
SOFTWARE PROCESS REUSABILITY IN AN INDUSTRIAL SETTING

by

Craig R. Hollenbach

Masters Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of .

MASTERS OF COMPUTER SCIENCE

APPROVED:

O) Meo, Joa Liaifephe. foe

. Frakes, Chairman C. Fox

R. Prieto-Diaz S. Redwine

October 1995

Blacksburg, Virginia

ca

| [>

S5G65SD

NP BPD

Pe,

Gs4
Cis

Software Process Reusability In An Industrial Setting

by Craig R. Hollenbach

ABSTRACT

Many software organizations are actively pursuing software process maturity.

One of the cornerstones of software process improvement is the definition of

processes in key process areas [Paulk 93a]. As development organizations

define processes to increase their project's maturity, a method is needed to

make the defined processes reusable by the organization and to tailor these

reusable processes for reuse on other projects.

The thesis is that the development and implementation of a method to

construct reusable corporate process definitions and to tailor them to

specific projects will significantly increase the corporate level of process

reuse.

Therefore, this thesis investigates how to pragmatically and systematically

standardize and replicate project-specific processes in an industrial software

setting. Process reusability and attributes of process reusability are discussed

and a systematic and standardized method for process reuse is presented.

The utility of the methodology is demonstrated by its application to software

process definition activities at PRC Inc., where the level of process reuse both

before and after its application has been measured. Process reuse increased

from 41% in 1994 to 55% in 1995. PRC also saw a 10 to 1 improvement in

time to define a project-specific process.

ACKNOWLEDGMENTS

I would like to first acknowledge Dr. Bill Frakes, my advisor. It is a tribute

that my initial healthy respect for him has grown even stronger throughout

my many months under his tutelage.

I also want to thank my colleagues at PRC, especially Jonathan Addelston,

Cora Carmody, Caz Caswell, Jude Franklin, Judy Herndon, Mary Peterson,

and Ralph Young for their cooperation, endorsement, and support.

My thanks also go to my parents who modeled for me hard work and

attention to detail and provided unquestioned support.

Iam most happy to finish for Aledra, my help-mate, and Haley and Nathan,

my children, since they endured the absence of their husband and father at

home and suffered along with me the long stretches of work.

Finally, I thank the great I AM, who in a very personal sense ceaselessly

encouraged and supported me throughout this thesis process.

lil

TABLE OF CONTENTS

L. INtrOd ction... ecececcscecsssesseseesessessscsecscsecesecesceasssessesssecsseeesessseassasessneeeaseeeoeseasos 1

1.1 Problem Definition... ees cssssessssssseesscsceescesessceseseesseeseseeseerecsseasseeeseeeers 2

1.2 Current Situation... cece cesssecssecesessecsssscessscseseeesseseesscesseereeessesereeseseeeeceees 3

1.3 Amralysis and Theis...........cccccscssssssesscscsstsecsrscsssesssessasscsesecesscesesseesseersceesseeers 3

1.4 What is a Reusable Process? 0.0.0... cccccsssesssssesseeesesessseeeneessasseeesssesseesssenses 4

1.5 Organization of the Remaining Thesis Chapters .0......... cc esssceeressesenees 6

2. Literature REVICW Wu... cece eecsscessccsesscsscessscscesesesesscessecssesasesseseessesessenseeeseseneoens 8

2.1 Domain Engineering, Analysis, and Implementation... esses 8

2.1.1 De fimitions.........ccceecsssssssssscessessssseesssssssessssssesssssesssssessasesessessssessesssseesseseasees 9

2.1.2 Common Domain Analysis Processcccsssssescesersessesssssessceesssesseessees 11

2.1.3 Comparisons of Domain Analysis Methods.............cccscscesseeesseseeerseeees 14

2.1.3.1 Bailin's Domain Analysis in KAPTUR Wu. eccectserersceseeseeeers 14

2.1.3.2 Lubars' Domain Analysis in ID@QA Qe eeececsecereseeeeeeseesscenseecenseees 16

2.1.3.3 SEI's Feature-Oriented Domain Analysis (FODA):ccccccseeeeees 16

2.1.3.4 SPC's Domain Analysis in the Synthesis Environment...............0.06 17

2.1.3.5 Prieto-Diaz's Domain Analysis for Reusability.............0.ccseseeeseeeees 17

2.2 Software Processessccsssessessssesssesscssesssscsceecassessesseeseessssseseseesessecesneesssseesseees 18

2.2.1 Software Process CONteXt........cesesesessesseessssessecsessesseeseenssseseesesseeessseneseseeens 18

2.2.2 Basic Process Artifactccccccssessssssscsssscsssssscsescscsessseesesssessessnsessssessesserees 19

2.2.3 Process Engineering ACtiONnscccccccsssccscsssssessesesssesssssessessssesessstsceseeseees 22

2.3 Process Modeling uu... ecsesesessessessssessessssscsscssssesssescsesssssssssesesssevssesessssesesseeees 23

2.3.1 Levels of Process Models... eescessescssecccceceecescesseeceeseseseeessessseesessseseees 24

2.3.2 Essential Process Model Entities... cee eseeseeceeseesesseeessceeeseeseenssseses 24

2.3.3 Process Model Relationships and Behaviors... cess seeeeeeeeeeeeeees 25.

2.3.4 Perspectives in Process Representation:cccssesscesessesseseeeeseeneeneeeeeees 26

2.3.5 Process Modeling Paradigms...........cccccscseessesssesssseeeseessnsesersnssssseesssereees 26

2.3.6 Issues in Process Modeling ccc eeeeceeeseceseesesseeseneessessrsssasseeeseseeees 29

2.4 Software Reuse.....ccccsecsscscsesesscessssssseccsssesscseessenssacsssersssssscsssessssensesseseseeceaees 30

2.5 Software Process Reuse Techniquescecssccsssseseescesesscsssseteevsseeeeseeseees 32

1V

3. Process Reusability........cccesssscsssscscssssssscssssssessssssesscsessseseessssensesnsnassssseceenseeeeeees 36

3.1 De finitions.................cc ce eeessessescscccccesccscccccccacscesscccccecescssssesscccscnccsesesccusesessccencacees 36

3.2 Process Reusability....... ct cescsseceseceesecsececsceeceaseeccsscenseessessseccssesseasenseseereneees 37

3.3 Process DOMAINS .000......ccccceescccesssccecccssscscecoccccsccscccccatcscrsseccccnscecssecccecssscccececcssoees 37

3.4 Methods of Defining Process Variability0. ee eects sectececenenceeceeeesees 41

4. Software Process Reuse Methodologyccccccsscscessesssesscsssessssesesescssseeseeees 44

AL [ntroduction nic... eeeescsssecececccccccccccscsscsseccsccccccccccceccecasscscssessscececceasesececsccees 45

4.2 Process Notation at PRC 0... ccc cecccesseecccccsssssscccecocsccccccccccensececccensseccecees 46

4.3 Context for Process Definition and Reuse........c.cccccscscccscccssesscesecesecescesseescenes 52

44 Process Definition Process................ccccsssssccccccccssscsecccecceececesscccccccacssceececaneeeses 55

AA.1 CUStOMeYS.......cccccccceseccsscescscccccccccsesssccccecscccccscccesccccccsccsscassescscccsscccsscsscecececsceoees 55

4.4.2 Process InterfaceS...........ccscscscssssccccsssssssssesssccececcccssesssenssesceccccucsrssssceseccssanssseseces 56

4.4.3 ProcessS Activitiescc cc ccsccssccccccssseccccscscccccsccccccsccsscccssscccccsscerecesescucseseesees 58

4.5 Process Tailoring Methodology oes sessessscecesceessneeessesassesesesseeesseeees 63

4.6 The Storage and Retrieval of Reusable Processes..........cccsescssssssseeseeeeeees 65

5. Implementations of the Software Process Reuse Methodologies............... 71

5.1 Definition of Reusable Configuration Management Processes................ 71

5.2 Tailoring of a Reusable Peer Review Processccssesssesseeeessseeeeteeeeeees 82

6. Case Study... ccsseseesssscscsssecessesessssscssesssesecsssensssssescssscesesenseceessssesseesseessesseeensees 92

7 . CONCIUSIONS.............ccccccceceseescescecccecccceccecccccctccnsssececscccuscstessssccscecsecsecsecenssecececeusneese 103

Z.1 COmncluSiOns..............cceccseccoccccscccscccececcesscesconscccccnccesccecsscsecacceccecccacscnscesccssssecescaces 103

7.2 Future Research .0..0..........cccccssecesscesecsccssceccsscscsecscseccccecccecccccacancccccececscceusasceaccesene 103

RefOLONCES.........cccccccsececcececcocensenessssnsnecsscceecececccecsesceccessccascccccsccceccccceascesscessessesscececcececouss 105

Vita... ccencsesscecccceccsccceccccecsccssccsssssceccesscceccceccceccecccccccscacacescssnsssecesensnsssessecsessesscecseceeceeess 110

LIST OF TABLES

Table 1-1. Examples of the 3C's model 00... cece ceescesesecsesseeceseeesceaecseeseseeseeeens 5

Table 2-1. Comparison of Domain Analysis Methods.........ccccccsesseeeseeseeees 15

Table 2-2. Comparison of Process Modeling Paradigms... eseseeeeeeeeees 27

Table 2-3. The 3C’s Reference Model uu... ccscecsscssssssesscsscsssesersessssessenseeessseeses 30

Table 6-1. Process Reuse in 1994-1995 by Business Unit0.c cc eceeeeeeeeeeeeees 95

v1

Figure 1-1.

Figure 2-1.

Figure 2-2.

Figure 2-3.

Figure 3-1.

Figure 3-2.

Figure 3-3.

Figure 3-4.

Figure 4-1.

Figure 4-1.

Figure 4-1.

Figure 4-2.

Figure 4-3.

Figure 4-4.

Figure 4-5.

Figure 5-1.

Figure 5-2.

Figure 5-2.

Figure 5-2.

Figure 5-2.

Figure 5-3.

Figure 5-3.

Figure 5-3.

Figure 5-3.

Figure 5-4.

Figure 5-4.

Figure 5-4.

Figure 5-4.

Figure 6-1.

Figure 6-2.

LIST OF FIGURES

Vii

A Process Reusability Examplecccccssctssseseseesesssessesseseeeeeers 6

Two Domain Analysis Viewpoints..........cccccccssescseesscsssessesseeseeenes 10

Structure Of Process CONCEPTSceseccesscseeeseecerseseecesseccessersessseesesees 18

Process Definition Artifacts and ACctiOns........ccccccescsesessecsereeeees 20

The Three Categories Of KPAS......cccssscscesessscestsescsesscesssessescensenees 39

A Configuration Management Process Domain.............cscseeeeeeee 41

An Example of Process Parameterizationcssssessceeeessesesceees 42

An Example of Process Abstraction..........cccccssssscceeessscsceesscseneeeneesenes 43

Process Notation at PRC - Part 1 Of 3 oo eeseeeeceesrensecseneneenes 48

Process Notation at PRC - Part 2 Of 3 oes csceceseseeeseessceseeeeeees 49

Process Notation at PRC - Part 3 Of 3 ooo. ccseeseseesereseeeseeeeeneeees 50

Formats for Variations..........cccccssscsscsscsscssseesssccsesesscsesssceesesecsaserenseees 51

Process Definition Life Cycle... eecesecsesstsssesessssscesssessessceeeeens 54

Process Tailoring Methodology........cccccsesssssesseseesscsesesssssssecesenenees 66

PAL Administration... cccsesscecseesecsensecseeseeseetseesessesscssessseseeceseees 70

Configuration Identification Process Definitions..............c::ceee 77

CM200 Configuration Identification Process - Part 1.0.0.0... 78

CM200 Configuration Identification Process - Part 2.0... 79

CM200 Configuration Identification Process - Part 3.0... eee 80

CM200 Configuration Identification Process - Part 4.0.0... 81

Corporate Peer Review Process - Part 1... eecesseescsseesseseeeeeees 84

Corporate Peer Review Process - Part 2......ccccssecssceessseceeseneeeenes 85

Corporate Peer Review Process - Part 3.........ccccscesscseseseessssseeeeeeenes 86

Corporate Peer Review Process - Part 4........ccccssssscsssecsseceeeeeseeeees 87

Tailored Peer Review Process - Part 1... eccsctseseseeeseeseceeeeneenes 88

Tailored Peer Review Process - Part 2cscsssssssescsesesceseeesesceeseseees 89

Tailored Peer Review Process - Part 3ccccsssesesssssssssesssseeeneeneens 90

Tailored Peer Review Process - Part 4.......ccccescsssesesseseeesscssceeensees 91

Defined Processes by Business Unit by Yearccccsssssssesesserenes 94

Process Definitions in Level 2 Key Process Areas by Reuse

seececsssscscescesesssssecscsossssscescsescesccsassssssccssssnsceeseeeseesedcassessasacuceasusseceeaesseeateneeses 98

Figure 6-3. Process Definitions in Level 3 Key Process Areas by Reuse

Vill

1. Introduction

Many software organizations are actively pursuing software process maturity

[Humphrey 89]. Often they use measures like the Capability Maturity Model

(CMM) for Software [Paulk 93a] to structure their process improvement

initiatives. While the CMM calls for organizational process definitions for

use on software development projects, there is very little help to show

organizations how to leverage their current process knowledge from projects

into process definitions that can be reused across the organization, i.e., to

make the process definitions reusable. Furthermore, even though some

organizations discuss tailoring the CMM or organizational process

definitions, they offer no method to do the actual tailoring. [Ginsberg 95]

[McDaniel 95]

At the 6th International Software Process Workshop, [Kumagai 91]

summarized a consensus viewpoint by saying that "process descriptions

MUST be reusable. It should be possible to describe processes or process

fragments in general terms. It should be possible to instantiate general

descriptions for specific cases." A search of the literature shows that these

goals have not yet been realized. Although there are a few instances of

replicating processes within organizations [Fagan 86] |Gale 90], there are even

fewer documented instances of a methodical process reuse program applied

across an entire organization. Only a very small number of studies have

addressed the actual construction of reusable software processes, leading one

to believe that systematic process reuse is either trivial or unrealized. The

author believes the latter to be the case.

The thesis is that the development and implementation of a method to

construct reusable corporate process definitions and to tailor them to

specific projects will significantly increase the corporate level of process

reuse.

Some benefits of reusable processes are an increased ability to transfer

process knowledge between projects in a time- and cost-effective

manner, to reduce training costs, to plan project activities, and to adjust

project performance based on process metrics, in a continuously

improving process-oriented environment.

Therefore, this thesis investigates how to pragmatically and systematically

standardize and replicate project-specific processes in an industrial software

setting. Process reusability is discussed and a systematic and standardized

method for process reuse is presented.

The utility of the methodology is demonstrated by its application to software

process definition activities at PRC Inc., where the level of process reuse both

before and after its application has been measured. Initial results show that

process reuse increased from 41% in 1994 to 55% in 1995. PRC also saw a 10 to

1 improvement in time to define a project-specific process.

1.1 Problem Definition

In 1991 PRC began to work with individual projects to increase their software

maturity. The company centralized their software process improvement

efforts into one group of full-time staff in the company's Technology Center.

The group used the Capability Maturity Model (CMM) for Software [Paulk

93a] to guide its process improvement efforts. The model measures

organizational maturity according to five levels. Organizations begin at level

1 and improve by becoming proficient in key process areas (KPAs) defined for

the next level. Each KPA defines goals and commitments, abilities, activities,

verifications, and measurements to meet the goals. Activities describe

repeatable actions that often call for documented procedures. To comply with

these CMM-required activities, organizations define software processes.

Based in part upon the experience of a pilot project, the group of full-time

staff developed approximately 300 corporate process descriptions in the level 2

key process areas, plus the peer review key process area. The group organized

these process descriptions into a set of process manuals. Although the pilot

project used these corporate process descriptions, there was little interest

among other projects in software process improvement and process adoption.

In 1993, PRC formed the "Phoenix" team. Composed of eleven of PRC's most

important software projects and assisted by the Technology Center group, PRC

tasked the team with improving the maturity of the projects using both the

company's quality improvement techniques [Arthur 93] and CMM-based

methods and principles. The Phoenix projects defined their own processes,

often without reference to the previously defined corporate processes. To

maximize process maturity, they tried to replicate "best of breed" (BoB)

processes from the most mature projects to more immature projects. This

failed almost totally. The team determined that they needed a more

methodical approach to process reuse, one that abstracted away project-specific

details so that other projects could reuse the processes.

1.2 Current Situation

To examine the 1994 level of process reuse more closely, the PRC SEPG

surveyed representatives from the Phoenix team. This survey showed that of

the possible coverage across the thirteen level 2 and 3 KPAs, only 27% of the

KPAs had instances of process definition. Eleven percent of the KPAs had

processes that were derived from corporate ones in some unspecified way and

only two percent of the KPAs had instances of processes that were derived

from a "BoB" process.

1.3 Analysis and Thesis

From this survey, several root causes were identified. First, PRC did not have

a consistent approach to developing processes that could be reusable within

PRC. Second, PRC did not have a consistent approach to tailoring the

corporate processes to the specific needs of business units or projects. Third,

adequate training based on the corporate processes did not exist. Finally, the

PRC process community needed a better mechanism to access "soft copy" of

these process assets.

From these root causes, the thesis for this study was constructed:

The development and implementation of a method to construct

reusable corporate process definitions and to tailor them to

specific projects will significantly increase the corporate level of

process reuse.

1.4 What is a Reusable Process?

[Over 94] defines a process as “a logical organization of people, procedures,

and technology into work activities designed to transform information,

materials, and energy into a specified result." We define process reuse as the

usage of one process description in the creation of another process

description. It is not multiple executions of the same process on a given

project.

What makes a process reusable? To answer that question it is important to

examine what makes software reusable. Significantly, the research

community has not definitely answered that question even though it has

researched it for over ten years; there is no foolproof external indicator that

can determine the reusability of a software module [Frakes 96]. The best

answer to date is simply that the software module is reusable if it is reused.

The same can be said for software processes; if reused, they are reusable.

What is the difference between porting and reusing processes? Porting refers

to moving a whole process system to a new environment or platform, reuse

refers to using a process in a different system [Frakes 95].

The 3C's model of reuse design provides a framework that has been found

effective in the design of reusable assets [Latour 91]. The model indicates

three aspects of a reusable component -- its concept, its content, and its

context. The concept specifies the abstract semantics of the component, the

content specifies its implementation, and the context specifies the

environment necessary to use the component.

Table 1-1 shows an example of the 3C’s model applied to a software

component and to the reusable process notation described in Chapter 4. For a

software component, the concept might correspond to an abstract data type

(ADT), whose implementation might be a C module using linked lists. This

component's context might require a Sun workstation running UNIX, and an

ANSI C compiler.

