
Facilitating Wireless Communications through
Intelligent Resource Management on Software-Defined

Radios in Dynamic Spectrum Environments

Joseph D. Gaeddert

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Electrical Engineering

Jeffrey H. Reed, Chair
Charles W. Bostian

Claudio da Silva
Krishnan Ramu
Michael Roan

January 18, 2011
Blacksburg, Virginia

Keywords: software-defined radio, cognitive radio, OFDM/OQAM, synchronization, cognitive
engine

Copyright 2011, Joseph D. Gaeddert

Facilitating Wireless Communications through Intelligent Resource Management on
Software-Defined Radios in Dynamic Spectrum Environments

Joseph D. Gaeddert

ABSTRACT

This dissertation provides theory and analysis on the impact resource management has on software-
defined radio platforms by investigating the inherent trade-off between spectrum and processing
efficiencies with their relation to both the power consumed by the host processor and the complexity
of the algorithm which it can support. The analysis demonstrates that considerable resource savings
can be gained without compromising the resulting quality of service to the user, concentrating
specifically on physical-layer signal processing elements commonly found in software definitions of
single- and multi-carrier communications signals.

Novel synchronization techniques and estimators for unknown physical layer reference parameters
are introduced which complement the energy-quality scalability of software-defined receivers. A
new framing structure is proposed for single-carrier systems which enables fast synchronization of
short packet bursts, applicable for use in dynamic spectrum access. The frame is embedded with
information describing its own structure, permitting the receiver to automatically modify its soft-
ware configuration, promoting full waveform flexibility for adapting to quickly changing wireless
channels. The synchronizer’s acquisition time is reduced by exploiting cyclostationary proper-
ties in the preamble of transmitted framing structure, and the results are validated over the air
in a wireless multi-path laboratory environment. Multi-carrier analysis is concentrated on syn-
chronizing orthogonal frequency-division multiplexing (OFDM) using offset quadrature amplitude
modulation (OFDM/OQAM) which is shown to have significant spectral compactness advantages
over traditional OFDM. Demodulation of OFDM/OQAM is accomplished using computationally
efficient polyphase analysis filterbanks, enabled by a novel approximate square-root Nyquist filter
design based on the near-optimum Kaiser-Bessel window. Furthermore, recovery of sample timing
and carrier frequency offsets are shown to be possible entirely in the frequency domain, enabling
demodulation in the presence of strong interference signals while promoting heterogeneous signal
coexistence in dynamic spectrum environments.

Resource management is accomplished through the introduction of a self-monitoring framework
which permits system-level feedback to the radio at run time. The architecture permits the radio
to monitor its own processor usage, demonstrating considerable savings in computation bandwidths
on the tested platform. Resource management is assisted by supervised intelligent heuristic-based
learning algorithms which use software-level feedback of the radio’s active resource consumption
to optimize energy and processing efficiencies in dynamic spectrum environments. In particular, a
case database-enabled cognitive engine is proposed which abstracts from the radio application by
using specific knowledge of previous experience rather than relying on general knowledge within a
specific problem domain.

Acknowledgments

The work presented in this dissertation would not have been possible without the endless support
of my caring family, friends, and the precious faculty and students at Virginia Tech. The kindness
and encouragement they have shared over the years constitutes a great portion of my continuing
motivation for progress. In particular I want to thank my advisor, Jeffrey Reed, for inspiring my
work and encouraging the pursuit of this research, Christopher Phelps for challenging the very
thought of “fair and balanced,” Christopher Headley for showing me that knife-wrench isn’t really
just for kids, Carlos Aguayo for constantly reminding me “You broke it,” my sister Susan, the first
“Dr. Gaeddert,” for expertly knitted socks and hats, and Maria Licher, my loving wife of just four
weeks, for fortifying my resolve.

This dissertation is dedicated to my mother for showing me the meaning of “screw your courage to
the sticking place” and to my father for teaching me the significance of perseverance.

iii

Contents

1 Introduction 1

1.1 Problem Description . 1

1.2 The Role of Software-Defined Radios . 3

1.3 The Role of Cognitive Radios . 4

1.4 Specific Research Goals . 5

1.5 Thesis . 6

1.6 Original Contributions . 6

1.7 Organization . 8

2 Physical Layer Mechanisms for Dynamic Spectrum Access 9

2.1 Background . 9

2.1.1 System Description . 10

2.1.2 Design Considerations . 10

2.1.3 Single-carrier Methods . 11

2.1.4 Multi-carrier Methods . 11

2.2 OFDM . 12

2.2.1 Window Tapering . 13

2.2.2 Subcarrier Injection . 13

2.2.3 Increasing Number of Subcarriers . 13

2.3 Polyphase Filterbank Channelizers . 14

2.3.1 Filter design using Kaiser window . 15

2.3.2 Polyphase Channelizer Design . 18

iv

2.3.3 (Almost) Perfect Reconstruction Filters . 19

2.4 OFDM/OQAM . 19

2.5 New Approximate Square-root Nyquist Filter Design 20

2.5.1 Filter Design Description . 23

2.5.2 Theory . 24

2.5.3 Evaluating Inter-Symbol Interference . 25

2.5.4 Optimizing and Approximating ρ . 25

2.5.5 Results . 30

2.6 OFDM/OQAM vs. OFDM . 30

2.6.1 Spectral Response . 30

2.6.2 Computational Complexity . 32

2.7 Conclusions . 33

3 Synchronization of Narrowband Channels 34

3.1 System Description . 35

3.1.1 Synchronization and Estimation . 35

3.1.2 Maximum Likelihood Estimation . 36

3.2 Timing Recovery . 36

3.2.1 Multi-rate Synchronization Theory . 37

3.2.2 Loop Architecture . 39

3.2.3 Timing Error Generator . 41

3.2.4 Timing Loop Filter, Delay Considerations, and Stability Analysis 42

3.2.5 Performance Results . 44

3.2.6 Maximum Likelihood-based Estimators . 46

3.3 Carrier Recovery . 49

3.3.1 Phase Error Estimation . 50

3.3.2 Linear Modulation S-Curves . 50

3.4 Joint Carrier and Timing Recovery . 53

3.4.1 Dual Loop Architectures . 53

3.4.2 Proposed Joint Tracking Loop . 55

v

3.4.3 Performance Results . 56

3.5 flexframe, a Versatile Framing Descriptor . 59

3.5.1 Framing Structure . 59

3.5.2 Spectral Efficiency . 61

3.5.3 Synchronization . 61

3.5.4 Performance . 63

3.6 Conclusions . 64

4 Synchronization of Multichannel Communications Systems 66

4.1 System Description . 66

4.1.1 OFDM/OQAM . 67

4.1.2 Distortion from Timing and Carrier Offsets 68

4.1.3 Polyphase Filterbank Representation . 69

4.1.4 Organization . 69

4.2 Timing Recovery . 70

4.2.1 Time-domain Estimation . 70

4.2.2 Frequency-Domain Estimation . 71

4.2.3 Timing Correction in OFDM/OQAM . 72

4.3 Carrier Recovery . 73

4.3.1 Time-domain estimation . 74

4.3.2 Frequency-domain estimation . 75

4.4 Joint Timing and Carrier Recovery . 75

4.4.1 Temporal Repetition in OFDM/OQAM . 76

4.4.2 Existing Estimators . 76

4.4.3 Proposed Estimators . 78

4.4.4 Working Example . 79

4.5 Numerical Results . 79

4.6 Equalization . 81

4.6.1 Proposed Equalizer . 85

4.6.2 Performance Results . 86

vi

4.7 (Almost) Perfect Reconstruction of Unknown Signals 88

4.8 Conclusions . 89

5 Resource Management 91

5.1 Resource Consumption in SDR . 92

5.1.1 Specific Resources . 92

5.1.2 Performance Metrics . 93

5.2 Methodology . 95

5.2.1 Fault Tolerance . 95

5.2.2 Energy-Quality Scalability . 95

5.2.3 Practical Example: Matched-filter Length . 96

5.2.4 The Resource-aware SDR Platform . 97

5.3 Monitoring Real-time Resource Consumption . 99

5.3.1 Direct Inference . 99

5.3.2 Modeling . 99

5.3.3 Offline Benchmarks . 100

5.4 Framework . 100

5.4.1 Online Processor Usage Monitor . 100

5.4.2 rmdaemon Application Program Interface . 103

5.5 Experimentation: Adaptive Modulation/Error-Correction in Slowly-Varying Fading
Channels . 104

5.5.1 Algorithm/Complexity Relationship . 104

5.5.2 Selecting appropriate modulation/coding schemes 106

5.5.3 System Model . 106

5.5.4 Results . 110

5.6 Experimentation: Adaptive Modulation/Error Correction Over the Air 112

5.6.1 System model . 114

5.6.2 Scenario . 115

5.6.3 Framing structure . 115

5.6.4 Experimental Setup . 116

vii

5.6.5 Results . 116

5.7 Conclusions . 120

6 Cognitive Engine Design 121

6.1 Taxonomy of Radio Cognition . 121

6.1.1 Bloom’s Taxonomy of the Cognitive Domain 122

6.1.2 Cognitive Engine . 122

6.1.3 Informal Definition . 123

6.2 Theory . 123

6.2.1 Subspaces . 123

6.2.2 Mapping subspaces . 124

6.2.3 Pareto Efficiency . 126

6.2.4 Utility Function: Abstracting Performance Metrics 127

6.2.5 Production Function: Collapsing the Utility Space 129

6.3 Components . 133

6.3.1 Knowledge Base . 133

6.3.2 Performance Monitor . 133

6.3.3 Fitness Estimator . 133

6.3.4 Adjudicator . 135

6.3.5 Policy Module . 135

6.4 Evolution of the Cognitive Engine Architecture . 135

6.4.1 CoRTekS . 137

6.4.2 ETRI’s 802.22 Cognitive Engine . 140

6.4.3 Ciren . 140

6.5 The Case Database-Enabled Cognitive Engine . 142

6.5.1 Issues with Radio Applications . 142

6.5.2 Case Representation . 144

6.5.3 Case Selection . 145

6.5.4 Case Management . 145

6.6 Experiment 1: Global Optimization . 147

viii

6.7 Experiment 2: Over-the-air Performance . 149

6.7.1 System Description . 149

6.7.2 Numerical Results . 152

6.8 Conclusions . 155

7 Conclusions 156

7.1 Original Contributions . 156

7.2 Closing Remarks . 158

A List of Abbreviations 159

B Lists of Symbols 161

C Approximations for the I0 Kaiser Window for Non-recursive Filter Design 165

D flexframe Synchronizer Performance 167

E Introduction to liquid 169

E.1 A Brief Tutorial . 169

E.1.1 Learning by example . 170

E.1.2 Why C? . 170

E.1.3 Data Types . 171

E.2 Installation Guide . 172

ix

List of Figures

2.1 OFDM cyclic extension diagram; highlighted regions are copied portions of the orig-
inal symbol . 12

2.2 Kaiser window filter design example, fc = 0.09, ∆f = 0.05, As = 60dB 17

2.3 Polyphase channelizer spectrum design for M = 6 channels and a stop-band sup-
pression of As = 80dB. 18

2.4 DFT polyphase filterbank channelizer system diagram. 19

2.5 Example of a 4-channel OFDM/4-OQAM baseband signal and frequency power spec-
tral density representations. Odd channels delay in-phase (solid) by half a symbol,
even channels delay quadrature (dashed) by half a symbol. Frequency overlap is 50%
for each adjacent channel. 21

2.6 Kaiser approximate square-root Nyquist filter prototype with bandwidth adjustment
factor 0 < ρ < 1. 23

2.7 r-Kaiser square-root Nyquist filter design, ISI vs. adjusted excess bandwidth (ρβ)
for a prototype filter with k = 2 samples/symbol and a delay of m = 3 symbols. . . . 26

2.8 r-Kaiser optimum value of ρ vs. excess bandwidth factor β for varying filter delays
m ∈ [1, 6] along with the proposed approximation given by (2.17). 27

2.9 r-Kaiser example, k = 4, m = 7, β = 0.2 . 28

2.10 G(ω) for r-Kaiser, root raised-cosine, hM-3 with k = 2 samples/symbol, a filter delay
of m = 12 symbols, and an excess bandwidth factor of β = 0.2 29

2.11 Power spectral density: OFDM/OQAM vs. traditional OFDM, 12.5% subcarriers
disabled. 31

3.1 Matched filter output y(t) and the relationship between available sample points,
optimum sample points, and interpolants. 39

3.2 Symbol synchronizer block diagram with the control loop operating at one sample
per symbol. 40

3.3 Analog phase-locked loop block diagram . 42

x

3.4 Symbol synchronizer timing loop diagram . 43

3.5 Symbol synchronizer performance with a timing phase offset of τ = −0.3T and
M = 32 polyphase filters. 45

3.6 Symbol synchronizer performance with a timing frequency offset of 0.4% of the sym-
bol rate and M = 32 polyphase filters. 45

3.7 Matched-filter/derivative matched-filter output, g(t)∗ġ(−t), for an excess bandwidth
factor β = 0.7 . 47

3.8 Timing synchronizer metric for a BPSK signal with a timing offset of τ = 0.2T . . . 48

3.9 Timing offset estimator variance vs. SNR for a root raised-cosine filter with k = 4
samples per symbol and an excess bandwidth factor of β = 0.5 averaged over 2,000
trials. 49

3.10 S-curves for the phase error detector of certain modulation schemes, both high and
low relative SNR levels displayed. 51

3.11 Carrier phase response for 16-QAM with different SNR levels. The signal with a
higher SNR result in a false lock on spurious phase points, demonstrated in Fig-
ure 3.10(a). 52

3.12 Joint carrier and timing recovery loop architecture diagrams. 54

3.13 Joint symbol timing and carrier phase/frequency tracking with a timing phase offset
of τ = 0.3T (M = 32), a carrier phase offset of θ = −0.4 radians, and with an SNR
of 30dB. 57

3.14 Joint symbol timing and carrier phase/frequency tracking with a timing phase offset
of τ = −0.4T (M = 32), carrier frequency offset of ν = 0.002 radians/symbol, with
an SNR of 30dB. 58

3.15 Framing structure used in over-the-air experimentation. The payload length is vari-
able and is typically much longer than the preamble. 59

3.16 Preamble BPSK phasing pattern performance vs. random data bits. Symbol timing
PLL bandwidth is 0.05, phase PLL bandwidth 0.02, θ = −π/3 radians, ν = 0.001/Fs,
SNR= 20dB. 60

3.17 flexframe synchronizer block diagram. 62

3.18 Probability of detection for the proposed frame synchronizer vs. signal-to-noise ratio.
The payload is 512 bits of uncoded random BPSK symbols, 10,000 trials. 63

3.19 Probability of detection for the proposed frame synchronizer vs. carrier frequency
offset as a percentage of symbol rate. The payload is 512 bits of uncoded random
BPSK symbols, in a AWGN channel with an SNR of 20dB, averaged over 1,000 trials. 64

3.20 flexframe synchronizer, over-the-air example . 65

xi

4.1 OFDM/OQAM channelizer using two identical yet separate DFT filterbanks. 69

4.2 Modified DFT polyphase filterbank channelizer system diagram. The filter coeffi-
cientsGm(z) are separated from their buffers bm allowing arbitrary sample alignment.
A shift of one sample is shown here. 74

4.3 OFDM/OQAM filter preamble for a delay ofm = 3 symbols and an excess bandwidth
factor of β = 0.9 for R = 2 repetitions using the r-Kaiser filter prototype. The region
of repetition is highlighted. 76

4.4 OFDM/OQAM preamble synchronization example for M = 64 subcarriers with
τ = 2Ts, ν = 0.02/Ts, and SNR=20dB. 80

4.5 OFDM/OQAM parametric estimation in AWGN channels. 82

4.6 OFDM/OQAM parametric estimation in multi-path channels. 83

4.7 OFDM/OQAM parametric estimation in channels with narrowband interference and
a nominal SNR of 20dB. 84

4.8 OFDM/OQAM equalization example using the wf (n) window for M = 256 subcar-
riers, Nm = 4 paths, Nt = 6 samples, and a nominal SNR of 3 dB. 87

4.9 OFDM/OQAM equalization mean-squared error vs. SNR for different window types
with M = 64 subcarriers, Nm = 4 paths, Nt = 6 samples, and averaged over 1000
trials. 88

4.10 OFDM/OQAM perfect reconstruction example where an unknown signal spanning
several subchannels is synthesized using an additional polyphase filterbank. 90

5.1 Channel throughput [b/s] and energy efficiency [b/J] as a function of bandwidth for
a fixed transmit power. Energy efficiency assumes power consumption to be a linear
function of occupied bandwidth. 94

5.2 Energy-quality scalability relationship. 96

5.3 Inter-symbol interference vs. matched filter length using the r-Kaiser filter from
Section 2.5 with an excess bandwidth factor β = 0.2 98

5.4 Resource management framework . 102

5.5 rmdaemon variance of CPU load estimation vs. analysis time with an average CPU
load of approximately 80%. Statistics were drawn over a 180 second duration. 103

5.6 Bit error probabilities for example modulation and FEC coding scheme pairs with
approximations defined by (5.4) and (5.5). Labels are given in Table 5.2. 105

5.7 Simulated capacity/complexity vs. Eb/N0 for Pb = 10−5 with each point representing
a specific modulation/coding scheme pair. 107

5.8 Performance of adaptive switched modulation/coding scheme sets in a slowly-fading
Rayleigh channel. 113

xii

5.9 Performance of adaptive switched modulation/coding scheme sets’ average spectral
efficiencies ζ(γ) measured in an over-the-air in a laboratory test environment. 117

5.10 Performance of adaptive switched modulation/coding scheme sets over the air in a
laboratory wireless environment. 118

6.1 Mapping optimization spaces. The mapping functions f and g are not strictly one-
to-one as multiple solutions can produce the same set of utilities. The utility function
q, however, has a strict one-to-one mapping between the goal and utility spaces. . . 125

6.2 Example of Pareto efficiency with the utility space u ∈ R2 126

6.3 Generic utility function for metric abstraction, defined by (6.1) for a target of 0.95
when β = β̇ and 0.05 when β = β̇/10. 128

