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As a solvable and broadly applicable model system, the totally asymmetric exclusion process enjoys
iconic status in the theory of nonequilibrium phase transitions. Here, we focus on the time dependence of
the total number of particles on a 1-dimensional open lattice and its power spectrum. Using both
Monte Carlo simulations and analytic methods, we explore its behavior in different characteristic regimes.
In the maximal current phase and on the coexistence line (between high and low density phases), the
power spectrum displays algebraic decay, with exponents�1:62 and�2:00, respectively. Deep within the
high and low density phases, we find pronounced oscillations, which damp into power laws. This behavior
can be understood in terms of driven biased diffusion with conserved noise in the bulk.
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Introduction.—The collective behavior of many constit-
uents, interacting under nonequilibrium conditions, is far
from well understood. Yet, such systems are ubiquitous in
nature, from molecular biology at the nanoscale to infra-
structure networks at the global level. In physics, attacks on
such highly complex systems often begin with seemingly
small steps, defining simple models that are both tractable
and believed to capture the essentials of the original prob-
lem. On this stage, the totally asymmetric simple exclusion
process (TASEP) [1] plays a key role, much like the Ising
model in equilibrium statistical mechanics. With open
boundaries, particles stochastically enter a one-lane lattice
from one end, hop to the next site if it is empty, and leave at
the opposite end. This simple transport model provides the
first crucial steps towards the modeling of realistic pro-
cesses, such as protein synthesis, surface growth, and
vehicular traffic [2]. Further, it generates much theoretical
interest: Despite its simplicity, its stationary state displays
several phases and interesting algebraic correlations, much
of which is known analytically [3].

In this Letter, we focus on another simple quantity in
TASEP: the total number of particles in the system at time
t, N�t�. In the steady state, its time average should be the
ensemble average, which can be easily computed from the
known stationary distribution. However, as a fluctuating
quantity, its power spectrum, I�!�, contains time-
correlation information which is not as easily accessible.
Although such correlations have been investigated recently
[4], we find interesting behavior undetected previously:
oscillatory behavior in I�!� for the high and low density
phases. While the previous study concerns correlations
within the bulk of an infinite system, the new feature
here is that our I�!� carries information on the entirety
of a finite system. Since many physical systems are far
from the thermodynamic limit (e.g., mRNAs containing
around 103 codons or fewer), such finite-size effects can be
physically significant. In the remainder of this Letter, we
briefly summarize the details of the model and our simu-
lation methods, report our findings, and provide theoretical
explanations for the phenomena.

The model and simulation results.—A standard TASEP
consists of particles hopping on a lattice of length L with
site label i. If the first site is empty, a particle enters the
system with rate �. A particle on the last site leaves the
system with rate �. In the bulk, a particle always hops onto
the next site (with unit rate) if the site is empty; otherwise,
it remains stationary. A configuration at any particular time
is described by a set of occupation numbers fnig (n � 0, 1
for a vacant vs occupied site). In all our simulations, we
start with an empty lattice and use random sequential
updates; i.e., in each Monte Carlo step (MCS), we make
N � 1 random attempts to move a particle. Since the
system is stochastic, a complete description requires
P�fnig; t�, the probability to find the system in configura-
tion fnig at time t. The evolution of P is governed by a
simple master equation. Though linear and typically easy
to write, this equation cannot be solved in general. Yet, in
the long time limit, P settles into a t-independent distribu-
tion: P�, the exact form of which is known [3].

The macroscopic properties of these stationary states
can be categorized in terms of three distinct phases, con-
veniently displayed as a phase diagram [Fig. 1(a)] in the
�-� plane. Thanks to the exact solution, P�, many prop-
erties can be computed analytically. The three regions are
associated with the high density (HD), low density (LD),
and maximum current (MC) phases. They are distin-
guished by their average local densities, �i � hni=Li,
where h�i is an average over the stationary P��fnig�. In
the thermodynamic limit and deep in the bulk, �i is �� �
1� �, �� � �, and 1=2 for, respectively, the HD, LD, and
MC phases. All aspects of the LD and HD phases can be
directly related through particle-hole symmetry so that we
will concentrate only on the LD phase in this Letter. For the
LD phase, the deviations from �� are confined to a micro-
scopic boundary layer near the exit. In the MC phase, the
profile decays algebraically into the bulk, while the system
displays behavior comparable to critical phenomena in
equilibrium statistical mechanics. The transitions at the
boundaries of the MC phase are continuous. By contrast,
a discontinuity occurs across the HD-LD line. On this line
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(� � �< 1=2), typical configurations display the coexis-
tence of regions with �� and ��, joined by a microscopi-
cally sharp interface, known as a ‘‘shock.’’ The shock is
delocalized, performing a random walk over the entire
lattice so that the average �i is linear over the interval
	�; 1� �
.

