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The Monitoring of Linear Profiles 

 and the Inertial Properties of Control Charts 

 

Mahmoud A. Mahmoud 

 

(ABSTRACT) 

 

The Phase Ι analysis of data when the quality of a process or product is 

characterized by a linear function is studied in this dissertation.  It is assumed that each 

sample collected over time in the historical data set consists of several bivariate 

observations for which a simple linear regression model is appropriate, a situation 

common in calibration applications. Using a simulation study, the researcher compares 

the performance of some of the recommended approaches used to assess the stability of 

the process.  Also in this dissertation, a method based on using indicator variables in a 

multiple regression model is proposed.   

 

This dissertation also proposes a change point approach based on the segmented 

regression technique for testing the constancy of the regression parameters in a linear 

profile data set. The performance of the proposed change point method is compared to 

that of the most effective Phase I linear profile control chart approaches using a 

simulation study. The advantage of the proposed change point method over the existing 

methods is greatly improved detection of sustained step changes in the process 

parameters.  

 

Any control chart that combines sample information over time, e.g., the 

cumulative sum (CUSUM) chart and the exponentially weighted moving average 

(EWMA) chart, has an ability to detect process changes that varies over time depending 

on the past data observed.  The chart statistics can take values such that some shifts in the 

parameters of the underlying probability distribution of the quality characteristic are more 

difficult to detect.  This is referred to as the “inertia problem” in the literature. This 



 iii 

dissertation shows under realistic assumptions that the worst-case run length performance 

of control charts becomes as informative as the steady-state performance. Also this study 

proposes a simple new measure of the inertial properties of control charts, namely the 

signal resistance. The conclusions of this study support the recommendation that 

Shewhart limits should be used with EWMA charts, especially when the smoothing 

parameter is small.  This study also shows that some charts proposed by Pignatiello and 

Runger (1990) and Domangue and Patch (1991) have serious disadvantages with respect 

to inertial properties. 
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Chapter 1:  Introduction 

 

The current study addresses two main subjects, the monitoring of linear profiles 

and the inertial properties of control charts. The following sections introduce both 

subjects and present related literature reviews. 

  

1.A  The Monitoring of Linear Profiles 

 

In most statistical process control (SPC) applications it is assumed that the quality 

of a process or product can be adequately represented by the distribution of a univariate 

quality characteristic or by the general multivariate distribution of a vector consisting of 

several quality characteristics.  In many practical situations, however, the quality of a 

process or product is characterized and summarized better by a relationship between a 

response variable and one or more explanatory variables. This relationship is referred to 

as a profile.  In particular, there has been recent interest in monitoring processes 

characterized by simple linear regression profiles.    

 

The monitoring of linear profiles is a relatively new quality control application, 

with most of the work done in this application having appeared in the last few years. 

Woodall et al. (2004) gave a review of the literature on this topic and presented a general 

framework for process monitoring using profile data. Most of the studies conducted have 

been motivated by calibration applications. For example, Mestek et al. (1994) considered 

the stability of linear calibration curves in the photometric determination of +3Fe with 

sulfosalicylic acid. Stover and Brill (1998) studied the multilevel ion chromatography 

linear calibrations to determine instrument response stability and the proper calibration 

frequency.  Lawless et al. (1999) discussed a pair of examples in automotive engineering 

for which the relationship between the input and output dimensions of a part could be 

represented by a straight line for each stage of the manufacturing process. Their emphasis 

was in understanding how the variation is transmitted through the stages of the 

manufacturing process. Kang and Albin (2000) presented two examples of process 

profiles; one of them is a semiconductor manufacturing application in which the process 
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is represented by a linear calibration function. Ajmani (2003) presented an Intel 

Corporation semiconductor manufacturing application not involving calibration. Other 

researchers have considered more complicated models than the simple linear regression 

model. For instance, the other example presented in Kang and Albin (2000) involved a 

non-linear relationship between the amount of dissolved artificial sweetener aspartame 

and the temperature levels. The non-linear profile applications were also studied by Jin 

and Shi (1999); Walker and Wright (2002); and Williams et al. (2003).  

 

The analysis of linear profiles includes two phases, Phase I and Phase II. The 

purpose of the analysis in Phase I is to analyze a historical set of a fixed number of 

process samples collected over time to understand the process variation, determine the 

stability of the process, and remove samples associated with any assignable causes. 

Having removed those samples, one estimates the in-control values of the process 

parameters to be used in designing control charts for the Phase II analysis. The 

performance of a Phase I control chart method is usually measured in terms of the 

probability of signal; this is the probability of obtaining at least one charted statistic 

outside the control limits. On the other hand, the main interest in Phase II monitoring of 

linear profiles is to quickly detect parameter changes from the in-control parameter 

values. The performance of control chart methods in Phase II is usually measured in 

terms of the average run length (ARL), where the run length is the number of samples 

taken until the chart gives an out-of-control signal. Table 1.1 shows a comparison 

between the two phases of the monitoring of profiles. 

 

The vast majority of the research on control charting is on Phase II methods and 

their performance. In most of this study, the focus is on Phase I. The current study 

investigates the performance of some of the recommended approaches for Phase I 

monitoring of linear profiles used to assess the stability of the process.  Also in the 

current study, the researcher proposes a method for Phase I monitoring of linear profiles 

based on using indicator variables in a multiple regression model.  
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Table 1.1: A comparison between Phase I and Phase II of the monitoring of profiles 

 Phase I analysis Phase II analysis 

Data m samples of historical data. On-line data. 

 
Regression 
parameters 

 
The parameters are unknown 
and to be estimated. 

The parameters are assumed 
to be either 

• known or  
• estimated from a 

data set in Phase I. 
 
 

Goals 

• Determine the stability of 
the process. 

• Remove samples associated 
with any assignable causes. 

• Estimate the in-control 
values of the process 
parameters. 

Signal as quickly as 
possible when the process 
parameters change from the 
in-control parameters. 

Criteria to compare 
competing methods 

The probability of obtaining at 
least one charted statistic outside 
the control limits. 

The run length distribution 
parameters (usually the 
ARL).  

 

 

1.B  A Change Point Approach for Linear Profile Data Sets 

 

There are many practical applications in which a researcher may wish to test the 

constancy of the regression parameters in m samples of profile data. For example, a 

medical researcher may wish to test the constancy of the mean reaction time of a 

manufactured drug when applied to two or more groups of patients, using the age of the 

patient as the explanatory variable; see Kulasekera (1995). The Phase I monitoring of 

profiles described in Section 1.A is another practical application in the area of SPC. The 

main concern in these applications is to test the hypothesis that all of the profiles follow a 

single regression model against the hypothesis that a change occurred in one or more 

model parameters after sample m1, m1= 1, 2, …, m-1. For this purpose, the current study 

proposes a change point method based on using a likelihood ratio test (LRT) in a 

segmented simple linear regression model. This method can be used to assess the stability 

of and to detect change points in a Phase I simple linear profile data set. 
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Many authors have studied the change point problem in regression models, such 

as simple linear regression, multiple linear regression, polynomial regression and non-

linear regression, but under a different sampling framework from that of the linear profile 

data. These authors assumed that either there is a possible change point after any single 

observation or that data are obtained sequentially one observation at a time. Using this 

sampling approach, Quandt (1958, 1960) proposed a likelihood ratio approach to detect a 

change point in a simple linear regression model. His main concern was to estimate the 

position of the point in time at which the regression model changed and to estimate the 

regression parameters in the models prior to and following the change point. In the 

literature of regression analysis this is usually referred to as two-phase regression, 

switching regression, or segmented regression. Brown et al. (1975) proposed tests based 

on recursive residuals to check for the stability over time in multiple regression models. 

MacNeill (1978) presented tests for changes in a polynomial regression model at 

unknown times based on raw regression residuals. In addition, Chen (1998) proposed the 

Schwarz Information Criterion (SIC) to locate a change point in both simple and multiple 

linear regression models. Also, Krieger et al. (2003) considered detection of a gradual 

change in the slope in a simple linear regression model.  Jandhyala and Al-Saleh (1999) 

considered the change point problem in non-linear regression models. Many other authors 

have studied the change point problem in regression models in this sampling framework, 

including, e.g., Farley and Hinich (1970); Esterby and El-Shaarawi (1981); Worsley 

(1983); Kim and Siegmund (1989); Jandhyala and MacNeill (1991); Kim and Cai (1993); 

Kim (1994); Chang and Huang (1997); and Yakir et al. (1999).  

 

In a segmented simple linear regression model we assume that the data set consists 

of a single sample in the form {(X1, Y1), (X2, Y2),…, (XN, YN)}. The s-segment regression 

model with an explanatory variable X and a response Y is assumed to be  

                          iijji XAAY ε++= 10 ,  jj i θθ ≤<−1 , j=1, …,s,  i=1, 2, …, N,            (1.1)    

                                 

where the jθ ’s are the change points between segments (usually  00 =θ and  Ns =θ ) and 

the iε ’s are the error terms. Most work on segmented regression has been based on the 
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assumption that the iε ’s were independent, identically distributed (i.i.d.) normal random 

variables with mean zero. The segment error term variance,  2
jσ , can be considered to be 

either constant (homoscedastic model) or non-constant (heteroscedastic model). In some 

articles the authors have assumed the continuity of the model at the change points; see 

Gallant and Fuller (1973), for example. In this study, no assumption of continuity is 

made. The models without continuity requirements have been studied by several authors; 

see Quandt (1958) and Hawkins (1976), for example. Segmented linear regression 

methods can be used to detect changes in the regression parameters within the given 

sample, to estimate the locations of the change points ( jθ ’s), and to determine the 

appropriate number of change points. Hawkins (1976) gave formulas for the likelihood of 

the general segmented multiple regression model, along with a dynamic programming 

algorithm (DP) to determine the exact maximum likelihood statistics for a multiple 

segmented model, both for the homoscedastic and heteroscedastic models. Hawkins 

(2001) gave formulas for the LRT for testing the null hypothesis of a single segment 

against the alternative of s segments (s >1).  

 

In a profile data set with a single explanatory variable X and a response Y, the data 

are m samples in the form {(Xi1, Yi1), i=1, 2, …, n1}, {(Xi2, Yi2), i=1, 2, …, n2},…, {(Xim, 

Yim), i=1, 2, …, nm} with nj > 2,  j = 1, 2, …, m.  The model that relates the explanatory 

variable X to the response Y in this case is  

             ijijjjij XAAY ε++= 10 ,  i = 1, 2, …, nj, and  j=1, 2, …, m.                  (1.2) 

 

The emphasis in this situation is to detect changes in the regression parameters from 

sample to sample, assuming that no parameter change has occurred within each sample. 

 

 Figure 1.1 shows graphically the framework of a linear profile data set. This 

sampling framework is identical to that of panel data in econometrics.  Only a very few 

econometricians, however, have proposed methods to detect structural changes in the 

context of panel data.  Han and Park (1989) proposed an extension of the method of 

Brown et al. (1975) to panel data.  Hansen (1999) and Emerson and Kao (2001, 2002) 
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proposed methods more similar to the proposed change point method discussed in 

Chapter 4, but considered only the detection of shifts in the slope. Using a sampling 

framework similar to the profile data, Gulliksen and Wilks (1950) proposed a likelihood 

ratio method to test for the equality of the regression parameters in several samples. This 

approach, however, is not a change point method.       

 

 

Figure 1.1: The framework of a linear profile data set. 

 
 
 
  
                                                               ………… 
                   n1=10                     n2=8                                                  nm=7 
                                                             
        
                                                                                                                                            
       j=1                        j=2                    ………                           j=m                                                                    

 

 

 

To detect parameter changes in a profile data set, this study proposes an approach 

based on the segmented regression model in Equation (1.1). In this approach one pools all 

the profile samples into one sample of size N=∑ =

m

j jn
1

. Then, for the pooled sample, one 

applies the segmented regression model in Equation (1.1). As mentioned above, in the 

linear profile model we assume that no parameter changes occur within each sample. 

Thus, in the proposed approach for profile data, the jθ ’s in Equation (1.1) are restricted 

to the indices i corresponding to the ends of the profile samples. To test for a change in 

one or more of the regression parameters, one applies the LRT of Hawkins (2001). This 

method can be applied recursively to identify multiple change points in the data set. 

Moreover, the LRT statistic can be partitioned into 3 terms indicating to a large extent the 

relative contribution of the Y-intercept, slope, and variance shifts to an out-of-control 

signal.  
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1.C  The Inertial Properties of Quality Control Charts 

 
When a control chart that combines information over time is being used, e. g, the 

cumulative sum (CUSUM) chart or the exponentially weighted moving average (EWMA) 

chart, then it is possible that the chart statistic is in a somewhat disadvantageous position 

immediately before a process parameter change. For example the univariate EWMA chart 

statistic based on sample means may be close to the lower control limit when an upward 

shift in the process mean occurs.  Being near the lower control limit causes the time 

required to reach the upper control limit, producing an out-of-control signal, to be longer 

than if the EWMA statistic were close to the centerline or close to the upper control limit 

when the shift occurred. An illustrative example is shown in Figure 1.2. This figure 

shows an EWMA chart with a trend in the process mean in the lower direction of the 

centerline occurs after sampling time 2. If a shift in the process mean in the upper 

direction of the centerline occurs at sampling time 10, the EWMA chart may not pick up 

this shift immediately. 

 

Figure 1.2: EWMA chart with downward undetected sustained shift. 
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Yashchin (1987, 1993) recommended the consideration of such “worst-case 

scenarios” in the selection of a control chart.  Others, such as Lowry et al. (1992), Lowry 

UCL 

LCL 
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and Montgomery (1995), and Woodall and Adams (1998), refer to the potential delay in 

signaling as resulting in an “inertia problem.”  

 

In physics, “inertia” refers to the resistance an object has to a change in its state of 

motion.  Similarly, in statistical process control “inertia” can be used to refer to a 

measure of the resistance that a chart has to signaling a particular process shift.  The 

amount of inertia depends on the value of the chart statistic.  The measure of inertia could 

be low if the charting statistic is near the appropriate boundary when a shift occurs, so 

there is not always an inertia problem, as it is usually phrased in the literature.  The 

author refers instead to the inertial properties of control charts.  

 

Yashchin (1993) gave a table that showed a comparison of the EWMA chart and 

the CUSUM chart on the basis of steady-state and worst-case ARLs.  The worst-case 

scenario is that the control chart statistic is at the value that maximizes the out-of-control 

ARL.  The steady-state ARL is based on averaging the out-of-control ARL values over the 

possible values of the control chart statistic under the assumptions that the process has 

been operating for a while and that the process mean stays on target until the specified 

shift in the mean occurs.  Yashchin’s conclusion was that the EWMA and CUSUM charts 

have roughly equivalent steady-state ARL performance, but in the worst-case scenarios 

the EWMA ARLs are higher.  Yashchin (1987) stated that in most cases one will be more 

interested in control schemes with better worst-case sensitivity.  Thus, Yashchin (1987, 

1993) argued that the possibility of an EWMA statistic being in a disadvantageous 

position is a serious disadvantage for the EWMA chart compared to other charts, such as 

the CUSUM chart, that use resets and do not have such a significant inertia problem.  For 

this reason, he concluded that the use of the CUSUM chart should be preferred over the 

use of the EWMA chart.   

 

Moustakides (1986) showed that the one-sided CUSUM chart is optimal in the 

sense that among all control charts with at least a specified in-control ARL, the out-of-

control ARL for a specified out-of-control distribution is minimized by the CUSUM chart 
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when considering each competing chart under its corresponding worst-case scenario.  

Lucas and Saccucci (1990) also showed some worst-case ARLs for EWMA charts, but 

they downplayed the importance of the inertia issue, saying it only takes a few 

observations after the shift for the EWMA chart to overcome its initial inertia.   

 

This study shows under realistic assumptions that the worst-case run length 

performance of control charts becomes as informative as steady-state performance. Also, 

the current study proposes a simple new measure of the inertial properties of control 

charts, defining the signal resistance of a chart to be the largest standardized shift from 

target not leading to an immediate out-of-control signal.  The signal resistance from the 

worst-case to the best-case scenario is calculated for several types of univariate and 

multivariate control charts, including some charts augmented with Shewhart limits.  This 

study considers only control charts for monitoring the process mean or mean vector, 

although the ideas can be easily extended to other types of charts. 
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Chapter 2:  Linear Profile Models and Approaches 
 

As mentioned in Chapter 1, the monitoring of linear profiles includes two phases, 

Phase I and Phase II. In this chapter, the Phase I and Phase II models and approaches for 

monitoring a simple linear profile data set are presented. 

 

2.A  Phase I Monitoring of Simple Linear Profiles 

 

The setting of a Phase I simple linear profile data set can be described as follows. 

The observed data collected over time are m random samples, with each sample 

consisting of a sequence of nj pairs of observations (Xij, Yij), i=1, 2, …, nj,  j=1, 2, …, m.  

For each sample it is assumed that the model relating the independent variable X to the 

response Y is   

             ijijjjij XAAY ε++= 10 ,  i = 1, 2, …, nj, and  j=1, 2, …, m,                  (2.1)  

 

where the ijε ’s are assumed to be independent, identically distributed (i.i.d.) N (0, 2
jσ ) 

random variables. The X-values in each sample are assumed to be known constants; 

[Neter et al. (1990, pp. 86-87) discussed the regression analysis when the X-values are 

random]. In many of the Phase I linear profile applications the X-values are known 

constants and take the same values in all samples. The in-control values of the 

parameters 0A , 1A , and 2σ  in Equation (2.1) are unknown. If A0j = A0, A1j = A1, and 2
jσ  = 

2σ ,  j = 1, 2, …, m, then the process is considered to be stable in Phase I.  

 

Our main objective in the Phase I analysis is to evaluate the stability of the 

process and to estimate the in-control parameters. Obtaining a data set reflecting expected 

in-control performance is usually accomplished by discarding samples associated with 

assignable causes from the data set, assuming that the associated assignable causes can be 

identified and removed. 

 

In the SPC literature, usually the statistical performance of a Phase I method is 
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measured in terms of the probability of a signal. As defined in Chapter 1, the probability 

of a signal is the probability of obtaining at least one charted statistic outside the control 

limits. 

 

It is well-known that the least squares estimates of 0A  and 1A  for sample j are                                  

                     jjjj XaYa 10 −=   and  =ja1 SXY(j)/ SXX(j),                                      (2.2)  

 

where j
n

i ijj nYY j∑ =
=

1
, j

n

i ij nXX j∑ =
=

1
, ∑ −= =

jn
i ijjijjXY YXXS 1)( )( , and 

∑ −= =
jn

i jijjXX XXS 1
2

)( )( , [see, e.g., Myers (1990, chap. 2)]. Furthermore, 2
jσ  is estimated 

by the jth mean square error MSEj, where MSEj=SSEj/(nj –2). Here SSEj=∑ =

jn

i ije
1

2 is the 

residual sum of squares, where ijjjijij XaaYe 10 −−= , i = 1, 2,…, nj. It is also well-known 

that the least squares estimators ja0  and ja1  are distributed as a bivariate normal 

distribution with the mean vector  

                                                            TAA ),( 10=µ                                                             

and the variance-covariance matrix   

                                               Σ = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
2
1

2
01

2
01

2
0

σ

σ

σ

σ
,                                                     (2.3) 

 

where ( ))(
222

0 //1 jXXjj SXn += σσ , )(
22

1 / jXXSσσ =  and )(
22

01 / jXXj SXσσ −=  are the 

variance of ja0 , the variance of ja1 , and the covariance between ja0  and ja1 , 

respectively.  Also the quantity 2)2( σjj MSEn −  is distributed as a chi-square 

distribution with )2( −jn  degrees of freedom independently of ja0  and ja1 ,  j=1, 2, …, 

m.  

 

Once a set of data reflecting in-control performance is obtained, one estimates the 

in-control process parameters, the Y-intercept, the slope, and the variance by the intercept 

average maa m
j j∑= =1 00 , the slope average maa m

j j∑= =1 11 , and the mean square error average  
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                                   MSE= mMSEm

j j∑ =1
,                                                     (2.4)  

 

respectively. In the following subsections the recommended approaches for monitoring 

Phase I linear profile data sets are presented. 

 

2.A.1  T2 Control Chart Approaches 

 

The SPC literature includes three T2 control chart approaches for analyzing linear 

profile data sets in Phase I. These are Mestek et al.’s (1994) T2 chart, Stover and Brill’s 

(1998) T2 chart, and Kang and Albin’s (2000) T2 chart.  

 

  Mestek et al. (1994) proposed a T2 control chart to check for the stability of the 

linear calibration curve in the photometric determination of +3Fe with sulfosalicylic acid. 

Their T2 approach is based on successive vectors containing the absorbances of the 

calibration curve, i.e., the response Y-values. In this approach one must assume that the 

X-values are fixed and take the same set of values for each sample (i.e. Xij=Xi, j=1, 2, …, 

m). The T2 statistics for this method are 

                   2
jT )()( 1 yySyy −−= −

j
T

j              j=1, 2, …, m,                          (2.5)  

 

where ),..,,( 21 njjjj yyy=y  is a vector containing the response values of the j th  sample, 

and )( 2,1 n,..,yyy=y  is a vector of the response averages, where myy m

j iji ∑= =1 . Also,            

                                                S =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

   ...  
  .   ...     .      .

 ...    

 ...    

2
21

2
2
212

121
2
1

nnn

n

n

sss

sss

sss

                                                               

is the pooled sample covariance matrix, where )1()(1
22 −∑ −= = myys m

j iiji , (i= 1, 2,…, 

n) and )1())((1 −∑ −−= = myyyys m
j lljiijil , [i, l=1, 2,…, n ( li ≠ )]. Mestek et al. (1994) used a 

T2-distribution with n and m degrees of freedom to determine the upper control limit of 

their T2 chart.  Using the relationship between the T2- and F-distributions, they calculated 
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the upper control limit as UCL= )()1( ,, nmFmn nmn −− − α , where α− ,, nmnF  is the 

)1(100 α−  percentile of the F-distribution with n and m-n degrees of freedom.  However, 

as mentioned in Tracy et al. (1992) and Sullivan and Woodall (1996a), the T2-distribution 

can be used to determine the UCL of the conventional T2 control chart for individual 

multivariate observations when estimating the population covariance matrix Σ  with S 

only for future observations, i.e., only in Phase II.  In Phase I, if the population 

covariance matrix Σ  is estimated by S, then the T2 statistic in Equation (2.5) follows a 

beta distribution. The proof can be found in Gnanadesikan and Kettenring (1972). Thus, 

as pointed out by Tracy et al. (1992), a more appropriate UCL for the chart is  

                                   UCL= mBm nmn /)1( ,2/1,2/
2

α−−− ,                                       (2.6) 

 

where α,2/1,2/ −−nmnB  is the )1(100 α−  percentile of the beta distribution with parameters 

n/2 and 2)1( −− nm .  Note that values of the T2 statistics in Equation (2.5) are not 

independent because each of the m charted T2 statistics is calculated based on the same 

sample estimators. 

 

The use of this T2 control chart for monitoring linear profile data sets in Phase I is 

not recommended for four reasons. First, this chart can be applied directly only when the 

X-values are fixed and constant from sample to sample. Second, the T2 control chart for 

individual multivariate observations when estimating the population covariance matrix Σ  

with S can have very poor statistical performance in terms of the probability of an out-of-

control signal. This was demonstrated by Sullivan and Woodall (1996a), Vargas (2003), 

and by the simulation study described in Chapter 3 of this dissertation. Third, when 

nm ≤  the sample covariance matrix S is singular and the beta distribution cannot be 

used.  Finally, with a simple profile relationship, use of a T2 chart based on the n Y-values 

leads to overparameterization.  