Table 1-1. Examples of the 3C's model

3 C's Aspect Code Process

Concept | Abstract Data Type (ADT) Informal specification of:

e General information

e Customer description

e Interface description

Content | Implemented in C with link | Procedural description

lists (graphic & text)

 Context Operating system = UNIX, Contextual description

hardware = Sun, compiler =

ANSI C

Analogously, a reusable process will have for its concept an informal

specification of: the general information, the customer description, and the

interface description. The content will include the procedural description

using a textual and graphical representation. The reusable process context

will be defined in the contextual description.

Generally speaking, a process is more reusable when it can be used in various

situations without changing its concept. The concept in this case is the

portion of the process description that defines the customer and associated

requirements, the interfaces, and other general information. Figure 1-1

shows an example of a reusable "estimate software complexity" process. In

the course of the process, a complexity measure is needed; there are three

methods used to measure complexity: a Halstead measure, a McCabe

measure, and a "lines of code" measure. The use of any of these methods

should not affect the concept of the process; indeed, the degree to which it

affects the concept is the degree to which it is less re-usable.

Estimate

software

complexity

Lines of code

method

Halstead

method

Figure 1-1. A Process Reusability Example

1.5 Organization of the Remaining Thesis Chapters

This chapter provides an introduction to the problem to be studied and its

associated thesis. It gives a summary description of a reusable process and

describes how the rest of the document is organized.

Chapter Two surveys the literature on domain analysis, software process

definition and modeling, and software and process reuse. Principles from the

literature are used for material in Chapters Three and Four.

Chapter Three defines process and process reuse, discusses what process reuse

is, defines process domains, and describes methods of process variability.

Chapter Four describes the PRC process reuse methodology. First, a process

notation used at PRC is described. Within a process framework, the context

for process reuse is discussed and the two parts of the methodology are

presented. The first part, the process definition methodology, describes how

to create a reusable process definition. The second part, the process tailoring

methodology, describes how to tailor a reusable process to the specific

characteristics of a project. Finally, the method for retrieving processes and

process assets at PRC is provided.

Chapter Five describes an implementation of the process definition

methodology and the process tailoring methodology at PRC. The process

definition methodology is applied to the configuration management domain

and the process tailoring methodology is applied to the tailoring of a reusable

peer review process.

Chapter Six describes a case study within PRC and reviews the results.

Chapter Seven provides conclusions and areas for further study.

2. Literature Review

This section surveys the literature on software processes and reuse and

categorizes it into several subareas that are described below:

2.1

2.2

2.3

2.4

2.5

Domain Analysis and Implementation - This section defines

domain terminology, describes a common domain analysis

process, and surveys a set of specific domain analysis techniques.

This section lays the foundation for Section 3.3, Process

Domains. The common domain analysis process is used as the

basis for the PRC Process Definition Methodology as described in

Section 4.4.

Software Process Definition - This section defines basic software

process terms and concepts that orient the reader to Section 4.3,

the Context for the PRC Process Definition Methodology.

Process Modeling - This section describes the status of process

modeling and surveys process modeling paradigms. It also

provides a context for PRC's approach to modeling and to

process notation, as described in Section 4.2.

Software Reuse - This section presents the 3 C's reference model

that provides the reuse foundation for PRC's process notation

and process definition methodology.

Software Process Reuse - This section surveys the few instances

of research on process reuse.

2.1 Domain Engineering, Analysis, and Implementation

A domain is a set of related systems. Domain Engineering is the "process of

analyzing a domain and creating reusable assets in the domain." [Frakes 93]

Domain engineering has two parts, domain analysis and domain

implementation. Domain analysis examines a set of application systems

within a domain to discover and model their commonalties and variabilities.

[Prieto-Diaz 87] Domain implementation constructs reusable assets and new

systems within the domain based upon the results of the domain analysis.

This section describes fundamentals of domain engineering, with special

emphasis on the process of domain analysis. It begins with a set of definitions

of domain analysis and then describes a domain analysis methodology that is

common to most domain analysis approaches. Finally, five representative

approaches are examined.

2.1.1 Definitions

To understand the various domain analysis methods and the commonalty

between them, four terms are defined: problem domain, domain analysis,

domain model, and task specification. Two distinct viewpoints of these

domain analysis definitions are briefly compared: problem-centric and

systems-centric analysis.

Problem Domain - [Arango 94] defines a problem domain as a set of real-

world information that has two qualities:

a) "deep or comprehensive relationships among the items of information

are suspected or postulated with respect to some class of problems, and

b) the problems are perceived as significant by the members of the

community."

Domain Analysis, Domain Modeling - Activities whose purpose is to impose

a coherent organization upon domain data in order to reduce complexity and

promote better understanding of the domain.

Task Specification - A rigorous description of a task that describes the

structure and associated activities of the task, including goals, operators or

functions, methods, implementation details, and rationale information.

Domain Model - A formal system that is the output of domain analysis and

used to obtain and derive information about a problem domain.

[Arango 94] describes two viewpoints of these definitions: a problem-centric

viewpoint or a systems-centric viewpoint. As shown in Figure 2-1, a

problem-centric viewpoint sees the problem domain as a set of problems.

Domain analysis is then a way to devise a theory of problems that predicts,

explains, and derives useful facts about the problem set. The output of

problem-centric domain analysis is a formal system of terms, relationships

Domain Viewpoint

Problem-Centric Systems-Centric

Problem Domain
Set of problems Set of applications

Domain Analysis An activity to reduce the complexity of a domain by

imposing a coherent organization

Domain Model

 Formal system of:
~ Terms

- Relationships
between terms

- Rules to compose terms
into expressions
- Rules to reason about
terms

- Rules to map problem
domain to model and
vice versa

 Purpose of Domain | Theory of problems used to Taxonomy of system components Model predict, explain, and derive facts | for reuse

Figure 2-1. Two Domain Analysis Viewpoints

10

between terms, and rules to 1) compose terms into expressions, 2) reason

about terms, and 3) map the problem domain to the model and the model to

the problem domain.

A systems-centric viewpoint sees the problem domain as a set of applications

from which to derive a taxonomy of system components, used primarily for

reuse. A domain model in this context defines entities, operations, and

events, and the relationships between them in order to organize the domain

into a set of common architectures and components. Systems-centric domain

analysis can be dynamic, adding components to the taxonomy for reuse. This

thesis and the case study at PRC take a systems-centric viewpoint that

provides a framework for reusable processes that the organization can update

as it continuously learns and improves.

2.1.2 Common Domain Analysis Process

[Arango 94] defines a common domain analysis process derived from his

study of domain analysis approaches. It is based upon an "abstract and

classify" paradigm. The five generic activities of the common process are:

1) Domain characterization and project planning - This step analyzes the

feasibility of the domain analysis from business and technical points of

view. If found feasible, data about the domain is identified and the

domain analysis is planned. The step is composed of five substeps.

These substeps are not strictly sequential; information from one

substep may require that an earlier substep be revisited.

1.1) Select domain - Traditional business and risk analysis techniques

determine the feasibility of the domain analysis. Organizations

use these techniques to decide whether the project is right for the

company at this time, whether they have selected the right

domain, whether there is sufficient return on investment,

whether the right expertise is available within the company, and

whether the domain is mature enough for analysis.

li

2)

3)

1.2) Describe domain - This activity defines the scope and contents of

the domain and sets boundaries on the domain analysis effort.

1.3) Identify relevant data - By identifying the data, the domain analyst

can decide if enough relevant data exists, what the sources of

information are, and whether there is sufficient access to the data.

1.4) Create inventory of data - Inventorying the data is an optional

activity that prepares for the subsequent collection of the data

itself.

1.5) Plan the project

Data collection - This activity collects raw data that the domain analyst

can later filter, clarify, abstract, and organize. The analyst uses several

approaches that described below. Each approach delivers a different

type of information. Their associated information acquisition

techniques are useful, but not exclusive, to domain analysis.

2.1) Recover abstractions - The domain analyst retrieves detailed

information of existing applications regarding relevant

components (e.g., user interface, architectures), behavior, and

original system designs and rationales. The analyst may use

reverse engineering to recover the abstractions.

2.2) Review literature

2.3) Elicit knowledge from experts - Experts can identify underlying

principles, design rationales, and system pitfalls to avoid. They

can also validate information from other sources.

2.4) Develop scenarios - Scenarios explain how the user community

and other interfacing systems typically use the systems.

Data analysis - In this activity, the domain analyst verifies the data for

correctness, consistency, and completeness, and describes the reusable

modules using a six step process, listed below. Step one identifies

12

4)

important domain events, entities, and operations, and the

relationships between them. Step two organizes and modularizes

relevant data using either object-oriented or functional and data

decomposition. Steps three through six capture recommendations.

The specific domain analysis techniques employed are not unique to

domain analysis; rather, the unique nature of domain analysis stems

from the fact that the focus of domain analysis is a set of applications

whereas the focus of other analyses is a single application.

3.1) Identify entities, events, operations, and relationships - The

domain analyst describes the domain of systems in terms of major

data units, functions performed on these, outside events that

affect them, and relationships between and within all three.

3.2) Modularize information - The domain analyst modularizes the

information by either function and data decomposition or object-

oriented analysis, and identifies and records design decisions.

3.3) Analyze similarities - The analyst identifies similarities in order to

allow consolidation of application commonalties.

3.4) Analyze variations - The analysis suggests ways to enumerate,

parameterize, or encapsulate the variations.

3.5) Analyze combinations - Combinations suggest structural or

behavioral schemas and/or architectures.

3.6) Analyze tradeoffs - Tradeoffs suggest different ways to decompose

architectures to satisfy incompatible requirement sets.

Classify - Classification is the primary modeling activity in domain

analysis. It captures and explicitly states the structure of information

for classes of applications. Various methods are employed to classify

the information on different attributes: asset type and feature (Bailin

KAPTUR), features (FODA), features and decisions (SPC Synthesis),

and facets (Prieto-Diaz).

13

4.1) Cluster descriptions - Information retrieval clustering algorithms

are sometimes used to group the descriptions.

4.2) Abstract descriptions - A generalization of the all the descriptions

within each group is composed, highlighting the most relevant

common features.

4.3) Classify descriptions - When new descriptions are available, they

are assigned to a cluster or the clusters are reorganized to include

the new descriptions.

4.4) Generalize descriptions - Hierarchies are formed to meaningfully

relate the abstract descriptions together.

4.5) Construct vocabulary - A domain vocabulary, or language, is

optionally constructed of relevant domain jargon and formalized

to aid in the classification process.

5) Evaluation of domain model - Validation criteria are not included in

the individual methods and therefore are not part of Arango's

common process. Model validation is discussed as an important step

in the specific methodologies; none, however, have procedures for

validating the domain model.

2.1.3 Comparisons of Domain Analysis Methods

This section samples five representative domain analysis methods. As

shown in Table 2-1, each method has a particular focus and unique strengths.

The domain analysis process used by each method is a variation on the

common process described in Section 2.1.2.

2.1.3.1 Bailin's Domain Analysis in KAPTUR

KAPTUR is both a tool environment and a domain analysis process. [Bailin

91] It views reusable domain assets in terms of their features, which

represent the constituent systems, objects, and functions within the domain.

The term feature is used in a different sense than it is in the FODA, Synthesis,

14

Table 2-1. Comparison of Domain Analysis Methods

Method Author Focus Strengths

KAPTUR | Bailin Describes domain ¢ Validation of domain
model graphically and model
textually based on ¢ Capture of design
systems, objects, and rationales
functions

IDeA Lubars SW design construction | * Cyclically analyzes
by building abstract similar problems in
design schemas same and other

domains
FODA SEI Uses existing SW ¢ Documented

engineering modeling examples
techniques ¢ Validation steps

e Well defined process
¢ Includes funtional,

operational,
presentation
components

Synthesis | SPC Integrates domain e Excellent
analysis with 2167A life | documentation
cycle model e Includes lessons

learned
¢ Repository of domain
knowledge

Domain Prieto-Diaz | Populates SW libraries | * Domain dictionary,
Analysis of reusable components | language, & model
for using faceted ¢ Combines IR & SW
Reusability classification schemes & | engineering SW engineering

modeling techniques techniques, both top-
down & bottom-up

or Organon techniques, where features refer only to the functional

characteristics of the system. KAPTUR provides assistance to both the

producers of KAPTUR features, i.e., the domain analysts/implementors, and

the consumers of KAPTUR features, i.e., the component reusers. KAPTUR

provides assistance to the producers by 1) assisting in the formation of

architectural drawings and 2) entering and classifying textual information, all

15

at differing levels of abstraction. The domain analysis process does not vary

significantly from the common process defined in 2.1.2. Two strengths of the

KAPTUR process are in the validation of the domain model and the capture

of design rationales.

2.1.3.2 Lubars' Domain Analysis in IDeA

IDeA is a design environment that assists in software design construction,

and supports reuse of abstract designs represented as semi-formal design

schemas. [Lubars 91] Lubars uses domain analysis to populate the design

reuse libraries with schemas for new domains. While the IDeA process is

similar to the common process, it also specifies steps for cyclically analyzing

results from individual problems with other similar problems in the same

domain and then in other domains. Lubar's approach is therefore closer to

the idea of an evolutionary domain analysis process than the other

approaches; however, it does fall short of specifying how to determine

similarities and under what conditions to stop the cyclical process.

2.1.3.3 SEI's Feature-Oriented Domain Analysis (FODA)

The feature-oriented domain analysis (FODA) approach was developed by the

Software Engineering Institute (SEI) to discover a set of common features

within related software systems that could be represented in a usable format

with maps to specific instances of those features. [Kang 90] Based upon sound

modeling techniques taken from the software engineering arena like

hierarchical decomposition and entity-relationship models, the FODA

approach comes close to being a union of other approaches. This approach

has several strengths. First, the documentation contains detailed examples of

the FODA approach; secondly, the approach contains the unique feature of

having several validation steps; thirdly, the approach clearly defines the

goals, inputs, outputs, and internal steps of each activity in the process; and

finally, FODA decomposes the notion of a feature into functional,

operational, and presentation components. Features are aggregated into

hierarchies using a CONSISTS-OF relationship.

16

2.1.3.4 SPC's Domain Analysis in the Synthesis Environment

The Synthesis project at the Software Productivity Consortium (SPC) is

designed to provide its member companies with a methodology that is

integrated into the DoD-mandated 2167A standard. [Jaworski 90] The

methodology uses domain analysis during the system and software

requirements definition phases to construct a reusable set of system

components, drawn from a larger family of similar systems. Like FODA, it

has excellent documentation and draws on results from several analyses. The

Synthesis environment uses a repository to store all domain knowledge

which in turn is the basis for the domain modeling process. The SPC has

chosen to use a variant of object-oriented analysis to formalize domain

requirements.

2.1.3.5 Prieto-Diaz's Domain Analysis for Reusability

The purpose of Prieto-Diaz' domain analysis approach is to populate libraries

of reusable software components, organizing them using a faceted

classification scheme. [Prieto-Diaz 87] He draws heavily on information

retrieval. [Prieto-Diaz 9la] Prieto-Diaz' approach uses dataflow diagrams to

explicitly define activities, inputs/outputs, relative sequence, & opportunities

for parallelism. His approach has three parts: preparation, domain analysis,

and work product generation. The domain analysis activity produces three

outputs: a taxonomic classification of definitions for domain objects,

functions, and relationships; a domain language; and a domain model using

a faceted classification scheme based on vocabulary in the domain language.

These structures provide reasoning capabilities based on the relationships IS-

A(x,y), PART-OF(x,y), and INSTANCE-OF(x,y) and their subsequent retrieval

through faceted descriptors. Prieto-Diaz has extended this approach to couple

a top-down analysis using standard structured analysis techniques with

existing bottom-up faceted classification techniques.

17

2.2 Software Processes

2.2.1 Software Process Context

Since software process terms and their meanings are often dependent upon

their context, [Feiler 92] presents a context for software development process

architectures and related process definitions, as shown in Figure 2-2.

Process Framework

The Process Development Process

Process

Engineering J

Process is used to develop & evolve
Enactment I

Software The Software Development Process
Engineering it

Process is used to develop and evolve

Enactment J

Software Products

Y
are used to develop and evolve

v
Results for users

Figure 2-2. Structure of Process Concepts

The scope of this thesis is the first function, the process development process,

which is used to develop and evolve a software development process, which

18

in turn is enacted on a specific software project. A subpart of this function is

the development of reusable process definitions.

[Feiler 92] states that to be widely valued and used, process definitions must

make higher-quality software easier and more economical to produce. These

process definitions must be useful to practitioners and reasonably economical

to produce.

Figure 2-3, taken from [Feiler 92], illustrates the basic process artifacts and

actions involved in the process development function. The next two sections

describe these artifacts and actions respectively.

2.2.2 Basic Process Artifacts

[Feiler 92] defines six basic process artifacts from the "develop and evolve a

software development process" function. They are:

e Process Architecture

e Process Design

e Process Definition

e Process Plan

e Enactable Process

e Process Model

Process architecture - a conceptual framework for consistently incorporating,

relating, and tailoring process elements into enactable processes.

Process architectures provide space for process designs. They are useful in

specifying how a process must relate to other processes, either existing or

future. Indeed, an essential characteristic of a process architecture is its ability

to indicate whether a given process is compatible with an architecture or not.

Process architectures are sets of designs with their peculiar characteristics and

rules. They define standards for the structures and interfaces within the

architecture. For instance, one can build an architecture using the ETVX

19

Process :

Architecture

Process

Design

Process

Definition

1. Tailor
2. Develop
3. Evolve Process 5 4
4. Instantiate Plan

5. Plan

Enactable

Process

Figure 2-3. Process Definition Artifacts and Actions

(Entrance criteria, Task, Validation, Exit criteria) process model [IBM], object-

oriented models, etc.

[Redwine 93] points out other uses for process architectures, including

enumerating components; describing relationships, evolution paths, and

reuse variations; providing guidance on process selection, adaptation, and

composition; and providing compatibility across various implementations.

[Radice 85] states that an orderly evolution of process architectures is desired

and planned. As a baseline, the initial process architecture must: 1) ensure

repeatable and simple paradigms for software development at all levels, 2)

contain a self-improvement process based on statistical quality control, 3)

require a validation mechanism to ensure the quality of the produced

products, 4) be based on the best, proven, available knowledge within the

20

software industry, 5) address the entire software life cycle, and 6) be

independent of tools.

- Process design - an embodiment of a process architecture that establishes the

architectural options and parameters, the existing elements to be reused, the

structure and behavior of new elements, and the relationships among these

elements.

Process designs may apply to a specific project, a single organization, or a

group of organizations. They are produced to meet specific goals. A process

design includes 1) process definition and instantiation standards and

interfaces, 2) overall process structure, and 3) functions and relationships of

the process elements.