Our main interest here is N�t� �
P
ini�t� and its associ-

ated power spectrum: I�!�. Though its time average (in the
steady state) is just

P
ihnii � ��L, I�!� cannot be accessed

from P�. Specifically, we take a measurement of N every
100 MCS (after discarding the first 100 K MCS to allow the
system to reach steady state) and label these by t �
1; 2; . . . ; T. Typical N�t�’s in the three regimes are shown
in Fig. 1(b). For all but a few of our runs, T � 104 (106

MCS) so that we can define a Fourier transform: ~N�!� �PT
t�1 N�t�e

i!t, where ! � 2�m=T with m � 0; 1; . . . . To
obtain the average power spectrum, we carry out typically
100 such runs and construct

 I�!� � hj ~N�!�j2i: (1)

The important control parameters for this system are L, �,
and �. We investigated a range of L’s from 250 to 32000.
Here, we will show the results for L � 1000, as well as
some for the largest size. Also, we will present mainly data
for three representative points in the phase diagram.
Labeled by (�, �), they are (0.7, 0.7), (0.3, 0.7), and
(0.3,0.3), corresponding to, respectively, the MC, LD
phases, and the coexistence line. Systematic studies of
the rest of the �-� square will be reported elsewhere [5].

In the inset of Fig. 2, we show the power spectra for the
MC phase. Away from high and low ! values, I�!� ap-
pears to obey a power law: I / !�p. The saturation at
small ! is due to finite L and the crossover scales with
the expected L�3=2 (see below). At large !, we are pre-
sumably probing an ultraviolet cutoff, due to a discrete
lattice and MCS. To expose the power p more effectively,
we display!pI in a log-log plot (Fig. 2). The best fit seems
to be p � 1:62 (line, blue online), though the data are still

consistent with 5=3 (dots, red online), a value favored by
the theoretical considerations below. Whether the differ-
ence of�3% is truly significant remains to be explored [5].
We have also simulated other points in the MC phase and
find all data to be statistically indistinguishable from the
set here. The results for the coexistence line, at � � � �
0:3, are very similar, except that they confirm the expected
random walk behavior, with a power of 2. The most re-
markable phenomena are found in the HD-LD phases. As
illustrated in Fig. 3, I�!� displays large, damped oscilla-
tions. The examples in the inset are especially striking: An
L � 32 K lattice is used here, with three �’s. In the next
section, we briefly present the theory which accounts for
these properties.
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FIG. 2 (color online). Power spectrum in the MC phase, � �
� � 0:7. with L � 1000. The inset shows a log-log plot of I�!�.
The main figure shows L � ln�!pI� vs m � !T=2�.
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FIG. 3 (color online). Power spectrum I�!� vs m � !T=2� in
the LD phase (� � 1� � � 0:3) with L � 1000. The inset
shows a similar plot for a L � 32000 lattice, with � � 1� � �
0:2, 0.3, and 0.4. The units for log�I� are arbitrary, and the curves
are displaced for clarity.
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FIG. 1 (color online). (a) Phase diagram of TASEP. On the
dashed line, high and low density domains coexist, with a
microscopic interface, known as the ‘‘shock.’’ (b) Typical time
series (up to 600 K MCS shown) of N�t�, for L � 1000, in the
three distinct regimes: coexistence, MC, and LD.
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Theoretical approaches.—To understand the behavior of
the power spectra above, we rely on different (though
related) approaches for the three regimes. The simplest
case is the coexistence line, where the shock performs a
random walk. As a result, N�t� is also just a random walk
[Fig. 1(b)] in the interval 	��L; ��L
 with reflecting
boundary conditions [6]. The power spectrum of this pro-
cess is well understood, displaying the !�2 behavior. Of
course, for small ! (and long times), I�!� saturates to a
finite value, controlled by the allowed interval for N. Later
[5], we will show that the expected crossover exhibits data
collapse with a scaling variable !L2. The next regime,
considered the most challenging theoretically, is the MC
phase. Here, the associated nonequilibrium steady state is
‘‘critical,’’ displaying (power law) correlations and anoma-
lous exponents. At the coarse-grained level, our system is
described by a continuous density, ��x; t�, and may be
studied as a stochastic field theory. Indeed, the TASEP is
a driven diffusive system [7] in one dimension. Deviations
of � about its average here,��x; t� � ��x; t� � 1=2, satisfy
the noisy Burgers equation [8]: @t� �

