Method.

CHAPTER 6. APPLICATION OF COMBINED CORRELATION METHODS TO MULTIPOPULATION
MODEL 198



Using the computational procedures mentioned above, we obtained appropriate
statistics for each method. We now summarize the simulation results obtained for the
three applied methods considered in Sections 5.2-5.4: (a) Tables 33, 35, and 37
present the sample covariance matrices of the responses at the eight design points,
{b) Tables 34, 36, and 38 give the sample correlation matrices of the responses at the
eight design points, (c) Table 39 provides the estimator for the parameters f, and (d)
Table 40 presents the covariance matrices of the estimators for the parameters, and

their D-values.

6.3. Inferences

Based on the simulation results of this system presented in the previous section,

we provide inferences in applying these three variance reduction techniques.

First, we inspect the three sample covariance matrices of the (controlled) re-
sponses for each applied method, which are given in Tables 33, 35 and 37, respec-
tively. From Table 33 obtained by the Schruben-Margolin method, we note that the
variance of the response of interest at each design point seems to be approximately
2.0. Table 35 indicates that the variances of the controlied responses obtained by
Extended Combined Method | are in the range from 0.43 to 0.57. Also Table 37 shows
that the variance of the controlled responses are in the range from 0.43 to 0.67 for
Extended Schruben-Margolin Method. As we expected, these two latter methods
substantially reduce the variances in estimating the mean responses across all de-

sign points.

Next, we explore the correlation matrix of the (controlied) responses obtained for

each applied method. As shown in Table 34, the Schruben-Margolin method yields
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Table 33. Covariance Matrix of Responses: Schruben-Margolin Method.

Y1 Yy Y3 Ya Ys Ye yr Ys
Y1 1.962 1.925 1.911 1.884 -1.116 -1.094 -1.096 -1.075
Y2 1.925 1.941 1.883 1.889 -1.110 -1.084 -1.092 -1.069
Ya 1.911 1.883 1.901 1.865 -1.069 -1.049 -1.062 -1.031
Ya 1.884 1.889 1.865 1.880 -1.071 -1.049 -1.087 -1.035
Ys -1.116 -1.110 -1.069 -1.071 2.176 2.161 2.123 2.119
Ye -1.094 -1.084 -1.049 -1.049 2.161 2.188 2.120 2.139
¥ -1.096 -1.092 -1.0582 -1.057 2.123 2.120 2.106 2.094
Ya -1.075 -1.069 -1.031 -1.035 2.119 2.139 2.094 2.124
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Table 34. Correlation Matrix of Responses: Schruben-Margolin Method.

4l Y2 Ys Ys Ys Ys yr Ys
Y1 1.000 0.986 0.289 0.981 -0.540 -0.528 -0.539 -0.527
2 0.986 1.000 0.980 0.989 -0.540 -0.526 -0.540 -0.526
2 0.989 0.980 1.000 0.986 -0.525 -0.514 -0.526 -0.513
Ya 0.981 0.989 0.986 1.000 -0.530 -0.517 -0.531 -0.518
s -0.540 -0.540 -0.525 -0.530 1.000 0.990 0.992 0.986
Ye -0.528 -0.526 -0.514  -0.517 0.990 1.000 0.988 0.992
% -0.539 -0.540 -0.526 -0.531 0.992 0.988 1.000 0.990
¥s -0.527 -0.526 -0.513 -0.518 0.986 0.992 0.990 1.000
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Table 35. Covariance Matrix of Adjusted Responses: Extended Combined Niethod |
2 Y2 Ya Ya Ys Ys yr Ve

¥ 0.478 0.288 0.267 0.286 0.279 0.291 0.298 0.314
y2 0.288 0.431 0.308 0.287 0.274 0.320 0.327 0.361
Ys 0.267 0.308 0.436 0.298 0.245 0.291 0.325 0.332
Vs 0.286 0.287 0.298 0.441 0.268 0.270 0.279 0.323
Vs 0.279 0.274 0.245 0.268 0.428 0.308 0.306 0.359
Ve 0.291 0.320 0.291 0.270 0.308 0.431 0.340  0.346
¥7 0.298 0.327 0.325 0.279 0.306 0.340 0.497 0.371
Ys 0.314 0.361 0.332 0.323 0.359 0.346 0.371 0.569
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Table 36. Correlation Matrix of Adjusted Responses: Extended Combined Method |
Y1 Y2 Y3 Ya Ys Ys yr Ys

Y1 1.000 0.634 0.584 0.624 0.617 0.642 0.611 0.601
Y2 0.634 1.000 0.709 0.657 0.637 0.741 0.706 0.730
Y3 0.584 0.709 1.000 0.680 0.567 0.672 0.699 0.667
Ya 0.624 0.657 0.680 1.000 0.617 0.619 0.597 0.644
Ys 0.617 0.637 0.567 0.617 1.000 0.718 0.664 0.729
Vs 0.642 0.741 0.672 0.619 0.718 1.000 0.734 0.699
y7 0.611 0.706 0.699 0.597 0.664 0.734 1.000 0.698
Ys 0.601 0.730 0.667 0.644 0.729 0.699 0.698 1.000
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Table 37. Covariance Matrix of Adjusted Responses: Extended Schruben-Margolin Method

¥ Y2 Ys Ya Ys Ye yr Ys
Y1 0.428 0.416 0.417 0.408 -0.110  -0.121 -0.117 -0.125
Yz 0.416 0.458 0.414 0.438 -0.101 -0.107 -0.111 -0.116
Y3 0.417 0.414 0.446 0.427 -0.107 -0.119 -0.116  -0.124
Ya 0.408 0.438 0.427 0.460 -0.112  -0.120  -0.124  -0.129
ys -0.110  -0.101 -0.107 -0.112 0.592 0.583 0.583 0.603
ys  -0.121 -0.107 -0.119 -0.120 0.583 0.616 0.586 0.628
y: 0117 -0.111 -0.116  -0.124 0.583 0.586 0.609 0.620
ys -0.125 -0.116  -0.124  -0.129 0.603 0.628 0.620 0.672
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Table 38. Correlation Matrix of Adjusted Responses: Extended Schruben-Margolin Method

Y1 y2 Y3 Ya Ys Ye Yy Ys
Y1 1.000 0.941 0.954 0.920 -0.219 -0.236 -0.229 -0.234
Y2 0.941 1.000 0.916 0.954 -0.194 -0.201 -0.210 -0.209
Ya 0.954 0.916 1.000 0.943 -0.208 -0.226 -0.223 -0.226
Ya 0.920 0.954 0.943 1.000 -0.214 -0.226 -0.233 -0.231
Vs -0.219 -0.194 -0.208 -0.214 1.000 0.965 0.971 0.955
Vs -0.236 -0.201 -0.226 -0.226 0.965 1.000 0.957 0.976
Y7 -0.229 -0.210 -0.223 -0.233 0.971 0.957 1.000 0.969
Vs -0.234 -0.209 -0.226 -0.231 0.955 0.976 0.969 1.000
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Table 39.

Estimators for Model Parameters

Parameter  Schruben-Margolin Extended Extended
Method Combined Method Schruben-Margolin
Method
Be 45,722 45.588 45.627
B -0.291 -0.309 -0.290
Ji -0.378 -0.384 -0.378
I8 -1.805 -1.809 -1.805
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Table 40. Covariance Matrix of Estimators for Model Parameters

Schruben-Margolin Method: D-Value = 9.442 x 10-°

Bo B Be i
Bo 0.4720055 -0.0007993 0.0026397 0.0005962
B -0.0007993 0.0032940 0.0002315 -0.0000107
f2 0.0026397 -0.0002315 0.0050496 0.0000306
Bs 0.0005962 -0.0000107 0.0000306 0.0012114

Extended Combined Method I:

D-Value = 1.922 x 107

Bo B B Bs
Do 0.3255563 0.0080371 0.0063543 0.0038048
B 0.0080371 0.0210071 0.0017162 0.0030887
B 0.0063543 0.0017162 0.0170880 0.0040829
Jis 0.0038048 0.0030887 0.0040829 0.0181698
Extended Schruben-Margolin: D-Value = 3.895 x 10-?
Method
Bo B i Bs
Jirs 0.2002069 0.0013042 0.0034576 0.0026241
Jis 0.0013042 0.0033179 -0.0002449 -0.0000350
i 0.0034576 -0.0002449 0.0050850 0.0000174
i 0.0026241 -0.0000350 0.0000174 0.0012103
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correlation coefficients in the range from 0.98 to 0.99 between two responses in the
same block, and from -0.54 to -0.51 between responses from different blocks. For
Extended Combined Method |, Table 36 indicates that the correlation coefficients be-
tween two adjusted responses either in the same block or different blocks are in the
range from 0.58 to 0.74. |In comparing to the induced correlation matrix of the
Schruben-Margolin method, it seems more difficult to obtain the correlation matrix
structure (equal correlation between the two responses) given in equation (5.24) in
applying this method. This result indicates that the assumptions on the equal corre-
lations between the two responses in either the same block or different blocks (As-
sumptions 3 and 4 in Section 5.3) need the analytical and empirical validation
although similar assumptions of Schruben and Margolin (1978) are generally ac-
cepted. We conjecture that this is due to the use of independent random number
streams for driving the control variate across design points which reduced the syn-
chronization effect of random number streams in applying this method. However, the
extended method yields positive correlations between any two controlled responses
with values not much less than those induced by the Schruben-Margolin method for

the responses in the same block.

From Table 38, we note that the correlations between two controlled responses
in the same block are in the range from 0.92 to 0.98, and those from two different
blocks are in the range from -0.20 to -0.24 for Extended Schruben-Margolin Method.
To explore the notion that the induced correlations are consistent with those devel-
oped in equation (5.53), we computed the correlation matrix between the responses
and control variates for the eight design points. This correlation matrix is given in
Table 41. We estimated p, in (5.13) and p,. in (5.38) by their sample analogues, re-
spectively, given in Tables 34 and 41: p. = 0.985 and p,. =~ —0.867 (note that we used
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a single control variate in this example). Then, from equation (5.54), the correlation

coefficient between the two controlled responses in the same block is estimated by

N

A2
Py — Pyc _ 0985 —0.767

~0.94.
1— 2, 1-0.767

This result indicates that the simulation result in Table 36 is consistent with that given
in equation (5.54) for two responses in the same block. However, the sort of conjec-
ture given above is difficult to make for correlations between two controlled re-
sponses in the two different blocks since R;. in equation (5.57) is represented in the

expectation of a complex function of the control variates (see equation 5.57).

We now compare the performances of the three methods with respect to the
sample variances of the estimators, and the determinant of the sample covariance
matrix of the estimators (D-value). From Table 40, we note that (a) in estimating the
overall mean response (f,), Extended Combined Method | and Extended Schruben-
Margolin Method are superior to the Schruben-Margolin method, and Extended
Schruben-Margolin Method yields better results than Extended Combined Method |,
(b) in estimating the main factor effects, (8:, 8. 8:), the Schruben-Margolin method
and Extended Schruben-Margolin Method yield better results than Extended Com-
bined Method |, and the performances of the former two methods are almost the
same as theoretical developments given in (5.16) and (5.90), respectively, and (c) with
respect to the design criteria of the D-value, the Schruben-Margolin Method is supe-
rior to .Extended Combined Method |, and Extended Schruben-Margolin Method is

superior to both.
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Table 41.

Method

Correlation Matrix between Responses and Control Variates:

Correlation Matrix between Responses and Control Variates:

Schruben-Margolin

Cy

C:

Cs

Cs

Cs

Cs

Cr

Cs

¥ -0.885 -0.885 -0.885 -0.885 0.512 0.512 0.512 0.512
Y2 -0.875 -0.875 -0.875 -0.875 0.517 0.517 0.517 0.517
Ya -0.876 -0.876 -0.876 -0.876 0.496 0.496 0.496 0.496
ve  -0.870 -0.870 -0.870 -0.870 0.499 0.499 0.499 0.499
Vs 0.571 0.571 0.571 0.571 -0.854 -0.854 -0.854 -0.854
Vs 0.552 0.552 0.552 0.552 -0.848 -0.848 -0.848 -0.848
¥ 0.565 0.565 0.565 0.565 -0.844 -0.844 -0.844 -0.844
) 0.546 0.546 0.546 0.546 -0.828 -0.828 -0.828 -0.828
Correlation Matrix between Control Variates:
ol C Cy Cs Cs Cs cr Cs
i 1.000 1.000 1.000 1.000 -0.603 -0.603 -0.603 -0.603
C 1.000 1.000 1.000 1.000 -0.603 -0.603 -0.603 -0.603
G 1.000 1.000 1.000 1.000 -0.603 -0.603 -0.603 -0.603
Cs 1.000 1.000 1.000 1.000 -0.603 -0.603 -0.603 -0.603
Cs -0.603 -0.603 -0.603 -0.603 1.000 1.000 1.000 1.000
Cs -0.603 -0.603 -0.603 -0.603 1.000 1.000 1.000 1.000
cr -0.603 -0.603 -0.603 -0.603 1.000 1.000 1.000 1.000
Cs -0.603 -0.603 -0.603 -0.603 1.000 1.000 1.000 1.000
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For this example, if independent streams are employed across design points and
replications, then each of the OLS estimators would have an estimated variance ap-
proximately equal to one-eighth the average estimated variance presented in Table
33. Note that the variance of the response at each design point is approximately 2.0.
Thus, independent streams would vyield the variance of the estimator for f;

(=0, 1,.., 3) as follows:
Cov() = 83x'x)™" =21, = 0.251,

(see equation (2.28)). In comparing to the method of independent streams, the
Schruben-Margolin method is very effective in estimating the effects of main factors
on the responses, and reduces the variance of the estimator for f,, for instance, by
approximately 98% (= 1-0.0033/0.25), but increases the variance of the estimator for
Bo by approximately 188% (= 0.47/0.25). Compared with independent streams, Ex-
tended Schruben-Margolin Method reduces the variance of the estimator for f§; by
around 20% (= 1-0.20/0.25). Also this method shows similar performance in reduc-
ing the variances of the estimators for the main effects as that obtained by the

Schruben-Margolin method.

