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(ABSTRACT)

Results are presented for a unified analysis of the reactions

pp pp→ , π πd d→  and πd pp→  over the center-of-mass energy

interval from pion threshold to approximately 2.4 GeV.  These

results for πd pp→  and πd  elastic scattering are superior to

previous VPI  analyses of these reactions.  In particular, the overall

phase in πd pp→  has now been determined.  Comparisons and

predictions are made with previous (separate and unified) analyses of

this two-baryon system.  Several partial wave amplitudes show

resonance-like behavior in these reactions.



iii

Acknowledgments

I would like to thank my advisor, Dr. R.A. Arndt, for his individual guidance and

patience over the past years.  I would also like to thank my graduate student

advisor and co-chairman, Dr. J.R. Ficenec, for his concern and encouragement.

Credit should be given to my CAPS group members, Drs. R.L. Workman and I.I.

Strakovsky, for their many discussions and generous help on this study.  Thanks

also goes to Drs. L.D. Roper, D.A. Jenkins, and T. Mitzutani for helpful

suggestions and comments.  I would like to express my deep appreciation to Chris

Thomas who has always been ready to help, and R.A. Link for his support in

setting up the computers.

I wish to thank again Drs. R.A. Arndt and L.D. Roper for their especially kind care

for me as their last graduate student.

I have benefited from financial assistance provided by the U.S. Department of

Energy and the Physics Department at VPI&SU.

Finally, a special thank goes to my dear wife and son who made this dissertation

successful.  Credit is also given to my relatives.

I will always be in debt to my loving parents.  They have always believed in me

and encouraged me to achieve with great love and patience.  This thesis is

dedicated to them.



iv

Contents

1  INTRODUCTION 1

2  BACKGROUND 4

3  FORMALISMS FOR THE OBSERVABLES 13

3-1  Partial Wave Decomposition for the Three Reaction ----- 13

3-2  Helicity Amplitudes for the Three Reactions ----- 17

3-2-1  Helicity Amplitudes for the Elastic pp  Reaction ----- 17

3-2-2  Helicity Amplitudes and Observables

for the Elastic πd  Reaction ----- 22

3-2-3  Helicity Amplitudes and Observables

for the πd pp→  Reaction ----- 26

4  FORMALISMS FOR A UNIFIED ANALYSIS 32

5  DATA DISTRIBUTION 37

6  PARTIAL WAVE AMPLITUDES 46



v

7  RESONANCE-LIKE BEHAVIOR

IN THE B = 2 SYSTEM 79

8  SUMMARY AND CONCLUSIONS 94

A  Some Useful Kinematic Relations 96

B  Partial Wave Decomposition for the Three Reactions 98

C  Observables for the Elastic pp Reaction 105

D  Unitarity and Multi-Channel Matrix Formalisms 110

Bibliography 114

Vita 118



vi

List  of  Figures

Figure 1. Energy scale in terms of the total center-of-mass energy ( s W= ) and
the incident kinetic energies of the proton (Tp ) and the pion (Tπ ) in the pp  and

πd  initial states, respectively. -------------------- 6

Figure 2. Total cross sections.
Figure 2 (a).  Total pp  cross sections. -------------------- 8
Figure 2 (b).  Total πd  cross sections. -------------------- 9

Figure 3 Energy-angle distribution of the complete data set for the three reactions.
Figure 3-1. Elastic pp  reaction ------------------- 43
Figure 3-2. Elastic πd  reaction ------------------- 44
Figure 3-3. πd pp→  reaction ------------------- 45

Figure 4. Partial wave amplitudes for the unified system from 0 to 500 MeV in Tπ

and 290 to 1290 MeV in Tp ; (a) 0+ , (b) 1+ , 3+ , 5+ , (c) 1− , (d) 2+ , (e) 2− ,

(f) 3− , (g) 4+ , (h) 4− , and (i) 5−  system. -------------------- 47 ~ 55

Figure 5.  Partial wave amplitudes for the elastic dπ  reaction from Tπ  = 0 to 500

MeV: (a) 3
0P  ( 0+ ), (b) 3

1P  (1+ ), (c) 3
1S  (1− ), (d) 3

2P  ( 2+ ), (e) 3
2D  ( 2− ), (f)

3
3F  ( 3+ ), (g) 3

3D  ( 3− ), (h) 3
4F  ( 4+ ), (i) 3

4G  ( 4− ), (j) 3
5H  (5+ ), (k) 3

5G

(5− ). -------------------- 57 ~ 60

Figure 6.  Partial wave amplitudes for πd pp→  from Tπ  = 0 to 500 MeV: (a)
1

0S p  ( 0+ ), (b) 3
1P s  (1+ ), (c) 1

2D p  ( 2+ ), (d) 3
2P d  ( 2− ), (e) 3

3F  ( 3− ), (f)
1

4G f  ( 4+ ), (g) 3
4F g  ( 4− ), (h) 3

5H g  (5− ).

Figure 6-1. Without phase adjustment -------------------- 63 ~ 65
Figure 6-2. Moduli comparison -------------------- 66 ~ 68
Figure 6-3. Phase matched comparison -------------------- 69 ~ 71

Figure 7.  Overall phase difference for  πd pp→ . ------------ 73



vii

Figure 8.  Argand plots for Tπ  = 0 to 500 MeV.  Only the three dominant partial

waves are plotted in each reaction.

Figure 8-1. The Argand plots of 3
2P  ( 2+ ), 3

3D  ( 3− ), and 3
2D  ( 2− ) for

elastic πd  reaction. ------------------- 77

Figure 8-2. Argand plots of 1
2D p  ( 2+ ), 3

3F d  ( 3− ), and 3
2P d  ( 2− ) for

πd pp→ .  Phase matched Argand plots for πd pp→  are displayed in
8-2 (b). ------------------- 78

Figure 9. Argand plots of the dominant partial wave amplitudes in each system

from Tπ  = 0 to 500 MeV: (a) 0+ , (b) 1+ , (c) 1− , (d) 2+ , (e) 2− , (f) 3+ , (g)

3− , (h) 4+ , (i) 4− , (j) 5+  and (k) 5−  system. ----------- 85 ~ 89

Figure 10. Predictions for observables.
Figure 10-1. Predictions for observables of the πd  elastic reaction.

(a) Tπ  = 256 MeV and (b) Tπ  = 180 MeV. ----------- 91

Figure 10-2. Predictions for observables of the πd pp→  reaction.
(a) Tπ  = 143 MeV and (b) Tπ  = 180 MeV. ----------- 92 ~ 93



viii

List  of  Tables

Table 1.  Partial wave decomposition of the pp , dπ , and ∆N  systems. ----- 16

Table 2. Available observables and their polarization for the three reactions.
Table 2-1. For elastic pp  reaction ---------- 23
Table 2-2. For elastic πd  reaction ---------- 26
Table 2-3. For πd pp→  reaction ---------- 31

Table 3. Comparisons of the unified (C500) and previous (separate) analyses.- 38

Table 4. Number of data points for each observable.
Table 4-1. In elastic pp  reaction --------- 40
Table 4-2. In elastic πd  reaction --------- 41
Table 4-3. In πd pp→  reaction --------- 42

Table 5. Comparison of single-energy (binned) and energy-dependent analyses.
Table 5-1. dπ  elastic scattering data. --------- 74
Table 5-2. ppd →π  reaction data. --------- 75

Table A. Possible partial wave decompositions
A-1. For the pp  elastic system. --------- 101
A-2. For the πd  elastic system. --------- 101
A-3. For the πd pp→  system. --------- 102
A-4. For the N∆  system. --------- 104



1

Chapter 1

INTRODUCTION

Although nuclear physics has been studied for almost a century, there are

many unsolved problems.  The intermediate energy range is a particularly useful

area to understand nuclear physics, as interactions in this energy region are studied

through different kinds of theoretical approaches (such as the potential model).

This is the transition region between low energy physics which cannot be solved

using standard perturbation techniques and high energy physics where some

process can be studied using perturbative QCD.  In the intermediate energy range

there are only a few low angular momentum states available and a few open

channels, thereby simplifying the analysis.

Scattering is a general tool used to study the dynamics of the interactions

which govern the behavior of particle systems.  All the information from scattering

is characterized by the scattering amplitudes which depend on the kinematical

variables, such as scattering angle and energy, and also on the quantum numbers

describing the states of the particles participating in the collision process.

Analysis of scattering information allows one to examine the predictions of

different theoretical approaches of strong interactions between subatomic particles.

It also allows one to suggest experimentation that can differentiate between

theoretical models and provide practical information for models.  For this purpose,

it is necessary to analyze scattering information from the entire available data set
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over an appropriate energy range without resorting to other theoretical inputs or

models.

Only a  complete, unbiased analysis can provide amplitudes that can be

compared with theoretical models and can guide effective experimentation.

The first step in the understanding nuclei is to understand the two nucleon

( NN ) system.  The nucleon is a baryon(B).  All the baryons and mesons (the π

meson is an example) are hadrons that experience the strong interaction.  To study

strong interactions, the simplest choice is the two nucleon system.  It has a long

history of study in nuclear physics, and is easily accessible to experimentation.

However, overall phases in inelastic channels are still undetermined.  In addition,

there is a resonance-like behavior in the two nucleon interaction.  The very

existence (or non-existence) of actual “resonant” (or “pseudo-resonant”) states has

been a hot issue in the Nuclear Physics community over the last half century.

A unified partial wave analysis of the two baryon system is required to

understand the two nucleon structure and the resonance-like states.  By

constructing a unified system and simultaneously analyzing the results of reactions

in the form of detailed partial waves, a consistent picture should emerge.

However, until the present time, no such unified analysis has been presented.

In the intermediate energy range, it is useful to employ a multi-channel

formalism in analyzing all existing data simultaneously.  In the present work, we

have used the K-matrix formalism in order to unify the analysis of several

reactions ( pp pp→ [1], π πd d→ [2], and πd pp→ [3]) which have, in the past,

been considered separately - the most updated versions of the analyses for these
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reactions are provided by SAID[4].  The center-of-mass energy s  range was

chosen to include all of VPI results for the pion-induced reactions with pion

kinetic energies ( Tπ ) from 0 to 500 MeV.

This thesis contains eight chapters and four appendices.  A survey of

previous work, relevant to this thesis, is presented in Chapter 2.  Chapter 3 gives

the formalisms for the observables of three reactions.  All the scattering

information is decomposed into angular momentum states, namely a partial wave

decomposition.  On the other hand, the two nucleon system contains spin.

Depending on the polarization of the scattering states, independent measurements

are reconstructed using helicity amplitudes.  Chapter 4 gives the multi-channel K-

matrix formalisms for the unified analysis.  Chapter 5 gives the data distribution of

the three reactions.  Results of the partial wave analysis for a unified two baryon

(B = 2) system will be explained in Chapter 6; and in this chapter, the unified and

separate analyses will be compared, and the phase ambiguity in the separate

πd pp→  analysis[3] will be described.  In chapter 7, the detailed energy

dependence of the amplitudes will be explained with Argand plots.  Study of

resonance-like behaviors in the two baryon system and the predictions for the

observables will also be provided in this chapter.  Chapter 8 concludes the present

work with a discussion of the results from the unified analysis of the B = 2 system,

and with suggestions for future work and experiments.
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Chapter 2

BACKGROUND

An understanding of the NN interaction is fundamental to studies of the

more general NNπ  problem[5].  Two nucleon elastic( NN NN→ ) scattering is the

simplest choice for the purpose of studying the two baryon system, since nuclei are

built from protons and neutrons.  Below 1 GeV, in proton laboratory kinetic energy

( pT ) for the NN system, the dominant channels contributing to NN inelasticity are

dπ  and N∆ [6].  The ∆ is a resonant state with spin 3
2  that decays predominantly

to the πN .

The pion is the lowest mass strongly interacting meson and is considered a

carrier of the strong interaction between nucleons.

Another important object to study in nuclear physics is the deuteron.  The

deuteron is the nucleus of the heavy hydrogen atom (deuterium); the stable but

lightly-bound combination of one proton and one neutron.  It is the simplest multi-

nucleon system, and the only known bound state of two nucleons with baryon

number two (B = 2) and isospin zero (I = 0).    The deuteron’s binding energy is

2.224 MeV[7].

The proton-proton elastic ( pp pp→ ), pion-deuteron elastic (π πd d→ ),

and pion-deuteron to proton-proton (πd pp→ ) reaction have long been

recognized as an important arena to study the strong nuclear force.   One reason is
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they are the simplest examples of the strong interaction easily accessible to

experimentation.  These interactions are obviously important to our understanding

of the hadronic force.  Explicit first principle calculations of the physical

observables, cross sections, and polarizations are not yet possible.  Recent analyses

for NN elastic[1], πd  elastic[2], and  πd pp→  inelastic[3] scattering have been

performed by the VPI&SU group; and the most updated versions of the analyses of

these reactions are provided by SAID[4].

Our knowledge of the B = 2 system has been enhanced through partial-

wave analyses of the NN and πd  subsystems.   One interesting feature of these

analyses is the appearance of resonance-like behavior in a number of partial-

waves.   Similar structures have been seen in NN and π d  elastic scattering as well

as the reaction πd pp→ .

Above pT  = 280 MeV, the two nucleon reaction can produce a pion.  It

produces πNN, πd , and N∆ .  Since the interaction range is governed by the strong

interaction, the π −d  elastic reaction is identical with π +d  elastic reaction before

Coulomb correction.  Both the NN and πd  reactions produce πNN, N∆, πN∆,

NN*(1440), NN*(1520), etc.  All these channels are usually accounted for by a

single “ N∆ ” channel.  This catch-all channel is indeed mainly the N∆  channel.

The most important thresholds are illustrated schematically in Figure 1.

Figure 1 shows the energy scale in terms of the total center-of-mass energy

( s W= ) and the incident kinetic energies of the proton (Tp ) and the pion (Tπ ) in
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Figure 1. Energy scale in terms of the total center-of-mass energy ( s W= )

and the incident kinetic energies of the proton (Tp ) and the pion (Tπ ) in the pp

and πd  initial states, respectively.  The vertical dashed lines show the energy

range of the analysis.  The locations of relevant thresholds are also presented.

Relations among the total center-of-mass energy ( s W= ) and the incident kinetic

energies of the proton (Tp ) and the pion (Tπ ) in the pp  and πd  initial states are

presented in Appendix A.



7

the pp   and πd  initial states, respectively.  The vertical dashed lines show the

energy range of the analysis.  The locations of relevant thresholds are also

illustrated.  Relations among the total center-of-mass energy ( s W= ) and the

incident kinetic energies of the proton (Tp ) and the pion (Tπ ) in the pp  and πd

initial states are given in Appendix A.