 

Stover and Brill (1998) proposed two methods for a Phase I linear profile 

calibration process. The first method is a T2 approach based on vectors containing 

estimators of the Y-intercept and slope. The T2 statistics of this method are 
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                        2
jT )()( -1

1 zzSzz −−= jj
T ,                         j=1, 2, …, m,         (2.7)  

 

where T
jjj aa ),( 10=z , Taa ),( 10=z , and S1= ⎜⎜

⎜

⎝

⎛

01

2
0

S
S

⎟⎟
⎟

⎠

⎞

2
1

01

S
S .  Here ja0  and ja1  are as defined 

in Equation (2.2), and )1()(1
2

00
2
0 −∑ −= = maaS m

j j , )1()(1
2

11
2

1 −∑ −= = maaS m
j j , 

and )1())((1 001101 −∑ −−= = maaaaS m
j jj  are the sample variance of ja0 , the sample 

variance of ja1 , and the sample covariance between ja0  and ja1 , respectively.  The 

upper control limit for this chart used by Stover and Brill (1998) is obtained from the T2-

distribution. Using the relationship between the T2- and F-distributions, they calculated 

the upper control limit of this chart to be UCL= )2()1)(1(2 ,2,2 −−+ − mmFmm m α .  

However, as mentioned previously in the context of the method proposed by Mestek et al. 

(1994), the T2 distribution is not the appropriate marginal distribution for the T2 statistic 

when estimating the population covariance matrix using the pooled sample covariance 

matrix in Phase I. A more appropriate upper control limit in this case is  

                           UCL= mBm m α,2/)3,(1
2)1( −− .                                                  (2.8) 

 

Even though the values of the T2 statistics in Equation (2.7) are dependent, the simulation 

study described in Chapter 3 shows that the overall false alarm probabilities produced by 

this chart can be approximated closely using this marginal beta distribution. 

 

The T2 control chart of Kang and Albin (2000) is based on successive vectors of 

the least squares estimators of the Y-intercept and slope. The T2 statistics in this method 

are 

                      mTj =2 )()( -1
2 zzSzz −− jj

T /(m–1),       j=1, 2, …, m,               (2.9)  

 

where j z and z  are as defined for Equation (2.7), and S2= ⎜⎜
⎝

⎛

01

2
0

ˆ
ˆ
σ
σ

⎟⎟
⎠

⎞
2
1

01

ˆ

ˆ

σ

σ
, where 2

0σ̂ , 2
1σ̂  and 

01σ̂  are the estimators of the variance of ja0 , the variance of ja1  and the covariance 
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between ja0  and ja1  defined in Equation (2.3), respectively. These estimators are 

obtained by replacing 2σ  in Equation (2.3) by MSE, where MSE is as defined in 

Equation (2.4). The upper control limit of this chart used by Kang and Albin (2000) is  

                                            UCL= α− ),2(,22 nmF .                                                 (2.10) 

 

Obviously, this method is similar to the T2 method of Stover and Brill (1998), although 

the marginal distributions of the control statistic used differ because of different 

estimators for the covariance matrix.  

 

One should note that the values of the T2 statistics in Equation (2.9) are also 

dependent, as was the case for those in Equations (2.5) and (2.7), but again the simulation 

study in Chapter 3 shows that the marginal F-distribution can lead to a close 

approximation of the overall probability of a false alarm.  

 

2.A.2  Kim et al.’s (2003) Shewhart-Type Control Charts Approach 

 

Kim, Mahmoud, and Woodall (2003) proposed another approach for Phase I 

analysis of linear profiles. They recommended coding the X-values within each sample so 

that the estimators of the Y-intercept and slope are independent. Using their coding 

recommendation and the fact that the estimator of the variance is independent of the 

estimators of the Y-intercept and slope, one can monitor each of the three regression 

parameters using a separate Shewhart-type control chart. If one codes the X-values within 

each sample so that the average coded value is zero, then the resulting linear regression 

model is in the form  

             ijijjjij XBBY ε+′+= 10 ,  i = 1, 2, …, nj,  j=1, 2, …, m,                       (2.11) 

 

where jjjj XAAB 100 += , jj AB 11 = , and )( jijij XXX −=′ . In this case, the least squares 

estimators for the regression parameters for sample j are jj yb =0 , and 

jb1 = )()(1 jXXjXYj SSa = . It is very well-known that for an in-control process, jb0  and jb1  
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are mutually independent normally distributed random variables with means 0B  and 1B  

and variances jn2σ  and )(
2

jXXSσ , respectively.  

 

Notice that a shift in the Y-intercept in Equation (2.1) from jA0  to 00 AA j ∆+  is 

equivalent to a shift in the Y-intercept in Equation (2.11) from jB0  to 00 AB j ∆+ . A shift 

in the slope of the regression model in Equation (2.1) from jA1  to 11 AA j ∆+ , however, 

leads to shifts in both the Y-intercept and slope in Equation (2.11). In this case, the Y-

intercept shifts from jB0  to 10 AXB jj ∆+ , while the slope shifts from jB1  to 11 AB j ∆+ . 

In the special case when jX = X ,  j=1, 2, …, m, if the Y-intercept in equation (2.1) shifts 

from jA0  to 00 AA j ∆+  and simultaneously the slope in Equation (2.1) shifts from jA1  to 

11 AA j ∆+  so that 10 AXA j∆+∆ =0, then only the slope in Equation (2.11) shifts from 

jB1  to 11 AB j ∆+ .  However, if jX  varies from sample to sample, the shifts in the 

parameters in Equation (2.11) corresponding to this type of shift is not clearly 

interpretable. Finally, it is obvious that shifts in the variances of both models in Equations 

(2.1) and (2.11) would be equivalent.                                                     

 

Assuming that the X-values are the same in all samples and that the process is in 

control, it can be shown that the quantity 00 bb j − , where mbb m

j j∑ =
=

1 00 ,  has a normal 

distribution with mean of 0 and variance of 21σ
nm

m − . It also can be shown that the 

quantity 2
)2(

σ
MSEnm −  has a chi-square distribution with )2( −nm  degrees of freedom. 

Since these two variables are independent, the quantity 
nm

mMSEbb j
1)( 00

−
−  follows 

a t-distribution with )2( −nm  degrees of freedom. Thus, it seems reasonable as an 

approximation to use a Shewhart-type control chart for monitoring the intercept B0 with 

the following lower and upper control limits: 
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         LCL = 
nm

MSEmtb
nm

)1(

2
),2(0

−
− α

−
   and    UCL = 

nm
MSEmtb

nm

)1(

2
),2(0

−
+ α

−
,   (2.12)        

 

where 2/),2( α−nmt  is the )21(100 α−  percentile of the t-distribution with )2( −nm  degrees 

of freedom.  

 

Also assuming that the process is in control, it can be shown that 11 bb j − , where 

mbb m

j j∑ =
=

1 11 , has a normal distribution with mean of 0 and variance of 21 σ
XXmS

m − . 

Hence, the quantity 
XX

j mS
mMSEbb 1)( 11
−

−  follows a t-distribution with )2( −nm  

degrees of freedom.  Therefore, approximate upper and lower control limits for a 

Shewhart control chart for monitoring 1B  can be set at 

            LCL=
XX

nm mS
MSEmtb )1(

2
),2(

1
−

−
−

α     and     UCL=
XX

nm mS
MSEmtb )1(

2
),2(1

−
+

−
α .  (2.13)  

 

Assuming in-control process, it can be shown that the quantity  

                                  Fj = jj MSEMSE −                                                            (2.14)  

 

has an F-distribution with n–2 and (m–1)(n–2) degrees of freedom, where 

)1( −= ∑ ≠− mMSEMSE m

ji ij . Therefore, a Shewhart control chart for monitoring the 

process variance 2σ  requires plotting the quantity Fj on a chart with the following 

control limits  

                  LCL= 2/),2)(1(),2( α−−− nmnF  and  UCL= )2/1),(2)(1),(2( α−−−− nmnF .                  (2.15)   

 

A mathematically equivalent control chart for monitoring the process variance can 

be obtained by plotting MSEj on a chart with the following lower and upper control 

limits: 
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         LCL= MSE
Fm

mF

nmn

nmn

2
),2)(1(),2(

2
),2)(1(),2(

1 α
−−−

α
−−−

+−
 and  UCL= MSE

Fm

mF

nmn

nmn

2
1),2)(1(),2(

2
1),2)(1(),2(

1 α
−−−−

α
−−−−

+−
.  (2.16)         

                      

If the X-values vary from sample to sample, one can obtain the control limits of the 

process parameters corresponding to a specified false alarm probability using simulation. 

 

Since the accuracy of the estimators of the in-control regression coefficients relies 

heavily on the stability of the process variance, it is recommended that one apply a 

control chart for the variance before applying the control charts for the Y-intercept and 

slope.  

 

This method is also based on the plotting of dependent statistics in each one of the 

three charts for monitoring the three process parameters. For example, if Ei represents the 

event that the ith mean square error exceeds the control limits in Equation (2.16), then Ei 

and Ej (i ≠ j) are not independent. This is also the case using the control limits of the Y-

intercept and slope in Equation (2.12) and Equation (2.13), respectively. However, the 

simulation study presented in Chapter 3 shows that these dependencies do not prevent 

good approximations of the overall false alarm probabilities.  

 

As an alternative, one can consider these charting methods for the Y-intercept and 

slope under the framework of the analysis of means (ANOM).  The charts can be 

constructed such that joint distribution of the plotted statistics within each chart is a 

multivariate t-distribution with a correlation between each pair of variables of 

)1(1 −−= mρ . See, for example, Nelson (1982). Also as an alternative for the control 

chart for monitoring the process variance in Kim et al.’s (2003) method, one can consider 

the analysis of means-type test for the equality of variances, denoted by ANOMV, 

proposed by Wludyka and Nelson (1997).  However, the simpler approach taken above is 

shown to be quite accurate in the simulation study presented in Chapter 3.  
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2.A.3  Principal Component Approaches 

 

Control chart methods for monitoring Phase I linear profiles based on principal 

components technique were suggested by Mestek et al. (1994) and Stover and Brill 

(1998).  The principal component method of Mestek et al. (1994) employs a Shewhart-

type control chart for the first principal component corresponding to vectors of the Y-

values, assuming that the X-values are fixed from sample to sample. The principal 

components approach of Stover and Brill (1998) is based on control charting the first 

principal component corresponding to vectors containing the estimates of the regression 

parameters for each sample. These principal component methods, however, are not 

recommended because they will not be able to detect some out-of-control conditions. The 

first principal component explains in-control variation in the direction of the major axis 

corresponding to the first principal component. Therefore, one will not be able to detect 

combinations of shifts in the Y-intercept and the slope in the direction perpendicular to 

the major axis corresponding to the first principal component.  

 

On the other hand, the principal components approach of Jones and Rice (1992) is 

a very useful tool to identify and understand the nature of the variability among the 

profiles in a Phase I profile data set with equal, equally spaced X-values for each profile. 

This approach has become a fundamental part of functional data analysis. See, for 

example, Ramsay and Silverman (2002). In this principal component approach, one 

determines the first few principal components that account for most of the profile 

variation. Then, for each principal component, one plots the average profile and the 

profiles corresponding to the minimum and maximum principal component scores.  This 

approach is strongly recommended for use in Phase I analysis of profile data. If the X-

values are not equally spaced and/or equal for each profile, one can fit a regression model 

for each sample and obtain fitted response values for a set of equally spaced values. The 

approach, however, is not a control chart-based method.  
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2.A.4  An Alternative Approach 

 

The problem of monitoring linear profiles in Phase I can be expressed in terms of 

a problem of comparing several regression lines. The literature of regression analysis 

includes an F-test approach based on using indicator variables (dummy variables) in a 

multiple regression model to compare two or more regression lines. The use of indicator 

variables in comparing several regression lines is described in many references; see, for 

example, Myers (1990, p. 135), Neter et al. (1990, chap. 10), and Kleinbaum and Kupper 

(1978, chap. 13).  

 

Suppose that we have m samples of bivariate observations and we need to test the 

equivalence (coincidence) of the regression lines of all samples. The first step in the 

indicator variables technique is to pool all the m samples into one sample of size 

N=∑ =

m

j jn
1

.  Then we create m-1 indicator variables such that 

                 Zji =
⎩
⎨
⎧
0
1

  
if observation  is from sample 
otherwise 

i j
, .2,..., 1, , ..., 2, 1, mjNi ′==  

 

where 1−=′ mm . Finally, we fit to the pooled data the following multiple regression 

model: 

  iiimmiiiiimmiiii xZxZxZZZZxAAy εββββββ ++++++++++= ′′′′ 1212111020210110 ........ ,                               

                                                                                                              i= 1, 2, …,N,  (2.17)   

                                                  

where the iε ’s are assumed to be i.i.d. N(0, 2σ ) random variables and (xi , yi), i=1, 2, …, 

N, are N bivariate observations resulting from pooling the m samples into one sample of 

size N. To test for the equality of the m regression lines we test the hypotheses 

==== ′mH 002010 ....: βββ === ....1211 ββ 01 =′mβ  versus 01 : HH  is not true. 

Under the null hypothesis we have the following reduced model:  

                                  iii xAAy ε++= 10 ,  i= 1, 2,…, N.                                 (2.18)  
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The usual test statistic for testing 0H  is 

             
)(

)1(2/)}()({
fullMSE

mfullSSEreducedSSEF −−
= ,                                      (2.19) 

 

where )( fullSSE  and )(reducedSSE are the residual sum of squares resulting from fitting 

the regression models in Equations (2.17) and (2.18), respectively, and )( fullMSE  is the 

mean square error of the full model in Equation (2.17). This test statistic follows an F 

distribution with 2(m-1) and N-2m degrees of freedom under the null hypothesis.  

 

In this alternative approach for Phase I analysis of linear profiles, one applies the 

global F-test based on the statistic in Equation (2.19) in conjunction with a univariate 

control chart to check for the stability of the variation about the regression line. For this 

purpose, the third control chart of Kim et al. (2003) that is based on control limits in 

Equation (2.15) [or Equation (2.16)] is recommended. Again, since the accuracy of the 

estimators of the in-control regression coefficients relies on the stability of the process 

variance, it is recommended that one check for the stability of the error variance before 

performing the F-test.  

 

If an out-of-control signal is obtained from the global F-test (i.e., we reject 0H ), 

one follows by coding the X-values such that the average coded value within each sample 

is zero and applying 3-sigma control charts for the Y-intercept and slope separately. If the 

X-values are the same in all samples, the 3-sigma control chart for monitoring the 

intercept is based on plotting the quantity t0j= )( 00 bb j − / nMSE  on a chart with control 

limits 3± . Also, the 3-sigma control chart for monitoring the slope is based on plotting 

the quantity t1j= )( 11 bb j − / XXSMSE  on a chart with control limits 3± . These two charts 

are used for diagnostic purposes. Alternately, one could perform tests of hypotheses to 

test the equality of the intercepts and slopes in the m samples. If assignable causes can be 

identified, the corresponding samples are removed from the data and the method 

reapplied.  Once one has a set of data reflecting expected in-control performance, the 

regression parameters can be estimated for use in Phase II monitoring.  Jensen et al. 
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(1984) proposed a Phase II method (for multiple linear regression models) similar in 

several respects to this Phase I method.   

 

2.B  Phase II Monitoring of Simple Linear Profiles 

 

The Phase II simple linear profile model is in the form 

               ijijij XAAY ε++= 10 ,  i = 1, 2, …, nj, and  j=1, 2, ….                     (2.20) 

 

Again, the ijε ’s are assumed to be i.i.d. N (0, 2σ ) random variables and the X-values in 

each sample are assumed to be known constants. Here, the in-control values of the 

parameters 0A , 1A , and 2σ  are assumed to be known or estimated from a data set 

reflecting expected in-control performance.  

 

The performance of a Phase II control charting method is usually measured by 

some parameter of the run length distribution. As mentioned in Chapter 1, the run length 

is the number of samples taken until the chart produces an out-of-control signal. In the 

literature, often the average run length ARL is used in performance comparisons studies 

of Phase II methods.  

 

Several authors have proposed Phase II control charting approaches for 

monitoring simple linear profiles with assumed known values for the intercept, slope and 

variance parameters. In the following sub-sections the simple linear profile Phase II 

approaches are presented. 

 

 

 2.B.1  Kang and Albin’s (2000) Phase II Approaches 

 

Kang and Albin (2000) proposed two control chart methods for Phase II 

monitoring of linear profiles. Their first approach is a bivariate T2 chart based on 
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successive vectors of the least squares estimators of the Y-intercept and slope, assuming 

known parameter values. Here, the T2 statistics are  

                        =2
jT ( jz – µ)T Σ-1( jz – µ),           j=1, 2, …,                            (2.21) 

 

where T
jjj aa ),( 10=z is the vector of sample estimators, and µ and Σ are as defined in 

Equation (2.3). When the process is in-control, the T2 statistic in Equation (2.21) follows 

a central chi-squared distribution with 2 degrees of freedom.  The upper control limit of 

this chart used by Kang and Albin (2000) is 

                                           UCL= 2
,2 αχ ,                                                            (2.22)        

 

where 2
,2 αχ  is the )1(100 α−  percentile of the chi-squared distribution with 2 degrees of 

freedom. Under out-of-control shifts in the process parameters (assuming that the X-

values are the same for all samples), the T2 statistic in Equation (2.21) follows a non-

central chi-squared distribution with 2 degrees of freedom and non-centrality parameter 

                                             XXSXn 22)( ββλτ ++= ,                                             

 

where λ  and β  are the shifts in the intercept and slope, respectively. It can be shown 

that the exact ARL of this T2 control chart is evaluated using the following formula: 

                                            ARL=
)Pr(

1
2

,2
2

αχ>jT
.                                                   

 

If the X-values are not the same for all samples, the ARL corresponding to a specified 

false alarm probability can be estimated using simulation. 

 

The second Phase II method of Kang and Albin (2000) is an EWMA chart to 

monitor the average deviation from the in-control line. The deviations from the in-control 

regression line obtained at sample j are calculated using 

                      eij= Yij – A0 – A1Xij,   i=1, 2, …, nj ,  
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and the average deviation for sample j is ∑= =
n
i ijj ee 1 /nj. The EWMA control chart 

statistics are given by 

                                  EWMAj=θ je +(1- θ)EWMAj-1,                                      (2.23)  

 

where 0< θ≤ 1 is usually called the smoothing parameter and EWMA0=0. Assuming that 

nj=n, j=1, 2,…, the control limits for this EWMA chart used by Kang and Albin (2000) 

are 

            LCL= )2(/1 θθσ −− nL  and  UCL= )2(/1 θθσ −nL ,                    (2.24)  

 

where L1>0 is a constant chosen to give a specified in-control ARL.  

 

Kang and Albin (2000) also suggested an R-chart to be used in conjunction with 

this EWMA chart to monitor the variation about the regression line. For the R-chart, they 

plotted the sample ranges Rj=maxi(eij)-mini(eij), j=1, 2,…, on a chart with the following 

control limits: 

             LCL= )( 322 dLd −σ  and  UCL= )( 322 dLd +σ ,                                    (2.25)  

 

where L2 >0 is a constant selected to produce a specified in-control ARL, and d2 and d3 

are constants depending on the sample size n. Ryan (2000) and Montgomery(2001), for 

example, provide tables for the values of  d2 and d3 corresponding to different values of 

the sample size n. A signal is given whenever one of the two charts produces an out-of-

control signal. A disadvantage of the R-chart approach, however, is that if n <7 there is 

no lower control limit for the R-chart, and consequently one cannot detect decreases in 

the process variance without using a runs rule.  

         

If the sample sizes are not the same for all samples, one can determine the control 

limits of the EWMA chart and R-chart corresponding to a specified overall in-control 

ARL using simulation.  
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Kang and Albin (2000) recommended using this EWMA approach in Phase I, 

substituting the values of the unknown parameters by their estimates. However, it is not 

recommended using this method in Phase I for two reasons.  First, EWMA charts are 

recommended in Phase II because of their power in detecting sustained shifts in 

parameters and their quick detection of small-to-moderate process shifts compared to 

Shewhart-type control charts. However, quick detection is not an issue in Phase I since 

we have access to a fixed set of historical data. Second, in applying an EWMA chart in 

Phase I, several samples could be contributing to any out-of-control signal.  Therefore, it 

is not clearly defined how to identify and delete the out-of-control regression lines to 

achieve stability in the process before estimating the in-control regression parameters. 

 

2.B.2  Kim et al.’s (2003) Phase II Approach 

 

Kim et al. (2003) proposed another method for monitoring a Phase II linear 

profile process assuming known parameter values. Their idea was to code the X-values 

within each sample as described in Section 2.A.2. Since coding the X-values this way 

leads to independent regression estimators, Kim et al. (2003) recommended monitoring 

the two regression coefficients using separate EWMA charts.  They also recommended 

replacing the R-chart of Kang and Albin (2000) by EWMA charts for monitoring the 

process standard deviation, including one proposed by Crowder and Hamilton (1992).  A 

signal is produced as soon as any one of the three EWMA charts for the Y-intercept, the 

slope, and the variation about the regression line produces an out-of-control signal.  

 

The EWMA chart statistics for monitoring the Y-intercept B0 used by Kim et al. 

(2003) are 

                   EWMAI(j)=θ jb0 +(1- θ)EWMAI(j-1),                                              (2.26)                               

 

where 0< θ≤ 1 is a smoothing constant and EWMAI(0)=B0. An out-of-control signal is 

given by this chart as soon as the EWMAI statistic crosses the control limits 

            LCL= )2(/0 θθσ −− nLB I  and  UCL= )2(/0 θθσ −+ nLB I ,       (2.27)                     
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where LI >0 is a constant selected to produce a specified in-control ARL. The EWMA 

statistics for monitoring the slope B1 are given by 

                             EWMAS(j)=θ jb1 +(1- θ)EWMAS(j-1),                                   (2.28)  

 

where 0< θ≤ 1 is again a smoothing constant and EWMAS(0)=B1. The control limits for 

the slope chart are given by 

               LCL= )2(/1 θθσ −− nLB S  and  UCL= )2(/1 θθσ −+ nLB S ,    (2.29)  

 

where LS >0 is a constant chosen to produce a specified in-control ARL.  Finally, to 

monitor the process variance, Kim et al. (2003) proposed an EWMA chart based on the 

approach of Crowder and Hamilton (1992). The EWMA statistics for monitoring 2σ  are 

           EWMAE(j)=max{θ(ln MSEj) + (1– θ)EWMAE(j–1), ln 2
0σ },                   (2.30)  

 

where 0< θ≤ 1 is again a smoothing constant and EWMAE(0)= ln 2
0σ . Here 2

0σ  is the in-

control value of the process variance 2σ . The control limit for detecting increases in the 

process variance used by Kim et al. (2003) is 

                                 UCL= ln 2
0σ +LE [θ Var (ln MSEj)/(2– θ)] 2/1 ,                 (2.31)  

 

where the multiplier LE >0 is chosen to produce a specified in-control ARL and  

              Var (ln MSEj) 532 )2(15
16

)2(3
4

)2(
2

2
2

−
−

−
+

−
+

−
≈

nnnn
.          (2.32) 

 

Kim et al. (2003) compared their proposed EWMA charts method to the methods 

of Kang and Albin (2000) through simulation. They found that their proposed method is 

more effective than the competing methods in detecting sustained shifts in a process 

parameter. It is clear that their method also provides easier interpretation of an out-of-

control signal than the Kang and Albin’s (2000) methods, since each parameter in the 

model is monitored using a separate chart using their proposed approach.    
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2.C  Model Assumptions 

 

The normality assumption for the models in Equations (2.1) and (2.20) is required 

for determining the statistical performance of any of the Phase I and Phase II proposed 

methods. For example, the simulation study reported in Chapter 3 shows that departures 

from this assumption can affect the statistical performance of all of the Phase I methods. 