For the case that a single control variate is applied, R;. in (5.50) can be written as

2

Ryc=o0, 052(25ycayc - pco'f/c) = (2pycPyc — pcpf/c)s (6.14)

where o, and p,. are the covariance and correlation coefficient, respectively, between
the response and control variate in the same block; o, and py. are the covariance and
correlation coefficient, respectively, between the response and control variate in the
two different blocks; and p. is the correlation coefficient between control variates in
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two different blocks. The results in Table 41 show that p;. is less than both p,. and
pe. Although we can not identify the relationship among these terms, the results in
Table 41 also indicate that this relationship would be p,. = — p,. X p. (p. > 0). Under
this assumption, the condition in (5.101) indicating the preference of the combined

method to Schruben-Margolin method can be written as
2 v * 2 *
Ryc+ Rye = pic + (20,chyc + Pepse) = pycl (1 + p)pyc + 20yc]
2
= pycl(1 + P)pyc = 2Pycpc] = Py — pe) >0 (6.15)

since p. <1 for a single control variate case. This equation implies that Extended
Schruben-Margolin Method yields better results than the Schruben-Margolin method
in estimating the overall mean response of the model. We conjecture that the con-
dition R% + R;. > 0 would hold for the multiple control variates case by extending the
result discussed above. However, more work should be done in this area for com-

pletely analyzing this method.

In reducing the variances of the estimators for the parameters, Extended Com-
bined Method | focuses on reduction of the variances of the mean responses at each
design point by using the correlation between the response and a set of control
variates across the design points. This method also tries to take advantage of the
Schuben-Margolin method by inducing correlations between any two responses in
the design after the control variate effect has been accounted for. In applying the
Schruben-Margolin method, the magnitude of the correlation coefficient between two
responses in the same block is critical to the efficiency of this method in reducing the
variances of the estimators for the main (interaction) effects of the factor variables.
As shown in this example, the Schruben-Margolin method inflates the variance of the
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estimator for the overall mean response substantially when the difference between
p. and — p_ is not small. Thus, if synchronization of the random number streams
yields highly correlated responses across the design points, then it may be desirable
to use Extended Schruben-Margolin Method. For the case that an effective set of
control variates can be identified and synchronization of the random number streams
is difficult to achieve in the model, Extended Combined Method | may yield better
results than the Schruben-Margolin method and the Extended Schruben-Margolin

Method.
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CHAPTER 7. SUMMARY AND CONCLUSIONS

This chapter summarizes the contributions of this research and reviews the con-
clusions reached regarding the estimation of the parameters of interest for both a
single population and multipopulation model in simulation experiments. In carrying

out this research, many avenues for future research were uncovered.

This research consisted of two major directions: (a) developing variance reduction
techniques combining antithetic variates and control variates for a single population
model, and (b) developing variance reduction techniques utilizing all correlation
methods for a designed experiment of a multipopulation model. Part (a) was treated
in Chapters 3 and 4 and part (b) was treated in Chapters 5 and 6. A brief review and
summary of this research is given in Section 7.1. Future research is discussed in

Section 7.2.

7.1 Overview and Summary of research

Chapter 3 developed three variance reduction techniques for improving the esti-
mation of the mean response of interest in a single population model. The efficiency
of each developed method in reducing the variance of the estimator is dependent on
the trade-off effect of the correlations between the paired responses, and between the
response and control variates. Our simulation studies implemented in Chapter 4 in-

dicate that Combined Method | generally yields better results than the other com-
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bined methods as well as the methods of antithetic variates and control variates. In
combining antithetic variates and control variates in a simulation run, we consider
that a strategy using independent streams for driving the control variates would be
better than antithetic streams for driving the control variates except for the case that
synchronization of random number streams is easily achieved in the model. For a
complex model where an effective set of control variates is small, it is expected that
Combined Method | (using independent streams for driving the control variates and
antithetic streams for the non-control variate stochastic model components) is better
than the other methods designed to reduce the variance of the estimator in a single

population model. We expect this resuit may be useful in the design of a large-scale

simulation.

Chapter 5 developed three variance reduction techniques in one simulation ex-
periment whose purpose is to estimate the parameters of a first-order linear model.
First, we extended Combined Method | to the multipopulation model with independ-
ent simulation runs across the design points. Second, we extended Combined
Method | to the multipopulation model in conjunction with the Schruben-Margolin
strategy. This method focuses on reducing the variance of the response at each de-
sign point, and additionally taking advantage of the effect of the Schruben-Margolin
strategy across the design points. Under certain conditions, this method is shown to
be better than the Schruben-Margolin method in the estimation of the unknown model
coefficients. Third, we provided a new approach which utilizes the control variates
obtained during the course of the simulation run under the Schruben-Margolin
method. The performance of this method is shown to be similar in estimating the
main (interaction) effects of the factor variables, and to be superior to the Schruben-

Margolin method in estimating the overall mean response in the hospital simulation
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experiment. For the general case, if the selected control variates are highly corre-
lated with the response at each design point, and the loss factor is small, Extended
Schruben-Margolin Method may vyield better results than the Schruben-Margolin

method as illustrated in this example.

7.2 Future Research

The directions for future research stemming from the material studied in this dis-
sertation pertain to how to combine correlation methods for improving the estimation
of the system parameters in designed simulation experiments. We outline some of

these ideas below.

Application of Combined Method | to a large-scale simulation experiment presents
a future direction of developing a procedure to determine which random number
streams should be used for control variates and which ones should be used for in-
ducing correlations via antithetic streams to maximize the efficiency of this method.
Also, another direction is to develop a statistical procedure for obtaining the estima-
tor from the simulation output of each replication rather than regression analysis

based on the paired independent simulation outputs.

Perhaps a significant direction for future research is to develop statistical vali-
dation procedures for the use of Extended Combined Method | and Extended
Schruben-Margolin Method in simulation experiments for the multipopulation param-
eter estimation. The validation procedures may consist of two stages: validation for
the multivariate normality assumptions on the responses and control variates across
the design points and validation for the assumed covariance structure of the con-

trolled responses across the design points (see Tew and Wilson (1990}).
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Application of Extended Schruben-Margolin Method suggests a future research for
identifying the effect of including control variates to the estimation of the overall mean
response of the model. Generally, the correlation within a pair of random variables
cannot be represented as a function of the correlations of each of these two variables
with a third random variable. However, in the context of the control variate method,
the response and control variates are assumed to be the multivariate normally dis-
tributed, and the correlation between the response and control variate obtained at the
same design point is greater (with respect to the absolute value) than that between
the response at a design point and control variate at different design point. Also, this
method uses antithetic variates for design points in different blocks. That is, the
control variates from two different blocks are negatively correlated. Under this situ-
ation, the relationship among the correlations between, respectively, the response
and control variates from the same block, the response and control variates from
different blocks, and the control variates from different blocks may show certain re-
lationship. Our simulation results strongly indicate a multiplication form of the re-
lationship among the correlations of the variables considered above for the single

control variate case.

Also, two other additional directions for future research are extensions of variance
reduction techniques developed in Chapter 5 to either a second-order linear simu-

lation model or multipopulation multivariate response simulation experiments.
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Appendix A. Derivation of Equations

Proof of Equation (5.12):

From Theorem 2.4.3 in Anderson (1984), the marginal distribution of ¢; in (5.6} is

given by

— 1
c; ~ Ny(O, —;_;cm)- (A1)

Since ¢, (i=1, 2, ..., m) are independent by Assumption 5 in Section 5.1, we have

1

C ~ Ny, 0.

e Im) (A2)
and

CPC ~ W(m—p—1, zo) (A3)

A
2h
(see p. 19). Since —C-(2:¢/2h)“/2 ~ Nn O, I, |,) from (A2), we have

E[C(Z/2n)'C'] =sl,, (A4)

(see Theorem 17.6a in Arnold (1981)). Also from Theorem 17.15d in Arnold (1981),

2h

p_s_zzg‘ if m>p—s—2. (A5)

<pEy—1
E[C'PC) "] = ——
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Discussion on matrix P in Chapter 2 (see p. 13) indicates that P is a symmetric and
idempotent matrix with rank (m —p —1). Thus, P is a positive semi-definite matrix
(see Theorem 1.7.1 in Graybill (1974)). In such a case, CX and C'PC are independent

since PX = 0 (see Theorem 4.5.1 in Graybill (1974)). Therefore, by (A5),
E[X'C(C’'PC)~"'C’'X] = E[X'CE[(C'PC)”'1C'X]

1 '~ -1~
=5 57 EIXC(E/2n)TTX], (A8)

which further reduces to

EXCEPT)TX] = L— X(sl )X =— I XX (A7)

by (A4). Therefore, taking the operation of expectation on (5.11) finally yields

2

Var(Bo) = ELVar(fo | €)1 = 5 (19, = RENX'X) [T + oSy (XXX

2

ay 2 m~—p—2
=25 1y = Ry

e X0 (A8)

which is equivalent to (5.12).
Proof of Equation (5.31):

Note that 1, is the first column of X and PX = 0. Therefore, we have
P1,=1,P =0 (A9)
since PX = X'P = 0. Developing the second term in (5.29) gives
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S(X'X)~"'X[1,,, — S(C'PC)""C'PI1,,1" [1,, — PC(C'PC)~"C IX(X'X)™"
=6(X'X)”'x'11,1',, — C(C'PC)""C'P1,1',, — 1,1 ,PC(C'PC)”'C’
+c(c'pC)"T'P1,,1',PCCPC) T IX(X'X)”"
= 5(X'X) "X, X(X'X) ™! (A10)
by (A9). Since X is orthogonal, X'1,=(m, 0, ..., 0)’, which implies
X110 X =m’G, 4 1, (A11)
where G, ., is as defined in (5.14). Thus we have
XXX A XXX =m T m%6,, ,mT =6, .. (A12)
Substitution (A12) into (A10) finally yields (5.31).

Proof of Equation (5.33):

From equations (5.22) and (5.23), the marginal distribution of C in (5.22) is same

as given in (A2). Therefore, using the same procedures in (A3)-(A7), we find

E[X'C(C’'PC)"'C'X] = —— = —5 X'X. (A13)

Therefare, taking the operation of expectation on (5.32) yields

Var(fig) = ELVar(fg | ©)] = yXX)'[1 + o5 tsg (XX)XX) '] + 66,
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-/(m—p—s

2 -
— )X'X) + 66, 4 1, (A14)

which is equivalent to (5.33).
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MAI

CAL

[zl s NeNesNeNs NoNy

WRI

[z NeNsNsNeNeNoNoNe N NeNeNe]

1

c

N PROGRAM
L SLAM PROGRAM
SUBROUTINE EVENT(I)

INCLUDE (SLMSCOM1)}
GO TO (1),I

Appendix B-1

THIS IS THE SLAM II NETWEORK CODE FOR THE CLOSED
MACHINE-REPAIR NETWORK GIVEN BY WILSON AND PRITSKER (1984)

TE THE RESPONSES AND CONTROL VARIATES:

Y1= TIME IN SYSTEM OF REGULAR WNIT

Y2= UTILIZATION OF STATION 1
Y3= UTILIZATION OF STATION 2
Ya4= UTILIZATION OF STATION 3
Y5= UTILIZATION OF STATION 4
Cl= STANDARD CONTROL VARIATE
C2= STANDARD CONTROL VARIATE
C3= STANDARD CONTROL VARIATE
C4= STANDARD CONTROL VARIATE

Y1=XX(14)/XX(13)
¥2=XX(9)/950.
Y¥3=XX(10)/950.
Y4=XX(11)/950.
Y5=XX(12)/950.
Cl=XX(2)/XX(1)%x%,5/10.
C2=XX( 4 )/XX(3)%%.5/1.5
C3=XX(6)/XX(5)%%.5/1.0
Caz=XX(8)/XX(7)%% .5/.5

AT STATION 1
AT STATION 2
AT STATION 3
AT STATION 4 (QUEUE &)

WRITE(6,2) Y1,Y2,Y3,Y4,Y5,C1,C2,C3,C4

FORMAT(9F7.3)
RETURN
END

C SLAM II CODE

c

GEN,KWO,PR0,6/21/1990,20,N0,N0O, ,NO,NO3

LIM,%4

»5,1003

INTLC,XX(1)=0,XX(2)=0.0,XX(3)=0,XX(4)=0.0,
XX(5)=0,XX(6)=0.0,XX(7)=0,XX(8)=0.03
INTLC,XX(9)=0,XX(10)=0.0,XX(11)=0,XX(12)=0.0,

NETHWO|
3

XX(13)=0.0,XX(14)=0.03
RK 3

3 THIS IS THE SLAM II NETWORK CODE FOR THE COLESD MACHINE
3 REPAIR PROBLEM OF SIMULATION GIVEN BY WILSON AND PRITSKER(1984).
H

OPERA

Q1

Gl1

Gl2

RESOURCE/MACH(5),1}

RESOURCE/MAREP(1),23
RESOURCE/MIREP(1),3}
RESOURCE/MTEST(1),43

ASSIGN,ATRIB(1)=EXPON(10.0,1)3
ACT,,,Ql}3

AWAIT(1),MACH/1}

GOON,13

ACT, ,TNOW+ATR(1).GT.1000.,G11}
ACT,,,G12}
ASSIGN,XX(9)=XX(9)+1000.-TNOW};
ACT,,,G12;

GOON,13
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G13

Gl4

G15

RBRA

MAJOR

Q2

G621

622

623

G24

625

MINOR

Q3

G31

G32

633

G34

G35

Appendix B. SLAM |l Code and FORTRAN Program for Computing Estimator of Parameters

ACT/1,ATR(1)3

FREE ,MACH/1}3

GOON,13

ACT, ,TNOW.LE.50,RBRA}
ACT,»,G133
ASSIGN,ATR(5)=TNONW};

GOON, 13

ACT, , TNOW-50. .LE.ATR(1),G143
ACT,,,G15;
ASSIGN,XX(9)=XX(9)+TNOW-50.}
ACT,,,RBRA}

ASSIGN, XX(1)=XX(1)+l,

XKX(2)=XX(2)+ATRIB(1)-10.03

ASSIGN, XX(9)=XX(9)+ATR(1)}
ACT,,,RBRA}
GOON,13

ACT,,UNFRM(0.0,1.0,2).LE.0.25,MAJOR}

ACT,, ,MINGOR}

ASSIGN,ATRIB(2)=EXPON(1.5,3)3

ACT,,,Q23

AWAIT(2),MAREP(1),1}

GOON, 13

ACT, ,TNOW+ATR(2).GT.1000.,G213

ACT,,,G223

ASSIGN,XX(10)=XX(10)+1000-TNOW}

ACT,,,G223

GOON, 13

ACT/2, ATRIB(2)}

FREE ,MAREP/1}

GOON, 13

ACT, ,TNOW.LE.50.,TEST}

ACT,,,G233

GOON, 13

ACT, ,TNOW-50. .LE.ATR(2),G24}

ACT,,,G25;3

ASSIGN,XX(10)=XX(10)+TNOKW-50. 3

ACT,, ;TEST}

ASSIGN,XX(3)=XX(3)+1,
XX(4)=XX(4)+ATRIB(2)-1.5,
XX(10)=XX(10)+ATR(2)}

ACT,,,TESTS

ASSIGN,ATRIB(3)=EXPON(1.0,4)}

ACT,,,Q33

AWAIT(3),MIREP/1}

GOON,13

ACT, , TNOW+ATR(3).6GT.1000. ,G31}

ACT,, G323

ASSIGN,XX{(11)=XX(11)+1000-TNOW}3

ACT,,,G32)

GOON,13

ACT/2, ATRIB(3)s

FREE ,MIREP/13

GOON, 13

ACT,,TNOW.LE.50.,TEST}

ACT,,,633)

GOON,13

ACT, ,TNOW-50. .LE.ATR(3),G34}3

ACT,,,G35)

ASSIGN,XX(11)=XX(11)+TNOW-50.}

ACT,,,TEST}

ASSIGN,XX(5)=XX(5)+1,
XX(6)=XX(6)+ATRIB(3)-1.0,
XX(11)1=XX(11)+ATR(3)}

ACT,,,TESTS
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TEST ASSIGN,ATRIB(4)=EXPON(0.5,5))

G

G42

G45

TBRA

G46

SEEDS,1928027(1),6352891(2),3389027(3),2889047(4),6940321(5),4898215(6)3

ACT, 5,43

AWAIT(4),MTEST/1}

GOON, 13

ACT, ,TNOW+ATR(4).GT.1000. ,G413

ACT,,,6423

ASSIGN,XX{12)=XX(12)+1000.~-TNOW;

ACT,,,G423

GOON, 13

ACT/4, ATRIB(4)}3

FREE ,MTEST/1}

GOON,13

ACT,,TNOW.LE.50.,TBRA}

ACT, G433

GOON,13

ACT,,TNOW-50..LE.ATR(4),G%4}

ACT,,,G453

ASSIGN,XX(12)=XX(12)+TNOW-50.