1
2@

2
x�� @x�2 �

@x�, where � is a Gaussian noise. Within the bulk of an
infinite system, the dynamic two-point function
h��x; t���x0; t0�i is translationally invariant and assumes a
scaling form [4,7,9]

 C��; �� � ��1f��=�2=3� (2)

where � � x0 � x and � � t0 � t. If we naively considerR
d�C��; �� as a candidate for our power spectrum, we

would find that Eqn. (2) leads to
R
dsf�s�, independent of

�. This seemingly surprising conclusion, consistent with
simply setting k � 0 in the results of [10], can be traced to
particle conservation in an infinite system. On closer ex-
amination, however, we should seek the Fourier transform
of

R
L
0 dxdx

0h��x; 0���x0; t�i in a finite system. If we ap-
proximate this two-point function by C��; ��, we are led toR
L
0 d�	2�L� ��C��; t�
, which is of the form t2=3g�L=t2=3�.

Thus, its Fourier transform would take the scaling form
I�!� � !�5=3G�L!2=3�. Assuming that G approaches a
positive constant for !� L�3=2, this theory predicts
I�!� / !�5=3. As discussed above, our data are consistent
with this power, although 1.62 appears to be a better fit.
Though a 3% disagreement seems minor, we found similar
discrepancies in other observables such as hN�t�N�t0�i.
These issues, along with finite-size corrections to scaling,
discrete space and time, and possible systematic errors,
will be explored elsewhere [5].

Typically, the behavior deep in the HD and LD phases
seems least interesting, with ordinary Gaussian fluctua-
tions. Yet, I�!� for this regime exhibits the most structure.
We now turn to a brief account of a simple, linear theory
for the fluctuations that predicts these interesting oscilla-
tions, focusing on the LD phase only.

Following standard routes for a continuum description
[4,7] of a driven density ��x; t�, we study small fluctua-

tions,�, around �� using the stochastic equation of motion:
@t��x; t� � D@2

x�� v@x�� @x�. Here, D is the (effec-
tive) diffusion constant, v is the bias, and � is a Gaussian
correlated (local) noise with zero mean. If we were to start
from the microscopic fnig and take a naive continuum
limit, we would arrive at D � 1=2 and v � 1� 2 �� (in
units of lattice spacing and MCS). But we leave these as
O�1� parameters for now. The solution in Fourier space is
easy: ~��k;!� � ik~��k;!�=	Dk2 � ivk� i!
, where
��x; t� �

R
k;!

~��k;!�ei�kx�!t� and
R
k �

R
dk=2�. With

N�t� �
R
L
0 dx��x; t� � ��L�

R
L
0 ��x; t�, we have ~N�!� �R

k�e
ikL � 1�~�=	Dk2 � ivk� i!
 for !> 0. Writing

h~��k;!�~���k0; !0�i � A	�k� k0�	�!�!0� and replacing
	�!�!� by T, we find the power spectrum to be AT

2� 
R
k j�e

ikL � 1�=	Dk2 � ivk� i!
j2. Evaluating the inte-
gral, we arrive at

 I�!� �
8ADT

v3 Re
�
eik�L � 1

R�1� R�2
�

eik
�
�L � 1

R��1� R��2

�
(3)

where R �
�����������������������������
1� 4iD!=v2

p
and k� � iv��1� R�=2D.