In particular, the false alarm rate can increase dramatically.  Thus, it is necessary to test 

for the appropriateness of the normality assumption before applying a Phase I or Phase II 

method. There are many statistical methods for checking the normality of the error terms, 

as described in Neter et al. (1990, chap. 4) and Ryan (1997, pp. 52-53).   

 

Also, departures from linearity affect the performance of the proposed methods. 

In particular, the control chart for the variance may signal instability in the process 

variance due to a lack-of-fit affecting the regression model. Therefore, it is imperative to 

check for the linearity of the m regression lines before applying a Phase I or Phase II 

method. Neter et al. (1990, p. 131), for example, described a lack-of-fit test appropriate 

for the case when there are replications at one or more X-levels. Also, see Burn and Ryan 

(1983) for a lack-of-fit test suitable for the case when no replications are available.  
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Chapter 3:  Performance Comparisons for Some Phase I Approaches 
 

This chapter presents simulation results that compare the performance of some of 

the recommended Phase I approaches in terms of the overall probabilities of a signal. 

Also this chapter illustrates the use of these methods using a real data set from a 

calibration application presented in Mestek et al. (1994). 

 

3.A  Performance Comparisons 

 

As mentioned in Chapter 1, there have been several sets of recommendations for 

the Phase I analysis of linear profile data sets. However, no performance comparisons 

study has been conducted to determine the most appropriate and effective approaches. In 

this chapter I use simulation to investigate the performance of four control chart methods 

for monitoring linear profile processes in Phase I in terms of the overall probability of a 

signal. These methods are Method A: the T2 control chart proposed by Stover and Brill 

(1998), Method B: the T2 control chart proposed by Kang and Albin (2000), Method C: 

the three Shewhart-type control charts proposed by Kim et al. (2003), and Method D: the 

proposed method of using the global F-test based on the statistic in Equation (2.19) in 

conjunction with the control chart with control limits in Equation (2.15) for monitoring 

the error term variance.  

 

In this simulation the underlying in-control model with A0=0 and A1=1 was 

considered, i.e., ijiij XY ε+= , i = 1, 2, …, n, where the ijε ’s are i.i.d. N(0, 1) random 

variables. The fixed X-values of 0(0.2)1.8 were used in this simulation (n=10, X =0.9, 

and 3.3=XXS ). Also, the numbers of samples m=5, 20, 40, and 60 were used in this 

simulation. For one case considered in these simulations the fixed X-values were used 

twice to give a linear profile model with n=20, and in another case they were used three 

times to give a linear profile model with n=30. Also, in some cases considered in these 

simulations different sets of the fixed X-values were used. 
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3.A.1  Estimation of False Alarm Probabilities 

 

First, the control limit (limits) for each method was (were) set based on a nominal 

false alarm probability of m αα −−= 111  to give a nominal overall false alarm 

probability of α = 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 045, 0.05, or 0.1. Equations 

(2.8) and (2.10) were used to determine the UCL based on a nominal false alarm 

probability of 1α  for Method A and Method B, respectively. For Method C, Equations 

(2.12), (2.13), and (2.15)  were used to determine the control limits of the three Shewhart 

control charts for the Y-intercept, slope, and error term variance, respectively. The control 

limits for each chart were set based on a false alarm probability of 3
12 11 αα −−= . For 

Method D, the global F-test was performed at a significance level of αα −−= 113  and 

the control limits for the chart for monitoring the error term variance were set based on a 

false alarm probability of m
34

11 αα −−= . 

 

Tables 3.1-3.4 give the overall false alarm probabilities when m=5, 20, 40, and 

60, respectively. For these tables, the sample size n=10 was used. The first columns of 

these tables give the desired nominal overall false alarm probabilities. The following four 

columns in each table give the simulated overall false alarm probabilities when applying 

Methods A, B, C, and D, respectively. Each of these estimates was obtained 

independently from 1,000,000 Phase I simulations. As shown in Tables 3.1-3.4, there is 

no practical difference between the simulated and nominal overall false alarm 

probabilities for all values of m considered in these simulations.  

 

Tables 3.5-3.6 give the overall false alarm probabilities when n=20 and 30, 

respectively. The number of samples m=20 was used to obtain these tables. Again, as 

shown in both tables, there is no practical difference between the simulated and nominal 

overall false alarm probabilities.  
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For Tables 3.7-3.8, different sets of the fixed X-values from that considered for 

Tables 3.1-3.6 were used to simulate the overall false alarm probabilities. The fixed X-

values of –30, –23, –12, –4, 0, 3, 10, 20, 25, and 35 were used to estimate the overall 

false alarm probabilities in Table 3.7, while the fixed X-values of –600, –450, –380,        

–260, –100, 0, 90, 210, 400, and 500 were used to estimate those in Table 3.8. Unlike the 

X-values used to estimate the overall false alarm probabilities in Tables 3.1-3.6, the X-

values used in these two sets are unequally spaced.  Again, there is no practical difference 

between the simulated and nominal overall false alarm probabilities when both sets were 

used as shown in Tables 3.7-3.8. 

 

 

 
 

Table 3.1: Overall false alarm probabilities: Nominal vs. Simulated (m=5, n=10).      
 

 

 

 

 

 

 

 

 

 

 
      

 

                  

 

 

 

 

 

 Simulated 

Nominal Method A Method B Method C Method D 
0.010 0.0098 0.0096 0.0097 0.0097 

0.015 0.0150 0.0144 0.0146 0.0148 

0.020 0.0200 0.0192 0.0195 0.0197 

0.025 0.0252 0.0241 0.0244 0.0251 

0.030 0.0300 0.0286 0.0295 0.0299 

0.035 0.0350 0.0332 0.0341 0.0351 

0.040 0.0406 0.0372 0.0383 0.0398 

0.045 0.0453 0.0424 0.0434 0.0443 

0.050 0.0502 0.0466 0.0477 0.0493 

         0.100       0.1013        0.0920        0.0951        0.0992 
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Table 3.2: Overall false alarm probabilities: Nominal vs. Simulated (m=20, n=10).      
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Table 3.3: Overall false alarm probabilities: Nominal vs. Simulated (m=40, n=10).      
 

 

 

 

 

 

 

 

 

 

 
      

 

                  

Simulated 

Nominal Method A Method B Method C Method D 
0.010 0.0099 0.0098 0.0099 0.0100 

0.015 0.0150 0.0149 0.0150 0.0151 

0.020 0.0201 0.0200 0.0200 0.0201 

0.025 0.0251 0.0244 0.0248 0.0249 

0.030 0.0304 0.0297 0.0299 0.0299 

0.035 0.0353 0.0347 0.0348 0.0349 

0.040 0.0402 0.0395 0.0401 0.0400 

0.045 0.0457 0.0447 0.0451 0.0451 

0.050 0.0507 0.0496 0.0500 0.0500 

         0.100 0.1030 0.0975 0.0986 0.0989 

Simulated 

Nominal Method A Method B Method C Method D 
0.010 0.0097 0.0101 0.0099 0.0099 

0.015 0.0144 0.0147 0.0143 0.0144 

0.020 0.0210 0.0199 0.0203 0.0202 

0.025 0.0248 0.0257 0.0261 0.0253 

0.030 0.0300 0.0298 0.0299 0.0299 

0.035 0.0342 0.0350 0.0343 0.0348 

0.040 0.0407 0.0396 0.0404 0.0401 

0.045 0.0458 0.0461 0.0460 0.0457 

0.050 0.0521 0.0498 0.0503 0.0501 

         0.100 0.1024 0.0986 0.0992 0.0998 
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Table 3.4: Overall false alarm probabilities: Nominal vs. Simulated (m=60, n=10).      
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Table 3.5: Overall false alarm probabilities: Nominal vs. Simulated (m=20, n=20).      
 

 

 

 

 

 

 

 

 

 

 
      

 

Simulated 

Nominal Method A Method B Method C Method D 
0.010 0.0100 0.0097 0.0099 0.0100 

0.015 0.0145 0.0150 0.0149 0.0150 

0.020 0.0197 0.0192 0.0192 0.0195 

0.025 0.0257 0.0254 0.0252 0.0251 

0.030 0.0305 0.0301 0.0301 0.0300 

0.035 0.0352 0.0344 0.0349 0.0349 

0.040 0.0401 0.0398 0.0399 0.0399 

0.045 0.0450 0.0447 0.0455 0.0452 

0.050 0.0512 0.0507 0.0504 0.0502 

         0.100 0.1040 0.0984 0.0983 0.0992 

Simulated 

Nominal Method A Method B Method C Method D 
0.010 0.0101 0.0103 0.0106 0.0101 

0.015 0.0149 0.0141 0.0149 0.0149 

0.020 0.0196 0.0189 0.0195 0.0197 

0.025 0.0258 0.0250 0.0250 0.0250 

0.030 0.0304 0.0288 0.0301 0.0300 

0.035 0.0347 0.0341 0.0342 0.0346 

0.040 0.0410 0.0395 0.0399 0.0398 

0.045 0.0468 0.0453 0.0458 0.0452 

0.050 0.0517 0.0497 0.0497 0.0498 

         0.100 0.1016 0.0993 0.0990 0.0997 
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Table 3.6: Overall false alarm probabilities: Nominal vs. Simulated (m=20, n=30).      
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

             Table 3.7: Overall false alarm probabilities: Nominal vs. Simulated (m=20 and X= –30, –23, –

12, –4, 0, 3, 10, 20, 25, and 35).      
 

 

 

 

 

 

 

 

 

 

 
      

 

                  

Simulated 

Nominal Method A Method B Method C Method D 
0.010 0.0101 0.0093 0.0101 0.0100 

0.015 0.0154 0.0152 0.0152 0.0151 

0.020 0.0201 0.0199 0.0196 0.0198 

0.025 0.0258 0.0254 0.0246 0.0248 

0.030 0.0295 0.0287 0.0297 0.0299 

0.035 0.0357 0.0342 0.0343 0.0344 

0.040 0.0401 0.0389 0.0395 0.0397 

0.045 0.0460 0.0453 0.0456 0.0455 

0.050 0.0504 0.0491 0.0491 0.0496 

         0.100 0.1050 0.1000 0.0997 0.0998 

  Simulated 

Nominal Method A Method B Method C Method D 
0.010 0.0100 0.0095 0.0098 0.0100 

0.015 0.0154 0.0149 0.0146 0.0149 

0.020 0.0209 0.0204 0.0194 0.0197 

0.025 0.0249 0.0250 0.0254 0.0248 

0.030 0.0302 0.0304 0.0308 0.0301 

0.035 0.0356 0.0349 0.0341 0.0348 

0.040 0.0394 0.0399 0.0403 0.0401 

0.045 0.0455 0.0447 0.0452 0.0452 

0.050 0.0514 0.0495 0.0492 0.0496 

         0.100 0.1062 0.0989 0.0998 0.0999 
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             Table 3.8: Overall false alarm probabilities: Nominal vs. Simulated (m=20 and X=–600, –450, 

–380, –260, –100, 0, 90, 210, 400, and 500).      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In general, for all the cases considered in these simulations there was no practical 

difference between the simulated and nominal overall false alarm probabilities. 

Therefore, the dependencies of the control chart statistics for the methods have no 

practical effect on one’s use of the marginal distribution (distributions) to approximate 

closely the overall false alarm probabilities. 

 

3.A.2  Estimation of Out-of-Control Probabilities of Signal 

 

This section compares the performance of the competing methods in terms of the 

overall probabilities of an out-of-control signal indicating instability when there were 

shifts in model parameters. The fixed X-values of 0(0.2)1.8 were first considered in linear 

profile data sets with number of samples m=20 or 60.  The types of shifts considered in 

this simulation are fixed shifts in k out of the m individual model parameters, where k =1, 

Simulated 

Nominal Method A Method B Method C Method D 
0.010 0.0103 0.0100 0.0102 0.0101 

0.015 0.0150 0.0150 0.0143 0.0149 

0.020 0.0197 0.0191 0.0200 0.0201 

0.025 0.0252 0.0250 0.0250 0.0251 

0.030 0.0316 0.0304 0.0303 0.0301 

0.035 0.0343 0.0345 0.0354 0.0352 

0.040 0.0427 0.0390 0.0406 0.0407 

0.045 0.0456 0.0438 0.0443 0.0445 

0.050 0.0511 0.0498 0.0510 0.0502 

         0.100 0.1037 0.0983 0.1005 0.1001 
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2, 5, or 10 if m=20 and k =1, 3, 15, or 20 if m=60. The locations of the shifts do not affect 

the performance of the methods.   

 

Four different types of shifts were considered in the model parameters. These 

corresponded to shifts in the Y-intercept, in the slope under the model in Equation (2.1), 

in the slope under the model in Equation (2.11), and in the process standard deviation. 

Shifts in the intercept are measured in units of nσ , shifts in the slopes are measured 

in units of XXSσ , and shifts in the process standard deviation are measured as 

multiples of σ . 

 

 In some performance comparisons considered in these simulations with m=20, 

the fixed X-values were used twice to give a linear profile model with n=20. Also, in 

some performance comparisons considered in these simulations with m=20, the fixed X-

values of –30, –23, –12, –4, 0, 3, 10, 20, 25, and 35 were used. 

 

For Methods A and B, if m=20 and n=10, the upper control limits were set based 

on a false alarm probability of 1α =0.002039 to produce a nominal overall false alarm 

probability of α =0.04. Thus, in this case, for Method A we have UCL=9.34182 and for 

Method B we have UCL=12.8830.  For Method C, the control limits of each control chart 

were set based on a false alarm probability of 2α = 0.00068, so that the overall false 

alarm probability produced by this method was α =0.04. The critical value corresponding 

to the 99.966th percentile of the t-distribution required to compute the control limits in 

Equations (2.12) and (2.13) is 3.465.  Also, the control limits in Equation (2.15) for 

monitoring the error term variance were LCL=0.07871 and UCL=3.8853. For Method D, 

the control limits for the chart for monitoring the error term variance were LCL=0.08776 

and UCL=3.73678. These limits were determined based on a false alarm probability of 

4α = 0.00102. The global F-test was performed at a significance level of 3α =0.0202041. 

The 99.898th percentile of the F-distribution used to test the equality of all the regression 

lines is 1.6281492. Thus, the overall false alarm probability corresponding to Method D 

was also α = 0.04. Table 3.9 shows the different false alarm probabilities, percentiles, 
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and control limits used for each Phase I method for the different cases considered in the 

performance comparisons.  

 
Table 3.9: False alarm probabilities, percentiles, and control limits used for the different cases 
considered in the performance comparisons. 

  

(m=20, n=10) 

 

(m=20, n=20) 

 

(m=60, n=10) 

       
False alarm  
probabilities 

 
α =0.04 

1α =0.002039 

2α = 0.00068 

3α =0.0202041 

4α = 0.00102 
 

 
α =0.04 

1α =0.002039 

2α = 0.00068 

3α =0.0202041 

4α = 0.00102 

 
α =0.04 

1α =0.00068 

2α = 0.000227 

3α =0.0202041 

4α = 0.0003401 

UCL  for Method A 9.341597 9.341597 13.099147 

UCL  for Method B 12.88297 12.606272 14.810329 

Percentile of the t-

distribution required 

for Method C 

 

 

3.4652442 

 

3.4272914 

 

3.715389 

Control limits for the 

variance using Method 

C 

 

LCL=0.0787074

UCL=3.885273 

LCL=0.2296672 

UCL=2.6444826 

LCL=0.0595421 

UCL=4.048459 

Percentile of the F-

distribution required 

for Method D 

 

 

1.6281492 

 

1.5705054 

 

1.3307411 

Control limits for the 

variance using Method 

D 

 

LCL=0.0877562

UCL=3.736782 

LCL=0.2432506 

UCL=2.5691832 

LCL=0.0662504 

UCL=3.9172931 
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Figure 3.1-3.4 show the simulated overall probabilities of an out-of-control signal 

for shifts in the regression parameters when m=20 and X=0(0.2)1.8. The overall 

probabilities of out-of-control signals for shifts in the Y-intercept from 0A  to 

0A nσλ+  are shown in Figure 3.1. These estimates were obtained from 100,000 

simulations for λ = 0.5(0.5) 5. As shown in Figure 3.1, the F-test method, Method D, is 

much better than the competing methods for detecting shifts in the Y-intercept when k=5 

and k=10. However, both Methods B and C give better results for k=1 and k=2.  Note that 

Method B performs uniformly slightly better than Method C over the entire range 

considered for Y-intercept shifts.  For k=1, Method D has the worst performance. 

 

Another important observation from Figure 3.1 is that Method A is insensitive to 

shifts in the Y-intercept. Except for k=1 and k=2, the probability of an out-of-control 

signal produced by this method slightly decreases with increases in λ .  Overall, Method 

A performs very poorly. Similar results were obtained in other simulation studies 

conducted by Sullivan and Woodall (1996a) and Vargas (2003). They found that the T2 

control chart for individual multivariate observations when estimating the population 

covariance matrix with the usual pooled sample covariance matrix is not effective in 

detecting a sustained shift in the mean vector. They also mentioned that in some cases the 

probability of an out-of-control signal produced by this method decreases with 

increasingly severe shifts, as seen in the current simulation. They stated that the reason 

for these results is that the population covariance matrix is poorly estimated by the pooled 

sample covariance matrix when the mean vector is not stable.  

 

Figure 3.2 shows the simulated overall probabilities of an out-of-control signal for 

different shifts in the slope under the model in Equation (2.1) from 1A  to 

XXSA σβ+1 . The same values for β as those considered for λ  were used in this 

simulation. For this type of shift, Method D performs uniformly better than the 

competing methods for k= 10 and k = 5, while both Methods B and C give better results 

for k = 2 and k = 1.  Also in this case Method B performs uniformly better than Method C 

over the entire range considered for slope shifts. Again, Method A has the worst 
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performance for all values of k considered except for k = 1. Method D has the worst 

performance when k=1. 

 

Figure 3.3 shows the simulated overall probabilities of an out-of-control signal for 

shifts in the slope under the model in Equation (2.11) from 1B  to XXSB σδ+1 , for 

the same values for δ  as those considered earlier for λ and β . This illustrates much 

better performance of Method D unless k=1 or 2. Also for this type of shift, Method B 

performs slightly better than Method C and Method A again has very poor performance. 

 

Finally, Figure 3.4 presents the simulated overall probabilities of an out-of-control 

signal for different shifts in the process standard deviation from σ  to γσ , γ = 1.2(0.2) 3.  

As shown in Figure 3.4, Method D and Method C perform much better than Methods A 

and B.  Method C and Method D have very similar performance for all values of k 

considered.  

 

Contrary to its good performance under slope and Y-intercept shifts, Method B 

has the worst performance among the competing methods under process standard 

deviation shifts, especially for large shifts. One could modify Method B by adding a 

univariate control chart for monitoring the standard deviation in conjunction with the T2 

control chart based on statistics in Equation (2.9) in order to increase its sensitivity to 

standard deviation shifts. However, in this case its performance in detecting slope and Y-

intercept shifts would diminish because of the increased control limit required to maintain 

the same overall probability of a false alarm.  In fact, it is expected that in this case 

Method C might give uniformly better results. Method C has a strong advantage over 

Method B in terms of interpretability.  
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Figure 3.1: Probability of out-of-control signal under intercept shifts from 0A  to nA σλ+0  

(m=20 and X=0(0.2)1.8).         
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Figure 3.2: Probability of out-of-control signal under slope shifts from 1A  to xxSA σβ+1  

(m=20 and X=0(0.2)1.8).          
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Figure 3.3: Probability of out-of-control signal under slope shifts from 1B  to xxSB σδ+1  (m=20 

and X=0(0.2)1.8).                               

            

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

δ

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

A B C D

a) k =10

 

          

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

δ

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

A B C D

b) k =5

                                                      

             

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

δ

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

A B C D

c) k =2

 

          

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

δ

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

A B C D

d) k =1

 



 42

Figure 3.4: Probability of out-of-control signal under standard deviation shifts from σ  to γσ  (m=20 

and X=0(0.2)1.8).         
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Figures 3.5-3.8 show the simulated overall probabilities of an out-of-control 

signal for shifts in the Y-intercept, slope under the model in Equation (2.1), slope under 

the model in Equation (2.11), and  process standard deviation, respectively, when m=60 

and X=0(0.2)1.8. Also, Figures 3.9-3.12 show these probabilities when m=20 and 

X=0(0.2)1.8 were used twice within each sample to give a linear profile model with n=20. 

Finally Figures 3.13-3.16 show these probabilities when m=20 and X= –30, –23, –12, –4, 

0, 3, 10, 20, 25, and 35 were used.  

 

Inspection of Figures 3.5-3.16 show that the overall probability of an out-of-

control signal corresponding to a specified shift in a process parameter increases as m or 

n increases. For all the cases considered in Figures 3.5-3.16, Method D is much better 

than the competing methods for detecting shifts in the Y-intercept and slope affecting 

much of the Phase I data. Both Methods B and C, however, give better results for shifts 

affecting only a few samples. For k=1 and m=20 or 60, Method D has the worst 

performance. Method A has very poor performance except for k=1. Under process 

standard deviation shifts, Method B has the worst performance among the competing 

methods. Method C and D have the best performance in detecting standard deviation 

shifts. 

 

In general, these simulation studies indicate that Method C and Method D have 

the best overall performance in detecting shifts in a process parameter. Under a parameter 

shift affecting much of the Phase I data, Method D performs uniformly better than the 

competing methods. Methods B and C have roughly similar performance in detecting 

shifts in the Y-intercept and in the slope under both models in Equations (2.1) and (2.11). 

However, Method C has greater statistical power in detecting shifts in the process 

standard deviation. Method A has very poor performance in detecting shifts in any 

process parameter.     
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Figure 3.5: Probability of out-of-control signal under intercept shifts from 0A  to nA σλ+0  

(m=60 and X=0(0.2)1.8).         
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Figure 3.6: Probability of out-of-control signal under slope shifts from 1A  to xxSA σβ+1  

(m=60 and X=0(0.2)1.8).          

        

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

A B C D

a) k =20

 

        

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

A B C D

b) k =15

 

        

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

A B C D

c) k =3

 

        

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

A B C D

d) k =1

 



 46

Figure 3.7: Probability of out-of-control signal under slope shifts from 1B  to xxSB σδ+1  (m=60 

and X=0(0.2)1.8).                               
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Figure 3.8: Probability of out-of-control signal under standard deviation shifts from σ  to γσ  (m=60 

and X=0(0.2)1.8).         
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Figure 3.9: Probability of out-of-control signal under intercept shifts from 0A  to nA σλ+0  

(m=20 and the values of X=0(0.2)1.8 are used twice).         
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Figure 3.10: Probability of out-of-control signal under slope shifts from 1A  to xxSA σβ+1  

(m=20 and the values of X=0(0.2)1.8 are used twice).          