ACT,,,TBRAS

ASSIGN,XX(7)=XX(7)+1,
XX(8)=XX(8)+ATRIB(4)-0.5,
XX(12)=XX(12)+ATR(4 )}

ACT; Y »TBRA3

GOON,13

ACT, ,UNFRM(0.0, 1.0,6).LE.0.9,G463

ACT,’)MINOR)

GOON,13
ACT,,TNOW.LT.50. ,0PERA3
ACT,,,G473

ASSIGN,XX(13)=XX(13)+1,XX(14)=XX(14)+TNON-ATR(5)}3

COLCT,INT(5),REG TIME}3
ACT,, OPERA}

CREATE,,1000,,1,13
ACT,0.03
EVENT,1,1}
TERMINATE 3

END3

INIT,0,10003
MONTR,CLEAR,503

ENTRY/ 1,10.0/ 1,5.0 / 1,12.0/ 1,11.0 / 1,9.0 / 1,7.0/1,14.0}

SIMULATE}

FINS
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Appendix B-2
c
C THIS IS THE SLAM II NETWORK CODE FOR THE MIXED

C MACINE-REPAIR NETWORK GIVEN BY WILSON AND PRITSKER (1984)
o
C MAIN PROGRAM
Cc
C CALL SLAM PROGRAM
c
SUBROUTINE EVENT(I)
INCLUDE (SLMSCOM1)
GO TO (11),I
C
C WRITE THE RESPONSES AND CONTROL VARIATES:
c
C Y1= TIME IN SYSTEM OF REGULAR UNIT
c Y2= TIME IN SYSTEM OF PRIORITY UNIT
C ¥3= UTILIZATION OF STATION 1
c Y4= UTILIZATION OF STATION 2
C Y5= UTILIZATION OF STATION 3
c Yé= UTILIZATION OF STATION &
c Cl= STANDARD CONTROL VARIATE AT STATION 1
c C2= STANDARD CONTROL VARIATE AT STATION 2
c C3= STANDARD CONTROL VARIATE AT STATION 3
c C4= STANDARD CONTROL VARIATE AT STATION 4
o

1 Y1=XX(14)/XX(13)
Y2=XX(16)/XX(15)
¥3=XX(9)/950.
¥4=XX(10}/950.
Y5=XX(111/950.
Y6=XX(12)/950.
Cl=XX(2)/XX(1)%%.5/10.
C2=XX(4)/XX(3)%%,5/1.5
C3=XX(6)/XX(5)%%.5/1.0
Ca=XX(8)/XX(7)%*.5/.5
WRITE(6,2) Y1,Y2,Y3,Y4,Y5,Y6,C1,C2,C3,C4
2 FORMAT(10F7.3)
RETURN
END
c
C SLAM PROGRAM
C
GEN,KWO,PR0O,6/21/1990,50,N0,NO, ,NO,NO3
LIM,4,16,100;3
PRIORITY/2,LVF(2)/3,LVF(2)/4,LVF(2)}
INTLC,XX(1)=0,XX(2)=0.0,XX(3)=0,XX(4)=0.0,
XX(5)=0,XX(6)=0.0,XX(7)=0,XX(8)=0.03
INTLC,XX(9)=0,XX(10)=0.0,XX(11)=0,XX(12)=0.0,
XX(13)=0.0,XX(14)=0.0,XX(15)=0.0,XX(16)=0.03
NETHWORK 3
3
3 THIS IS THE SLAM II NETWORK CODE FOR THE COLESD MACHINE
3 REPAIR PROBLEM OF SIMULATION GIVEN BY WILSON AND PRITSKER(1984).
5

RESOURCE/MACH(5),13 -
RESOURCE/MAREP(1),23
RESOURCE/MIREP(1),3}
RESOURCE/MTEST(1),%3

CREATE ,EXPON(8.0,7),0.0,15,,13
ASSIGN,ATR(2)=1}
ACT,, ;MAJOR}

OPERA ASSIGN,ATRIB(1)=EXPON(10.0,1),ATR(2)=2}
ACT,,,Ql3
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l

G1ll

Gl2

G13

Gl4%
G15

RBRA

MAJOR

Q2

G621
G22

623

G24
G25

MINOR

Q3

G31

632

G633

G34
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AWAIT(1),MACH/1}

GOON, 13

ACT, ,TNOW+ATR(1).GT.1000.,G11}

ACT,,,G123

ASSIGN,XX(9)=XX(9)+1000.-TNOW}

ACT,,,G123

GOON>»13

ACT/1,ATR(1)}

FREE ,MACH/1}

GOON, 13

ACT, , TNOW.LE.50,RBRA}S

ACT,,,G13}3

ASSIGN,ATR(5)=TNOW;

GOON, 13

ACT, ,TNOW-50. .LE.ATR(1),G14}

ACT,,,G153

ASSIGN,XX(9)=XX(9)+TNOH-50.

ACT,,,RBRA}S

ASSIGN, XX(1)=XX(1)+1,
XX(2)=XX(2)+ATRIB(1)-10.03

ASSIGN, XX(9)=XX(9)+ATR(1}}

ACT,,,RBRA}

GOON, 13

ACT, ,UNFRM(0.0,1.0,2).LE.0.25,MAJOR}

ACT,, MINOR}

ASSIGN,ATRIB(14)=EXPON(1.5,3)3

ACT,,,Q23

AWAIT(2),MAREP(1),1}

GOON, 13

ACT, ,TNOW+ATR(14).GT.1000. ,G21}

ACT,,,6G223

ASSIGN,XX(10)=XX(10)+1000-TNOW}

ACT,,,6223

GOON, 13

ACT/2, ATRIB(14)3

FREE ,MAREP/1}

GOON, 13

ACT, ,TNOW.LE.50.,TEST}

ACT,,,G23)

GOON,13

ACT, ,TNOW-50..LE.ATR(14),624}

ACT,,,G253

ASSIGN,XX(10)=XX(10)+TNOK-50. 3

ACT,,,TEST3

ASSIGN,XX(3)=XX(3)+1,
XX(4)=XX(4)+ATRIB(14)-1.5,
XX(10)=XX(10)+ATR(16)}

ACT,,,TEST;

ASSIGN,ATRIB(3)=EXPON(1.0,4)}

ACT»,,Q33

AWAIT(3),MIREP/1}

GOON, 13

ACT, TNOW+ATR(3).6GT.1000. ,G31}

ACT,,,G323

ASSIGN,XX(11)=XX(11)+1000-TNOW}s

ACT,,,G323

GOON, 1)

ACT/2, ATRIB(3);

FREE ,MIREP/1}

GOON,13

ACT, ,TNOW.LE.50.,TEST3

ACT,,,G33y

GOON,13

ACT, ;TNOW-50. .LE.ATR(3),G34}

ACT,,,G353

ASSIGN,XX(11)=XX(11)+TNOW-50.}
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G35 ASSIGN,XX(5)=XX(5)+1,
XX(6)=XX(6)+ATRIB(3)-1.0,
XX(11)=XX(11)+ATR(3)}3

ACT,,,TEST}

TEST ASSIGN,ATRIB(4)=EXPON(0.5,5)3
ACT»»»Q%s

WG AWAIT(4),MTEST/13
GOON, 13
ACT, ,TNOW+ATR(4).GT.1000.,G41}
ACT,,,G423

G4l ASSIGN,XX(12)=XX(12)+1000.-TNOW}
ACT,,,G423

G642 GOON, 13
ACT/4, ATRIB(4)}}
FREE ,MTEST/13
GOON, 13
ACT, ,TNOW.LE.50.,PRI}
ACT,,,G433

G43  GOON,13
ACT, ,TNOW-50..LE.ATR(4),G44}3
ACT,,,G453

G44  ASSIGN,XX(12)=XX(12)+TNOW-50.1
ACT,,,PRIs

G45  ASSIGN,XX(7)=XX(7)+1,
XX(8)=XX(8)+ATRIB(4)-0.5,
XX(12)=XX(12)+ATR(G )}

ACT,,,PRI}

PRI GOON,13
ACT,,ATR(2).EQ.1,PTBRA}
ACT,,,RTBRAS

RTBRA GOON,13
ACT, ,UNFRM(0.0, 1.0,6).LE.0.9,G463
ACT,, ,MINOR}

G46 GOON, 13
ACT,,TNOW.LT.50. ,0PERA};
ACT,,,G47;3

Ga47 ASSIGN,XX(13)=XX(13)41,XX(14)=XX(14)+TNOW-ATR(5)3
COLCT,INT(5),REG TIME}
ACT,,,0PERA}

PTBRA GOON,13
ACT, ,UNFRM(0.0, 1.0,8)}.LE.0.9,648;
ACT,, ,MINOR}

G48 GOON,13
ACT, ,TNOW.LT.50.,TRM3
ACT,,,G493

G49 ASSIGN,XX(15)=XX(15)+1,XX(16)=XX(16 )+TNOH-ATR(15)}
COLCT,INT(15),PRI.TIME}

TRM TERMINATE 3

3
CREATE,»,1000,,1,1}
ACT»0.03
EVENT»>1,13
TERMINATE 3
END3

SEEDS,1723641(1),30293591(2),6029157(3),2039383(4),

3029387(5),5927611(6),4958675(7),9483467(8)3

INIT,0,10003

MONTR,CLEAR,503

ENTRY/ 1,10.0/ 1,5.0 / 1,12.0/ 1,11.0 / 1,9.0 / 1,7.0/1,14.0}

SIMULATES

FIN3
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Appendix B-3

g THIS IS THE SLAM II NETWORK CODE FOR THE OPEN
C MACHINE-REPAIR NETHWORK

g MAIN PROGRAM

g CALL SLAM PROGRAM

‘ SUBROUTINE EVENT(I)

INCLUDE (SLMSCOM1)
GO TO (1),I

WRITE THE RESPONSES AND CONTROL VARIATES:

Y1l= TIME IN SYSTEM OF PRIORITY UNIT

¥2= UTILIZATION OF STATION 1

¥3= UTILIZATION OF STATION 2

Y4= UTILIZATION OF STATION 3

Cl= STANDARD CONTROL VARIATE AT STATION 1
C2= STANDARD CONTROL VARIATE AT STATION 2
C3= STANDARD CONTROL VARIATE AT STATION 3

OO0

1 Y1=XX(16)/XX(15)

Y2=XX(10)/950.

¥3=XX(11)/950.

Y4=XX(12)/950.

C1=XX(4)/XX(3)%%,5/1.5

C23XX(6)/7XX(5)%%,5/1.0

C3=XX(8)/XX(7)%%,5/.5

WRITE(6,2) Y1,Y2,Y3,Y4,C1,C2,C3

2 FORMAT(10F7.3)

RETURN

END
c
C SLAM PROGRAM
o}
GEN,KWHO,PR0,6/21/1990,11,NO,NO, ,NO,NO3
LIM,%4,16,1003
INTLC,XX(1)=0,XX(2}=0.0,XX(3)=0,XX(4)=0.0,

XX(5)=0,XX(6)=0.0,XX(7)=0,XX(8)=0.03
INTLC,XX(9)=0,XX(10)=0.0,XX(11)=0,XX(12)=0.0,
XX(13)=0,0,XX(14)=0.0,XX(15)=0.0,XX(16)=0.0}

NETWORK 3
)
3 THIS IS THE SLAM II NETWORK CODE FOR THE OPEN MACHINE
3 REPAIR PROBLEM OF SIMULATION (VARIATION Of WILSON AND PRITSKER(1984))
)

RESOURCE/MAREP(1),23
RESOURCE/MIREP(1),3}
RESOURCE/MTEST(1),43

CREATE ,EXPON(2.0,1),0.0,15,,13 3 ASSIGN THE RANDOM SEED FOR STOCHASTIC COMPONENTS
ASSIGN,ATRIB(2)=EXPON(1.5,2)3 SERVICE TIME FOR MAJOR
ASSIGN,ATRIB(3)=EXPON(1.0,3)3 SERVICE TIME FOR MINOR
ASSIGN,ATRIB(4)=EXPON(O0.5,4)3 SERVICE TIME FOR TEST
ASSIGN,ATRIB(5)=UNFRM(0.0,1.0,5)3 PROBABILITY FOR BRANCH
ACT,,,Q23 3 Q2 AWHAIT(2),MAREP(1),1)

GOON,13

ACT, , TNOX+ATR(14).6GT7.1000.,6G21)

ACT,,,G223 G21 ASSIGN,XX(10)=XX{10)+1000-TNOW}
ACT,,,G223 G22 GOON, 13

ACT/2, ATRIB(2)}

FREE ,MAREP/13

GOON, 13

ACT, ,TNOW.LE.50.,TEST}
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TEST