To shed light on this complex expression, we consider
three frequency regimes: (a) !! 0, e.g., m � 1; 2; 3 . . . ,
(b) intermediate !’s (!� v2=D, i.e., 1� m� T), and
(c) !! 1. In regime (a), I approaches a constant, which
can be used to fit A. A further simplification is that the first
term in Re	. . .
 is O��vL=D�2�, while the second term is
O�1�. Thus, the latter can be largely ignored, if we take,
e.g., L � 32 K as in the inset of Fig. 3. In regime (b), we
keep O�!2� corrections in R and k�, i.e.,

 1�
2iD!

v2 �
2D2!2

v4 and
!
v
�
iD!2

v3 ;

respectively. The result shows damped oscillations mani-
festly:

 I�!� �
2AvT

D!2

�
1� e�D!

2L=v3
cos�!L=v�

�
: (4)

The minima are near integer multiples of 2�v=L in! (i.e.,
vT=L in m). Remarkably, the minima in Fig. 3 are very
close to these values if we naively substitute (0.4, 106, 103)
for (v, T, L). Encouraged by this approach, we attempt to
fit the L � 32 K data with the full Eqn. (3). The result for
� � 0:3, shown in Fig. 4, is surprisingly good, indicating
that this simple theory has captured the essentials of our
system.

The physical origins of the oscillations are noteworthy.
They can be traced to the time it takes a fluctuation to
traverse the entire lattice. Indeed, if there is no exclusion
and each particle travels ballistically at velocity u, then
N�t�will consist of a random series of unit increments (due
to �), correlated with unit drops at times L=u later (assum-
ing � � 1). The associated I will be proportional to
z�2sin2z, with z � !L=2u, with zeros at multiples of
2�u=L. The effect of diffusion, embodied in D, is just to
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smear out the minima and fill in the zeros. Returning to the
fit above, we were surprised that it requiresD ’ 20 and A ’
1=500, values that seem remarkably far from the naive
O�1� levels. Work is in progress to understand why these
parameters are so seriously ‘‘renormalized’’ [5].

Beyond the oscillations, there is another subtle feature in
this intermediate ! regime. As Eqn. (4) shows, the oscil-
lations are completely damped when !2 exceeds v3=DL,
and I settles into !�2. Though not shown, this power is
confirmed in the L � 32 K case. However, on further
scrutiny, we see that R!

����
!
p

in the truly asymptotic
regime (c): !� v2=4D. Then, Eqn. (3) predicts a !�3=2

decay [11]. If this regime is reached before the oscillations
are fully damped, then the !�2 behavior of the ‘‘inter-
mediate regime’’ will lie hidden. This is indeed true for the
L � 1 K case, where the oscillations die out at much larger
m’s and only the 3=2 power is observed.

Outlook.—In addition to a more detailed and systematic
Monte Carlo study (e.g., larger systems, longer runs, finite-
size scaling, etc.), there are a number of issues worthy of
further pursuit. The continuum theory represents a rough
first step and should be refined to a version with discrete
spacetime. Most intimately connected to this Letter is a
better understanding of the origin of the large ‘‘renormal-
ization effects’’ on the diffusion coefficient, D. Beyond
interests specific to the simple TASEP, we are motivated by
its applicability to protein synthesis, where the lattice
(particles) model the mRNA (ribosomes) [2]. To capture
more of the process in vivo, we should include the effects
of (i) particles that occupy ‘ > 1 sites, (ii) inhomogeneous
hopping rates, (iii) finite reservoir of particles which can
enter the lattice, and (iv) competition with other TASEPs
(mRNAs) for a finite pool of particles. Some of these issues
have been considered [2], though none focused on the total
occupancy, a quantity surely of interest in the context of
biology. Needless to say, many other generalizations—all
well motivated by physical systems—come to mind, e.g.,
many particle species, multiple lanes, and high dimen-

sions. In the past, power spectra have served us well,
providing valuable perspectives into stochastic systems in
general [12] and driven system in particular [13]. We hope
this Letter will spark further interest to study power spectra
in novel nonequilibrium systems far beyond physics, such
as biology, social networks, and finance.
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FIG. 4 (color online). Power spectrum log�I� vs m for � �
1� � � 0:3 with L � 32000.
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