        

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

A B C D

a) k =10

 

        

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

A B C D

b) k =5

 

        

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

A B C D

c) k =2

 

        

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

A B C D

d) k =1

 



 50

Figure 3.11: Probability of out-of-control signal under slope shifts from 1B  to xxSB σδ+1  

(m=20 and the values of X=0(0.2)1.8 are used twice).                               
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Figure 3.12: Probability of out-of-control signal under standard deviation shifts from σ  to γσ  

(m=20 and the values of X=0(0.2)1.8 are used twice).         

       

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

γ

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

A B C D

a) k =10

      

        

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

γ

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

A B C D

b) k =5

  

        

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

γ

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

A B C D

c) k =2

 

                   

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

γ

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

A B C D

d) k =1

 



 52

Figure 3.13: Probability of out-of-control signal under intercept shifts from 0A  to nA σλ+0  

(m=20 and X= –30, –23, –12, –4, 0, 3, 10,  20, 25, and 35).         
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Figure 3.14: Probability of out-of-control signal under slope shifts from 1A  to xxSA σβ+1  

(m=20 and X= –30, –23, –12, –4, 0, 3, 10,  20, 25, and 35).          
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Figure 3.15: Probability of out-of-control signal under slope shifts from 1B  to xxSB σδ+1  

(m=20 and X= –30, –23, –12, –4, 0, 3, 10,  20, 25, and 35).                               
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Figure 3.16: Probability of out-of-control signal under standard deviation shifts from σ  to γσ  

(m=20 and X= –30, –23, –12, –4, 0, 3, 10,  20, 25, and 35).         
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3.A.3  Violations of the Normality Assumption 

 

The normality assumption for the linear profile model in Equation (2.1) is 

required for determining the statistical performance of any of the proposed Phase I 

methods. Tables 3.10-3.14 show the overall false alarm probabilities produced by the 

competing methods, assuming that the ijε ’s are i.i.d. double exponential random variables 

with mean 0 and variance 1, double exponential random variables with mean 0 and 

variance 2, exponential random variables with mean 1, t-distributed random variables 

with 3 degrees of freedom, and t-distributed random variables with 5 degrees of freedom, 

respectively. For these tables, the number of samples m=20 and the fixed X-

values=0(0.2)1.8 were used. As shown in these tables, departures from the normality 

assumption can greatly affect the statistical performance of all of the Phase I methods. 

The false alarm rate can increase dramatically if this assumption is violated.  Thus, it is 

strongly recommended that a test be carried out for the appropriateness of the normality 

assumption before applying a Phase I method. As mentioned in Chapter 2, there are many 

statistical methods for checking the normality of the error terms; see, for example, Neter 

et al. (1990, chap. 4) and Ryan (1997, pp. 52-53).   

 
 

Table 3.10: Overall false alarm probabilities when the ijε ’s are i.i.d. double exponential random 

variables with mean 0 and variance 1.      

 

 

 

 

 

 

 

 

 

 

    Simulated 

Nominal A B C D 
0.01 0.3128 0.2835 0.5706 0.1695 
0.02 0.5014 0.4329 0.7354 0.2231 
0.03 0.645 0.5492 0.8207 0.2815 
0.04 0.7571 0.64 0.8856 0.3165 
0.05 0.8233 0.6946 0.9116 0.3522 
0.10 0.9819 0.8821 0.9856 0.4732 
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Table 3.11: Overall false alarm probabilities when the ijε ’s are i.i.d. double exponential random 

variables with mean 0 and variance 2.      

 

 

 

 

 

 

 

 
 

Table 3.12: Overall false alarm probabilities when the ijε ’s are i.i.d. exponential random variables 

with mean 1.      

 

 

 

 

 

 

 
 

 

Table 3.13: Overall false alarm probabilities when the ijε ’s are i.i.d. t-distributed random variables 

with 3 degrees of freedom.      

 

 

 

 

 

 

 

 

Simulated 

Nominal A B C D 
0.01 0.3091 0.2891 0.5828 0.1653 
0.015 0.4178 0.3655 0.6612 0.1852 
0.03 0.6393 0.5475 0.8203 0.2831 
0.04 0.7531 0.6312 0.8834 0.3102 
0.05 0.8272 0.7004 0.9146 0.3451 
0.10 0.9774 0.8857 0.9827 0.4731 

Simulated 

Nominal A B C D 
0.01 0.4128 0.3698 0.7801 0.3671 
0.02 0.5794 0.499 0.8863 0.4482 
0.03 0.7118 0.5918 0.9317 0.5065 
0.04 0.7811 0.6642 0.9562 0.553 
0.05 0.8562 0.7192 0.9675 0.5839 
0.10 0.9797 0.8819 0.994 0.7012 

Simulated 

Nominal A B C D 
0.01 0.4962 0.442 0.8215 0.5354 
0.02 0.6714 0.5753 0.9016 0.5928 
0.03 0.7792 0.6662 0.9403 0.6348 
0.04 0.8495 0.7307 0.9585 0.6651 
0.05 0.8983 0.7792 0.9721 0.6941 
0.10 0.9904 0.9151 0.9954 0.767 
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Table 3.14: Overall false alarm probabilities when the ijε ’s are i.i.d. t-distributed random variables 

with 5 degrees of freedom. 

 

 

 

 

 

 

 

 
 

3.B  Calibration Example 

 

This section presents a Phase I analysis of the calibration data set presented by 

Mestek et al. (1994). Their purpose was to study the stability of the calibration curve in 

the photometric determination of +3Fe with sulfosalicylic acid. The data set for this 

example is in Table 3.15. The example includes twenty-two calibration curves. Each 

calibration curve was set up by the following procedure. Five volumes of 0, 1, 2, 3 and 4 

mL of 50 mL/gµ +3Fe solution were diluted with water to 25 mL. Then, for each volume, 

2.5 mL of a 20% solution of sulfosalicylic acid and 1.5 mL of a concentrated solution of 

ammonia were added to the diluted solution. Each volume was replicated twice, so that 

each calibration curve consists of 10 points. For each volume, the absorbance of the 

solution at 420 nm was measured on a Spekol 11 using 1 cm cells.  

 

The first three columns of Table 3.16 contain the least squares estimates for the 

intercept, slope, and sample error variance for each calibration curve. The intercept and 

slope averages are 0a = –0.456 and 1a = 2.047, respectively, while the estimate of the 

error variance is MSE= 1.6114.  

 

Before applying the proposed Phase I methods, some diagnostics to check for the 

appropriateness of the normality assumption and the linearity of the relationship between 

Simulated 

Nominal A B C D 
0.01 0.3161 0.288 0.547 0.2055 
0.02 0.5051 0.4408 0.6908 0.2604 
0.03 0.6318 0.5392 0.7711 0.2881 
0.04 0.741 0.6239 0.8416 0.3249 
0.05 0.8163 0.6908 0.8865 0.3469 
0.10 0.9801 0.8865 0.9715 0.4537 
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the response and the independent variable for each of the samples were obtained. These 

suggested the reasonableness of the normality assumption of the error terms. The last two 

columns of Table 3.16 contain the F-values and the p-values, respectively, of the lack-of-

fit tests. The p-values suggest that there is no significant evidence of departures from 

linearity.             

 

Table 3.15: Example Data with the response measured according to each +3Fe level (from Mestek et al. (1994)). 

Sample No. 0 gµ +3Fe  50 gµ +3Fe  100 gµ +3Fe 150 gµ +3Fe  200 gµ +3Fe

1 1, 3 104, 104 206, 206 307, 308 409, 412 

2 4, 2 104, 103 206, 204 308, 307 412, 413 

3 3, 2 105, 104 207, 207 311, 309 414, 411 

4 4, 2 104, 104 206, 207 308, 312 411, 413 

5 -9, -8 92, 95 195, 197 296, 299 397, 400 

6 3, 3 107, 105 209, 207 311, 308 412, 410 

7 3, 2 104, 105 207, 208 311, 308 414, 410 

8 2, 2 105, 104 208, 208 310, 309 412, 412 

9 -6, -7 95, 94 196, 197 297, 300 401, 401 

10 2, 4 104, 105 206, 207 311, 310 413, 412 

11 1, 2 103, 104 205, 206 309, 307 412, 411 

12 -7, -7 94, 96 198, 199 298, 301 404, 402 

13 5, 7 105, 107 210, 208 313, 315 415, 415 

14 3, 2 106, 104 208, 207 311, 308 411, 414 

15 -8, -6 94, 95 196, 199 299, 302 400, 404 

16 4, 6 104, 106 207, 210 311, 310 415, 413 

17 2, 4 105, 106 206, 208 308, 310 410, 413 

18 2, 0 104, 103 206, 206 309, 308 414, 409 

19 0, 1 101, 102 203, 206 305, 307 409, 411 

20 1, 4 104, 106 206, 208 311, 309 410, 414 

21 -9, -10 92, 92 194, 194 298, 297 400, 398 

22 -8, -8 95, 95 195, 199 298, 301 401, 403 
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  Table 3.16: The linear regression results for the 22 samples.             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Having checked the model assumptions, the researcher applied the method of 

Jones and Rice (1992) using a principal component analysis to identify the primary 

patterns of variation among the 22 calibration curves. The first principal component 

accounts for approximately 95% of the total original variation. Figure 3.17 shows the 

three fitted calibration curves corresponding to the minimum, median, and maximum first 

principal component scores. These correspond to Samples 21, 4, and 13, respectively. It 

is clear from Figure 3.17 that these curves differ primarily in the Y-intercept. Therefore, 

one concludes that 95% of the overall variability is due to the variability in the Y-

intercept.  

Sample Intercept Slope MSEj F-value p-value 

1 1.900 2.041 1.000 0.230 0.875 
2 1.700 2.046 2.528 4.480 0.070 
3 2.200 2.051 1.000 0.120 0.943 
4 2.300 2.048 1.960 0.430 0.743 
5 -8.200 2.036 2.190 0.170 0.914 
6 3.600 2.039 1.563 0.310 0.818 
7 2.400 2.048 1.796 0.050 0.985 
8 2.200 2.050 0.325 2.670 0.159 
9 -7.00 2.038 0.922 0.390 0.767 
10 2.400 2.050 0.922 1.420 0.341 
11 1.100 2.049 0.740 0.810 0.539 
12 -7.100 2.049 1.440 0.470 0.715 
13 4.800 2.052 2.592 2.670 0.159 
14 2.500 2.049 1.538 0.050 0.984 
15 -7.300 2.048 2.657 0.150 0.923 
16 3.900 2.047 2.250 1.050 0.446 
17 3.100 2.041 1.440 0.080 0.966 
18 0.900 2.052 1.960 0.020 0.995 
19 -0.200 2.047 1.769 0.800 0.546 
20 2.500 2.048 2.372 0.040 0.990 
21 -9.900 2.045 0.640 1.190 0.401 
22 -7.800 2.049 1.850 0.040 0.988 
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Figure 3.17: Calibration curves corresponding to the minimum, median, and maximum first principal 

component scores.    
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The control chart for Method A, as recommended by Stover and Brill (1998), is 

given in Figure 3.18. The UCL of this chart was determined based on a false alarm 

probability of 1α = 0.00233 to produce an overall false alarm probability of α = 0.05.  

Using Equation (2.8), the UCL of this chart is 9.456. Examination of Figure 3.18 suggests 

that all the calibration curves are in control.  

 

 
                       Figure 3.18: Control chart for Method A.                        
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Figure 3.19 gives a control chart for Method B with UCL=12.552. This UCL was 

calculated using Equation (2.10) based on 1α = 0.00233 to produce an overall false alarm 

probability of α = 0.05. The results obtained by using this method were quite contrary to 

the results obtained from Method A. Figure 3.19 indicates that the calibration curves are 

very unstable. 

 
           Figure 3.19: Control chart for Method B.  
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Figures 3.20, 3.21, and 3.22 give control charts for the process variance, Y-

intercept, and slope, respectively, using Method C. The control limits for the three control 

charts are calculated using Equations (2.16), (2.12), and (2.13), respectively. Each set of 

chart limits was determined based on 2α = 0.00078 to produce an overall false alarm 

probability of α = 0.05. According to the chart in Figure 3.20, the error term variance 

appears stable.  Figure 3.21, however, shows that the intercept is out-of-control. On the 

other hand, the slope, as shown in Figure 3.22, is stable. This result agrees with the result 

obtained from Method B. However, using Method C one can more easily explain out-of-

control signals. The calibration curves are out of control because their intercepts are 

unstable. The importance of this instability would have to be evaluated based on practical 

considerations.  If this variation were considered to be common cause variation, then this 

would affect the determination of appropriate control limits for Phase II.  In particular, it 

would be more appropriate to base the control limits on the average moving range as 

done with the conventional univariate X-chart for individuals data. 
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           Figure 3.20: Method C control chart for the error term variance. 
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            Figure 3.21: Method C control chart for the intercept. 
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             Figure 3.22: Method C control chart for the slope.          
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For Method D, the global F-test was performed based on the statistic in Equation 

(2.19) in conjunction with the third control chart of Method C for monitoring the process 

variance with limits calculated using Equation (2.16). The control limits for this chart 

were set using 4α = 0.001165 and the global F-test was performed at the significance 

level 3α = 0.0253. Therefore, the nominal overall false alarm probability produced by 

Method D is also α = 0.05.  In this case the control chart for monitoring the process 

variance is exactly the same as that of Figure 3.20, but with different control limits 

because of the use of different false alarm probabilities. The new control limits are 

LCL=0.1532 and UCL=5.2718. However, it can be seen that all the sample variance 

values are also within these new control limits. Therefore, one concludes that the error 

term variance is stable.           

 

The F-value for testing the equality of all the regression lines is F = 75.8019 with 

a p-value of 0.00. Therefore, one rejects the null hypothesis that all of the regression 

lines are identical, i.e., the process is out-of-control. For diagnostic purposes, the X-

values were coded and then separate 3-sigma control charts for the Y-intercept and for the 

slope were applied. The 3-sigma control limits for the Y-intercept are 202.99 and 205.4 

while the 3-sigma control limits for the slope are 2.03 and 2.064. All of the slope 

estimates are within these control limits while all of the Y-intercept estimates are outside 

the control limits, except the intercept estimate for sample 19. Hence, one also concludes 

that the process is out-of-control because the intercept is not stable.   

 

In their analysis of this example, Mestek et al. (1994) considered monitoring 

vectors containing the absorbance averages corresponding to the +3Fe volumes. Using a 

pooled sample covariance matrix of vectors containing the absorbance averages, they 

calculated the T2 statistics in Equation (2.5).  They used a T2-distribution with 5 and 22 

degrees of freedom to determine the UCL of this control chart and found that all the 

calibration curves are in-control.  However, as mentioned previously, the T2-distribution 

is not the correct marginal distribution for their T2 statistics.  The correct marginal 

distribution is the beta distribution with parameters 2.5 and 8.  Figure 3.23 shows a 

control chart for their T2 statistics with upper control limits calculated using both the beta 
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and T2-distributions based on a nominal overall false alarm probability of α = 0.05.  As 

shown in Figure 3.23, all the calibration curves appear in-control, regardless of the UCL 

used. 
 

Figure 3.23: Control chart using Mestek et al.’s (1994) T2 approach. The lower UCL is obtained using 

the beta distribution and the higher UCL is obtained using the T2 distribution.      

                    

 
 
 
 
 

 

 

 

 

 

Mestek et al. (1994) treated each sample as a group of two sub-samples, each with 

five observations. In this case, the sample covariance matrix of vectors containing the 

group averages would not be the best estimator of the population covariance matrix. 

Supposing that each sample consists of q sub-samples (each with n observations), a better 

estimator for the population covariance matrix then could be obtained by the pooled 

covariance matrix mm
j jp ∑= =1SS , where jS  is the usual sample covariance matrix for 

group j (usually jS  is called the within-group covariance matrix and pS  is called the 

between groups covariance matrix). It can be shown, see Mason et al. (2001), that      

                    2
jT )1/()()( -1 −−−= mmq jp

T
j yySyy       j=1, 2, …, m,              (3.1)  

 

each have a T2-distribution with n and m(q-1)-n+1 degrees of freedom where 

nj,..,j,jj yyy 21( =y ) is a vector containing the response average values of the j th  group, 

ijy qyq
l ijl∑= =1 , (i=1, 2, …, n), and yijl is the ith response value in the sub-sample l (l=1, 

2, …, q) and group j ( j=1, 2, …, m). Also, )( 21 n,..,, yyy=y  is a vector of the overall 
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response averages, where myy m
j iji ∑= =1 , (i=1, 2, …, n). Using the relationship between 

the T2- and F-distributions, an appropriate UCL for the T2 values in Equation (3.1) is 

                    UCL=  ]1)1([)1( ,1)1(, +−−− +−− nqmFqmn nqmn α .                         (3.2)  

 

Figure 3.24 shows a control chart for the T2 statistics in Equation (3.1). Again, the 

UCL was set based on a nominal overall false alarm probability of α = 0.05. As shown in 

Figure 3.24, the process is not in control. This result shows how the T2 control chart 

approach proposed by Mestek et al. (1994) is sensitive to the method used for estimating 

the population covariance matrix.  Mestek et al.’s (1994) T2 control chart is an ineffective 

approach, in general, because of its use of a poor estimator for the population covariance 

matrix. 
                        

 Figure 3.24: Control chart for the T2 statistics in Equation (3.1). 
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3.C   Summary  

 

Through a simulation study the researcher compared the performance of four 

methods of monitoring linear profiles in Phase I. These are the T2 control chart proposed 

by Stover and Brill (1998) (Method A), the T2 control chart proposed by Kang and Albin 

(2000) (Method B), and the three Shewhart-type control charts proposed by Kim et al. 

(2003) (Method C) and the F-test method (Method D).  Method D is much more effective 
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than the other methods in detecting shifts affecting much of the Phase I data. On the other 

hand, for shifts for the slope and Y-intercept affecting only a few samples of the Phase I 

data, both the Kang and Albin (2000) method and the Kim et al. (2003) method gave 

better results. However, the Kang and Albin (2000) method was shown to be ineffective 

in detecting shifts in the process standard deviation. The Kim et al. (2003) method is 

much more interpretable than the Kang and Albin (2000) method. Departure from 

normality, however, affects the statistical performance of all the Phase I methods as 

shown in the simulation study presented in Section 3.A.3. 

 

Both the simulation study and the calibration example show that the T2 control 

chart proposed by Stover and Brill (1998) is ineffective in detecting shifts in the process 

parameters. As mentioned in Sullivan and Woodall (1996a), the reason is that the 

population covariance matrix can be poorly estimated by the pooled sample covariance 

matrix when applying a T2 control chart with individual vector observations. The same 

conclusion applies to the overparameterized T2 control chart proposed by Mestek et al. 

(1994).  
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Chapter 4:  A Change Point Method Based on Linear Profile Data 

 
As mentioned in Chapter 1, many authors have studied the change point problem 

in different regression models, but under a different sampling framework than that of the 

linear profile data. These authors assumed that either there is a single data set or data are 

obtained sequentially one observation at a time. In the literature, the change point 

problem in a regression model is usually referred to as segmented regression. 

 

A s-segment piecewise simple linear regression model is one given by  

                                iii XAAY ε++= 1101 ,  10 θθ ≤< i   

                                iii XAAY ε++= 1202 ,  21 θθ ≤< i  

                                         . 
                                         . 
                                         .  
                               iissi XAAY ε++= 10 ,   ss i θθ ≤<−1 ,                                          (4.1) 

 

where i=1, 2, …, N and the jθ ’s are the change points between segments (usually 

 00 =θ and  Ns =θ ) and the iε ’s are the error terms. The iε ’s are assumed to be i.i.d N (0, 

 2
jσ ), where  2

jσ is the segment error term variance, where j=1, 2, …, s. The segmented 

regression technique is used to estimate the number of segments s and the locations of the 

change points jθ ’s.  

 

 In the linear profile applications, multiple data sets are collected over time in 

more of a functional data sampling framework. Generally speaking, the sampling 

framework of a linear profile data set is identical to that of a panel data set in the 

econometrics studies. This study proposes a change point method based on the segmented 

regression technique to test the constancy of the profile parameters over time. This 

method can be used to assess the stability of and to detect change points in a Phase I 

simple linear regression profile data set.   
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4.A  A Change Point Approach 

 

In this section the proposed change point method for testing the constancy of the 

regression parameters in a linear profile data set is presented. The observed data are m 

random samples, with each sample consisting of a sequence of nj pairs of observations 

(Xij, Yij), i=1, 2, …, nj, nj > 2,  j=1, 2, …, m. The linear profile model relating the 

explanatory variable X to the response Y is in Equation (2.1) in Chapter 2. It is assumed 

that the ijε ’s are i.i.d. N(0, 2
jσ ) random variables and that the X-values in each sample are 

known constants.  

 

The first step of the proposed change point approach is to combine the m samples of 

profiles into one sample of size N. Then, one applies the segmented simple linear 

regression model in Equation (4.1) to the combined sample. Since in the linear profile 

model we assume that no parameter changes take place within each sample, then the 

change points jθ ’s are restricted to the indices i corresponding to the ends of the profile 

samples, i.e.,  00 =θ , 11 n=θ , 212 nn +=θ ,…, Nm =θ . Hawkins (1976) gave formulas for 

the maximum likelihood estimator (MLE) of the change points of the segmented multiple 

regression model, for both the heteroscedastic and homoscedastic models. In this study, 

only the heteroscedastic model is considered. Hawkins (2001) noted the form of the LRT 

statistic for testing the null hypothesis of a single segment versus the alternative of s 

segments. It can be shown that the LRT statistic used to test the null hypothesis of a 

single segment against the alternative of s=2 segments is 
1mlrt , where   

                 
1mlrt = 2

22
2
11

2 ˆlogˆlogˆlog σσσ NNN −− ,    m1=1, 2, …, m-1,                           (4.2)  

 

and 2σ̂  is the MLE of the error term variance for the regression model fitted for all the m 

samples pooled into one sample of size N, 2
1σ̂  is the MLE of the error term variance for 

the regression model fitted for all the samples prior to m1 pooled into one sample of size 

N1=∑ =

1

1

m

j jn , and 2
2σ̂  is the MLE of the error term variance for the regression model 

fitted for all the samples following m1 pooled into one sample of size N2=N-N1. The LRT 
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statistic in Equation (4.2) is identical to that of Quandt (1958).  

 

The literature of segmented regression includes two important approaches for the 

determination of the appropriate number of change points and the choice of segment 

boundaries. These are the DP algorithm of Hawkins (1976) and the binary segmentation 

approach originating with the work of Vostrikova (1981). Hawkins (2001) stated that the 

binary segmentation approach does not give the optimum splits if there are two or more 

of them. The DP algorithm is arguably much more accurate than the binary segmentation 

algorithm in fitting three or more segments to the data. If all the segment boundaries are 

known a priori, then the LRT statistic used in the binary segmentation procedure and that 

used for fitting s >2 segments in the DP algorithm asymptotically follow a chi-squared 

distributions with 3 and 3s degrees of freedom, respectively. The distribution of the test 

statistic in each approach, however, no longer has a chi-squared distribution if we specify 

the split points by maximizing the LRT statistics. The reason for this, as stated by 

Hawkins (2001), is the failure of the Cramér regularity conditions. Several studies, 

however, showed that accurate bounds for the probability distribution of the test statistic 

used in the binary segmentation procedure can be obtained using the Bonferroni’s 

inequality; see Worsley (1983).  Csörgő and Horvath (1997) derived an asymptotic 

distribution for the square root of this test statistic. On the other hand, no approximations 

or asymptotic distributions are known for the test statistic used in the DP algorithm.  