PTBRA

SEEDS,5098763(1),2546217(2),2355489(3),8103277(4),3486731(5);
INIT,

ACT,,,G233 G623 GOON, 13
ACT, ,TNOW-50..LE.ATR(2),624}3

ACT»»,6G253 G24  ASSIGN,XX(10)=XX{(10)+TNOW-50.}

ACT,,,TEST3y G25 ASSIGN,XX(3)=XX(3)+1,
XX(4)=XX(4)+ATR(2)-1.5,
XX(10)=XX(10)+ATR(2)}

ACT,,,TEST3; MINOR AWAIT(3),MIREP/1}

GOON, 13

ACT, ,TNOW+ATR(3).GT.1000.,G31}3

ACT,,,6323 G31  ASSIGN,XX(11)=XX(11)+1000-TNOW}

ACT,,,G32; 632 GOON,13
ACT/3, ATRIB(3)}

FREE ,MIREP/1}

GOON,13
ACT,,TNOW.LE.50.,TEST}
ACT,,,G333 G33 GOON,1s
ACT,,TNOW-50..LE.ATR(3),G34}

ACT,,,G355 634  ASSIGN,XX(11)=XX(11)+TNOW-50.3

ACT,,,TEST; G35 ASSIGN,XX(5)=XX(5)+1,
XX(6)=XX(6)+ATRIB(3)-1.0,
XX(11)=XX(11)+ATR(3 )}

ACT,,,TEST}

ARAIT(4),MTEST/13
GOON,13
ACT, ,TNOW+ATR(4).GT.1000.,G41;

ACT,,,G423 G4l ASSIGN,XX(12)=XX(12)+1000.-TNOKW}

ACT,,,G423 G42 GOON>»13
ACT/4, ATRIB(4)}

FREE ,MTEST/13

GOON,13

ACT, ,TNOW.LE.50. ,PTBRA}
ACT,,,G433 G43 GOON,13
ACT, ,TNOW-50. .LE.ATR(4),G44}

ACT,,,6453 644  ASSIGN,XX(12)=XX(12)+TNOW-50.3

ACT,,,PTBRA; G45 ASSIGN,XX(7)=XX(7)+1,
XX(8)=XX(8)+ATRIB(4)-0.5,
XX(12)=XX(12)+ATR(4)}

ACT,,,PTBRA}

GOON, 13
ACT,,ATR(5).LE.0.9,G48;3
ACT,,,MINOR; G48 GOON,1;
ACT, ,TNOW.LT.50.,TRM;

ACT,,,6493 G49 ASSIGN,XX(15)=XX(15)+1,XX(16)=XX(16)+TNOW-ATR(15)3

COLCT,INT(15),PRI.TIMEs TRM TERMINATE; 3
CREATE,»1000,,1,13

ACT,0.03

EVENT,1,1)

TERMINATE

END3

0,10003

MONTR,CLEAR,503
SIMULATE}S

FIN3
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Appendix B-4

THIS IS THE SLAM II NETWORK CODE FOR THE PATIENT PATHS
IN HOSPITAL UNIT SIMULATION GIVEN BY SCHRUBEN AND MARGOLIN(1978)
AND ALSO BY HUSSEY, MYERS, AND HOUCK (1987)

MAIN PROGRAM

CALL SLAM II PROGRAM

SUBROUTINE EVENT(I)
INCLUDE (SLMSCOM1)
GO TO (1),I

1 C1=XX(4)/((XX(5)/70.303)%¢0.5)

HRITE(6,2) XX(1),C1

2 FORMAT(2F9.4)

RETURN
END

c
C SLAM PROGRAM

c

GEN,KWO,0R,9/20/1990,100,N0,NO, ;NO,NO}3
LIMITS,3,15,1003
INTLC,XX(1)=0,XX(2)=0,XX(3)=0,XX(4)=0,XX(5)=0}
NETWORK 3

H
3

ICU

ccu

CREAT THE ARRIVING PATIENTS TO THE SYSTEM

CREATE ,EXPON( .303,1),0.0,13,,1;

ASSIGN, ATR(9)=TNOW,XX(2)=TNOW-XX(3)=~.303,XX(3)=TNOW}
GOON,13

ACT,,TNOW .LT. 300,GC1;

ACT,,,GC23 GC2 ASSIGN,XX(4)=XX(4)+XX(2),XX(5)=XX(5)+1}

ASSIGN ALL OF THE SEVICE TIMES TO THE ENTITY AS WELL AS THE
PATH PROBABILITIES

GCl ASSIGN,ATRIB(1)=UNFRM(0.0,1.0,2),

ATRIB(2)=RLOGN(3.4,3.5,3),
ATRIB(3)=RLOGN(3.8,1.6,%),
ATRIB(4)=UNFRM(0.0,1.0,5),
ATRIB(5)=UNFRM(0.0,1.0,6)}

ACT,0.3

ASSIGN,ATRIB(6)=RLOGN(15.0,7.0,7),
ATRIB(7)=RLOGN(17.0,3.0,8),
ATRIB(8)=0.0,
ATRIB(11)=15.0,
ATRIB(12)=17.0}%

ACT,0.3

GO TO EITHER INTENSIVE CARE UNIT OR CORONARY UNIT

GOON,13
ACT,0.0,ATRIB(1) .LE. .75,ICUj;
ACT»,0.0,,CCU}y

INTENSIVE CARE UNIT
QUEUE(1),0,0,BALK(FAIL)S

ACT(15)/1,ATRI(2)}

GOON,13

ACT,0.0,ATRIB(4) .LE. .27,T1s

ACT,0.03

ASSIGN,ATRIB(8)=ATRIB(6),ATR(10)=ATR(11)}

ACT,0.0,,INTRCS

CORONARY CARE UNIT
QUEUE(2),0,0,BALK(FAIL)S
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ACT(6)/2,ATRIB(3);

GOON, 1%

ACT,0.0,ATRIB(5) .LE. .20,T1s

ACT,0.03
ASSIGN,ATRIB(8)=ATRIB(7),ATR(10)=ATR(12)}
ACT,0.0,,,INTRC}

3

3 INTERMEDIATE CARE UNIT

3 INTRC QUEUE(3),0,0,BALK(FAIL)}S
ACT(17)/3,ATRIB(8)3
ACT,,,T1s

TERMINATE PATIENTS WHO DID NOT BALK

COUNT THE NUMBER OF PATIENTS WHO FAILED TO GAIN ADMISSION
IF NOT WITHIN THE FIRST 10 MONTHS OF OPERATION
FAIL GOON,13
ACT,0.0,TNOW .LE. 300,T2s
ACT,0.03
ASSIGN, XX(1) = XX(1)+1.03
ACT,0.03 T2 TERMINATE

3
3
3
Tl  TERMINATE}S
3
3
3
3

3 HWRITE THE DESIRED OUTPUT AT THE END OF THE SIMULATION RUN

CREATE, ,1500,,1,13
ACT,0.03

ASSIGN,XX(1) = XX(1)/640.;
ACT,0.03

EVENT,1,13

TERMINATE

ENDNETHWORK 3
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Appendix B-5

THIS IS THE SLAM II NETWORK CODE FOR THE PORT
OPERATIONS MODEL GIVEN IN PRITSKER (1986)

MAIN PROGRAM

CALL SLAM PROGRAM

[z Xs N e N NeNsNeKe]

SUBROUTINE EVENT(I)
INCLUDE (SLMSCOM1)
GO TO (1),1

WRITE THE RESPONSES AND CONTROL VARIATES:

Y1= IN-PORT TIME OF TANKER 1
Y2= IN-PORT TIME OF TANKER 2
Y3= IN-PORT TIME OF TANKER 3
Y4= IN-PORT TIME OF TANKER ON CONTRACT

s NsNeNoeNoNeNesNeNo NN NN Nel

1 Y1=XX(2)/XX(1)
Y2=XX(4}/XX(3)
Y3=XX(6)/XX(5)
Y4=XX(8)/XX(7)
C1=XX(101/XX(9)%%,5/SQRT(4./3.)
C2=XX(12)/XX(11 )%x,5/SQRT(3.)
C3=XX(14)/XX(13 )%% ,5/SQRT(16./3.)
CG=XX(16)/XX(15)%% ,5/SQRT(3.)
C5=XX(18)/XX(17 )% ,5/SQRT(192.)
C6=XX(24)/XX(23)%%,5/4,04
WRITE(6,2) Y1,Y2,Y3,Y4,C1,C2,C3,C4,C5,C6
2 FORMAT(10F7.3)
RETURN
END
[
C SLAM PROGRAM
c
GEN,KHO,PR0O,6/21/1990,1,N0O,NO, ,NO,NO3
LIM,3,10,303
INTLC,XX(1)=0.0,XX(2)=0.0,XX(3)=0.0,XX(4)=0.0,
XX(5)=0.0,XX(61=0.0,XX(7)=0.0,XX(8)=0.03
INTLC,XX(9)=0.0,XX(10)=0.0,XX(11)=0.0,XX(12)=0.0,
XX(13)=0.0,XX(14)=0.0,XX(15)=0.0,XX(16)=0.03
INTLC,XX(17)=0.0,XX(18)=0.0,XX(19)=0.0,XX(20)=0.03
INTLC,XX(21)=0.0,XX(22)=0.0,XX{23)=0.0,XX(24)=0.03
NETHORK 3
RESOURCE/BERTH(3),13
RESOURCE/TUG(1),2,3}
3
3 TANKER ARRIVAL SEGMENT
3
CREATE ,UNFRM(4,,18.,1)3
ASSIGN,XX(22 )=TNOW-XX(21),XX(21 )=TNOW}
GOON, 13
ACT, ,TNOW.LE.1000.,K1}
ACT,,,K23

K2  ASSIGN,XX(24)=XX(24¢)+XX(22)-11.,XX(23)=XX(23)+1}

K1l ASSIGN,ATRIB(4)=UNFRM(0.0,1.0,2)}
ACT,,,G13
Gl GOON,13
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ARV1
ARV2

ARV3

ARV4

3

ACT,,ATR(4).LE.0.25,ARV1})
ACT,,ATR(4).LE.0.80,ARV2}
ACT,, ,ARV3s

ASSIGN,ATR(1)=UNFRM(16.,20.,3),ATR(2)=1,ATR(5)=ATR(1)-18.}3

ACT,,,PORT}

ASSIGN,ATR(1)=UNFRM(21.,27.,4),ATR(2)=2,ATR(5)=ATR(1]-24.3

ACT,,,PORT}

ASSIGN,ATR(1)=UNFRM(32.,40.,5),ATR(2)=3,ATR(5)=ATR(1)-36.3

ACT,,,PORT}
CREATE ,48,0,,53

ASSIGN,ATR(1)=UNFRM(18.,24.,6),ATR(2)=4,ATR(5)=ATR(1)}-21.}

ACT, »»PORT}

3 PORT OPERATION SEGMENT

3
PORT

G3

Dl
D2
D3
D4

Q3

G5

DPT1
DPT2
DPT3

DPT4

Gl0

G612
Gl1
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ASSIGN,ATRIB(3)=TNOW3

AWAIT(1),BERTH/1} WAIT FOR AN AVAILABLE BERTH
AWAIT(2),TUG/1} WAIT FOR AN AVAILABLE TUG
ACT,1s TRAVEL TO BERTH

FREE, TUG/13 RELEASE THE TUG

ACT, ATRIB(1)s TRANSFER THE CARGO

GOON, 13

ACT, ,TNOW.LE.1000.,Q3}s

ACT,,,G3s

GOON,13

ACT, ,ATRIB(2).EQ.1,D1}s

ACT,,ATRIB(2).EQ.2,D2}

ACT, ,ATRIB(2).EQ.3,D3;

ACT,,ATRIB(2).EQ.4,D4}

ASSIGN,XX(9)=XX(9)+1l, XX(10)=XX(10)+ATR(5)}
ACT,»,Q33

ASSIGN,XX(11)=XX(11)+1, XX(12)=XX(12)+ATR(5)}
ACT,,,Q33

ASSIGN,XX(13)=XX(13)+1, XX(14)=XX(14)+ATR(5)}
ACT,,,Q33

ASSIGN,XX(15)=XX(15)+1, XX(16)=XX(16)+ATR(5)}
ACT,,,Q33

AWAIT(3),TUG/1} WAIT FOR AN AVAILABLE TUG
ACT,13 TRAVEL TO SEA

FREE, BERTH/1} RELEASE THE BERTH

FREE, TUG/1ls RELEASE THE TUG

GOON, 13

ACT, ,TNOW.LE.1000. .AND. ATR(2).NE.%,G4}3

ACT,,,G53

GOON, 13

ACT,,ATRIB(2).EQ.1,DPT1s

ACT, ,ATRIB(2).EQ.2,DPT2}3
ACT,,ATRIB(2).EQ.3,DPT3}
ACT,,ATRIB(2).EQ.%,DPT4}

ASSIGN,XX(1)=XX(1)+1, XX{(2)=XX(2)+TNOW-ATR(3)}
TERM}

ASSIGN,XX(3)=XX(3)+1l, XX(4)=XX(4)+TNOWH-ATRI3);
TERM3

ASSIGN,XX(5)=XX(5)+1, XX(6)=XX(6)+TNOWN-ATR(3)}
TERM;

GOON, 13

ACT, ,TNOW.LE.1000., G73

ACT,,,G83

ASSIGN,XX(7)=XX(7)+1, XX(8)=XX(8)+TNOM-ATR(3);
ASSIGN, ATR(6)=UNFRM(216.,26%.,7)}
ACT,ATR(6),,G103

GOON, 13

ACT,,TNOW.LE.1000., G113

ACT,,,G123
ASSIGN,XX(17)=XX{17)+1,XX(18)=XX(18)+ATR( 6)-240}
GOON,13

ACT,,,ARV4)
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3

3 STORM SEGMENT

3
CREATE

STOR GOON,1
ACT,EXPON(48.,8)3
ALTER,TUG/-1,13
ASSIGN,ATR(7)=UNFRM(2.,6.,9)}
ACT,ATR(7)}
ALTER,TUG/+1}
ACT,,»STORM;

CREATE,,21000,,1,1}

ACT,0.03

EVENT,1,13

TERMINATE;

END;
SEEDS,2198725(1),4928427(2),6649875(3),5043987(4),2384619(5),

1098723(6),5039871(7),3894567(8),2854639(9),8272135(10)3

INIT,0,210003
MONTR,CLEAR,10003
SIMULATES
FIN3
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Appendix B-6