A process design may include reusable process definitions and partially /fully

populated process elements. It specifies selection choices to be made during

process development.

Process designs differ from process architectures in that process designs add

specificity to an existing process architecture in terms of reusable processes,

rules for new processes, interface and instantiation standards, etc. An

example of a process design would be a requirements management (RM)

process design which would include a set of reusable RM processes, rules for

adding new RM processes, and descriptions of how RM processes interface.

Process definition - an implementation of a process design in the form of a

partially ordered set of process steps that is enactable.

[Feiler 92] states that each process step may be further decomposed, and that

process steps may be enacted concurrently. [Feiler 92] adds that a process

definition is complete or fit for enaction when its levels of abstraction are

refined fully.

Process plan - a specification of the resources necessary for the enactment of a

process definition, the relationships of these resources to process steps, the

products produced by these steps, and any constraints on enactment or

21

resources. Process plans guide the instantiation and use of processes while

project plans guide the design, development, evolution, and tailoring of

processes (or products).

Resources for a process plan include humans, computers, time, and budgets.

Process plans show relationships of resources to process steps in order to meet

process objectives. A project plan contains work packages which include: 1) a

process definition at some level of abstraction, and 2) one or more process

plans.

Enactable process - an instance of a process definition that includes all the

elements required for enactment.

An enactable process consists of 1) process definition, 2) required process

inputs, 3) assigned enactment agents and resources, 4) an initial enactment

state, 5) an initiation agent, and 6) continuation and termination capabilities.

A process that lacks any of these six parts is not enactable [Feiler 92].

Process model - an abstract representation of a process architecture, design, or

definition.

[Feiler 92] states that process models can be used where the use of a full

complete process is undesirable or impractical. They can be analyzed,

validated, or used to simulate processes. They also assist during process

analysis, aiding in process understanding or predicting process behavior.

2.2.3 Process Engineering Actions

There are also actions that are performed on the process definition artifacts.

[Feiler 92] They are:

Tailor - the act of adapting process architectures, designs, or definitions to the

unique needs and characteristics of an enactment environment.

Develop - the act of creating enactable processes. Development transforms an

initial process architecture into a process design that implements the

architecture and then into a set of enactable process definitions. Each

22

transformation step may include planning, architecture, design, and

validation tasks.

Evolve - the act of changing existing process architectures, designs, and

definitions to increase their productivity, quality, and ability to meet new

needs. Evolution of process assets is performed in the spirit of continuous

improvement.

Instantiate - the act of creating enactable processes from process definitions

and process plans by applying the planned personnel and resources to the

enactment of the process definition using existing inputs and an initial

enactment state.

Plan - the act of developing a process plan for the enactment of a process

definition. Process planning includes specifying the required personnel and

resources, the relationship of this process to other processes, the specific

output of the process, and any constraints.

2.3 Process Modeling

[Curtis 92] defines a process model as "an abstract description of an actual or

proposed process that represents selected process elements that are considered

important to the purpose of the model and can be enacted by a human or

machine.”

The objective of process modeling is to assist in the study and improvement

of the organization's methods and products by defining the organization's

processes and relating them to each other, to the people who enact the

processes, and to the work products that are produced.

[Curtis 92] defines five uses of process models. Process models:

1. Facilitate human understanding and communication

2. Support process improvement

3. Support process management

23

4. Automate process guidance

5. Automate execution support

2.3.1 Levels of Process Models

[Humphrey 89] describes three levels of software process models: the U, or

Universal, process model; the W, or Worldly, process model; and the A, or

Atomic, process model. The U model describes the software process in its

most global sense. It describes the life cycle of software development and its

constituent phases or stages and is useful for initial software planning. The

W model describes the sequence of tasks and "who does what when." It is

most directly applicable to the day to day work of software practitioners. The

A model describes all the information necessary to fully automate the process

and can be enormously detailed; it is of interest primarily to the process

programmer.

To PRC, the W model is most important. The U model is useful for initial

project planning but by itself does not provide enough detail to be useful

during project execution. The A model on the other hand is much too

detailed; at this stage of PRC's process maturity, process programming is not

viewed as a viable alternative. Therefore, efforts are concentrated on making

human-enactable processes. This perspective determines a very pragmatic

approach to process definition and modeling. Much of the process

programming research surveyed below is of interest to PRC but does not

immediately affect PRC's software process improvement priorities.

2.3.2 Essential Process Model Entities

Process models describe processes using at least three essential entities

[Armitage 93]:

1. Agent - an actor (human or machine) who performs a process element

{Curtis 92]. [Curtis 92] further defines an agent's roles as a coherent set

of process elements to be assigned to an agent as a unit of functional

24

responsibility. A single agent can perform multiple roles, and a single

role can be performed by multiple agents.

2. Artifact - a product created or modified by the enactment of a process

element [Curtis 92].

3. Activity - the work performed during the process [Armitage 93].

[Curtis 92] defines a process as "one or more agents acting in defined roles to

enact the process elements that collectively accomplish the goals for which

the process was designed." A process usually manipulates (transforms) an

artifact or "coordinates dependencies with other agents involved in the same

or a related process.” Processes can be 1) planned as a part of a larger process,

2) assigned a to role, 3) allocated resources, and 4) monitored.

2.3.3 Process Model Relationships and Behaviors

[Armitage 93] describes two aspects of process models that are orthogonal to

process entities: relationships and behaviors.

Relationships occur both within and among entity classes. Examples of

relationships within entity classes are the relationship between activities and

sub-activities, or the relationship between an artifact and the artifact from

which it is derived. Examples of relationships between entity classes are those

present when activities are performed by agents, activities use and produce

artifacts, agents own artifacts, and agents perform activities to produce

artifacts. Decomposition is a common relationship where an entity is divided

into finer grained units.

Behavior of a process entity or relationship is dynamic in nature. Indeed, a

process can be viewed as the set of entity and relationship behaviors over

time. Examples of behavioral information are when and under what

circumstances an activity can begin or complete; when and under what

circumstances an artifact is produced or acquired, or it's state is changed; and

when and under what circumstances an agent can begin or end work, or

make decisions. Behavior is represented in many ways. Some examples of

25

behavioral representation are: entry/exit criteria, states and transitions,

events and triggers, pre/post conditions, decision tables, and rules.

2.3.4 Perspectives in Process Representation

Process models capture information about processes that is desired by the user

community, usually answering the traditional questions of "what, who,

when, where, how, and why." Process modeling languages and

representations provide one or more perspectives to these questions.

Four common process modeling perspectives are:

1) Functional - stresses "what" process elements and information entities

are involved.

2) Behavioral - stresses "When" process elements are executed and "how"

they are executed, including feedback, iteration, complex decision-

making conditions, and entry/exit criteria.

3) Organizational - stresses "where" and "by whom" process elements are

performed. Process participants are often termed agents. The

organizational view includes physical transfer and storage mediums.

4) Informational - stresses details of the informational "what's, including

information structure and internal relationships.

The hypothesis that all 4 perspectives are needed is yet untested [Curtis 92].

[Curtis 92]'s view of the state of the practice is that modeling is performed, but

not much rigor is practiced in the modeling techniques. As a result, it is

difficult to analyze the properties of these perspectives.

2.3.5 Process Modeling Paradigms

At this time, process modeling is fluid and includes several techniques.

These techniques can be loosely categorized into the five paradigms [Curtis 92]

that are shown in Table 2-2 and described below.

26

Table 2-2. Comparison of Process Modeling Paradigms

Paradigm Derivation Feature Example
Programming | Software Software development | APPL/A by

Engineering | tools and techniques Osterweil
Functional Mathematics | Set of math functions | HFSP by

define process and Katayama
relationships between
inputs and outputs

Plan Artificial Rules define actions GRAPPLE by Huff
Intelligence __| based on satisfaction of | and Lesser

pre-conditions

Petri-Net Simulation Describes interaction ProcessWeaver by

between roles within a | Cap Gemini
process

Quantitative | System Applies feedback and Abdel-Hamid and
Dynamics control techniquess to | Madnick

social and industrial
situations

Programming Models: Programming models use software programming

tools and techniques to model processes. An example is Ada Process

Programming Language based on Aspen (APPL/A) developed by Osterweil

and his colleagues. [Sutton 90] This model enables representation of

programmable, persistent relations using Aspen, a software engineering data

model that captures relations between software objects in an entity-

relationship form. It employs triggers to propagate updates to relations and

predicates to express constraints on relations. APPL/A includes both

procedural and declarative capabilities and supports multiple process

representations.

Programming models are very procedural in nature and, at this time, appear

to have problems scaling to large process-based environments.

Functional Models: Functional models use declarative, textual languages to

represent processes as "sets of mathematical functions depicting relationships

among inputs and outputs" [Curtis 92]. Each function is hierarchically

decomposed until atomically automated or manual operations are

27

encountered. These models have capabilities to run processes concurrently or

stipulate sequence, iteration, and synchronization. They often use meta-

operators to allow dynamic control of behavior. One example of a functional

model is the HFSP (Hierarchical and Functional Software Process) description

and enaction language by Katayama. HFSP uses a process enaction

mechanism to allow activity scheduling.

Plan-Based Models: Plan-based models are derived from artificial intelligence

research. They provide mechanisms in which operators represent possible

actions; these actions are selected based on the satisfaction of their associated

preconditions. GRAPPLE, developed by Huff and Lesser, is an example tool.

Petri-Net Models: Petri-net models are based on a structure of roles utilized

within a process and their interaction. Motivation to use this modeling

technique seems to be based on Anatole Holt's work in applying petri nets to

modeling coordination in the workplace [Curtis 92]. These models are

designed to aid in representing and executing structured tasks (i.e., those

planned from known dependencies). Petri-net models have been useful in

restructuring organizations units based upon role rather than the traditional

reporting relationships.

Quantitative Models: Most quantitative models are based on system

dynamics, which "apply feedback and control system techniques to social and

industrial phenomena” [Curtis 92]. These systems are designed to model the

observed behavior of social systems. Exemplar work done by Abdel-Hamid

and Madnick seeks to answer why managers chronically underestimate

resources needed during a software project.

Most of the process model approaches listed above pertain to A (atomic) level

process models, with the quantitative models being the notable exception.

Process models at the Universal or U level are genrally more functional in

nature. An example of a Worldly or W level functional process model is the

Process Definition Information Organizer Template System, developed for

the US government-sponsored STARS project [Ett 95]. PRC uses a similar

approach, as defined in Section 4.1.

28

2.3.6 Issues in Process Modeling

The following issues arise in determining the process modeling approach to

be employed:

Formality: [Curtis 92] states that the level of formality depends upon the

purpose of the process model or upon whether the agent enacting the process

is human or computer. Computers seem to require more formality than

humans whereas flexibility is a more necessary requirement for processes

enacted by humans. Human results are more varied, but they have ability to

interpret ambiguous directions. Formal process languages are usually used to

define processes that will be fully automated. Although formal specifications

can provide assurance of internal consistency of processes, they cannot show

whether it is valuable and true to external users. [Redwine 91] discusses a set

of process properties that are amenable to rigorous definition while noting

that the complexities of software development organizations compound the

difficulty of defining many other process properties. Organizations like PRC

who implement W (Worldly) level process models are choosing a less formal

model.

Granularity and Precision: [Kumagai 91] defines granularity as an abstraction

of definitional detail about the system or item being described; for example,

super-types define an abstraction of the information appearing in an instance

of any of the child subtypes. Granularity depends upon the purpose of the

model and the knowledge and capability of the agents. Automated processes

require small granularity whereas manual ones, like those at PRC, can

tolerate more abstraction.

Scriptiveness and Fitness: Process models describe activities in at least three

different senses: prescriptive, descriptive, and proscriptive. Prescriptive

modeling relates how the process ought to be performed; it characterizes the

“to be” process model. Descriptive modeling relates how the process is

currently performed; it characteries the “as is” model. Proscriptive modeling

relates behavior that is not allowed; it characterizes the legal values of the

model. Often organizations use descriptive models as a beginning baseline of

29

process improvement. Prescriptive models describe a general, common

process or the target process to be eventually used. The proscriptive models

exercise control over the allowable steps in a process and often complement

prescriptive and descriptive models. PRC uses prescriptive models initially

for corporate processes and descriptive models for project processes. As the

domain engineering of processes continues, PRC expects the corporate

processes to take on a more descriptive nature.

2.4 Software Reuse

[Weide 91] presents a model of software structure, called the "3C’s Reference

Model." A working group at the Reuse in Practice Workshop in July 1989

initially developed it and further elaborated it during 1990 [Latour 91]. The

"3C's Reference Model" defines and distinguishes three main ideas:

Table 2-3. The 3C’s Reference Model

Concept A statement of what a piece of software does, factoring out how

it does it; an abstract specification of functional behavior.

Content A statement of how a piece of software achieves the behavior

defined in its concept, e.g., the code to implement a functional

specification.

Context Aspects of the software environment relevant to the definition

of concept or content that are not explicitly part of the concept

or content; additional information needed to write a

behavioral specification (e.g., mathematical machinery and

other concepts), or an implementation (e.g., other

components).
The 3 "Cs" (concept, content, and context) can be applied to software, as

shown in Table 1-1. An example of a software concept is an abstract data type

for implementing stacks. An example of a software content is the

implementation of the stack abstract data type in C using linked lists. An

30

example of software context would be the operating system, hardware, and

compiler necessary to execute the stack implementation.

[Weide 91] uses this reference model to address reusability issues. The model

provides an environment in which to study reuse but does not mandate

reuse per se. The model facilitates reuse discussion because 1) it separates

concept from content, 2) it allows a concept to be implemented many different

ways (i.e., it has many different contents), and 3) the reuse of both the concept

and the content are separated from the domain in which it is reused.

Of the three "C's, context is perhaps the hardest to comprehend, yet it has

significant impact on the reusability of the component. Context, or the

environment in which the abstract component is used, controls the manner

in which the behavior and performance of the component are adapted.

Without adaptability to its context, components will proliferate and finally

clog the user with an overabundance of variations on a single theme.

Therefore, it is imperative that components be designed to allow behavioral

adaptations (at the concept level) and performance adaptations (at the content

level). [Weide 91] envisions a natural index of components based on the

concept-content relationship within a domain.

[Weide 91] suggests two types of context: fixed and parameterized. Fixed

context is a principle upon which the concept or content of a component is

based; it offers no choice to the client. An example of fixed context is the

mathematical principles upon which stacks are based. Parameterized context

is a mechanism that allows the user to choose one of several concept or

content alternatives. An example of parameterized context is the choice of

data types that populate a stack. Since components designed for reuse should

be as adaptable as possible, parameterized context should be used whenever

possible. Two mechanisms to promote parameterized context are genericity

and inheritance.

Genericity is the property that allows a component definition to act as

template for a family of reusable abstract components. The client is

31

responsible for creating an instance of the template by substituting an actual

type for a formal type parameter item.

Inheritance is a mechanism that allows a new component to be a variation of

an existing one. A new component is an extension of its parent(s) in that it

provides the same operations and possibly additional operations. Inheritance

provides three types of concept, content, and context differentiation. It allows

differentiation between: 1) concept and content, 2) concept and conceptual

context, and 3) content and implementation context.

First, inheritance allows parent components to ‘defer’ the implementation of

operations to its inherited children, thus providing a mechanism to separate

the declaration of the operations (concept) from their implementation

(content). Second, since the child inherits and hence has visibility into the

functionality of its parent, it can extend the functionality (i.e., concepts) of its

parent; this kind of inheritance is type or specification inheritance. Third, in

a manner similar to specification inheritance, a child also can extend or

replace the implementation details (i-e., content) of the parent component;

this kind of inheritance is code or implementation inheritance.

PRC bases its process notation and process reuse methodologies on the 3 C's

model. The notation, described in Section 4.2, separates process attributes into

its conceptual, content, and contextual parts. As detailed in Sections 4.4 and

4.5, the methodologies design and tailor a process starting with its concept and

next its content, using the context as a way to assess the viability of the

reusable asset to the project environment.

2.5 Software Process Reuse Techniques

Although software process reuse is a need faced by a multitude of software

businesses, there is a dearth of articles describing how to create and tailor

reusable software processes. [Bechtold 94] and [Krasner 92] describe a general

process, and [Castano 93] describes a detailed method, for creating reusable

processes.

32

[Bechtold 94] discusses five levels of abstraction: process definitions at the

organizational, business area, program, project and project plan levels. Using

a top-down approach, process definitions are constructed at the organizational

level and refined at each subsequent lower level until the processes are ready

to be enacted on a project. Typically, organization-level processes are policy

statements; business-level processes focus on product line issues; program-

level processes are concerned with life cycle models and partially ordered

process activities; and project processes are detailed and enactable. Project-

level processes are developed in two phases. The first phase, preliminary

definition, defines the life cycle, various options for process steps, and the

relationships between the steps. This phase focuses on product-specific

requirements, standards, methods, and risks. The final definition phase

selects and tailors the chosen process specifications, identifying the produced

work products, and choosing methods for each process step.

[Bechtold 94] also briefly discusses using a bottom-up approach to process

definition. Projects build processes that are easily implemented and have a

higher potential for acceptance and success. After several implementations of

the process, the process definitions are abstracted by removing project-specific

details.

[Krasner 92] describes the development of generic process models for the

Software Process Management System (SPMS), part of the STARS project.

Process engineers build the generic model from process requirements of the

organization, its process measurement and improvement goals, existing

process and product components, and organizational constraints. [Krasner 92]

does not elaborate on its five-step process tailoring method, composed of: edit

constraints, edit process components, edit product components, edit

input/output relationships, and edit model.

[Castano 93] addresses the reuse of process behaviors in an object-oriented

environment and the creation of generic process specifications (i.e., process

descriptions). Although the specific approach does not address the business

needs of our target environment, the work contains some interesting

principles. The following discussion outlines the methodological steps

33

[Castano 93] proposes and discusses the principles that apply to more

industrial, non-object-oriented environments.

The context for [Castano 93]'s approach is the F-ORM object-oriented model

developed by his colleagues. [Castano 93] defines two classes: the resource and

process classes. Resource classes define agents and their characteristics.

Resource roles represent the behavioral actions that the resource takes during

the life cycle. Process classes describe interactions between resource classes.

Process roles describe the communication or coordination behaviors that

occur between resources. [Castano 93] uses bipartite graphs to rigorously

represent a given process.

The [Castano 93] approach is a three-step process. The three steps are:

1. Classify existing conceptual schema - The analyst classifies existing process

specifications (conceptual schemas) using information retrieval indexing

criteria and clustering techniques. Schema objects within a conceptual

schema are weighted on the basis of their properties, hierarchies, and

relationships. Those that exceed a given threshold become schema

descriptors. Schema descriptors are then compared, with pairs that exceed

a threshold becoming candidates for domains or subdomains within the

universe of examined schemas. The clustering of these schema

descriptors into hierarchies facilitates the identification of a community of

schemas from which to draw reusable schemas.