 

In the proposed change point approach for the analysis of linear profiles one 

applies the binary segmentation procedure to estimate the change points locations and to 

determine the appropriate number of change points. Using this procedure, one obtains the 

1mlrt statistics in Equation (4.2) for all possible values of m1, m1=1, 2, …, m-1 and divides 

each by its expected value under the null hypothesis. The approach signals the presence 

of a change point if the maximum of these statistics exceeds a threshold.  The value of m1 

that maximizes the 
1mlrt  statistic in Equation (4.2) is the MLE of the change point 

location. Then, one splits the data set into two subsets at m1 and applies the same binary 

splitting procedure described above to each subset. This procedure is repeated until no 

evidence of additional change points is given. This proposed change point approach for 
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linear profile data is similar to the proposed change point method of Sullivan and 

Woodall (1996b) to detect sustained step shifts in the process mean and/or variance in a 

Phase I individual univariate observations. This alternative approach not only provides a 

signal that the process is out-of-control in the SPC context, but also provides an estimate 

of when it went out-of-control. This gives it an advantage over competing control chart 

methods. 

 

4.A.1  Factoring the 
1mlrt  Statistic into Different Sources of Variability 

 

The 
1mlrt statistic in Equation (4.2) can be written as  

0121 BBm VARVARVARlrt ++=
σ

,                                                                (4.3)                               

where  

2σVAR = }/)log{( 12 2
2

2
1 NrNrNN NNNN −+ , =

1BVAR )}/(1log{ 1
2

2 1
cdcN B+ ,  

0BVAR = )]}/()[(1log{ 2
21

2
34 10 BB dccdccN +++ , 21 ˆ/ˆ σσ=r , 

0Bd = 12 yy − ,                        

1Bd = )/()/( 1122 xxxyxxxy SSSS − , 2
22

2
111 ˆˆ σσ NNc += , xxxxxx SSSc /212 = , NNNc /213 = , 

and ]/)()({[ 21
2

21
2

12
2

12214 xxxxxxxyxxxyxx SSNSSSSSxxNNc +−=                           

                        ]/))((2[
0211221 xxBxyxy NSdSSxxNN +−− ]}/)([ 222

12
2
2

2
1 0 xxB SNdxxNN −− . 
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N
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N

Ni iixy yxxS
1 22

1
)( , where (xi , yi), i=1, 2, …, N, are N bivariate observations 

resulting from pooling the m samples into one sample. The proof is in Appendix 4.A.  

The expression simplifies considerably if the X-values are the same within each sample 

since c4 = 0.  Using the three factors 
0BVAR , 

1BVAR and 2σ
VAR  one can determine to a 

large extent the relative contributions of the Y-intercept, slope, and variance shifts to the 

statistic used to indicate the presence of a change point.   

 

In the proposed approach, if the value of 2σ
VAR is large we consider this as 
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evidence that the variance is not stable. Since the accuracy of the estimators of the in-

control regression coefficients relies heavily on the stability of the process variance, we 

do not test whether the regression coefficients are constant if the variance is shown to be 

unstable. Furthermore, a large value of 
1BVAR indicates that the regression lines are not 

parallel. In practice, if the regression lines are not parallel, we may not care whether their 

intercepts are equal. The idea of decomposing the LRT statistic into three components 

corresponding to the variance, slope, and intercept changes has been considered by 

several authors; see Gulliksen and Wilks (1950) and Fatti and Hawkins (1986), for 

example. The decomposition in Equation (4.3) is similar in several aspects to that of 

Gulliksen and Wilks (1950). 

 

4.A.2 Expectation of the 
1mlrt  Statistic 

 

The in-control expected value for the 
1mlrt  statistic in Equation (4.2) is not the same 

for all values of m1. For instance, the columns labeled as E(
1mlrt ) in Tables 4.1-4.5 give 

the simulated expected in-control values for the 
1mlrt  statistics for all possible values of 

m1, using 100,000 Phase I data sets generated using the underlying assumed in-control 

model with A0=0 and A1=1, i.e.,  

                               ijiij xy ε+= , i = 1, 2, …, n,  j=1, 2, …,m.  

 

The ijε ’s were assumed to be i.i.d. N(0, 1) random variables. In Tables 4.1-4.3 the fixed 

X-values of 0(0.2)1.8 were used. The number of samples m=5, 20, and 60 were used for 

Tables 4.1, 4.2, and 4.3, respectively. For Table 4.4, the number of samples m=20 was 

used and the fixed X values 0(0.2)1.8 were used twice within each sample to give a linear 

profile model with n=20. For Table 4.5, the fixed X-values of  –30, –23, –12, –4, 0, 3, 10, 

20, 25, and 35 and the number of samples m=20 were used. As shown in these tables, 

E(
1mlrt ) takes its largest values for large or small values of m1.  Thus the Bartlett 

correction is used; that is dividing the 
1mlrt  statistics by a normalizing factor 

1mC  that 

makes the expected values the same for all values of m1. See Kendall and Stuart (1977, p. 
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250), for example. If we let 
1mC = E(

1mlrt ), then the statistics 

                                        
111

/ mmm Clrtlrtc = ,   m1=1, 2, …, m-1,       

                                           

all have an expected value of unity. The values of 
1mC , m1=1, 2, …, m-1 can be 

approximated accurately as described in Section 4.5. Then the threshold for the largest 

adjusted LRT statistic corresponding to a given probability of a Type I error can be 

determined by simulation or approximated as described in Section 4.5. 
 
 
Table 4.1: The simulated and approximate in-control expected values for the 

1mlrt statistic for m=5 
and X=0(0.2)1.8.  

                      
m1 

 

E(
1mlrt ) 

1me  

1 3.560415 3.525048 
2 3.293678 3.293637 
3 3.301961 3.293637 
4 3.55466 3.525048 
5 na na 

 

 

Table 4.2: The simulated and approximate in-control expected values for the 
1mlrt statistic for m=20 

and X=0(0.2)1.8.  
                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

m1 

 

E(
1mlrt ) 

1me  m1 E(
1mlrt ) 

1me  

1 3.542432 3.503238 11 3.069123 3.066866 
2 3.239516 3.234127 12 3.084365 3.069711 
3 3.163807 3.154726 13 3.083078 3.074882 
4 3.126386 3.117358 14 3.094238 3.083189 
5 3.097932 3.096229 15 3.101099 3.096229 
6 3.08461 3.083189 16 3.126618 3.117358 
7 3.084656 3.074882 17 3.159407 3.154726 
8 3.075021 3.069711 18 3.247355 3.234127 
9 3.070753 3.066866 19 3.556583 3.503238 

10 3.070931 3.065956 20 na na 
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Table 4.3: The simulated and approximate in-control expected values for the 
1mlrt statistic for m=60 

and X=0(0.2)1.8.  
                      

m1 E(
1mlrt ) 

1me  m1 E(
1mlrt ) 

1me  m1 E(
1mlrt ) 

1me  
1 3.539928 3.502206 21 3.038497 3.024667 41 3.018862 3.02632 
2 3.233082 3.231937 22 3.042797 3.024012 42 3.020689 3.027352 
3 3.145725 3.151232 23 3.03957 3.023456 43 3.018556 3.028547 
4 3.105426 3.112383 24 3.039444 3.02299 44 3.018076 3.029934 
5 3.088983 3.08956 25 3.033736 3.022607 45 3.022204 3.031549 
6 3.06567 3.074567 26 3.035382 3.022301 46 3.023881 3.033438 
7 3.056832 3.063987 27 3.031145 3.022067 47 3.023671 3.035662 
8 3.042621 3.05614 28 3.028733 3.021902 48 3.024442 3.038303 
9 3.037415 3.050104 29 3.030147 3.021804 49 3.030313 3.041473 

10 3.037544 3.04533 30 3.028767 3.021771 50 3.031396 3.04533 
11 3.03548 3.041473 31 3.024313 3.021804 51 3.037693 3.050104 
12 3.035913 3.038303 32 3.02682 3.021902 52 3.044078 3.05614 
13 3.030463 3.035662 33 3.024366 3.022067 53 3.055019 3.063987 
14 3.032788 3.033438 34 3.021772 3.022301 54 3.068618 3.074567 
15 3.034651 3.031549 35 3.021042 3.022607 55 3.095403 3.08956 
16 3.034299 3.029934 36 3.023053 3.02299 56 3.120024 3.112383 
17 3.028698 3.028547 37 3.026976 3.023456 57 3.152899 3.151232 
18 3.029623 3.027352 38 3.023276 3.024012 58 3.246948 3.231937 
19 3.031837 3.02632 39 3.019105 3.024667 59 3.532738 3.502206 
20 3.03066 3.025431 40 3.022798 3.025431 60 na na 

 
Table 4.4: The simulated and approximate in-control expected values for the 

1mlrt statistic for m=20 
and X=0(0.2)1.8 are used twice.  

                      
m1 

 

E(
1mlrt ) 

1me  m1 E(
1mlrt ) 

1me  

1 3.241877 3.232261 11 3.04568 3.033182 
2 3.117655 3.113077 12 3.043869 3.034577 
3 3.085592 3.075686 13 3.048764 3.037108 
4 3.075676 3.057751 14 3.062193 3.041167 
5 3.067265 3.047516 15 3.076805 3.047516 
6 3.061247 3.041167 16 3.082913 3.057751 
7 3.052074 3.037108 17 3.095536 3.075686 
8 3.054829 3.034577 18 3.134699 3.113077 
9 3.058104 3.033182 19 3.249598 3.232261 

10 3.051691 3.032736 20 na na 
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Table 4.5: The simulated and approximate in-control expected values for the 
1mlrt statistic for m=20 

and X=–30, –23, –12, –4, 0, 3, 10, 20, 25, and 35.  
                      

m1 

 

E(
1mlrt ) 

1me  m1 E(
1mlrt ) 

1me  

1 3.519122 3.503238 11 3.078854 3.066866 
2 3.224922 3.234127 12 3.075374 3.069711 
3 3.145615 3.154726 13 3.079258 3.074882 
4 3.110742 3.117358 14 3.089396 3.083189 
5 3.084703 3.096229 15 3.10254 3.096229 
6 3.077279 3.083189 16 3.119654 3.117358 
7 3.072096 3.074882 17 3.158683 3.154726 
8 3.071678 3.069711 18 3.235525 3.234127 
9 3.072649 3.066866 19 3.540367 3.503238 

10 3.076785 3.065956 20 na na 

 

 

4.B  Performance Comparisons 

 

This section presents simulation results, obtained using Proc IML in SAS 

software, that compare the performance of the proposed change point method (Method 

LRT) to that of the most effective Phase I linear profile control chart approaches. As 

shown in Chapter 3, the most effective Phase I methods are Method C: the Shewhart-type 

control charts proposed by Kim et al. (2003), Method D: The F-test based on the statistic 

in Equation (2.19) in conjunction with the control chart for monitoring the process 

variance using the control limits in Equation (2.15). Each signal probability was 

estimated using 100,000 simulated sets of profile data. The underlying in-control linear 

profile model considered in this study is the same as that considered in Section 4.A.3, i.e., 

ijiij XY ε+= , i = 1, 2, …, nj , j=1, 2, …,m, and the ijε ’s are assumed to be i.i.d.  N(0, 1) 

random variables.  

 

The cases considered in the performance comparisons are as follows. The fixed X-

values of 0(0.2)1.8 were first considered in linear profile data sets with number of 

samples m=20 or 60.  In some performance comparisons considered with m=20, the fixed 
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X-values were used twice within each sample to give a linear profile model with n=20. 

Also, in some performance comparisons considered with m=20, the fixed X-values of –

30, –23, –12, –4, 0, 3, 10, 20, 25, and 35 were used. The decision rule of each method 

was set to produce an overall probability of a Type I error of α =0.04. The different false 

alarm probabilities, percentiles, and control limits used for Method C and Method D are 

shown in Table 3.9 in Chapter 3. In Method LRT, for the case of m=20 and X= 0(0.2)1.8 

the 
1mlrt statistics in Equation (4.2) were divided by the simulated expected values 

E(
1mlrt ) in Table 4.2 to give the 

1mlrtc statistics. In this case, a probability of a Type I 

error of approximately 0.04 corresponds to a threshold of 4.56. For the case of m=60 and 

X= 0(0.2)1.8, the 
1mlrt statistics were divided by E(

1mlrt ) in Table 4.3, to give the 

1mlrtc statistics. A probability of a Type I error of approximately 0.04 corresponds to a 

threshold of 4.94 in this case. Also for the case of m=20 and the values of X= 0(0.2)1.8 

were used twice within each profile, the 
1mlrt statistics were divided by E(

1mlrt ) in Table 

4.4 to obtain the 
1mlrtc statistics. A threshold of 4.52 produced a probability of a Type I 

error of approximately 0.04 in this case. Finally, for the case of m=20 and the fixed X-

values of –30, –23, –12, –4, 0, 3, 10, 20, 25, and 35 were used, the 
1mlrt statistics were 

divided by E(
1mlrt ) in Table 4.5 to obtain the 

1mlrtc statistics. The threshold that 

corresponds to a probability of a Type I error of approximately 0.04 is approximately 

4.55. Each threshold was estimated independently using 100,000 simulations. 

 

The types of shifts investigated in this simulation are sustained step shifts taking 

place after sample k (k<m) for k = 10, 15, 18 and 19 if m=20 or k = 40, 45, 57 and 59 if 

m=60. Figures 4.1-4.4 show the simulated overall probabilities of an out-of-control signal 

for shifts in the Y-intercept, slope under the model in Equation (2.1), slope under the 

model in Equation (2.11), and  process standard deviation, respectively, when m=20 and 

X=0(0.2)1.8. Figures 4.5-4.8 illustrate these probabilities when m=60 and X=0(0.2)1.8.  

Also Figures 4.9-4.12 present these probabilities when m=20 and X=0(0.2)1.8 were used 

twice within each profile. Finally, Figures 4.13-4.16 show these probabilities when m=20 

and X= –30, –23, –12, –4, 0, 3, 10, 20, 25, and 35 were used.  
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As shown in Figures 4.1-4.16, Method LRT has uniformly much better 

performance than the competing methods for shifts in the Y-intercept, slopes, or  process 

standard deviation, when k=10, 15, or 18 and m=20. Similar conclusion was obtained 

when k=40, 45, or 57 and m=60. If the shift affects only the last profile, Method LRT and 

Method C have very similar performance, with Method C performs slightly better for 

very large shifts in the Y-intercept or slope under the model in Equation (2.11). For shifts 

in the process standard deviation affect the last sample, the three methods have very 

similar performance.      
 

The out-of-control situations considered in these simulations are sustained step 

shifts taking place after k out of m samples. In practice, however, another out-of-control 

situation can occur, in which k unsustained shifts are scattered randomly among the m 

samples. It is known that the statistical approaches used for detecting parameter changes 

differ in reacting to different out-of-control situations. To investigate the performance of 

Method LRT under randomly occurring unsustained shifts in a process parameter, the 

underlying in-control linear profile model ijiij XY ε+= , i = 1, 2, …, nj , j=1, 2, …, m, 

was considered.  The ijε ’s were assumed to be i.i.d.  N(0, 1) random variables. The 

number of samples m=20 and the fixed X-values of 0(0.2)1.8 were used in this 

simulation. The number of randomly occurring unsustained shifts of k=1 or 2 was 

considered.  

 

Figures 4.17-4.20 show the simulated overall probabilities of an out-of-control 

signal when there are k (k=1 or 2) randomly occurring unsustained shifts in the Y-

intercept, slope under the model in Equation (2.1), slope under the model in Equation 

(2.11), and process standard deviation, respectively. As shown in Figures 4.17-4.20, 

contrary to its performance in detecting sustained shifts in a process parameter, Method 

LRT has very poor performance in detecting isolated, temporary shifts.      
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Figure 4.1: Probability of out-of-control signal under intercept shifts from 0A  to nA σλ+0  

(m=20 and X=0(0.2)1.8).         
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Figure 4.2: Probability of out-of-control signal under slope shifts from 1A  to xxSA σβ+1  

(m=20 and X=0(0.2)1.8).          
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Figure 4.3: Probability of out-of-control signal under slope shifts from 1B  to xxSB σδ+1  (m=20 

and X=0(0.2)1.8).                               
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Figure 4.4: Probability of out-of-control signal under standard deviation shifts from σ  to γσ  (m=20 

and X=0(0.2)1.8).         

       

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

C D LRT

γ

a) k =10

      

        

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

C D LRT

γ

b) k =15

  

        

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

C D LRT

γ

c) k =18

 

       

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

C D LRT

γ

d) k =19

 



 82

Figure 4.5: Probability of out-of-control signal under intercept shifts from 0A  to nA σλ+0  

(m=60 and X=0(0.2)1.8).         
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Figure 4.6: Probability of out-of-control signal under slope shifts from 1A  to xxSA σβ+1  

(m=60 and X=0(0.2)1.8).          
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Figure 4.7: Probability of out-of-control signal under slope shifts from 1B  to xxSB σδ+1  (m=60 

and X=0(0.2)1.8).                               
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Figure 4.8: Probability of out-of-control signal under standard deviation shifts from σ  to γσ  (m=60 

and X=0(0.2)1.8).         
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Figure 4.9: Probability of out-of-control signal under intercept shifts from 0A  to nA σλ+0  

(m=20 and the values of X=0(0.2)1.8 are used twice).         
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Figure 4.10: Probability of out-of-control signal under slope shifts from 1A  to xxSA σβ+1  

(m=20 and the values of X=0(0.2)1.8 are used twice).          
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Figure 4.11: Probability of out-of-control signal under slope shifts from 1B  to xxSB σδ+1  

(m=20 and the values of X=0(0.2)1.8 are used twice).                               
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Figure 4.12: Probability of out-of-control signal under standard deviation shifts from σ  to γσ  

(m=20 and the values of X=0(0.2)1.8 are used twice).         
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Figure 4.13: Probability of out-of-control signal under intercept shifts from 0A  to nA σλ+0  

(m=20 and X= –30, –23, –12, –4, 0, 3, 10, 20, 25, and 35).         
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Figure 4.14: Probability of out-of-control signal under slope shifts from 1A  to xxSA σβ+1  

(m=20 and X= –30, –23, –12, –4, 0, 3, 10, 20, 25, and 35). 
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Figure 4.15: Probability of out-of-control signal under slope shifts from 1B  to xxSB σδ+1  

(m=20 and X= –30, –23, –12, –4, 0, 3, 10, 20, 25, and 35).                               
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Figure 4.16: Probability of out-of-control signal under standard deviation shifts from σ  to γσ  

(m=20 and X= –30, –23, –12, –4, 0, 3, 10, 20, 25, and 35).   

       

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

C D LRT

γ

a) k =10

      

        

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

C D LRT

γ

b) k =15

  

        

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

C D LRT

γ

c) k =18

 

                   

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

P
ro

ba
bi

lit
y 

of
 s

ig
na

l

C D LRT

γ

d) k =19

 



 94

Figure 4.17: Probability of out-of-control signal under randomly occurring unsustained intercept 

shifts from 0A  to nA σλ+0 .         
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Figure 4.18: Probability of out-of-control signal under randomly occurring unsustained slope shifts 

from 1A  to xxSA σβ+1 .   
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Figure 4.19: Probability of out-of-control signal under randomly occurring unsustained slope shifts 

from 1B  to xxSB σδ+1 .                               
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Figure 4.20: Probability of out-of-control signal under randomly occurring unsustained standard 

deviation shifts from σ  toγσ .         
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In general, Method LRT performs uniformly better than the competing control 

chart methods under sustained parameter shifts. On the other hand, both Method C and 

Method D have much better performance than Method LRT in detecting some other types 

of shifts in a process parameter. To protect against both kind of changes, sustained and 

randomly occurring unsustained shifts, one can employ Method LRT in conjunction with 

either Method C or Method D.  

   

4.C  Approximate Test Statistics 

 

As mentioned in Section 4.A.2, the expected values of the 
1mlrt  statistics in 

Equation (4.2) depend on the value of m1. An additional improvement to the performance 

of Method LRT was obtained by dividing each 
1mlrt  statistic by its expected value 

E(
1mlrt ) to give the 

1mlrtc  statistics.  Also, it is clear that the m-1 statistics, 
1mlrtc , m1=1, 

2, …, m-1, are correlated. The distribution of the maximum of the 
1mlrtc  [max(

1mlrtc )] is 

intractable; hence thresholds that correspond to a specific probability of a Type I error 

cannot be exactly determined. In most applications, however, it is sufficient to find easily 

calculated thresholds that produce approximately the desired probability of a Type I 

error.  

 

4.C.1  Approximate Thresholds 

 

It can be shown that the probability of max(
1mlrtc ) exceeding a threshold T is 

equal to the probability of the union of the m-1 
1mlrtc statistics exceeding T. The upper 

bound for the probability of the union of a sequence of LRT statistics can be determined 

based on the Bonferroni’s inequality. The upper bound of the probability of the 

max(
1mlrtc ) statistic under the null hypothesis of no change can be calculated using 

                         )3/Pr()1())Pr(max(
11

TlrtmTlrtc mm >−≤> .                        (4.4)  

 

The value of 3 in the right hand side of Equation (4.4) represents the asymptotic expected 
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value of the LRT statistic in Equation (4.2). Previous studies and our simulation studies 

show that the upper bound in Equation (4.4) is very conservative, unless m and α  are 

very small. Table 4.6 shows the simulated overall probabilities of a Type I error produced 

using the conservative Bonferroni’s inequality in Equation (4.4). In this simulation, the 

underlying in-control model with A0=0 and A1=1 and the fixed X-values of 0(0.2)1.8 were 

used. As shown in Table 4.6, the conservative Bonferroni’s inequality does not give 

accurate bound for the null probability distribution of the test statistics except for very 

small values of m and α. 

 
Table 4.6: The overall probabilities of a Type I error using the conservative Bonferroni’s inequality.  
 

 
Simulated 

 

 
 

Nominal 
 m=5 m=10 m=15 m=20 m=30 m=40 m=60 

0.01 0.0098 0.0088 0.0084 0.0082 0.0072 0.0058 0.0038 
0.02 0.0205 0.0176 0.0159 0.0135 0.0123 0.0114 0.0092 
0.05 0.0469 0.0383 0.0343 0.0316 0.0276 0.0237 0.0214 
0.10 0.0893 0.0764 0.0645 0.0602 0.0513 0.0444 0.0375 
0.20 0.1620 0.1375 0.1232 0.1104 0.0911 0.0812 0.0660 

 

 

 Worsley (1983) proposed an improved Bonferroni’s inequality for the two-

segment multiple regression model. The improved Bonferroni’s inequality, however, 

does not give accurate bound for the null probability distribution of the test statistics, as 

shown by Worsley (1983), if the sample size and/or α  is large.  

 

A valid alternative approach is a Bonferroni-like inequality    

                                )3/Pr()())Pr(max(
11

TlrtmrTlrtc mm >≤> ,                    (4.5)  

 

where r(m) is a function of m to give the most accurate bound for the Type I error 

probability. Using 20,000 simulated sets of samples, the author estimated the values of r 

corresponding to different values of m that minimized the maximum difference between 

the simulated CDF and the approximated CDF of max(
1mlrtc ),  
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                                )]3(1)[(1)(max xFmrxF −−= ,              

                                         

at the 95th percentile of the distribution, where (.)F  is the CDF of the chi-squared 

distribution with 3 degrees of freedom. The values of 5(5)90 for m were considered. In 

these simulations, the underlying in-control linear profile model with A0=0 and A1=1 and 

the fixed X-values of 0(0.2)1.8 were used.  

 

The best values of r corresponding to different values of m are given in Table 4.7. 