Figure 2 shows that the catch-all channel is indeed mainly N∆  channel,

where the total cross sections for pp  and πd  scattering are broken into their

components. N∆  is the most dominantly produced system from both the πd  and

NN reactions, while other produced systems are infrequent below Tp  = 1290 MeV.

Figure 2 (a) displays the total pp  cross sections, σ tot  (solid) and total elastic cross

sections σ tot
el  (dashed) correspond to the unified (C500) solution.  Data for σ tot

(open circles) are taken from the SAID[4] data base.  Dash-dotted line,

corresponding to the C500 solution, shows the total cross section (σ π
tot
pp d→ ) for

pp d→ π .  The corresponding data from the SAID database are plotted as open

triangles.  The remainder ( ∆σ ) is given by σ σ σ π
tot tot

el
tot
pp d− − →  and plotted as a

dotted line.  Total cross sections for the reactions pp p n→ ++ + +∆ ∆ [7] are plotted

as dark circles.  Details of the observables will be provided in Chapter 3.

Figure 2 (b) describes total πd cross sections.  σ tot  (solid) and total elastic

cross sections σ tot
el  (dashed) correspond to the unified (C500) solution.  Data for

σ tot  (open circles) are taken from the SAID[4] data base.  Dash-dotted line (C500)

shows the total cross section (σ π
tot

d pp→ ) for πd pp→ .  The corresponding data

from the SAID database are plotted as open triangles.  The remainder ( ∆σ ) is
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Figure 2 (a). Total pp cross sections σ tot  (solid) and total elastic cross

sections σ tot
el  (dashed) correspond to the Unified (C500) solution.  Data for σ tot

(open circles) are taken from the SAID[4] data base.  Dash-dotted line,

corresponding to the C500 solution, shows the total cross section (σ π
tot
pp d→ ) for

pp d→ π .  The corresponding data from the SAID database are plotted as open

triangles.  The remainder ( ∆σ ) is given by σ σ σ π
tot tot

el
tot
pp d− − →  and plotted as a

dotted line.  Total cross sections for the reactions pp p n→ ++ + +∆ ∆ [6] are plotted

as dark circles.  Details of the observables will be provided in Chapter 3.
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Figure 2 (b). Total πd cross sections σ tot  (solid) and total elastic cross

sections σ tot
el  (dashed) correspond to the Unified (C500) solution.  Data for σ tot

(open circles) are taken from the SAID[4] data base.  Dash-dotted line (C500)

shows the total cross section (σ π
tot

d pp→ ) for πd pp→ .  The corresponding data

from the SAID database are plotted as open triangles.  The remainder ( ∆σ ) is

given by σ σ σ π
tot tot

el
tot

d pp− − →  and plotted as a dotted line.  Details of the

observables will be provided in Chapter 3.
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given by σ σ σ π
tot tot

el
tot

d pp− − →  and plotted as a dotted line.  Details of the

observables will be provided in Chapter 3.

The resonance-like behaviors of the three systems ( NN ,πd and N∆ ) are

similar; and therefore appear to have a common interaction mechanism that can be

studied by multi-channel analysis.  A nucleon state is described by a Baryon

Number (B), Isospin (I), and total angular momentum (J).  The observation, that

the resonance-like behaviors, for a given value of J, in pp pp→ , πd pp→ , and

π πd d→  are similar, implies the resonance-like states in these reactions are, in

fact, a single state of the two nucleon system that has the values of B = 2, I = 1.

The resonance-like behaviors in the two baryon system have been variously

described as "resonant" (due to the creation of dibaryon resonances) and

"pseudo-resonant" (due to the ∆N  intermediate state).  The very existence (or non-

existence) of the dibaryon system has been one of the hottest issues of debate in

the Nuclear Physics community in the last half century.  More details about this

issue will be presented in Chapter 7.

Clearly, we are not the first to consider this problem.  A multi-channel

analysis of these three reactions, in a narrow energy range near the N∆ threshold,

was recently reported by J. Nagata et al.[8].  This work used a mix of model-based

and phenomenological results to investigate possible narrow structures around s

≈ 2.16 GeV in these reactions.  They analyzed the analyzing power Ay  of elastic

pp scattering at an angle of roughly 39° in the center-of-mass system.

An older work by B.J. Edwards[9] used the multi-channel K-matrix

formalism to study the PJ  = +2  and −3  states associated with dibaryon
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candidates where J is total angular momentum and P is parity.  They performed a

pp -N∆  two-channel analysis and tried to find poles for the J P = +2  and −3

states.  They neglected the effect of πd  channel in the first trial.  By including the

πd  channel in addition to the pp -N∆, a three-channel approach was performed in

the second trial.

N. Hiroshige’s  group performed several analyses[10].  They studied the

J P = +2 , 3− , and 2−  states.  Their agreement with the elastic πd  amplitudes was

poor.

Actually, the use of multi-channel analysis has long history in the analysis

of scattering information.  An early analysis of this type was discussed and

performed by R.A. Arndt in the 1960s[11].  The authors of the reference 11 had

performed a pp -N∆  two-channel analysis to fit the elastic pp  reaction data.

Recent work of this type was reported in reference 1 and the most recent result is

provided by SAID[4].  A πd -N∆  two-channel analysis has also been used in

fitting the elastic πd  reaction data.  This was reported in reference 2 and an

updated result is provided by SAID[4].

The approach needed to address these questions begins with the

development of a complete data base of pp pp→ , πd pp→ , and π πd d→

scattering results.  It requires the examination of these resonance-like states from

three different reactions by constructing a unified system and simultaneously

analyzing the results in the form of detailed partial waves.  However, until the

present analysis, no such a unified analysis has been presented.

The present analysis differs from those carried out previously in a number

of important respects.  We analyzed all the possible partial waves completely and
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simultaneously from a complete collection of scattering data.  We did not restrict

our study to partial-waves containing interesting structures.

For pp  elastic scattering, all waves with J < 7 were used.  Partial waves

with J < 5 were retained for both dπ  elastic scattering and ppd →π .  In addition,

the K-matrix parameters were determined solely from our fits to the available data

bases for each separate reaction.  No results of outside analyses or any model

approaches were used as constraints.  As a result, the amplitudes found in our

K-matrix fits are as "unbiased" as those coming from the separate analyses[4].
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Chapter 3

FORMALISMS FOR THE

OBSERVABLES

In quantum mechanics, a scattering process is described by a scattering

amplitude.  This amplitude depends on the kinematical variables, such as scattering

angle and energy, and also on the quantum numbers describing the states of the

particles participating in the collision process.  It is convenient to expand the initial

and final wave functions into angular momentum states.

The scattering amplitude at fixed values of the energy and scattering angle

requires several independent measurements depending on the reaction.  These

independent measurements are described in terms of the helicity amplitudes.

§ 3-1. Partial Wave Decomposition for the Three Reactions

A brief review of elementary scattering theory, which describes the partial

wave decomposition and observables in scattering reactions, follows.  The solution

of the Schrödinger equation for a scattering reaction (see any nuclear physics text

book, for example, reference 11) is given by
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ψ ( )r e f
e

r
r ikz

ikr
→∞ → +

where k p= h  and p is momentum of the incident particle that is along the z-axis.

Here the first term describes incident plane wave along the z-axis and the second

term describes the scattered spherical wave.    The scattering amplitude is defined

as f, which is a function of energy and scattering angle.

The expansion of the incident plane wave for r >> R, where R is the range

of the potential that is finite, has the following asymptotic behavior ;
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where θ is the scattering angle.  Here the first (second) term describes the outgoing

(incoming) spherical wave.

A similar expansion of the final wave function, in presence of absorption yields ;
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At large distance, the effects of the scattering potential alter the outgoing l th  wave

by a phase shift 2δ l  and by an attenuation ηl  (or absorption parameter), if some

absorption has taken place.

The scattered wave ψ sc  is given by difference ψ ψf i− ;
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The scattering amplitude is
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where ε is the energy of the incident particle.  Alternatively, we can define the

dimensionless scattering amplitude in a given l th  angular momentum state, called

partial wave amplitude, as;

f T
e

il l
l

i l

= =
−η δ2 1

2
 .

Generally, Tl  is used as a notation for the partial wave amplitude.

The partial wave decomposition of the pp , dπ , and ∆N  systems are given

in Table 1.  In Table 1, the state notations are 2 1S
JL+  where S is the total spin

quantum number, J is the total angular momentum quantum number of the system,

and the letter for L (S, P, D, F, G, H) represent the orbital angular moments

quantum number (0, 1, 2, 3, 4, 5) in units of h .  Details of the partial wave

decomposition of the elastic pp , πd  reactions and πd pp→  reaction are

presented in Appendix B.

One important restriction for the elastic pp  reaction is parity (P)

conservation.  Elastic pp  scattering occurs between two identical particles.  The

Pauli principle requires that the total wave function of this system should be

antisymmetric[13].  So only spin singlet (odd under exchange) even angular

momentum states (even under exchange) or spin triplet (even under exchange) odd

angular momentum states (odd under exchange) can be present for the elastic pp

system.  Details of these constraints are presented in Appendix B.
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Table 1. Partial wave decomposition of  the pp , dπ , and ∆N  systems.

J P dπ pp ∆N

+0
3

0P 1
0S 5

0D

−0
3

0P 3
0P

+1
3

1P

3
1P

3
1S , 3

1D

5
1D

−1
3

1S , 3
1D

3
1S , 3

1D

3
1P

3
1P

3
1P

5
1P , 5

1F

+2

3
2P , 3

2F

3
2P , 3

2F

3
2P , 3

2F

1
2D

1
2D

1
2D

3
2D

5
2S , 5

2D

5
2D , 5

2G

−2
3

2D

3
2D

3
2P , 3

2F

3
2P , 3

2F

3
2P , 3

2F

5
2P , 5

2F

+3
3

3F

3
3F

3
3D , 3

3G

5
3D , 5

3G

−3

3
3D , 3

3G

3
3D , 3

3G

3
3D , 3

3G

3
3F

3
3F

3
3F

3
3P , 3

3F

5
3P , 5

3F

5
3F , 5

3H

+4

3
4F , 3

4H

3
4F , 3

4H

3
4F , 3

4H

1
4G

1
4G

1
4G

3
4G

5
4D , 5

4G

5
4G , 5

4I

−4
3

4G

3
4G

3
4F , 3

4H

3
4F , 3

4H

3
4F , 3

4H

5
4F , 5

4H
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§ 3-2. Helicity Amplitudes for the Three Reactions

Since a nucleon has spin, the scattering amplitudes of the two nucleon

system can be described in a simple matrix form in spin space. To reconstruct the

scattering amplitude at fixed values of the energy and scattering angle, one

requires several independent measurements depending on the reaction.  These

independent measurements are described in terms of the helicity amplitudes.

The dependence of the scattering amplitude on the helicity amplitudes is

greatly restricted by various invariance requirements most of which are connected

with conservation laws.  All the possible observables in the two nucleon

interactions are described in terms of the restricted number of helicity amplitudes.

Also each helicity amplitude is determined by the summation of proper partial

wave combinations.

3-2-1. Helicity Amplitudes for the Elastic  pp Reaction

In the case of the two nucleon interaction, it is convenient to use a nucleon-

nucleon scattering matrix.  The scattering matrix for the pp elastic reaction is [14]

( ) ( )[
( ){ }]

M a b a b c d

c d e

f iq q n n m m

l l n

, ( )( )( ) ( )( )( )

( )( )( )

= + + − ⋅ ⋅ + + ⋅ ⋅

+ − ⋅ ⋅ + + ⋅

1

2 1 2 1 2

1 2 1 2

σσ σσ σσ σσ

σσ σσ σσ σσ                                                 
.

Here, qi  ( q f ) is a unit vector in the direction of the incident (scattered) particle

momenta in the c.m.s.(center-of-mass system).  a, b, c, d, e denote amplitudes,

which are the functions of center-of-mass energy, ε, and the scattering angle, θ.

The c.m.s. basis vectors are
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l
q q

q q
=

+

+
i f

i f

m
q q

q q
=

−

−
i f

i f

n
q q

q q
=

×

×
i f

i f

.

σ1  (σ2 ) is the Pauli spin matrix acting on the first (second) nucleon wave

function.

This nucleon-nucleon scattering matrix is denoted by helicity.  The helicity 

λ for a nucleon is + 1
2  if the spin projection is parallel to the momentum, − 1

2  if

it is anti-parallel.  Using ‘+’ for + 1
2  and ‘−’ for − 1

2  helicity, the scattering

matrix is

M =

+ + + + + + + − + + − + + + − −
+ − + + + − + − + − − + + − − −
− + + + − + + − − + − + − + − −
− − + + − − + − − − − + − − − −



















M M M M

M M M M

M M M M

M M M M

.

   The helicity amplitudes are denoted λ λ λ λ3 4 1 2  M , where λ1describes

the incident particle, λ2  describes the target, λ3  describes the scattered particle

and λ4  describes the recoil particle.  The helicity amplitudes can be expanded into

a partial wave sum as

λ λ λ λ λ λ λ λ θλµ3 4 1 2 3 4 1 2
1

2
2 1    M

ik
J T E dJ J

J
= +∑ ( ) ( ) ( )

where λ λ λ= 1 2− , µ λ λ= 3 4−  and d J
λµ θ( )  are rotation matrices satisfying

( ) ( )d d dJ J J
λµ

λ µ
λµ

λ µ
λ µθ θ θ( ) ( ) ( )= − = −− −

− −1 1 .
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These amplitudes are greatly restricted by various invariance requirements

most of which are connected with conservation laws.  Parity conservation implies

− − − − =λ λ λ λ λ λ λ λ3 4 1 2 3 4 1 2    T E T EJ J( ) ( ) ;

time reversal invariance implies

λ λ λ λ λ λ λ λ1 2 3 4 3 4 1 2    T E T EJ J( ) ( )= .

The Pauli principle implies

λ λ λ λ λ λ λ λ4 3 2 1 3 4 1 2    T E T EJ J( ) ( )= .