6.4 Collapsed utility space example vs. occupied bandwidth θ0 = W given the observable
φ0 = Eb/N0 where u0 and u1 represent maximizing throughput for the channel and
minimizing occupied bandwidth, respectively. The target metrics are β̇0 =200 kbps
and β̇1 =100 kHz. 132

6.5 Collapsed utility space example: power and bandwidth vs. capacity where u0, u1,
and u2 represent maximizing throughput, minimizing occupied bandwidth, and min-
imizing transmit power (Eb/N0) with targets β̇0 = 200 kbps, β̇1 = 100 kHz, and
β̇2 = 10 dB, respectively. 134

6.6 Fitness function F and its estimator ζ for a two-parameter system 136

6.7 Flow chart of the Ciren protocol. Highlighted blocks are used in PTP mode only
(ignored in VB mode). 143

6.8 Convergence of the case database-enabled cognitive engine; root mean-square global
utility and case database size vs. adaptation time. 148

6.9 Cognitive engine over-the-air example protocol flowchart. Spectrum sensing by the
master node is highlighted before each packet transmission. Acknowledgment (ACK)
frames are sent after the proper reception of each data packet. 150

6.10 Cognitive Engine performance, over-the-air example. All values are measured em-
pirically. 153

6.11 Slave node average computational efficiency 1/K (bits per 1,000 clock cycles) over
time. 154

C.1 Piecewise polynomial approximation to the modified Bessel function of the first kind. 166

D.1 Impact of packet length on flexframe synchronizer performance in terms of average
execution time and normalized spectral efficiency using an uncoded payload with
BPSK modulation. 168

xiii

List of Tables

2.1 Coefficients to approximate ρ̂, given by (2.17) . 27

5.1 DSP benchmarks for various SDR processing algorithms running on a PowerPC
platform with an instruction clock rate of 867MHz 101

5.2 Computational Complexity of Modulation/FEC Sets Running on a 867MHz PPC . . 105

5.3 Spectrally Efficient Modulation/FEC Sets . 108

5.4 Computationally Efficient Modulation/FEC Sets . 109

5.5 Available modulation/FEC scheme pairs, broken into 2 sets (experiment 5.5) 111

5.6 Available modulation/FEC scheme pairs, broken into 2 sets, Sη and SK (over-the-air
experiment in Section 5.5) . 119

6.1 Taxonomy of the Cognitive Domain . 122

6.2 Cognitive Engine Over-the-Air Example Domain . 151

B.1 Symbols for Chapter 2: Physical Layer Mechanisms for Dynamic Spectrum Access . 161

B.2 Symbols for Chapter 3: Synchronization of Narrowband Channels 162

B.3 Symbols for Chapter 4: Synchronization of Multichannel Communications Systems . 163

B.4 Symbols for Chapter 5: Resource Management . 164

B.5 Symbols for Chapter 6: Cognitive Engine Design . 164

C.1 Piece-wise polynomial coefficients to approximation for log
(
log
(
I0(z)

))
given by (C.4)166

xiv

Chapter 1

Introduction

The wireless industry has an ever-growing appetite for broadband internet services with increased
global coverage, and thus technological advances in wireless communications has expanded at an
astounding pace. With this growing demand for wireless connectivity comes the need to adapt
to quickly-changing standards. Software-defined radio (SDR) is heralded by many in the wireless
engineering community as the future of standards implementation; however this mentality might be
somewhat short-sighted. Reconfigurability, however advantageous in theory, comes at the expense
of increased power consumption and hardware costs; despite all the proposed benefits, SDR plat-
forms consume considerably more power than their hardware counterparts. The energy efficiency
lost through the flexibility of baseband processing severely limits the computational capacity of
the target reconfigurable platform and has considerable implications on its physical size, weight,
and battery life. Furthermore, the steady increase of hardware capabilities (e.g. Moore’s law) is
easily overwhelmed by the escalating demand for high-quality bandwidth on such mobile wireless
devices. As such, the performance of software-defined radio platforms will continue to lag behind
conventional hardware designs.

1.1 Problem Description

While there does exist a significant performance gap between hardware and software radio plat-
forms, the flexibility within the SDR platform can be leveraged to mitigate its additional power
demands. The immense variability in re-programmable software components permits the system
to be dynamically rebalanced for new scenarios, allowing for more efficient use of hardware. Today,
wireless communications engineers have the option to trade physical performance (such as transmit
power and signal bandwidth) for signal processing complexity [69, p. 6]. This has permitted the
application of sophisticated algorithms which have pushed link capacities towards their information
theoretic bounds and has consequently shaped the entire area of wireless communications.

Many SDR implementations seek to optimize DSP algorithms for a range of operating conditions;
however because the performance of mobile radios depends so significantly upon channel condi-
tions, it is not possible to guarantee minimal power consumption for a specific platform unless the

1

dynamics of the algorithm itself are designed to be energy scalable. Therefore the algorithm which
minimizes the energy consumed for a particular application while achieving a certain quality of
service cannot be determined without first considering the complex dynamics of the wireless envi-
ronment in addition to the platform upon which the application is running. Resource management
on reconfigurable platforms is therefore a critical step in deploying mobile reconfigurable radios,
particularly those operating in dynamic spectrum environments. Many of the traditional meth-
ods for reducing energy consumption on mobile radios, however, are inapplicable to reconfigurable
platforms because hardware and software are no longer strictly bound to one another.

One of the most apparent applications to this concept resides in cognitive radios, where resource
management can additionally incorporate processing complexity within protocol negotiation. By
employing a self-adapting engine, cognitive radios (usually considered to be a superset of SDR) use
goal-driven autonomous operation to improve link performance transparent to the user. Despite
their many promises, however, cognitive radios (and otherwise adaptive radios) still require mea-
surable system-level performance feedback in order to appropriately switch operational modes. It is
therefore necessary to allow the radio to monitor its own dynamic resource consumption in addition
to its link-level performance as to compete with fixed-mode hardware platforms. Traditional radio
resources take the form of energy, power, and spectrum; once the software platform has been intro-
duced, this list extends to computational complexity, memory, and processor usage. The challenge
therefore becomes an issue of how to efficiently model and measure the platform’s consumption
of finite resources—a particularly difficult task as software becomes portable to a growing popula-
tion of heterogeneous platforms. Highly parallelized architectures (such as FPGAs and multi-core
processors) exacerbate the difficulty in estimating the processing time and complexity of executing
particular algorithms as their platform-specific implementations become non-linear.

With the current onset of cognitive radio technologies seeking access to dynamic spectrum environ-
ments comes the need for software radio platforms to modify their protocols to adapting conditions.
As discussion of spectrum sensing modules becomes more prevalent in current protocol descriptions,
the need for an extensible physical layer description becomes requisite. Furthermore, dynamic fre-
quency selection in congested spectrum environments necessitates that the transmitter be disabled
during the spectrum-sensing period. This requirement completely changes the transceiver design
and operation over traditional systems. As such, these qualifications imply two methods for dy-
namic spectrum access: the first employs a single carrier which must transmit data in bursts,
requiring the receiver to synchronize to each frame very quickly; the second issues a multi-carrier
physical layer description capable of indexing data subcarriers on frequencies that are deemed to
be unoccupied, and disabling subcarriers which overlap occupied channels. Both cases give strong
implications on the resources consumed by the baseband processor as each mandates that the re-
ceiver acquire the data signal very quickly in hostile channel conditions, potentially in the presence
of interference. Consequently, the physical layer is the limiting factor in realizing such flexible
receivers on a software platform, and is the driving motivation behind the research presented in
this dissertation.

2

1.2 The Role of Software-Defined Radios

The role of SDR in the current wireless market has traditionally fallen into two major categories:
seamless coverage of wireless connectivity and integration with existing standards. The flexibility
gained through reconfigurable and reusable software, however, should not limit its application
to merely re-implementing existing standards. At present, the cost of manufacturing a single
reconfigurable platform far exceeds that of multiple application-specific integrated circuits, and
consequently the wireless market has seen limited room for deploying a software-defined radio in
a mobile handset. Software-defined radios do, however, have the ability to future-proof standards
and consequently their value to wireless infrastructure is steadily growing. Traditionally, wireless
standards undergo a number of revisions in which standards bodies continually revise protocols and
weigh the benefits of certain technologies over others. This revision process takes a considerable
amount of time during which equipment manufacturers will release preliminary versions of the end
product. With the flexibility of software, these protocols can evolve more organically in a similar
fashion to open-source software. This allows for standards bodies to roll out revisions much more
quickly and reliably than is possible on hardware platforms.

While integration with existing standards has its place, the real benefits of SDR are realized through
its ability to to be completely flexible in baseband processing. This permits the radio to re-define
its own physical layer description, permitting it to leverage channel information to improve the
user experience. In a heterogeneous network (one which is composed of may reconfigurable ra-
dios with different capabilities) interoperability is contingent upon such devices finding a common
ground. In this regard, wireless nodes must have some set of overlapping capabilities in order to
inter-communicate. As such, a hardware platform can only support protocols for which it has spe-
cific integrated circuitry, yielding a potentially inferior service quality. This limits the functionality
of communication between nodes, and can severely reduce the link’s performance, particularly if
these protocols are ill-suited to the required application or insufficient to cope with the wireless
environment. For example, WiFi is ubiquitously offered on mobile handsets; however its appli-
cability towards applications with low data rate requirements and/or long-range communications
is known to be inferior. Furthermore, its physical layer and medium access control specifications
are ill-suited towards environments with high mobility (large Doppler shifts) and highly congested
spectrum.

Software platforms, however, can negotiate protocols tailored specifically to a particular problem
and realize the solution through software reconfiguration. Consider an open protocol system in
which existing signal processing software can be reconfigured to implement a variety of systems,
including packet-based links, multimedia broadcast streaming, massive sensor node networks, or
even dynamic spectrum access networks. The functionality of the link is now limited only by the
capabilities of the RF front end (tunable frequencies, transmit power, etc.) and the computational
bandwidth of the baseband processor. The focus of efficiency shifts towards reducing the platform’s
resource consumption so as to compete with hardware radios. As such, efficient implementations of
baseband synchronizes is paramount to the success of such heterogeneous networks. Much of this
functionality crosses over with cognitive radio which is why they are so closely related.

3

1.3 The Role of Cognitive Radios

Reconfigurability becomes particularly useful as the growing demand for high data-rate wireless
communications exceeds the pace of well-defined protocol standards. Consequently, the available
spectrum is becoming more and more a valuable and scarce commodity, particularly as bands are
subdivided into licensed partitions and therefore unavailable to secondary users. One potential
solution is to allow unlicensed radios to autonomously detect and use empty spectrum bands. Such
dynamic spectrum access has been proposed by a number of researchers and adopted in part by
industry [70]. Cognitive radios (CR) are predominantly considered to be an extension of SDR
and have been proposed to enable such technologies through dynamic spectrum access for efficient
white-space re-use. Furthermore, accommodating the ever-increasing demands of high data-rate
communications in dynamic spectrum environments requires fast synchronization of spectrally com-
pact multi-carrier communications signals such as orthogonal frequency-division multiplexing using
offset quadrature amplitude modulation (OFDM/OQAM). This signal acquisition must be robust
to the presence of narrowband interference and motivates the investigation of parametric estima-
tion of reference parameters strictly in the frequency domain. Technologies in the area of cognitive
radios additionally promise intelligent parametric optimization of data links to improve quality of
service (QoS) over traditional radios, particularly in actively dense spectrum environments through
intelligent situation-aware reconfiguration. The radio itself, through the immense flexibility of soft-
ware reconfiguration, can determine the best course of action as the situation unfolds. Without
knowledge of the underlying radio structure, its operator can describe the problem and permit
the radio to provide an environmentally-aware solution completely online. This level of autonomy
is enabled by a concept known as radio learning in which the radio is contextually aware of its
operating environment.

A plethora of definitions exist for cognitive radio—one for each application—usually targeting
dynamic spectrum allocation and improved spectral efficiency. While compact frequency use is
an important component in radio networks, spectrum management is too specific a problem to
encompass the purpose of radio cognition. These goals are actually byproducts of the underlying
motivation behind the introduction of the cognitive radios. In truth, the sole purpose for introducing
artificial intelligence and cognition in radios is to facilitate communication. This simple concept is
often difficult to actualize, particularly on low-profile embedded systems where power consumption
is a critical factor. This motivation resides in the fact that observations about the surroundings are
incomplete and mathematical models used to describe the environment are imprecise. Truthfully,
radios operating on wireless protocols with strict spectrum regulation have no need for intelligent
algorithms beyond simple adaptation. In this regard cognition serves no purpose in radios as the
information gathered about its environment is dictated by the boundaries of the protocol in which it
operates. For example, cellular networks use adaptive power control algorithms to ensure that the
base station receives equal power from each node in the cell, improving network throughput. The
power adjustment in the feedback loop is often driven by the packet error-rate of each link. Because
cellular networks have enforced restrictions on those who can operate within their frequency bands,
the assumption of the algorithm is that error rates are due to noise and in-network interference alone,
and not a result of any unlicensed users. Similarly, IEEE 802.11 protocols use carrier sense multiple
access to help with collision avoidance. This is in part necessary when operating in the industrial,
scientific, and medical (ISM) band, in which a significant amount of electromagnetic interference

4

is emitted from devices such as microwave ovens for purposes other than communications. The
standard itself has a well-defined protocol for handling scenarios in which interference can cause
significant errors in the link. In this regard, system design practice traditionally has been to contend
with interference through an explicit protocol description.

To this end it must first be acknowledged that fixed-mode radios cannot operate outside the bounds
of their design. It is certain that wireless standards are constantly evolving to contend with a
broadening set of usage models, covering everything from high mobility to multi-user access. In
dynamic spectrum environments, however, unlicensed users contend for spectrum without the aid
of specific protocols. The challenge here is to design a radio that is capable of contending with
scenarios for which it has neither prepared nor expected. This is particularly relevant when the
radio is not strictly guided by protocol, or when theoretical models upon which its design is based
are either inaccurate or are insufficient to dictate its own performance. With the introduction of
radio learning into its physical layer description, the system can potentially contend with unknown
situations. As a consequence, cognitive radios are capable not only of choosing a particular spectral
allocation, but additionally managing the underlying protocol which suits the requirements of the
application and the needs of the user.

1.4 Specific Research Goals

While previous efforts have provided initial insight into the resource management problem, most
results are bound to a specific application, protocol, or platform. The intend of this work is to
seek the joint optimization of radio link performance and power consumption in dynamic spectrum
environments. Under the context of jointly optimizing radio link performance while reducing energy
consumption, this work seeks to provide answers to the following questions:

1. Polyphase filterbanks for dynamic spectrum access

(a) How can power consumption in software-defined radio platforms be reduced when oper-
ating in dynamic spectrum environments?

(b) How can efficient multiplexing schemes be implemented with polyphase filterbanks?

(c) What performance metrics are appropriate for analysis?

(d) What additional technologies are required to enable frequency-division multiplexing
schemes for cognitive radios?

2. Power/resource management on SDR platforms

(a) What applicable power-monitoring techniques can enable feedback into the system?

(b) How can resources be managed in a dynamic spectrum environment to meet the user’s
needs?

(c) What implications does energy scalability have on system performance/reliability?

3. Radio cognition

(a) What algorithms are appropriate for radio learning?

5

(b) How does the additional computational load to enable radio learning burden the system?

(c) What utility functions are appropriate for radio learning through optimization of nodes?

(d) What performance metrics are appropriate for analyzing cognitive radios?

1.5 Thesis

The appropriate access mechanism by which to convey information over a wireless link depends
upon constraints on energy consumption, channel conditions (spectrum availability, multi-path
fading, additive noise, etc.), and the user’s service quality needs. Incorporating learning algorithms
into radios has been shown to yield improvements in spectral efficiency over traditional adaptive
techniques. This document observes the impact resource management has on software-defined
radio platforms by investigating the inherent trade-off between spectrum and processing efficiencies
as they relate strongly to both the power consumed by the processor and the complexity of the
algorithm which it can support. The analysis is specifically concentrated on digital signal processing
elements commonly found in software-defined radio implementations of dynamic spectrum access-
enabled cognitive nodes. This includes (but is not limited to) primary aspects of the radio’s physical
layer as it is defined in software, demonstrating that considerable resource savings can be gained
without compromising the resulting quality of service to the user.

This dissertation takes a renewed look at the use of online resource monitoring to reduce the com-
putational complexity of spectrum-agile software-defined radios, specifically by demonstrating that
physical layer system performance can be minimally sacrificed to reduce computational complexity
without compromising quality of service to the user. Spectrum agility is achieved by introducing
new synchronization techniques for spectrally efficient multi-carrier signals capable of recovering
carrier frequency and timing information in the presence of interference. Resource management
is achieved by supervised intelligent heuristic-based learning algorithms which use software-level
feedback of the radio’s active resource consumption to optimize energy and processing efficiencies
in dynamic spectrum environments.