2. Design reusable resources - This phase has two parts. First, the semantic

affinity of all schema descriptors is calculated. Semantic affinity is

mathematically determined based upon the common properties,

hierarchies, and relationships that are shared by two of the schemas.

Again, a threshold value determines those schemas that are grouped

together into affinity sets. Second, an application engineer (or domain

engineer) evaluates each object in the affinity set in order to define generic

resource classes. For this part, [Castano 93] has defined a function that

examines and identifies those objects that have common properties and

34

domains. The application engineer uses these objects to determine generic

resource classes.

Define reusable processes - The definition of reusable processes is based

upon the common patterns of message passing between two objects, i.e.,

process behavior. This activity has four parts. First, the application

engineer identifies key resources, which, although not necessary, help to

reduce the number of comparisons that follow. Second, the application

engineer defines the order and sequence of the message passed during the

process, called coordination constraints. Third, based upon these

constraints, the application engineer determines generic messages. To aid

him in this task, [Castano 93] has developed guidelines for determining

compatible messages, which are then used as a source for determining

generic messages. Fourth and finally, the application engineer constructs

the generic process class, composed only of those messages and resources

that are common to the generic resources and messages.

Some software reuse principles from [Castano 93] are:

1. Consider using information retrieval techniques to cluster processes into

domains.

Examine inputs and outputs to determine if two processes are compatible.

Examine resources, both roles and output products, to determine process

compatibility.

35

3. Process Reusability

This chapter describes the principles of process reusability that are used for the

thesis and its case study. The sections of the chapter are:

3.1 Definitions - Definitions of process and process reuse are given.

3.2 Process Reusability - This section discusses what makes a process

reusable.

3.3. Process Domains - Process domains are defined and explained.

This section applies the domain analysis research described in

Section 2.1 to processes, providing a rationale for the use of

domain analysis techniques in the PRC process definition

methodology defined in Chapter 4.

3.4 Methods of Defining Process Variability - Different ways are

described to define and organize process variability. These

methods are used in extensions to the graphical notation

described in Section 4.2.

3.1 Definitions

What is a process? [Over 94] defines a process as:

"Process: a logical organization of people, procedures, and technology

into work activities designed to transform information, materials, and

energy into a specified result."

Processes that may provide fruitful study are typically those that are widely

used, easily tailorable, and humanly enactable. The organization of the

people, procedures, and technology, and the detail used to describe it, may

vary according to the levels of expertise and training, and the criticality of the

process’s intended use.

36

What is process reuse? We define process reuse as:

"Process Reuse: the use of an existing process description in the
t creation of another process description.

Process reuse can occur during the definition of the project processes as well

as during the execution of those defined processes. This thesis has chosen to

not address process reuse in the sense of multiple executions or enactments

of the same process on a given project. Instead, the focus is on process design

using reusable processes.

3.2. Process Reusability

What makes a process reusable? To answer that question it is important to

examine what makes software reusable. Significantly, that question has not

been definitely answered even though it has been researched for over ten

years; there is no foolproof objective indicator that can determine the

reusability of a software module [Frakes 96] [Conte 86]. The best answer to

date is simply that the software module is reusable only if it is reused. The

same can be said for software processes; if reused, they are reusable.

3.3 Process Domains

An understanding of process domains provides the foundation for the use of

domain engineering in constructing reusable processes. The following

discussion provides that understanding.

A problem domain is a set of related systems. [Frakes 93] According to

[Arango 89], a body of information is a domain if:

e Deep or comprehensive relationships among the items of information are

known or are suspected with respect to some class of problems,

e There is a community that has a stake in solving the problems,

e The community seeks (software-intensive) solutions to these problems,

and

37

e The community has access to knowledge that can be applied to solving the

problems.

The following paragraphs show that key process areas meet these

requirements for a problem domain, as long as the third criterion that

stipulates software-intensive solutions is broadened to include defined,

repeatable solutions. This should be acceptable since the cited criteria were

placed in the context of software systems modeling. [Prieto-Diaz 91b]

The software development life cycle can be decomposed into key process areas

(KPAs). As shown in Figure 3-1, the CMM defines three categories of KPAs:

engineering, managerial, and organizational. [Paulk 93b] Of these three, the

first two pertain to a single software development life cycle; the third,

organizational KPAs, support several software development efforts and

therefore are outside the context of a single software life cycle. The

engineering KPAs represent those activities we normally associate with the

software development life cycle, such as software product engineering and

peer reviews. Managerial KPAs represent processes that support the

engineering process. Examples of managerial KPAs are requirements

management, project management (including both project planning and

project tracking and oversight), configuration management, subcontract

management, and quality assurance. Organizational processes are activities

that support several software development efforts and therefore are

appropriate at higher organizational levels. Examples of organizational KPAs

are organizational process focus, organizational process definition, and the

organizational training program.

Software life cycles are composed of a set of KPAs:

SLC = {K1, K2, ..., Kn} where SLC is a given software life cycle

and K1 - Kn represent the KPAs of the

software life cycle.

Since processes are hierarchical, processes within each of the three KPA

process categories can be further decomposed into other processes. For

38

instance, configuration management can be decomposed into four

subprocesses: configuration identification, configuration change control,

configuration status accounting, and configuration audits. Each of these

subprocesses can in turn be further decomposed. Likewise, software product

engineering can be further decomposed into processes for requirements

analysis, software analysis and design, unit code and test, software integration

and test, and software maintenance. The CMM calls the lowest level of

process decomposition a process element.

Organizational KPAs

Engineering KPAs

Managerial KPAs

The fact that each KPA is composed of a set of processes can be expressed as

follows:

Organizational Process Definition

Organizational KPA #2

Organizational KPA#D—s—“‘OSOSOS*~*‘;*™S

Project #1 Project #2 Project #n

Software Software Software
Product Product Product

Engineering [Engineering _ [Engineering __
Engineering Engineering Engineering

KPA #2 KPA #2 KPA #2

Engineering Engineering Engineering

KPA #n KPA #n KPA #n

Configuration Configuration Configuration
Management Management Management

Managerial Managerial Managerial
KPA #2 KPA #2 KPA #2

Managerial Managerial Managerial
KPA #n KPA #n KPA #n

39

Figure 3-1. The Three Categories of KPAs

K = {P1, P2, ..., Pn} where K is a given key process area

and P1 - Pn represent the processes or

process elements that make up the

KPA. |

Therefore, the KPAs organize the software development life cycle into process

subsystems or domains, as shown below.

K = {P1, P2, ..., Pn} where K is a key process area and P1 -

Pn are software life cycle processes or

process elements within that KPA.

SLC = {K1, K2, ..., Kn} where SLC is a given software life cycle

and K1 - Kn are KPA subsystems

within that software life cycle.

D = {SLC1K1, SLC2K1, ..., SLCnK1} where D is a given KPA domain

and SLC1K1 - SLCnK1 are related KPA

subsystems drawn from the universe

of software systems.

Some examples may benefit the reader. Consider the configuration

management (CM) KPA. A domain of configuration management processes

exists, composed of CM processes in all software systems, as shown in Figure

3-2. It would contain processes related to configuration identification,

configuration change control, configuration status accounting, and

configuration audits. The domain could be further decomposed into sub-

domains based on system size or development platform complexity. It is

reasonable to assume that high degrees of similarity exist between

configuration management subsystems from multiple application systems.

Likewise, a domain of software product engineering processes is possible,

where all processes devoted to creating application software products would

be studied. Of course, the scope of this domain is too large to be meaningfully

studied; further decomposition into smaller sets of systems, or application

domains, is necessary to arrive at practical results.

40

Engineering KPAs

Managerial KPAs

Figure 3-2. A Configuration Management Process Domain

Project #1 Project #2 Project #n

Software Software Software
Product Product Product

[Engineering _ _ LEngineering _ _ | Engineering _ _
Engineering Engineering Engineering
KPA #2 KPA #2 KPA #2

Engineering Engineering Engineering
KPA #n KPA #n KPA #n

Configuration Configuration Configuration Configuration
Management Management Management Management

Domain

Managerial Managerial Managerial

KPA #2 KPA #2 KPA #2

Managerial Managerial Managerial

KPA #n KPA #n KPA #n

Using this definition of process domains, processes within a given process

domain can potentially be reused by another project:

Dx-Sc-Pd = R (Dx-Sa-Pb) where R is the reuse function that

reuses a process Pb from Domain Dx

used in System Sa to create a similar

process Pd in another System Sc.

The potential for reuse increases as the commonalty between the reused and

target systems increases; that is, reuse increases as the scope of the process

domain narrows.

3.4 Methods of Defining Process Variability

To create reusable processes, the domain engineer selects a process domain,

collects processes and process data, and categorizes the processes to find logical

groupings of common processes. The domain engineer is really defining the

common and variant elements of the processes with a process domain. This

41

section describes methods that the domain engineer uses to express the

process domain variations.

Methods of defining and organizing variability in processes are similar to the

methods used in software. [Frakes 93] defines these methods as:

e Enumeration: Process variations are described one at a time. The

reuser chooses which process variant most closely represents his target

process. Enumeration is the most elementary type of defining

variability.

e Parameterization: Parameterization knows more about the set of

process variations than enumeration; the set and range of variations

are known in enough detail that the reuser can select the desired

variant by naming it as a parameter to a given process. For example,

during project planning, estimates of software size are often needed.

There are a number of valid estimating techniques that could be used,

such as Cocomo, Revic, function points, or delphi methods. As Figure

3-3 shows, an estimating process would be “called” with a parameter

specifying which estimating method to use.

Estimate

Project

Revic

Y
Estimate Size Process

Function
Cocomo Point

Figure 3-3. An Example of Process Parameterization

42

e Abstraction/inheritance: Abstraction focuses on creating generic

processes rather the reuse of existing processes, as in enumeration and

parameterization. The generic processes are composed of the features

that are common to the set of specific implementations. The generic

process can be instantiated in a new environment, inheriting the

common features plus adding features that are specific to that

environment, like the hardware and software platforms, client

requirements, standards, metrics needs, and project size and scope

issues. The generic processes hide the details of the implementation,

allowing the user to focus on the what not the how of the process.

An example of abstraction is shown in Figure 3-4. A generic baseline

process was created that defines how baselines are created, validated,

and promoted. The generic baseline process is used for the four major

baselines created during a standard development project. Projects

inherit the generic baseline process and apply it to their project

environment, adding detail regarding hardware platform, operating

system, and the project configuration management toolset.

Functional

Baseline

Allocated

Baseline

Develop.

Baseline

Product

Baseline

Figure 3-4. An Example of Process Abstraction

Baseline Process

- create li d t a!

- validate appuec 0
- promote ~

inherited by

Project B Project A

43

4. Software Process Reuse Methodology

This chapter describes how to create, store, access, and tailor (or instantiate) a

reusable software process at PRC. The software process reuse methodology

has two parts: a process definition methodology and a process tailoring

methodology. The sections of the chapter are:

4.1

4.2

4.3

4.4

4.5

4.6

Introduction - The introduction describes the benefits of the

software process reuse methodology and the PRC personnel that

use it.

Process Notation at PRC - This section presents the standard PRC

process notation in both its textual and graphic forms and

proposes extensions for graphing reusable process relationships.

Context for Process Definition and Reuse - Based on the process

engineering actions defined in Section 2.2.5, this section

provides the context for the PRC process definition and tailoring

methodologies.

Process Definition Methodology - This section describes how to

create a reusable process definition using the process notation

described in Section 4.2 and principles from domain analysis

(Sections 2.1 and 3.3) and software reuse (Section 2.4). Section 5.1

describes an implementation of the methodology.

Process Tailoring Methodology - This section describes how to

instantiate, or tailor, a reusable software process at PRC. The

methodology is based upon the 3C's model defined in Section

2.4. Section 5.2 describes an implementation of the

methodology.

Storage and Retrieval of Reusable Processes - The section closes

with a discussion of the storage and retrieval of reusable

software processes at PRC, using world-wide-web technologies.

A short word of explanation on terminology: the term "methodology" is used

here as a synonym for "process" to reduce overloading of the term.

4.1 Introduction

The purpose of the process definition methodology is to create reusable

processes so that projects within PRC can cost-effectively tailor them to their

own environment, needs, and requirements. Standardized processes aid in

transferring process knowledge between projects, reducing training costs,

planning common project activities based on process data, and increasing

productivity and quality in a continuously improving process-oriented

environment.

PRC uses W (Worldly) level process descriptions, as defined in Section 2.3.

Humans enact these processes; no process programming is performed. The

process definition methodology is based upon a systems-centric viewpoint of

domain engineering whose goal is the categorization of reusable software

processes, and upon the common domain analysis approach outlined by

[Arango 94]. The methodologies are strongly influenced by the 3 C's model

described in Section 2.4; the process notation is grouped by concept, content,

and context, and the methods use these groupings to sequentially perform the

process design and tailoring.

Within PRC, staff dedicated full time to software process improvement use

the process definition methodology, working together with subject matter

experts and training personnel. There is considerable effort to use personnel

of individual projects, especially if the project currently has a process

improvement program. This involvement seems to be beneficial to both the

full-time and the project staff; the team interaction enables a product that is

more usable by the projects and the full time staff benefit from a wealth of

experiences, lessons learned and implemented processes, essential when

generating an abstract description from the specific examples.

45

4.2 Process Notation at PRC

For processes to be reusable, organizations need a way to express common and

variant elements within a process. Frameworks provide one mechanism to

accomplish this. Figure 4-1 shows PRC's framework for process definition.

Several portions of the framework reflect the integration of PRC's software

process improvement and quality improvement programs; see [Arthur 93] for

details on this approach to quality.

This framework has several sections. The first three sections, known as the

general information, customer description, and interface description sections,

specify the process concept, or the what specification of the process. These

sections describe what the process is, what is does, and what its interface is to

other processes. The process concept follows the 3 C's model described in

Section 2.4.

The next section, the procedural section, specifies the process content, or the

how of the process, and implements the content part of the 3 C's model. This

section describes how the process is performed by specifying the people who

do the process and their interactions, the tasks and the order of their

execution, and the tools and other necessary resources. The procedural

description is both textual and graphical.

The graphical notation uses flowcharting symbols. The flowchart describes

the process, its customers, and the indicators used to measure compliance in

meeting customer requirements. The graph is divided vertically into

columns; each column represents a participant in the process. Process steps

for each participant are placed in the associated column. The graph can also

be divided into horizontal bands that represent sequential steps of the process.

Each process starts with an oval symbol describing the customer's need. The

steps in meeting those needs are described using rectangles for processes and

diamonds for decisions. Boxes with double side bars represent a collection of

sub processes that is defined graphically in a separate diagram. The arrows

represent control flows. The graph does not capture data flows. Circular

symbols denote Indicators, described below.

46

The context description describes the context in which the process can execute.

The process context defines domain, organizational, project, and managerial

criteria for application of the process.

The final section, the measurement description, spans both the what and how

specification roles. The quality indicators measure how well the process

meets its goal and are therefore part of the what specification. The process

indicators measure how well individual steps perform. Because the process

indicators measure steps, they are part of the how specification.

The standard symbols can be augmented to represent reusable processes as

shown in Figure 4-2. Reusable processes and process elements use rectangles

drawn with dashed lines; non-reusable, or project-specific, processes and

process elements use solid lines. Enumeration is described using a branch

point that splits into the various enumerated process choices and then

converges back to a single point. Parameterization is described using a single

process box from which diverge a set of parameterized units or methods. The

parameters are labeled on the arrow from the single box to the associated

method. Lines from the various methods converge back to a single point

before control passes to the next process element. The abstraction and

instantiation paradigm is described by using a dashed rectangular box from

which other process boxes diverge, each box representing an inherited

process. If the box uses solid lines, it represents an instantiated process. If the

box uses dashed lines, the inherited process is still reusable but has inherited

characteristics from the abstract process.

These additional symbols can be grouped to show more complex

arrangements between reusable processes. For instance, enumeration and

abstraction can be combined to show the set of choices to be made at a given

process step.

47

Name Name the process/sub process that is described within the document.

GENERAL INFORMATION

Process ID Unique process identifier

Process Purpose Provide a brief description of the purpose and objective of the
activity.

Standards Identify the applicable process and product standards, including the

Related Processes

SEI CMM KPA reference.

Identify processes that are related to this process, especially if this
process is part of a set that is normally viewed as a whole.

Version Number Configuration management version number used in PAL

CUSTOMER DESCRIPTION

Customer Identify the internal and external groups who benefit directly
(receive products/services) from the results (outputs) of this process.

Customer Requirements List each of the legitimate requirements that have been negotiated
and agreed to with the identified. These requirements should follow
the RUMBA criteria in that they should be Reasonable,
Understandable, Measurable, Believable, and Acceptable.

INTERFACE DESCRIPTION

Entrance Criteria

Inputs

Outputs

Exit Criteria

Identify the criteria that must be satisfied before the activity can be
initiated. The criteria might say how to tell when a process can be
started, for example at the conclusion of another activity or process.

Identify the work products that are used at any point in the process.

Identify the work products that are produced during the process.

Identify the criteria that must be satisfied before the activity can be
considered complete. Exit criteria summarize the salient measurable
tasks of the process.

PROCEDURAL DESCRIPTION

Responsibilities Describe the groups that participate in the process.

Figure 4-1. Process Notation at PRC - Part 1 of 3

48

Tasks

(<Participating group>)

Describe the tasks that must be accomplished within the process. For
ease of reference, the tasks should follow the process diagram
referenced as the main exhibit. If the process is procedural, describe
the tasks in the order that they must be accomplished, numbering
each task step. Parenthesis the responsible group to the left of the
task, as shown below:

<Task description>

Use action verbs to describe the tasks. Reference by process ID all
tasks that are further described elsewhere. Note any particular
procedures, practices, or methods that are employed in any step.

Tools Describe suggested or mandatory tools used during any step of the
process.

Resources Describe resources that are necessary to enact the process.

CONTEXT DESCRIPTION

Domain

Applicable Domain List the application domains to which this process is applicable.

Required Domain Knowledge Describe the knowledge of the application domain that

Usage Information

Organization

Organization Size

Organization Structure

Project:

Project Duration

Problem Complexity

participants in this process must exhibit.

Describe how past projects have used this process, including the
results of the process (i.e., associated metrics) and the lessons
learned.

Briefly describe the organization size that limits this procedural
method.

Define specific groups or functions that must be in place to execute
this procedural method.

Describe the applicability of this process in regards to project
length, e.g., any project that requires over 1 person-month.

Describe complexity constraints. Generally phrased in terms of
software size.

Figure 4-1. Process Notation at PRC - Part 2 of 3

49

Software Engineering Skill Level Describe the software engineering skill level that is

Physical Team Locality

needed. If the team is less skilled, compensate with more peer
reviews or with higher skilled people on the review team.