[
C THIS PROGRAM IS FOR OBTAINING MEAN AND VARIANCE OF ESTIMATORS:
C (1) SIMPLE ESTIMATOR
C (2) INDEPENDENT CONTROLLED ESTIMATOR
o
C USING THE SIMULATION RESULTS OF FOLLOWING:
C (1) CLOSED MACHINE REPAIR PROBLEM IN WILSON AND PRITSCKER (19841))
C (2) MIXED MACHINE REPAIR PROBLEM IN WILSON AND PRITSCKER (1984)%
C (3) OPEN MACHINE REPAIR PROBLEM;
C (4) HOSPITAL RESOURCE ALLOCATION PROBLEM (A SINGLE DESIGN POINT)
Cc IN SCHRUBEN AND MARGOLIN (1978)3
C (5) PORT OPERATIONS PROBLEM IN PRITSKER (1986).
Cc
C HERE WE HAVE: 200 REPLICATION RUNS}
C NUMBER OF RESPONSES AND CONTROL VARIATES DEPEND
c ON EACH PROBLEM.
c
DOUBLE PRECISION CONT(200,5),C(200,1),Y(200,2),St(7),CBAR(3),
* SSC(1,1),SSY(2,2),SSYC(1,2),CINV(1,1),ALP(1,2),
* SCALP(5),CC(200,2),CONY(200,2),CYBAR(2),VARCY(2),
* SsC1¢(1,1),SSY1(2,2),SSYC1(1,2),RED{2),YBAR(2),
% AVARCY(2),ARED(2),X(200,2),XX(2,2),XXINV(2,2)
INTEGER NR,NS,M,NC,KC(6)
(o
C IMSL SUBROUTINE DLINRG IS FOR THE INVERSE MATIX.
[
EXTERNAL DLINRG
Cc
C INITIAL CONDITION: M=NUMBER OF SIMULATION RUNS
c NR=NUMBER OF RESPONSES
o NC=NUMBER OF CONTROLS COLLECTED FROM SIMULATION
Cc NS=NUMBER OF CONTROLS USED FOR ANALYSIS
c KC(I)=INDEX OF CONTROL VARIATES USED FOR ANALYSIS
Cc
M=200
NR=2
NC=5
[
C READ DATA SET
(o
DO 10 I=1,M
READ (5,20) (Y(I,J},J=1,NR},(CONT(I,J),J=1,NC)
20 FORMAT (F8.3,6F9.3)
10 CONTINUE
[
C CHOOSE THE CONTROL VARIATES FOR ANALYSIS
C
NS=2
KC(1)=1
KC(2)=2
Cc
C ADJUST THE INPUT MATRIX OF CONTOL VARIATES
Cc

DO 1000 I=1,M
DO 1000 J=1,NS
1000 C(I,J)=CONT(I,KC(J))
DO 1100 I=1,M
1100 C(I,1)=C(I,1)/SQRT(0.303)

c
C COMPUTE MEANS OF CONTROL VARIATE AND RESPONSE
c

DO 30 J=1,NS

S(J)=0.0

DO 30 I=1,M

S(J)=StJ)+C(I,J)
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30 CONTINUE
DO 40 I=1,NS
CBAR(I)=S(I)/FLOAT(M)
40 CONTINUE
DO 50 J=1,NR
S(J)=0.0
DO 50 I=1,M
S(J)=S(J)I+Y(I,J)
50 CONTINUE
DO 60 J=1,NR
YBAR(J)=S(J)/FLOAT(M)
60 CONTINUE

COMPUTE COVARIANCE MATRIX OF RESPONSE AND CONTROL VARIATES

(s Mo Nse]

DO 70 J=1,NS
DO 70 K=1,NS
SSC(J,K)=0.0
DO 70 I=1,M
SSC(J,K)=SSC(J,K)+(C(I,J)-CBAR(J))*(C(I,K)-CBAR(K)})
70 CONTINUE
DO 71 J=1,NS
DO 71 K=1,NS
SSC1(J,K)=SSC(J,K)/SQRT{SSC(J,J)%SSC(K,K))
71 CONTINUE

DO 80 J=1,NR

DO 80 K=1,NR

SSY(J,K)=0.0

DO 80 I=1,M

SSY(J,K)=SSY(J,K)+(Y(I,J)-YBAR(J))I*(Y(I,K)-YBAR(K))
80 CONTINUE

DO 81 J=1,NR

DO 81 K=1,NR
81 SSY1(J,K)=SSY(J,K)/SQRT(SSY(J,J)*SSY(K,K))

DO 90 J=1,NS

DO 90 K=1,NR

SSYC(J,K)=0.0

DO 90 I=1,M

SSYC(J,K)=SSYC(J,K}+{Y(I,K)-YBAR(K))*(C{I,J)-CBAR(J))
90 CONTINUE

DO 91 J=1,NS

DO 91 K=1,NR
91 SSYC1(J,K)=SSYC(J,K)/SQRT(SSC(J,J)*SSY(K,K]))

COMPUTE C-INVERSE MATRIX USING IMSL SUBROUTINE DLINRG

o000

CALL DLINRG(NS,SSC,NS,CINV,NS)

COMPUTE THE COEFFICICENT OF CONTROL VARIATES (ESTIMATORS OF ALPHA)

OO0

DO 95 I=1,NsS
DO 95 J=1,NR
ALP(I,J)=0.0
DO 97 K=1,NsS
ALP(I,J)=ALP(I,J)+CINV(I,K)%SSYC(K,J)
97 CONTINUE
95 CONTINUE

COMPUTE THE CONTROLLED ESTIMATOR

OO0

DO 100 J=1,NR

SCALP(J)=0.0

DO 100 I=1,NS

SCALP(J)=SCALP(J)+CBAR(I }*ALP(I,J)
100 CONTINUE

DO 110 J=1,NR
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CYBAR( J)=YBAR(J)-SCALP(J)
110 CONTINUE
c
C COMPUTE THE CONTROLLED RESPONSE
C
DO 140 K=1,NR
DO 130 I=1,M
CC(I,K)=0.0
DO 120 J=1,NS
CCI,K)=CC(I,K)+C(I>J)I*ALP(J,K)
120 CONTINUE
CONY(I,K)=Y(I,K)-CC(I,K)
130 CONTINUE
140 CONTINUE

c
C COMPUTE THE VARIANCE OF CONTROLLED ESTIMATOR
c
DO 160 K=1,NR
VARCY(K)=0.0
DO 160 I=1,M
VARCY(K)=VARCY(K) +(CONY(I,K)-CYBAR(K) )»*x2
160 CONTINUE
DO 170 K=1,NR
170 VARCY(K)=VARCY(K)/FLOAT(M-NS-1)

c
C ADJUST THE VARIANCE USING THE INVERSE MATRIX OF (X'¥X)
c

NX=NS+1

DO 180 I=1,M

180 X(I,1)=1.
DO 185 J=1,NS
DO 185 I=1,M
185 X(I, J+1)=C(I,J)
DO 190 I=1,NX
DO 190 J=1,NX
XX(I,J)=0.0
DO 200 K=1,M
XKX(I,J)=XX(I,J)+X(K,I)%X(K,J)
200 CONTINUE
190 CONTINUE
CALL DLINRG(NX,XXsNX,XXINV,NX)
c
C WRITE THE RESULTS OF ANALYSIS
c
C WRITE THE RAW DATA
c
HRITE (6,400)
400 FORMAT(//10X,'INDEPNDENT REPLICATION CASE: HOSPITAL')
WRITE (6,405)
405 FORMAT(//2X,'0BS',8X,'Y1l’',8X,'Y¥2"',8X,'Y3"',8X,"'Y4",8X,
»* 'C1l',8X,'C2"')
DO 410 I=1,M
WRITE(6,420) I,(Y(I,J),J=1,NR),(CONT(I,J),J=1,NC)
420 FORMAT(15,10F10.4)
410 CONTINUE
WRITE(6,407) (KC(I)>I=1,NS)
407 FORMAT(//2X,'CONTROLS USED FOR ANLYSIS:',4I3)
c
C WRITE MEAN AND VARIANCE
c
HRITE (6,430)
430 FORMAT(///30X,'MEAN AND VARIANCE OF RESPONSES AND CONTROL VARIATES
*')
WRITE (6,%40)
440 FORMAT(//3X,'VARIABLE',5X,'0BS"',4X, 'MEAN"',6X,'VARIANCE')
DO 450 I=1,NR
WRITE(6,455) I, M,YBAR(I),SSY(I,I)/FLOAT(M-1)
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455 FORMAT(9X,'Y',I1,5X,I3,F11.4,F10.6)
450 CONTINUE
DO 460 I=1,NS
WRITE(6,465) KC(I), M,CBAR(I),SSC(I,I)/FLOAT(M-1)
465 FORMAT(9X,'C',I1,5X,I3,F11.4,F10.4)
460 CONTINUE
c
C WRITE THE CORRELATION MATRIX
c

WRITE (6,470)
470 FORMAT(////5%, 'CORRELATION MATRIX OF RESPONSE VARIABLES')
WRITE (6,475)
475 FORMAT(/10X,'Y1',8X,'Y2',8%X,'Y3',8%,'Y4")
DO 480 J=1,NR
WRITE (6,485) J,(SSY1(J,K)},K=1,NR)
485 FORMAT ('Y', Il, 6F10.4)
480 CONTINUE
WRITE (6,490)
490 FORMAT(//5X, 'CORRELATION MATRIX OF CONTROL VARIATES')
WRITE (6,500)
500 FORMAT(/10X,'Cl*',8X,'C2',8X,'C3',8X,'C4',8%,'C5',8X,'C6"')
DO 510 J=1,NS
WRITE (6,505) KC(J),(SSC1{J,K),K=1,NS)
505 FORMAT ('C', I1,6F10.4)
510 CONTINUE
WRITE (6,520)
520 FORMAT(//5X,'CORRELATION MATRIX OF RESPONSE BETWEEN CONTROLS')
WRITE (6,475)
DO 530 J=1,NS
WRITE (6,540) KC(J),(SSYC1(J,K),K=1,NR)
540 FORMAT ('C',I1,6F10.4)
530 CONTINUE
c
C WRITE THE COVARIANCE MATRIX
Cc
WRITE (6,770)
770 FORMAT(////5X, 'COVARIANCE MATRIX OF RESPONSE VARIABLES AND CONTROL
% VARIATES')
WRITE (6,775)
775 FORMAT(/5X,'Y1l',8X,'Y2',8%,'Y3',8X,'Y4',8%X,'Cl',8X,'C2"
*,8%,'C3',8%,'C4"')
DO 780 J=1,NR
WRITE (6,785) J,(SSY(J,K)/FLOAT(M-1),K=1,NR)
% ,(SSYC(K,J)/FLOAT(M-1),K=1,NS)
785 FORMAT ('Y', I1l, 10F10.4)
780 CONTINUE
DO 790 J=1,NS
WRITE (6,795) J,(SSYC(J,K)/FLOAT(M-1),K=1,NR),
% (SSC(J,K)/FLOAT(M-1),K=1,NS)
795 FORMAT ('C', I1, 10F10.4)
790 CONTINUE
Cc
C WRITE THE COEFFICIENTS OF CONTROL VARIATES ( ALP HAT )
o
WRITE (6,550)
550 FORMAT(//5X,'COEFFICIENTS OF CONTROL VARIATES (ALP HAT)')
WRITE (6,475)
DO 560 I=1,NS
WRITE (6,570) KC(I), (ALP(I,J),J=1,NR)
570 FORMAT('C',11,6F10.4)
560 CONTINUE
C
C WRITE THE MEAN AND VARIANCE OF CONTROLLED ESTOMATOR
c
WRITE(6,600)
600 FORMAT(//5X, 'MEAN AND VARIANCE OF CONTROLLED ESTIMATOR')
WRITE(6,610)
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610 FORMAT(/7X,'RESPONSE',2X, 'VARIANCE',2X, 'VARIANCE REDUCTION',2X,

* 'ADJUSTED VARIANCE',2X,'ADJUSTED VAR REDUCTION')

DO 630 I=1,NR

AVARCY(I)=VARCY(I )*%XXINV(1,1)%200.

RED(I)=(1.-VARCY(I}/(SSY(I,I)/FLOAT(M-1)))%100.

ARED(I)=(1.-AVARCY(I)/(SSY(I,I)/FLOAT(M-1)))%100.

WRITE (6,620) I,CYBAR(I),VARCY(I),RED(I),AVARCY(I),ARED(I)
620 FORMAT(3X,'Y', I1 ,F10.4,F10.6,F10.2,'Z"',F10.6,5%X,F10.2,'%")
630 CONTINUE

STOP

END
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Appendix B-7

THIS PROGRAM IS FOR OBTAINING THE MEAN AND VARIANCE OF ESTIMATORS:
(1) ANTITHETIC ESTIMATOR
(2) ANTITHETIC CONTROLLED ESTIMATOR

USING THE SIMULATION RESULTS OF FOLLOWING:

(1) CLOSED MACHINE REPAIR PROBLEM IN WILSON AND PRITSCKER (1984)3

(2) MIXED MACHINE REPAIR PROBLEM IN WILSON AND PRITSCKER (1984)3

(3) OPEN MACHINE REPAIR PROBLEM;

(4) HOSPITAL RESOURCE ALLOCATION PROBLEM (A SINGLE DESIGN POINT)
IN SCHRUBEN AND MARGOLIN (1978)3

(5) PORT OPERATIONS PROBLEM IN PRITSKER (1986).

HERE WE HAVE: 200 REPLICATION RUNS-100 INDPENDENT RUNS AND 100
ANTITHETIC RUNS3
NUMBER OF RESPONSES AND CONTROL VARIATES DEPEND
ON EACH PROBLEM.

[z Nz N s Ne NN Ne N Ns o Ne No e NeNe N Ny K]

DOUBLE PRECISION CONT(200,5),C(200,1),Y(200,2),S(5),
CBAR(5),YBAR(2),
SSC(1,1),S8Y(2,2),SSYC(1,2),CINV(1,1),ALP(1,2),
SCALP(5),CC(200,2),CONY(200,2),CYBAR(2),VARCY(2),
SsC1(1,1),SSY1(2,2),SSYC1(1,2),RED(2),AY(100,2),
AC(100,1),
AVARCY(2),ARED(2),X(200,2),XX(2,2),XXINV(2,2)

INTEGER NR,;NC,NS,KC(6)

X K XK K XK K

IMSL SUBROUTINE DLINRG IS FOR THE INVERSE MATIX.