Different simulations using different values for the variable X and for the sample size n 

gave approximately the same estimates for r as reported in Table 4.7. A least squares 

estimate for the best values of r using the logarithm of m as the independent variable in a 

simple linear regression model gave the following approximation for r 

                                               mmr log05.85.11)(* +−= .                                    (4.6) 

 
                       Table 4.7:  Best and approximate values of r. 

m Best r *r  m Best r *r  m Best r *r  

5 3.72 1.455975 35 16.67 17.12055 65 21.89 22.10382 
10 7.1 7.03581 40 18.2 18.19548 70 22.65 22.70039 
15 9.3 10.2998 45 19.17 19.14363 75 23.58 23.25578 
20 11.2 12.61565 50 19.95 19.99179 80 24.45 23.77531 
25 13.12 14.41195 55 20.63 20.75903 85 24.71 24.26334 
30 14.88 15.87964 60 21.3 21.45947 90 26.07 24.72347 

 

 

Using *r in Equation (4.6), the maximum difference between the simulated and 

approximated CDF for max (
1mlrtc ) at the 95th percentile of the distribution was less than 

0.001 for all values of  m > 6. For very small values of m, the difference was appreciably 

larger. A better approximation for the upper bound of the probability of the max(
1mlrtc ) 

statistic when m ≤ 6 was obtained using the conservative Bonferroni’s inequality in 

Equation (4.4). Therefore a threshold for the max (
1mlrtc ) statistic that corresponds to a 

probability of a Type I error of α  can be approximated using 
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where 2
)1/(1 ,3 −− mαχ  is the 100( )1/(1 −− mα ) percentile of the chi-squared distribution with 3 

degrees of freedom.         

                   

4.C.2  Approximate Normalizing Factor 

 

The normalizing factor 
1mC used to obtain the 

1mlrtc statistics can be determined 

by simulation as in Section 4.A.2. Alternatively, approximations of E(
1mlrtc ) can be 

obtained by using the following formula:  
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The proof is given in Appendix 4.B. The columns in Tables 4.1-4.5 labeled as 
1me  give 

the approximate expected values for the 
1mlrt statistics using Equation (4.8) for the 

different cases considered in these tables. As shown in Tables 4.1-4.5, for each case 

considered, the simulated and approximate expected values are very close. Therefore, it is 

recommended that one use 
1me in Equation (4.8) for the normalizing factor 

1mC .  

 

4.C.3 Using Approximate Statistics to Estimate Probabilities of Type I Error 

 

Table 4.8 presents the estimated probabilities of a Type I error produced by 

Method LRT when using the normalizing factor in Equation (4.8) to calculate the 

1mlrtc statistics, with a threshold T calculated using Equation (4.7). The first column of 

Table 4.8 gives the desired nominal overall probabilities of a Type I error and the 

following columns give the estimated probabilities of a Type I error corresponding to 
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different values of m and n. Each of these estimates was obtained from simulating 

100,000 Phase I data sets using the in-control model ijiij XY ε+= , i = 1, 2, …, nj , j=1, 

2, …,m, and the fixed X-values of 0(0.2)1.8. As shown in Table 4.8, the nominal and 

estimated probabilities of a Type I error are very close in each case considered. For some 

cases considered in these simulations the fixed X-values were used twice within each 

sample to give a linear profile model with n=20, and in another case they were used three 

times to give a linear profile model with n=30. Also, in the columns labeled as “Different 

X values”, the fixed X-values of –30, –23, –12, –4, 0, 3, 10, 20, 25, and 35 were used. In 

the column labeled as “Varying X values”, the number of samples m=20 was used and 

X=0(0.2)1.8 were used in samples 1 to 8, X=0, 0.1, 0.5, 0.8, 1.8 were used in samples 9 to 

13, and X=0.6, 0.8, 1.1, 1.2, 1.5, 1.6, 1.8 were used in samples 14 to 20.  

                 

            Table 4.8: Overall probabilities of a Type I error: nominal vs. simulated.  

Simulated 
 

n=10 n=20 

 
 

Nominal 
 m=5 m=20 m=40 m=70 m=10 m=20 m=30 

0.01 0.0101 0.0107 0.0112 0.0135 0.0093 0.0098 0.0111 
0.02 0.0193 0.0189 0.0218 0.0227 0.0195 0.0199 0.0199 
0.03 0.0291 0.0296 0.0304 0.0309 0.0291 0.0284 0.0273 
0.05 0.0465 0.0482 0.0483 0.0495 0.047 0.0459 0.0464 
0.10 0.0856 0.0858 0.0860 0.0915 0.0863 0.0854 0.0842 

Simulated 
 

 
n=30 

 
Different X values 

Varying X 
Values 

 
 

Nominal 
 

m=5 m=10 m=20 m=30 m=20 m=30 m=20 

0.01 0.0987 0.0951 0.0993 0.0108 0.0101 0.0102 0.0115 
0.02 0.0191 0.0189 0.0192 0.0190 0.0193 0.0186 0.0184 
0.03 0.0302 0.0291 0.0306 0.0309 0.0291 0.0281 0.0281 
0.05 0.0465 0.0485 0.0474 0.0444 0.0489 0.0447 0.0512 
0.10 0.0855 0.0846 0.0841 0.0836 0.0871 0.0821 0.0831 

 

In general, the use of 
1me in Equation (4.8) to calculate the 

1mlrtc statistics and 

T in Equation (4.7) as a threshold for the max (
1mlrtc ) statistic gave very close 

approximations to the probabilities of a Type I error for each case considered.   
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Generally speaking, the configurations of the explanatory variable X in the profile 

samples have very little impact on the approximation in Equation (4.7). Each of the LRT 

statistics has the same approximate chi-squared distribution, regardless of the values of 

the X variable. The distribution of max (
1mlrtc ) depends on the individual profile samples 

only through their effect on the covariance structure of the LRT statistics. This 

distribution is affected by the individual profiles only if the X-values of the very first or 

the very last profile are much different than those of the other profiles, because this is 

where the co-variation between the LRT statistics is the smallest. Differences in the 

middle of the sequence of profiles should not have any perceptible effect on the 

approximation. In many of the linear profile applications, however, the X-values take the 

same values in all samples or change slightly from sample to sample.  

 

As an alternative, one can consider the asymptotic distribution for the square root 

of the maximum LRT statistic derived by Csörgő and Horvath (1997, pp. 21-27). Table 

4.9 gives the simulated overall probabilities of a Type I error produced using their 

approximation. Again, in this simulation the underlying in-control model with A0=0 and 

A1=1 and the fixed X-values of 0(0.2)1.8 were used. This table shows that the Csörgő and 

Horvath’s (1997) approximation gives very liberal bounds unless m is considerably large. 

The asymptotic threshold given by Csörgő and Horvath (1997) is computationally 

demanding. The easy-to-calculate threshold in Equation (4.7) was shown to be much 

more accurate in these simulations. 

 
Table 4.9: The overall probabilities of a Type I error using the approximation of Csörgő and 
Horvath (1997) 

 
Simulated 

 

 
 

Nominal 
 m=5 m=10 m=15 m=20 m=30 m=40 m=60 

0.01 0.0160 0.0144 0.0153 0.0144 0.0136 0.0130 0.0139 
0.02 0.0294 0.0230 0.0300 0.0265 0.0261 0.0268 0.0228 
0.05 0.0719 0.0761 0.0733 0.0683 0.0661 0.0654 0.0629 
0.10 0.1404 0.1538 0.1461 0.1385 0.1339 0.1280 0.1279 
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Appendix 4.A: Factoring the 
1mlrt  Statistic into the Three Different Sources of Variability 

The 
1mlrt  statistic in Equation (4.2) can be written as 

                                                               
1mlrt = ])ˆ()ˆ(ˆlog[ 21 2

2
2

1
2 NNNNN −− σσσ .                                 (A1) 

If we code the X-values so that the average coded value is zero, then 2σ̂  can be written as 

                                                                            Nxbby i
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where xXx ii −=′ , ( ix′  , yi), i=1, 2, …, N, are N bivariate observations resulting from 

pooling the m samples into one sample of size N, and 0b  and 1b  are the least squares 

estimates of the Y-intercept and slope of the simple linear regression model fitted for this 

pooled sample. Similarly  2
1σ̂  and 2

2σ̂  can be written as                                  

       1
2

11 )1(1)1(0
2
1 )(ˆ 1 Nxbby i

N

i i ′−−= ∑ =
σ   and  2

2
21 )2(1)2(0

2
2 )(ˆ

1
Nxbby i

N

Ni i ′−−= ∑ +=
σ ,               

where 11 xXx ii −=′ , 22 xXx ii −=′ , and )1(0b  and )1(1b  are the least squares estimates of 

the Y-intercept and slope of the simple linear regression model fitted for all the samples 

prior to m1 pooled in one sample of size N1, and )2(0b  and )2(1b  are the least squares 

estimates of the Y-intercept and slope of the simple linear regression model fitted for all 

the samples following m1 pooled in one sample of size N2.  
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(Notice that the term c4 is equal to zero in the special case when the X-values are the 

same for all samples). Also, we have 
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where 21 ˆˆ σσ=r . Substituting Equations (A2) and (A3) into Equation (A1) we obtain 
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Appendix 4.B: Derivation of the Approximate Expected Value of the 
1mlrt Statistic 

The expected value of the 
1mlrt  statistic is 

                    E(
1mlrt )= N E( 2ˆlogσ ) 1N− E( 2

1ˆlogσ ) 2N− E( 2
2ˆlogσ ).                      (B1) 

It can be shown that the quantity 22 2/ˆ σσN has a gamma distribution with parameters 

( 2) / 2N −  and 1. For a random variable X having a gamma distribution with parameters 

p and 1, [see Kendall and Stuart (1977, p. 251)], we have 

                          E )/1(12/12/1loglog)log( 32 pOpppaaX +−−+= .                       (B2)   

Hence, using Equation (B2) we can show that 
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Similarly,  

E( 2
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1111
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and          

E( 2
2ˆlogσ ) = )/1()2(3/1)2/(1}2/)2log{()/2log( 3

2
2

2222
2 NONNNN +−−−−−+σ .       (B5) 

One can substitute Equations (B3-B5) into Equation (B1) to obtain 

E(
1mlrt ) ≈ −−−−−− }2/)2log{(}2/)2log{(}2/)2log{( 222111 NNNNNNNNN   

        −− )2/([ NN )]2/()2/( 2211 −−− NNNN 2 2 2
1 1 2 2[( /( 2) /( 2) /( 2) ]N N N N N N− − − − − − ,              (B6)     

Moreover, using the Taylor expansion for the log function, we can show that  

   )/1(/2/25.0log)}/21(5.0log{}2/)2log{( 32 NONNNNN +−−=−=− .                (B7)         
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 Similarly, we have  
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Substituting Equations (B7-B8) into Equation (B6), we obtain 
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Chapter 5:  Examples 

 
This chapter presents three examples to illustrate the use of the proposed change 

point method described in Chapter 4 and compares its performance to that of Methods C 

and D. In the first two examples, simulated linear profile data sets were used in the 

analyses. The data sets for these examples are available at 

  http://filebox.vt.edu/users/mamahmou/data%20for%20example%201-3.xls. 

 

 In the last example the proposed change point method was applied to a real data set from 

a calibration application at NASA.  

 

For the examples with simulated data sets, each method was applied based on a 

nominal overall false alarm probability of α =0.05. The fixed X-values of 0(0.2)1.8 were 

used in these examples. The simulated data set in each example consists of 30 samples of 

linear profiles; thus m=30 and n=10.  

 

For Method C, each set of control limits of the three control charts for the Y-

intercept, slope, and variance, were calculated using Equations (2.12), (2.13), and (2.16), 

respectively. Each set of chart limits were set based on a false alarm probability of 

2α =0.00057 to produce a nominal overall false alarm probability of α =0.05.  In Method 

D, the F-test was performed based on the statistic in Equation (2.19) at the significance 

level 3α = 0.02532. Also, the control limits for the process variance control chart were 

determined based on 4α = 0.000855, so that the nominal overall false alarm probability 

produced by Method D was also α =0.05.  

 

For Method LRT, the 
1mlrtc  statistics were calculated with a normalizing factor 

given by Equation (4.8). The threshold for the max (
1mlrtc ) statistic was determined by 

Equation (4.7) at a significance level of α =0.05. 
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5.A  Examples with Simulated Data Sets 

 
In Example 1, a single step shift in the Y-intercept after sample 25 was 

considered. The data for this example were generated as follows. Given the fixed X-

values, the underlying linear profile model was 

                  Yij= ijiX ε++ 32 , i=1, 2,…, 10,  j=1, 2, …, 25,  

                  Yij= ijiX ε++ 33 , i=1, 2,…, 10,  j=26, 27, …, 30,     

 

where the ijε ’s are i.i.d N(0, 1) random variables.  

 

Figures 5.1-5.3 give control charts for the variance, Y-intercept, and slope, 

respectively, using Method C.  According to the chart in Figure 5.1, the variance is stable. 

Also, as shown in Figures 5.2 and 5.3, both the Y-intercept and slope appear stable. 

Hence, according to Method C, the process is in-control.  

       

For Method D, the control limits for the process variance control chart are 

LCL=0.0968 and UCL=3.7912. All the variance estimates are within these control limits, 

indicating that the variance is stable.  Also, the F-value calculated using Equation (2.19) 

for testing the equality of all the regression lines is F=1.05873 with a p-value=0.3749, 

which indicates that the process is in-control. 

 

In Method LRT, the threshold T for the max (
1mlrtc ) statistic calculated using 

Equation (4.7) is 4.6094. The value of max(
1mlrtc ) statistic is 9.041, corresponding to 

m1= 25, signaling the presence of a change point and indicating that 25 is the MLE of the 

location of this change point. In this example, the proposed change point method 

correctly estimated the location of the change point. Also, for m1= 25, the three factors 

0BVAR /
1me , 

1BVAR /
1me and 2σ

VAR /
1me are 8.423, 0.169, and 0.449, respectively. As 

mentioned in Chapter 4, these factors represent to a large extent the relative contributions 

of the regression parameter shifts to an out-of-control signal. Thus, this out-of-control 
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situation is highly attributable to a shift in the Y-intercept, as the relative contribution of 

the Y-intercept is ≈041.9423.8  93%.  Applying Method LRT on the samples prior to the 

change point m1=25 and samples following it gave no evidence of the presence of an 

additional change point at α =0.025. Notice that a Bonferroni-corrected significance level 

of α =0.025 was used here due to the fact that each segment (subset) represents another 

opportunity for a Type I erroneous split. Hence, using Method LRT one concludes that 

the process is out-of-control due to a Y-intercept shift that occurred at m1= 25.  

                   

 

             
  Figure 5.1: Control chart for the variance (Example 1).           
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   Figure 5.2: Control chart for the intercept (Example 1). 
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  Figure 5.3: Control chart for the slope (Example 1). 
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In Example 2 a single step shift in the process variance after sample 20 was 

considered. The underlying linear profile model used in this example was  

                  Yij= ijiX ε++ 32 , i=1, 2,…, 10, j=1, 2, …, 20,  

                  Yij= ijiX ε ′++ 32 , i=1, 2,…, 10, j=21, 22, …, 30.                            

 

Here the ijε ’s are i.i.d N(0, 1) random variables, while the ijε ′ ’s are i.i.d N(0, 2) random 

variables. Figures 5.4-5.6 present the three control charts for the variance, Y-intercept, 

and slope, respectively, using Method C. As shown in these figures, all the Y-intercept, 

slope, and variance estimates are within the corresponding control limits. Hence, the 

conclusion obtained from applying Method C on the data set of Example 2 is that the 

process is in-control. 

 

For Method D, the control limits for the variance chart are (0.1173, 4.5926). 

Again, all the variance estimates are within these limits.  Moreover, the F-value for 

testing the equality of all the regression lines is 1.0434 with p-value= 0.402. Therefore, 

according to Method D, the process is in-control.  

 

For Method LRT, the value of the max(
1mlrtc ) statistic is 10.781, corresponding 

to m1= 20. Method LRT signals the presence of a change point, since this value is greater 
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than T=4.6094. The MLE of the location of this change point is 20. Also the values of 

0BVAR /
1me , 

1BVAR /
1me and 2σ

VAR /
1me at m1=20 are 0.202, 1.648, and 8.931, respectively. 

Therefore, this out-of-control situation is primarily attributable to a shift in the process 

variance, as the relative contribution of the variance shift to this out-of-control situation is 

8.931/10.781≈  83%. Repeating Method LRT on the samples prior to m1=20 and the 

samples following it did not give evidence of any additional change points with 

α =0.025. Thus, using Method LRT, we conclude that there was a shift in the process 

variance after sample 20.   

 

 

 
               Figure 5.4: Control chart for the variance (Example 2).    
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 Figure 5.5: Control chart for the intercept (Example 2). 
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 Figure 5.6: Control chart for the slope (Example 2).  
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5.B  A Calibration Application at NASA1 
 

In this section, the proposed change point method is applied to a real data set from 

a calibration application.  The purpose is to investigate replicated calibrations of a force 

balance used in wind tunnel experiments at NASA Langley Research Center.  A force 

balance is a multiple-axis load cell that provides simultaneous measurement of three 

orthogonal components of aerodynamic force (normal, axial, and side force) and three 

orthogonal components of aerodynamic torque (rolling, pitching, and yawing moments) 

exerted on a scaled aircraft test article.  The relative importance of each of these 

measurements depends on the nature of the aerodynamic investigation.  However, in most 

investigations, the axial force component is of primary interest, and therefore it is 

considered in this example. 

 

A force balance consists of a structural spring element instrumented with a 

network of strain gauges and is designed to elastically deform under the application of 

external forces and moments.  This deformation results in differential strain across the 

                                                 
1 The data set of this example was provided and described by Peter A. Parker; a Research Scientist, 
Advanced Model and Sensor Systems Branch, NASA Langley Research Center, Hampton, VA 23681-
2199. Peter A. Parker is also a Ph. D. student in the Department of Statistics, Virginia Tech, Blacksburg, 
VA 24061-0439. 
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structure that is sensed by the strain gauges.  Six electrical responses are produced by the 

strain gauges that are proportional to the magnitude and direction of their respective 

aerodynamic components. A calibration experiment was performed to model the 

relationship between the applied forces and moments (explanatory variables) and the 

electrical responses.  See Parker et al. (2001) for a complete description of the calibration 

process.  There are six prime sensitivities in the model that represent the dominant effect 

of each electrical response due to the level of one explanatory variable.  To isolate the 

simple linear relationship of the axial force prime sensitivity and account for the 

influence of the other explanatory variables, a partial regression approach was used in 

this example [see Myers (1990)]. The partial regression adjusted axial response and axial 

force data set is available at  

http://filebox.vt.edu/users/mamahmou/Axial%20Force%20and%20Responce.xls.   

 

Periodic calibrations provide information about the stability of the force balance, 

which is directly related to its performance in wind tunnel research.  The data set used in 

this example consists of 11 samples of a linear profile each with 64, 73, or 74 data points; 

thus m=11 and n=64, 73, or 74.  These samples were collected over sixteen months, 

which has been traditionally considered a reasonable calibration interval. Applying a 

change-point method to historical data gives an indication about the calibration stability 

within this time interval.  In addition, the ability to detect and diagnosis a step shift in one 

or more of the model parameters enables a classification of the nature and severity of the 

shift.  For example, a shift in the slope or variance affects the bias and precision of the 

predicted forces and moments.  Alternatively, small shifts in the Y-intercept are less 

important due to an offset correction procedure employed during wind tunnel operations.  

However, a large shift in the intercept may indicate that the structural frame of the 

balance has been damaged due to an overload condition or that one or more of the strain 

gauges has sustained physical or electrical damage.  Therefore, it is not only necessary to 

detect a shift, but also to attribute the shift to a specific model parameter.  

 

Some diagnostic statistics were obtained to check for the appropriateness of the 

model assumptions for each sample before applying the proposed change point method 
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on this data set. The results suggested that there is no significant evidence of departure 

from normality and linearity for each sample. Then, the Jones and Rice (1992) principal 

component approach was applied to the data set as a pre-analysis to understand and 

identify the pattern of variation among the 11 calibration curves. Since the X-values in 

this data set are not equal equally-spaced for each profile, a regression model for each 

sample was fitted and fitted responses for X=-50(20)50 were obtained. The first principal 

component accounts for approximately 81% of the total variability among the calibration 

curves. The three fitted calibration curves corresponding to the minimum, median, and 

maximum first principal component scores are plotted in Figure 5.7. These correspond to 

the calibration lines of samples 5, 8, and 9, respectively. As shown in Figure 5.7, these 

calibration lines differ primarily in the Y-intercept. Thus, using the Jones and Rice (1992) 

method, one concludes that 81% of the total variability is attributable to the variability in 

the Y-intercept. 

 

Method LRT was applied to this data set based on a nominal false alarm 

probability of α = 0.05. The value of the max(
1mlrtc ) statistic is 7.776, corresponding to 

m1= 8. Method LRT signals the presence of a change point, since this value is greater 

than T=4.2616 (the threshold at α = 0.05). Also the values of 
0BVAR /

1me , 
1BVAR /

1me and 

2σ
VAR /

1me at m1=8 are 7.281, 0.00009 and 0.495, respectively.  Therefore, this out-of-

control situation is primarily attributable to a shift in the intercept, as the relative 

contribution of the intercept shift to this out-of-control situation is 7.281/7.776≈  93.63%. 

Repeating Method LRT on the subset of samples following m1=8 and prior to it gave no 

evidence of the presence of an additional change point at α =0.025. 

 

A plot of the intercept estimates in Figure 5.8 indicates that the change is a shift in 

the level of the Y-intercept. This change is on the order of less than 10 microvolts per 

volt, which is approximately 1% of the maximum response of the axial force channel.  

Therefore, this small shift would not have a significant impact on the performance of the 

force balance, and furthermore it would not warrant re-calibration.  It should be noted 
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that in the application of a change point method to calibration data, a result of not 

detecting a change point is equally as informative as detection. 

 

 

 
Figure 5.7: Calibration curves corresponding to the minimum, median, and  maximum first principal 
component scores. 
 

-40

-20

0

20

40

60

-2 0 2
X

Sample 5 Sample 8 Sample 9

 
 

 

 
                Figure 5.8: A chart for the intercept estimates for the NASA data set.   
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There are two primary conclusions that can be drawn from this example.  First, 

Method LRT gave evidence of a shift in the axial force sensitivity during this set of 

replicated calibrations.  The ability to attribute the shift to the Y-intercept and interpret its 

magnitude supports the validity of wind tunnel measurements obtained during this time 

interval.  Second, based on this historical data set, it provides some initial evidence to 

suggest that the force balance calibration interval of sixteen months may be reasonable.  

An overall assessment of calibration stability would require an analysis of the other five 

responses. 
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Chapter 6:  The Inertial Properties of Quality Control Charts 
 

Any control chart that combines sample information over time, e.g., the CUSUM 

chart and the EWMA chart, has an ability to detect process changes that varies over time 

depending on the past data observed.  The chart statistics, however, can take values such 

that some shifts in the parameters of the underlying probability distribution of the quality 

characteristic are more difficult to detect. For instance, a trend may occur in one direction 

of the target parameter value when a shift occurs in the opposite direction, and as a result 

the chart becomes less effective in reacting to this shift. This is referred to as the “inertia 

problem” in the literature.   

 

This study shows under realistic assumptions that the worst-case run length 

performance of control charts is as informative as the steady-state performance. Also, this 

study introduces a simple new measure of the inertial properties of control charts, the 

signal resistance.  