Define whether the team must be collocated or can be physically
distributed.

Communication Infrastructure Describe what information resources and inter group

Management

Cost/Benefit

Risks

communication paths or mechanisms must exist.

Describe the costs and benefits of this process in both the short and
long term.

List management and technical risks associated with the execution
of this process.

MEASUREMENT DESCRIPTION

Quality Indicators

Process Indicators

Describe those performance (or outcome) measurements of this process.
These indicators should be linked closely to valid customer
requirements. These measures should be measurable, verifiable, and

cost effective.

Describe those measurements that are to be taken at critical points
during the process and used to track and assess the effectiveness of the
process itself. These in-process measures should also be measurable,
verifiable, and cost effective.

Process Flowchart PRO
Process Process

Description: Process Name Customer:
épr.

Bteps “RQison Customer Participant Participant
Time

o” ™~

Oe Yes] = Process

Need

Satisfied

e
Process

Figure 4-1. Process Notation at PRC - Part 3 of 3

50

Process Flowchart PRE

Process 4 Process
Description: Formats for Variation Customer:

Deat./

Step rgon a

Enumeration

=_=-=T+

multiple |
platforms

~~

w
o
w
 4

 +

t
\ \
j \
I {

Parameterization

\
. t

i point 4
'

Abstraction

and

Inheritance

project- project- project- project-
specific specific specific specific

inheritance inheritance inheritance inheritance

name: formats for variations

revision: v0.1

author: CR Hollenbach

date: 1/7/95

Figure 4-2. Formats for Variations

51

4.3 Context for Process Definition and Reuse

Figure 4-3 depicts the context of the process definition methodology and

shows the life cycle of a process description. The figure describes graphically

the steps necessary to create a standard reusable process description,

instantiate it for use on a PRC project, refine its use, and feedback information

to improve the process description for subsequent use.

This process life cycle has the following several steps:

1. Initiate the Process Definition Effort. The process definition effort begins

when the PRC Software Engineering Process Group (SEPG) gives its

approval to begin the work. The work is usually given to the full time SPI

staff or to a working group that contains full-time support.

2. Define the Reusable Process. This step creates process descriptions that are

reusable on projects by using domain analysis techniques. The output is

one of more process descriptions, along with tailoring guidance and

output work products; these are stored in the Process Asset Library (PAL)

and usually packaged into a process manual or handbook. The process

descriptions also are integrated into the PRC Standard Life Cycle (SLC) and

statically tested to ensure they are fit for (re)use. This step draws many of

its requirements from the Organization Process Definition Key Process

Area (KPA) of the Software Engineering Institute’s (SEI) Capability

Maturity Model (CMM) for Software [Paulk 93b]. See Section 4.4 for a

fuller discussion.

3. Develop Training for the Reusable Process. Once the reusable process is

completed, training for that process is developed. The training is stored in

the PAL and provided to the projects for tailoring and subsequent delivery

to the project staff. Changes to the organizational process are captured in

change request forms and sent to the “Organization Process Definition”

process for incorporation in future processes.

4. Instantiate the Reusable Process on a Project. The reusable process is

tailored to meet the specific requirements and environment of a PRC

52

project. Project-specific process descriptions are the result, again stored in

the PAL and sometimes packaged into a handbook or set of desk

instructions for staff reference. Change requests are passed to appropriate

earlier process steps. See Section 4.5 for a complete discussion of this step.

. Tailor the Reusable Process Training to the Instantiated Project Process.

The training for the reusable process is tailored to match the project-

specific process description. The training is given to the appropriate staff

just before they enact (or execute) the process. The tailored training is

stored in the PAL and changes resulting from lessons learned are sent back

to the appropriate process for inclusion.

. Enact the Process on the Project. The project-specific process is enacted,

i.e., put into practice on the project. Project management tracks the

enactment of the process in order to monitor and control the project. The

quality assurance function audits the project staff to ensure that the

process is faithfully enacted. Measurements are taken, stored in the PAL,

and used in the following step.

. Refine the Process. On the basis of the measurements collected during the

previous step, the process is evaluated to see if it is stable and capable. If it

is not, an analysis is performed to understand the common or special

causes. The process definition is then refined, re-trained as appropriate,

and re-enacted. Refinements are sent to the “Project Process Definition”

process, and change requests are sent to the appropriate organizational

process if applicable. The goal of this step is to produce a process that is

predictable and produces a consistently high quality product.

. Administer the Process Asset Library (PAL). All reusable processes and

related training are inserted into the Process Asset Library (PAL), as are

other related process assets. The "Administer the Process Asset Library".

process ensures that the PAL assets are current, measures the PAL usage,

and removes items that are no longer useful. PAL assets are controlled

using appropriate configuration management practices.

53

PRE Quality in Daily Work System

Process oo. Process . Description: Org Process Definition (OPD) Context Customer: Project Manager

Process Flowchart
PRE Organization Project . Metrics

Software Process Process SEPG PAL Admin Admin
Project Team Team

initiation

- Need KPA process that i bl . at is capaole,”— == Initiate OPD
. Stable, standard, and effort

 compliant

Org. bh : 2, 8 9
Process , : .

Det. » Define Org. | we) Administer Administer
Process PAL Metrics DB

PAL . PAL

Process 3.

Training | Organization. |.
| and 4 | Process - ‘|.
Fnactment | “training. }

AS
» -Project

“Process

Definition “]:

5
Project

Process
Training

-Process. -
- Enactment. ©

KPA.process that. is 7

capable, stable, Process

standard, and Refinement
compliant | _

Figure 4-3. Process Definition Life Cycle

54

One PAL administrative task of particular interest is the change control to

the organizational process. During the execution of the first six steps,

problems in the process definitions and training are sometimes

encountered. These problems are documented and changes to the process

are suggested. The “Organization Process Definition (OPD) change

control” process describes the review, assignment, and authorization of

these changes to current or upcoming process definition and training

efforts in a controlled fashion.

9. Administer the Metrics Database. Measurement data from the process

(collected in step 5) is placed into the metrics data for analysis and

subsequent improvement efforts.

4.4 Process Definition Process

This section describes how to create a reusable process description. The

method draws its roots from a generalization of standard software

development and domain analysis techniques, particularly Arango's study of

domain analysis methods. An implementation of this method is described

in Section 5.1.

The objective of the process definition methodology is to develop and

maintain a reusable set of software process assets that improve process

performance across the projects and provide a basis for cumulative, long-term

benefits to the organization.

4.4.1 Customers

The customers of the reusable process definition process are:

e PRC projects that want to instantiate the reusable process on their project,

either at project startup or for a process improvement initiative.

¢ PRC Proposal efforts - for use of both the reusable processes and work

products as well as the measurement data in the metrics database.

55

Reusable Process Training efforts - The reusable process description is a

necessary input to the process of creating the associated training.

Software Engineering Process Groups (SEPGs) - for the control of changes

to process assets.

All PRC employees - for access to and use of the PAL.

Senior and Project Management - for use of the metrics database

The customer requirements for the reusable process definition process are:

The reusable process descriptions must be enactable practices that can

effectively be put into practice within PRC.

The reusable process descriptions must be reusable by the PRC software

project community.

The reusable process descriptions must reflect CMM-compliant practices

on PRC projects wherever possible. The processes must make use of

project processes currently in use within the PRC project community

whenever possible.

The reusable process descriptions must be available to the entire PRC

organization.

The reusable process descriptions must define measurement data,

including measurement collection mechanisms.

4.4.2 Process Interfaces

This section describes entrance criteria, inputs, outputs, and exit criteria for

the reusable process definition process.

As for entrance criteria, three exist. First, a system to maintain and support

reusable process definition efforts must be completed before this method is

enacted. The system includes the establishment of a PAL and a metrics

database, the definition, development, testing, and training of this process,

56

and the selection and use of associated tools. Second, policy must be written

and approved which mandates reusable process definition. Third, adequate

funding and resources must be provided for the development, support, and

maintenance of the reusable process definition process, the reusable process

descriptions themselves, the PAL, and the metrics database.

The following are inputs to the reusable process definition process:

e Approval of a reusable process definition process effort to design a set of

standard, reusable processes.

* Project processes, methods, and tools within the given process domain.

e PRC and client process and product standards.

e Process asset change requests.

e Process assets

e Process and product metrics

The exit criteria for the reusable process definition are as follows: The

reusable process definition process is completed when the process is defined

in detail, integrated with the current process architecture, and is proven to

meet process and product goals.

The following are outputs from the Organization Process Definition (OPD)

process:

e Process Definition Action Plan

e Process Analysis Document

¢ One or more process descriptions

e Process Handbook

¢ Process Static Analysis Report

57

The reusable process descriptions use a standard template, shown in Figure 4-

1. All reusable and project-specific processes use this form, providing a

standard, transferable format between projects and organizations. The

following section further describes the process definition activities.

4.4.3. Process Activities

This section describes the six activities in the reusable process definition

method.

Process Requirements Analysis: This step defines the operating conditions

under which the process will be enacted and the goals and requirements that

the process will satisfy. A process definition and evaluation action plan are

constructed that contains this information plus basic project planning data.

Process Analysis: The process analysis step provides a basis for generic

reusable process definitions by examining current project-specific processes

and relevant industry process data. Domain boundaries and content are

specifically described and current processes from within PRC are collected, as

well as all other relevant process data. A thorough literature search should

be performed to include available technical books and articles, world-wide-

web searches, externally and internally available processes, standards, and

interviews with domain experts. Note that the volume of process data will

vary with the process domain; for instance, literature on change control

processes is much more available than that on domain analysis processes.

The goal of process analysis is to find the essential attributes of the processes

and to use them as the basis for grouping the processes. The nature of the

analysis is very intuitive; yet, some basic guidance can be given. The process

domain data is evaluated to locate entities, events, operations, or

relationships that are then modularized. These items are then analyzed to

determine similarities, variations, combinations, and trade-offs that help

structure the process for reuse by PRC projects.

Similarities and combinations identify possibilities for creating common

processes or process features. Similarities between all or most of the project-

58

specific processes provide the basis for a reusable process or process feature.

An abstraction of the project-specific processes that contains all similarities

can be constructed. If similarities exist among a few but not all processes, then

these combinations can be considered for a common framework for a subset

of projects.

Variations and trade-offs describe possibilities for reusable process variants. If

there is enough knowledge about the possible ways a process may vary for a

given feature, then that feature may be parameterized. If this is not possible,

then the known variations are enumerated for later selection by the projects.

Trade-offs point to possibilities to decompose a process into process elements

and capture the trade-offs in a similar fashion as with the variations, as

described above. Another option is to abstract the common features into a

reusable process and allow the projects to add project-specific features, relating

to the trade-offs, to an instantiation of it. Refer to Section 4.2 for a description

of how process flowcharts depict variations.

Process Preliminary Design: In this step, precise and accurate descriptions of

the process and its interfaces are created. For each process, the customers and

their requirements are defined as are the process inputs and outputs,

dependencies, entrance and exit criteria, and quality indicators. The following

sections of the process notation, described in Section 4.2, are used for this

purpose: general information, customer description, interface description,

and the measurement description (quality indicator part).

Entrance criteria tell the user when a given process can be initiated while exit

criteria summarize the essential process activities that must be accomplished

before the process can be terminated, often accompanied by some standard of

performance. Inputs are the work products that are used during the process;

outputs are those that are produced. Quality indicators describe

measurements that give an indication of whether and how well the process

client's needs were fulfilled. Section 4.1 more fully discusses entrance and

exit criteria, inputs, outputs, and quality indicators.

59

When designing the process interfaces, it is important to integrate the process

into other existing processes. PRC has constructed a process architecture of

standard PRC processes. This process architecture integrates processes from

all software engineering disciplines. The architecture is the starting point for

integration of the reusable process. It also provides a framework for reference

during reusable process definition.

There is a logical five-step sequence that can be used to determine the .

process's quality indicators, based on [Basili 84]; the first two activities occur

during the analysis step while the last three occur during this step. They are:

1. Define the customer. Customers were determined during the "process

analysis" step. Remember that for a given process there can be multiple

customers: external clients, end users, the internal users of the process's

work products, and senior management. If possible, identify a single

primary customer.

2. Define the customer requirements. Again, customer requirements were

determined during the "process analysis" step.

3. Define customer goals. From the requirements, select a set of high priority

requirements and set targets for them that are reasonable, understandable,

measurable, believable, and achievable.

4. Define a goal-related question. For each of the customer goals, determine

a question that shows progress towards meeting that goal. If the process

will probably attain somewhere around 85% or more of the goal, phrase

the question in the negative to highlight a more usable scale.

5. Define a question-related metric. For each of the questions, determine a

metric that will measure compliance with the goal and answer the

associated question. PRC calls this metric an indicator. There are two

types of indicators: quality indicators and process indicators. Quality

indicators measure how well the process fulfilled the desired process goals;

process indicators are an “upstream” measure that show how well the

process will fulfill the given quality indicator.

60

Process Detailed Design: The process detailed design step defines the

procedural, or "how"-related, process characteristics as well as the contextual

information for the process. These characteristics include the methods,

procedures, roles, process indicators, and feedback and control mechanisms.

The characteristics are defined using the process notation described in Section

4.2, specifically the procedural, context, and measurement (process indicators)

sections. The reusable processes can be published in a process handbook, for

subsequent tailoring to project-specific characteristics.

It is important to use roles rather than agents in the reusable process. Roles

refer to essential task-oriented functions. Agents refer to the specific people

or groups that perform the roles. Agents differ greatly between projects, based

on project size, contractual commitments, subcontract arrangements, past

project organizations, and other project environment concerns. Because of

this variability, the reusable process descriptions describe functions and allow

the projects to map the functions to the organizational agents as appropriate.

In a few situations where CMM requirements are specific to an agent, an

agent implementation of a function is described within the process

description.

Process indicators are designed during this step. As noted above, process

indicators are metrics that are collected during the implementation of the

process that provide an early indication of how well the quality indicator will

be fulfilled. Refer to Chapter 3 for more information about quality and

process indicators.

Process Code and Unit Test: The process code and unit test step automates a

reusable process or a portion of the process. Trade studies are performed that

weigh the benefits of commercially available tools versus the construction of

an internally developed tool set. One example of a process that can be

automated is the configuration management check-in and check-out

function; the automation is usually supplied through a configuration

management version control system or a robust commercial configuration

management toolset. If commercial tools are selected, there is inevitably the

task of tailoring the tool to meet the characteristics of the organization or

61

project. In this case, the process definition and its contextual process

architecture provide the necessary information to effectively tailor the tool; in

other words, process definition is a necessary precursor to process

automation. If it is decided to internally develop the automation, the process

description then becomes the functional specification for the automated

process, also called the process program. In this case, the process code and

unit test step transforms the enactable process description into an executable

process program.

Process Integration and Testing: The process integration and testing step

ensures that the defined reusable process can meet product and process goals.

This is usually accomplished through static analysis of the process and the

process architecture that contains the integrated process.

Process Measurements: The reusable process methodology is measured using

quality and process indicators. As discussed in Section 4.2, quality indicators

measure the success of reaching the customer's valid requirements, whereas

process indicators are upstream measures of the process's capability of

reaching those requirements.

Quality Indicators: The following are the quality indicators:

e Number of projects consulted per organization process. Of the available

projects, prioritize those with the highest measured maturity score in the

associated process area (using the PRC maturity questionnaire).

e Percent of project-specific process reuse, as defined by:

(RP/AP) * 100

Where

RP = Number of reused project-specific processes per organization

process.

AP = Number of available project-specific processes per organization

process.

62

Note that during the initial implementation of the organization

process definition process, this metric is better collected at the KPA

level, rather than for individual processes.

¢ Standard set of project tracking metrics, including total effort, milestones

missed /made, and cost. During the initial implementation of

organization process definition process, there is an emphasis on schedule

metrics.

Process Indicators: Process indicators for the reusable process methodology

are derived from the quality indicators. For instance, number and percentage

of project-specific processes used in the reusable design are captured during

the process analysis phase. The project tracking metrics are collected and

monitored at the end of each of the major steps in the process.

4.5 Process Tailoring Methodology

The process tailoring methodology identifies a reusable process and tailors it

to meet the specific requirements and characteristics of a given project. A

team of project or business unit staff or an expert in the process area perform

the methodological steps, illustrated in Figure 4-4. The output of the tailoring

method is a set of process descriptions that textually and graphically describes

the project-specific process. These process descriptions are in the form of the

process notation described in Section 4.2. An example implementation of the

process tailoring methodology is described in Section 5.2.

The tailoring is performed at the direction of the local SEPG; the tailoring

plan is documented in the SEPG's software process improvement plan. After

planning, the next step is the selection of an organizational (i.e., reusable)

process, downloading it from the PAL. The process may include a number of

sub processes that are also selected for tailoring. The tailoring team may also

select from the PAL a variation of the reusable process that is useful for a

subset of projects with certain common characteristics (e.g., prototypic efforts,

contract type, hardware platform, specific data models).

63

The tailoring team first modifies the general description section. The process

name, identification number, and version number are modified to reflect the

project’s ownership. The purpose, standards, and related processes are

modified if necessary. Related processes are those that interact and support

the process; they do not include the “calling” process.

The tailoring team then adds detail to the customer description section of the

reusable process so that it describes specifically the customer of the process.

The team carefully identifies the primary customer, whether it is external,

management, or the staff that executes the ‘next process.’ Often there is more

than one customer.

Through discussions with the customer, the team elicits requirements,

adding project-specific details to those requirements already existing in the

reusable process description. Standards are often a fertile source of

requirements that must be allocated to specific processes. The set of

requirements, along with the organizational process definition, then become

the constraints on the process tailoring; requests for deviations are presented

to the Software Engineering Process Group (SEPG) on a case-by-case basis. In

this way, consistency between projects is maintained and arbitrary process

changes are minimized.

Using knowledge of the specific project input and output work products and

the existing process architecture, the team adds project-specific detail to the

interface specification section of the reusable process description. The team

also tailors the reusable process metrics, defined in the measurements

description section of the reusable process description, to measure how well

the customer’s requirements are satisfied. The team tunes the metrics to the

peculiarities of the project contract, available collection methods, perceived

risks, and maturity level, among other things.

Next, the process methods and associated indicators are tailored to

accommodate the specific functional assignments on the team, expertise in

currently used methods, and existing project processes. The functional roles

defined abstractly in the organizational processes are applied to specific groups

64

or individuals. The organizational process is compared with existing

processes or process fragments for consolidation. The goal is to achieve the

process purpose with as minimal an effect on the existing process as possible.

Finally, the process context is completed so that the contextual constraints of

the process are recorded.