OO0

EXTERNAL DLINRG

INITIAL CONDITION: M=NUMBER OF SIMULATION RUNS NR=NUMBER OF RESPONSES
NC=NUMBER OF CONTROLS COLLECTED FROM SIMULATION
NS=NUMBER OF CONTROLS USED FOR ANLAYSIS

OO0O00O0

M=200
NR=2
NC=5

READ DATA SET

o000

DO 10 I=1,M

READ (5,20) (Y(I,J)5J=1,NR),(CONT(I,J),J=1,NC)
20 FORMAT (F8.9,6F9.49)
10 CONTINUE

CHOOSE CONTROL VARIATES FOR ANALYSIS

OO0

NS=2
KC(1)=1
KC(2)=3

ADJUST INPUT MATRIX OF CONTROL VARIATES

o000

DO 1000 I=1,M
DO 1000 J=1,NS
1000 C(X,J)=CONT(I,KC(J))
DO 1100 I=1,M
1100 C(I,1)=C(I,1)/SQRT(0.303)
c
C ADJUST THE DATA SET OF INPUT MATRIX: M/2 PAIR OF INDEP. AND ANTI.
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K2=I+100
4 AY(I,J)= (Y(I,J)+Y(K2,J))/2.
DO 3 J=1,NS
3 AC(I,J)=(C(I,J) +C(K2Z,J))/2.
5 CONTINUE
DO 17 I=1,M
DO 15 J=1,NR
15 Y(I,J)=AY(I,J)
DO 16 J=1,NS
16 C(I,J)=AC(I,J)
17 CONTINUE

c
C COMPUTE MEANS OF CONTROL VARIATE AND RESPONSE
c

DO 30 J=1,NS
S(J)=0.0
DO 30 I=1,M
S(J)=StJI)+C(I,J)
30 CONTINUE
DO 40 I=1,NS
CBAR(I)=S(I)/FLOAT(M)
40 CONTINUE
DO 50 J=1,NR
S(J)=0.0
DO 50 I=1,M
S(J)=S(J)+Y(I,J)
50 CONTINUE
DO 60 J=1,NR
YBAR(J)=S(J)/FLOAT(M)
60 CONTINUE

COMPUTE COVARIANCE MATRIX OF RESPONSE AND CONTROL VARIATES

o000

DO 70 J=1,NS

DO 70 K=1,NS

SSC(J,K)=0.0

DO 70 I=1,M

SSC(J,K)=SSC(J,K }+(C(I,J)-CBAR(J))*(C(I,K)-CBAR(K))
70 CONTINUE

DO 71 J=1,NS

DO 71 K=1,NS

SSC1(J,K)=SSC(J,K)/SQRT(SSC(J,J)*SSC(K,K))
71 CONTINUE

DO 80 J=1,NR
DO 80 K=1,NR
SSY(J,K)=0.0
DO 80 I=1,M
SSY(J,K)=SSY(J,K)+(Y(I,J)-YBAR(J))*(Y(I,K)-YBAR(K))
80 CONTINUE
DO 81 J=1,NR
DO 81 K=1,NR
81 SSY1(J,K)=SSY(J,K)/SQRT(SSY(J,J)*SSY(K,K))
DO 90 J=1,NS
DO 90 K=1,NR
SSYC(J,K)=0.0
DO 90 I=1,M
SSYC(J,K)=SSYC(J,K)+{Y(I,K)~-YBAR(K))*(C(I,J)-CBAR(J))
90 CONTINUE
DO 91 J=1,NS
DO 91 K=1,NR
91 SSYC1(J,K)=SSYC{J,K)/SQRT(SSC(J,J)I*SSY(K,K))
C
C COMPUTE C-INVERSE MATRIX
c
CALL DLINRG{NS,SSC,NS,CINV,NS)
C
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C COMPUTE THE COEFFICICENT OF CONTROL VARIATES (ESTIMATORS OF ALPHA)

C
DO 95 I=1,NS
DO 95 J=1,NR
ALP(I,J)=0.0
DO 97 K=1,NS
ALP(I,J)=ALP(I,J)+CINVI(I,K)%SSYC(K,J)
97 CONTINUE
95 CONTINUE
c
C COMPUTE THE CONTROLLED ESTIMATOR
C

DO 100 J=1,NR
SCALP(J)=0.0
DO 100 I=1,NS
SCALP(J)=SCALP(J)+CBAR(I)*ALP(I,J)
100 CONTINUE
DO 110 J=1,NR
CYBAR(J)=YBAR(J}-SCALP(J)}
110 CONTINUE
c
C COMPUTE THE CONTROLLED RESPONSE
c
DO 140 K=1,NR
D0 130 I=1,M
CC(I,K)=0.0
DO 120 J=1,NS
CC(I,K)=CC(I,K)+C(I,J)*ALP(J,K)
120 CONTINUE
CONY(I,K)=Y(I,K)-CC(I,K)
130 CONTINUE
140 CONTINUE
C
C COMPUTE THE VARIANCE OF CONTROLLED ESTIMATOR
c
DO 160 K=1,NR
VARCY(K)=0.0
DO 160 I=1,M
VARCY(K}=VARCY(K) +{CONY(I,K)-CYBAR(K ) )¥x*2
160 CONTINUE
DO 170 K=1,NR
170 VARCY(K)=VARCY(K)/FLOAT(M-NS~-1)

c
C ADJUST THE VARIANCE USING THE INVERSE MATRIX OF (X'X)
[

NX=NS+1
DO 180 I=1,M
180 X(I,1])=1.
DO 185 J=1,NS
DO 185 I=1,M
185 X(I, J+1)=C(I,J)
D0 190 I=1,NX
DO 190 J=1,NX
XX(I,J)=0.0
DO 200 K=1,M
XX(I,J)=XX(I,J)#X(K,I)%X(KsJ)
200 CONTINUE
190 CONTINUE
c
CALL DLINRG(NX,XX,NX,XXINV,NX)
c
C WRITE THE RESULTS OF ANALYSIS
c
C WRITE THE RAW DATA
c
HWRITE (6,400)

400 FORMAT(//20X,'ANTITHETIC REPLICATION CASE (BASED ON PAIRS):MIXED')
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WRITE (6,405)
405 FORMAT(//2X,'0BS"',8X%X,'Y1',8%,'Y2',8X,'Y3',8%X,'Y4',8X%,
* 'Cl',8X,'C2',8%,'C3',8%,'C4"',8%,'C5"',8%,'Cé6"')
DO 410 I=1,M
WRITE(6,620) I, (Y(I»J)>J=1,NR),(CONT(I,J)»J=1,NC)
420 FORMAT(I3,1X,10F9.3)
410 CONTINUE
WRITE(6,407) (KC(I),I=1,NS)
407 FORMAT(//2X, 'CONTROL VARIATES USED FOR ANLAYSIS:',3I4)
Cc
C WRITE MEAN AND VARIANCE
[
WRITE (6,430)
430 FORMAT(///30X,'MEAN AND VARIANCE OF RESPONSES AND CONTROL VARIATES
¥*')
WRITE (6,440)
440 FORMAT(//3X,'VARIABLE',5X,'0BS',4X, 'MEAN"',6X,'VARIANCE')}
DO 450 I=1,NR
WRITE(6,455) I, M,YBAR(I),SSY(I,I)%*2,/FLOAT(M-1)
455 FORMAT{(9X,'Y',I1,5%X,13,F11.4,F10.6)
450 CONTINUE
DO 460 I=1,NS
WRITE(6,465) I, M,CBAR(I),SSC(I,I)/FLOAT(M-1)
465 FORMAT(9X,'C',I1,5X,1I3,F11.4,F10.6)
460 CONTINUE
[
C WRITE THE COEFFICIENT MATRIX
[
WRITE (6,470)
470 FORMAT(////5X,'CORRELATION MATRIX OF RESPONSE VARIABLES')
WRITE (6,475)
475 FORMAT(/10X,°'Y1',8X,'Y2"',8X,'Y3',8%X,'Y4')
DO 480 J=1,NR
WRITE (6,485) J,(SSY1(J,K),K=1,NR)
485 FORMAT ('Y', Il, 6F10.4)
480 CONTINUE
WRITE (6,490)
490 FORMAT(//5X,'CORRELATION MATRIX OF CONTROL VARIATES')
WRITE (6,500)
500 FORMAT(/10X,'Cl',8%X,'C2',8X,'C3',8X,'C4"',8X,'C5',8X,'C6"')
DO 510 J=1,NS
WRITE (6,505) KC(J),(SSC1(J,K),K=1,NS)
505 FORMAT ('C', I1,6F10.4)
510 CONTINUE
WRITE (6,520)
520 FORMAT(//5X,'CORREALTION MATRIX OF RESPONSE BETWEEN CONTROLS')
WRITE (6,475)
DO 530 J=1,NS
WRITE (6,540) KC(J),(SSYC1(J,K),K=1,NR)
540 FORMAT ('C',I1,6F10.4)
530 CONTINUE
Cc
C WRITE THE COVARIANCE MATRIX
Cc
WRITE (6,770)
770 FORMAT(////5X, 'COVARIANCE MATRIX OF RESPONSE VARIABLES AND CONTROL
* VARIATES')
WRITE (6,775)
775 FORMAT(/5X,'Yl',8%,'Y2',8%,'Y3',8%,'Y4’,8%,'C1',8X%X,'C2"'
%,8%,'C3',8X%,'C4"')
DO 780 J=1,NR
HWRITE (6,785) J,(SSY(J,K)/FLOAT(M-1),K=1,NR)}
% ,(SSYC(K,J)/FLOATIM-1),K=1,NS)
785 FORMAT ('Y', Il, 10F10.4)
780 CONTINUE
DO 790 J=1,NS
WRITE (6,795) J,(SSYC(J,K)/FLOAT(M-1),K=1,NR),
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% (SSC(J,K)/FLOAT(M-1),K=1,NS)
795 FORMAT ('C', Il, 10F10.4)
790 CONTINUE

c
C WRITE THE COEFFICIENTS OF CONTROL VARIATES ( ALP HAT )
c

WRITE (6,550)
550 FORMAT(//5X,'COEFFICIENTS OF CONTROL VARIATES (ALP HAT)')
WRITE (6,475)
DO 560 I=1,NS
WRITE (6,570) KC(I), (ALP(I,J),J=1,NR)
570 FORMAT('C',I1,6F10.4)
560 CONTINUE
o
C WRITE THE MEAN AND VARIANCE OF CONTROLLED ESTOMATOR
c
WRITE(6,600)
600 FORMAT(//5X, 'MEAN AND VARIANCE OF CONTROLLED ESTIMATOR')
WRITE(6,610)
610 FORMAT(/7X,'RESPONSE',2X, 'VARIANCE',2X,
%* 'ADJUSTED VARIANCE ‘')
DO 630 I=1,NR
AVARCY (I )=VARCY(I }%XXINV(1,1)%100.
WRITE (6,620) I,CYBAR(I),VARCY(I)%2.,AVARCY(I)%2.
620 FORMAT(3X,'Y', Il ,F10.4,F10.6,F10.6)
630 CONTINUE
STOP
END
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Appendix B-8

c
C THIS PROGRAM IS FOR OBTAINING THE COVARIANCE OF ESTIMATORS AND
C ITS DETERMINENT BASED ON SCHRUBEN-MARGOLIN METHOD FOR HOSPITAL
C MODEL (SCHRUBEN AND MARGOLIN (1978)):
c
C HERE WE HAVE : 8 DESIGN POINTS;
c 200 SIMULATION RUNS AT EACH DESIGN POINT3
c 1 RESPONSE OF INTEREST (FAILURE RATE).
c
DOUBLE PRECISION SIM(1600,2),Y(8,200),C(8,200),S(8),SS(8),
»* YBAR(8),CBAR(8),SSY(8,8),55Y1(8,8),FAC(4,4),
* X(8,6),XX(G4,4),X5(4,8),XSX(4,4),BETA(4)
INTEGER IPVT(4},ND,NP,NR,NS,M,NC
DOUBLE PRECISION DET1,DET2
c
C IMSL SUBROUTINE DLINRG IS FOR THE INVERSE MATIX.
C IMSL SUBROUTINE DFTRG AND LFTRG ARE FOR THE DETERMINENT OF MATIX.
c
EXTERNAL DLINRG,LFTRG,LFDRG
c
C INITIAL CONDITION: M=NUMBER OF SIMULATION RUNS
c NR=NUMBER OF RESPONSES
c NC=NUMBER OF CONTROLS COLLECTED FROM SIMULATION
c NS=NUMBER OF CONTROLS USED FOR ANALYSIS
c ND=NUMBER OF DESIGN POINTS
c NP=NUMBER OF PARAMETERS
c
M=200
NR=1
NC=1
NP=4
ND=8
c
C READ DATA SET FROM SIMULATION OUTPUT
c
DO 5 1I=1,Mx8
READ (5,10) (SIM(I,J),J=1,2)
5 CONTINUE
10 FORMAT (F8.4,F9.4)
c
C ADJUST DATA SET AS MATRICES OF RESPONSE AND CONTROL VARIATES:
C Y= ( NDXM )3 C=( ND*M )3
c
DO 15 I=1,ND
DO 20 J=1,M
K=200%(I-1)+J
Y(I,J)= SIM (K,1)
C(I,J)= SIM (K,2)
20 CONTINUE
15 CONTINUE
c
C SET UP THE DESIGN MATRIX
c
DO 900 I=1,4
X(2%I-1,1)=1,
X(2%I,1)=1.
X(2%I-1,3)=-1,
X(2%1,3)=1,
900 CONTINUE
DO 905 I=1,2
X(I,2)=-1.
X(I+42,2)=1,
X(I+4,2)=-1,
X(I+6,2)=1.
905 CONTINUE
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DO 930 I=1,8
IF (I.GT.4) GO TO 910
X(I,4)=-X(I,2)%X(1,3)
GO TO 930
910 X(I,4)=X(I,2)%X(I,3)
930 CONTINUE

CHOOSE THE CONTROL VARIATES FOR ANALYSIS

OO0

NS=1

COMPUTE MEANS OF RESPONSE AND CONTROL VARIATE

OO0

DO 30 I=1,ND
StI1)=0.0

SS(I)=0.0

DO 35 J=1,M
S(IN=S(I)+Y(I,J)
SS(I)=SS(I)+C(I,J)

35 CONTINUE
YBAR(I)=S(I)/FLOAT(M)
CBAR(I)=SS(I)/FLOAT(M)

30 CONTINUE

COMPUTE COVARIANCE MATRIX OF RESPONSE

OO0

DO 80 I=1,ND

DO 80 J=1,ND

SSY(I,J)=0.0

DO 80 K=1,M

SSY(I,J)=SSY(I,J)+(Y(I,K)-YBAR(I))I*(Y(J,K)-YBAR(J]))
80 CONTINUE

C FIND CORRELATION MATRIX OF RESPONSE
DO 85 J=1,ND
DO 85 K=1,ND
85 SSY1(J,K)=SSY(J,K)/SQRT(SSY(J,JI%SSY(K,K))

FIND THE VECTOR OF ESTIMATOR: BETA = [ 1/8 * X' Y BAR 1

o000

DO 150 I=1,NP
BETA(I)=0.
DO 150 K=1,ND
BETA(I)=BETA(I)+X(K,I)*YBAR(K)
150 CONTINUE
c
C OBTAIN THE MATRIX OF [ X' COV(Y BAR ) X 1 = [X'%SSY»X]
c