These relations imply that the helicity amplitudes satisfy

( )− − − − = − − − +λ λ λ λ λ λ λ λλ λ λ λ
3 4 1 2 3 4 1 21 1 2 3 4    M M

( )λ λ λ λ λ λ λ λλ λ λ λ
1 2 3 4 3 4 1 21 1 2 3 4    M M= − − − +

( )λ λ λ λ λ λ λ λλ λ λ λ
4 3 2 1 3 4 1 21 1 2 3 4    M M= − − − +

Taking these symmetry relations into account and indicating only the signs

of the nucleon helicities requires only five components for the scattering matrix:

M M M1 ≡ + + + + = − − − −

M M M2 ≡ + + − − = − − + +

M M M3 ≡ + − + − = − + − +

M M M4 ≡ + − − + = − + + −

M M M5 ≡ + + + − = − + − − = − − + − = − + + +M M

= − − − − + = − + − + +M M

= − + + − + = − + − − −M M
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In the analysis, we use a notation H for the helicity amplitude. Relations for

the helicity amplitudes (H) in terms of the elements of the scattering matrix (M)

and the partial waves amplitudes, which were described in section 3-1, are[15]:

( ) ( ) ( )H M M M J T PJ J
J

1 1 2 4
1

2
2 1= − − = +∑

=
cosθ  

even

( ) ( ) ( )
( )

( ) ( )( ) ( )
( )

H M j T P
P

J J

J T JT J J
P

J J

JJ J
J

J

J J J J J
J

2 3

1

1 1

1

1

2
2 1

1

1 2 1
1

= + −
+


















∑

+ + + − +
+






− +

=

                               

cos
cos cos

cos
, ,

θ
θ θ

ε
θ

( ) ( ) ( )
( )

( ) ( )( ) ( ) ( )
( )

H M M M M j T
P

J J

J T JT J J P
P

J J

JJ
J

J

J J J J J J
J

3 1 2 3 4

1

1 1

1

1

2
2 1

1

1 2 1
1

= + + − +
+






∑

+ + − + −
+


















− +

=

       +

cos

cos
cos cos

, ,

θ

ε θ
θ θ

( )( ) ( )
( )

H M J J T T
P

J JJ J J J
J

J
4 5 1 1

1

1
1

= − + −
+

∑ − += , ,
cos

sin
θ

θ

( ) ( ) ( )( ) ( )H M M JT J T J J PJ J J J J J
J

5 1 2 1 1
1

2
1 2 1= + = + + + +∑ − +, , cosε θ

Here, ( ) ( ) ( )P x x
d
dx

P xJ J
1 2

1

21= −  is the first order associated Legendre function,

when x = cosθ .

Partial waves, when described in terms of total angular momentum J, are

TJ  : Partial waves of spin singlet state where J ≥ 0 and even parity,

TJJ  : Partial waves of spin triplet J = L state where J > 0 and odd parity,
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TJ J, −1  : Partial waves of spin triplet J = L + 1 state where J > 0 and even

parity,

ε J  : Partial waves of spin flipped mixture state of J = L + 1 and J = L − 1

where J > 0 and even parity,

TJ J, +1 : Partial waves of spin triplet J = L − 1  where J ≥ 0 and even.

Since the proton is a spin one-half particle, it can be polarized in three Pauli

spin directions.  When the unpolarized condition is included, the four possible

polarization conditions suggest that there are 256 (=44 ) possible conditions to

observe the elastic pp  reaction[16].  General descriptions of these observables are

presented in Appendix C.

There are 25 measured observables for the elastic pp  reaction available in

SAID and summarized in Table 2-1.  In Table 2-1, notations for particles are as

follows; P is Polarization, p1 is the incident proton beam, p2 is the target proton, p1′′

is the scattered proton, and p2′′ is the recoil proton.  Notations for polarization are

as follows; P means polarization, D means depolarization tensor, A means

asymmetry in cross section, C means polarization correlation, K means

polarization transfer, and M means contribution to the polarization of scattered

particle.  Bold notations are used in SAID[4].  Details of all notations, including

polarization conditions and direction normal vectors, are explained in Appendix C.
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3-2-2. Helicity Amplitudes and Observables

for the Elastic ππ d Reaction

Due to parity conservation, four independent helicity amplitudes are

required for this reaction.   Thus, for reconstruction of the scattering  amplitude at

fixed values of the energy and scattering angle, one requires seven independent

measurements.  The helicity amplitude, Hαβ θ( ) , is labeled by the deuteron

helicities (α and β) in the initial and final states[17].   Here the angle θ is the

center-of-mass scattering angle of the outgoing pion.

{
}

H H J T JT

J T J J T d

J J
J

J J
J

J

J J
J

J J
J J

11 1 1 1 1 1
1

1 1 1 1

1

2
1

2 1 2 1

≡ = + +∑

+ + + +

− − + +
≥

− +

( )

( ) ( )

, ,

, , ,                               

{ }H H J T T T dJ J
J

J J
J

J J
J J

J
10 2 1 1 1 1 1 1 1 0

1

1

2
2 1 2≡ = − + − +∑ + + − − − +

≥
( ) ( ), , , ,

{
}

H H J T JT

J T J J T d

J J
J

J J
J

J

J J
J

J J
J J

1 1 3 1 1 1 1
1

1 1 1 1

1

2
1

2 1 2 1

− − − + +
≥

− + −

≡ = + +∑

− + + +

( )

( ) ( )

, ,

, , ,                                

{ }H H JT J T J J T dJ J
J

J J
J

J J
J

J

J
00 4 1 1 1 1 1 1

1
0 01 2 1≡ = + + − +∑ − − + + − +

≥
, , , ,( ) ( )

Here, d J
α β,  is the reduced rotation matrix.  T

L L
J
π π' ,

 is the partial wave amplitude

and Lπ '  ( Lπ ) means angular momentum of  πd  final (initial) state.

By the symmetry relations,

H Hαβ
α β

α β= − +
− −( )1 (α, β ≠ 0)

and H H0 0β β= − .
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Table 2-1. Available observables and polarization for the elastic pp  reaction

       p1     p2      Pp1      p2      p1     Pp2      Pp1     Pp2

   p1′′
   p2′′

 I    (0000)

 d
d

σ
Ω

 σ T

 σT
el

 A

 P

 A

         (P)

 A
   Axx : (00ss)

   Azz : (00kk)

   Azx : −(00sk)

 Pp1′′

   p2′′

 P

       ( P )

  D (Dn0n0)
 A:  (Ds′0k0)
 AP:  (Dk′0k0)
 R:   (Ds′0s0)
 RP:   (Dk'0s0)

 K  M

   MSSN: (s'0ns)
   MSKM: (k'0ns)

   p1′′
 Pp2′′

 P
       ( P )

 K
 AT:  −(0s"k0)
 RT: (0s"s0)
 DT: (0nn0)

 D
 D0SK: (0s"0k)

 N
   NNKK: (0nkk)
   NSNK:  (0s"nk)
   NSKN:  (0s"kn)

 Pp1′′

 Pp2′′

 C

 Ayy  (nn00)

 CKP  (lm00)

 C  C  C

 ∆σ tot
 L :

   =
→
←







 −

→
→







σ σ  

 ∆σ tot
 T :

   ( ) ( )= ↑ ↓ − ↑ ↑σ σ    

P : Polarization
p1 : Incident Proton (Beam) p2 : Target Proton
p1′′ : Scattered Proton p2′′ : Recoil Proton
P : Polarization D : Depolarization Tensor A : Asymmetry in Cross Section
C : Polarization Correlation K : Polarization Transfer
M : Contribution to the Polarization of Scattered Particle

Directions : (p1′′, p2′′, p1, p2)
in Lab. ; q for p1         (z-axis; k) q′′ for p1′′ (k′) q′′′′ for p2′′ (k′′)

in c.m. ; n
q q

q q
=

×

×
i f

i f

(y-axis; n) l
q q

q q
=

+

+
i f

i f

 (K, l) m
q q

q q
=

−

−
i f

i f

 (P, m)

Also s n q= ×        (x-axis; s) s n q' '= ×  (s′) s n q" "= ×  (s′′)
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The relations between helicity amplitudes and observables available in

SAID are as follows.  For the unpolarized cross section;

d
d

Ig
σ σ
Ω

= 0

where  I t H H H H0 00
00

1
2

2
2

3
2

4
22 4 2≡ = + + +

and σ
π

g
c

q
=











1

3

2
h

,  qπ  is the pion momentum in c.m.

[ ]σ πσT g H H= +4 2 0 01 4Im ( ) Im ( )

σ πσ θ θπ
T
el

g I d= ∫4 00 sin  

For the polarization of deuteron, the tensor operator requires four  3 × 3 matrices

which can be expressed in terms of the spin operator S and the unit matrix[18];

1

1 0 0

0 1 0

0 0 1

=
















, Sx =
















1

2

0 1 0

1 0 1

0 1 0

,

S
i

i

i i

i
y =

−
−















2

0 0

0

0 0

, Sz =
−

















1 0 0

0 0 0

0 0 1

.

The explicit forms of the tensor operators in terms of components of the spin

operator S are expressed by T in the spherical coordinate system, and by P in the

cartesian coordinate system[18];

T00 1= P Sα α=

T Sz10
3

2
= P Sαα α= −3 22



25

( )T S iSx y1 1
3

2± = ±m ( )P S S S Sαβ α β β α= +
3

2

( )T Sz20
21

2
3 2= −

( ) ( ){ }T S iS S S S iSx y z z x y2 1
3

2± = ± + ±m

( )T S iSx y2 2
23

2± = ±

In the cartesian coordinate system, α and β labels each cartesian direction ( x, y, z).

In the spherical coordinate system, generally

T Tαβ
β

α β= − −
+( )1 .

The relations between some observables for a polarized deuteron and the helicity

amplitudes are as follows:

iT11  = ( ){ }− − +6 2 1 3 4 0Im *H H H H I

T20  = ( )2 1
2

2
2

3
2

4
2

0H H H H I− + −

τ22  = 
1

6 20 22T T+

τ21   = T T T T21 22 20 21 22
1

2

1

2

1

6

1

2
+ = + +τ

T21  = ( ){ }− − −6 2 1 3 4 0Re *H H H H I

T22  = ( ){ }3 2 1 3 2
2

0Re * *H H H I−

T t T T Tlab lab R
R R R20 20

2

20 21
2

22
3

2
2

3

2

3

2
≡ = + +

cos
sin cos sin

θ θ θ θ

Here, θR  is the deuteron recoil angle in the laboratory system.
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There are eight measured observables for the elastic πd  reaction available

in SAID and summarized in Table 2-2.

Table 2-2. Available observables and polarization for the elastic πd

reaction

ππ    d ππ      Pd

 ππ′′

 d′′

I
d

d
σ

Ω
  σ T          σT

el

D
iT11     T20

τ22      τ21      T lab
20

P : Polarization
ππ : Incident Pion (Beam) d : Target Deuteron
ππ′′ : Scattered Pion d′′: Recoil Deuteron
D : Polarization Tensor

3-2-3. Helicity Amplitudes and Observables

for the ππd →→ pp Reaction

Due to parity conservation, six independent helicity amplitudes are

required to describe the πd pp→  reaction.  The symbol Fα β λ θ, ; ( )  is used for

the helicity amplitudes for the πd pp→  reaction[19].  Here, α and β lables the

two proton spin states and λ lables the spin state of the deuteron.  To analyze this

system, the time reversed reaction is analyzed, pp d→ π .  The scattering angle θ

is the pion production angle in the center-of-mass system.
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F H J h dJ J

J
1
2

1
2

1 1 1 0 1
1

4
2 1, ; ,( )≡ = +∑ −π  (even)

,

F H J h dJ J

J
1
2

1
2 0 2 2 0 0

1

4
2 1, ; ,( )≡ = +∑

π  (even)
,

F H J h dJ J

J
1
2

1
2

1 3 3 0 1
1

4
2 1, ; ,( )− ≡ = +∑

π  (even)
,

F H J h dJ J

J
− ≡ = +∑1

2
1
2

0 4 4 0 1
1

4
2 1, ; ,( )

π  (odd)
,

F H J h dJ J

J
1
2

1
2

1 5 5 1 1
1

4
2 1, ; ,( )− − ≡ = +∑

π
,

F H J h dJ J

J
1
2

1
2

1 6 6 1 1
1

4
2 1, ; ,( )− −≡ = +∑

π
.

Here, d J
α β,  are the reduced rotation matrices.  These helicity amplitudes satisfy

the symmetry relations

F Fα β λ
α β λ

α β λ, ; , ;( )= − + +
− −1 .

The symbol for the partial wave amplitude is TL S L
J
pp

pp, ; π .  Labels are Lpp ,

S pp , and J corresponding to the pp  state of 
2 1S

J
pppp L+

; and Lπ  is used for the πd

state.  Decomposition of the helicity amplitudes and the partial wave amplitudes

are as follows.  For even J

h
J
J

T
J

J
T

J
J

T
J
J

TJ
J J
J

J J
J

J J
J

J J
J

1 0 1 0 1 1 1 1 1
1

2 1 2 1 2 1

1

2 1
=

+
+

+
+

−
+

+
+
+− + − +, ; , ; , ; , ; ,

h
J

J
T

J
J

TJ
J J
J

J J
J

2 0 1 0 1
2

2 1

2 2

2 1
=

+
+

+
+− +, ; , ; ,
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h
J
J

T
J

J
T

J
J

T
J
J

TJ
J J
J

J J
J

J J
J

J J
J

3 0 1 0 1 1 1 1 1
1

2 1 2 1 2 1

1

2 1
=

+
+

+
+

+
+

−
+
+− + − +, ; , ; , ; , ; ,

h J
4 0= ,

h
J
J

T
J

J
TJ

J J
J

J J
J

5 1 1 1 1
1

2 1 2 1
=

+
+

+
+− +, ; , ; ,

( )h hJ J J
6

1
51= − + .

For odd J

h J
1 0= ,

h J
2 0= ,

h J
3 0= ,

h
J

J
T

J
J

TJ
J J
J

J J
J

4 1 1 1 1
2

2 1

2 2

2 1
=

+
−

+
+− +, ; , ; ,

h
J
J

T
J

J
TJ

J J
J

J J
J

5 1 1 1 1
1

2 1 2 1
=

+
+

+
+− +, ; , ; ,

( )h hJ J J
6

1
51= − + .

The relations between helicity amplitudes and observables are as follows.

For the unpolarized cross section,

d
d

Ig
σ σ
Ω

= 0 ,  where I t Hi
i

0 00
00 2≡ = ∑ ,

σ
π

g
c

q
=











1

6

2
h

, and qπ  is the pion momentum in c.m. ; and

σ πσ θ θ
π

T g I d= ∫2 00
2 sin .
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The total cross section in a pure spin state

∆σ tot
 L   =

→
←







 −

→
→







σ σ    = − ∫2 A

d
d

dzz
σ
Ω

Ω

 ( )= − − − −∫4 2 2 20 1
2

2
2

3
2

0
2πσ θ θ
π

g I H H H dsin ,

∆σ tot
 T  ( ) ( )= ↑ ↓ − ↑ ↑σ σ     ( )= − +∫ A A

d
d

dxx yy
σ
Ω

Ω

( )= − −∫4 22
2

1 30
2πσ θ θ
π

g H H H dRe sin* .