Like the process definition process, the next steps are to automate the process,

if applicable, integrate it into the process architecture, and test it. Process

automation identifies opportunities to add tool support to portions or all of

the process, and to design and acquire those tools. The testing is

accomplished through peer reviews, augmented by standard testing

techniques for the automated portions of the process.

Finally, the team gives the tailored process to the local SEPG for final

approval, along with all applicable waivers and deviation requests. The

approved process is added to the PAL, where it is accessed by those responsible

for the reusable process in order to modify or amplify the existing reusable

process where appropriate.

A potential for simple automation exists during the tailoring process. Some

of those modifications that the tailoring team makes are minor, like changing

the name, identification number, and version number in the general

description section to reflect project ownership. A macro language and

associated tool could be used to generate these changes when the process is

checked out of the PAL. As more knowledge of the process develops, the tool

could be expanded to assist the tailoring team in selecting the type of

modification.

4.6 The Storage and Retrieval of Reusable Processes

This section outlines how reusable processes are stored and retrieved during

the process of both generating reusable processes and reusing these processes.

The "Administer the PAL" process description that follows describes

maintenance and support activities for the Process Asset Library (PAL), a

repository of software process-related documentation.

65

Process Flowchart PRO

Process: Process Tailoring Process Project/Business Unit

Customer: Mgmt

Project/ Process
, . Local SEPG ar

Business Unit SE Tailoring Team

Plan C Plan Process Tailoring Project

Tailor Customer &

Reats Info

Tailor

Tailor Procedural

Info, Process Ind.,

& Context

Test Integrate & Test

Process
~----4---.-----}----------- +e a ---.-----1

Review Get Local SEPG Final Approval |

Store Process in

PAL

Figure 4-4. Process Tailoring Methodology

66

PRC has employed World-Wide Web (WWW) technologies as a basis to

implement and maintain the PAL. PRC employees access the PAL through

an internal network, whose security allows only PRC employees to access it.

The PAL uses hypertext markup language (html) files to describe assets.

Search, Suggest, and Contribute functions are provided. The PAL stores assets

in compressed formats and expands them when transferring them to the

employee's desktop. WWW technologies provide the means to collect and

analyze PAL usage and to connect to other asset libraries around the world.

PRC remote sites that do not have access to the PAL are sent stand-alone

versions of the PAL at regular intervals.

The customers of the "Administer the PAL" process are:

e Software Process Improvement (SPI) community within PRC - Anyone

involved in SPI is a potential customer of the PAL. Significant subgroups

of the community are the PRC SEPG and lower level SEPGs, the Phoenix

teams, SPI working groups, projects involved in project startup, and

project members involved in project SPI activities.

¢ Proposal staff - Proposal personnel who are concerned with software

management, quality assurance, configuration management, quality

improvement, SPI, or technical processes can find applicable documents in

the PAL.

The customer requirements for the "Administer the PAL" process are:

e The PAL must contain current copies of all highly demanded process

assets in a usable and secure environment.

e All process assets must be placed under configuration management

control, i.e., they are managed and controlled.

¢ Candidate documents must be reviewed and approved before placed in the

PAL.

¢ PAL documents must be catalogued for easy access.

67

e The PAL contents must be made available to software projects, proposal

efforts, and other software-related groups within PRC.

e The use of the PAL contents must be monitored, reviewed, and used to

maintain the library.

Figure 4-5 depicts the activities in the "Administer the PAL" process and the

following paragraphs describe them. Note that the activity numbers in the

figure correspond to the numbers below:

1. Access the PAL. Access to the PAL is gained through standard WWW

measures. Using a web browser, users access the PAL through a published

address, the universal resource locator, or URL. Once the user has entered

the PAL, '.html' text describes the various ways to access the process assets.

2. Identify potential process assets. The PAL administrators determine

potential process assets through a variety of means: polling the SPI

community, looking for assets in each of the KPAs, requesting processes

and related work products from the active SPI projects, etc. The

administrators add the identified process assets to the PAL, and circulate a

list of newly added items to the FSG SEPG and the rest of the SPI

community.

3. Add a process asset. PRC employees add the process assets through the

"contribute" function. The user completes a submittal form that is sent to

the PAL and logged. The employee also sends a copy of the asset to the

PAL, placing it in a contribution directory. Each day the PAL locates the

newly sent submittal forms and the matching asset, appends the correct

application suffix, formats and compresses the asset as necessary, and

places the asset in the appropriate location within the PAL. When the

asset is placed into the correct location, it is also placed under

configuration management control using a revision control system.

4. Change a process asset. Assets are changed by contributing a new version

of the asset to the PAL, using the "add a process asset" activity described

above.

68

5. Delete a process asset. The PAL administrator deletes the process asset

after there is not sufficient interest for its inclusion in the PAL. The

deletion is accomplished by removing all references to it from all PAL

‘.html' files and by deleting its entry from an internal asset table. Deletion

occurs by removing all references to it from the PAL ‘html’ files; the

deleted file still physically resides on the PAL and still has its versions

stored in a revision control system.

6. Maintain PAL security. At the point of writing, security for the PAL is a

function of a secure network gateway.

7. Analyze PAL usage. World-Wide-Web (WWW) servers have the facility

to collect usage metrics based on access and download. The PAL makes

use of these collection functions. On a regular basis, PAL administrators

analyze the usage to anticipate future demands and problems.

Scripts running on the PAL server collect the following indicators:

¢ Number of PAL accesses per day

¢ Number of added, modified, and deleted processes per month

* Top 25 most highly-used assets

69

Quality in Daily Work System

Process Description: PDOO4 Process Customer: PRC SPI

Administer community
the PAL

Process Flowchart
Dept./ PAL

Person PAL User Administrator PAL Analyst

Step

Time

Need: current

copies of in

demand assets 1. /

in usable, Access PAL |
secure

environment.

Current copies

of in demand

assets in

usable, secure

environment.

3.]
—_—$< <_< ie 9 Add a process

asset |

4.

Change a

Identify potential

process assets

2

process asset

5.

Delete a process

asset

6.

Maintain PAL security

>

7.

Analyze PAL

usage

Figure 4-5. PAL Administration

70

5. Implementations of the Software Process Reuse Methodologies

This chapter discusses two representative implementations of the software

process reuse methodologies. Section 5.1 describes the definition of reusable

configuration management processes, based on the process definition

methodology from Section 4.4. Section 5.2 describes the tailoring of a reusable

peer review process, based on the process tailoring methodology from Section

4.5.

5.1 Definition of Reusable Configuration Management Processes

As discussed earlier, the project to define configuration identification

processes was part of a larger effort to revise current PRC Level 2 KPA process

definitions. In the case of Configuration Management (CM), some project

configuration identification process descriptions existed but many projects

had not documented the processes that were in place. Corporate

configuration identification processes existed in a rudimentary form. A

common framework was needed to increase the potential of reusing both

project-specific and corporate CM processes.

The new framework addresses both system and software configuration

management and included processes for the creation of all system

development baselines; identification and labeling of system components;

revision control of both documentation and software; creation of software

and system builds for testing, delivery, and release purposes; and the creation

of a CM library system. Special attention was paid to software-related

configuration identification, as most PRC projects involved in the case study

were either largely or wholly software projects and these projects wanted to

improve their software configuration management maturity vis-a-vis the

Capability Maturity Model (CMM) for Software.

While many of the projects involved in this portion of the case study have

system engineering components to them, software engineering personnel

often perform these activities. Therefore, the scope of this portion of the case

71

study was expanded to include system level configuration identification as

well as software configuration identification.

The following paragraphs describe how the six-step process definition method

was applied to configuration management.

Process Requirements Analysis: An initial survey was conducted of major

configuration management projects within PRC in order to identify the state

of process definition within the configuration management discipline. There

were several pockets of excellence used as sources for project-specific process

definitions, tool information, and general CM expertise. Also identified at

this time were the applicable PRC policies and standards. Additionally, an

analysis of CM requirements within the CMM was undertaken.

The measurable goals of configuration identification were established as the

integrity of the CM baselines, measured by the number of incorrect baseline

items over the total number of baseline items.

Process Analysis: During process analysis, process data was collected, the

domain boundaries for configuration identification were defined, and

relationships between the project-specific processes were identified,

modularized, and analyzed.

Process data was gathered from several sources. First, those PRC projects that

had defined CM processes sent them for analysis. Other data sources were

existing corporate process definitions, military standards, configuration

management textbooks, and configuration management plans.

There were several questions regarding domain boundaries. First, should

configuration identification or configuration status accounting include the

construction of CM libraries? We chose configuration identification because

libraries were needed for more than the accounting function. Second, should

baselines be included? Baselines were included as part of configuration

identification because it seemed like a natural extension of labeling and

identification, two standard configuration identification tasks, and because

several CM authorities placed baselines within configuration identification.

72

Lastly, how shall the versioning of system parts be allocated between

configuration identification and configuration control? Again, we chose to

place the versioning function within configuration identification, but

designed a strong interface between the two functions’ processes.

The next step was to look for commonalty. All CM standards and textbooks

agreed that the major configuration identification functions are the selection

and labeling of configuration elements. As noted above, we included CM

baselines and libraries within the scope of configuration identification. An

initial survey of PRC’s configuration management experts confirmed that

these were common elements of their CM efforts. We chose to define each of

these as a major configuration identification process.

Next we looked for common features within each major process. Within

configuration item selection, there did not seem to be further commonalty;

the process data did not suggest any heuristic for selection, other than the

effects of either too many or too few configuration items. Within labeling

there was some consensus on types of labeling schemes, but no further

common subactivities were uncovered. CM libraries were found to be more

data intensive rather than process intensive, besides the obvious process steps

to developing a database schema. There was, however, within the process of

baselining configuration elements several possibilities for subprocesses.

A baseline is a collection of configuration elements, constructed at key

development points. Processes from the projects suggested that there were

several actions taken on baselines: preparatory audit, creation, and

promotion. Likewise, there were several actions taken on baseline elements:

creation of a baseline element, check in, and check out a version of a baseline

element.

While there was consensus in the CM community on these common

configuration identification processes and subprocesses, there was no

consensus on how they interrelated. A standard sequence of processes had to

be prepared during process design.

73

Process Design: When the sequence of configuration identification processes

was examined, there seemed to be three sequential steps: preparation for

development work, support for development work, and creation of baselines.

Preparation for development work included creating permissions for

subsequent work and providing templates for new work. Support for

development work included revision support (i.e., check-ins and check-outs

of appropriate work products), configuration element selection, and

configuration element labeling. Creation of baselines included auditing the

existence of the appropriate development work products revisions, creating

preliminary baselines, verifying their correct construction, and promoting

baselines when approval was secured.

Upon further examination, we noted that the same sequence of activities was

used regardless of the baseline that was created (e.g., functional, allocated,

developmental, or product), with one exception. Integration and test phases

also required the construction of a testable configuration in addition to the

creation of a baseline. Therefore we created one set of configuration

identification processes for non-integration phases, and another for those

involving integration.

Parenthetically, we chose not to describe and teach these two sets of

configuration identification processes in our CM courses. Instead, we taught a

process sequence for each baseline that was instantiated from one of the two

sets, in order to reduce the amount of work to construct a usable process

sequence for a given process.

The process variations that existed within PRC pertained to implementation

details, like development platforms and CM tool kits. In order to maintain

and control complexity, the configuration identification functions were

abstracted to remove dependencies on these implementation details. Figure

5-1 lists the reusable configuration identification process definitions that

resulted from the process design step, arranged hierarchically.

Figure 5-2 is the process definition for the configuration identification macro

process. Note that in the process flowchart (Part 4), ILS stands for Integrated

74.

Logistics Support, which addresses the managerial and technical aspects of a

system’s operational support.

No process automation was attempted for the corporate configuration

identification processes.

Process Knowledge Acquisition Methods: Knowledge of the configuration

identification processes was acquired through a variety of avenues.

Interviews with CM representatives from projects undergoing software

process improvement efforts provided most of the project specific

information. These representatives provided project-specific processes,

textual process descriptions, checklists, and plans. After draft reusable process

descriptions were created, the representatives were again interviewed to

provide feedback on the process descriptions, and to determine the

appropriateness of the level of detail, the correctness of the processes, and

their utility to their projects. This response was used to update and

strengthen the descriptions. The configuration identification reusable

processes were then distributed for review.

Process Testing: The configuration identification processes that were a result

of the domain analysis were tested through reviews. The initial set of

processes were first presented to each of the configuration managers on our

largest projects for their review. They were also given to team members for

review. Finally, they were taught to a pilot class, again for review, before

presenting the material in a formal PRC training course.

Process Tailoring Knowledge Acquisition Methods: In conjunction with the

creation of the reusable process descriptions was the creation of a training

course for projects who were to reuse these processes. The training was given

to configuration management experts who were to tailor the reusable

processes to their projects, and then to train their project staff on their use.

Through course exercises and homework, these experts both tailored the

processes and provided feedback on the tailoring methodology.

75

The training course for tailoring reusable processes was given six times over a

three month span of time. The feedback from these course offerings proved

to be invaluable to validating and improving the process tailoring

methodology. The next subsection and also Chapter 6 describe the

measurements of the tailoring process.

76

Netscape: CM Process List

|What’s New? | What’s Cool? 1] Handbook I Net Search | Net Directory] | Newsgr

 esaeC M Process List Web Page

Welcome to the CM Process List Web Page.

This page is designed to help you find CM processes quickly. It contains assets, listed
below, to help you start or continuously improve your project's processes. If you have
suggestions for this page, send them via the suggestion form accessible from the PAL
home page.

The CM processes are:

e CM macro
© Configuration identification
oO Standam development config uration identification

oO Build CM library
oO Identify functional config uration

oO Check-out
O Check-in
O Assist in Cl selection
O Assign configuration identification
O Create baseline

O Release baseline
O Identify allocated configuration

O same as functional configuration subprocesses
oO Identify developmental config uration

oO Identify softwere developmental config uration

O same as functional configuration
subprocesses

oO Identify detailed design config uration
O same as functional configuration

subprocesses
oO Plan SW build
O Perform SW cutover
O Perform SW build

O Identify product configuration
O same as functional configuration

anal | =
Figure 5-1. Configuration Identification Process Definitions

77

Name CM200 - Configuration Identification

GENERAL INFORMATION

Process ID CM200

Process Purpose To incrementally establish and maintain a definitive basis for
control and status accounting for a CI throughout its life cycle.

Standards CMM v1.1
MIL-STD-973

Related Processes

Version Number

IEEE 828-1990, 1042-1987

CM100 Configuration Management Planning
CM300 Configuration Control
CM400 Configuration Status Accounting
CM500 Configuration Audits

v2.1

CUSTOMER DESCRIPTION

Customer

Requirements

External client
Project management

CMM v1.1 CM.AC.04.* - The software work products to be placed
under configuration management are identified.

CMM v1.1 CM.AC.07.* - Products from the software baseline
library are created and their release is controlled according to a
documented procedure.

CMM v1.1 CM.AC.08.* (or CSA) - The status of configuration
items/units is recorded according to a documented procedure.

MIL-STD-973 24-Nov-93 5.3.* - Configuration identification.

ANSI/IEEE Std 828-1990 2.3.1.* - Configuration identification.

ANSI/TEEE Std 1042-1987 3.3.* - Configuration identification.

INTERFACE DESCRIPTION

Entrance Criteria The contract is awarded to PRC or management approves the
commencement of a development effort.

Figure 5-2. CM200 Configuration Identification Process - Part 1

78

Inputs

Outputs

Exit Criteria

Contract
SOW
Proposal

Functional baseline

Allocated baseline
Product baseline(s)
Internal baselines, one per PRC SLC stage
CM Library System

The project is completed.

PROCEDURAL DESCRIPTION

Responsibilities

Tasks

Tools

Resources

Roles that participate in the process are described at lower levels
of process decomposition. Overall responsibility lies with the
group tasked with the CM function.

The tasks that must be accomplished during this process are
illustrated in Figure 5.2 - Configuration Identification Process
Flowchart and described below.

CM210 Build CM Library
CM220 Identify Functional Configuration
CM230 Identify Allocated Configuration
CM240 Identify Software Developmental Configuration
CM250 Identify Product Configuration

Tools that are used in configuration identification usually include
a Database Management System to house the configuration
identification record system and the configuration control (i.e.,

change request) record system, a version control system for
checkouts and checkins, and build utilities (e.g., the UNIX 'make'
command). Often, larger more ‘full-featured’ CM systems are
bought to automate more of the CM processes.

It should be noted though that the CM functions to be performed on
the project must be defined before beginning a tool selection process.
Knowing what you want to do before acquiring the method of how
to do it will provide the right level of requirements for the trade
analysis that will ensue.

TBD

Figure 5-2. CM200 Configuration Identification Process - Part 2

79

MEASUREMENT DESCRIPTION
Quality Indicators The quality indicators are:

Q1 - Hours expended in CM activities (planned and actual)
Q2 - Status of scheduled CM activities (planned and actual)
Q3 - Cost expended in CM activities (planned and actual)

Process Indicators Process indicators tracked per subprocess are

P1 - Hours expended in CM activities (planned and actual)
P2 - Status of scheduled CM activities (planned and actual)
P3 - Cost expended in CM activities (planned and actual)

Figure 5-2. CM200 Configuration Identification Process - Part 3

80

Process Flowchart PRE

Description: rrocess_ M200 Configuration Identification Process
Customer:

External Client, PM

Dept./

Ste erkon
Time

Client

External PM
CM SCM HCM ILS CM

System

Analysis

and

Design

Need

Baselines

with

Integrity

Functional

Baseline

Allocated

Baseline

Design,

mplementa-

tion, and

integration

and Test

System

Integragon

and Test

Product

Baseline

CM210

Build CM
Library

CM220
identify

Functional

Confiauration

Subsystem (P 1-3) -

Component

_—=— = ree TS TSS SSS TS SST SSS SSS SSS

CM230

CM210
Build CM Library

Identify
Allocated

Confiauration

CM240
Identify SW

Dev.

Config.

Identify HW
Dev. Config.

Baselines

 Identify ILS
Dev. Config.

— oF

CM250

Identify

Product

Confiauration

Figure 5-2. CM200 Configuration Identification Process - Part 4

81

5.2 Tailoring of a Reusable Peer Review Process

This section describes the tailoring of a peer review process by a project in one

of PRC's business units. This instantiation took just over two hours by a

team of two business unit personnel, one hour to tailor the textual process

description and another to tailor the process flowchart.

The project wanted to conduct peer reviews on resolutions to problem reports

and change requests, but they wanted to perform the peer reviews with the

least number of people in the shortest amount of time while still

maintaining the integrity of the process. The rest of this section describes

how the process was tailored using the steps of process tailoring methodology.

Figure 5-3 shows the corporate process and Figure 5-4 shows the result, the

project's tailored process. Note that the process notation In Figures 5-3 and 5-

4 does not contain the context section, as defined in Section 4.2, which was

added after the tailoring session occurred.