DO 210 I=1,NP
DO 210 J=1,ND
XS(I,J)=0.
DO 220 K=1,ND
XSUI,J)=XS(I,J)+X(K,I)%SSY(K,J)
220 CONTINUE
210 CONTINUE

DO 230 I=1,NP
DO 230 J=1,NP
XSX(I,J)=0.
DO 240 K=1,ND
XSX(I,J)=XSX(I,J)I+XS(I,K)*X(K,J)
240 CONTINUE
230 CONTINUE
c
C FIND THE COVARIANCE MATRIX OF ESTIMNATOR BETA HAT:
c (1764 % XSX )
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DO 250 I=1,NP
DO 260 J=1,NP
XSK(I,J)=XSX(I,J)/(64.%200.)
260 CONTINUE
250 CONTINUE
c
C FIND THE DETERMINENT OF COVARIANCE MATRIX OF ESTIMNATOR:
C USING IMSL SUBROUTINE-LFTRG AND LFDRG
c

CALL DLFTRG(NP,XSX,NP,FAC,NP,IPVT)
CALL DLFDRG(NP,FAC,NP,IPVT,DET1,DET2)

c
C WRITE THE RESULTS OF ANALYSIS
c
WRITE (6,400)
400 FORMAT(//10X, 'ANALYSIS OF SCHRUBEN-MARGOLIN METHOD: HOSPITAL'
*//15X,'8 DESIGN POINTS;'
*/15X,'% PARAMETERS;'
%/15X,'200 REPLICATIONS' )
c
C WRITE THE DESIGN MATRIX OF X
c
WRITE (6,405)
405 FORMAT(//10X,'DESIGN MATRIX X'/)
DO 410 I=1,ND
MRITE (6,415) I, (X(I,K),K=1,NP)
415 FORMAT (10X,'X‘,I1,4F8.1)
410 CONTINUE
c
C WRITE MEAN AND VARIANCE
C
WRITE (6,430)
430 FORMAT(//10X,'MEAN OF RESPONSE AT DESIGN POINT'/)
DO 450 I=1,ND
WRITE(6,455) I, YBAR(I)
455 FORMAT(10X,'Y',I1,F10.3)
450 CONTINUE
c
C WRITE THE CORRELATION MATRIX
c
WRITE (6,470)
470 FORMAT(//5X,'COVARIANCE MATRIX OF RESPONSE VARIABLES')
HRITE (6,475)
G75 FORMAT(/19X,'Y1',7X,'Y2',7X%,'Y3'>7X>»'Y&' s7X5'Y5 ' 37X, 'Y6"' ,7X>
*'Y7',7X,'Y8")
DO 480 J=1,ND
WRITE (6,485) J,(SSY(J,K)/FLOAT(M),K=1,ND)
485 FORMAT (10X,'Y', Il, 8F9.3)
480 CONTINUE
HWRITE (6,490)
490 FORMAT(//10X,'CORRELATION MATRIX OF RESPONSE VARIATES')
WRITE (6,500)
500 FORMAT(/19X,'Y1',7X,'Y2',7X,'Y3',7X,'Y4"',7X,'Y5' ,7X,'Y6"',7X,
®'Y7',7X,'Y8")
DO 510 J=1,ND
WRITE (6,505) J, (SSY1l(J,K),K=1,ND)
505 FORMAT (10X,'Y', I1,8F9.3)
510 CONTINUE
WRITE (6,520)
520 FORMAT(//10X,'COVARIANCE MATRIX OF ESTIMATORS')
WRITE (6,524)
524 FORMAT(/21X,'BETA 0',6X,'BETA 1',6X,'BETA 2',6X,'BETA 3')
DO 530 J=1,NP
WRITE (6,540) J-1,(XSX(J,K),K=1,NP)
540 FORMAT (10X,'BETA',I1,4F12.7)
530 CONTINUE
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c
C WRITE THE ESTIMATOR VECTOR: BETA HAT
c
WRITE (6,750)
750 FORMAT(//10X,'THE ESTIMATORS OF PARAMETERS')
DO 753 I=1,NP
WRITE (6,755) I-1,BETA(I)/FLOATIND)

755 FORMAT(10X,'BETA ', Il, ' =',F12.7)

753 CONTINUE
c
C WRITE THE DETERMINENT OF ESTIMATOR COARIANCE MATRIX
C

WRITE (6,770)
770 FORMAT(//10X,'DETERMINENT OF COVARIANCE MATRIX OF ESTIMATOR')
WRITE (6,775) DET1,DET2
775 FORMAT(/10X, 'DETERMINENT =',F8.5, '%* 10%x', F5.2)
STOP
END
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Appendix B-9

c
C THIS PROGRAM IS FOR OBTAINING THE COVARIANCE OF ESTIMATORS AND
C ITS DETERMINENT BASED ON EXTENDED METHOD OF CORRELATED REPLICATIONS
C WITH CONTROL VARIATES FOR HOSPITAL MODEL
C (SCHRUBEN AND MARGOLIN (1978)})
c
C HERE WE HAVE : 8 DESIGN POINTS;
c 200 SIMULATION RUNS AT EACH DESIGN POINTS
c 1 RESPONSE OF INTEREST (FAILURE RATE).
c
DOUBLE PRECISION SIM(1600,2),Y(8,200),C(8,200),5(8),SS(8),
* YBAR(8),CBAR(8),SSY(8,8),SSY1(8,8),BETA(4),
* X(8,6),XX(4,6),XS5(4,8),XSX(4,4),FAC(G4,4)
DOUBLE PRECISION SSC(8),SSYC(8),ALP(8),CONY(8,100),SSCONY(8,8),
* CYBAR(8),AY(8,100),AC(8,100),SSCONY1(8,8)
DOUBLE PRECISION CX(4),YX(4),A,CXY,CXC,SC,SCY
INTEGER IPVT(4),ND,NP,NR,NS,M;NC
DOUBLE PRECISION DET1,DETZ
C
C IMSL SUBROUTINE DLINRG IS FOR THE INVERSE MATIX.
C IMSL SUBROUTINE DFTRG AND LFTRG ARE FOR THE MULTIPLICATION
C OF TWO MATICES.
c
EXTERNAL DLINRG,LFTRG,LFDRG
[
C INITIAL CONDITION: M=NUMBER OF SIMULATION RUNS
c NR=NUMBER OF RESPONSES
c NC=NUMBER OF CONTROLS COLLECTED FROM SIMULATION
C NS=NUMBER OF CONTROLS USED FOR ANALYSIS
c ND=NUMBER OF DESIGN POINTS
C NP=NUMBER OF PARAMETERS
c
M=200
NR=1
NC=1
NS=1
NP=4
ND=8
c
C READ DATA SET FROM SIMULATION OUTPUT
c

DO 5 I=1,Mx8

READ (5,10} (SIM(I,J),J=1,2)
5 CONTINUE
10 FORMAT (F8.4,F9.4)

ADJUST DATA SET AS MATRICES OF RESPONSE AND CONTROL VARIATES:
Y= ( ND¥M )3 C=( ND¥M }3

O000

DO 15 I=1,ND
DO 20 J=1,M
K=200%(I-1)+J
Y(I,J)= SIM (K,1)
C(I,J)= SIM (K,»2)
20 CONTINUE
15 CONTINUE

SET UP THE DESIGN MATRIX

OO0

DO 900 I=1,4

X(2%I-1,1)=1.

X(2%I,1)=1.

X(2%I-1,3)=-1.

X(2%I,3)=1.
900 CONTINUE
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DO 905 I=1,2
X(I,2)=-1.
X(I+2,2)=1.
X(I+44,2)=-1.
X(I+6,2)=1.

905 CONTINUE
Do 930 I=1,8
IF (1.6T.4) GO TO 910
X(I,4)=-X(I,2)%X(I,3)
GO TO 930

910 X(I,4)=X(I,2)%X(I,3)

930 CONTINUE

C
C COMPUTE MEANS OF RESPONSE AND CONTROL VARIATE
c

DO 30 I=1,ND

S(I)=0.0

SS(I)=0.0

DO 35 J=1,M

S(I)=S(I)4Y(I,J)
SS(I)=SS(I)+C(I,J)

35 CONTINUE
YBAR(I)=S(I)/FLOAT(M)
CBAR(I)=SS(I)/FLOAT(M)

30 CONTINUE

Cc
C ADJUST THE DATA SET OF INPUT MATRIX AS 100 PAIRS:
C M/2 PAIRS OF INDEPENDENT AND ANTITHETIC
c
M=100
DO 45 I=1,ND
DO 45 J=1,M
K2=J+100
AY(I,J)=(Y(I,J)+Y(I,K2))/2.
ACI(I,J)=(CLI,J) +C(I,K2))/2.
45 CONTINUE
DO 47 I=1,ND
DO 47 J=1,M
Y(I,J)=AY(I,J)
C(I,J)=AC(I,J)
%7 CONTINUE
c
C OBTAIN THE MATRIX OF ALPHA: A
c
SC=0.
SCY=0.
DO 213 I=1,ND
SC=SC+CBAR(I )*CBAR(I)
SCY=SCY+CBAR(I )*YBAR(I)
213 CONTINUE
DO 201 I=1,NP
CX(I)=0.
YX(I)=0.
DO 202 K=1,ND
CX{I)=CX(I)+CBAR(K)*X(K,I)
YX(I)=YX(I)+YBAR(K )*X(K,I)
202 CONTINUE
201 CONTINUE
CXC=0.
CXY=0.
DO 203 I=1,NP
CXC=CXC4+CX(I)*CX(I)
CXY=CXY+CX(I )%YX(I)
203 CONTINUE
A=(SCY-CXY/8.)/(SC-CXC/8.)
DO 117 I=1,ND
CYBAR(I)=YBAR(I)-CBAR(I )*A
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117 CONTINUE
COMPUTE THE COEFFICICENT OF CONTROL VARIATES (ESTIMATORS OF ALPHA)
DO 95 I=1,ND
ALP(I)=SSYC(I)/SSC(I)
95 CONTINUE

COMPUTE THE CONTROLLED ESTIMATOR

O0O00O00000O

DO 110 I=1,ND
CYBAR(I)=YBAR(I)-CBAR(I )*A
110 CONTINUE
c
C WRITE THE MEAN RESPONSE
c
WRITE (6,430)
430 FORMAT(//10X,'CONTROLLED MEAN OF RESPONSE AT DESIGN POINT'/)
DO 450 I=1,ND
WRITE(6,455) I, CYBAR(I)
455 FORMAT(10X,'Y',I1,F10.3)
450 CONTINUE
c
C COMPUTE THE CONTROLLED RESPONSE
c
DO 125 I=1,ND
DO 125 J=1,M
CONY(I,J)=Y(I,J)-C(I,J)%*A
125 CONTINUE
c
C COMPUTE COVARIANCE MATRIX OF ADJUSTED RESPONSES
c
DO 186 I=1,ND
DO 186 J=1,ND
SSCONY(I,J)=0.0
DO 180 K=1,M
SSCONY(IX,J)=SSCONY(I,J)+{(CONY(I,K)-CYBAR(I))*(CONY(J,K)-CYBAR(J))
180 CONTINUE
186 CONTINUE
DO 189 I=1,ND
DO 189 J=1,ND
SSCONY(I,J)=SSCONY(I,J)*2./FLOAT(M-NS-1)
189 CONTINUE
c
C FIND CORRELATION MATRIX OF ADJUSTED RESPONSE
Cc
DO 190 J=1,ND
DO 190 K=1,ND
190 SSCONY1(J,K)}=SSCONY(J,K)/SQRT({SSCONY(J,J )*SSCONY(K,K))

c
C FIND THE VECTOR OF ESTIMATOR: BETA HAT = [ 1/8 %* X' CONTROLLED Y ]
c
DO 200 I=1,NP
BETA(I)=0.
DO 200 K=1,ND
BETA(I)=BETA(I )+X(K,I)*CYBAR(K)
200 CONTINUE
DO 205 I=1,ND
BETA(I)=BETA(I)/FLOAT(ND)
205 CONTINUE
c
C OBTAIN THE MATRIX OF [ X' COV(Y BAR ) X 1 = [X'%SSY%*X]
c
DO 210 I=1,NP
DO 210 J=1,ND
XS(I,J)=0.
DO 220 K=1,ND

Appendix B. SLAM |l Code and FORTRAN Program for Computing Estimator of Parameters 256



XS(I5J)=XS(I,J)+X(K,I)%SSCONY(K,J)
220 CONTINUE
210 CONTINUE

DO 230 I=1,NP
DO 230 J=1,NP
XSX(I,J)=0.
DO 240 K=1,ND
XSX(I,J)=XSX(I,J)+XSII,K)*X(K,J)
240 CONTINUE
230 CONTINUE

FIND THE COVARIANCE MATRIX OF ESTIMNATOR BETA HAT:
(1/064%NUMBER OF REPLICATION) * XSX )

O000

DO 250 I=1,NP
DO 260 J=1,NP
XSX(I,J)=XSX(I5J)/FLOATIND )%%2
260 CONTINUE
250 CONTINUE
C
C FIND THE DETERMINENT OF COVARIANCE MATRIX OF ESTIMNATOR:
C USING IMSL SUBROUTINE-LFTRG AND LFDRG

c
CALL DLFTRG(NP,XSX,NP,FAC,NP,IPVT)
CALL DLFDRG(NP,FAC,NP,IPVT,DET1,DET2)

c

C WRITE THE RESULTS OF ANALYSIS

c

C WRITE THE RAW DATA

c

WRITE (6,400)

400 FORMAT(//10X,'ANALYSIS OF EXTENDED METHOD USING 1 ALP:

*//15X,'8 DESIGN POINTS3'
*/15X,'4 PARAMETERS;'
%/15X,'200 REPLICATIONS:')
c
C WRITE THE DESIGN MATRIX OF X
c
WRITE (6,405)
405 FORMAT(//10X,'DESIGN MATRIX '{)
DO 410 I=1,ND
HWRITE (6,415) I, (X(I,K),K=1,NP)
415 FORMAT (10X,'X',I1,4F8.3)
410 CONTINUE
WRITE (6,420)
420 FORMAT(//10X, ‘COEFFICIENT OF CONTROL VARIATES'/)
WRITE(6,423) A
423 FORMAT(10X,'ALPHA=',F10.3)
WRITE (6,431)

HOSPITAL'