1.6 Original Contributions

This document makes the following original contributions to the subject of resource management
of software-defined radios operating in dynamic spectrum environments:

1. Synchronization of Narrowband Channels

(1) a new maximum likelihood-based estimator for the timing offset parameter τ based
on the matched-filter output and its derivative. The performance of this estimator is
empirically efficient (it achieves the minimum estimator variance in noisy channels);

(2) enhanced loop architectures and stability analysis for timing recovery of narrowband
signals using polyphase filterbanks as a mechanism for resampling and interpolation;

6

(3) a novel preamble technique for quickly synchronizing the receiver to the beginning of
a single-carrier frame in the presence of carrier frequency and sample timing offsets, as
well as multi-path fading;

(4) a novel flexible framing structure capable of dynamically adjusting the modulation and
forward error-correction schemes, payload length, and preamble phasing lengths. An ac-
companying synchronizer is introduced which can automatically detect the transmitter’s
configuration and correct for channel impairments. Its performance is characterized by
simulation and validated by over-the-air laboratory experiments;

2. Synchronization of Multichannel Communications Systems

(5) a multi-carrier communications scheme (OFDM/OQAM) with spectral improvements
over conventional OFDM is investigated to enable simultaneous dynamic spectrum sens-
ing and access. Relying on polyphase filterbanks and offset quadrature amplitude mod-
ulation, the multi-carrier scheme is subject to well-known filter performance tradeoffs
between computational complexity and spectral dynamic range. Literature on simul-
taneous spectrum sensing and access is scarce; further provided is a formal theoretical
discussion of how OFDM/OQAM can be used for perfect reconstruction of detected
signals for modulation classification while simultaneously decoding data subcarriers on
other channels;

(6) new synchronization techniques for OFDM/OQAM are proposed which involves estima-
tion of unknown channel parameters τ , φ, and ν as well as equalizer taps Gk. These tech-
niques exist after the demultiplexer—in essence, operating in the frequency domain—
and consequently are robust to narrowband interference disruption, providing significant
performance improvement over conventional time-correlation techniques;

(7) a thorough performance comparison of OFDM and OFDM/OQAM in regards to their
ability to be synchronized in various hostile channel conditions as well as their required
computational complexities and theoretical data throughputs;

3. Synchronization of Multichannel Communications Systems

(8) a unifying methodology to monitor dynamic resource consumption on reconfigurable
platforms is provided to facilitate radio resource management;

(9) comparison of various resource-monitoring techniques, both online and offline, and anal-
ysis on the efficacy of deploying them in embedded systems;

4. Cognitive Engine Design

(10) a demonstrable protocol to enable dynamic spectrum access while maintaining energy-
quality scalability;

(11) theoretical modeling for cognitive engine design with a unifying framework to generically
describe the relationship between radio parameters, goals, and environmental observ-
ables;

(12) a novel intelligent radio engine derived from a case-based reasoner to monitor the per-
formance of the system using the above framework;

7

5. Miscellany

(13) a new approximate square-root Nyquist filter design using the I0-sinh Kaiser window.
The proposed filter provides significant performance improvements over the root raised-
cosine filter yet is much faster to compute than the best known filter which relies on
iterating over the Parks-McClellan algorithm.

1.7 Organization

The organization of this work is as follows: Chapter 2 introduces the requirements to enable wire-
less access in dynamic spectrum environments, highlights the benefits of using OFDM/OQAM as a
multi-carrier technology over traditional OFDM, and introduces a novel approximate square-root
Nyquist filter design with nearly optimal performance while being simple to compute. Chapter 3
introduces several new techniques for synchronizing single-carrier communications signals to enable
DSA systems. These techniques are based on maximum likelihood estimators and are computa-
tionally efficient, providing a solution applicable to software-defined radios. A resulting innovative
framing structure is further provided with a performance validated over the air in a wireless indoor
multi-path environment. Chapter 4 continues the results of the previous chapter by extending anal-
ysis to the synchronization of multi-carrier signals with an emphasis on OFDM/OQAM systems.
New estimators for the unknown reference parameters are proposed which exhibit comparable per-
formance to existing estimators while providing significant improvements in interference-laden chan-
nels, proving the applicability of OFDM/OQAM in dynamic spectrum environments. Chapter 5
proposes an architecture for online resource management in software-defined radios, demonstrating
considerable savings in required computational bandwidths in adaptive radios. The system’s perfor-
mance is characterized through baseband simulations and confirmed with over-the-air experiments
using the aforementioned synchronization techniques. Chapter 6 presents a unifying definition and
framework for cognitive radio design by generically describing the relationship between a radio’s
parameters, service quality metrics, goals, and observed environment. Further introduced is a
cognitive engine designed from a case database which abstracts from the radio application and
demonstrates blind adaptation to unique scenarios while internally managing its own size.

8

Chapter 2

Physical Layer Mechanisms for
Dynamic Spectrum Access

Because power consumption is strongly tied to a platform’s physical layer, the portability of
software-defined radios is heavily dependent upon the platform’s capabilities. Additionally, link
capacity is strongly affected by channel conditions and the changing wireless environment; conse-
quently, power consumption has significant implications on the the ability of mobile cognitive radio
platforms to enable dynamic spectrum agility. Polyphase filterbanks have been proposed for use
in dynamic spectrum access in [4, 22] primarily due to their improved spectral estimation dynamic
range over traditional OFDM. This chapter investigates the use of polyphase filterbanks as an
energy-scalable dynamic spectrum access scheme for the reduction of power consumption on SDR
platforms. A novel approximate square-root Nyquist filter design is presented which has significant
performance improvements over the traditional square-root raised-cosine filter in both stop-band
attenuation and inter-symbol interference. The resulting filter has similar properties to the best
known hM-3 filter without requiring iterations over the Parks-McClellan algorithm.

2.1 Background

Dynamic spectrum access (DSA) is comprised primarily of two components: sensing and aware-
ness—employing signal detection and classification to determine which frequency bands are un-
occupied—and access—utilizing available frequency bands for data communication. The actual
mechanisms used for sensing (e.g. signal detection and classification) are not the focus of this
research but rather the design of the physical radio layer to enable these techniques simultaneously
with access schemes with the explicit goal of minimizing resource consumption on the target plat-
form. Although the task of spectrum sensing is handled externally, a physical radio layer strategy
to enable sensing must be provided. These mechanisms must enable the two DSA components
described above and preferably do so in a way that is efficient to the radio platform. This implies
that a single medium access scheme that incorporates both spectrum sensing and spectrum access
is preferable over two individual ones due to power and processing considerations. Because signal
recognition is a critical component to DSA [23], this chapter investigates the application of both

9

single- and multi-carrier methods to accommodate these techniques.

2.1.1 System Description

In order to facilitate spectrum access, spectrum sensing is categorized into two major groups. In
the first category only the power spectral density of the signal is needed to make an decision
about which frequency bands are available. Because the phase information is lost, this category is
typically useful only for broad signal detection. For example, power spectral density alone cannot
distinguish between different PSK-modulated signals as the underlying data are carried within
the signal’s phase. The second category also requires that the phase of the signal of interest is
preserved so that the time series of the interference signal can be fed into a classifier to determine its
modulation properties to help with avoidance. As such there are two basic categories for spectrum
access: single- and multi-carrier methods. When non-contiguous spectrum use is required, multi-
carrier methods are preferred as they can efficiently combine the channelizer with the demodulator
and preserve the channel capacity. Alternatively, single-carrier methods are less complex, but are
ill-suited for situations where the spectrum must be subdivided into many partitions.

A number of other access schemes are available for spectrum contention including direct-sequence
and frequency-hopping spread spectrum signals. Radios using these techniques are designed to
handle interference through spectrum diversity rather than avoiding it, and regard their own RF
emissions as negligible interference to other receivers in the network. The Bluetooth [52] and 802.11b
[53] standards, for example, operate in the 2.4 GHz ISM band and contend with interference from
each other as well as other devices such as microwave ovens and cordless telephones. These underlay
systems treat all other signals in the band as secondary users and have interference mitigation built
into their protocols. When such devices operate alone in a network, the total throughput is not
typically reduced by any significant amount; however, the impact underlay signals has on legacy
users and other devices with protocols with sensitive forms of modulation can be significant. In this
capacity only overlay techniques are considered to be viable DSA techniques as they are explicitly
designed to avoid causing any interference to primary users.

2.1.2 Design Considerations

Regardless of which spectrum access mechanism is used, disabling the transmitter in the band of
interest is requisite for spectrum sensing. Depending upon the protocol, any secondary users must
vacate the band once primary users have been detected by the sensing mechanism. During its
sensing time, the receiver must gather statistics about the band in order to accurately determine
its availability. This must happen periodically to ensure that the occupied bandwidth remains
vacant and therefore available for use by secondary users. As such, data links in single-carrier DSA
environments are established by transmitting packetized frames in short bursts, followed by a quiet
period for sensing. Alternatively, multi-carrier systems have the additional capability of disabling
subcarriers which overlap the band of interest while simultaneously transmitting information on
those which don’t. In either case, this behavior has strong implications on the DSA node’s physical
layer design and suggests that in order to preserve spectral efficiency, the receiver must be able
to synchronize very quickly to each frame. Fast acquisition in this regard is a key element for

10

successful spectrum sharing in congested environments.

2.1.3 Single-carrier Methods

Spectrum allocation for single-carrier systems mandates the radio transmitter to use just one chan-
nel for communication between other nodes in the network. Bi-directional communication is ac-
complished through time-divsional duplexing on one channel (half duplex) or two channels simul-
taneously (full duplex). The channel is typically occupied for as long as it is available for use—that
is, no primary user occupying that particular frequency band is in range and in danger of receiving
interference. Nodes using single-carrier access schemes must guarantee a channel’s availability by
constantly scanning the band for the presence of other users and vacating occupied frequencies.
Consequently, these nodes must incorporate time-division duplexing into their protocols in order
to disable their transmitters; this is necessary even if full duplexing is used. Once the channel has
been deemed no longer available for secondary use, the radios are required to move to a different,
unoccupied frequency band. With the potential for switching channels frequently—particularly as
the spectrum becomes more congested—secondary nodes are likely to disseminate sensing informa-
tion throughout the network, sharing statistical usage information and conveying their preferred
backup channels.

2.1.4 Multi-carrier Methods

Multi-carrier communications schemes slice a frequency band into many parallel narrowband parti-
tions. This has several advantages over using a single wideband carrier with an equivalent data rate,
particularly in hostile spectrum environments. Parallel transmission is effective in combating ampli-
tude and delay distortion due to channel impairments as well as nonlinearities in the transmitter’s
and receiver’s analog circuitry. Furthermore, multi-carrier communications are robust to frequency-
selective fading channels in dense multi-path environments as equalization can be performed after
the down-sampler with just a single tap per channel. While numerous multi-carrier systems exist,
the majority of discussion is reserved to focus directly on orthogonal frequency-division multiplex-
ing (OFDM) and OFDM using offset quadrature amplitude modulation (OFDM/OQAM), both of
which support the maximum theoretical capacities of the spectrum.1 Unlike single-carrier methods,
these schemes can directly support simultaneous communication with spectrum sensing. This is ac-
complished by notching the transmitted spectrum—disabling certain subcarriers on the transmitter
while using them for detection on the receiver side of the link. The next several sections provide
detailed analysis on the efficacy of OFDM’s applicability to this methodology and demonstrate
that OFDM/OQAM is far better suited to the task despite its relative lack of interest in the radio
engineering community. This is true both for spectral resolution (sensing) as well as improving
channel capacity (access). The bulk of the discussion in the remainder of this chapter is reserved
for multi-carrier methods for dynamic spectrum access.

1Other frequency-division multiplexing schemes are available, but the majority of them waste spectrum by not
allowing subcarriers to overlap. For this reason their analysis has been omitted in this document.

11

time

(a) cyclic extension

time

(b) cyclic extension with tapering extension

Figure 2.1: OFDM cyclic extension diagram; highlighted regions are copied portions of the
original symbol

2.2 OFDM

Orthogonal frequency division multiplexing (OFDM) is a parallel data transmissions mechanism,
prevalent in wireless standards and has recently been proposed for spectrum sensing in conjunction
with dynamic spectrum access [95, 2, 75]. Subcarriers which detect signal energy from primary
users can easily be disabled, allowing for notches in the spectral bands. However, it has been
demonstrated [94, 22, 26] that the side-lobe leakage due to the square pulse shape in OFDM is
impractical for DSA systems with strict dynamic range requirements. This is due to the transform’s
lack of temporal windowing and results in a sin(ω)/ω spectral response. In fact, this lack of temporal
windowing is precisely why OFDM is used for communications; the cyclic nature of the FFT allows
the symbol to be extended by appending a portion of its tail to its beginning, as seen in Figure 2.1(a).
The circular nature of the inverse FFT permits the receiver to begin sampling the symbol anywhere
within the window of this extension without loss of orthogonality after the forward transform is
taken. This is a fundamental component of Fourier analysis in which a time delay translates to a
phase shift in frequency; all that needs to be done at the receiver is correct for this linear phase shift
in frequency before demodulation. This provides a much simpler (and computationally efficient)
solution to timing recovery than single-carrier systems. This is particularly useful for multi-access
systems where several nodes all upload to a central point in which they can never be perfectly
time-aligned; so long as their frames are all received by the base station within the duration of this
cyclic prefix window; however, they can be uniquely separated without inter-symbol interference.

12

2.2.1 Window Tapering

The usefulness of OFDM for data communications comes at a steep cost when considering spec-
tral compactness. The rectangular pulse shape amounts to a very poor 1/ω side-lobe roll-off but
is necessary to guarantee orthogonality between subcarriers. One would like to apply any of the
well-known windowing functions such as the prolate spheroid [85], Kaiser-Bessel [55], or Blackman-
harris [27] window to improve the stop-band attenuation of the symbol’s spectral response. These
windowing functions considerably reduce the side-lobe attenuation at the cost of slightly increasing
the width of each subcarrier. Applying a temporal window, however, would consequently break
the orthogonality conditions of OFDM and would result in considerable inter-symbol interference
and symbol errors. One possible solution is to further increase the cyclic extension of the symbol
and apply a tapering window which is flat over the duration of the symbol. An example of OFDM
window tapering is presented in Figure 2.1(b); notice that applying the tapering window requires
both a shaping prefix and a shaping postfix. Adjacent symbols are permitted to overlap at their
edges which can significantly improve the spectral distortion by eliminating sharp transitions be-
tween symbols. While window tapering of OFDM symbols has been shown to significantly improve
the out-of-band sidelobe leakage [88], this technique has several drawbacks:

1. the advantage of spectral side-lobe suppression is poor when the transition region between
symbols is short. Consequently, the symbol prefix and postfix extensions need to be consid-
erably large to see much benefit in spectral resolution;

2. these additional symbol extensions increase overhead and reduce the spectral efficiency (and
therefore the theoretical capacity) of the system;

3. tapering only improves the transmitted spectrum. the receiver’s FFT still results in poor
time-frequency compactness.

2.2.2 Subcarrier Injection

Another proposed solution is to inject subcarriers which do not carry data, but whose purpose is
explicitly to reduce the level of out-of-band energy [77]. Typically these subcarriers are placed at the
edge of the guard band between the data subcarriers and the target spectral notch. Computation
of these special subcarriers, however, can be cumbersome and time-consuming as they need to
be generated for each data symbol. Furthermore, the increase of the guard band necessary for
subcarrier injection reduces the spectral efficiency of the system. For the numerical results given
in [77], a band just seven subcarriers wide and centered within the transmitted signal required
17 subcarriers to pull the side-lobes down to roughly 70dB. Furthermore, [77] demonstrate a self-
interference performance hit just by injecting these sidelobes and increase their symbol error rate
significantly as the stop-band attenuation increases.

2.2.3 Increasing Number of Subcarriers

Although techniques such as cancellation subcarriers, window tapering, and subcarrier deactivation
have mitigated OFDM’s spectral compactness problem [16], the overhead associated with these

13

strategies significantly reduces OFDM’s spectral efficiency and throughput. A simpler solution is
to simply increase the number of OFDM subcarriers. This increases the length of the symbol which
in turn compresses the width of each subcarrier. However, this technique has several problems:

1. the receiver is now more sensitive to frequency offsets as the subcarriers are more narrow,
and spaced closer to one another;

2. this increases the coherence time and reduces the ability for the system to mitigate the effects
of time-dependent fading channels (the channel is not ergodic) because now the symbol length
is temporally extended;

3. this increases the computational complexity of the receiver (non-linearly) as the size of the
transform is increased;

4. increasing the number of subcarriers degrades the system’s peak-to-average power ratio which
causes non-linear distortion in the analog circuitry (mixers, power amplifier). Backing off the
transmit power to mitigate these effects is undesirable as it degrades the capacity of the link;

5. the 1/ω side-lobe rolloff proves diminishing returns for increasing the number of subcarriers.

The cyclic prefix in OFDM is required by the nature of the inverse transform which results in
temporal discontinuities. The lack of smooth transitions between symbols results in ringing when
the signal propagates through RF hardware (mixers, up-converters, transmission lines, and the
antenna) which would otherwise result in inter-symbol interference. Interestingly, much of the
literature on OFDM touts the cyclic extension as a mechanism to eliminate inter-symbol interference
due to the channel, while neglecting to mention that the interference is actually a byproduct of
the transmission scheme itself. As it turns out, with a sufficient number of subcarriers (relative
to the channel’s coherence time), impairments due to inter-symbol interference fall secondary to
spectral nulls due to multi-path fading. Zhou et al. stated the problem well in [3]: “in order for
non-contiguous OFDM to be feasible in the presence of primary users’ signals, stringent constraints
need to be imposed. . . and if not met, the interference caused is detrimental to both the primary
and secondary users.” Permitting smooth transitions between symbols eliminates the need for the
cyclic prefix as a means to absorb inter-symbol interference due to the RF hardware. This chapter
will show it is indeed possible to devise an orthogonal multiplexing scheme which theoretically
achieves the Shannon capacity while using filtered, overlapping subcarriers.

2.3 Polyphase Filterbank Channelizers

Parallel data communication channels subdivide a relatively wide bandwidth into smaller subchan-
nels. Because each subchannel is relatively narrow, mulitichannel systems are robust to fading and
impulsive noise. Furthermore, dynamic spectrum access can be achieved by simply enabling the
subchannels (or “subcarriers”) which exhibit the best link characteristics. Section 2.2 detailed the
many drawbacks of using OFDM for dynamic spectrum sensing and access. Polyphase filterbanks
have been proposed for spectrum sensing in [4, 22] due to their spectral compactness and spectral
dynamic range improvements over traditional OFDM. This section gives a brief overview of the

14

polyphase filterbank channelizer without going into great detail about the mathematics behind its
design; it is sufficient to note, however, that a single low-pass filter and discrete Fourier transform
can be used to service all aliased bands simultaneously. A more detailed description can be found
in [28, 93], Chapter 4.