Plan Process Tailoring Project/Select Corporate Process: The tailoring was

done as part of a process tailoring workshop so a full project plan was not

created. The corporate process was retrieved from the PRC Process Asset

Library described in Section 4.6.

Tailor Customer and Requirements Information: The project added their

name to the process ID and modified the purpose. The customer was the

project's management. The requirements were made specific to the project:

understand the technical quality of the resolution and locate defects in code

before testing.

Tailor Interface Information and the Quality Indicators: The project

modified the interface information to reflect the way the project wanted to

run reviews. The manager started the process when the resolution was ready

to be reviewed and a moderator was assigned. The project plan was the input

and a completed checklist took the place of the corporate peer review report.

The exit criteria included completing the checklists and assignment

82

worksheets, and placing the checklist in the appropriate software

development folder. One quality indicator was added for schedule slippage.

Tailor Procedural Information and Process Indicators: The major

modifications were to reduce the number of participants to three: the

moderator/reviewer, the author, and a reviewer. A few of the tasks were

eliminated; the original numbers were maintained to show the deletions.

The process flowchart was also modified. Instead of referring to lower level

processes, the major characteristics of each step were added to the flowchart.

Two process indicators were eliminated.

Automate Process/Integrate & Test Process/Get SEPG Approval/Store in PAL:

The project decided against automation. Static testing was accomplished

through a peer review. The local SEPG approved the tailored process and

submitted it to the PAL for later retrieval.

83

Name PR200 Conduct a Peer Review

GENERAL INFORMATION

Process ID PR200

Process Purpose “The purpose of Peer Reviews is to remove defects from the
software work products early and efficiently. An important
corollary effect is to develop a better understanding of the
software work products and of defects that might be prevented. "-
Software Engineering Institute's (SEI) Capability Maturity Model
(CMM)

Standards CMM, vI.1, Level 3 Peer Review Key Process Area

Related Processes CM300 - Configuration Control
RMO00 - Requirements Management
PR100 - Setting Up a Peer Review Program

Version Number v1.0

CUSTOMER DESCRIPTION

Customer Project Management

Requirements Understand the technical quality of a given work product.
Locate major defects as early as possible.

INTERFACE DESCRIPTION

Entrance Criteria PR100 - Setting Up a Peer Review Program

Inputs Peer Review Strategic Plan

Outputs Peer Review Report
Peer Review Metrics
Peer Review Action Items
Revised Work Product (if peer review disposition is
“conditionally approve")

Exit Criteria Peer review is conducted; peer review report is completed and
distributed; action items are added to the action item database;

and if the peer review disposition is "conditionally approve,” the
work product is revised and approved.

Figure 5-3. Corporate Peer Review Process - Part 1

PROCEDURAL DESCRIPTION

Responsibilities

Tasks

(Moderator)

(Author)

(Moderator)

(Moderator &
Reviewers)

(Reviewers)

(Moderator & Author)

(All)

(Moderator)

(Author)

Moderator: Responsible person for setting up the schedule,
getting the packages out on time, assigning specific
review tasks to Reviewers, leading the discussion,
keeping the process moving, cutting off digression,
and reporting the results. This role requires special
training. The Moderator does not have to be a
member of the project technical staff, and should
not be the manager of any other participant.

Author: The primary creator of the product being
reviewed.

Reviewers: 2-4 technical people whose job includes creating
this type of product. These people should be
familiar with the project, but don't have to be full
time project staff members.

Recorder: Takes notes during the review meeting. This person
must possess enough technical understanding of the
issues to record the discussions. One of the
reviewers may be asked to be Recorder or they
could all take turns.

The following tasks are accomplished during this process:

1. Moderator selects Recorder and Reviewers, and schedules the

peer review. (PE020)
2. The work product to be reviewed is completed and given to the
Moderator. (PE038)
3. The Moderator ensures that the work product meets readiness
criteria. (PEO21)
4. The Moderator distributes peer review materials and checklists
to the Reviewers and assigns them roles. (PE021)
5. The Reviewers review the work product and return a list of
potential defects to the Moderator. (PE022)
6. The Moderator ensures that sufficient review has occurred and

distributes defect lists to Author. (PE023)
7. The Moderator conducts the peer review and issues minutes from

the peer review. (PE023)
8. The Moderator enters the noted defects into the problem
tracking system. (PE024)
9. The Author reworks the product to remove the noted defects, if

necessary. (PE025)

Figure 5-3. Corporate Peer Review Process - Part 2

85

(Moderator)

(Moderator)

(Moderator)

(Moderator)

Tools

Resources

10. The Moderator verifies that the noted defects are resolved. If

. so, the Moderator issues a resolution memo. (PE026)

11. If the product requires major rework, the Moderator schedules
another peer review (exit this peer review process and initiate
another). (PE026)
12. The Moderator prepares review metrics. (PE026)
13. The Moderator ensures that all peer review exit criteria are
satisfied. (PE026)

Action item database

Action item database

MEASUREMENT DESCRIPTION

Quality Indicators

Process [Indicators

Q1 - Total number of defects per KSLOC/docpage
Q2 - Total elapsed time to complete peer review process

P3 - Number of potential defects per KSLOC or docpage
P4 - Number of preparation hours per reviewer
P5 - Number of actual defects per KSLOC or docpage

P1 - Elapsed time to plan review
P2 - Elapsed time to prepare for review
P6 - Elapsed time to conduct review
P7 - Elapsed time to record review results
P8 - Elapsed time to conduct follow-up

Figure 5-3. Corporate Peer Review Process - Part 3

86

Quality in Daily Work System
 Process Description:

Peer Review Process

Process Customer:

Software Project Manager

Process Flowchart

— Dept./
Person Software Author Facilitator Reviewer Scribe

Project
Step Manager
Time

Pre-review

 Knowledge
of Product

Quality
Needed

: | Signal Completion

Q-—- Checklists —

om Readiness Issues -_——_—_—_—_

PEo20

Plan Peer Review

PE038

of project work
product

PEO21

Preparation for

Review
PE022

Review Product

Review

Knowledge °

of Product PEO2:
Quality Conduct Review Meeting

Reported

Post-

review

Quality
Work

Product

Provided

Rework Required

 PE024
Enter Remaining
Major Problems in

Prob Tracking Sys

PE025
Rework Product

: Peer Review Rp,

PE026
Review Follow-up

Completion tssues |

Figure 5-3. Corporate Peer Review Process - Part 4

87

Name <Project> - PR200 Conduct a Peer Review

GENERAL INFORMATION

Process ID <Project> PR200

Process Purpose The purpose of the modified peer review process is to conduct peer
reviews of PR/CR resolutions with the least number of people in

the shortest amount of time while still maintaining the formality
of the process.

Standards CMM, v1.1, Level 3 Peer Review Key Process Area

Related Processes CM300 - Configuration Control
RMO000 - Requirements Management
PR100 - Setting Up a Peer Review Program

Version Number v1.0

CUSTOMER DESCRIPTION

Customer <Project> Management

Requirements Understand the technical quality of a PR/CR (Problem

Report/Change Request) resolution.

Locate defects in code before testing.

INTERFACE DESCRIPTION

Entrance Criteria Software development manager assigns someone as a technical
reviewer of a PR/CR resolution.

PR/CR resolution is at a stage where it can be reviewed.

Inputs Detailed Project Plan (describes schedule for PR/CR completions
via the software development manager's work assignment
worksheet)

PR/CR resolution

Figure 5-4. Tailored Peer Review Process - Part 1

88

Outputs

Exit Criteria

Completed checklists (takes place of peer review report)

Completed software development manager's work assignment
worksheet (signed off to show completion)

Peer Review Metrics

Peer Review Action Items

Revised PR/CR resolution (if peer review disposition is
“conditionally approved")

Peer review is conducted; checklists are completed and filed in the
appropriate SDF; action items are added to the problem tracking
database; if the peer review disposition is "conditionally

approved,” the work product is revised and approved; and the
software development manager's work assignment worksheet is
signed off by QA.

PROCEDURAL DESCRIPTION

Responsibilities

Tasks

(Moderator)

(Moderator)

Moderator: Responsible person for getting the PR/CR
resolution from the author, distributing it to the
other reviewer, reviewing the product,
consolidating noted defects, and completing his
checklist. This role requires training. The
Moderator does not have to be a member of the
project technical staff, and should not be the
manager of any other participant.

Author: The primary creator of the product being
reviewed.

Reviewer: A technical person who is familiar with the
project, but doesn't have to be a full time project
staff member. The reviewer is responsible for
completing his checklist and returning it to the
moderator.

The following tasks are accomplished during this process:

2. The moderator gets the PR/CR resolution from the author at
the time when it is scheduled for review. (PE038)

3. The Moderator ensures that the PR/CR resolution meets
readiness criteria. (PEQ21)

Figure 5-4. Tailored Peer Review Process - Part 2

89

(Moderator)

(Moderator & Reviewer)

(Moderator)

(Moderator)

(Author)

(Moderator)

(Moderator)

(Moderator)
(Moderator)

Tools

Resources

sa

10.

11.

12.
13.

The Moderator distributes PR/CR resolution and associated

checklist to the other Reviewer and specifies a return date.
(PE021)
The Moderator and the Reviewer review the work product
and returns to the Moderator the checklist, which includes
potential defects. (PE022)
The Moderator consolidates the two checklists and gives the
consolidated checklist to the Author, and resolves any

disagreements or discrepancies. (PE023)
The Moderator enters the noted defects into the problem
tracking system and action items in the action item
database. (PE024)
The Author reworks the product to remove the noted defects,
if necessary. (PE025)
The Moderator verifies that the noted defects are resolved. -
(PE026)
If the product requires major rework, the Moderator
schedules another peer review (exit this peer review process
and initiate another). (PE026)
The Moderator prepares review metrics. (PE026)

The Moderator ensures that all peer review exit criteria are
satisfied. If so, the Moderator signs the checklist as
completed. (PE026)

Problem tracking database
Action item database

Problem tracking database
Action item database

MEASUREMENT DESCRIPTION

Quality Indicators

Process Indicators

Q2 -

Q3 -

p4 -
P5 -

Pl -

Ql - Total number of defects per KSLOC/docpage

Total effort to complete peer review process

Total amount of schedule slippage

Number of preparation hours per reviewer
Number of actual defects per KSLOC/docpage

Effort to complete software development manager's work
assignment worksheet
P6-

P7 -
P8 -

Effort to consolidate and resolve checklists

Effort to record review results

Effort to conduct follow-up

Figure 5-4. Tailored Peer Review Process - Part 3

90

Quality in Daily Work System

Proeese Description: Seflevue Pro - Process Customer; CIS Project
Conduct a Management

Process Flowchart

Dept. CS Project |
Parson Management Authrer Moderator Reviewer

Step
Time

tooniage \\
Pre- ofPRICR = Got PRICR

review resolution resolution
needed

ls ready:
distributes to

teviowar

w.chechdiat & due

data

Note potential PRCR rasolution defects Peon PRC

olPRIGR Consalidate checklists, give to author, resolve disagreements and
resolution discrepancies
reported

ee a ee a ee Bee ee ti ee er en ee Ge wee ewe we SR SES BEEPS SB

Paat-

raviow

Approved '
Condiionally Cisapproved

approved
¥

Enter defects into a Enter

aysiem | acter problem tracking

j ‘ ayatem, astion
items into action lteme Into ection

hem database

resolution —_— —

Varify ail defects (Mod.) Schedule

are reeolved another peer

Quality
PRAICR

resolution

provided

Figure 5-4. Tailored Peer Review Process - Part 4

91

6. Case Study

This section describes a case study conducted at PRC from November 1994 to

July 1995 to analyze, measure, and increase software process reuse. The study

had several parts: first, organizational processes were redefined using domain

analysis techniques; second, the organizational processes were taught to the

company; third, a simple methodology for process tailoring was taught at each

organizational process training class; fourth, the organizational processes

were saved in a web-browsable process asset library; and finally, projects

applied the process tailoring method while reusing organizational processes,

sometimes aided by corporate consultation.

A working group within PRC composed of representatives from all line

organizations as well as full-time SPI staff performed most of these

countermeasures. The PRC SEPG (Software Engineering Process Group)

formed this team to create corporate training for level 2 key process areas and

to modify or redefine processes so that they were compliant with version 1.1

of the Capability Maturity Model for Software. They used the process

definition methodology defined in Section 4.4 to collect project-specific

processes and data and to create reusable processes. Release 2.0 of the

corporate process descriptions, numbering about 120 processes, was the result

of their efforts. These processes were stored in a web-browsable Process Asset

Library (PAL) which is accessible by PRC employees. Specific KPA web pages

were built to house the reusable processes, project-specific instantiations,

related process assets, and training material. The team gave the training

associated with these processes first in pilot and then in corporate training

situations. In each of these, the students were taught how to tailor the

corporate/reusable processes to meet their project-specific needs, using the

process tailoring methodology defined in Section 4.5. Finally, instances of

process definition and/or reuse over the 1991 to 1995 time period were

collected.

The following are results of the case study. First, the process definition

activities of the business units under study are examined between 1991 and

92.

1995. Next, reuse levels are compared between 1994 and 1995 to examine the

result of the process definition and tailoring methods. Third, the benefits of

process tailoring are examined. Fourth, reuse levels are compared between

key process areas. Finally, other findings are summarized.

Process Definition Activities Between 1991 and 1995: The study of process

reuse at PRC showed that seven business units had expended significant

investments in process definition and reuse. 438 specific instances of process

definitions were uncovered, spanning a five year time period. Figure 6-1

shows the processes defined by the seven business units by year. Note that

several business units are increasing their process definition activity, shown

by the positive slope of their lines, while other, sometimes more mature,

organizations are in a period of less process definition activity, noted by their

negatively sloping lines. These periods of activity and inactivity are normal

and in turn affect the number of software process reuse opportunities per

year. During 1994, projects within these business units were typically working

to complete processes associated with level 2 key process areas; in 1995 their

focus generally turned to level 2 issues other than process definition. Since

this case study was conducted in oinly the first eight months of 1995, the

number of instances with potential for process reuse was noticeably less than

in 1994.

In Figure 6-1, note that Business Unit #3 has an inordinately large number of

processes defined during 1991. This business unit participated fully with the

PRC Technology Center in the development of PRC’s corporate processes, and

provided projects on which the corporate processes were defined. Its 1991

figure reflects the adoption of those processes.

Reuse Levels Compared: Has use of the method increased process reuse? To

answer this question, we compared the process reuse percentage in 1994

before the method was used and in 1995 after the method was introduced. As

Table 6-1 shows, process reuse increased from 41% in 1994 to 55% in 1995. We

believe that the domain analysis and process tailoring methods and training

contributed to this increase. All business units participated in the training,

and business units #4 and #7 have set a standard to begin all process

93

\A
\

V
A
A
N

“
80—
7 O= \A

\V
AA

A
A
A

60— 50—

an
 Ss

 es
 4 ¢

4
€

40- —I
N\

K\
\A

\A
AN

ee . :
. i, Business Unit #7

30 y . .
Business Unit #6

— | Business Unit #5

4 Business Unit #4

Business Unit #3

 Td
*

Business Unit #2

Business Unit #1

1995
 Figure 6-1. Defined Processes by Business Unit by Year

definition efforts by identifying reusable processes. More time is needed to

measure the effects of the domain analysis and process tailoring methods.

The decrease in total processes from 1994 to 1995 is due to incomplete data

from 1995 (through July only), and normal fluctuations in the process

creation and use cycle.

94

Table 6-1. Process Reuse in 1994-1995 by Business Unit

Business Unit 1994 1995 (to 8/1)

Reused {| Total | % age | Reused Total | % age |

Business Unit #1 0 38 0.00 0 0 0.00

Business Unit #2 0 50 0.00 1 14 0.07

Business Unit #3 26 31 0.84 37 42 0.88

Business Unit #4 0 0 0.00 4 0.75

Business Unit #5 35 41 0.85 9 0.00

Business Unit #6 37 79 0.47 10 26 0.38

Business Unit #7 0 1 0.00 3 3 1.00

Total 98 240 0.41 54 98 0.55

Benefits of Process Tailoring Method: Significantly, the time to develop a

project specific process was dramatically lower through reuse than through

project process definition efforts, showing at least a 10 to 1 increase in

efficiency. Metrics from both corporate and project process definition efforts

place the effort spent to design processes for a KPA at around 800 to 1000 or

more person-hours, depending on the breadth and depth of the KPA. One

project process team serves as an example: this team built four processes in

800 hours (1 process in 200 hours), their efforts spanning over one full year.

Results from process tailoring show that a project process can be instantiated

in two hours, one to tailor the process textual description, and one to tailor

the graphical description of process roles and tasks. When a peer review of

the process is added, the total time to instantiate and produce a project-specific

process is around 20 hours. Thus, conservatively speaking, our PRC

experience shows a 10 to 1 improvement in time to define a project-specific

process. |

These results should be tempered with a few caveats. First, these figures

represent initial data; a larger body of metrics is needed to draw conclusive

findings. Secondly, the effect of training must also be noted. Those groups

that tailored processes received training in the process area while earlier

95

groups did not; the training prepared them to be ready to tailor. At the same

time, both groups had organizational processes at their disposal; those groups

that chose to reuse them were able to significantly reduce the amount of

information they had to learn and master.

These preliminary results are significant in that two strong process

improvement requirements voiced by PRC projects are 1) time to improve,

the quicker the better, and 2) effort to improve, since most improvement

efforts are performed on tight, limited budgets.

Process Reuse by Key Process Area: Process reuse levels varied among the

process domains used at PRC, the key process areas from the Capability

Maturity Model (CMM) for Software. For each key process area in levels two

and three, figures 6-2 and 6-3 show the number of processes defined and

number of processes reused in each of four categories, respectively. The

categories are: 1) "instantiated without modification” which represents the

highest possible reuse, 2) “instantiated and modified," but the project process

still shows a clear derivation from the organizational process, 3) "reference

only; no clear derivation" which means that the projects used the

organizational process as one of many sources but the resulting project

process did not show a strong relationship to it, and 4) "no reuse,” that is, the

organizational process was not reused at all.

First, the number of processes varies widely between key process areas (KPAs),

from three for software subcontract management (SM) to over 90 for both

software project tracking and oversight (PT) and software configuration

management (CM). There are two reasons for the low number of SM

processes: first, PRC normally does not work in an environment where this

key process area is applicable, and second, for those few organizations that do

require subcontractors that fit the CMM criteria, it is easier to tackle

improvements in other areas where interaction with non-software personnel

is not required. The number of requirements management processes is low

primarily because the relative simplicity of the KPA and the domain

interpretation used by PRC in its corporate RM processes. PRC divides

requirements analysis into two parts: a software product engineering (PE)

96

KPA part devoted to the elicitation, analysis, and approval of requirements,

and a requirements management part devoted to managing changes to the

established requirement set. The number of software quality assurance

processes is also relatively low again due to its relative lack of complexity. In

PRC, most quality assurance functions are viewed as the same regardless of

the work product or process being examined.