431 FORMAT(//10X, 'CONTROLLED MEAN OF RESPONSE AT DESIGN POINT'/)

DO 443 I=1,ND
WRITE(6,453) I, CYBARI(I)
453 FORMAT(10X,'Y',I1,F10.3)
%43 CONTINUE
c
C WRITE THE CORRELATION MATRIX
c
WRITE (6,470)

470 FORMAT(//10X,'COVARIANCE MATRIX OF ADJUSTED RESPONSE VARIABLES')

WRITE (6,475)

475 FORMAT(/19X,'Y1',7X,'Y2',7X,'Y3',7X5'Y4"',7X,'Y5',7X,'Y6' ,7X>

*'Y7',7X,'Y8"')
DO 480 J=1,ND
WRITE (6,485) J,(SSCONY(J,K),K=1,ND)
485 FORMAT (10X,'Y', Il, 8F9.3)
480 CONTINUE
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WRITE (6,490)
490 FORMAT(//10X,'CORRELATION MATRIX OF ADJUSTED RESPONSE VARIATES')
WRITE (6,500}
500 FORMAT(/19X,'Y1',7X,'Y2'>7Xs'Y3',7X,'Y4',7X, 'Y5',7X,'Y6 ', 7X,
'Y7',7X,'Y8")
DO 510 J=1,ND
WRITE (6,505) J, (SSCONY1(J,K)syK=1,ND)
505 FORMAT (10X,'Y', I1,8F9.3)
510 CONTINUE
WRITE (6,520}
520 FORMAT(//10X,'COVARIANCE MATRIX OF ESTIMATORS WITH CONTROL')
WRITE (6,524)
524 FORMAT(/21X,'BETA 0',6X,'BETA 1',6X,'BETA 2',6X,'BETA 3')
D0 530 J=1,NP
HRITE (6,540) J-1,(XSX(J,K),K=1,NP}
540 FORMAT (10X, 'BETA',I1,4F12.7)
530 CONTINUE
C
C WRITE THE ESTIMATE VECTOR: BETA HAT
c

X

WRITE (6,730)
730 FORMAT(//10X,'THE ESTIMATOR OF PARAMETERS')
DO 735 I=1,NP
WRITE (6,740) I-1, BETA(I)
740 FORMAT(10X,'BETA ',Il,' =',F12.7)
735 CONTINUE
C
C WRITE THE DETERMINENT OF ESTIMATOR COVARIANCE MATRIX
c
WRITE (6,770)
770 FORMAT(//10X,'DETERMINENT OF COVARIANCE MATRIX OF ESTIMATOR')
WRITE (6,775) DET1,DET2
775 FORMAT(/10X,'DETERMINENT =',F8.5, '% 10%x', F5.2)
STOP
END
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Appendix B-10

THIS PROGRAM IS FOR OBTAINING THE COVARIANCE OF ESTIMATORS AND
ITS DETERMINENT BASED ON SCHRUBEN-MARGOLIN METHOD

WITH CONTROL VARIATES FOR HOSPITAL MODEL

(SCHRUBEN AND MARGOLIN (1978))

HERE WE HAVE : 8 DESIGN POINTS
200 SIMULATION RUNS AT EACH DESIGN POINT;
1 RESPONSE OF INTEREST (FAILURE RATE).

[z N e NeNeNeNeNeNoNe Nyl

DOUBLE PRECISION SIM(1600,2),Y(8,200),C(8,200),5(8),SS(8),
* YBAR(8),CBAR(8),55Y(8,8),S5Y1(8,8),BETA(4),
* X(8,4),XX(4,4),XS(4,8),XSX(4,4),FAC(G,4)
DOUBLE PRECISION SSC(8),SSYC(8),ALP(8),CONY(8,100),SSCONY(8,8),
* CYBAR(8),AY(8,100),AC(8,100),SSCONY1(8,8)
INTEGER IPVT(4),ND,NP,NR,NS,M,NC

DOUBLE PRECISION DET1,DET2

IMSL SUBROUTINE DLINRG IS FOR THE INVERSE MATIX.
IMSL SUBROUTINE DFTRG AND LFTRG ARE FOR THE MULTIPLICATION
OF TWO MATICES.

OO0O0O0

EXTERNAL DLINRG,LFTRG,LFDRG

INITIAL CONDITION: M=NUMBER OF SIMULATION RUNS
NR=NUMBER OF RESPONSES
NC=NUMBER OF CONTROLS COLLECTED FROM SIMULATION
NS=NUMBER OF CONTROLS USED FOR ANALYSIS
ND=NUMBER OF DESIGN POINTS
NP=NUMBER OF PARAMETERS

OO0O0O0OO0O0O0

MNouonn N
(=4

55655
PO

READ DATA SET FROM SIMULATION OUTPUT

o000

DO 5 I=1,Mx8

READ (5,10) (SIM(I,J)},J=1,2)
5 CONTINUE
10 FORMAT (F8.4,F9.4)

ADJUST DATA SET AS MATRICES OF RESPONSE AND CONTROL VARIATES:
Y= ( ND*M )3 C=( ND*M )3

OO0

DO 15 I=1,ND
DO 20 J=1,M
K=200%(I-1)+J
Y(I,J)= SIM (K,1)
C(I,J)= SIM (K,2)
20 CONTINUE
15 CONTINUE

SET UP THE DESIGN MATRIX

o000

DO 900 I=1,4

X(2%I-1,1)=1.

X(2%I,1)=1.

X(2%I-1,3)=-1.

X(2%I,3)=1.
900 CONTINUE

DO 905 I=1,2
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X(I,2)=-1.
X(I+2,2)=1.
X(I+6,2)=-1.
X(I+6,2)=1.
905 CONTINUE
DO 930 I=1,8
IF (1.6T.4) GO TO 910
X(I,4)=-X(I,2)*XI I,3)
GO TO 930
910 X(I,4)=X(I,2)%X(I,3)
930 CONTINUE

C
C COMPUTE MEANS OF RESPONSE AND CONTROL VARIATE
c

DO 30 I=1,ND

S(I)=0.0

SS(I)=0.0

DO 35 J=1,M

S(I)=S(I)+Y(I,J)
SS(I)=SS(I)+C(I,J)

35 CONTINUE
YBAR(I)=S(I)/FLOAT(M)
CBAR(I)=SS(I)/FLOAT(M)

30 CONTINUE

c
C COMPUTE COVARIANCE MATRIX OF RESPONSE
c

DO 80 I=1,ND

DO 80 J=1,ND

SSY(I,J)=0.0

DO 80 K=1,M

SSY(I,J)=SSY(I,J)+(Y(I,K)-YBAR(I))*(Y(J,K)-YBAR(J))
80 CONTINUE

FIND CORRELATION MATRIX OF RESPONSE

o000

DO 81 J=1,ND
DO 81 K=1,ND
81 SSY1(J,K)=SSY{(J,K)/SQRT(SSY(J,J)*SSY(K,K))
WRITE (6,771)
771 FORMAT(//10X,'CORRELATION MATRIX OF REPONSE VARIATES')
WRITE (6,772)
772 FORMAT(/19%,'Y1'»,7X,'Y2',7X5'Y3',7X,'Y&' ,7X,'Y5' ,7X»'Y6"' ,7X,
®'Y7',7X,'Y8")
DO 773 J=1,ND
WRITE (6,774) J, (SSY1(J,K),K=1,ND)
774 FORMAT (10X,'Y', I1,8F9.3)

773 CONTINUE
c
C COMPUTE COVARIANCE MATRIX OF CONTROL VARIATES
c
DO 70 I=1,ND
SSC(1)=0.0
DO 70 J=1,M
SSC(I)=SSC(I)+(C(I,J)-CBAR(I))*(C(I,J)-CBAR(I))
70 CONTINUE
c

C COMPUTE COVARIANCE MATRIX OF BETWEEN RESPONSE AND CONTROL VARIATES
c
DO 90 I=1,ND
SSYC(I)=0.0
DO 90 J=1,M
SSYC(I)=SSYC(I)+(Y(I,J)-YBAR(I))*(C(I,J}-CBAR(I))
90 CONTINUE
c
C COMPUTE THE COEFFICICENT OF CONTROL VARIATES (ESTIMATORS OF ALPHA)
o
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DO 95 I=1,ND
ALP{(I)=SSYC(I)/SSC(I)
95 CONTINUE
c
C COMPUTE THE CONTROLLED ESTIMATOR
c

DO 110 I=1,ND
CYBAR(I)=YBAR(I)-CBAR(I)*ALP(I)
110 CONTINUE
c
C WRITE THE MEAN RESPONSE
Cc
WRITE (6,430)
430 FORMAT(//10X,'CONTROLLED MEAN OF RESPONSE AT DESIGN POINT'/)
DO 450 I=1,ND
WRITE(6,455) I, CYBAR(I),I,CBAR(I),I,ALP(I)
455 FORMAT(10X,'Y',I1,F10.3,5%X,'C',I1,F10.3,5X, 'ALP',I1,F10.3)
450 CONTINUE
c
C COMPUTE THE CONTROLLED RESPONSE
c
DO 125 I=1,ND
DO 125 J=1,M
CONY(I,J)=Y(I,J)-C(I,J)*ALP(I)
125 CONTINUE
c
C COMPUTE COVARIANCE MATRIX OF ADJUSTED RESPONSES
C
DO 186 I=1,ND
DO 186 J=1,ND
SSCONY(I,J1}=0.0
DO 180 K=1,M
SSCONY(I,J)=SSCONY(I,J)+(CONY(I,K)-CYBAR(I))*(CONY(J,K)-CYBAR(J))
180 CONTINUE
186 CONTINUE
DO 189 I=1,ND
DO 189 J=1,ND
SSCONY(I,J)=SSCONY(I,J)/FLOAT(M-NS-1)
189 CONTINUE
C
C FIND CORRELATION MATRIX OF ADJUSTED RESPONSE
C
DO 190 J=1,ND
DO 190 K=1,ND
190 SSCONY1(J,K)=SSCONY(J,K)/SQRT(SSCONY(J,J)*SSCONY(K,K)})
C
C FIND THE VECTOR OF ESTIMATOR: BETA HAT = [ 1/8 % X' CONTROLLED Y 1
Cc
DO 200 I=1,NP
BETA(I)=0.
DO 200 K=1,ND
BETA(I)=BETA(I)+X(K,I)*CYBAR(K)
200 CONTINUE
DO 205 I=1,ND
BETA(I)=BETA(I)/FLOAT(ND)
205 CONTINUE
c
C OBTAIN THE MATRIX OF [ X' COV(Y BAR ) X ] = [X'%SSY®X]
c
DO 210 I=1,NP
DG 210 J=1,ND
XS(I,J)=0.
DO 220 K=1,ND
XS(I,J)=XSI(I,J)+X(K,I)%SSCONY(K>J)
220 CONTINUE
210 CONTINUE
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DO 230 I=1,NP
DO 230 J=1,NP
XSX(I,J)=0.
DO 240 K=1,ND
XSX(I,J)=XSX(I,J)+XSII,K)I*¥X(K,J)
240 CONTINUE
230 CONTINUE

FIND THE COVARIANCE MATRIX OF ESTIMNATOR BETA HAT:
(1/(64%NUMBER OF REPLICATION) * XSX )

(s NeNeNel

DO 250 I=1,NP
DO 260 J=1,NP
XSX(I,J)=XSX(I,J)/FLOAT(ND )%2
260 CONTINUE
250 CONTINUE
c
C FIND THE DETERMINENT OF COVARIANCE MATRIX OF ESTIMNATOR:
C USING IMSL SUBROUTINE-LFTRG AND LFDRG

c
CALL DLFTRG(NP,XSX,NP,FAC,NP,IPVT)
CALL DLFDRG(NP,FAC,NP,IPVT,DET1,DET2)

c

C WRITE THE RESULTS OF ANALYSIS

c

C WRITE THE RAW DATA

c

WRITE (6,400)
400 FORMAT(//10X,'ANALYSIS OF EXTENDED METHOD: HOSPITAL'
%#//15X, '8 DESIGN POINTS3'
%*/15X,'4 PARAMETERS;'
*/15X, '200 REPLICATIONS;:')
c
C WRITE THE DESIGN MATRIX OF X
Cc
WRITE (6,405)
405 FORMAT(//10X,'DESIGN MATRIX '/)
DO 410 I=1,ND
WRITE (6,415) I, (X(I,K),K=1,NP)
%15 FORMAT (10X,'X',I1,4F8.3)
%10 CONTINUE
C
C WRITE THE CORRELATION MATRIX
C
WRITE (6,470)
470 FORMAT(//10X,'COVARIANCE MATRIX OF ADJUSTED RESPONSE VARIABLES')
WRITE (6,475)
475 FORMAT(/19%,'Y1',7X,'Y2',7X»'Y3',7X,'Y4"',7X,'Y5',7X,'Y6"',7X,
*'Y7',7X,'Y8"')
DO 480 J=1,ND
WRITE (6,485) J,(SSCONY(J,K),K=1,ND)
485 FORMAT (10X,'Y', Il, 8F9.3)
480 CONTINUE
WRITE (6,490)
490 FORMAT(//10X, 'CORRELATION MATRIX OF ADJUSTED RESPONSE VARIATES')
WRITE (6,500)
500 FORMAT(/19X,'Y1',7X5'Y2'»7X5'Y3' 37X 'YG ' ,7X5'Y5',7X5'Y6"'»7X)
®'Y7',7X,'Y8")
DO 510 J=1,ND
WRITE (6,505) J, (SSCONY1(J,K),K=1,ND)
505 FORMAT (10X,'Y', I1,8F9.3)
510 CONTINUE
WRITE (6,520)
520 FORMAT(//10X,'COVARIANCE MATRIX OF ESTIMATORS WITH CONTROL')
WRITE (6,524)
526 FORMAT(/21X,'BETA 0',6X,'BETA 1',6X,'BETA 2',6X,'BETA 3')
DO 530 J=1,NP
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WRITE (6,540) J-1,(XSX(J,K)},K=1,NP)
540 FORMAT (10X,'BETA',I1,4F12.7)
530 CONTINUE
c
C WRITE THE ESTIMATE VECTOR: BETA HAT
C
WRITE (6,730) '
730 FORMAT(//10X,'THE ESTIMATOR OF PARAMETERS')
DO 735 I=1,NP
WRITE (6,740) I-1, BETA(I)
740 FORMAT(10X,'BETA ',Il,' =',F12.7)
735 CONTINUE
o
C WRITE THE DETERMINENT OF ESTIMATOR COVARIANCE MATRIX
c
WRITE (6,770)
770 FORMAT(//10X,'DETERMINENT OF COVARIANCE MATRIX OF ESTIMATOR')
WRITE (6,775) DET1,DET2
775 FORMAT(/10X,'DETERMINENT =',F8.5, '% 10%%', F5.2)
STOP
END
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