For the polarized proton or deuteron , one must consider both the spin 1
2

and the spin 1 case.  The polarized deuteron (spin 1) case is explained in section 3-

2-2.  For the polarization of proton, Pauli spin matrices for the spin 1
2  particle

are;

1
1 0

0 1
=







 , σ x =









0 1

1 0
, σ y

i

i
=

−







0

0
, σ z =

−








1 0

0 1
.

The explicit forms of the tensor operators in terms of components of the spin

operator S are expressed by T in the spherical coordinate system[18];

T00 1= ,

T z10 = σ ,

( )T ix y1 1
1

2
± = ±m σ σ .
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For a polarized proton,

( )A it H H H H H H Iy0 00
11

1 5 2 4 3 6 02 2≡ = + +Im * * * ,

where in tδγ
αβ  the indices α, β label the proton spin state ( Tαβ ) in the spherical

coordinate system; and δ, γ label the deuteron spin state (Tδγ ) in the spherical

coordinate system.

For a polarized deuteron,

( )iT it H H H H H H H H I11 11
00

1 2 2 3 4 5 4 6 0
3

2
≡ = + − +Im * * * * .

For two polarized protons,

( ){ }A H H H H H H Ixx = − + + −2
2

4
2

1 3 5 6 02 Re * * ,

( ){ }A H H H H H H Iyy = − − + +2
2

4
2

1 3 5 6 02 Re * * ,

( )A H H H H H H Izz = − − − + + +1
2

2
2

3
2

4
2

5
2

6
2

0 ,

( )A H H H H H H Ixz = − − −2 1 5 2 4 3 6 0Re * * * .

For one polarized proton and a polarized deuteron,

( )K P H H H H H H H H Ixx x
x≡ = + + +2 1 4 2 5 2 6 3 4 0Re * * * * ,

( )K P H H H H H H H H Iyy y
y≡ = − + −2 1 4 2 5 2 6 3 4 0Re * * * * ,

( )K P H H H H Ixz z
x≡ = − +2 1 5 3 6 0Re * * .

Where in P β
α  the index α labels the polarization of the deuteron, and β labels the

polarization of the proton.
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There are 14 measured observables available in SAID for the πd pp→

reaction.  These are summarized in Table 2-3.

Table 2-3. Available observables and polarization for the πd pp→

reaction

    p1′′     p2′′  p1′′ Pp2′′ or Pp1′′   p2′′     Pp1′′   Pp2′′
 ππ
 d

I
d

d
σ

Ω    σ T

P
             Ay0

P
 Axx       Ayy       Azz    Axz

 ππ

Pd

A

iT11

A

        Kxx       Kyy

             Kxz        ε

 C

   ∆σ tot
 L

   =
→
←







 −

→
→







σ σ  

   ∆σ tot
 T

   ( ) ( )= ↑ ↓ − ↑ ↑σ σ    

P : Polarization
ππ : Incident Pion (Beam) d : Target Deuteron
p1′′ : Scattered Proton p2′′ : Recoiled Proton

I : Unpolarization P : Polarization
A : Asymmetry in Cross Section C : Polarization Correlation
εε : Geneva and TRIUMF Spin p - d Transfer Epsilion Parameters[19]
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Chapter 4

FORMALISMS FOR

A UNIFIED ANALYSIS

In order to analyze the reaction πd pp→  along with elastic pp  and πd

scattering, we have constructed a K-matrix formalism having pp , πd  and ∆N

channels.  The energy-dependence of our global fit was obtained through a

coupled-channel K-matrix form in order to ensure that unitarity would not be

violated.  The " ∆N " channel is added to account for all channels other than pp

and πd .  As mentioned in Chapter 2, the most important thresholds are illustrated

schematically in Figure 1.  Unitarity and multi-channel matrix formalisms are

briefly explained in Appendix D.

As the elastic pp  partial-wave analysis is far superior to the πd  elastic and

πd pp→  analyses, we have carried out fits in which the pp  partial-waves were

held fixed.  (The partial wave decomposition of the pp , πd , and ∆N  systems are

given in Table 1 and explained in Chapter 3.)

As described below, the pp  amplitudes were used to fix some elements of

the K-matrix, while the others were determined from a fit to the combined πd

elastic and πd pp→  data bases.



33

States of a given total angular momentum and parity ( PJ ) were

parameterized by a 4x4 K-matrix ( JK ) which coupled to an appropriate ∆N

channel as explained in Appendix D.  Spin-mixed(2x2) pp  states couple to

unmixed πd  states, and unmixed pp  states couple to spin-mixed(2x2) πd  states,

so the ppd −π  system is always represented by a 3x3 matrix.  For example, the

T-matrix ( JT )  for PJ  = +2  (unmixed pp  states) is given by

+

−

+−

















=
d

d

pp

FfD

PpD

fDpDD

T

ddpp

π
π

ε
ε

ππ

2
3

22
1

22
3

2
1

2
1

2
1

2
1

2

                             

whereas the T-matrix for PJ  = −2  (mixed pp  states) is

d

pp

pp

DdFdP

dFF

dPP

T

dpppp

π
ε

ε

π

+

−

+−

















=

2
3

2
3

2
3

2
3

2
3

2

2
3

22
3

2

                        

The subscripts ± denote states with 1±= JL .  In the above, the mixing parameters

(ε) for elastic pp  and dπ  scattering are different.  For the reaction πd pp→  the

notation ( πlLpp
J

S pp 12 +
) is used.

Adding an ∆N  channel results in a 4x4 T-matrix.  Dropping the J-subscript,

we write the K-matrix as

K
K K

K K
pp

i
=









0

0
~ ,
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where ppK  is the elastic pp  scattering sub-matrix, 0K  and 0
~
K  are row and

column vectors, and iK  is the sub-matrix of channels involving πd  and ∆N

states.  Since we assume that the N∆  channel accounts for all unmeasured

scattering, we can have a real symmetric K-matrix that satisfies the unitarity

condition.  A general reduced K-matrix formalism[12] gives the following relation

for the elastic pp  reduced K-matrix Kpp ,

( ) 0
1

0
~

1 KiKiKKK ipppp
−−+= .

The K-matrix can be re-expressed as a T- matrix

T
T T

T T
pp

i
=









0

0
~

using the relation ( )T K K= − −1 1i .  We then have the correspondence

( ) 11 −−= pppppp KiKT .

In order to ensure an exact fit to the pp  elastic T-matrix, given by our most

recent analysis of NN elastic scattering to 1.6 GeV[4], we take

( ) ( ) 0
1

0
~

11 KiKiKiTTK ipppppp
−−−+= .

The matrix elements are then expanded as polynomials in the pion energy times

appropriate phase-space factors.  The dπ  elastic and πd pp→  T-matrix elements

are extracted from 0T  and iT .

To adjust the threshold factor, we applied momentum matrix ρ , that gives a

threshold corrected K′-matrix
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K K'= ρ ρ
1

2
1

2 .

This ρ-matrix (sometimes it is called as phase factor matrix) is composed of the

barycentric momentum of each state.  In the total angular momentum

representation, the ρ-matrix has the following form for the unmixed pp  states

coupled to spin-mixed(2x2) πd  states;

ρ2 1l +  = 

q

q

q

q

d
J

d
J

pp
J

N
l

π

π

2 1

2 3

2 1

2 1

−

+

+

+



















∆

.

Here, we use the realtion

q2  = 
( ){ } ( ){ }s m m s m m

s

− + − −1 2
2

1 2
2

4
,

(this is explained in Appendix A) for the pp  and πd  states; and the Chew-

Mandelstam function is used to obtain qN∆ [20].

We obtain the parameters through a “best fit” to the experimental data.  We

define our “best fit” in a least-square sense.  The standard approach uses a χ 2

minimization technique, where χ 2  is defined as the following[21]

χ
α θ θ

θ
α

α

α2

1

2 2

1

1
( )

( ) exp

exp exp

p
pn i i

i
i

N j

j
j

ND

=
−









∑ + −









∑

= =∆ ∆
,

where

θ i p( ) = value of ith observable determined by the set of parameters,



36

θexp
i  = experimental value of ith observable,

∆θexp
i = experimental standard deviation (statistical error) of ith data point

α n  = normalization parameter for experiment n = n(i), i = 1, …, Nα

N D = total number of data points being fit

Nα  = total number of normalization parameters

∆αexp = experimental systematic error
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Chapter 5

DATA DISTRIBUTION

A complete and up-to-date data base is used in the present analysis.  A

detailed description of the whole data base for the three reactions is given in

SAID[4] and reported in reference 1, 2, and 3.  We have fitted the amplitudes for

pppp →  and the existing data bases for ppd →π , and dd ππ → , using the

K-matrix formalism explained in Chapter 4.

The overall 2χ  for our unified analysis is actually superior to that found in

previous single-reaction analyses.  This is due to the improved parameterization

scheme.  A comparison is given in Table 3.

We should emphasize that the amplitudes for pp  elastic scattering are the

same as the separate elastic pp  analysis given in SAID, with solution name

WI96[4].  As mentioned above, this feature was built into our K-matrix

parameterization.

Number of data points for each observable is given in Table 4.  Number of

data points for each observable in the elastic pp  reaction is presented in Table 4-1.

χ 2  comes from WI96 solution.  In SAID, most of observables of the elastic pp

reaction follow Bystricky’s notation[14].  Details of polarizations are explained in

Appendix C.
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Table 3. Comparisons of the unified (C500) and previous (separate)

analyses.  WI96 for pppp → [4], SM94 for dd ππ → [2], and SP96 for

ppd →π [4].  The relevant energy ranges are: πT  = 0 − 500 MeV, pT  =

288 − 1290 MeV, and s  = 2015 − 2440 MeV, respectively.

Reaction Separate

2χ  / Data

Unified

2χ  / Data

pppp → 17380/10496 17380/10496

dd ππ → 2745/1362 2418/1362

ppd →π 7716/4787 7570/4787

Comparison of the number of data points and χ 2  for each observable in the

elastic πd  reaction is presented in Table 4-2.  The separate analysis, SM94, was

reported in reference 2.  The unified analysis is C500.  The energy range is 0 to

500 MeV in Tπ .  A comparison of the number of data points and χ 2  for each

observable in the πd pp→  reaction is presented in Table 4-3.  The separate

analysis is SP96.  The energy range is 0 to 500 MeV in Tπ .  We should indicate

that the ε data[23(a)] were not directly included in the analysis.  Instead, we

included the amplitudes constructed from this data[23(b)] in our fits.

The energy-angle distributions of the complete data set for the three

reactions are presented in Figure 3.  The energy-angle distribution of the complete

data set for the  elastic pp  reaction, which served as the basis for the WI96

solution, is presented in Figure 3-1.  Dark marks indicate the new data since the
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SM94 solution; (a) Differential cross section d dσ Ωcm , (b)polarization of one

particle, (c) depolarization tensor for one initial and one finial particles, (d)

asymmetry tensor for polarized initial particles or finial particles.  The vertical

arrows indicate the range of the analysis.  This figure shows that the distribution of

measurement in the data base is complete in energy and angle for the elastic pp

reaction.

The energy-angle distribution of the total data set for the elastic πd

reaction is presented in Figure 3-2; (a) Differential cross section d dσ Ωcm ,

(b)deuteron vector analyzing power iT11, (c) deuteron tensor analyzing power T20 ,

(d) combined deuteron tensor analyzing powers τ22 20 22
1

6
= +T T .  There are

sharp cutoffs in the number of data in the elastic πd  reaction.  Due to these sharp

cutoffs, our analysis is limited to 500 MeV in pion laboratory energy.

The energy-angle distribution of the total data set for  the πd pp→  reaction

is presented in Figure 3-3.  Dark marks indicate the new data since the SP93

solution;  (a) Differential cross section d dσ Ωcm ; (b) deuteron vector analyzing

power iT11, (c)  proton analyzing power Ay0 , (d) spin correlation parameter for

two protons Azz .  The vertical arrow indicates the upper limit of the analysis.

There are also sharp cutoffs in the number of data in the πd pp→  reaction, for

example Azz .
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Table 4-1.  Number of data points for each observables in the pp pp→  reaction.

χ 2  comes from the WI96 solution.

Observables 0 ~ 1600 MeV 290 ~ 1290 MeV
Common Bystricky[14] SAID Data ( χ 2 ) Data ( χ 2 )

d
d

σ
Ω

I0000 DSG 3216 (6196) 2276 (4241)

Pp000 P 4377 (6737) 3767 (5585)

D Dn n n n0 0 0 0= D 551 (757) 460 (617)
K Knn n n0 0 00= DT 323 (545) 288 (499)

Ayy C Ann nn00 00= AYY 905 (1467) 791 (1200)

Axx A ss00 AXX 127 (178) 106 (124)
Azz A kk00 AZZ 993 (1683) 844 (1279)
Azx − = −A Ask ks00 00 AZX 460 (900) 357 (661)
CKP − = −C Clm ml00 00 CKP 8 (9) 7 (6)

Ds s'0 0 R 399 (548) 349 (500)
Dk s'0 0 RP 97 (153) 77 (145)
Ds k'0 0 A 382 (560) 341 (510)
Dk k'0 0 AP 87 (112) 87 (112)
K s s0 0" RT 4 (3) 4 (3)

− K s k0 0" AT 98 (101) 66 (66)
M Cs sn k nk' '0 0= MSSN 152 (176) 144 (167)

− = −M Cs kn k ns' '0 0 MSKN 171 (216) 163 (211)

σT
el SGTE 11 (20) 11 (20)

σ T SGT 59 (216) 52 (185)

∆σ tot
 L SGTL 50 (502) 43 (461)

∆σ tot
 T SGTT 47 (305) 44 (297)

D s k0 0" D0SK 99 (163) 66 (114)
− Cnk s"0 NSNK 38 (112) 22 (87)

− =N Mnkk n ss0 0 NNKK 45 (123) 31 (100)
A0ST* 12 (21) 12 (21)

(Table 4-1 continued)
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(Table 4-1 continued)

Observables 0 to 1600 MeV 290 to 1290 MeV
Common Bystricky SAID Data ( χ 2 ) Data ( χ 2 )

A0KT* 12 (22) 12 (22)
KS0T* 12 (16) 12 (16)
KK0T* 12 (27) 12 (27)
MSNT* 12 (14) 12 (14)
MNKT* 12 (10) 12 (10)
MKNT* 12 (27) 12 (27)

Total 12839 (22160) 10519 (17514)
* LAMPF Variables by Los Alamos[21]

Table 4-2.  Number of data points and χ 2  comparison for each observable in the
π πd d→  reaction.  The separate analysis is SM94 that was reported in reference
4.  The unified analysis is C500.  The energy range is from 0 to 500 MeV in Tπ .