2.3.1 Filter design using Kaiser window

Optimum digital filters are those which meet a set of constraints related to the shape of its spectral
response for a given length. These constraints are most often related to minimizing the maximum
error (equiripple) in the pass-band and/or stop-band, fitting a prescribed shape in the least-squares
sense, flattening the magnitude and/or phase response, or some combination of the above. Recursive
digital filter designs (infinite impulse response) for these constraints have long been solved; however
theory behind designing corresponding non-recursive filters (finite impulse response) has lagged.
Within the past several decades strong advancements in the field of non-recursive digital filters
have been made with regard to equiripple filters [74, 66] which use the Remez exchange algorithm
to solve the minimax problem. This filter design process, however, is complex and subject to errors
from finite machine precision. One of the simpler methods for non-recursive filter design is to
apply a band-limiting window to a truncated sinc function [54], providing a moderate compromise
between performance and complexity. The parameters for a low-pass filter are

N = filter order

δ1 = pass-band ripple

δ2 = stop-band ripple

ωp = pass-band cutoff

ωs = stop-band cutoff

all angular frequencies can be converted to cycle frequencies (e.g. fs = ωs/2π) and are all relative to
the sampling frequency Fs. The normalized quantities for transition bandwidth and and stop-band
attenuation can be defined as ∆f = (fs − fp) /2π and As = −20 log10 (δ2), respectively.

The ideal low-pass filter has a rectangular response in the frequency domain and an infinite sin(t)/t
response in the time domain. Because all time-dependent filters must be causal, this type of filter
is unrealizable; furthermore, truncating its response results in poor pass-band ripple stop-band
rejection. An improvement over truncation is offered by use of a band-limiting window. Let the
finite impulse response of a filter be defined as

h(n) = hi(n)w(n) (2.1)

where w(n) is a time-limited symmetric window and hi(n) is the impulse response of the ideal filter
with a cutoff frequency ωc, viz.

hi(n) =
ωc
π

(
sinωcn

ωcn

)
, ∀n (2.2)

15

A number of possible windows could be used, but this work focuses on the Kaiser window for its
systematic ability to trade transition bandwidth for stop-band rejection. The Kaiser window is
defined as

w(n) =

I0

[
πα

√
1−

(
n
N/2

)2
]

I0 (πα)
−N/2 ≤ n ≤ N/2, α ≥ 0 (2.3)

where Iν(z) is the modified Bessel function of the first kind of order ν and α is a shape parameter
controlling the window decay. Iν(z) can be expanded as

Iν(z) =
(z

2

)ν ∞∑

k=0

(
1
4z

2
)k

k!Γ(k + ν + 1)
(2.4)

The sum in (2.4) converges quickly due to the denominator increasing rapidly, (and in particular
for ν = 0 the denominator reduces to (k!)2) and thus only a few terms are necessary for sufficient
approximation. Computation of I0(z) for (2.3) can be difficult on computers with limited precision,
particularly without the use of floating-point math. This is made evident by the fact that the mag-
nitude of I0(z) grows extremely large while the ratio in (2.3) is bounded by [0, 1]. Appendix C gives
a good approximation for computing I0(z) for the Kaiser window with little noticeable difference
in the resulting filter response.

Kaiser gives an approximation for the value of α to give a particular sidelobe level for the window
as [93, (3.2.7)]

α =

0.1102(As − 8.7) As > 50

0.5842(As − 21)0.4 21 < As ≤ 50

0 else

(2.5)

where As > 0 is the stop-band attenuation in decibels. While exact the analytical relationship
between a non-recursive low-pass filter’s parameters (length, transition bandwidth, stop-band at-
tenuation, and pass-band ripple) are not known, there exist many formulas which give approxima-
tions valid within a reasonable range and can serve as reasonable bounds. Kaiser has proposed a
relatively simple formula in [54] for predicting the filter length from the ripple specifications and
transition bandwidth as

N ≈ As − 7.95

4.36∆f
(2.6)

where again As and ∆f represent the stop-band attenuation and transition bandwidth, respectively.
The above equation provides a good, low-complexity approximation to the bounds on filter length
and can be inverted easily for the stop-band attenuation as

As ≈ 14.36∆fN + 7.95 (2.7)

Herrmann et al. gives a somewhat more accurate set of formulas in [48], but are non-invertible and
are considerably more complex.

As an example, assume the design specifications for a low-pass filter are to have a cutoff frequency of
fc = 0.09, a transition bandwidth of ∆f = 0.05, and a desired stop-band suppression of As = 60 dB
(δ1 = δ2 = 10−3). The resulting filter would need approximately N = 73 coefficients and a

16

 0

 1

 0 10 20 30 40 50 60 70

In
d

iv
id

u
a

l
C

o
m

p
o

n
e

n
ts

Sample Index

sinc
Kaiser window

 0

 1

 0 10 20 30 40 50 60 70

C
o
m

p
o

s
it
e
 F

ilt
e

r

Sample Index

(a) Time series

-100

-80

-60

-40

-20

 0

 20

-0.4 -0.2 0 0.2 0.4

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n
s
it
y
 [

d
B

]

Normalized Frequency

(b) Power Spectral Density, H(ω)

Figure 2.2: Kaiser window filter design example, fc = 0.09, ∆f = 0.05, As = 60dB

17

-120

-100

-80

-60

-40

-20

 0

 20

-0.4 -0.2 0 0.2 0.4

P
o
w

e
r

S
p
e
c
tr

a
l
D

e
n
s
it
y
 [
d
B

]

Normalized Frequency

prototype
image

Figure 2.3: Polyphase channelizer spectrum design for M = 6 channels and a stop-band suppres-
sion of As = 80dB.

Kaiser window with a shape parameter α = 5.653. Figure 2.2 demonstrates such a filter with
Figure 2.2(a) showing the sinc and Kaiser window components to formulate a composite time series
while Figure 2.2(b) depicts the frequency response of the resulting filter.

2.3.2 Polyphase Channelizer Design

The filter prototype described in the previous section can easily be used to create a multi-band
channelizer. A channelizer is a combination of parallel down-converters and decimators which mixes
the signal to baseband, applies an image-rejection filter, and then reduces the signal’s sampling rate.
This can be accomplished quite efficiently using a polyphase filter bank which aliases all the signals
on top of each other, and then selects the appropriate alias by applying a set of phase rotators
to the separate path of the polyphase partition. Conveniently, if all the bands are evenly spaced
with center frequencies ωk = 2πk/M , they may be simultaneously preserved by applying a discrete
Fourier transform to the output of the polyphase partition. This type of channelizer is known as
a uniform DFT filterbank [93, Section 4.3.2] and can be used to realize a channelizer in a very
efficient manner. An example of the aliased spectrum can be seen in Figure 2.3. The mixing
process can be implemented very efficiently by constructing a polyphase partition of the filter by
decimating its finite impulse response time series. The aliased output of each partition is selected
by using the discrete Fourier transform. Figure 2.4 demonstrates this concept. For a more detailed
description of polyphase filterbank channelizers for use in digital communications, the interested
reader is referred to [28, Chapter 9].

18

IDFT
W ∗

G0(z)

G1(z)

G2(z)

G3(z)

...

GM−1(z)

Figure 2.4: DFT polyphase filterbank channelizer system diagram.

2.3.3 (Almost) Perfect Reconstruction Filters

It is worth noting that polyphase filterbanks have the additional capability of (almost) perfectly
reconstructing a signal spanning multiple channels [28]. The qualifier “almost” is necessary because
while DFT filterbanks can never truly perfectly reconstruct the signal, [24, p. 189], the amount of
alias distortion can be kept arbitrarily small through appropriate filter design techniques. Perfect
reconstruction is particularly useful for advanced sensing algorithms which rely on methods other
than simple energy detection [23]. Section 4.7 gives an example of how polyphase filterbanks can
simultaneously be used for communications and interference signal reconstruction.

2.4 OFDM/OQAM

While traditional OFDM provides many benefits to radio design (e.g. the parallel down-converter
uses computationally efficient FFTs), its limitations for spectrum sensing are apparent through its
problems with inferior sidelobe leakage [94] due to unfiltered pulses. Section 2.2 has highlighted
many of the drawbacks OFDM has for dynamic spectrum usage, particularly due to its lack of
spectral compactness, and have demonstrated that a parallel channelizer can be efficiently realized
through a polyphase filterbank and a single FFT in Section 2.3. It would be convenient to combine
the benefits of efficient parallel data communication (OFDM) with the spectral compactness of
polyphase filterbank channelizers. As it turns out, this is possible with a few minor modifications
to the basic filterbank channelizer design.

Pioneering work on the spectrally efficient orthogonal frequency division multiplexed offset quadra-
ture amplitude modulation (OFDM/OQAM) was done by Chang and Saltzberg in the 1960s [17, 83]
and was later extended to use the discrete Fourier transform and polyphase filterbanks in [49, 12].
OFDM/OQAM improves upon OFDM by allowing any square-root Nyquist filter to be used as a
prototype for each subcarrier. This promotes both improved spectral efficiency (in terms of through-

19

put) and out-of-band interference suppression. In this approach successive carriers are overlapped
by 50% causing cross-talk between the real and imaginary components of successive subcarriers.
This cross-talk is suppressed by staggering the in-phase and quadrature components of successive
channels by half a symbol. Chapter 4 presents a more detailed discussion of OFDM/OQAM design.

Figure 2.5 demonstrates a four channel OFDM/OQAM system in both time- and frequency-domain
representations. Each of the four channels in Figure 2.5(a) uses offset 16-QAM—two bits per I/Q
channel. Notice that the even channels (0 and 2) delay the quadrature component by T/2 while the
odd channels (1 and 3) delay the in-phase component. Unlike OFDM, transitions between symbols
are smooth which implies that each channel is spectrally compact; this is verified in Figure 2.5(b).
Furthermore, adjacent channels are permitted to overlap by as much as half the symbol rate (1/2T)
without inter-channel interference. This relaxes the constraint on the prototype filter’s transition
bandwidth (∆f) which reduces its length for a specified stop-band attenuation (As). Furthermore,
most of the filter’s parameters can be arbitrarily specified, giving the radio flexibility to adapt to
different environments, and potentially trade computational complexity for spectral efficiency.

The results presented in this section suggest that the performance of OFDM/OQAM is significantly
dependent upon its filter design. Indeed this is the case and has been proven in [83] for half- and
full-cosine rolloff filters. The next section introduces a novel approximate root Nyquist filter with
significant improvements over the well-known root raised-cosine pulse which can be expressed in
closed form.

2.5 New Approximate Square-root Nyquist Filter Design

Nyquist’s criteria for designing a band-limited filter exhibiting zero inter-symbol interference (ISI)
is for the magnitude of the spectral response of a linear phase filter to be symmetric about the down-
sampling frequency, H(ω) +H(π/T − ω) = 1 for 0 ≤ |ω| ≤ π/2T . Splitting the filtering operation
into two components (one at the transmitter and one at the receiver) assures optimal performance
in the presence of additive white Gauss noise. One particular pulse used commonly in academics is
the raised-cosine pulse, which is likely used so often because its time-domain representation can be
easily described in closed form [76, p. 560]. However it is well-understood that the spectral response
of the raised-cosine filter degrades quickly as the pulse duration is truncated to a realizable finite
time series. Furthermore, its spectral factorization (the root raised-cosine pulse) exhibits even worse
spectral response when truncated.

An improved square-root Nyquist filter proposed in [29] called the hM-3 filter provides a strong
improvement over the raised-cosine filter. The hM-3 filter iterates over the well-known Parks-
McClellan algorithm which uses Chebyshev polynomials to solve the minimax problem for non-
recursive filter design. The hM-3 design strategy is to modify the band edges of the Nyquist filter
in the Parks-McClellan algorithm such that the resulting filter approximates a square-root Nyquist
response and has a minimal inter-symbol interference. The result is a high-precision digital filter
whose stop-band attenuation, inter-symbol interference, and transition bandwidths are significantly
improved over the root raised cosine filter of the same length. Computing its solution, however, can
prove to be a cumbersome task, particularly for filters of a high order. The memory requirements
of the Parks-McClellan algorithm increase with the filter order (the suggested grid density is 20N)

20

C
h

a
n

n
e

l
0

C
h

a
n

n
e

l
1

C
h

a
n

n
e

l
2

C
h

a
n

n
e

l
3

(a) Time Series

-100

-80

-60

-40

-20

 0

-0.4 -0.2 0 0.2 0.4

P
o
w

e
r

S
p
e
c
tr

a
l
D

e
n
s
it
y
 [
d
B

]

Normalized Frequency

even channel
odd channel

(b) Power Spectral Density

Figure 2.5: Example of a 4-channel OFDM/4-OQAM baseband signal and frequency power
spectral density representations. Odd channels delay in-phase (solid) by half a symbol, even
channels delay quadrature (dashed) by half a symbol. Frequency overlap is 50% for each adjacent
channel.

21

and the algorithm can potentially fail to converge if the machine precision isn’t sufficient. This is
particularly noticeable for filters with very large stop-band attentions where the resulting Chebyshev
error, δ, is very small in which case the computer’s numerical representation of 1 ± δ can easily
have insufficient resolution. Furthermore, the hM-3 filter requires many iterations of the Parks-
McClellan algorithm for an optimal solution, which results in significant computational overhead.
One possible work-around is to pre-compute the filter coefficients offline for a range of potential
filters, and then use polynomial interpolation to resample the filter taps (if necessary); however
this restricts the availability to design any filter desired at run-time, and can potentially lead to a
sub-optimal solution.

As described in Section 2.3.1, a well-known non-recursive filter design technique is to apply a
symmetric tapering window to a sinc function. Setting the fundamental frequency of the sinc to
the down-sampling rate guarantees the resulting filter meets Nyquist’s zero inter-symbol interference
criteria and is the motivation behind using this as a design technique for square-root Nyquist filters.
Transformation of a Nyquist filter to its square-root Nyquist counterpart can be complicated.
One solution is to compute a spectral factorization on the time series of the derived filter [93,
Section 3.2.5] by decomposing the Nyquist filter polynomial H(z)

H(z) = h0 + h1z
−1 + h2z

−2 + · · ·+ h2N−2z
2N−2

into a square-root Nyquist filter G(z) from its root components, viz.

H(z) = G2(z) =
[
g0 + g1z

−1 + · · ·+ gN−1z
N−1

]2

This decomposition can be accomplished by performing a search for the 2N − 2 complex roots of
H(z) as

∑2N−3
k=0 (1− rkz−1) and then grouping them appropriately such that once expanded, G(z)

has only real coefficients. While this option is possible, it is unrealistic for several reasons:

1. the roots of G(z) must be real and thus H(z) cannot have a negative frequency response (i.e.
H(ejω) ≥ 0, ∀ω). It is unlikely that the Nyquist filter’s spectral response will be positive for
all frequencies, as most windowed sinc functions do have a slight negative response in the
stop-band. A possible work-around is to force a non-negative spectral response by adding
a small offset of δ2 (the stop-band ripple); however, this effectively halves the stop-band
attenuation of the filter [93, Figure 3.2-9];

2. determining the polynomial roots can be time-consuming and computationally intense. Con-
vergence of many well-known root-finding algorithms (such as the Durand-Kerner method
and Bairstow’s method) is often contingent upon the polynomial being well-conditioned, and
can even fail to converge if the initial conditions are not appropriately set;

3. in order for the the zero-phase criteria to be met, the roots of the polynomials must be
appropriately grouped together—a cumbersome task in and of itself [79, Section XII]—and
is particularly difficult as the size of the filter increases;

4. algorithms which do not rely on computing the zeros of H(z) exist [93, Appendix D]; however,
they are typically more computationally involved than is desirable.

22

ω

|H(ejω)|

ωp ω0 = π/k ωs

1
2

2πβ/k

(a) Nyquist filter prototype

ω

|G(ejω)|

ω̇p π/k ω̇0 ω̇s

1√
2

(1 + ρ)πβ/k

(b) Approximate square-root Nyquist filter prototype

Figure 2.6: Kaiser approximate square-root Nyquist filter prototype with bandwidth adjustment
factor 0 < ρ < 1.

Alternatively, The hM-3 filter design approach can be used by searching for the appropriate band
edges which minimize the resulting filter’s inter-symbol interference. Motivated by [29] in which
the authors accept that the filter’s spectral response won’t be perfectly symmetric, this section
investigates the effects of adjusting the pass-band cutoff frequency of a non-recursive filter design
using a temporal windowed sinc in order to approximate a square-root Nyquist filter.

2.5.1 Filter Design Description

To begin, observe the properties of an ideal Nyquist filter H(z) which has the frequency response
H(ejω), operating at k samples per symbol with a delay of m symbols and an excess bandwidth
factor β. The resulting filter has N = 2km + 1 coefficients. Figure 2.6(a) demonstrates the ideal
properties of a Nyquist filter where ω0 = π/k is the half-power cutoff frequency of the filter, and
ωp = π(1 − β)/k and ωs = π(1 + β)/k are the pass-band and stop-band cutoff frequencies of
H(z), respectively, normalized to the sampling frequency. The resulting transition bandwidth is

23

∆ω = ωs − ωp = 2πβ/k. An approximation to the filter’s square root response is a new filter
whose transition bandwidth is adjusted such that it passes directly through 1/

√
2 at the critical

sampling frequency, ω0, as demonstrated in Figure 2.6(b). The results given in [29] conclude that
the approximate root Nyquist filter G(z) has a transition band similar to that of H(z), but takes a
compressed form in which the pass-band and half-power cutoff frequencies are increased (ωp → ω̇p
and ω0 → ω̇0). Furthermore, The stop-band frequency of the filter (ωs) remains the same in
order to preserve the excess bandwidth design parameter. This effectively decreases the transition
bandwidth of the filter, and as a result its stop-band attenuation is slightly higher. This performance
degradation, however, is not nearly as poor as with taking the true spectral factorization of H(z)
in which As is reduced by half.

The filter transformation of H(z) to G(z) in Figure 2.6(b) can be described by a single parameter ρ
which simultaneously accounts for both the increase in the cut-off frequency as well as the decrease
in transition bandwidth. Effectively, the transition bandwidth is decreased from ∆ω = 2πβ/k to
∆ω̇ = (1 + ρ)πβ/k for 0 < ρ < 1. The resulting filter parameters can be re-defined as

ω̇p =
π

k

[
1− βρ

]
(2.8)

ω̇0 =
π

k

[
1 + β(1− ρ)

]
(2.9)

ω̇s =
π

k

[
1 + β

]
(2.10)

Therefore, for a given square-root Nyquist filter design with k samples per symbol, m symbols of
delay, and an excess bandwidth factor of β, all that needs to be done is to search for the value of
ρ which minimizes its inter-symbol interference.