The amount of process definition by business units at level 3 varies greatly, as

shown in Figure 6-3. Processes in the organization process focus and |

organization process definition KPAs are low in that most business units rely

solely on the PRC corporate processes and therefore do not see any need to

redefine or instantiate these processes for their business unit. Software

product engineering (PE) shows high levels of process definition. Since

during most of the time period covered by this case study there were no

corporate PE processes defined, business units defined their own, knowing

that by defining processes they are more able to manage the software

development process itself. For the most part, the level 3 KPA, intergroup

coordination, has not received much attention, in that most business units

are working at attaining compliance at level 2. Finally, the peer review KPA

shows fairly high levels of process definition. The peer review KPA is an easy

KPA to implement; it is small, self-contained, and does not require massive

organizational changes. For these reasons, the peer review KPA is often

implemented first, knowing that an early process improvement success aids

in the implementation of other improvement efforts. More will be said

about this KPA when amount of reuse is discussed.

The amount of reuse in the level 2 and 3 KPAs also varies markedly. Figures

6-2 and 6-3 again are used to illustrate the type of reuse, either instantiated,

instantiated and modified, reference only, or none.

A few comments are in order concerning the level 2 KPAs. In the RM KPA

the level of reuse reflects a significant disagreement regarding domain

boundaries as mentioned earlier. Business units seem to define their own

processes rather than reuse corporate processes. This situation provides an

opportunity to redefine the RM corporate processes, using domain analysis

97

45 -r

>
 c

Oo @ ra
oO

@
Cc

Le

S
@

O

®

ag
2g

c
ff

ce
ODO

7
¢

£
0

2
8

c
r
e

®

BR
S
s

83
ce

®
_

®
o

n
Oo

o
°

a)
£
2
.

>
Zz

FS

y
—

,
3

i
—_—

i
_
|
.

J
t

L
I

t
t

i
t

t

f
I

q

oO
LO

oO
wn

oO
wo

oO
LO

oO
wz

oO
4p]

N

WN
™

rr

 juowabeueyy|

uolesinByu0y
a
s
e
M
y
o
s

eoueinssy

A
y
e
n
y

a
s
e
m
y
o
s

juswebeuey\

y
o
e
U
O
D
q
N
S

asemMyoSs

WYBIsi9AGC
pue

Bunjoes

peloig
a
e
M
y
o
s

Buiuueld

yaloig
aiemMyos

j
u
e
w
o
b
e
u
e
\

s
}
u
e
w
a
i
n
b
e
y

Figure 6-2. Process Definitions in Level 2 Key Process Areas by Reuse Type

98

60 T

HE Used As Is

C] Instantiated and

Modified

= Used for Reference Only

a No Reuse

En
gi

ne
er

in
g

In
te

rg
ro

up

C
o
o
r
d
i
n
a
t
i
o
n

Pe
er

R
e
v
i
e
w
s

”
=

5
LL

De
fi
ni
ti
on

S
o
f
t
w
a
r
e

Pr
od

uc
t

Or
ga

ni
za

ti
on

Pr

oc
es

s y)
”
o

oO
o
ha

oO

Lo
L
—_

©
N
c
wo
m
ta

Oo

Figure 6-3. Process Definitions in Level 3 Key Process Areas by Reuse Type

99

techniques and employing greater involvement and review with business

unit personnel. In the QA KPA, the level of instantiated and instantiated &

modified reuse is remarkably high, pointing to the rather ubiquitous and

highly transferable nature of the KPA processes. At first sight, the levels of

reuse within the CM KPA are surprisingly low. The number of instantiated

processes is about 10 whereas other level 2 KPAs number between 20 and 30.

Yet the number of instantiated and modified processes is larger than any

other KPA, measuring about 40 processes. Upon further examination, the

reason for this is clear: the implementation of CM processes is severely

affected by project platforms and toolsets. The corporate CM processes abstract

beyond this platform level, requiring modification to make the corporate

process usable at the business level.

The peer review KPA distinguishes itself in regard to level of reuse. Roughly

80 percent of the business unit process definition efforts reuse the corporate

process entirely by simply instantiating it for their organizational unit. Thus

the peer review process domain is ideal for process reuse and remains the

goal for other process domains.

Other Case Study Findings: The confidence that the business unit has in the

process definition significantly influenced the adoption of processes. Figure

6-4 shows that business units #1 and #2 have virtually no instances of process

reuse, yet as Figure 6-1 illustrates, these business units have defined

significant numbers of processes. It is interesting that these two business

units have no working process definition relationships, past or present, with

the PRC corporate process improvement staff. Business units #3 through #7

on the other hand either have developed processes with the corporate staff

(business units #3 and #6), are currently working together with the corporate

staff (business unit #4), or have made a conscious decision to reuse corporate

process assets whenever possible (business unit #7). Business unit #6 exhibits

confidence in the processes of business units #1 and #2 from which a

significant number of staff came, and has therefore reused many of their

processes, further strengthening the link between process reuse and

confidence in the process itself.

100

Figure 6-4 further highlights the relationship between process producer and

process reuser by showing number of processes reused. Those business units

whose personnel were most active in producing processes in previous

situation were also the most active in reusing those same processes. Note the

reuse levels of business unit #3, #5, and #6, all with personnel actively

involved in previous process production.

Another interesting portion of the study dealt with our process tailoring

experience with several business units and KPAs. Processes have been

instantiated and modified in the following KPAs: peer reviews, requirements

management, software project tracking and oversight, software quality

assurance, and intergroup coordination. In each of these cases, an

"instantiated" or "instantiated and modified" process was created in two to

three hours. Participants in this process are usually excited about its power,

surprised at the results, and eager to apply the same method to other

processes.

One final item regarding our findings was that reuse of process within PRC

was not limited to reuse of corporate processes. One business unit in

particular has taken advantage of processes from another business unit and

from a tool vendor. In the first case, no particular tailoring was required; the

processes that involved cost planning and tracking were reused without

modification. In the case of the process from the tool vendor, the business

unit used the process and tool documentation as a reference for process

definition, but were not able to instantiate or instantiate and modify the tool's

process information.

101

70

60

50

40

30

20

10

Bu
si

ne
ss

Un

it

#1

Bu
si

ne
ss

Un
it

#2

Bu
si

ne
ss

Un
it

#3

Bu
si
ne
ss

Un
it

#4

Bu
si

ne
ss

Un
it

#5

Bu
si
ne
ss

Un
it

#6

B
u
s
i
n
e
s
s

Un
it

#7

WH Used As Is

CJ Instantiated and

Modified

EE] Used for Reference Only

| No Reuse

Figure 6-4. Percentage of Process Reuse by Business Unit

102

7. Conclusions

7.1 Conclusions

This thesis shows that principles garnered from the domain analysis and

software reuse areas are applicable to software process improvement.

Domains of software processes exist and benefit from domain analysis.

Reusable abstractions of project-specific processes can be created and reused.

When made available through web-browsable repositories, a mechanism

exists that allows continuous improvement of the reusable asset.

The case study showed trends in increasing process reuse. Process reuse

increased from 41% in 1994 to 55% in 1995. Early results show a 10 to 1

decrease in time and effort to create a project or business unit process

description when instantiating a reusable process. Unfortunately, the case

study did not contain enough data points to quantitatively assess the value of

the two proposed solutions, a process definition methodology and a process

tailoring methodology; more time is needed.

7.2 Future Research

There are a number of avenues available for future research:

° First and foremost, the case study needs to be extended so that enough

time is allowed to quantitatively assess process reuse. Sufficient data

should be collected and statistically analyzed to test the thesis. The cost

benefit of process domain analysis and the instantiation of reusable

processes should be studied further.

° Factors affecting process reuse need to be studied. How do goals,

process structure, organizational and human aspects, and automation

affect process reuse? What methodologies and meta-process

architectures can be created to quantify these relationships?

° Process definition and reuse need to be studied in other problem

domains in order to construct a more global and complete

103

representation of processes. Different organizational structures and

non-software domains should be investigated, including those within

industrial engineering and operational research areas.

The essential and unique attributes of processes as a class need to be

studied and defined. Cana formal language be developed to group

processes? What would be required and how would one transition to

its use?

How can the underlying process models of CASE tools be integrated

into existing organizational process domain models? How would one

efficiently and effectively implement such an integration?

What is the relationship between reusable processes and reusable

products? How can the research and practice in software reuse be

leveraged and integrated with the research and practice in software

process improvement? How can the gradual, continuous

improvement of processes be used to support the breakthrough

improvements of domain analysis?

104

References

[Arango 89]

[Arango 94]

[Armitage 93]

[Arthur 93]

[Bailin 91]

[Basili 84]

[Bechtold 94]

[Castano 93]

Arango, G. "Domain Analysis -- From Art Form to

Engineering Discipline,” Proceedings of the 5th

International Workshop Software Specification and

Design, CS Press, Los Alamitos, Calif, 1989, pp. 152-159

Arango, G. "Domain Analysis Methods," from Software

Reusability, edited by Schafer, W., Prieto-Diaz, R., and

Matsumoto, M., Ellis Horwood, 1994

Armitage, J., Kellner, M., Phillips, R. Software Process

Definition Guide, Software Engineering Institute SEI-93-

SR-18, Pittsburgh, PA, August 1993

Arthur, L., Improving Software Quality: An Insider's

Guide to TOM, New York: John Wiley, 1993

Bailin, S. KAPTUR: A tool for the preservation and use of

engineering legacy, CTA, Inc., Rockville, MD 20852, 1991

Basili, V., Weiss, D. "A Methodology for Collecting Valid

Software Engineering Data," IEEE Trans. Software

Engineering, Vol. SE-10, No. 3, November 1984

Bechtold, R., Brackett, J., Redwine, S. Process Definition

and Modeling Guidebook, Volume 2: Advance

Applications of MPDM, Software Productivity

Consortium, SPC-92041-CMC, Version 02.00.02, March

1994

Castano, S., De Antonellis, V. "Reusing Process

Specifications", from Information System Development

Process, Proceedings of the IFIP WG8.1 Working

Conference on Information System Development Process,

Como, Italy, 1993

105

[Conte 86]

[Curtis 92]

[Ett 95]

[Fagan 86]

[Feiler 92]

[Frakes 93]

[Frakes 95]

[Frakes 96]

Conte, S., Dunsmore, H., Shen, V. Software Engineering

Metrics and Models, Benjamin Cummings Publishing

Company, Menlo Park, CA, 1986

Curtis, W., Kellner, M., Over, J. "Process Modeling,”

Communications of the ACM, Vol. 35, No. 9, September

1992, p. 75-90

Ett, W., Kellner, M., Over, J., Phillips, D. Defining

Manually Enactable Processes Using the Process Definition

Information Organizer Templates, Electronic Systems

Center, Contract No. F19628-C-029, Task IV02.1, CDRL

Sequence A014-010, Defense Technical Information

Center, Cameron Station, Alexandria, VA 22304-6145,

March 6, 1995

Fagan, M. "Advances in Software Inspections," IEEE

Transactions on Software Engineering, Volume SE-12,

Number 7, July 1987, pages 744-751

Feiler, P., and Humphrey, W. Software Process

Development and Enactment: Concepts and Definitions,

Software Engineering Institute CMU/SE]-92-TR-04,

Pittsburgh, PA, September 1992

Frakes, W. lecture notes, "Advanced Topics in Software

Engineering: Software Reuse, Domain Analysis, Re-

engineering”, Virginia Tech, 1993

Frakes, W., Fox, C. “Sixteen Questions About Software

Reuse”, Communications of the ACM, Vol. 38, No. 6,

June 1995

Frakes, W., Terry, C. Software Reuse Models and Metrics:

A Survey (to appear), ACM Computing Surveys, 1996

106

[Gale 90]

[Ginsberg 95]

[Humphrey 89]

[Jaworski 90]

[Kang 90]

[Krasner 92]

[Kumagai 91]

[Latour 91]

Gale, J., Tirso, J., and Burchfield, C. "Implementing the

Defect Prevention Process in the MVS Interactive

Programming Organization," IBM Systems Journal, Vol.

29, No. 1, 1990, pages 33-43

Ginsberg, M., presentation, "Tailoring and the CMM," The

95 Software Engineering Symposium, Software

Engineering Institute, September 1995

Humphrey, W. Managing the Software Process, Addison-

Wesley, 1989

Jaworski, A., Hills, F., Durek, T., Faulk, S., Gaffney, J. A

Domain Analysis Process, Technical Report Domain-

Analysis-90001-N, V 01.00.03, Software Productivity

Consortium, Herndon, VA 22070, January 1990

Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.

Feature-Oriented Domain Analysis (FODA). Feasibility

Study, Technical Report CMU/SEI-90-TR-21, Software

Engineering Institute, Pittsburgh, PA 15213, November

1990

Krasner, H., Terrel, J., Ett, W. Using SPMS to Support

Process Modeling and Project Planning, STARS Program,

Task IT15.2, CDRL 4024-001, Gaithersburg, Maryland, July

24, 1992

Kumagai, A., Riddle, W. Session Summary: ISPW6

Opening Session, Proceedings of the 6th International

Software Process Workshop, Hakodate, Japan, October

1990, IEEE Computer Society Press, 1991

Latour, L., Wheeler, T., Frakes, W. Descriptive and

Prescriptive Aspects of the 3 C's Model: SETA1 Working

Group Summary. Ada Letters, 1991. XI(3): p. 9-17.

107

[Lubars 91]

[McDaniel 95]

[Over 94]

[Paulk 93a]

[Paulk 93b]

[Prieto-Diaz 87]

[Prieto-Diaz 91a]

[Prieto-Diaz 91b]

[Radice 85]

Lubars, M. “Domain analysis and domain engineering in

IDeA”, Domain Analysis and Software Systems Modeling,

IEEE Computer Society Press, 1991

McDaniel, M., presentation, "Best Practices for Tailoring

the Software Process," The 95 Software Engineering

Symposium, Software Engineering Institute, September

1995

Over, J., Kellner, M. tutorial, "Fundamentals of Software

Process Definition,” 1994 SEPG National Meeting, Dallas,

TX, Software Engineering Institute, Pittsburgh, PA, 1994

Paulk, M., Curtis, B., Chrissis, M., and Weber, C. Capability

Maturity Model for Software, Version 1.1, CMU/SEI-93-

TR-24, February 1993

Paulk, M., Weber, C., Garcia, S., Chrissis, M., and Bush, M.

Key Practices of the Capability Maturity Model, Version

1.1, CMU/SEI-93-TR-25, February 1993

Prieto-Diaz, R., "Domain Analysis for Reusability,”

Proceedings of COMPSAC '87, IEEE, 1987

Prieto-Diaz, R., "Implementing Faceted Classification for

Software Reuse”, Communications of the ACM, Vol. 34,

No. 5, May 1991

Prieto-Diaz, R. & Arango, G., Domain Analysis and

Software Systems Modeling, IEEE Computer Society Press,

Los Alaitos, Calif., 1991, page 13

Radice, R., Roth, N., O'Hara, Jr., A., Ciarfella, W. "A

Programming Process Architecture," JBM Systems

lournal, Vol. 24, No. 2, 1985

108

[Redwine 91]

[Redwine 93]

[Sutton 90]

[Weide 91]

Redwine, S., "Organizational Properties and Software

Process Models," Proceedings of the 6th International

Software Process Workshop: Support for the Software

Process, IEEE Computer Society Press, 1991

Redwine, S., "Software Process Architecture Issues,"

Proceedings of the 7th International Software Process

Workshop: Communication and Coordination in the

Software Process, IEEE Computer Society Press, 1993

Sutton, S., Heimbigner, D., Osterweil, L., "Language

Constructs for Managing Change in Process Centered

Environments,” Proceedings of the Fourth SIGSOFT

Symposium on Software Development Environments,

Software Engineering Notes 15, 1990

Weide, B., Ogden, W., and Zweben, S. "Reusable Software

Components" from Advances in Computers, Vol. 33,

Academic Press, Inc. 1991

109

Vita

Craig R. Hollenbach

PRC Inc., Technology Center

1500 PRC Drive, Mailstop 5s2a

McLean, VA 22102

703/556-2006

hollenbach_craig@prc.com

EDUCATION:

MS, Computer Science, Virginia Polytechnic Institute and State Univ., 1995

BS, Music Education, Lebanon Valley College, 1974

CAMEO:

Mr. Hollenbach has more than 15 years experience in the production and

process improvement of software engineering systems. Currently, he chairs

the PRC Technology Center Software Engineering Process Group (SEPG) and

an internal working group tasked with developing CMM Level 3-5 corporate

processes. He is a member of the PRC SEPG, which coordinates the software -

process improvement program within PRC, and the Systems Integration

SEPG. Mr. Hollenbach is responsible for PRC's organizational process

definition capability, including the development and tailoring of reusable

processes. He has developed the first PRC Process Asset Library and

prototyped its present Web format. His process improvement experience

includes modeling and standardizing software engineering processes,

developing corporate software engineering guidelines, assessing project

software capabilities, developing configuration management tools, providing

consultation services on methodological and CASE tool issues, and

developing and conducting software engineering training. His product

engineering experience includes the analysis, design, and development of

information management, data base, and telecommunications systems. His

systems engineering experience includes the analysis and design of local area

network and office automation systems.

110

EMPLOYMENT HISTORY:

11/85 - Present, Principal Computer Analyst, PRC Inc.

03/83 - 11/85, Member of Technical Staff, Contel

10/80 - 03/83, Member of Technical Staff, Moshman Associates, Inc.

PUBLICATIONS/PRESENTATIONS:

Hollenbach, C. and W. Frakes. Software Process Reuse. in Seventh Annual

Workshop on Software Reuse. 1995. St. Charles IL

Hollenbach, C. and W. Frakes. Software Process Reuse in an Industrial

Setting. submitted to Fourth International Conference on Software Reuse.

1996. Orlando, FL: IEEE CS Press.

Hollenbach, C. Organization Process Definition Experiences at PRC Inc.

presentation at 1995 SEPG Conference: Practical Experiences: Process at Work.

1995. Boston, MA

Hollenbach, C. Bringing CMM-Compliant Peer Reviews to Projects. in PRC's

Technology Transfer. 1994. McLean, VA

Hollenbach, C. Phoenix Approach to Process Definition and Management.

presentation at PRC Software Process Improvement Technical Symposium.

1993. McLean, VA

PROFESSIONAL AFFILIATIONS:

IEEE Member, Software Engineering

SEI Affiliate

AWARDS /HONORS:

Who's Who in American Colleges and Universities, 1974

111