π π+ +→d d π π− −→d d
Obser- Data χ 2 Data χ 2

vables Unified Separate Unified Separate
d

d
σ

Ω
516 840 839 236 461 643

σ T 57 81 146 67 72 135

σT
el 3 1 0.5 3 9 5

iT11 280 565 650 5 8 10
T20 42 100 81 - - -
τ21 47 89 64 - - -
τ22 76 128 113 - - -

T lab
20

30 64 60 - - -

Total 1051 1869 1952 311 550 793
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Table 4-3.  Number of data points and χ 2  comparison for each observable in the
πd pp→  reaction.  The separate analysis is SP96.  The unified analysis is C500.
The energy range is 0 to 500 MeV in Tπ .

Ref. 3 Present
Obser- Data Data χ 2

vables Separate Unified
d

d
σ

Ω
1051 1420 2256 2499

σ T 150 176 322 288

∆σ tot
 L 14 2 0.1 2.8

∆σ tot
 T 5 0 - -

Ay0 1749 1750 2329 2349

Axx 62 49 31 41
Ayy 185 185 222 194

Azz 340 340 530 652
Axz 257 257 377 336
iT11 155 166 439 379
Kxx 9 4 23 17
Kyy 10 10 19 7

Kxz 5 5 10 12
Kzx 5 0 - -

ε 136 136 501 446
Hi * 264 264 292 284

Total 4541 4787 7716 7570

* means helicity amplitudes from reference 23(b).
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Figure 3-1. Energy-angle distribution of the complete data set for the elastic pp
reaction which served as the basis for the WI96 solution.  Dark marks indicate the
new data since SM94 solution.  (a) Differential cross section d dσ Ωcm ,

(b)polarization of one particle, (c) depolarization tensor for one initial and one
final particle, (d) asymmetry tensor for polarized initial particles or finial particles.
The vertical arrows indicate the range of the analysis.
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Figure 3-2. Energy-angle distribution of the total data set for the elastic πd
reaction.  (a) Differential cross section d dσ Ωcm , (b)deuteron vector analyzing

power iT11, (c) deuteron tensor analyzing power T20 , (d) combined deuteron

tensor analyzing powers τ22 20 22
1

6
= +T T .
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Figure 3-3. Energy-angle distribution of the total data set for  the πd pp→
reaction. Dark marks indicate the new data since SP93 solution.  (a) Differential
cross section d dσ Ωcm ; (b) deuteron vector analyzing power iT11, (c)  proton

analyzing power Ay0 , (d) spin correlation parameter for two protons Azz .  The

vertical arrow indicates the upper limit of the analysis.
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Chapter 6.

PARTIAL WAVE AMPLITUDES

We have fitted the amplitudes for pp pp→  and the existing data bases for

πd pp→ , and π πd d→ , using the K-matrix formalism explained in Chapter 4.

The elastic πd  and πd pp→  data bases used in this analysis are described in

Chapter 5.

We started with SP94 solutions[4] for three reactions.  For the elastic pp

reaction, the SP94 solution was replaced by the WI96 solution, the newest updated

solution for this reaction.  The elastic πd  SP94 solution, based on Tπ  = 0 to 500

MeV, 1339 data points with χ 2  = 5292, used 66 parameters.  This solution was

updated and replaced by the SM94 solution[2].  The πd pp→  SP94 solution,

based on Tπ  = 0 to 550 MeV, 4459 data points with χ 2  = 7077, used 52

parameters.  This solution was updated and replaced by SP96 solution[4].

For pp  elastic scattering, all waves with J <  7 were used.  Partial waves

with J < 5 were retained for both dπ  elastic scattering and ppd →π .  We used a

total of 116 parameters to fit the data of both dπ  elastic scattering and ppd →π .

Partial wave amplitudes for the unified system are displayed in Figure 4.  The

energy range is from 0 to 500 MeV in Tπ  and 290 to 1290 MeV in Tp  for the (a)

0+ , (b) 1+ , 3+ , 5+ , (c) 1− , (d) 2+ , (e) 2− , (f) 3− , (g) 4+ , (h) 4− , and (i) 5−
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Figure 4.  Partial wave amplitudes for the unified system from 0 to 500 MeV in Tπ

and 290 to 1290 MeV in Tp  : (a) 0+ , (b) 1+ , 3+ , 5+ , (c) 1− , (d) 2+ , (e) 2− ,

(f) 3− , (g) 4+ , (h) 4− , and (i) 5−  system.  Since 1+ , 3+  and  5+  systems only
contain the π πd d→  reaction, they are presented together in (b).
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Figure 4. Continued (partial wave amplitudes for the unified system; 1+ , 3+ , 5+ ;

in the 5+  system the real part of 3
5H  is nearly zero)
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Figure 4. Continued (partial wave amplitudes for the unified system, 1− )
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Figure 4. Continued (partial wave amplitudes for the unified system, 2+ )
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Figure 4. Continued (partial wave amplitudes for the unified system, 2− )
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Figure 4. Continued (partial wave amplitudes for the unified system, 3− )
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Figure 4. Continued (partial wave amplitudes for the unified system, 4+ )
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Figure 4. Continued (partial wave amplitudes for the unified system, 4− )
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Figure 4. Continued (partial wave amplitudes for the unified system, 5− )
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systems, respectively.  The solid (dashed) line shows the real (imaginary) part of

amplitude.  As described in Table 1, the 0+  system contains three partial wave

amplitudes.  There are no elastic pp  partial waves in the 1+ , 3+  and  5+  systems,

they are presented in (b).  Other systems contain six partial wave amplitudes.  In

(b), for the 5+  system, the real part of 3
5H  is zero.

For spin flipped partial wave amplitudes, lower angular momentum states

are dominant and higher angular momentum states are almost negligible.  This also

occurs in the inelastic channel.

Since we have carried out fits in which the pp  partial waves were held

fixed, the amplitudes for pp  elastic scattering are the same as those given in

WI96[4].  For this reason, we have omitted comparisons of the pp  amplitudes.

Comparison of partial wave amplitudes for the elastic dπ  reaction is

presented in Figure 5.  We compare the dominant partial waves in each state from

the single-reaction analysis (solution is SP96[4]) and the unified analysis (solution

is C500).  Figure 5 presents partial wave amplitudes for the elastic dπ  reaction

from Tπ  = 0 to 500 MeV.  Solid (dashed) curves give the real (imaginary) parts of

amplitudes corresponding to the unified solution (C500 solution).  The separate

analysis (SP96) is plotted with long dash dotted (real part) and short dash-dotted

(imaginary part) lines.  The dotted curve gives the value of 22Im sfTTT −− , where

2
sfT  is the spin-flip amplitude for the unified solution.  The single energy solution

(SES) which is generated using the unified analysis is presented.  The real

(imaginary) parts of single-energy solutions (SES) are plotted as filled (open)

circles.  All amplitudes have been multiplied by a factor of 310  and are
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Figure 5.  Partial wave amplitudes for the elastic dπ  reaction from Tπ  = 0 to 500

MeV.  Solid (dashed) curves give the real (imaginary) parts of amplitudes
corresponding to the unified solution (C500 solution).  The separate analysis
(SP96[4]) is plotted with long dash dotted (real part) and short dash-dotted

(imaginary part) lines.  The dotted curve gives the value of 22Im sfTTT −− , where

2
sfT  is the spin-flip amplitude for the unified solution.  The single energy solutions

(SES) which are generated using the unified analysis are also presented.  The real
(imaginary) parts of single-energy solutions (SES) are plotted as filled (open)

circles.  All amplitudes have been multiplied by a factor of 310  and are
dimensionless.  Only the dominant partial waves are plotted for each states: (a)
3

0P  ( 0+ ), (b) 3
1P  (1+ ), (c) 3

1S  (1− ), (d) 3
2P  ( 2+ ), (e) 3

2D  ( 2− ), (f) 3
3F  ( 3+ ),

(g) 3
3D  ( 3− ), (h) 3

4F  ( 4+ ), (i) 3
4G  ( 4− ), (j) 3

5H  (5+ ), (k) 3
5G  (5− ).
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Figure 5. Continued (partial wave amplitudes for the elastic πd  reaction)
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Figure 5. Continued (partial wave amplitudes for the elastic πd  reaction)
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Figure 5. Continued (partial wave amplitudes for the elastic πd  reaction)
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dimensionless.  Only the dominant partial waves are plotted for each state: (a) 3
0P

(0+ ), (b) 3
1P  (1+ ), (c) 3

1S  (1− ), (d) 3
2P  ( 2+ ), (e) 3

2D  ( 2− ), (f) 3
3F  ( 3+ ), (g)

3
3D  ( 3− ), (h) 3

4F  ( 4+ ), (i) 3
4G  ( 4− ), (j) 3

5H  (5+ ), (k) 3
5G  (5− ).

The results for elastic dπ  scattering in the unified and separate analyses are

qualitatively similar, up to the limit of our single-energy analyses.  Significant

differences begin to appear above a pion laboratory kinetic energy of 300 MeV or

2.3 GeV in s .  (The 2
3D  partial wave from a unified analysis is an exception,

departing from the single-reaction analysis near threshold.)  The upper limit to our

single-energy analyses is due to a sharp cutoff in the number of data.  This is

apparent in Figure 3-2.  Much additional data above 300 MeV will be required

before a stable solution to 500 MeV can be expected.

A comparison of results for ppd →π  reveals the most pronounced

differences.  One reason for this is the overall phase which was left undetermined

in separate analysis[3].  There, we arbitrarily chose the sP1
3  wave to be real.

  Figure 6-1 shows a comparison of the partial wave amplitudes for the

πd pp→  reaction from Tπ  = 0 to 500 MeV without adjustment.  The solid

(dotted) curves give the real (imaginary) parts of the amplitudes.  Amplitudes from

the unified analysis are marked as ‘x’.  Amplitudes from the separate analysis are

plotted without symbols.  Only the dominant partial waves are plotted for each

state: (a) 1
0S p  ( 0+ ), (b) 3

1P s  (1+ ), (c) 1
2D p  ( 2+ ), (d) 3

2P d  ( 2− ), (e) 3
3F  ( 3− ),

(f) 1
4G f  ( 4+ ), (g) 3

4F g  ( 4− ), (h) 3
5H g  (5− ).  In (b), the imaginary part of 3

1P s

is zero for the separate analysis because of the arbitrary phase choice of zero.  In

(g), the imaginary part of 3
4F g  is nearly zero for the separate analysis.
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In the present analysis, the overall phase has been determined.  In Figure 6-

1, we see that the phase is very different in the unified and separate analyses.

Given the large difference in overall phase, we have chosen to compare the

partial-wave amplitudes from the separate and unified analyses in different ways.

There are two ways to compare the partial wave amplitudes of the πd pp→

reaction; the first is to compare the moduli of the amplitudes and the second is to

match the phase.

Figure 6-2 shows a comparison of the moduli of the partial-wave

amplitudes for ppd →π  from πT   = 0 to 500 MeV.  The solid and dashed curves

give the amplitudes corresponding to the unified and separate (SP96[4]) solutions,

respectively.  Moduli of the single-energy solutions are plotted as filled circles.

All amplitudes have been multiplied by a factor of 310  and are dimensionless.

Only the dominant partial waves are plotted for each state: (a) 1
0S p  ( 0+ ), (b) 3

1P s

(1+ ), (c) 1
2D p  ( 2+ ), (d) 3

2P d  ( 2− ), (e) 3
3F  ( 3− ), (f) 1

4G f  ( 4+ ), (g) 3
4F g

( 4− ), (h) 3
5H g  (5− ).

Figure 6-3 presents the partial wave amplitudes for πd pp→  from Tπ  = 0

to 500 MeV.   Here the phase has been matched.  The 3
1P s  partial wave of the

unified analysis has been adjusted to be purely real, as in the individual analysis.

The single energy solutions (SES), which are generated using the unified analysis

(C500 solution), are also presented.  The real (imaginary) parts of the SES are

plotted as ‘  ‘ (‘ ‘) marks.  Only the dominant partial waves are plotted for each

state: (a) 1
0S p  ( 0+ ), (b) 3

1P s  (1+ ), (c) 1
2D p  ( 2+ ), (d) 3

2P d  ( 2− ), (e) 3
3F  ( 3− ),

(f) 1
4G f  ( 4+ ), (g) 3

4F g  ( 4− ), (h) 3
5H g  (5− ).
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Figure 6-1.  Partial wave amplitudes for πd pp→  from Tπ  = 0 to 500 MeV

without phase adjustment.  To adjust the phase ambiguity, the 3
1P s  partial

wave is assumed purely real in the separate analysis (SP96 solution[4]).  The
comparison of the moduli for the two analyses is presented in Figure 6-2.  In
Figure 6-3, the phases have been matched.  The solid (dotted) curves give the
real (imaginary) parts of the amplitudes.  Amplitudes from the unified analysis
are marked as ‘x’.  Amplitudes from the separate analysis have no mark.  Only

the dominant partial waves are plotted for each state: (a) 1
0S p  ( 0+ ), (b) 3

1P s

(1+ ), (c) 1
2D p  ( 2+ ), (d) 3

2P d  ( 2− ), (e) 3
3F  ( 3− ), (f) 1

4G f  ( 4+ ), (g) 3
4F g

( 4− ), (h) 3
5H g  (5− ).  In (b) the imaginary part of 3

1P s  is zero for the separate

analysis because of phase adjustment.  In (g) the imaginary part of 3
4F g  is

zero for the separate analysis.
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Figure 6-1. Continued (partial wave amplitudes for  πd pp→  without adjustment)
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Figure 6-1. Continued (partial wave amplitudes for  πd pp→  without adjustment)
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Figure 6-2.  Moduli of the partial-wave amplitudes for ppd →π  from πT   = 0 to

500 MeV.  The solid and dashed curves give the amplitudes corresponding to
the unified and separate (SP96[4]) solutions respectively.  Moduli of the
single-energy solutions are plotted as filled circles.  All amplitudes have been

multiplied by a factor of 310  and are dimensionless.  Only the dominant partial

waves are plotted for each state: (a) 1
0S p  ( 0+ ), (b) 3

1P s  (1+ ), (c) 1
2D p  ( 2+ ),

(d) 3
2P d  ( 2− ), (e) 3

3F  ( 3− ), (f) 1
4G f  ( 4+ ), (g) 3

4F g  ( 4− ), (h) 3
5H g  (5− ).
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Figure 6-2.  Continued (moduli of the partial-wave amplitudes for ppd →π )
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Figure 6-2.  Continued (moduli of the partial-wave amplitudes for ppd →π )
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Figure 6-3.  Partial wave amplitudes for πd pp→  from Tπ  = 0 to 500 MeV.  The

phase has been matched.  The 3
1P s  partial wave of the unified analysis is

adjusted to be purely real as in the individual analysis.  Single energy solutions
(SES), which have been generated using the unified analysis (C500 solution),
are also plotted.  The real (imaginary) parts of the SES are plotted as ‘  ‘ (‘ ‘)

marks.  Only the dominant partial waves are plotted for each state: (a) 1
0S p

(0+ ), (b) 3
1P s  (1+ ), (c) 1

2D p  ( 2+ ), (d) 3
2P d  ( 2− ), (e) 3

3F  ( 3− ), (f) 1
4G f

( 4+ ), (g) 3
4F g  ( 4− ), (h) 3

5H g  (5− ).
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Figure 6-3.  Continued (phase matched partial wave amplitudes for  πd pp→ )
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Figure 6-3.  Continued (phase matched partial wave amplitudes for  πd pp→ )
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The overall phase difference for the πd pp→  reaction is presented in

Figure 7.  In the individual analysis the overall phase of 3
1P s  is adjusted to zero

(dashed line).  The phase of the 3
1P s  from the unified solution is denoted by an

‘ ’ mark.  The difference of the two phases indicates the overall phase difference

in the individual analysis.