 

6.A  Some Control Charting Methods for Monitoring the Process Mean 

 

In this study, only control charts for monitoring the process mean or mean vector 

are considered, although the ideas can be easily extended to other types of charts. For a 

univariate quality characteristic X, it is assumed that the observed data (x1i, x2i,…, xni), 

i=1, 2, …, are samples of size n taken at regular time intervals on X.  For each sample, it 

is assumed that x1i, x2i,…, xni are i.i.d. normal random variables with mean µ  and 

variance 2σ .  This study considers methods for detecting changes in µ  from a target 

value 0µ . Without loss of generality, it is assumed that 00 =µ  and σ / n  = 1.  Thus, 

this chapter considers the Phase II application of control charts with the in-control values 

of the parameters assumed to be known. The multivariate quality characteristic case is 

discussed in Section 6.D. 
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The well-known Shewhart control chart ( X -chart) signals that the process mean 

is off target if the ith sample mean, iX , falls outside the control limits 1L± , where 1L >0 

can be chosen to obtain a specified in-control ARL.  

 

The two-sided CUSUM chart signals a shift in the process mean if  

                                  1hSi ≥  or 1hTi −≤ ,      

 

where h1>0 is chosen to give a specified in-control ARL and the cumulative sum statistics 

iS  and iT , i = 1, 2, …,  are defined as  

                 =iS max(0, 1i iS X k− + − )  and  =iT min(0, 1i iT X k− + + ),                         (6.1) 

  

where  S0 = T0 = 0, / 2 0k d= > , and d is the smallest shift in the process mean, measured 

in units of the standard error, considered important enough to be detected quickly.     

                                           

The EWMA control chart is based on the statistics  

                  1)1( −−+= iii YXY λλ , i=1, 2, …,                                                       (6.2)  

 

where 0 0Y =  and λ  ( 10 ≤< λ ), usually called the smoothing parameter, determines the 

weighting of past data. To quickly detect small shifts in the process mean, it is usually 

recommended that one choose a small value of λ . It is well-known that the in-control 

expected value and variance of Yi are  

                         E(Yi)= 0  and  )( iYVar = )2/(])1(1[ 2 λλλ −−− i ,                               (6.3) 

 

respectively.  The EWMA control chart signals an out-of-control condition in the process 

mean if the ith EWMA chart statistic Yi falls outside the control limits 

                                    )(2 iYVarL± ,                                                               (6.4)  

 

where 2L >0 can be chosen to give a specified in-control ARL. The control limits in 

Equation (6.4) vary from sample to sample.  It is common to use the asymptotic variance 
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in calculating the control limits.  The asymptotic control limits for the EWMA chart are 

2h± , where 

                                         )2/(22 λλ −= Lh .                                                 (6.5) 

                                        

6.B  Limitations of Steady-State Analysis 

 

Ryan (2000, p. 247) pointed out that the EWMA chart has been shown to have 

more of an inertia problem than the CUSUM chart, but stated that it is arguable about 

how often the problem is likely to occur in practice.  To consider how often the inertia 

problem might have a practical impact, we can examine the steady-state distribution of 

the control chart statistic first assuming that the process stays on target and that there is 

no signal given.  The steady-state distribution for the commonly used EWMA chart with 

λ = .15 and L2 = 3.0 is illustrated in Figure 6.1.  This distribution was approximated 

using the Markov chain approach described in Lucas and Saccucci (1990) with 501 

transient states. The in-control ARL of this EWMA chart was estimated to be 

approximately 655 using this Markov chain approach.  

 

It can be seen from Figure 6.1 that it is somewhat unusual to have the EWMA 

statistic wander relatively far from the centerline when the process is in-control.  The 

EWMA statistic crosses a control limit on average only every 655 samples when the 

process is in control. 

 

One important limitation of the studies of steady-state properties is that it is 

assumed that the process mean stays on target until the specified shift in the mean occurs.  

This assumption may not hold in practice.  There could be, for example, an undetected 

sustained shift in the mean of size d1 when the specified shift of size d occurs.  The 

estimated distributions for the EWMA chart statistic with λ = 0.15 and L2 = 3.0 are 

shown in Figure 6.1 for undetected sustained decreases in the mean of size d1 = –0.5,       

–1.0, –2.0, and –3.0.  Each of these distributions was estimated using 50,000 simulations. 

For each simulation a sequence of 100 in-control samples from the normal distribution 
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with 00 =µ  and σ = 1 were generated before the shift was introduced. Then five more 

samples from the normal distribution with µ = d1 and σ =1 were generated.  If an EWMA 

chart produced an out-of-control signal in the sequence of 105 observations, this chart 

was discarded. Figure 6.1 illustrates the distributions of the EWMA values after the 105th 

sample. Under these conditions the worst-case performance of the charts becomes more 

meaningful than the usual steady-state performance based on the assumption of no prior 

shift in the mean.   

 

Figure 6.1: The steady state distribution and the distributions of the EWMA statistic when there 

is an undetected sustained shift with size d1 for λ =0.15 and L2 = 3.0. 
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Under this framework, the shift in the mean that could be delayed due to the 

presence of inertia is d – d1, obviously greater in absolute value than d if d and d1 are of 

opposite signs.  Without a more elaborate model, we cannot evaluate the probability of an 

undetected shift in the mean at the time of another mean shift.  If a practitioner believes, 

however, that this situation is realistic, then more emphasis on worst-case analysis seems 

appropriate.  

 

R
el

at
iv

e 
fr

eq
ue

nc
y 

 

    LCL                                                               Center Line                                                                 UCL 

Steady State 

d1 =- 0.5 

d1 = -1 

d1 =-3 

d1 =-2 

   EWMA  statistic     



 119

6.C  Signal Resistance of Univariate Control Charts 

 

This section evaluates the signal resistance of several recommended univariate 

control chart approaches. In the case of monitoring the mean in the univariate case we 

refer to the largest standardized deviation of the sample mean from the target value not 

leading to an immediate out-of-control signal as the signal resistance of a chart.  This 

measure is most relevant when there is an interest in detecting assignable causes that 

affect the distribution of only one sample mean, although it does give some indication 

regarding chart performance in detecting sustained shifts in the mean. Run length 

performance is not relevant when an assignable cause affects only a single sample.  Note 

that determining the value of the signal resistance does not require any distributional 

assumptions, although if one makes a distributional assumption it would be 

straightforward to calculate the probability of an immediate signal for a particular value 

of the control chart statistic and an assumed process mean shift.   

 

The signal resistance of a basic Shewhart chart is simply the multiplier L1 used to 

obtain the control limits, i.e., a constant. In general, the signal resistance for the CUSUM 

chart is 

                                             SR(CUSUM)=(h1 – w + k),     

                           

where w is the upper CUSUM statistic value. For the EWMA chart, the signal resistance 

is  

                                                        SR(EWMA)= λλ /])1([ 2 wh −− ,  

 

where w is the value of the EWMA statistic. For the CUSUM chart the maximum signal 

resistance, over all possible values of the CUSUM statistic, is (h1 + k) standard errors.  

For the EWMA chart with asymptotic control limits, the corresponding value is 

λλ)2(2 −L  = λλ /)2(2 −h  standard errors. These results are based on shifts measured 

in units of the standard error, so they apply for any value of the sample size n. 
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It is commonly recommended that one use a Shewhart limit in conjunction with 

other types of charts.  Lucas and Saccucci (1990) and others have recommended that a 

Shewhart limit be used in conjunction with the EWMA chart, in part to alleviate the 

inertia problem.  Lucas (1982) proposed a Shewhart limit in conjunction with the 

CUSUM chart.  Box and Luceño (1997, p. 232) and Hawkins and Zamba (2003-04) have 

also recommended that if CUSUM or EWMA charts are used, then it is advisable to use a 

Shewhart chart as well. Note that if one uses a Shewhart limit in conjunction with another 

chart, then the control limits of the other chart must be widened slightly to maintain the 

same in-control run length properties unless the Shewhart limits are sufficiently wide to 

have no noticeable effect on these properties. 

 

Woodall and Maragah (1990) and Yashchin (1993) held that the basic inertia 

deficiency of the EWMA chart can only partially be alleviated by the incorporation of a 

Shewhart limit, with Yashchin (1993) arguing, “long sequences of data corresponding to 

unacceptable process levels (but not violating the Shewhart limit) can still remain 

undetected for a long time.”   

    

The signal resistance for an EWMA control chart in conjunction with Shewhart 

control limits is  

   SR(EWMA+Shewhart)=
⎩
⎨
⎧

≤≤−−
−−<≤−

  , )1/()(if      ,]/)(1[
)1/()( if                        ,

2122

1221

hwLhw--h
LhwhL

λλλλ
λλ

  

 

where L1 is the value of the multiplier used to obtain the Shewhart limit and w is the 

value of the EWMA statistic. Obviously, in this case, the signal resistance cannot exceed 

the value of the multiplier used to obtain the Shewhart limit, i.e., L1. 

 

Capizzi and Masarotto (2003) proposed an adaptive EWMA (AEWMA) approach 

for detecting shifts in the process mean. One of their purposes was to overcome the 

inertia problems of the EWMA chart. Their approach combined the EWMA and the 

Shewhart approaches in a smoother way than use of an EWMA chart in conjunction with 

Shewhart limits described above. The idea behind their method was to adjust the value of 
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λ according to the magnitude of the difference (called the error) between the current 

sample mean and the previous AEWMA statistic. This AEWMA control chart is based on 

the statistics 

                          1)](1[)( −ω−+ω= iiiii YeXeY , i=1, 2, …,                                 (6.6) 

 

where )( ieω = ii ee )(φ and ei the ith error is defined as 1−−= iii YXe . The score function 

)( ieφ   is defined as                     

                                  
⎪
⎩

⎪
⎨

⎧

>−−
≤≤−

−<−+
=

. if        ,)1(
 if                     ,
 if        ,)1(

)(
kekλe

kekλe
kekλe

e

ii

ii

ii

iφ                                          (6.7)             

                          

The AEWMA control chart signals an out-of-control condition in the process mean if 

3hYi > , where Yi  is as defined in Equation (6.6) and h3 is a suitable threshold.  

 

Capizzi and Masarotto (2003) also used two other formulas for the score function 

)( ieφ , but they compared their AEWMA approach to some other control chart 

approaches using only the score function defined in Equation (6.7). They found that their 

AEWMA approach has better performance than the competing methods in terms of the 

ARL and the worst-case ARL.  

 

It can be shown that the signal resistance of the Capizzi and Masarotto’s (2003) 

AEWMA using the score function in Equation (6.7) is equal to  

       SR(AEWMA)=
⎩
⎨
⎧

−<≤−−+
≤≤−−−

, if            , )1(
 if     ,/})1({

333

333

khwhkh
hwkhwh
λλ

λλλ
                    (6.8) 

 

where w is the AEWMA chart statistic.  

 

Domangue and Patch (1991) proposed an EWMA control chart for detecting 

simultaneously shifts in both the process mean and standard deviation, referred to as the 

omnibus EWMA chart.  This EWMA control chart is based on the statistics 
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                1)1( −−+= iii YZY λλ α ,     i=1, 2, …,                                                 (6.9)  

 

for some specified constant α, where 00 /)( σµ−= ii XnZ  and )(0 iYEY = .  The 

asymptotic in-control expected value and variance of the EWMA statistic in Equation 

(6.9) are  

             ]2/)1[()2()( αΓ
π

α

+=iYE  and ]])2/)1[(()5.0([
)2(

2)var( 2αΓαΓπ
πλ

λα

+−+
−

=iY ,   

 

respectively.  Domangue and Patch (1991) investigated the performance of their proposed 

EWMA chart for α=0.5 and α=2.  The chart signals an out-of-control condition in the 

process mean or standard deviation, or both, if )var()( 44 iii YLYEhY +=≥ , where L4 is 

chosen to obtain a specified in-control ARL. It can be shown that the signal resistance of 

this control chart is 

                                       SR(omnibus EWMA)= αλλ 1
4 ]/))1([( wh −− ,                    (6.10) 

 

where w is the value of their EWMA chart statistic.       

     

Domangue and Patch (1991) compared their EWMA approach to several other 

procedures, including a CUSUM chart based on the statistic ,α
iZ  where iZ  is as 

defined in Equation (6.9). They referred to this CUSUM chart as the omnibus CUSUM. 

They noted that, for n=1 and α=0.5 the omnibus CUSUM chart is equivalent to the 

CUSUM chart proposed by Hawkins (1981) for controlling a scale parameter. For n=1 

and α=2, on the other hand, the omnibus CUSUM chart is a univariate version of the 

CUSUM chart proposed by Healy (1987) for monitoring the covariance matrix of a 

multivariate normal process. It can be shown that the signal resistance of the omnibus 

CUSUM chart is 

                              SR(omnibus CUSUM)= α/1][ wkh HH −+ ,  
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where hH and kH are the chart control limit and reference parameter, respectively, and w is 

the omnibus CUSUM chart statistic.  

 

It should also be mentioned that the signal resistance of some of the proposed 

charts based solely on run rules can be unbounded.  For example, the synthetic control 

chart, proposed by Wu and Spedding (2000) and evaluated by Davis and Woodall (2002), 

signals if the sample mean falls outside the Shewhart limits 1L±  only if the conforming 

run length (CRL) is less than or equal to K, where K>0. The CRL is the number of 

samples since the most recent violation of the Shewhart limits or since sampling began if 

there has been no previous violation. The signal resistance of this chart is 

                                       SR(synthetic)= 
⎩
⎨
⎧
∞

<
     otherwise.            ,

CRL if          ,1 KL
 

 

The same property applies to the control charts proposed by Klein (2000). 

 

It is somewhat more difficult to evaluate the signal resistance of charting methods 

for monitoring the process mean that are based on statistics other than simply the sample 

mean, e.g., the methods by Amin et al. (1999) and Reynolds and Stoumbos (2004). In 

these cases it is necessary to make simplifying assumptions or to use computer 

simulation. 

 

6.D Signal Resistance of Multivariate Control Charts 

 

This section extends the study of the inertial properties of control charts to the 

multivariate case. Suppose that x1, x2, … is a sequence of p×1 random vectors taken at 

regular time intervals, each representing the p quality characteristics to be monitored. 

Without loss of generality, it is assumed that the random vector xi represents the sample 

mean vector at time i, i=1, 2, …. Also, it is assumed that xi, i=1, 2, …, are i.i.d. 

multivariate normal random vectors with mean vector µ and known constant covariance 

matrix Σ. The main concern in this case is to detect shifts in the mean vector µ from a 

target vector µ0. Without loss of generality, the target vector is assumed to be µ0=0.   



 124

We refer to the largest standardized distance of the sample mean vector from the 

target vector in any direction not leading to an immediate out-of-control signal as the 

signal resistance of a multivariate control chart, i.e., the signal resistance of a multivariate 

chart is equal to i
T

i
i

xΣx
x

1max −  subject to the resulting chart statistic not exceeding the 

control limit. This definition is a straightforward extension of the univariate signal 

resistance measure presented in Section 6.C.  

 

The multivariate control charts that are considered in this chapter are all 

directionally invariant. The ARL performance of a directionally invariant control chart 

can be determined solely by the non-centrality parameter D, where 

                                                 D2= µΣµ 1−T .                                                    (6.11)   

 

In other words, the ARL will be the same if the process mean vector µ shifts to µ1 or µ2 as 

long as 2
1

21
1

1 µΣµµΣµ −− = TT .  

 

The traditional Shewhart-type χ2–chart, a natural multivariate extension of the X – 

chart, signals that the process mean vector is off target at the sampling time i, i=1, 2, …, 

if the ith charted statistic 

                                              =2
iχ  xi

T Σ-1 xi           

                                            

exceeds the control limit h5, where h5>0 can be chosen to obtain a specified in-control 

ARL. The signal resistance of a χ2–chart is equal to the square root of its control limit, i.e., 

5h .  

 

The multivariate EWMA (MEWMA) control chart for monitoring the process 

mean vector proposed by Lowry et al. (1992) is a straightforward extension of the 

univariate EWMA chart.  The MEWMA chart is based on the statistic  

                                      =2
iT  zi

T 1−
izΣ zi ,     i=1, 2, …,           
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where the MEWMA vectors zi are calculated using 

                                       zi = R xi+(I– R) zi–1,                                                              (6.12) 

 

where z0=0, R=diag( 1λ , 2λ , …, pλ ), 10 ≤< jλ ,  j=1, 2, …, p, and 
izΣ is the covariance 

matrix of zi. Lowry et al. (1992) considered only the case of equal smoothing parameters, 

i.e., λλλλ ==== p...21 . The MEWMA chart statistic is usually constructed in terms of 

the asymptotic covariance matrix 

                                                
izΣ = )}2({ λλ − Σ.                                                       (6.13) 

 

The MEWMA chart signals that the process mean vector is off target as soon as 6
2 hTi > , 

where h6 >0 can be chosen to achieve a specified in-control ARL.   

 

It can be shown that the signal resistance of the MEWMA control chart is  

           SR(MEWMA)= λλλλ ])1([)2( 6 wh −+− ,                                     (6.14) 

 

where   ,2
iTw = and 2

iT  is the MEWMA statistic. The proof is in Appendix 6.A. 

 

 In general, if the MEWMA vector zi ≠ 0 then the sample mean vector 

corresponding to the signal resistance is in the form x =(c1, c2, …, cp)T, where  

                                        ,)]1([ 2
6 λλThzc ijij −+−=    j=1, 2, …, p,  

       

where zji is the jth element of the MEWMA vector iz . Notice that if 0z =i , then the 

solution for x is not unique; a possible solution in this case is the p×1 vector 

                                           ( ])2([ 116 ah λλ − , 0, …, 0)T,                                        (6.15)  

 

where 11a  is the first diagonal element of the matrix Σ-1.  
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In order to alleviate the inertia problem to a considerable extent, Lowry et al. 

(1992) recommended a Shewhart-type limit be used with the MEWMA chart. It can be 

shown that the signal resistance of the MEWMA chart used with a Shewhart χ2–limit is 

                SR(MEWMA+Shewhart)=  (MEWMA)] ,[min  5 SRh      

 

where h5 is the control limit of the χ2–chart and SR(MEWMA) is as defined in Equation 

(6.14). In this case, the signal resistance cannot exceed the square root of the χ2–limit.  

            

Crosier (1988) proposed two multivariate CUSUM control charts, MCUSUM and 

COT. He showed that the MCUSUM chart has much better ARL performance than the 

COT chart. The MCUSUM chart is based on the statistics  

                              )()( 1
1

1 ii
T

iiiC xsΣxs ++= −
−

−  

and 

                            
⎩
⎨
⎧

>−+
≤

=
− 111

1

 if        ),/1)((
 if                                     , 

kCCk
kC

iiii

i
i xs

0
s ,  i=1, 2, …,          

 

where 0s =0 , k1=D1/2 >0,  and D1 is the smallest shift in the process mean vector 

considered important enough to be detected quickly, as measured by the non-centrality 

parameter defined in Equation (6.11). This chart signals that the process mean vector is 

off target if  

                                      i
T

iiY sΣs 1−= >h7,                                                            (6.16)  

 

where h7 >0 is the control limit.  

 

The COT chart is based on the CUSUM statistics 

                               ) ,0max( 2
1

1 kSS i
T
iii −+= −

− xΣx ,  i=1, 2, …,                     (6.17) 

                                      

where S0=0, and k2>0 is a constant. The COT chart gives an out-of-control signal as soon 

as Si>h8, where h8>0 is a suitable threshold. Crosier (1988) noted that to detect a shift in 
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the process mean vector of size D1, the reference parameter should be chosen to be 

pk =2 .  

 

It can be shown that the signal resistance of the MCUSUM chart is 

                                           SR(MCUSUM)= whk ++ 71 ,                                          (6.18) 

 

where w=Yi and k1, h7, and Yi are as defined in Equation (6.16). For this chart, if si ≠ 0 

then the sample mean vector yielding the signal resistance is in the form x=(c1, c2, …, 

cp)T, where  

                                                        ],)(1[ 71 ijij /Yhksc ++−=  j=1, 2, …, p,  

 

where sji  is the jth element of the vector si. Again, the solution for x is not unique 

if 0s =i ; a possible solution in this case is the p×1 vector (   )( 1171 ahk + , 0, …, 0)T, 

where 11a  is the first diagonal element of the matrix Σ-1.  

 

It can be shown that the signal resistance of the worst-case scenario for the COT 

chart is (h8 +k2). The COT chart involves reducing each x vector to a scalar then applying 

a one-sided CUSUM chart to the scalars. (This was not the case for the MEWMA and 

MCUSUM charts that involve accumulating the x vectors before calculating the chart 

statistic). Thus, the signal resistance of the COT chart cannot exceed (h8+k2). The COT 

chart compares favorably to the MCUSUM chart with respect to the signal resistance 

measure as shown later in Section 6.E. The MCUSUM chart, however, has been shown to 

have much superior ARL performance. 

 

Pignatiello and Runger (1990) also proposed two multivariate CUSUM charts, 

MC1 and MC2. The MC1 chart, the one with better ARL performance, is based on the 

chart statistics 

                        } ,0max{1 3
1

ii
T

ii lkMC −= − dΣd ,  
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where the cumulative sum vector  

                                             ∑ +−=
=

i

lij ji
i 1

xd , 

k3=D1/2>0, and 

                            
⎩
⎨
⎧ >+

= −

      otherwise                           ,1
01 if                 ,1 11 i-i

i
MC l

l , i=1, 2, …                         (6.19) 

  

The MC1 chart gives an out-of-control signal as soon as MC1i >h9 , where h9>0 is a 

threshold.    

 

It can be shown that the signal resistance of the MC1 chart is  

                                  SR(MC1)= whk ++ 93 , 

where 

                                  ).1( ii lMCw +=                                                                     (6.20) 

 

If 01 >iMC , then the p×1 vector x yielding this signal resistance is in the form x=(c1, c2, 

…, cp)T, where  

                                }],))1(({1[ 1
93 i

T
iijij /hlkdc dΣd −+++−=  j=1, 2, …, p, 

 

where dji is the jth element of the vector di. If 01 =iMC , then a possible solution for x is 

the p×1 vector (     )( 1193 a/hk + , 0, …, 0)T. Lowry et al. (1992) pointed out that the MC1 

chart can, at least theoretically, build up an arbitrarily large amount of inertia. The results 

of this study support this conclusion. Observe that the signal resistance of the worst-case 

scenario of the MC1 chart depends on the value of the counter li. If a sequence of 

relatively large shifts from the target vector does not trigger the MC1 chart and the chart 

statistic stays greater than 0 for a long time, the value of li can become quite large. 

Consequently, the signal resistance can be very large, resulting in a chart with very poor 

worst-case performance. Section 6.E shows using an example with simulated data set that 

the MC1 chart can build up an exceedingly large amount of inertia.   
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As recommended by Lowry et al. (1992), one may use a χ2–limit in conjunction 

with the MC1 chart to alleviate, in part, potential problems with inertia. It can be shown 

that the signal resistance of the MC1 chart used with a Shewhart χ2–limit is 

                                           SR(MC1+Shewhart)=  ,min[ 5h SR(MC1)].      

                                                           

 The MC2 chart is based on the statistics 

                                 )C2 ,0max(2 4
1

1 kMMC i
T
iii −+= −

− xΣx , i=1, 2, …,    

                                                                 

where MC20=0. The reference parameter should be k4=  /22
1Dp + if a shift in the process 

mean vector of size D1 is considered important enough to be detected quickly. This chart 

signals as soon as MC2i >h10, where h10 >0.  