2.5.2 Theory

Filter design using the Kaiser-Bessel window (see Section 2.3.1) has been shown to produce a near
optimal prototype filter in terms of minimizing stop-band energy [93, Section 3.2.2]. Additionally,
it is an accurate yet computationally efficient approximation to the well-known family of filters
using prolate spheroid sequences which maximize the ratio of in-band to out-of-band energy for
a given cut-off frequency. Furthermore, it provides an extensible mechanism to trade transition
bandwidth for stop-band attenuation, and thus is the basis of the new approximate square-root
Nyquist filter design. The Kaiser window, defined by (2.3), has a spectral response [55]

W (ω) =

N sinh

[√
α2 −

(
Nω
2

)2
]

I0(α)

√
α2 −

(
Nω
2

)2 (2.11)

where sinh(z) = 1
2 [ez − e−z] is the hyperbolic sine function and and I0 is the modified Bessel

function of the first kind. Let f(z) = sinh
√
z/
√
z. The first observation is that f(z) is purely real

for all z:

f(z) =

1
2
√
z

[
e
√
z − e−

√
z
]

z ≥ 0

sin
√−z/√−z z < 0

24

Furthermore, the first negative zero-crossing of f(z) is at z = −π2. Therefore, the first null of the
Kaiser window is at ω = 2

N

√
α2 + π2, or f = 1

πN

√
α2 + π2. The first side-lobe of f(z) is located

at z = −20.19 and has a value of approximately -0.217234. Therefore, the first side-lobe of the
Kaiser window is at ω ≈ 2

N

√
α2 + 20.19, or f ≈ 1

πN

√
α2 + 20.19 which gives a side-lobe value of

W (ω) = −0.217234N/I0(α). Notice that as the filter bandwidth increases with α, its first side-lobe
(commensurate of its stop-band attenuation) decreases with α.

The finite impulse response of a filter designed by applying a windowing mask to a sinc function is
defined in (2.1). The resulting filter’s frequency response is therefore the convolution of the Fourier
transform of the individual components, viz.

H(ω) = Hi(ω) ∗W (ω) =

∫ ∞

−∞
Hi(ξ)W (ω − ξ)dξ (2.12)

where Hi(ω) is rectangular with a one-sided bandwidth of ωc. H(ω) can then be reduced to

H(ω) =

∫ ωc

−ωc
W (ω − ξ)dξ =

∫ ω+ωc

ω−ωc
W (ξ)dξ (2.13)

It is also important to keep in mind that as the filter’s cutoff frequency is increased, it is necessary
to simultaneously decrease the transition bandwidth to preserve the excess bandwidth design pa-
rameter. The challenge is therefore to find the cutoff frequency ωc and Kaiser window parameter
α which minimize the resulting inter-symbol interference.

2.5.3 Evaluating Inter-Symbol Interference

Inter-symbol interference is the auto-correlation of the root-Nyquist filter response evaluated at
non-zero integer multiples of the symbol period. The resulting matched-filter output with a delay
τ is

h(τ) =

∫ ∞

−∞
g(t)g(t− τ)dt (2.14)

which, when expressed in discrete form with an integer lag `, gives

h(`) =
N−1∑

j=|`|
g(j)g(j − |`|), −N ≤ ` ≤ N (2.15)

The inter-symbol interference spans the full duration of h(`) and so it is useful to express ISI in
terms of its root mean-square value, viz.

ζ2
rms =

1

m

m∑

i=1

(
h(ki)

h(0)

)2

(2.16)

2.5.4 Optimizing and Approximating ρ

By nature of using a Kaiser-Bessel window for filter design, its response will automatically have the
nearly optimum performance in terms of stop-band rejection for the specified length and transition

25

-80

-70

-60

-50

-40

-30

-20

-10

 0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ilt

e
r

In
te

r-
S

y
m

b
o
l
In

te
rf

e
re

n
c
e
 [
d
B

]

β = 0.20

β = 0.30

β = 0.40

β = 0.50
β = 0.60

β = 0.70
β = 0.80

β = 0.90

Adjusted excess bandwidth, ρβ

Figure 2.7: r-Kaiser square-root Nyquist filter design, ISI vs. adjusted excess bandwidth (ρβ)
for a prototype filter with k = 2 samples/symbol and a delay of m = 3 symbols.

bandwidth. Furthermore, the stop-band attenuation is for all practical purposes independent of
the filter’s cutoff frequency, and thus independent of k. It is therefore only necessary to adjust the
transition band of the filter to minimize the inter-symbol interference of the resulting approximate
square-root Nyquist filter. The filter can be completely determined by specifying its over-sampling
factor k, its delay in terms of symbols m, and its excess bandwidth factor β. Because the filter
response is relative to k, the dependency ρ has on k is negligible and can be ignored.

As Figure 2.7 demonstrates, inter-symbol interference is clearly dependent upon the choice of
ρ for a particular excess bandwidth factor β and filter delay m. Additionally, the minima in
Figure 2.7 for each curve increase with β and are increasingly more sensitive to the bandwidth
adjustment. Now all that remains is to perform a search for the value of ρ which minimizes ζrms.
Iterative search methods, while robust, are typically undesirable as they require time-consuming
computation. Figure 2.8 plots β vs. ρ for several values of the filter delay, in which the strong
relationship between the two is clearly visible, and suggests that an approximating function can be
used to relate the two. Empirically, it was found that the following formula provides a very good
approximation to the sample data:

ρ̂ = c0 + c1 log
(
β
)

+ c2 log2
(
β
)

(2.17)

The values of c0, c1, and c2 were optimized to the sample data in the minimum mean square error
sense using a gradient search method and are given in Table 2.1 for different filter delays m. The
approximation given by (2.17) is also plotted in Figure 2.8, represented by the solid lines, and
suggests a good fit to the sample data.

26

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m=1

m=2

m=3

m=4

m=5

m=6

Excess bandwidth factor, β

N
or
m
al
iz
ed

b
an
d
w
id
th

ad
ju
st
m
en
t
fa
ct
or
,
ρ

Figure 2.8: r-Kaiser optimum value of ρ vs. excess bandwidth factor β for varying filter delays
m ∈ [1, 6] along with the proposed approximation given by (2.17).

Table 2.1: Coefficients to approximate ρ̂, given by (2.17)

m c0 c1 c2

1 0.75731975 0.05968561 -0.08998869
2 0.81099409 0.07149210 -0.01679019
3 0.84243834 0.07660834 -0.00545734
4 0.86171466 0.07264388 -0.00484673
5 0.87516469 0.06799082 -0.00525903
6 0.88511246 0.06330929 -0.00600636
7 0.89297986 0.05937212 -0.00660814
8 0.89985144 0.05688106 -0.00667160
9 0.90810889 0.05885705 -0.00531144
10 0.81103307 -0.12123501 -0.06670734
11 0.73827326 -0.23771790 -0.10142587
12 0.69563413 -0.29050779 -0.11261396
13 0.67214876 -0.31101137 -0.11386558
14 0.65340453 -0.31693947 -0.10999438

m > 14 0.056873 log(m) + 0.781388 0.05596561 -0.00388152

27

 0

 0.5

 1

-10 -5 0 5 10

Symbol Index

 0

 0.5

 1

-10 -5 0 5 10

Symbol Index

g
(k
T
s
)

h
(k
T
s
)

(a) Time series

-120

-100

-80

-60

-40

-20

 0

 20

 0 0.1 0.2 0.3 0.4 0.5

P
o
w

e
r

S
p
e
c
tr

a
l
D

e
n
s
it
y
 [
d
B

]

-0.4

-0.2

 0

 0.2

 0 0.0625 0.125

Normalized Frequency, ω/2π

G(ω)
H(ω)

(b) Power Spectral Density

Figure 2.9: r-Kaiser example, k = 4, m = 7, β = 0.2

28

-100

-80

-60

-40

-20

 0

 20

 0 0.1 0.2 0.3 0.4 0.5

P
o
w

e
r

S
p
e
c
tr

a
l
D

e
n
s
it
y
 [
d
B

]

Normalized Frequency, ω/2π

r-Kaiser G(ω)
RRC G(ω)
hM-3 G(ω)

(a) Frequency Response

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0 0.1 0.2 0.3 0.4 0.5

P
o
w

e
r

S
p
e
c
tr

a
l
D

e
n
s
it
y
 [
d
B

]

Normalized Frequency, ω/2π

r-Kaiser G(ω)
RRC G(ω)
hM-3 G(ω)

(b) Frequency Response, Pass-band Detail

Figure 2.10: G(ω) for r-Kaiser, root raised-cosine, hM-3 with k = 2 samples/symbol, a filter
delay of m = 12 symbols, and an excess bandwidth factor of β = 0.2

29

2.5.5 Results

An example of designing an r-Kaiser filter can be found in Figure 2.9 for k = 4 samples/symbol,
a filter delay of m = 7 symbols, and an excess bandwidth factor of β = 0.2. Computing ρ̂
from (2.17) using coefficients from Table 2.1 with m = 7 gives ρ̂ = 0.780351. After optimization
the true bandwidth adjustment factor is ρ = 0.775543 which leads to a transition bandwidth of
∆f = ρβ/k = 0.0388, a cutoff frequency f = [1 +β(1−ρ)]/k = 0.261, and a stop-band attenuation
As = (2km+ 1)14.6∆f + 13 = 39.47dB, resulting in a Kaiser window parameter α = 3.332 as given
by (2.5). The resulting filter has a root mean-square inter-symbol interference of -54.6dB and a
maximum ISI of -45.6dB.

Another example comparing the spectral response of the r-Kaiser filter with the hM-3 and root
raised cosine filters is depicted in Figure 2.10 for k = 2 samples/symbol, a filter delay of m = 12
symbols, and an excess bandwidth factor of β = 0.2. Notice that in Figure 2.10(a) that the r-Kaiser
and hM-3 filters out-perform the RRC filter in terms of stop-band attenuation by more than 20dB.
For the design parameters, the first null of G(ω) should ideally exist at ω/2π = (1 + β)/2k = 0.3;
while both the r-Kaiser and hM-3 filters meet this criteria, the RRC filter’s first null exists at
approximately 0.31, which effectively increases its spectral bandwidth. A detailed view of the
filters’ pass-bands can be found in Figure 2.10(b) in which the large pass-band ripple of the RRC
filter is clearly visible. Furthermore, the spectral responses of the r-Kaiser and hM-3 filters are
quite similar, in terms of pass-band ripple, stop-band attenuation, and transition bandwidth. To
compare, the r-Kaiser filter has an RMS ISI of -73.9dB while the root raised-cosine filter has only
-65.1dB.

2.6 OFDM/OQAM vs. OFDM

The proposed benefits of OFDM/OQAM over traditional OFDM have been highlighted previously
in this chapter. This section compares the theoretical performance of the two in terms of spec-
tral efficiency and theoretical computational complexity. The intent here is to demonstrate that
OFDM/OQAM has a significant improvement of spectral resolution over OFDM while being only
marginally more complex to compute on a reconfigurable platform. The r-Kaiser filter design,
proposed in the previous section, has demonstrated an improved spectral response over the con-
ventional root raised-cosine filter while proving much easier to compute than the hM-3 filter. As
such it will be used throughout the discussion as a prototype filter for OFDM/OQAM.

2.6.1 Spectral Response

A comparison of spectral efficiency for OFDM/OQAM versus traditional OFDM can be found in
Figure 2.11. With the same data rate, OFDM/OQAM demonstrates more than 20dB sidelobe sup-
pression in its notched band over OFDM without a significant increase in computational complexity.
This spectral compactness holds even with nearly eight times fewer subcarriers than OFDM. It is
important to reiterate that the prototype filter can be designed with an arbitrary length and excess
bandwidth factor, allowing the designer any reasonable stop-band attenuation that is desired.

30

-120

-100

-80

-60

-40

-20

 0

 20

-0.4 -0.2 0 0.2 0.4

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n

s
it
y
 [

d
B

]

Normalized Frequency

OFDM (500 subcarriers)
OFDM/OQAM (64 subcarriers)

Figure 2.11: Power spectral density: OFDM/OQAM vs. traditional OFDM, 12.5% subcarriers
disabled.

31

2.6.2 Computational Complexity

Figure 2.11 demonstrates incontrovertibly that OFDM/OQAM has many spectrum compactness
advantages over traditional OFDM with only a fraction of the subcarriers. However, one of the
potential drawbacks to allowing the subcarriers to be filtered is the increase in baseband processing
required to compute the additional multiply-and-accumulate operations. This section compares
the respective computational complexities of computing the down-conversion for both OFDM and
OFDM/OQAM, neglecting overhead due to synchronization (e.g. carrier frequency offset correc-
tion).

Well-known fast Fourier transform (FFT) algorithms compute the N -point discrete Fourier trans-
form (DFT) in O(N logN) floating-point operations (flops). The fastest of these [31] can compute
a split-radix (i.e. N = 2m) FFT having a flop count of

34

9
N log2N −

124

27
N − 2

9
(−1)log2N log2N +

16

27
(−1)log2N + 8

which is approximately (89/18)N log2N floating-point operations [86]. The OFDM receiver only
computes the forward DFT once for every symbol, and therefore the complexity of the receiver is
approximately

Kofdm = Fs

(
M

M +Ncp

)
89

18
M log2M (2.18)

where Fs is the sample rate of the receiver, M is the number of subcarriers of the multiplexer, and
Ncp is the length of the cyclic prefix in samples. This estimate, of course, provides a tight lower
bound on the number of flops required to receive the signal, and does not incorporate any of the
necessary synchronization operations.

For an M -channel filterbank, the DFT can be performed efficiently using FFT techniques. The
results given in Section 2.6 suggest that OFDM/OQAM does not require as many subcarriers
as OFDM due to its spectral compactness resulting from its temporal shaping; however, filter-
ing the subcarriers introduces additional complexities. Furthermore, because the in-phase and
quadrature-phase components of the signal are staggered by half a symbol, the receiver requires
two independent analysis filterbanks [24, Fig. 7.12]. This effectively doubles the complexity of the
receiver as each down-converter needs to run independently of the other. If the filter has a delay
of m OFDM/OQAM symbols, then it has N = 2Mm+ 1 coefficients. A single analysis filterbank
requires both the M -point FFT as well as a single N -tap filter for each output symbol. Therefore
the complexity of the OFDM/OQAM analysis filterbank is

Kofdm/oqam = 2Fs

(
89

18
M log2M + 2Mm+ 1

)
(2.19)

For a fixed number of subcarriers M , OFDM/OQAM has a complexity roughly double that of
OFDM; however, because of its spectral compactness, fewer subcarriers are needed.

32

2.7 Conclusions

This chapter has investigated the efficacy of using polyphase filterbanks as an energy-scalable
dynamic spectrum access technique, and has highlighted the advantages OFDM/OQAM has over
traditional OFDM in terms of spectral compactness and efficiency. The consequence of applying
a band-limiting pulse to the subcarriers of a multichannel communications scheme are highlighted
in Chapter 4. This chapter has also introduced a novel approximate square-root Nyquist filter
using the Kaiser-Bessel window. The resulting filter has demonstrated significant performance
improvements over the traditional square-root raised-cosine filter design in terms of stop-band
rejection and inter-symbol interference. Furthermore, the filter’s characteristics are very similar to
the best known hM-3 filter but do not require iterations over the Parks-McClellan algorithm which
can be sensitive to finite machine precision. The proposed r-Kaiser filter is used to demonstrate
the superior spectral compactness of OFDM/OQAM over traditional OFDM.

33

Chapter 3

Synchronization of Narrowband
Channels

In synchronous narrowband digital communications systems data are conveyed over a wireless link
by transmitting uniformly-spaced symbols, filtered with a band-limited pulse. The signal at the
receiver is completely known except for the data symbols and several unknown reference parameters
[67]. While these reference parameters carry no inherent information, the ultimate task of the
receiver is to recover the data symbols; without sufficient knowledge of these reference parameters,
the receiver’s detection process to recover the data will ultimately fail.

Synchronous data communications systems on SDR platforms rely on DSP algorithms to correct
for symbol timing and carrier phase impairments observable at the receiver after the signal has been
converted into a discrete sampled and quantized time series. The computational complexity of such
algorithms often comprises the majority of the processing load burdening the baseband receiver.
Before going into great detail in synchronization of multi-carrier systems such as OFDM/OQAM,
it is necessary to first discuss synchronization of narrowband signals. This chapter gives a brief
overview of synchronization techniques for narrowband signals and provides several original esti-
mators for reference parameters, as well as preamble patterns, and general design strategies for
quickly synchronizing and decoding frames transmitted in in short bursts for the sake of dynamic
spectrum access. A new maximum likelihood-based estimator for the timing offset parameter us-
ing the output of the matched filter and its own derivative is provided. An enhanced dual loop
architecture and framing preamble are introduced to enable timing and carrier synchronization of
single-carrier signals with a minimal number of initial symbols. Additionally provided is a novel
framing structure is described which permits fast acquisition and automatic reconfiguration at the
receiver. The efficacy of the proposed system is supported with baseband simulation and validated
with over-the-air reception in a multi-path wireless laboratory environment.

34

3.1 System Description

This work refers to narrowband signals as single-carrier systems occupying a bandwidth commen-
surate of its symbol rate; compare this to multi-carrier systems in which the occupied bandwidth is
split into many narrow subcarriers—the symbol rate on each being relatively small. This chapter
will only focus on the recovery of linear modulation transmissions and for the sake of brevity ignore
continuous-phase modulations (e.g. minimum-shift keying) which typically exhibit a lower spectral
efficiency.