As the case for dπ  elastic scattering, differences are most significant above

approximately 2.3 GeV in s .  A similar lack of data exists above this energy in

the ppd →π  reaction data as shown in Figure 3-3.

In general we see a good agreement for the dominant amplitudes found in

the separate and unified analyses.  In Figures 5 and 6-3, we display our

single-energy analyses which were done in order to search for structure which may

be missing from the energy-dependent fit.  (Details of the single-energy analyses

are given in references [2] and [3].)  A comparison of the single-energy and

energy-dependent fits is given in Table 5.

Table 5-1 gives a comparison of single-energy (binned) and

energy-dependent combined analyses of elastic dπ  reaction data.  Table 5-2 gives

a similar comparison for the ppd →π  reaction data.  N prm  is the number of

parameters varied in the single-energy fits.  χE
2  is due to the energy-dependent fit

(C500) taken over the same energy interval.
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Figure 7.  Overall phase difference for  πd pp→ .  In the individual analysis the

overall phase of 3
1P s  is adjusted to zero (dashed line).  The phase of the 3

1P s
from the unified solution is shown by the ‘ ’.  The difference of the two phases
indicates the overall phase ambiguity in the individual analysis.
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Table 5-1. Comparison of single-energy (binned) and energy-dependent
unified analyses of dπ  elastic scattering data. N prm  is the number of parameters

varied in the single-energy fits. χE
2  is due to the energy-dependent fit (C500) taken

over the same energy interval.

πT  (MeV) Range (MeV) N prm χ 2  / data χE
2

65 58.0 − 72.0 2 2106/54 102

87 72.0 − 92.0 6 620/24 21

111 107.5 − 125.2 10 68/82 66

125 115.0 − 134.0 12 155/170 184

134 124.0 − 142.8 14 315/258 344

142 133.0 − 152.0 16 356/284 397

151 141.0 − 160.6 16 193/154 216

182 174.0 − 189.5 18 302/168 396

216 206.0 − 220.0 18 158/99 200

230 220.0 − 238.0 18 64/53 111

256 254.0 − 260.0 16 132/125 185

275 270.5 − 284.4 16 22/40 42

294 284.4 − 300.0 16 267/132 324



75

Table 5-2. Comparison of single-energy (binned) and energy-dependent
unified analyses of ppd →π  reaction data.  N prm  is the number of parameters

varied in the single-energy fits.  χE
2  is due to the energy-dependent fit (C500)

taken over the same energy interval.

πT  (MeV) Range (MeV) N prm χ 2  / data χE
2

25 12.8 − 37.4 10 527/241 542

50 37.6 − 60.7 12 188/168 205

75 62.9 − 87.3 14 590/426 628

100 91.0 − 114.0 14 1263/611 1379

125 113.8 − 137.1 16 729/512 756

150 140.0 − 162.0 20 743/630 792

175 165.0 − 187.3 22 343/280 426

200 191.3 − 210.3 20 120/193 153

225 217.9 − 235.9 22 217/229 291

250 238.9 − 262.0 22 595/483 685

275 264.9 − 285.1 22 204/109 280

300 291.6 − 307.4 24 198/212 235

325 318.9 − 330.0 24 142/161 234

350 341.4 − 360.3 24 201/185 233

375 371.4 − 375.7 24 32/26 42

400 390.0 − 400.0 24 19/28 34

425 417.0 − 420.0 24 50/28 55

450 437.6 − 456.5 22 122/48 231

475 473.8 − 487.4 22 24/24 39

500 495.9 − 506.5 22 49/45 281
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A comparison of the Argand plots is given in Figure 8.  Only the three

dominant partial waves are plotted for each reactions.  The Argand plots from the

unified solution are marked as ‘U’.  Argand plots from the individual solution are

marked as ‘S’.

Figure 8-1 gives the Argand plot comparison of the elastic πd  reaction for

Tπ  = 0 to 500 MeV: the Argand plots of 3
2P  ( 2+ ), 3

3D  ( 3− ), and 3
2D  ( 2− ) for

π πd d→  are displayed.  In Figure 8-2, the Argand plots of 1
2D p  ( 2+ ), 3

3F  ( 3− ),

and 3
2P d  ( 2− ), for πd pp→  are displayed.  Since the comparison of the two

analyses for πd pp→  requires a phase adjustment, Argand plots for πd pp→  are

displayed in Figure 8-2 (a) and phase matched Argand plots for πd pp→  are

displayed in Figure 8-2 (b).  The Argand plots for the unified solution are slightly

different  in (a) and (b), because of the different phases.
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Figure 8-1.  Argand plots for the elastic πd  reaction for Tπ  = 0 to 500 MeV.  Only

the three dominant partial waves are plotted in each reactions.  The Argand
plots from the unified solution are marked as ‘U’.  Argand plots from the

individual solution are marked as ‘S’.  The Argand plots of 3
2P  ( 2+ ), 3

3D

( 3− ), and 3
2D  ( 2− ) for elastic πd  reaction are displayed.
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Figure 8-2. Argand plots of 1
2D p  ( 2+ ), 3

3F d  ( 3− ), and 3
2P d  ( 2− ) for πd pp→ .

Phase matched Argand plots for πd pp→  are displayed in (b).
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Chapter 7

RESONANCE-LIKE BEHAVIOR

IN THE B = 2 SYSTEM

As briefly mentioned in Chapter 2, there are resonance-like states in the

three reactions pp pp→ , πd pp→ , and π πd d→ ; and the very existence (or

non-existence) of a dibaryon system has been one of the hottest issues of debate in

the Nuclear Physics community in last half century.

The question is whether two nucleons, when they react together, can

comprise a super multiplet as a bound state (quasi-stable particle) or not.

The nucleon pair has isospin 0 or 1.  A nucleon pair with the total isospin

equal to zero is known as deuteron.  As described in Chapter 2, the deuteron is a

simplest multi-nucleon system and the only known dibaryon in the nature.

A second case, with total isospin equal to one, is the testing ground of the

controversial dibaryon resonance, a possible manifestation of sub-hadronic degrees

of freedom.

Another possible state is total isospin equal to two.  As a two baryon

system, the N-∆ pair has isospin 1 or 2.  The possible existence of the total isospin

two system is conjectured to be a stable πNN  bound state such as π −nn  and

π + pp .  Specially, the existence of bound states of negative pions and two neutrons

(pineuts) has been predicted[24].  These systems decay through only weak
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interactions.  This implies these system should be stable and have lifetimes

comparable to that of the charged pion.  However, in spite of all the

experimental[25] and theoretical[26] efforts, current information points toward the

nonexistence of πNN  bound states, thus the evidence in favor of πNN  bound

states has now disappeared.

The question is whether the resonance-like behaviors seen in the isospin

one system correspond to true resonances or not: that is, are there actual S-matrix

poles in the second Riemann sheet (resonances) or not ?

Some models suggest the need for dibaryon resonances.  From the study of

the static quark model, R.J. Oakest[27] examined the role of the deuteron in the

eightfold way and found it must belong to a ten dimensional representation of

SU(3), and he raised a question - in the limit of exact unitary symmetry, are two

baryon states bound.  Or if unitary symmetry is not exact in the physical world,

some of these might not occur as actual bound states.  However, if the symmetry is

not broken too badly, Oakest suggested nearly bound, or resonant, states should

occur in baryon-baryon channels.  He used “resonance” in its loosest sense to

denote a relative enhancement of an interaction at a reasonably well-defined

energy.  To fill out the missing parts in eightfold symmetry, he suggested that

dibaryon states are necessary condition.  R.L. Jaffe[28] presented the bag model

for the exotic multi-quark systems; and P.J. Mulders[29] predicted the possibility

of the hidden-color resonances in the six-quark system.

The other alternative, to explain the structure in these two nucleon system,

is pseudo-resonance effects.  A pseudo-resonance is understood as a threshold
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effect arising from the opening of the inelastic N-∆ coupling.  N-∆ threshold effect

is strong enough to generate counterclockwise loops on the Argand diagrams

(nonresonant Argand loops).

Generally, this idea has been used in the πd  system, when there is

smearing of the πN  resonances (mostly ∆-resonance) over several partial waves -

they are, mostly, angular momentum L = 0, 1, and 2 states - in the πd  system[30].

Then no pole resonance is expected in the nucleon-nucleon system.  The

resonance-like behaviors in the πd  system are connected with the opening up of

the N-∆ channel[30] and the influence of an intermediate N-∆ state (resulting in a

“pseudo-resonance”) that enter through so called N-∆ box diagrams (involving N∆

in NN scattering) and create resonance-like loops in the Argand diagram without

resonance poles actually existing[31].

On the other hand, L. Fonda et al. [32] showed that one should be able to fit

all the elementary particle resonances without S-matrix poles.  They performed a

fit to the ∆ (1236) with no pole S-matrix.

Compared to no-pole resonances in the πd  system, the study of real

dibaryon resonances has been performed mostly in nucleon-nucleon system and

some in the πd  system.

In 1968, R. A. Arndt predicted a 1
2D  nucleon-nucleon resonance from the

partial-wave analysis of elastic pp  data below 700 MeV[33].

F. Furuichi and H. Suzuki raised a question of dibaryon resonances[34]

based on purely polarised proton-proton cross sections near TL  = 180 MeV

measured by J.P. Auer et al and de Boer et al[35].
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J.A. Niskanen showed a peak near the N∆ threshold in the cross section and

in polarization for π + →d pp  reaction[36].  Also T. Kamae and T. Fujita showed

an irregularity, at a somewhat higher energy, in the proton polarization for

γd pn→ [37].

A. Yokosawa found that strong energy dependence was unexpectedly

observed in pp  polarization experiments at Argonne[38].  He found pronounced

structures in the spin-dependent cross section difference ∆σ T  and ∆σ L  in elastic

pp  scattering.

H.G. Dosch and E. Ferreira attempted to get πd -dibaryon coupling

parameters and expected possible dibaryon resonances in the 4+  system where

compared to previous 2+  and 3−  systems[39].  They extracted information on the

short range part of the nucleon-nucleon and nucleon-delta interaction[40].  H.

Garcilazo showed that the decomposition of the pion-nucleon P11 amplitude into

pole and non-pole parts did not generate large spurious effects as a result of the

application of the Pauli principle in intermediate NN  states when the relativistic

Faddeev theory was applied to the πNN  system for πd  scattering[41].

The idea of dibaryon existance has been applied to multi-channel systems

that contain both nucleon-nucleon system and the πd  system.  These studies of

multi-channel systems are described in Chapter 2.

The studies of resonance free nucleon-nucleon scattering amplitudes were

performed by I. Duck and Ver West[42].  W.M. Kloet et al. examined pseudo

resonance behavior in nucleon-nucleon scattering[43].  R.L. Shypt  et al. claimed

the evidence against broad dibaryons[44].
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However, W.M. Kloet and J.A. Tjon found that N-∆ box diagram itself

contains poles resulting from the square-root singularity of the N-∆ branch cut[45].

Near the N-∆ branch point there are poles that originate from left-hand

singularities in the unphysical sheet.  They tried to find the pole positions for the

3
3F  and 1

2D  nucleon-nucleon resonance poles.

Also R.L. Shypt et al.[46] raised a question again about the requirement of

an additional bound or virtual state in the nucleon-nucleon channel or whether the

threshold alone accounts for the data to explain the rapid phase variation

quantitatively in the phase δN∆  for 1
2D (NN) → 5

2S  ( N∆ ) that has obtained

similar result from πd  elastic reaction[40].

For dibaryon studies, the pole positions and residues were obtained from

elastic NN  scattering data by analytic continuation of the “production” piece of

the T-matrix obtained in the energy dependent solution SM86[4] by R.A. Arndt et

al[47].  The positions (residues) of poles extracted from the WI96 solution are

2144.6 − i75 MeV (17.3 − i33.4 MeV) for the 1
2D  partial wave, 2165.5 − i55.9

MeV (5.4 − i78.9 MeV) for the 3
3F  partial wave, and 2161.0 − i87.7 MeV (13.0 −

i61.2 MeV) for the 3
2P  partial wave states in elastic pp  reaction.

Argand plots of the dominant partial wave amplitudes in each system from

Tπ  = 0 to 500 MeV are presented in Figure 9: (a) 0+ , (b) 1+ , (c) 1− , (d) 2+ , (e)

2− , (f) 3+ , (g) 3− , (h) 4+ , (i) 4− , (j) 5+  and (k) 5−  system.  Each plot for

pp pp→  is marked as ‘ ’, πd pp→  is marked as ‘ ’ and π πd d→  is marked as

‘ ‘.  The  mark points denote 25MeV steps.  All amplitudes have been multiplied

by a factor of 310 .  All amplitudes are dimensionless.
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Figure 9. Argand plots of the dominant partial wave amplitudes in each

system from Tπ  = 0 to 500 MeV: (a) 0+ , (b) 1+ , (c) 1− , (d) 2+ , (e) 2− , (f) 3+ ,

(g) 3− , (h) 4+ , (i) 4− , (j) 5+  and (k) 5− .  Each plot for pp pp→  is marked as

‘ ’, πd pp→  is marked as ‘ ’, and π πd d→  is marked as ‘ ‘.  The marked

points denote 25MeV steps.  All amplitudes have been multiplied by a factor of

310 .  All amplitudes are dimensionless.
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Figure 9.  Continued (Argand plots)
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Figure 9.  Continued (Argand plots)
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Figure 9.  Continued (Argand plots)
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Figure 9.  Continued (Argand plots)
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Figure 9.  Continued (Argand plots)
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In the present analysis, we fit the data of the elastic πd  and πd pp→

reactions based on the elastic pp  amplitudes that contains poles.  Most systems

show clear resonance-like behaviors except 0+ , 3+ , 4− , and 5+  system.  This

implies the elastic πd  and πd pp→  reactions actually contain poles.  There

appear to be dibaryon resonances in these two baryon systems.