 

As was the case for the COT chart, the MC2 chart operates by reducing each x 

vector to a scalar and then applying a one-sided CUSUM chart to the scalars. The signal 

resistance of the worst-case scenario for the MC2 chart is 410 kh + . Obviously, the MC2 

chart has better performance than the MC1 chart with respect to the signal resistance 

measure, but the latter was shown to have much superior ARL performance.   

 

Unlike the MEWMA chart, none of the above-mentioned multivariate CUSUM 

procedures is a natural multivariate extension of its univariate version. Ngai and Zhang 

(2001) developed, via projection pursuit, a multivariate extension of the CUSUM chart, 

namely PPCUSUM. The PPCUSUM procedure signals as soon as 11hCi > , where h11 is 

the control limit and iC  is the chart statistic, where                                                                 

                                                           }0{max
1 iqiqi , CC

≤≤
= ,                                                       

and  

                ... ,2 ,1   ,1    ,)1( )()( 5
1 =≤≤+−−= ∑∑ =
−

=
iiqkqiC

i

qr r
Ti

qr riq xΣx ,   (6.21) 

 



 130

where k5=D1/2 and, again, D1 is the smallest shift in the process mean vector to be 

detected quickly, as measured by the non-centrality parameter defined in Equation (6.11). 

Ngai and Zhang (2001) stated that their approach is more effective than the other 

multivariate control charts in coping with the inertia problem. They also showed that their 

chart reduces to the two-sided CUSUM chart when p=1. Moreover, they showed using 

simulation that the PPCUSUM chart has better worst-case and steady-state ARL 

performance than the competing multivariate control charts.  

 

It can be shown that the signal resistance of the worst-case scenario for the 

PPCUSUM chart is )( 511 kh + . For p=1, the signal resistance of this chart is equivalent to 

that of the univariate two-sided CUSUM chart. While the PPCUSUM chart is more 

effective than the competing multivariate charts in terms of inertia, determining its chart 

statistic is more computationally demanding.  

 

6.E Performance Comparisons 

 

This section compares the worst-case performance of some of the recommended 

univariate and multivariate control charts using the signal resistance measure. All the 

control charts considered in this section except those compared in Figures 6.7, 6.10, and 

6.11 were set so that the in-control ARL is approximately 370. Each control chart limit (s) 

was (were) estimated independently from 50,000 Phase II simulations.  

 

6.E.1 Univariate Control Charts 

 

Figure 6.2 and Figure 6.3 show the signal resistance plotted against the value of 

the control chart statistic for the EWMA chart (with λ=0.15 and L2 =2.801) and the two-

sided CUSUM chart (with k= 0.5 and h1 =4.775), respectively. It can be seen from 

Figures 6.2 and 6.3 that the EWMA chart has worse inertial properties than the CUSUM 

chart in the sense that the signal resistance values can be considerably higher.  A sample 

mean can be more than 9.8 standard errors from the target without necessarily leading to 

an immediate out-of-control signal.   
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Figure 6.2: The signal resistance for the EWMA control chart with λ = .15 and L2 = 2.801. (The 
signal resistance for the worst-case scenario is 9.837 corresponding to w= –0.798. The signal resistance for 
the best-case scenario is 0.798 corresponding to w=0.798.) 
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Figure 6.3: The signal resistance for the CUSUM control chart with k = 0.5 and h1 = 4.775. (The 
signal resistance for the worst-case scenario is 5.275 corresponding to w=0. The signal resistance for the 
best-case scenario is 0.5 corresponding to w=4.775.) 
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The maximum value of the signal resistance of an EWMA chart increases as the 

value of the smoothing constant λ decreases.  A small value of λ means that the current 

observation receives a small weight, λ, and an observation very far from the target value 

may not result in an immediate out-of-control signal.  Borror et al. (1999) recommended 
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a value of λ = 0.05 to achieve robustness of the performance of the EWMA chart to non-

normality. A more comprehensive study of the robustness of the EWMA chart was given 

by Stoumbos and Reynolds (2000). Montgomery (2001) recommended values of λ 

between 0.05 and 0.20 and gave the values 0.05, 0.10, and 0.20 as popular choices. 

  

The signal resistance values of the univariate EWMA chart recommended by 

Borror et al. (1999) with λ = 0.05 and L2 = 2.492 are shown in Figure 6.4.  The reader 

may be surprised to note that under a worst-case scenario a sample mean more than 15 

standard errors from the target value does not lead to an immediate out-of-control signal.   

                                      

Figure 6.4: The signal resistance values for the EWMA control chart with λ = .05 and L2 = 2.492 
used alone and used in conjunction with a 4.5-sigma Shewhart limit.  
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Also Figure 6.4 shows the signal resistance values for the EWMA chart with λ = 

0.05 and L2 = 2.492 used in conjunction with a 4.5-sigma Shewhart limit.  It is clear from 

this figure that the adverse effect of inertia has been alleviated to a considerable extent 

with respect to the signal resistance measure.   

 

Figure 6.5 shows the signal resistance for the AEWMA control chart with the 

parameters λ = 0.1354, h3 =0.7615, and k =3.2587 studied by Capizzi and Masarotto 

(2003).  As shown in Figure 6.5, the signal resistance of the AEWMA chart resembles 

that of the EWMA control chart in conjunction with Shewhart control limits shown in 

EWMA+Shewhart 

EWMA 
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Figure 6.4.  However, as shown by Capizzi and Masarotto (2003), the AEWMA chart has 

somewhat better performance than the EWMA control chart used in conjunction with 

Shewhart control limits in terms of worst-case ARL.  

 

Figure 6.5:  The signal resistance for the AEWMA control chart with λ = 0.1354, h3 = 0.7615, 
and k=3.2587.  (The signal resistance for the worst-case scenario is 3.579 corresponding to 

3203.07615.0 <≤− w . The signal resistance for the best-case scenario is 0.7615 corresponding to 
w=0.7615.)             
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Figure 6.6 illustrates the signal resistance for the omnibus EWMA chart for α=0.5 

with parameters 025.0=λ  and h4=0.8935 studied by Domangue and Patch (1991). The 

infimum of the omnibus EWMA chart statistic in Equation (6.9) is zero.  If the sample 

means stay very close to target for a long time the chart statistic in Equation (6.9) tends to 

zero. As shown in Figure 6.6, the omnibus EWMA control chart of Domangue and Patch 

(1991) has very poor performance in terms of signal resistance as the control chart 

statistic wanders below its in-control mean. For this chart, under the worst-case scenario, 

a sample mean more than 1277 standard errors from target does not lead to an immediate 

out-of-control signal. On the other hand, the signal resistance under the worst-case 

scenario for the omnibus EWMA chart for α=2 with parameters 025.0=λ  and h4=1.3115 

studied by Domangue and Patch (1991) is 7.243, corresponding to w=0, where w is the 

chart statistic. Obviously, the signal resistance values of the omnibus EWMA chart are 

much lower for α=2 than for α=0.5. 
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Figure 6.6:  The signal resistance for the omnibus EWMA control chart for α=0.5, with λ = 
0.025 and L4=1.815.  (The signal resistance for the worst-case scenario is 1277.35 corresponding to w=0. 
The signal resistance for the best-case scenario is 0.7983 corresponding to w=0.8935.)  
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The signal resistance for the worst-case scenario of the omnibus CUSUM chart 

with α=0.5, kH =1, and hH =1.412 studied by Domangue and Patch (1991) is 5.8177, 

corresponding to w=0, where w is the chart statistic. Also, the signal resistance for the 

worst-case scenario of the omnibus CUSUM chart with α=2, kH =1.4, and hH =11.69 is 

3.6197, corresponding to w=0. The signal resistance values are much lower for the 

omnibus CUSUM chart than for the omnibus EWMA chart, especially for α=0.5. It is 

well-known, however, that the omnibus CUSUM chart is not effective in detecting 

decreases in the process variability. 

 

Note that for the CUSUM chart, omnibus EWMA chart, and omnibus CUSUM 

chart, the combinations of values of past sample means that result in the maximum signal 

resistance include the case for which all the past sample means were exactly on target. 

This is not the case, for example, for the EWMA and AEWMA charts. 

 

Figure 6.7 compares the worst-case signal resistance of some control chart 

approaches for different in-control ARL values. These charts compared are the EWMA 

with λ=0.05, the EWMA with λ=0.05 used in conjunction with a 4.5-sigma Shewhart 
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limit, the CUSUM with k= 0.5, the AEWMA with λ=0.1354 and k=3.2587, the omnibus 

EWMA with λ=0.025 and α=2, and the omnibus CUSUM with α=2, kH =1.4.  For each 

ARL value considered in Figure 6.7, each control chart limit (s) was (were) estimated 

independently from 50,000 Phase II simulations. As shown in Figure 6.7, the EWMA 

chart with λ=0.05 has the highest worst-case signal resistance for all the in-control ARL 

values considered. For small in-control ARL values the omnibus CUSUM chart with α=2, 

kH =1.4 has the best worst-case performance, while for large in-control ARL values the 

AEWMA chart with λ=0.1354 and k=3.2587 has the best worst-case performance. Both 

charts, however, have very close worst-case signal resistance values, especially for large 

in-control ARL values. 

                       
Figure 6.7: The worst-case signal resistance values for some univariate control charts 
corresponding to different in-control ARL values. 
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6.E.2 Multivariate Control Charts 

 

Figure 6.8 shows the signal resistance of the MEWMA chart with λ = 0.15, p=2, 

and h6= 10.7 plotted against the value of w, where w is the square root of the MEWMA 

statistic. Note that for a MEWMA chart, the control chart statistic can be close to the 

upper control limit if the mean vector shifts in any direction. Thus, the worst-case 

scenario in this case is that the MEWMA chart statistic is at the control limit, while the 
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best-case scenario is that the chart statistic is equal to 0. (This was not the case for the 

univariate EWMA chart for example). This property applies to all the multivariate charts 

discussed in this paper. 

 

Figure 6.8: The signal resistance for the MEWMA control chart with λ = 0.15, p=2, and h6 = 
10.7. (The signal resistance for the worst-case scenario is 11.4877 corresponding to w=3.2711. The signal 
resistance for the best-case scenario is 6.2096 corresponding to w=0).  
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The signal resistance of the worst-case scenario for the MEWMA chart increases 

as the number of quality characteristics p increases. This is because the control limit h6 

must be increased as p increases to maintain the same in-control ARL. For instance, if 

p=3 and λ = 0.15, the control limit h6 should be 12.965 so that the in-control ARL is 370. 

In this case, the signal resistance of the worst-case scenario is 12.6452 corresponding to 

w=3.6007. If p=5 and λ = 0.15, the control limit h6 should be 16.96, and in this case the 

signal resistance under the worst-case scenario is 14.4628 corresponding to w=4.1183.  

 

It is well-known that quicker detection of small shifts in the process mean vector 

requires smaller values of the smoothing parameter λ . Stoumbos and Sullivan (2002) 

stated that the smoothing constant should not be lower than necessary, but recommended 

smoothing parameters in the range from 0.02 to 0.05, and sometimes lower, to achieve 

robustness to violations of the assumption of multivariate normality. As was the case for 

the EWMA chart, however, the signal resistance under the worst-case scenario for a 

MEWMA chart increases as the smoothing parameter λ  decreases. For instance, the 
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signal resistance of the worst-case scenario for the MEWMA chart with λ =0.02, p=2, 

and h6=6.92 is 26.174, corresponding to w=2.6306.  

 

Lowry et al. (1992) pointed out that if the Shewhart χ2–limit is used with the 

MEWMA chart then there is a trade-off between the quick detection of small shifts in the 

process mean and protection against building up a large amount of inertia. Figure 6.9 

shows the signal resistance values for two different schemes plotted against w, where w is 

the square root of the MEWMA statistic. The first scheme is the MEWMA chart with 

λ =0.02, p=2, and h6=6.92, while the second scheme is this MEWMA chart used in 

conjunction with a χ2–chart with control limit h5=20.25. The signal resistance under the 

worst-case scenario for the second scheme is 4.5. As shown in Figure 6.9, adding a χ2–

limit to the MEWMA chart substantially improves the signal resistance performance of 

the MEWMA chart with a small smoothing parameter value.  

 

Figure 6.10 shows the worst-case signal resistance values for some multivariate 

control chart approaches corresponding to different in-control ARL values. These charts 

compared are the MEWMA with λ=0.02, the MEWMA with λ=0.02 combined with a χ2–

chart with control limit h5=20.25, the MCUSUM with k1=0.5, the COT with k2=1.41, the 

MC2 with k4=2.5, and the PPCUSUM with k5 =0.5. The value of p=2 dimensions was 

used for each of these charts. Again, for each ARL value considered in Figure 6.10, each 

control chart limit (s) was (were) estimated independently from 50,000 Phase II 

simulations. Inspection of this figure shows that the MEWMA chart combined with a χ2–

limit, the MC2 chart, the PPCUSUM chart, and the COT chart have the best worst-case 

performance. These charts have much better worst-case performance than both the 

MCUSUM and the MEWMA charts. The COT chart and the MC2 chart, however, have 

very poor steady state performance. The MEWMA chart with λ=0.02 has very poor 

performance with respect to inertial properties. 
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Figure 6.9: The signal resistance for the MEWMA chart with λ =0.02, p=2, and h6=6.92 used 
alone and used in conjunction with a χ2–chart with control limit h5=20.25. 
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Figure 6.10: The worst-case signal resistance values for some multivariate control charts 
corresponding to different in-control ARL values. 
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This section also presents an illustrative example with simulated data set in which 

some of the multivariate control charts presented in Section 6.D are compared. The 

purpose is to demonstrate how some of the recommended charts can build up an 

extremely large amount of inertia. The Phase II data set used in this example consists of 

120 bivariate observations. The first 20 observations were generated from a bivariate 

normal distribution with µ=0 and Σ=I, while the last 100 observations were generated 

MEWMA 

MEWMA+χ2
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from a bivariate normal distribution with µ=(– 0.1, – 0.1)T and Σ=I. The data set of this 

example is available at: 

                                http://filebox.vt.edu/users/mamahmou/data%20set.xls.       

 

Three control chart procedures were applied on this data set; these are the 

MEWMA chart with λ =0.1 and h6=8.66, the MCUSUM chart with k1=0.5 and h7=5.5, 

and the MC1 chart with k3=0.5 and h9=4.75. Using 50,000 simulations, the in-control 

ARL was estimated to be approximately 200 for each chart. The MEWMA chart signaled 

at sampling time 31 ( =2
31T 9.2778), while the MCUSUM chart signaled at sampling time 

43 (Y43 =5.5943). On the other hand, the MC1 chart did not detect the specified shift in 

the process mean vector. Figure 6.11 shows the signal resistance value for each chart 

plotted against the sampling time. As shown in this figure, the signal resistance of the 

MC1 chart can increase dramatically with time. As a consequence, the chart becomes 

substantially ineffective in reacting to some delayed shifts in the mean vector.   

 

Figure 6.11: The signal resistance values for some multivariate control charts calculated for the 
example with simulated data.  
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Appendix 6.A: Derivation of Signal Resistance for MEWMA Chart 

The following is an outline of the derivation of the signal resistance of the 

MEWMA chart. Our aim is to obtain the sample mean vector x=(c1, c2, …, cp)T that 

maximizes the quantity xΣx 1−T  subject to the chart statistic not exceeding the control 

limit. Any chart that is directionally invariant has control chart statistics that are invariant 

to any full rank linear transformation of the data. Thus, we can assume without loss of 

generality that Σ=I, where I is the identity matrix. 

 

Suppose that zi is the most recent MEWMA vector.  Intuitively, the new 

observation vector x that maximizes the quantity xxT  subject to the chart statistic not 

exceeding the control limit and given zi is in the form 

                                      iazx −= , 

where 0>a . This can be also shown using a Lagrange differentiation approach. 

 

 Now the new MEWMA vector is 

                                                iii aa zzzz )1()1()(~ λλλλ −−=−+−=  

and the new MEWMA statistic is 

                                   6

set
222 )1(~~ )2(~ hwaT T =−−=−= λλλλ zz ,                        (A1) 

where  2
iTw = and λλ i

T
iiT zz )2(2 −=  is the most recent MEWMA chart statistic. 

Solving Equation (A1) for a  we obtain 

                                       =a        .)]1()([ 6 λλwh −+  

Thus, the signal resistance of the MEWMA chart is 

                SR(MEWMA)= λλλλλλ /])1([)2()2( 6 whawa i
T
i

T −+−=−== zzxx .       

       

The signal resistance of the other multivariate control charts can be obtained 

similarly.  
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Chapter 7:  Summary, Conclusions, and Future Work 
 

In the first part of this dissertation, the author presented several control chart 

methods for monitoring a linear profile process in Phase I. The author also proposed a 

method based on using indicator variables in a multiple regression model. Through a 

simulation study, the author compared the performance of four methods of monitoring 

linear profiles in Phase I. These are the T2 control chart proposed by Stover and Brill 

(1998) (Method A), the T2 control chart proposed by Kang and Albin (2000) (Method B), 

the three Shewhart-type control charts proposed by Kim et al. (2003) (Method C), and the 

F-test method (Method D).  Method D is much more effective than the other methods in 

detecting shifts affecting much of the Phase I data. On the other hand, for shifts for the 

slope and Y-intercept affecting only a few samples of the Phase I data, both the Kang and 

Albin (2000) method and the Kim et al. (2003) method gave much better results. 

However, the Kang and Albin (2000) method was shown to be ineffective in detecting 

shifts in the process standard deviation. The Kim et al. (2003) method is much more 

interpretable than the Kang and Albin (2000) method. Hence, it is recommended that 

either the F-test method or the Kim et al. (2003) method be used for monitoring linear 

profile processes in Phase I.  

 

Both the simulation study and the calibration example presented in Chapter 3 

show that the T2 control chart proposed by Stover and Brill (1998) is ineffective in 

detecting shifts in the process parameters. As mentioned in Sullivan and Woodall (1996), 

the reason is that the population covariance matrix can be poorly estimated by the pooled 

sample covariance matrix when applying a T2 control chart with individual vector 

observations. The same conclusion applies to the overparameterized T2 control chart 

proposed by Mestek et al. (1994).  

 

I believe that much more work is needed on this type of application.  For instance, 

Sullivan and Woodall (1996) and Vargas (2003) proposed several alternative methods for 

estimating the covariance matrix for the T2 control chart for individual multivariate 

observations. We might obtain better results when replacing the usual pooled sample 
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covariance matrix by one of these alternative estimators. This study could be extended to 

other types of shifts and out-of-control situations such as drifts in the process parameters.  

Since the simulation studies show that all of the Phase I methods are non-robust to 

violations of the normality assumption, there is a need to develop more robust linear 

profile methods.   

 

    Woodall et al. (2004) developed a general strategy for monitoring more 

complicated models than the simple linear regression model considered in this 

dissertation. These included applications of nonlinear models, wavelets, and splines.  

Readers are referred to this paper for an overall review of profile monitoring using 

control charts. 

 

In the second part of this dissertation, the author proposed a change point method 

based on segmented regression technique to detect changes in a linear profile data set. 

This method, Method LRT, was applied to the analysis of Phase I linear profiles. Using 

simulations, the author compared the performance of Method LRT to that of Method C 

and Method D. The performance of Method LRT in terms of the probability of signal 

under an out-of-control sustained step shift in a regression parameter is much better than 

that of the competing methods. If the sustained shift affects only the last sample, Method 

C gave the best performance. On the other hand, the simulation study showed that 

Method LRT is insensitive to randomly scattered unsustained shifts in the parameters. 

Thus to protect against both types of shifts, one might apply Method LRT in conjunction 

with Method C or Method D. 

 

  Method LRT also provides diagnostic aids to help in understanding and 

interpreting out-of-control signals and in detecting accurately the location(s) of the 

shift(s). Exact thresholds for the maximum of the LRT statistics, max(
1mlrtc ), cannot be 

determined. Chapter 4 gives approximate thresholds for the max(
1mlrtc ) statistic that 

produce approximately the desired probabilities of a Type I error. 
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In Phase I simple linear profile applications, we usually are interested in detecting 

any parameter changes in the variance, slope, and intercept from their in-control values. 

For this reason, the heteroscedastic segmented regression model was used to detect 

changes in the three parameters. This is a generalization of the typical quality control 

problem in which one tests for changes in the mean and variance of a process 

characterized by the distribution of a univariate quality characteristic. However, if in a 

particular application the variance is not expected to change from sample to sample, one 

can use alternatively methods based on the homoscedastic segmented regression model to 

detect changes in the slope and intercept more powerfully.   

  

Again, I believe that much more work needs to be done in this type of application.  

Methods that allow for in-control variation both within and between profiles are needed. 

In addition, the proposed change point method can be generalized to handle more 

complicated regression models such as multiple linear regression, polynomial regression, 

and multivariate multiple regression models.  For example, as mentioned in the NASA 

calibration application presented in Chapter 5, an overall assessment of the calibration 

stability of the force balance would require an analysis of six responses with six 

explanatory variables. Method LRT could also be extended to the Phase II monitoring of 

linear profile applications as in Hawkins et al. (2003).  In some calibration applications 

the explanatory variable is a random variable. Thus, I believe that more work is needed to 

address the problem of detecting change points in a linear profile data set with random 

explanatory variable(s). 

 

In the last part of this dissertation, the author studied the inertial properties of 

control charts. The results of this study suggest that the inertial properties of control 

charts be considered as an important factor in control chart selection to complement the 

use of run length properties. This study showed that the current use of steady-state 

performance measures can be misleading when there is the possibility of an undetected 

sustained shift in the mean from the target when another shift in the mean occurs.  The 

author proposed a simple, easy-to-calculate measure of inertia, the signal resistance, as 
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the largest standardized deviation (distance) from the target value (vector) not leading to 

an immediate out-of-control signal. Use of this measure further demonstrated that 

EWMA and MEWMA charts with small smoothing parameters have poor worst-case 

performance.   

 

The results of this study suggest that EWMA and MEWMA charts be used only in 

conjunction with Shewhart limits, especially with low values of the smoothing parameter, 

so as to remove much of the adverse effect of inertia. Note that Borror et al. (1999) and 

Stoumbos and Sullivan (2002) recommended that one use small values of λ  in designing 

the EWMA and MEWMA, respectively, to achieve robustness to violations of the 

normality assumptions. Neither of them, however, used Shewhart limits in conjunction 

with the recommended charts since this would lead to non-robust methods. This issue 

was studied in more detail by Stoumbos and Reynolds (2000). 

 

This study showed that the omnibus EWMA method of Domangue and Patch 

(1991) with α = 0.5 has worst-case performance so poor that it should not be used unless 

supplemented with Shewhart limits. In general, the omnibus CUSUM procedure, 

proposed by Hawkins (1981) and studied by Domangue and Patch (1991), has much 

better worst-case performance than the omnibus EWMA procedure, especially for α = 

0.5. Likewise, the AEWMA procedure proposed by Capizzi and Masarotto (2003) has 

much better worst-case performance compared to the omnibus EWMA chart.  

 

The example with simulated data set presented in Chapter 6 illustrated that the 

MC1 chart of Pignatiello and Runger (1990) can build up an exceedingly large amount of 

inertia when used to monitor the process mean vector. Thus, to protect against inertia, it 

is recommended that the MC1 chart be used only with Shewhart limits.  

 

The signal resistance can be calculated for other types of control charts, including 

control charts based on attribute data, in order to gain additional insight on their inertial 

properties.  
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