Let the transmitted analog signal s(t) be the sum of a discrete set of complex-valued symbols a(p)
filtered by a pulse shape g(t) spanning 2L symbols, each separated by a unit time T , viz.

s(t) =

∞∑

p=−∞
a(p)g(t− pT) (3.1)

The received signal is assumed to be a delayed version of s(t) corrupted by carrier offsets, multi-path
fading, and noise, viz.

r(t) = ej(νt+θ)γs(t− τ) ∗ hc(t) + n(t) (3.2)

where ν is the carrier frequency offset, θ is the carrier phase offset, γ is the channel gain due to path
loss, τ is the sample timing phase offset, hc(t) is the the impulse response of the channel (ignored
for now), and n(t) is the baseband noise term with a two-sided power-spectral density N0. In order
for the data symbols a(p) to be recovered without error, it is necessary to remove the effects of the
channel by estimating the reference parameters imparted by the channel.1

This chapter introduces new estimators for many of these reference parameters and provide detailed
analysis on their performance under different assumptions about the channel characteristics (e.g.
no fading, minimal carrier frequency offset, etc.) Many of these techniques will then be applied to
multi-carrier synchronization techniques in Chapter 4. The design of the estimators focuses specifi-
cally on computationally simplicity and scalability at the receiver. The final section of this chapter
describes a flexible frame descriptor which is capable of fast synchronization and computational
scalability. The performance of the framing structure is tested under a number of typical operating
conditions in wireless environments.

3.1.1 Synchronization and Estimation

Commonly-cited literature suggests that synchronization techniques are typically derived from two
sets of approaches: heuristically-based [25, Section III], [71] and maximum likelihood-based [25,
Section IV], [67] estimators. Because heuristic approaches cannot be derived in any structured
manner, this work will focus efforts primarily on those based on maximum likelihood estimation.

1Realistically, carrier offsets are a result of mistuning the receiver’s oscillators to the transmitter’s and are not a
result of channel distortion unless significant Doppler speeds are involved. The same could be said for the timing
offset which is due in part to the transmission delay time, but also to sampling clock phase of the analog-to-digital
converter. For simplicity’s sake, however, this work refers to all the reference parameters as impairments which have
been introduced by channel effects for which the receiver must correct digitally in software.

35

3.1.2 Maximum Likelihood Estimation

Maximum likelihood (ML) estimation is a method by which a statistical model is fit to an observed
data set, providing estimators for the model’s parameters. For a particular data set observation,
the maximum likelihood method chooses the parameter set which results in a distribution that most
likely resulted from the data. Mengali and D’Andrea give an excellent description of the derivation
behind maximum likelihood estimation in [67, Section 2.3.1] with an emphasis on synchronization
of digitally modulated signals. To begin, the expression in (3.2) can be rewritten generically as

r(t) = s(t,γ) + n(t) (3.3)

where γ represents a vector of the unknown reference parameters. The generalized likelihood
function for the continuous-time domain for an unknown parameter set γ over a duration of T0

seconds is given by [67, (2.3.33)]

Λ(r|γ̃) = exp

{
2

N0

∫ T0

0
r(t)s(t, γ̃)dt− 1

N0

∫ T0

0
s2(t, γ̃)dt

}
(3.4)

where γ̃ is the trial set of unknown parameters, and N0 is the noise power spectral density of n(t)
in (3.3). The maximum likelihood estimate of the unknown parameters (e.g. ν, θ, τ , and a) are
those which maximize Λ(r|γ̃), or equivalently ln{Λ(r|γ̃)}
Turning to software-defined radios, the full extent of baseband processing is carried out in the
digital domain. As such the received signal can be assumed to have been passed through a linear-
phase rectangular (ideal) low-pass image-rejection filter and is then sampled at a rate of 1/Ts.
The unknown parameter set γ are then estimated on the resulting sample sequence alone. The
generalized likelihood function for a sequence x(t) sampled at a a rate 1/Ts over a period of L0

samples is given by [67, (2.3.71)]

Λ(x|γ̃) = exp

{
2Ts
N0

L0−1∑

k=0

x(kTs)s(kTs, γ̃)− Ts
N0

L0−1∑

k=0

s2(kTs, γ̃)

}
(3.5)

where x = {x0, x1, . . . , xL0−1} is the sampled sequence. For the extent of the analysis in this
document, the received signal sequence has been passed through a Hilbert transform [76, p. 150]
after sampling and is relatively near complex baseband (i.e. ν � 1/T). Furthermore, the underlying
information symbols in (3.1) are independent and identically distributed. Section 3.2.6, however,
demonstrates that choosing correlated symbols can significantly reduce the estimator’s variance
and provide a fast acquisition preamble for synchronizing to short frames.

3.2 Timing Recovery

Timing recovery is the process of aligning the receiver’s sampling clock to that of the transmitter.
When the receiver’s sampling clock is misaligned to the transmitter’s, inter-symbol interference
occurs at the matched-filter output and appears as an increased noise variance in the resulting signal
constellation. So long as the carrier offset is not a significant portion of the symbol rate, timing

36

recovery can be achieved asynchronously to the carrier. Many carrier phase recovery techniques
for linear modulations first require properly time-sampled symbols as the phase is the information-
bearing component of the signal. As such, the analysis for single-carrier synchronization begins
with timing recovery through estimation and tracking of τ .

Physical layer synchronization of symbol timing is required when samples of the received signal
are misaligned with the data symbols generated by the transmitter. Several options to align the
matched filter output samples are available including over-sampling the received signal and inter-
polating using using piecewise polynomials or polyphase filterbanks. Baseband filtering, however,
consumes a significant portion of processing, and, as a result, oversampling the received signal in
excess of the Nyquist rate is undesirable, considering that much of the work expended through the
filtering operation results in output samples that are to be discarded. Alternatively, interpolating
between available sample points has proven to be computationally efficient. Lagrange interpolat-
ing polynomials minimize inter-symbol interference by curve-fitting the past several samples to an
nth-order polynomial [67, Section 7.3.2]. The output symbol may be appropriately computed by
simply evaluating the polynomial at the proper timing instance. The downside to using Lagrange
polynomials in this fashion is that the polynomial coefficients must be re-computed for each new
symbol output. Furthermore, the interpolator is applied after the down-sampler and as a result
cannot completely remove inter-symbol interference.

Rice and harris proposed the use of polyphase filter banks for symbol synchronization in digital
receivers in [30] and developed loop control architectures for choosing the optimal filter in the bank
in addition to input sample flow control. The use of a polyphase filterbank as an effective phase
shifter in the sampling clock allows for greater flexibility and efficiency in the receiver by computing
only those multiplications necessary for matched filtering while simultaneously interpolating to
achieve a sample point sufficiently close to the optimum. Missing from the discussion in [30],
however, was an integral discussion on control loop filter coefficients; the application of the matched
filter within the loop introduces a constant delay between the timing error detector and its control
over the input sample flow. This additional delay creates potential instability within the loop and
can corrupt the output signal, causing errors in the detector. By designing the filter coefficients
appropriately, stability with in the control loop is maintained. This section expands on the work
demonstrated in [30] by extending the loop control design to include stability analysis of the timing
recovery system under a number of signal types (excess bandwidth factor, phased vs. random
data, etc.). Furthermore, the input control flow algorithm is given explicitly. Analysis is verified
by baseband simulations in Section 3.2.5. The efficacy of the timing recovery structure is later
validated via over-the-air reception in Section 3.5.

3.2.1 Multi-rate Synchronization Theory

This section provides an abbreviated overview of timing synchronization through interpolation in
digital-sample receivers. For a more thorough investigation on the topic of linear interpolation
techniques in digital receivers the interested reader may refer to [40].

37

Continuous and Discrete Time Representations

Let the transmitted analog signal s(t) be the sum of M -ary complex-valued symbols filtered by
a pulse shape g(t) spanning 2L symbols, each separated by a unit time T , as given by (3.1).
The received signal is assumed to be a delayed version of s(t) corrupted by the addition of white
Gaussian noise, n(t), viz.

r(t) = s(t− τ) + n(t) (3.6)

Notice that r(t) here is the same as in (3.2) with ν = 0, θ = 0, and hc(t) = δ(t). For the sake
of simplicity in this discussion, all other reference parameters—including carrier offsets and multi-
path fading—will be ignored. The optimum receiver uses the output y(t) of a matched filter whose
impulse response is h(t) = g(−t).
As is the practice for software-defined receivers, r(t) is sampled using an analog-to-digital converter
(ADC) before filtering in the discrete-time domain. The discrete version of the received signal at a
uniform sampling interval Ts is r(nTs) where the ratio of symbol period to sampling period T/Ts is
assumed to be irrational, but often nearly integral. This will hold true for all communications links
whose transceiver hardware ADCs are driven by independent clock sources; this is the most common
situation for modern wireless transceivers which generally avoid transmitting clock information
on a separate channel. Consequently, the receiver must recover the transmitter’s sampling clock
by recovering such information from the received signal alone. The received signal samples are
applied to an interpolator that computes interpolants y(kTi) at a reduced rate Ti = T/N . The
synchronizer must adjust the interval Ti to match the rate at which data symbols are generated by
the transmitter. The new samples for an interpolating filter with an impulse response hI(t) over
the time span I1 ≤ i ≤ I2 are given by [40, (6)],

y(kTi) =

I2∑

i=I1

r [(mk − i)Ts]hI [(i+ µk)Ts] (3.7)

where mk = bkTi/Tsc is the base-point index and µk = kTi/Ts − mk is the irrational fractional
interval [40]. Because Ti/Ts is likely irrational, µk will change for each interpolant and can take on
an infinite number of possible values. Figure 3.1 demonstrates the relationship between optimum
and available sampling points. In this example the sample rate Ts is approximately twice the
symbol rate; however, the position of optimum timing slides to the right of the available sample
points as time progresses indicating that the actual sampling frequency is slightly greater than 2
samples/symbol.

Polyphase Filterbanks as a Mechanism for Resampling

By using a polyphase decomposition of a sampled version of the matched filter, a polyphase filter-
bank can be used to calculate the interpolants in (3.7). The discrete impulse response of the mth

filter in a bank of M filters is given by [30, Eq. (15)]

hm (nTs) = h
(
nTs +

m

M
Ts

)
(3.8)

38

time

h0(nTs)

h1(nTs)

hM−1(nTs)

→ ← µkT

continuous time MF output

optimum sampling point

available samples (normal MF)

available samples (polyphase MF)

Figure 3.1: Matched filter output y(t) and the relationship between available sample points,
optimum sample points, and interpolants.

The goal of the synchronizer is to choose the filterbank at index m such that the fractional portion
mTs/M is as close to the true timing offset µk as possible. As demonstrated in Figure 3.1, none of
the interpolants from the filterbank lie directly on the optimum output. Increasing the filterbank
size can ensure a sufficiently fine resolution and keep the inter-symbol interference due to any
residual timing offset negligible. Note that in the example in Figure 3.1 the bank consists of
M = 4 filters. While none of the available samples lie directly on the optimum sampling point, the
resolution can be set sufficiently small by increasing M .

The benefit of using filterbanks is apparent; each of the M filters in the bank operate at a minimal
over-sampling rate which reduces the computational load of the receiver. This holds true regardless
of the number of filters in the bank which serve only to increase the resolution of the output
interpolant at the expense of increased memory size. The filterbank described above is a special
case in that the bank consists of M coefficient arrays, but only one input buffer. The input samples
are loaded serially into the buffer and then at the appropriate time, the filter coefficients which
closely match the ideal interpolator are chosen. In contrast the filterbank channelizer described in
Section 2.3 uses a bank of M coefficients but also a bank of M input buffers.

3.2.2 Loop Architecture

The loop control serves to track small variations in the timing offset between the transmit and
receive sampling clocks. A timing phase-locked loop controls both the base-point sampling index
and the optimum filter in the bank to calculate the interpolant. The timing tracking loop therefore
operates quite differently from standard carrier PLLs; unlike carrier PLL systems which operate
one sample out for each sample in, the timing PLL needs an additional mechanism to control the
input and output flow of data samples. If the sample rate between the transmit and receive clocks
is mismatched, µk will consistently change; more specifically, µk will increase with each sample if
the sampling rate of the receiver exceeds that of the transmitter, stay constant if they are equal,
and decrease otherwise. Eventually the base-point index will need to be changed as the fractional
sample interval µk wraps around [0, 1). In such a case the time-span I1 ≤ i ≤ I2 in (3.7) needs to
be adjusted, effectively governing the input sample flow control to the matched-filter bank.

39

G0(z)

G1(z)

G2(z)

...

GM−1(z)

Ġ0(z)

Ġ1(z)

Ġ2(z)

...

ĠM−1(z)

↓ k

↓ k

x(t) y(t)

flow
control

Fτ (z) ∆τ̂

matched filter bank

derivative matched filter bank

Figure 3.2: Symbol synchronizer block diagram with the control loop operating at one sample
per symbol.

harris and Rice describe three possible loop control architectures in [30], the main differences being
the rate at which the loop operates. Keeping the goal of minimizing processing complexity in mind,
this work uses the architecture operating at one sample/symbol. This not only reduces the number
of computational instructions, but uses only the optimal samples for timing error detection. The
timing loop consists of a dual pair of matched filter (MF) and derivative matched filter (dMF)
polyphase filterbanks which produce an output once every symbol period. The resulting outputs
of the MF and dMF are fed into a timing error generator, discussed below. The error signal is
filtered with a second-order low-pass timing loop filter Fτ (z) before feeding the filterbank control.
Auxiliary control via the “shift/skip/stuff” mechanism described in [81] is provided to accommodate
the incommensurate relationship between the data and sample clocks. The adopted system block
diagram can be seen in Figure 3.2 which consists of a bank of M matched filters, a bank of M
derivative matched filters, a timing error detector, and a loop filter with flow control.

40

3.2.3 Timing Error Generator

This system bases its timing error generator on the maximum likelihood timing error detector [67]
which relies on the derivative to the matched filter impulse response,

ḣ(t) =
∂h(t)

∂t
(3.9)

The ML estimator, therefore, relies on sampling the derivative of the matched filter impulse re-
sponse,

ḣm(z) =
∂hm(z)

∂z
, 0 ≤ m ≤M − 1 (3.10)

Computing the true derivative of the continuous-time filter impulse response is difficult as many
designs do not have a closed-form solution. One particular example is the harris-Moerder filter
[29] which computes its coefficients by iterating over the Parks-McClellan algorithm, deriving its
impulse response from an inverse discrete Fourier transform, and has no closed-form expression.
Section 2.5 has provided a filter design which does have a closed-form impulse response; however,
the need for deriving such an expression can be circumvented by using an approximation method
applicable to any filter. Mengali provides an efficient means for approximating ḣm(z) from the MF
coefficients [67, (7.4.57)], also used by [30], viz.

ḣm(z) ≈

h1(z)− hM−1(z) m = 0

hm+1(z)− hm−1(z) 0 < m < M − 1

hM−2(z)− h0(z) m = M − 1

(3.11)

This structure allows for only two polyphase filterbanks, and can additionally operate at a minimum
sampling rate, e.g. k = 2.

The error averaged over many symbols provides feedback for controlling the filterbank index. As
demonstrated by the S-curve for the maximum likelihood timing error detector depicted in [67,
Figure 7.13], early sampling results in a negative error, while late sampling results in a positive
error. When the filtered error signal is negative, the control loop will choose successively lower
filterbank indices, enabling less delay. When the filterbank index pointer underflows, the input
and output clocks are aligned by repeating the last input sample. Conversely, a positive error will
increase the filterbank index pointer, enabling successively more delay. When the filterbank index
pointer overflows, the next input sample is skipped.

Each symbol’s matched-filter output y(k) and derivative matched-filter output ẏ(k) are combined
to provide an instantaneous timing error estimate. This error is pushed through an integrating
loop filter which drives the filterbank index selection and input sample control. The instantaneous
timing error is derived from the maximum likelihood timing offset estimate [67, (8.3.5)]

∆τ̃ = <
{
y∗(k)ẏ(k)

}
(3.12)

Normalizing to the signal’s power level limits the proportion of the timing error estimate to the
symbol’s signal-to-noise ratio [30, (5)], viz.

∆τ̂ = tanh
(
<
{
y∗(k)ẏ(k)

})
(3.13)

41

+ F (s)

G(s) = K
s

φ
∆φ

−

φ̂

NCO

Figure 3.3: Analog phase-locked loop block diagram

A loop filter integrates over ∆τ̂ to give a timing offset estimate τ̂ which is used to produce the next
output symbol. The resulting filterbank index chosen for the next output symbol is [τ̂M] where
[·] denotes the rounding operation.

3.2.4 Timing Loop Filter, Delay Considerations, and Stability Analysis

The discrete-time phase-locked loop (DT-PLL) is a key component in software radio, particularly
for timing and carrier offset recovery tracking loops. The PLL consists of three components: the
phase detector, the loop filter, and the integrator. A block diagram of the typical analog PLL can
be seen in Figure 3.3 in which the phase detector is represented by the summing node, the loop
filter is F (s), and the integrator has a transfer function G(s) = K/s. For a given loop filter F (s),
the closed-loop transfer function for the phase becomes

H(s) =
G(s)F (s)

1 +G(s)F (s)
=

KF (s)

s+KF (s)
(3.14)

where the loop gain K absorbs all the gains in the loop.

There are several well-known options for designing the loop filter F (s), which is, in general, a
first-order low-pass filter. In particular it is convenient to express H(s) such that its denominator
is in standard form s2 + 2ζωns + ω2

n where ωn is the natural frequency of the filter and ζ is the
damping factor. This simplifies analysis of the overall transfer function and allows the parameters
of F (s) to ensure stability. The active lag design has a loop filter transfer function [9]

F (s) =
1 + τ2s

1 + τ1s
(3.15)

When added to an integrator K/s the closed-loop transfer function becomes [76, (6.2-18)]

H(s) =
KF (s)

s+KF (s)
=

K
τ1

(1 + sτ2)

s2 + s1+Kτ2
τ1

+ K
τ1

(3.16)

42

∆τ̂ +

z−1

+

k

τ̂
β

α

Figure 3.4: Symbol synchronizer timing loop diagram

which results in the parameter transformations

ωn =

√
K

τ1
, ζ =

ωn
2

(
τ2 +

1

K

)
→ τ1 =

K

ω2
n

, τ2 =
2ζ

ωn
− 1

K
(3.17)

Conversion of H(s) to its discrete form can be approximated by taking the bilinear z-transform
such that s→ 2(1− z−1)/T (1 + z−1) [100, p. 248] which results in

H ′(z) = H ′(s)
∣∣∣
s= 1

2
1−z−1

1+z−1

= 2K
(1 + τ2/2) + 2z−1 + (1− τ2/2)z−2

(1 + τ1/2)− τ1z−1 + (−1 + τ1/2)z−2
(3.18)

As demonstrated in [7, 8], the introduction of delay inside the control loop leads to instability in the
discrete-time phase-locked loop under certain considerations for the natural frequency and damping
factor. Additionally, [7, 42] demonstrate that the stability region of the PLL diminishes quickly
as the delay increases to only a few samples. To maintain stability the loop’s natural frequency is
consequently decreased.