Predictions for observables are presented in Figure 10.  Figure 10-1

presents the predictions for observables of the elastic πd  reaction.  (a) is at Tπ  =

256 MeV and (b) is at Tπ  = 180 MeV.  Figure 10-2 presents the predictions for

observables of the πd pp→  reaction.  (a) is at Tπ  = 143 MeV and (b) is at Tπ  =

180 MeV.  In Figure 10-2, d dσ Ω , Axx , Ayy , Azz , T20 , and T22  are symmetric

about 90°.  iT11, T21, and Kyy  are antisymmetric about 90°.  Solid (dashed) curves

give the predictions from the unified (separate) analysis.  Data have been

normalized.

Predictions for observables of the elastic πd  reaction show there are also

rapid phase changes around 90°.  There is a very different angular dependence in

the separate and unified analyses, as can be seen in Figure 10-1.  This is

particularly true near 60° and 120°.  The differential cross section and iT11 are

exceptions.  There is a sharp cutoff in the data base below about 60° as shown in

Figure 3-2.  For larger angle, around 120°, both solutions agree within error bars.

Predictions for observables of the πd pp→  reaction show there are also

rapid phase changes around 90°.  The predictions for observables in the πd pp→

reaction are similar in both the unified and separate analyses, apart from iT11.
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Figure 10-1. Predictions for observables of the πd  elastic reaction.  (a) Tπ  = 256

MeV and (b) Tπ  = 180 MeV.  Solid (dashed) curves give the predictions from

the unified (separate) analysis.  Data have been normalized.
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Figure 10-2. Predictions for observables of the πd pp→  reaction.  (a) Tπ  = 143

MeV and (b) Tπ  = 180 MeV.  Solid (dashed) curves give the predictions from the

unified (separate) analysis. Data have been normalised.  d dσ Ω , Axx , Ayy , Azz ,

T20 , and T22  are symmetric about 90°.  iT11, T21, and Kyy  are antisymmetric about

90°.
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Figure 10-2. Continued (predictions for observables of the πd pp→  reaction at
Tπ  = 180 MeV)
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Chapter 8

SUMMARY AND CONCLUSIONS

We have obtained new partial-wave amplitudes for dπ  elastic scattering

and the reaction ppd →π , using a K-matrix method which utilized information

from previous VPI elastic pp  scattering analysis.  In addition to producing

amplitudes more tightly constrained by unitarity, we have resolved the overall

phase ambiguity existing in a previous analysis of ppd →π  data alone.

As mentioned in Chapter 6, the unified analysis has resulted in a slightly

improved fit to the dπ  elastic and ppd →π  data bases.  The most noticeable

differences, at the partial-wave level, appear at higher energies where the existing

data are sparse.  It is difficult to find cases where the fit has been dramatically

improved.  One exception is the set of dπ  total cross section data between 300 and

500 MeV.  Here the unified analysis is much more successful in reproducing the

energy dependence.  The unified analysis gives total cross sections which begin to

rise at 500 MeV, whereas the separate analysis shows a fairly monotonic decrease

from 400 to 500 MeV.  The behavior seen in the unified analysis seems

reasonable, as the dπ  total cross sections do begin to rise just beyond the upper

energy limit of our analysis. Many of the individual partial-wave amplitudes from

the unified solution show rising imaginary parts near 500 MeV, a feature absent in

the analysis of dπ  elastic data alone.
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The present analysis has also resulted in a unified description of the

resonance-like behavior previously noted in separate analyses of pp  [1]  and

dπ [2] elastic scattering, and the reaction ppd →π [3].

We extracted poles from elastic pp  analysis[47].  Since our new

partial-wave amplitudes for dπ  elastic scattering and the reaction ppd →π  are

tightly constrained from elastic pp  scattering by unitarity, it is a necessary

condition that actual dibaryon poles exist in dπ  elastic scattering and in the

reaction ppd →π .  It is clear that our predictions for the observables in elastic dπ

reaction show very rapid phase changes around 90° that can not be explained by

the N-∆ contributions alone.  Predictions for the reaction ppd →π  show very

similar rapid phase changes.

Resonance-like behaviors in the Argand plots suggest one should look for

dibaryon poles in the 1+ , 1− , 2+ , 2− , 3− , 4+ , and 5−  systems.

We expect that our unified analysis will further constrain models based on

these two mechanisms - actual dibaryon resonances and N-∆ intermediate

threshold effects.
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Appendix A

Some Useful Kinematic Relations

In the laboratory system, consider a nuclear reaction as a general binary

scattering in which a particle of mass m1 strikes a particle of mass m2 initially at

rest and, after the collision, particles of masses m3 and m4 emerge.  And their four

momentum are  p1, p2, p3, and p4, respectively.

Mandelstam’s variable s of this system is

s  = ( )p p1 2
2+  = p p p p1

2
1 2 2

22+ ⋅ +  = ( ) ( )m p p m1
2

1
0

1 2
0

2 2
22+ ⋅ +, ,p p

Since a particle of mass m2 initially at rest, p2  = 0 and T2 = 0 where T is kinetic

energy of the particle.  So

s  = m p p m1
2

1
0

2
0

2
22+ + .

Since p E T m1
0

1 1 1= = +  and p E m2
0

2 2= = ,

s  = ( )m T m m m1
2

1 1 2 2
22+ + +  = ( )m m m T1 2

2
2 12+ + .

Now consider the specific reaction, pp d→ π , with m1 = m2 = mp  and

s  = 4 22m m Tp p p+ .

For πd pp→ , we have m1 = mπ , and m2 = md , and

 s  = ( )m m m Td dπ π+ +2 2 .

This leads to the relation

s  = m m Tp p p
2 2+  = ( )m m m Td dπ π+ +2 2 .

The proton laboratory kinetic energy and pion laboratory kinetic energy are
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∴ Tp  = 
s m

m
p

p

− 4

2

2

and Tπ  = 
( )s m m

m
d

d

− +π
2

2
.

Applying s  = ( )m m m Td dπ π+ +2 2  and m m m md p n p= + ≈ 2 , gives

Tp  = 
( )m m m T m

m
d d d

p

π π+ + −2 22

2
 = 

( )m m m

m
T

p

p

π π
π

+
+

4

2
2 .

Using mp  = 938.2723 MeV, mπ  = 139.5679 MeV, and md  = 1875.6134 MeV,

( )m m m

m
p

p

π π +
≈

4

2
 290 MeV.

∴ Tp  = 2Tπ  + 290MeV

In the center of mass system of the above reaction, p1 = − p2 .

Mandelstam’s variable s evaluated in the center-of-mass system is

s  = ( )p p1 2
2+  = ( ) ( )p p1

0
2
0 2

1 2
2+ + +p p  = ( )p p1

0
2
0 2

+

s  = ( )E E1 2
2+  = W 2 , where W is total center of mass energy.

∴ W s=

The relation between center of mass momentum q (= p1 = − p2 ) and s is

the following;

From s  = ( )E E1 2
2+  and E m1 1

2= +q  or q2  = E m1
2

1
2−  = E m2

2
2

2− .

E1 = 
s m m

s

+ −1
2

2
2

2
 and E2  = 

s m m

s

− +1
2

2
2

2
.

So the relation between center of mass momentum q and s is

 q2  = E m1
2

1
2−  = 

( ){ } ( ){ }s m m s m m

s

− + − −1 2
2

1 2
2

4
.
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Appendix B

Partial Wave Decomposition

for Three Reactions

The proton is a spin half ( s = 1
2 ) particle.  Elastic pp scattering can occur

with total spin singlet ( S = 0) or triplet ( S = 1) states.  This leads to five basic

angular momentum states to describe the elastic  pp system. :

for spin singlet, S = 0 L J=

for spin triplet, S = 1 L J=

     L J= ± 1

and there is spin mixture state ε  of two spin flipped states for L J= + 1 and

L J= − 1.  Here, L is the orbital angular momentum and J is the total angular

momentum.

Another important restriction for the elastic pp  reaction is parity (P)

conservation.  Elastic pp  scattering occurs between two identical particles.

The Pauli principle requires the overall wave function to be odd under

exchange of identical particles.  That is P P Pr σ τ = −1, where Pr  is the space

exchange operator which interchanges two particles.  Pσ  and Pτ  are

( )Pσ σ σ= + ⋅
1

2
1 1 2

r r
 and ( )Pτ τ τ= + ⋅

1

2
1 1 2

r r
, respectively, the exchange operators

for spin and isospin for each particles[13].  So only spin singlet (odd under
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exchange) even angular momentum states (even under exchange) or spin triplet

(even under exchange) odd angular momentum states (odd under exchange) can be

present for the elastic pp  system.

Possible partial wave states for elastic pp  system are given in below, using

the notation 2 1S
JL+ , where S is the total spin and J is the total angular momentum

of the system.

For the spin singlet state ( S = 0), the elastic pp  reaction occurs only with

even angular momentum states.  So the possible partial wave states are 2S + 1 = 1

and  L = J = even :

1
0S , 1

2D , 1
4G , 1

6I , …

For the spin triplet state ( S = 1), the elastic pp  reaction occurs only with

odd angular momentum states.  So the possible partial wave states are 2S + 1 = 3,

L = J = odd ;

3
1P , 3

3F , 3
5H , … ;

or 2S + 1 = 3, L J= ± 1, and L has odd values :

L = 1 : L = J  − 1 =  1  → J = 2  3
2P , ε2 ,

L = J  + 1 =  1  → J = 0  3
0P ,

L = 3 : L = J  − 1 =  3  → J = 4  3
4F , ε4 ,

L = J  + 1 =  3  → J = 2  3
2F , ε2 ,

L = 5 : L = J  − 1 =  5  → J = 6 3
6H , ε6 ,

L = J  + 1 =  5  → J = 4  3
4H , ε4 ,

…
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Since there is no L = J  − 1 state for J = 0, ε0  cannot occur.

Spin coupled states will be

3
2P , ε2 , 3

2F 3
4F , ε4 , 3

4H  3
6H , ε6 , 3

6J …

Parity conservation implies there is no transition between the different

parity states.  The total angular momentum(J) of the system is a good quantum

number and it is convenient to describe possible partial waves in terms of the

invariant variable J, because there is no transition between states of different J

either.  Spin triplet states of possible partial waves in elastic pp  reaction in terms

of J are follows:

J = 0 : 3
0P

J = 2 : 3
2P , ε2 , 3

2F

J = 4 : 3
4F , ε4 , 3

4H

…

Possible partial wave decompositions for the pp  elastic system are given in Table

A-1.

The pion (π) is a spinless (s = 0) particle and the deuteron is a spin one (s =

1) particle.  The total spin of the πd  elastic system is one (S = 1) and only spin

triplet states are available.  Four basic angular momentum states are required to

describe the πd  elastic system.  Details of possible partial wave decompositions

for the πd  elastic system are given in Table A-2.
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Table A-1.  Possible partial wave decompositions for the pp  elastic
system.  State symbol is described by f JL .  J is total angular
momentum of the system and L is orbital angular momentum.  f J

is spin singlet state.  f JJ  is spin triplet with J = L.  f JJ −1  is spin
triplet with J = L + 1.  ε J  is spin flipped mixture state of J = L +
1 and J = L − 1 state.  f J J +1  is spin triplet with J = L − 1.

States J = 0 J = 1 J = 2 J = 3 J = 4 J = 5 J = 6

f J 1
0S - 1

2D - 1
4G - 1

6I

f JJ - 3
1P - 3

3F - 3
5H -

f JJ −1 - - 3
2P - 3

4F - 3
6H

ε J - - ε2 - ε4 - ε6

f J J +1 3
0P - 3

2F - 3
4H - 3

6J

Table A-2.  Partial wave decompositions for the πd  elastic system.
Symbols are equivalent to those used in Table A-1.  For the πd
elastic system, there is no spin singlet system (no f J  state).

States J = 0 J = 1 J = 2 J = 3 J = 4 J = 5

f JJ (x) 3
1P 3

2D 3
3F 3

4G 3
5H

f JJ −1 (x) 3
1S 3

2P 3
3D 3

4F 3
5G

ε J (x) ε1 ε2 ε3 ε4 ε5

f J J +1 3
0P 3

1D 3
2F 3

3G 3
4H 3

5I
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For the πd pp→  reaction, the πd  states are spin triplet only and pp  states

are spin singlet, even angular momentum states, or spin triplet, odd angular

momentum states.  This allows six possible transitions between the two system.

Since πd pp→  is an inelastic reaction, we need to consider the intrinsic parity for

initial and final states.  The intrinsic parity of proton is even (+1), this gives even

intrinsic parity (+1) for the pp  system.  Intrinsic parity of pion is odd (−1) and that

of deuteron is even (+1), this gives odd intrinsic parity (−1) for the πd  system.

To maintain the parity conservation, the inelastic reaction must have states

∆L = ±1.  Details of possible partial wave decompositions for the πd pp→

system is given in Table A-3.  States are denoted from pp  partial waves to πd

partial waves.  Partial wave notations are 2 1S
JL l+  where S is the total spin, J is the

total angular momentum, L is the angular momentum of the pp  state, and l is the

angular momentum of the πd  state.

Table A-3.  Details of possible partial waves for the π d pp→
system.  By time reverse, pp d→ π  is identical with π d pp→ .
Symbols that follow have pp  initial state to πd  final state.

 

       

f

f
J

J J

→

−1

f

f
J

J J

→

+      1

f

f
J J

J J

 

       

→

−1

f

f
J J

J J

 

       

→

+1

f

f
J J

J J

 

      
− →1 f

f
J J

J J

 

      
+ →1

- 1
0S p 3

1P s 3
1P d - -

1
2D p 1

2D f 3
3F d 3

3F g 3
2P d 3

2F d

1
4G f 1

4G h 3
5H g 3

5H i 3
4F g 3

4H g

1
6I h 1

6I j 3
7J i 3

7J k 3
6H i 3

6J i
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The ∆ has isospin 3
2  and the nucleon has isospin 1

2 , the total isospin of

the N∆  system is one or two.  Since the two nucleon system has total isospin 1 or

zero and the πd  system has total isospin 1, only the N∆  channels with total

isospin 1 will couple the two proton system to the πd  system.  On the other hand,

the nucleon has spin 1
2  and the delta has spin 3

2 , so N∆  channels with total

spin two or one are possibly coupled to the two proton system and the πd  system

with appropriate angular momentum.  From the nucleon, there are two possible

helicity states and from the delta, there are four possible helicity states.  For a

combined nucleon-delta system, there are eight possible helicity states.