The feedback loop in Figure 3.2 has a nominal delay of k samples due to the matched filterG(z). The
timing control loop can be seen in Figure 3.4. The filter parameters for a control loop bandwidth
of ωτ are empirically given as α = 1−ωτ/2π and β = 0.22ωτ/2π which yield a stable loop filter for
a minimal over-sampling rate k = 2.

43

Algorithm 1 Symbol synchronizer loop control

1: q̂ ← 0 (filtered timing error)
2: τ̂ ← 0 (timing offset estimate)
3: b← 0 (filterbank index)
4: j ← 0 (output symbol counter)
5: for i = 0 to Ni − 1 do
6: push x(i) into MF, dMF
7: while b < M do
8: y(j)← MF output using Gb(z)
9: ẏ(j)← dMF output at index using Ġb(z)

10: q ← tanh
(
<
{
y∗(k)ẏ(k)

})

11: q̂ ← qβ + q̂α
12: τ̂ ← τ̂ + k + q̂
13: b← [τ̂M]
14: j ← j + 1
15: end while
16: τ̂ ← τ̂ − 1
17: b← b−M
18: end for

The full control loop is described in Algorithm 1. Notice that an output is only computed when
the filterbank index rolls over M .

3.2.5 Performance Results

For all simulations the received signal is generated at k = 2 samples/symbol with a nominal signal-
to-noise ratio of 30dB. The timing loop filter operates with a noise bandwidth of approximately 2%
of the symbol rate. A polyphase filterbank with M = 32 stages provides matched filtering. The
timing error generator is given by (3.13).

Symbol Timing Phase Step Response

The first simulation demonstrates the response of the synchronizer when a timing step offset of
τ = −0.3T is introduced into the system with a nominal SNR of 30dB. The results of the symbol
timing recovery loop with k = 2 samples per symbol and M = 32 polyphase filters can be found
in Figure 3.5. Because the timing error is negative, the control slides forward through the filters
in the bank and eventually settles on 19 after about 400 symbols. The ideal filterbank index is
m = −τkM = 19.2 which is not an integer and as a result the loop settles on index 19, but
sometimes jumps up to 20. Consequently, the residual error is kept relatively small with sufficient
M , as can be seen by the tight constellation in Figure 3.5.

44

 0 5

 1
0

 1
5

 2
0

 2
5

 3
0

 0
 2

0
0

 4
0

0
 6

0
0

 8
0

0
 1

0
0

0

filterbank index

s
y
m

b
o

l
in

d
e

x

s
o

ft
h

a
rd

-1
.5-1

-0
.5 0

 0
.5 1

 1
.5

-1
.5

-1
-0

.5
 0

 0
.5

 1
 1

.5

quadrature phase

in
-p

h
a
s
e

fi
rs

t
5
0
0
 s

y
m

b
o
ls

la
s
t
5
0
0
 s

y
m

b
o
ls

F
ig
u
re

3
.5
:

S
y
m

b
ol

sy
n

ch
ro

n
iz

er
p

er
fo

rm
a
n

ce
w

it
h

a
ti

m
-

in
g

p
h

as
e

off
se

t
of
τ

=
−

0.
3T

an
d
M

=
3
2

p
o
ly

p
h

a
se

fi
lt

er
s.

 0 5

 1
0

 1
5

 2
0

 2
5

 3
0

 0
 5

0
0

 1
0

0
0

 1
5

0
0

 2
0

0
0

filterbank index

s
y
m

b
o

l
in

d
e

x

s
o

ft
h

a
rd

-1
.5-1

-0
.5 0

 0
.5 1

 1
.5

-1
.5

-1
-0

.5
 0

 0
.5

 1
 1

.5

quadrature phase

in
-p

h
a
s
e

fi
rs

t
1
0
0
0
 s

y
m

b
o
ls

la
s
t
1
0
0
1
 s

y
m

b
o
ls

F
ig
u
re

3
.6
:

S
y
m

b
o
l
sy

n
ch

ro
n

iz
er

p
er

fo
rm

a
n

ce
w

it
h

a
ti

m
-

in
g

fr
eq

u
en

cy
o
ff

se
t

o
f

0
.4

%
o
f

th
e

sy
m

b
o
l

ra
te

a
n

d
M

=
3
2

p
o
ly

p
h

a
se

fi
lt

er
s.

45

Symbol Timing Frequency Step Response

The second simulation introduces a timing frequency offset by which the receive sample clock
is offset from the transmit clock by T/250 (0.4% of the symbol rate). As a result, the optimum
sampling instant (the fractional interval) appears to slide through the available samples. The results
can be found in Figure 3.6 in which the synchronizer eventually sweeps through a full period every
250 symbols.

3.2.6 Maximum Likelihood-based Estimators

The previous section has described a symbol timing recovery algorithm which uses a pair of
polyphase filterbanks to compute the matched-filter output interpolant and track to any resid-
ual timing offset. Sometimes, however, it is necessary to make an initial estimate of the timing
offset given a number of input samples rather than relying on tracking loops. This is particularly
convenient for the acquisition of framing headers for the transmission of packets in short bursts.
Going back to ML estimation, the log-likelihood function for τ̃ is

L(r|τ̃) =
2

N0

∫ T0

0
r(t)s̃(t)dt− 1

N0

∫ T0

0
s̃2(t) (3.19)

where s̃(t) is the trial signal, defined as

s̃(t) ,
∑

i

âig(t− iT − τ̃) (3.20)

After some mathematical manipulations and approximating assumptions, the derivative of the log-
likelihood function is

∂

∂τ̃
L(r|γ̃) =

L0−1∑

i=0

âi

[
ẏ(iT + τ̃)−

∞∑

m=−∞
âih
′(i−m)T

]
(3.21)

where ẏ(t) is the response to the received signal r(t) to the derivative matched filter −ġ(−t),
h′(t) = g(t) ∗ ġ(−t) is the response of the matched filter to its own derivative, and L0 is the
observation time in symbols. The response of g(t) to ġ(−t) can be found in Figure 3.7 for the square
root-raised cosine filter and the proposed r-Kaiser filter (Section 2.5) for an excess bandwidth factor
of β = 0.7. It is useful to observe some qualities of h′(t):

1. h′(t) crosses through zero at t = 0 which implies that the Nyquist filter h(t) has a maximum
response at the origin. This is an expected and is verified in Figure 2.9(a);

2. h′(t) has odd symmetry, e.g. h′(−t) = h′(t).

Notice the familiar S-curve for −T ≤ t ≤ T , and how similar its response is to sin(πt/T). This sug-
gests that a timing offset τ will present itself in the S-curve as a simple phase offset as sin(πt/T+θ).
The need for deriving the estimates for the transmitted symbols âi in (3.20) can be circum-
vented by assuming that the expression given by (3.21) is dominated by the inner summation

46

-1

-0.5

 0

 0.5

 1

-4 -3 -2 -1 0 1 2 3 4

T
im

in
g
 M

e
tr

ic

Normalized Time, t/T

r-Kaiser g(t) ∗ ġ(−t)
RRC g(t) ∗ ġ(−t)

sin(πt)

Figure 3.7: Matched-filter/derivative matched-filter output, g(t)∗ ġ(−t), for an excess bandwidth
factor β = 0.7

over h′ ((i−m)T). Furthermore, this summation can be truncated for only a few symbols as the
response of h′(t) decays quickly for just a few symbols, as is clearly visible in Figure 3.7. Therefore
averaging the output of the received signal to its matched- and derivative matched-filter product
yields a sinusoid whose period is 2T and phase is proportional to τ . Furthermore, the maximum
likelihood estimator for the phase of a sinusoid with a known frequency fc is well-known as

θ̂ = arg
{∑

k

x(kTs)e
−j2πfck

}
(3.22)

Therefore, a new approximate maximum likelihood timing offset estimator based on (3.21) and
(3.22) may be expressed as

τ̂G = − T

2π
arg

{
NL0−1∑

i=0

y(iTs)ẏ(iTs)e
j(2πi/N+π/2)

}
(3.23)

where the additional π/2 term in the exponent is necessary because h′(t) has odd symmetry. Upon
further observation, (3.23) is remarkably similar to the well-known Oerder & Meyr estimator [67]

τ̂OM = − T

2π
arg

{
NL0−1∑

i=0

y2(iTs)e
j(2πi/N)

}
(3.24)

which relies solely on the matched-filter output alone. Both of these estimators are based on the
cyclostationary properties of s(t)—each involves computing s2(t) in some form—and exploit the
energy carried within the transition bandwidth of g(t).

Figure 3.8 depicts the timing metric for a BPSK signal with random carrier phase and a nominal
SNR of 30dB. In the top pair of figures, the underlying data symbols are random and the timing
metric doesn’t appear to align well with the sinusoid. In the second figure, the data are antipodally

47

-2

-1

 0

 1

 2

 0 5 10 15 20 25

R
e
c
e
iv

e
d
 s

ig
n
a
l

-2

-1

 0

 1

 2

 0 5 10 15 20 25

T
im

in
g
 m

e
tr

ic

Noramlized Time, t/T

Noramlized Time, t/T

y(t)ẏ(t)
sin(2πt/T)

Re{r(t)}
Im{r(t)}

(a) Random Data

-2

-1

 0

 1

 2

 0 5 10 15 20 25

R
e
c
e
iv

e
d
 s

ig
n
a
l

-2

-1

 0

 1

 2

 0 5 10 15 20 25

T
im

in
g
 m

e
tr

ic

Noramlized Time, t/T

Noramlized Time, t/T

y(t)ẏ(t)
sin(2πt/T)

Re{r(t)}
Im{r(t)}

(b) Phased Data

Figure 3.8: Timing synchronizer metric for a BPSK signal with a timing offset of τ = 0.2T

48

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

 0 5 10 15 20 25 30 35 40

E
s
ti
m

a
to

r
v
a
ri
a
n
c
e

SNR [dB]

true ML
Oerder Meyr

Gaeddert
MCRB

Figure 3.9: Timing offset estimator variance vs. SNR for a root raised-cosine filter with k = 4
samples per symbol and an excess bandwidth factor of β = 0.5 averaged over 2,000 trials.

phased as to maximize the number of transitions between successive symbols. Here, the alignment
with the sinusoid is nearly perfect with only a delay, due to the timing offset of τ = 0.2T .

Figure 3.9 demonstrates the performance of the proposed estimator in a noisy channel, as well
as the Oerder & Meyr estimator given by (3.24), the true maximum likelihood estimator and the
modified Cramér-Rao bound (MCRB) given in [67]. The variance of the estimator error takes the
form

σ2 =
1

L0

[
Kss +Ksn/γ +Knn/γ

2
]

where γ is signal-to-noise ratio (linear), Kss is the signal auto-correlation coefficient, Ksn is the
signal/noise cross-correlation coefficient, and Knn is the noise auto-correlation coefficient. The
performance of τ̂G is nearly identical to that of τ̂OM , while out-performing the true maximum
likelihood estimator and nearly achieving the minimum theoretical error variance. One of the
benefits of this estimator is that it can be computed completely blind of the transmitting symbols
ck and carrier offsets θ and ν (to within reason) while being nearly efficient. The timing metric,
however, has periodicity 2T which requires an over-sampling factor of k = 4 which is undesirable
for software-defined radios where minimizing computational complexity is a key factor in design.

3.3 Carrier Recovery

Carrier phase recovery with linear modulations is usually accomplished after the down-sampler
once timing has been properly recovered. This allows the decision-directed phase offset estimate

49

after demodulation to be used to drive the phase-locked loop. Phase recovery algorithms with
incoherent timing offsets do exist, but are typically limited to PSK modulation and have relatively
poor performance, particularly when signal strength is low. As an example, the well-known Costas
loop removes the data modulation of a BPSK-modulated signal by squaring it (or using higher
exponents for higher PSK modulation indices) [72]. The problem with this technique is that the
error introduced when the signal crosses through or near zero (typical with linearly-modulated
signals) is amplified and injected into the control loop. With timing-coherent carrier recovery only
the phase error taken at the maximum signal output is used to drive the loop.

Carrier recovery in SDR operates at the symbol rate of the system and therefore requires a high
amount of processing relative to the data rate of the system. In fact the numerically-controlled
oscillator computes one complex rotation per modulated symbol, and as a result the computational
bandwidth to synchronize the carrier of the receiver is quite high. It is therefore necessary to
observe the resource consumption of carrier synchronization in software-defined receivers. This
section gives a brief theoretical background on carrier recovery with an emphasis on computational
complexity in software-defined radios.

3.3.1 Phase Error Estimation

Assuming coherent timing, the phase error estimate for a linear modulation scheme is [67, (8.2.6)]

∆φ̂k = =
{
â∗ky(k)

}
(3.25)

where y(k) is the received symbol and âk is the output of the detector at index k. Notice that
unlike timing recovery, the phase error estimate requires an estimate of the transmitted symbol. As
before it is assumed at this point that E

{
a2
k

}
= 1 and that gain control has normalized the received

signal level such that E
{
|r(t)|2

}
= 1. With transmitted symbols ak of a smaller magnitude, the

product in (3.25) is reduced, which reduces noise introduced into the loop by giving more emphasis
to symbols with higher energy.

3.3.2 Linear Modulation S-Curves

Clearly the shape of (3.25) is a function of the carrier phase offset θ and depends on the constellation
of the underlying data. For a particular modulation scheme, the phase error S-curve can be derived
empirically for different noise levels. Figure 3.10 depicts the error signal for 16-, 64-, and 256-QAM,
each with a high and low SNR level, relative to the constellation size. The standard phased-locked
loop will advance the reference phase for a positive error and retard it when the phase error is
negative. As such, any zero-crossing of the S-curve with a positive slope will cause the PLL to
settle. Interestingly, when the SNR is relatively high, each of the modulation schemes produces a
pair of spurious points which could result in a false lock in the PLL. These are depicted as the solid
points in Figure 3.10 for each of the three square QAM constellations. A noisier signal has a higher
probability of kicking the loop out of the false lock, allowing it to eventually settle on true phase.

Figure 3.11 demonstrates how a 16-QAM signal with a higher signal level can lock onto the wrong
phase due to a spurious response in the phase error S-curve. As such, it is important for systems

50

-4

-3

-2

-1

 0

 1

 2

 3

 4

SNR = 8.5dB
SNR = 21.5dB

spurious points

−π/4 −π/8 0 π/8 π/4
Phase Error ∆φ̂ [radians]

P
h
as
e
E
rr
or

S
-c
u
rv
e

(a) 16-QAM

-4

-3

-2

-1

 0

 1

 2

 3

 4

SNR = 15.1dB
SNR = 23.2dB

spurious points

−π/4 −π/8 0 π/8 π/4
Phase Error ∆φ̂ [radians]

P
h
as
e
E
rr
or

S
-c
u
rv
e

(b) 64-QAM

-4

-3

-2

-1

 0

 1

 2

 3

 4

SNR = 20.0dB
SNR = 30.0dB

spurious points

−π/4 −π/8 0 π/8 π/4
Phase Error ∆φ̂ [radians]

P
h
as
e
E
rr
or

S
-c
u
rv
e

(c) 256-QAM

Figure 3.10: S-curves for the phase error detector of certain modulation schemes, both high and
low relative SNR levels displayed.

51

-0
.6

-0
.4

-0
.2 0

 0
.2

 0
.4

 0
.6

 0
.8

 0
 5

0
0

 1
0
0
0

 1
5
0
0

 2
0
0
0

NCO phase error [radians]

s
y
m

b
o
l in

d
e
x

p
h
a
s
e
 e

s
tim

a
te

tru
e
 e

rro
r

(a
)

P
h
a
se

R
esp

o
n
se,

S
N

R
=

1
5
d
B

-0
.4

-0
.3

-0
.2

-0
.1 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
 5

0
0

 1
0
0
0

 1
5
0
0

 2
0
0
0

NCO phase error [radians]

s
y
m

b
o
l in

d
e
x

p
h
a
s
e
 e

s
tim

a
te

tru
e
 e

rro
r

(b
)

P
h
a
se

R
esp

o
n
se,

S
N

R
=

2
5
d
B

-1
.5 -1

-0
.5 0

 0
.5 1

 1
.5

-1
.5

-1
-0

.5
 0

 0
.5

 1
 1

.5

quadrature phase

in
-p

h
a
s
e

firs
t 1

0
0
0
 s

y
m

b
o
ls

la
s
t 1

0
0
0
 s

y
m

b
o
ls

(c)
O

u
tp

u
t

S
y
m

b
o
ls,

S
N

R
=

1
5
d
B

-1
.5 -1

-0
.5 0

 0
.5 1

 1
.5

-1
.5

-1
-0

.5
 0

 0
.5

 1
 1

.5

quadrature phase

in
-p

h
a
s
e

firs
t 1

0
0
0
 s

y
m

b
o
ls

la
s
t 1

0
0
0
 s

y
m

b
o
ls

(d
)

O
u
tp

u
t

S
y
m

b
o
ls,

S
N

R
=

2
5
d
B

F
ig
u
re

3
.1
1
:

C
arrier

p
h

a
se

resp
o
n

se
fo

r
1
6
-Q

A
M

w
ith

d
iff

eren
t

S
N

R
levels.