For total spin one states, 2S + 1 = 3, the possible partial wave states of the

N∆ are follows;

For L = J ; ( 3
0S ), 3

1P , 3
2D , 3

3F , 3
4G , 3

5H , … ;

For L = J + 1; 3
0P , 3

1D , 3
2F , 3

3G , 3
4H , … ;

For L = J − 1; 3
1S , 3

2P , 3
3D , 3

4F , 3
5G , 3

6H , … ;

For total spin two states, 2S + 1 = 5, the possible partial wave states of the N∆ are

follows;

For L = J ; ( 5
0S ), 5

1P , 5
2D , 5

3F , 5
4G , 5

5H , … ;

For L = J + 1; ( 5
0P ), 5

1D , 5
2F , 5

3G , 5
4H , … ;

For L = J − 1; ( 5
1S ), 5

2P , 5
3D , 5

4F , 5
5G , 5

6H , … ;

For L = J + 2; 5
0D , 5

1F , 5
2G , 5

3H , … ;

For L = J − 2; 5
2S , 5

3P , 5
4D , 5

6F , 5
7G , 5

8H , …
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Here, 5
0S , 5

0P , and 5
1S  partial wave states are not allowed to couple to the two

proton system.  As mentioned, in the pp  partial wave decomposition, the pp

system requires an overall anti-symmetric wave function under exchange of

identical particles.  Possible partial waves for the N∆  system are summarized in

Table A-4.

Table A-4.  Partial wave decompositions for the N∆  system.
Symbols are equivalent to those used in Table A-1.  For the N∆
system, there is no spin singlet system (no f J  state).

Spin States J = 0 J = 1 J = 2 J = 3 J = 4 J = 5

f JJ - 3
1P 3

2D 3
3F 3

4G 3
5H

S = 1 f JJ +1 3
0P 3

1D 3
2F 3

3G 3
4H 3

5I

f JJ −1 - 3
1S 3

2P 3
3D 3

4F 3
5G

f JJ - 5
1P 5

2D 5
3F 5

4G 5
5H

f JJ +1 - 5
1D 5

2F 5
3G 5

4H 5
5I

S = 2 f JJ −1 - - 5
2P 5

3D 5
4F 5

5G

f JJ +2 5
0D 5

1F 5
2G 5

4H 5
5I 5

6J

f JJ −2 5
2S 5

3P 5
4D 5

6F 5
7G 5

8H
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Appendix C

Observables for

the Elastic pp Reaction

Since the proton is a spin 1
2  particle, the observables depend upon its

polarization.  Summary of the observables for the elastic pp  reaction is presented

in Table 2-1.  In this Appendix, the dependence of observables on polarization is

briefly discussed.

Four possible polarization conditions suggest 256 (=44 ) possible

observables in the elastic pp  reaction.  However, depending on conservation laws

and the Pauli principle, the actual number of observables is reduced.  A general

descriptions of these observables follows[16].

For the unpolarized case (unpolarized beam and unpolarized target), the

obsevables are: differential cross section ( d
d

σ
Ω ),  total cross section (σ T ), or

elastic total cross section (σT
el ).  In this case, directions are denoted as (0000),

where we label the directions of four particles (p1′′, p2′′, p1, p2), respectively,

scattered, recoiled, incident, and target particles.  For example, the differential

cross section ( d
d

σ
Ω , I0 ) is

(0, 0; 0, 0) = I MM0 =
1
4

Tr * = +∑








1
2

2
4

2

q
H Hi

i
,
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where q is the center-of-mass momentum of incident proton and M is scattering

matrix.  The scattering angle θ is considered 0 for the total cross section (σ T )

because of the optical theorem

σ π
T q

f=
4

0Im ( ) .

If only one particle is polarized, there are 12 possible measurements.  There

are 6 possible ‘Polarization’(P) measurements for one final state particle which is

(X,0 ; 0,0) or (0,X ; 0,0) ≡ I PX0 .

Also there are 6 possible ‘Asymmetry’(A) measurements of one initial state

particle (either the initial beam or the initial target) which is

(0,0 ; X,0) or (0,0 ; 0,X) ≡ I AX0 .

Depending on the coordinate system and particles, notations of particle directions

are as follows.  In the laboratory system, take the z-axis(q) for the incident beam

(p1) direction, then q'  will be the direction of scattered particle (p1′′) and q' '  will

be the direction of recoiled particle (p2′′).  In the center-of-mass system take

normalized directions such as

n
q q

q q
=

×

×
i f

i f

 (y-axis : axial vector),

l
q q

q q
=

+

+
i f

i f

m
q q

q q
=

−

−
i f

i f

(polar vector).

Here, qi  (q f ) is a unit vector in the direction of the incident (scattered) particle

momenta in the center-of-mass system.  Since qi  is taken as the z-axis, n is the

norm of the y-axis.  Other useful directions are the cross product of n  with the

norm of laboratory system.  They are
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s n q= ×  (x-axis : axial vector),

s n q' '= × s n q" "= × (polar vector).

Here, s  is the vector along the x-axis.

Because of parity conservation and time reversal, only the n direction is

non-zero and asymmetry measurements are identical with the corresponding

polarization measurements.  For elastic pp  scattering, two final state particles are

identical.  So all possible measurements with one polarized particle are identical.

In SAID, all the measurements of the one polarized particle case are denoted as P.

When two final state particles are polarized, and the incident beam and

target are unpolarized, then measurement yields the correlation of the two final

state spin directions.

(X,Y ; 0,0) ≡ I CXY0

For this state condition, symbol C for  “Polarization Correlation” is used in Table

2-1.  There are nine possible spin correlated measurements.  However, only CNN ,

CPP , CKK , CKP =CPK  are non-zero because of the form of the scattering matrix and

only CNN  and CKP  have been measured.  Here, direction symbols are labeled N for

n (y direction), K for l, and P for m.  For the CNN  measurement, we have used a

notation Ayy  (nn00) because this is actually y-direction.

When two initial state particles (beam and target) are polarized, and if the

final state polarization is not measured, then

(0,0 ; X,Y) ≡ I AXY0 .

For this state condition, the symbol A for “Asymmetry in Cross Section” is used in

Table 2-1.  There are nine possible doubly polarized cross-sections and these are

time-reversed counterparts of the spin correlation measurements.  Axx  (00ss), Azz
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(00kk), and Azx  (−(00sk)) are measured observables and available in SAID.  Here,

s labels for s (x-direction), k labels for z-direction, and   For Azx , ‘−’ sign is used

to describe the negative direction of Axz (00sk).

If one particle of initial state and one particle of final state are polarized,

then  either an initial polarized beam or a polarized target, and the polarization of

one of the final particles, are measured.

(X,0 ; Y,0) or (0,X ; Y,0) or (X,0 ; 0,Y) or (0,X ; 0,Y) ≡ TXY
( )12

There are 36 (= 3 3 4× × ) possible measurements for this case.  Because of the

characteristics of scattering matrix, only 9 measurements are non-zero.  There are

six possible measurements which are those involving two N’s, two K’s, and two

P’s such as

(X,0 ; Y,0) = (0,X ; Y,0), (X,0 ; 0,Y) = (0,X ; 0,Y).

AT (−(0s″k0)), DT (0nn0), and RT (0s″s0) are measured observables and

available in SAID.  Another three possible measurements are a K and a P in each

of the four groups such as

(0,P ; 0,K) = (0,K ; 0,P), (P,0 ; 0,K) = (K,0 ; 0,P), etc.

For these states, symbol K for “Polarization Transfer” is used in Table 2-1.  Only

D0SK (0s″0k) where ‘D’ means “Depolarization Tensor” is measured and

available in SAID.

For experimental reasons, five linear combinations of the above five non-

zero quantities are used.  These combinations are (for elastic pp  reaction) :

I D N N0
11( ) = ( ,0 ;  ,0) ,

I R K K K P0
11( ) = +( ,0 ;  ,0)cos 2 ( ,0 ;  ,0)sin 2

θ θ ,

I A K P K K0
11( ) = −( ,0 ;  ,0)cos 2 ( ,0 ;  ,0)sin 2

θ θ ,
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I R P K P P0
11'( ) = +( ,0 ;  ,0)cos 2 ( ,0 ;  ,0)sin 2

θ θ ,

I A P P P K0
11'( ) = −( ,0 ;  ,0)cos 2 ( ,0 ;  ,0)sin 2

θ θ .

In SAID, D (n0n0), R (s′0s0), A (s′0k0), RP (k′0s0), and AP (k′0k0) are available.

When three particles are polarized, there are three choices for each initial

and final state.  The first one is to use a polarized beam and unpolarized target,

then measure the polarization of both final particles (X,Y ; W,0).  There are 27

possible measurements for this case and only 13 are non-zero.  The second

possible measurement is to use an unpolarized beam and polarized target, then

measure the polarization of both final state particles (X,Y ; 0,W).  There are 27

possible measurements for this case and only 13 are non-zero.  The last choice is to

use a polarized beam and polarized target, then measure the polarization of one of

the final state particles.  There are 54 possible measurements such as (X,0 ; Y,W) or

(0,X ; Y,W).  These are identical with the first and the second choices by time

reversal invariance.  For this state condition, symbol M for “Contribution to the

Polarization of Scattered Particle” is used in Table 2-1.  In SAID, NNKK (0nkk),

NSNK  (0s″nk), and NSKN  (0s″kn) are available measurements.

When the polarizations of the beam, target, and both final state particles are

measured, there are 81 possible measurements and 41 of them are non-zero.

However, except for total cross sections, no experiments have been carried out for

this choice of measurement.  In SAID, longitudinal polarized total cross section

( ∆σ tot
 L ) and transverse polarized total cross section ( ∆σ tot

 T ) are available

measurements.
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Appendix D

Unitarity and

Multi-Channel Matrix Formalisms

In Chapter 3, the scattered wave ψ sc , for a simple spinless particles system,

is given by

ψ sc  = ( )1
2 1

1

2

2

0k
l

e
i

P
e

r
l

i

l

ikr

l

l

+
−

∑
=

∞ η θ
δ

(cos ) .

Sl  is the l th  component of the scattering matrix and is defined as

Sl  = η δ
l

ie l2 .

For a pure elastic system, the scattering matrix S satisfies the unitarity condition

S S SS 1+ += = .

Here, ηl  = 1 for a pure elastic system and Sl
+  = Sl * = e i l−2 δ .

For a multi-channel system such as two nucleon system, there are inelastic

channels as described in Figure 1.  The unitarity-satisfied full S-matrix contains all

the possible scattering channels, such as

S =

→ → → →
→ → → →
→ → → →
→ → → →























NN NN NN N NN d NN NN

N NN N N N d N NN

d NN d N d d d NN

NN NN NN N NN d NN NN

∆
∆ ∆ ∆ ∆ ∆

∆
∆

π π
π π

π π π π π π
π π π π π π

L

L

L

L

M M M M O

.



111

From the definition of partial wave amplitude

f T
e

il l
l

i l

= =
−η δ2 1

2
,

the multi-channel T-matrix is defined as

S  = 1 2+ iT .

If the S-matrix satisfies unitarity, the T-matrix satisfies

ImT Tαα γα
γ

= ∑
2

≥ 0 or Im T Tαα γα
γ

− ∑ =
2

0,

or in matrix form,

ImT  = T T+ or T T T T+ +− = 2i .

Another convenient matrix formalism for a multi-channel system is the K-

matrix which is defined as

( )( )S K K= + − −1 1 1i i .

Relations between the T-matrix and the K-matrix are

( )T K K= − −1 1i or ( )K T T= + −1 1i .

If the S-matrix satisfies unitarity, the K-matrix is real.  Due to time reversal, the K-

matrix is symmetric.

Generally, from pion threshold energy (290 MeV of proton laboratory

kinetic energy Tp ) to 1290 MeV of Tp , which is 500 MeV of Tπ (pion laboratory

kinetic energy), N∆  is the dominant channel.  If we assume that the N∆  channel
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accounts for all unmeasured scattering, then we have the following real symmetric

K-matrix that satisfies the unitarity condition.

K =
→ → →
→ → →
→ → →

















pp pp pp d pp N

d pp d d d N

N pp N d N N

π
π π π π

π

∆
∆

∆ ∆ ∆ ∆
.

To satisfy the conservation laws, N∆  is either p∆+  or n∆++ .

As described in Appendix B, our two nucleon system contains spin singlet

and spin triplet states and inelastic channels require parity conservation.  This

condition requires two 4×4 K-matrices that contain 2×2 spin flipped matrices.

Two such 4×4 K-matrices follow;

When J is  even and the parity is even, or J is odd and the parity is odd, the

2×2 spin flipped pp  system couples to the non-spin flipped πd system.  In this

case, the 4×4 K-matrix formalism is

K =

→ → → →
→ → → →

→ → → →
→

= − = − = − = + = − = = −

= + = − = + = + = + = = +

= = − = = + = = =

= −

pp pp pp pp pp d pp N

pp pp pp pp pp d pp N

d pp d pp d d d N

N pp

L J L J L J L J L J L J L J L

L J L J L J L J L J L J L J L

L J L J L J L J L J L J L J L

L L J

1 1 1 1 1 1

1 1 1 1 1 1

1 1

1

π
π

π π π π π

∆
∆

∆
∆ N pp N d N NL L J L L J L L∆ ∆ ∆ ∆→ → →



















= + =1 π

.

Here, the relations between angular momentum L and total angular momentum J

are explained in Appendix B.  For the N∆  state, we assume that the lowest angular

momentum state with the correct J P  is dominant.

When J is even and the parity is odd, or J is odd and the parity is even, the

2×2 spin flipped πd system couples to the non-spin flipped pp  system.  In this

case, the 4×4 K-matrix formalism is
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K =

→ → → →
→ → → →

→ → → →

= − = − = − = + = − = = −

= + = − = + = + = + = = +

= = − = = + = = =

π π π π π π
π π π π π π
π π π

d d d d d pp d N

d d d d d pp d N

d d pp d pp pp pp N

N

L J L J L J L J L J L J L J L

L J L J L J L J L J L J L J L

L J L J L J L J L J L J L J L

L

1 1 1 1 1 1

1 1 1 1 1 1

1 1

∆
∆

∆
∆ → → → →



















= − = + =π πd N d N pp N NL J L L J L L J L L1 1∆ ∆ ∆ ∆

.

These 4×4 K-matrices are real, symmetric matrices and satisfy the unitarity for the

whole system.
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