T
h

e
sign

al
w

ith
a

h
ig

h
er

S
N

R
resu

lt
in

a
false

lo
ck

o
n

sp
u

rio
u

s
p

h
a
se

p
o
in

ts,
d

em
o
n

stra
ted

in
F

igu
re

3.10(a).

52

using high-order modulation schemes to make an initial estimate of the phase such that the tracking
loop operates within the pull-in range of the phase error and does not lock onto spurious points
in the signal. Section 3.5 will investigate this further where a new framing structure is introduced
which provides an initial phase estimate for the received signal.

3.4 Joint Carrier and Timing Recovery

The joint maximum likelihood estimate of carrier phase and timing offset results in error signals for
θ and τ which are dependent upon both parameters [59, 68]. The preceding sections have assumed
independent estimates of θ, ν, and τ . While joint estimators cannot be worse than estimating
parameters individually, it is typically convenient to design them independently. Furthermore,
interactions of a joint estimator can lead to synchronization failures. In particular, Mengali and
D’Andrea demonstrated that a synchronizer for a 64-QAM signal can settle into a false phase lock
due to spurious points in the two-parameter timing and phase S-curves [67, Fig. 8.3–8.5]. These
are typically a result of symmetries in the signal constellation themselves on which synchronizers
can settle depending upon their initial conditions. As such, joint estimators are susceptible to the
same complications as the coalition of independent estimators.

As discussed in Section 3.2 timing recovery can be accomplished asynchronously so long as the
carrier frequency offset is not a significant portion of the signal’s symbol rate. In this regard it is
desirable to devise a joint carrier and timing recovery system which merges independent estimates
of the unknown reference parameters. This section introduces three primary architectures for the
joint recovery of timing and carrier information using independent estimates of each. The efficacy
of implementation for each from a software radio standpoint is discussed, and the performance of
the proposed design is demonstrated.

3.4.1 Dual Loop Architectures

Figure 3.12 depicts the three possible joint carrier and timing recovery architectures. The timing
recovery loop acts as a down-sampler such that it accepts an input at a rate of approximately k
samples/symbol and outputs exactly one sample/symbol. The demodulator computes an estimate
of the phase error ∆φ̂ as given by (3.25).

The first architecture, shown in Figure 3.12(a), contains two carrier loops; one to compensate for
coarse frequency offsets and the other for residual phase correction. This is perhaps the most
robust solution as it can correct for significant carrier frequency offsets between the transmit and

receive oscillators, so long as the first-order frequency-locked loop filter F
(1)
ν (z) is relatively stable

and free of oscillations. Furthermore, the introduction of a framing preamble permits the explicit
estimation of the initial carrier frequency offset which can be used in place of the frequency loop
altogether. Because the first carrier loop can only recover frequency information, a first-order
phased-locked loop placed after the down-sampler is necessary to recover the phase. Consequently,
this loop architecture has the additional computational load of mixing the signal twice; a process
which consumes valuable clock cycles at the receiver. This is particularly detrimental to SDR as
these operations operate at the highest sample rate in the receiver. Furthermore, it is desirable to

53

Timing
Recovery

G(z), G′(z),

F
(2)
τ (z)

r(t) y(t)×

∼ ∆ν̂

F
(1)
ν (z)

Frequency Loop

×

∼ ∆φ̂

F
(1)
φ (z)

Phase Loop

(a) Independent carrier frequency/phase loops

Timing
Recovery

G(z), G′(z),

F
(2)
τ (z)

r(t) y(t)×

∼

F
(2)
φ (z)

Frequency/Phase Loop

∆φ̂

(b) Pre-timing carrier recovery

Timing
Recovery

G(z), G′(z),

F
(2)
τ (z)

r(t) y(t)×

∼ ∆φ̂

F
(2)
φ (z)

Frequency/Phase Loop

(c) Post-timing carrier recovery (preferred)

Figure 3.12: Joint carrier and timing recovery loop architecture diagrams.

54

first filter the signal from noise before making an estimate of the carrier frequency offset, ν.

The second architecture aims to reduce the computational requirements in the first design by placing
just a single mixer/oscillator pair before the down-sampler and is shown in Figure 3.12(b). Because
coherent phase recovery is necessarily computed after the down-sampler, the control loop must loop
back around the timing recovery control circuit. This type of architecture has been investigated in
[39]. While a feasible design, the difficulty is designing a stable carrier tracking loop which accounts
for the delay introduced by the matched filter. This instability is equivalent to that discussed in
Section 3.2.4, only it now applies to the carrier recovery loop as well. As a result of the delay
introduced by the matched filter, the bandwidth of the carrier loop must be significantly reduced
to maintain stability of the system. This is undesirable as reducing the bandwidth increases the
lock time of the synchronizer.

The third architecture, shown in Figure 3.12(c), places the mixer/oscillator pair as well as the
phase error generator after the down-sampler. This eliminates the effects of introducing loop
delay found in pre-timing carrier recovery architecture of Figure 3.12(b). Furthermore, because
the mixing process occurs after the matched filter/down sampler, it operates at a minimal rate
(one sample/symbol). The major drawback is that the initial carrier frequency offset can cause
distortion in the matched-filter output if it is large relative to the symbol rate. Furthermore, the
pull-in range of the PLL is limited by the signal’s modulation scheme. However, these drawbacks
can be mitigated by choosing a proper phasing pattern on which to initialize the carrier loop.
Section 3.5 provides such a preamble and discusses its performance in the presence of gross carrier
frequency offsets. As such, this architecture is preferred to the other two for use in software radio
implementation.

3.4.2 Proposed Joint Tracking Loop

The remainder of this section extends the work presented in [30, 39] and Section 3.2 by introduc-
ing an additional control loop for carrier synchronization after matched filtering. A numerically-
controlled oscillator placed after matched-filtering the received signal ensures stability by eliminat-
ing delay in the feedback path, and reduces computational complexity by operating at just one
sample per symbol. This design, depicted in Figure 3.12(c), allows for simultaneous tracking of
both symbol timing and carrier phase mismatches and is particularly tractable for burst-mode du-
plexing schemes where carrier phase and symbol timing acquisition needs to be performed on each
transmission burst. The loop architecture described in this section incorporates coarse frequency
and symbol timing offset estimators in a natural way; however, the discussion is limited to track-
ing mechanisms and assumes acquisition of timing and carrier frequencies has been established.
Carrier phase synchronization before matched filtering can be corrupted by out-of-band noise and
adjacent-channel interference, and applying the carrier recovery algorithm before the decimator can
consume valuable processing resources. This motivates an investigation on alternative techniques
that combine the two into a single processing block with independent control loops. Common
concerns issued to systems operating with two feedback loops can be avoided by realizing that the
timing recovery algorithm operates independently of the input phase, so long as the input carrier
frequency offset remains sufficiently small. Issues with carrier loop perturbations due to tracking
before timing synchronization is achieved is also addressed.

55

The carrier loop operates in a similar fashion to the timing phase recovery loop; a generated phase

error signal is fed through a second-order low-pass loop filter F
(2)
φ (z) that drives an NCO. One of

the driving motivations for combining carrier phase recovery with symbol timing is that matched
filtering can be performed before generating the phase error, thus reducing out-of-band interference
and noise applied to the NCO. Several possibilities exist for generating phase error signals where
timing information is known. For systems operating at 1 sample/symbol, perhaps the most obvious
solution is a decision-directed loop when knowledge of the modulation scheme utilized is known,
e.g. (3.25).

3.4.3 Performance Results

For all simulations the received signal is generated at 2 samples/symbol and without the addition of
noise. The timing loop filter and carrier loop filter operate with a noise bandwidth of approximately
0.5% of the symbol rate and 1% of the sampling frequency, respectively. A set of 32-stage polyphase
filterbanks are used in the timing loop for matched filtering. The timing error generator is an
approximation to the maximum likelihood error detector as defined by (3.13).

Timing & Carrier Phase Step Response

Figure 3.13 depicts the results of a simulation in which both a timing and a carrier phase offset are
introduced. Because the timing offset (0.3T) is positive, the timing recovery loop slides backwards
through the filterbank indices until it settles on m = 13 which is closest to (0.5 − τ)kM = 12.8.
Additionally, the carrier loop tracks to the phase offset and eventually settles on the appropriate -0.4
radians. Because the carrier loop operates at one sample/symbol and depends so highly upon the
accuracy of the matched filter, acquisition of timing is critical to this system. One very important
thing to note is that the carrier phase recovery loop depends on the accurate knowledge of symbol
timing. Due to the initial error in symbol timing, the phase error detector results in a non-zero
NCO control value in the carrier recovery loop, despite there being no initial carrier phase error in
the simulation. Although the carrier loop recovers quickly, the system could make use of a timing
lock mechanism to disable the carrier phase control loop before timing synchronization is achieved.

Timing Phase & Carrier Frequency Step Response

Figure 3.14 depicts the results of a simulation in which both a timing phase and a carrier frequency
offset are introduced. The timing control settles on the filter in the bank at index m = 26 which
is closest to τkM = 25.6 after about 400 symbols. Because the output of the timing recovery loop
takes longer to settle, the phase error estimate is poor and prevents the NCO from tracking to the
carrier frequency offset until about 150 symbols. Eventually, however, the phase error has sufficient
noise suppression to linearly increase the NCO control and track to the input carrier frequency
offset.

56

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000

fi
lt
e
rb

a
n
k
 i
n
d
e
x

symbol index

soft
hard

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0 500 1000 1500 2000

N
C

O
 p

h
a
s
e
 [
ra

d
ia

n
s
]

symbol index

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

q
u
a
d
ra

tu
re

 p
h
a
s
e

in-phase

first 1000 symbols
last 1001 symbols

Figure 3.13: Joint symbol timing and carrier phase/frequency tracking with a timing phase offset
of τ = 0.3T (M = 32), a carrier phase offset of θ = −0.4 radians, and with an SNR of 30dB.

57

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

fi
lt
e
rb

a
n
k
 i
n
d
e
x

symbol index

soft
hard

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 200 400 600 800 1000

N
C

O
 p

h
a
s
e
 [
ra

d
ia

n
s
]

symbol index

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

q
u
a
d
ra

tu
re

 p
h
a
s
e

in-phase

first 500 symbols
last 500 symbols

Figure 3.14: Joint symbol timing and carrier phase/frequency tracking with a timing phase offset
of τ = −0.4T (M = 32), carrier frequency offset of ν = 0.002 radians/symbol, with an SNR of
30dB.

58

time

si
gn

a
l
le
ve
l

ra
m
p
up

pr
ea
m
bl
e
ph
as
in
g

p/
n
se
qu
en
ce

he
ad
er
w/

CR
C

pa
yl
oa
d
w/

CR
C

ra
m
p
do
wn

Figure 3.15: Framing structure used in over-the-air experimentation. The payload length is
variable and is typically much longer than the preamble.

3.5 flexframe, a Versatile Framing Descriptor

With the necessity for dynamic spectrum access networks to periodically sense the wireless environ-
ment comes the need for their data links to quickly and efficiently synchronize to each frame. This
section introduces a novel framing structure for software-defined radio which takes advantages of
the efficient synchronization processing elements discussed in this chapter. The framing structure,
called flexframe, is capable of receiving virtually any linear modulation scheme and combines
timing and carrier frequency acquisition and tracking, automatic gain control, equalization, and
forward error-correction decoding within a single module. Performance is verified with baseband
simulation and validated with over-the-air transmission in a laboratory environment.

3.5.1 Framing Structure

The framing structure consists of six basic components, as depicted by Figure 3.15. The ramp
up, phasing pattern, and P/N sequence are together known as the physical layer convergence
procedure and are used for fast acquisition of the frame at the receiver through packet detection,
automatic gain control (AGC) lock, carrier phase-locked loop (PLL) lock, and symbol timing PLL
lock. The ramp up and preamble phasing sequences are a BPSK pattern which flips phase for
each transmitted symbol, i.e. a(p) = (−1)p = {+1,−1,+1,−1, . . .}. This sequence serves several
purposes but primarily to help the receiver’s symbol synchronization control loop lock onto the
proper timing phase. As Figure 3.16 demonstrates, the timing recovery tracking loop converges
much most quickly for a phased sequence than a random one. The ramping nature of the beginning
of the frame gracefully increases the output signal level to avoid “key clicking” and reduce spectral
side-lobes in the transmitted signal. Furthermore, it allows the receiver’s automatic gain control
unit to lock on to the incoming signal, preventing sharp transitions in its output.

The P/N sequence is a 63-bit m-sequence (maximal length) exhibiting good auto- and cross-
correlation properties [76, pp. 435—437]. This sequence aligns the synchronizers to the remainder
of the frame, indicating when to start receiving and decoding the frame header, as well as indicating
the coherent phase of the received signal. It also provides a unique training sequence upon which
to initialize the equalizer. At this point it is assumed that the receiver’s AGC, carrier PLL, and

59

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500

s
o
ft
 f
ilt

e
rb

a
n
k
 i
n
d
e
x

symbol index

random
phased

(a) Timing recovery

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0 100 200 300 400 500

N
C

O
 p

h
a
s
e
 [
ra

d
ia

n
s
]

symbol index

random
phased

(b) Carrier frequency/phase recovery

Figure 3.16: Preamble BPSK phasing pattern performance vs. random data bits. Symbol timing
PLL bandwidth is 0.05, phase PLL bandwidth 0.02, θ = −π/3 radians, ν = 0.001/Fs, SNR= 20dB.

60

timing PLL all have locked to the signal at which time the bandwidths of each are reduced to a
suitable tracking mode.

The header consists of several data bytes describing to the receiver how to decode the payload. In
particular, it includes the modulation scheme, modulation depth, and the inner and outer forward
error-correction codes used on the payload data. The header adds a minimal amount of overhead
to the frame as a whole and permits the receiver to reconfigure itself on-the-fly for each packet
it detects. It includes a 32-bit cyclic redundancy check to validate the integrity of the encapsu-
lated data and is encoded using a simple 2/3-rate Hamming(12,8) block code and modulated using
BPSK. The header needs to be highly reliable as decoding the remainder of the frame is contin-
gent upon its proper reception. The choice of using a Hamming(12,8) code was made to provide
a certain amount of error correction capabilities without burdening the receiver with computa-
tionally complex alternatives. Convolutional coding was specifically avoided in the header as the
Viterbi decoder provides only marginal performance improvements on such a short data sequence
while increasing the computation required at the receiver. See Section 5.5 for more details on the
computational efficiency of forward error-correction codes.

At the core of the frame is the payload, containing the raw data to be transferred across the link. Its
length in terms of number of symbols is variable depending upon the number of raw payload bits,
forward error-correction used (if any), and modulation scheme used. Before any error-correction
encoding is applied, a 32-bit cyclic redundancy check is appended to the raw data to validate that
the frame was properly received. Finally, the ramp down sequence serves to gracefully lower the
transmitted power of the signal.

3.5.2 Spectral Efficiency

The overhead due to the ramp up/down sequences, phasing pattern, P/N sequence, and header
reduces the spectral efficiency of the frame. A payload of n uncoded data bits encapsulated within
a pair of cascaded forward error-correction codes with rates r0 and r1 respectively and modulated
with a scheme using k bits per symbol results in a payload of n/r0r1k symbols. The framing
overhead introduces an additional n̄ symbols which is the sum of the ramp up/down sequences, the
phasing pattern, the P/N sequence, and the header. The true spectral efficiency is therefore

η̂ = r0r1k

[
(n+ 32)/r0r1k

(n+ 32)/r0r1k + n̄

]
(3.26)

The overhead can be reduced by decreasing the length of the ramp up, phasing pattern, and ramp
down sequences at the risk of increasing the probability of missing a packet. The spectral efficiency
can also be increased by packing the frame with more payload bits at the cost of increased memory
usage and latency.

3.5.3 Synchronization

A block diagram of the flexframe synchronizer is shown in Figure 3.17. The automatic gain control
block provides not only gain correction, but provides a received signal strength indication as well

61

Automatic
Gain Control

received

signal strengh

indicator,

squelch,

flow control

Symbol
Synchronizer

timing

recovery,

half-band

decimator

×

Equalizer

recursive

least-squares,

adjustable

length

∼

Demodulator

phase error

generator

H(z)
phase-

locked loop

Frame
Detector

P/N correlator,

header decoder,

data byte

packing

FEC Decoder

error

correction,

de-interleaver,

validates CRC

r(t)

∆φ̂

Figure 3.17: flexframe synchronizer block diagram.

as squelch and flow control to the rest of the synchronizer. The symbol synchronizer implements
the polyphase filterbank structure for timing recover described in Section 3.2. It operates at k = 2
samples/symbol and can be adjusted for any practical filter delay m, excess bandwidth β and
timing resolution M . Notice that placing the symbol synchronizer in front of the NCO and mixer
implies that it operates incoherently of the carrier phase and assumes that the received signal has
a small carrier frequency offset relative to the symbol rate (e.g. νT � 1).

The equalizer performs a recursive least-squares optimization search over an array of complex filter
coefficients [76, Section 11.4]. Training is carried out after the frame has been detected from the
P/N correlator output. The equalizer trains its coefficients on the error between the received
sequence of 64 symbols to the ideal transmitted pattern. Once initialized, the equalizer filter is
fixed and does not change for the remainder of the frame. This is to reduce the computational
complexity of the receiver and assumes that the frame is relatively short compared to the coherence
time of the channel. The filter has a nominal delay of zero samples because it is designed such
that its first coefficient is prominent. With no delay, the equalizer conveniently has no effect on the
carrier phase-locked loop, unlike in the symbol synchronizer where the matched filter’s time delay
can significantly affect its loop stability (see Section 3.2.4). The equalizer’s length is adjustable
and can be specified at any time, but the synchronizer only reconfigures the equalizer whenever it
receives a frame.

The demodulator component has several tasks. Not only is it responsible for estimating which
symbol was transmitted, it also provides an estimate of the carrier phase error to the phase-locked
loop. Furthermore, it keeps track of the signal constellation’s error vector magnitude which is a
good indicator of the ratio of the signal level to noise, distortion, inter-symbol interference, and
other channel impairments. This information is useful in dynamic spectrum access networks where
the signal level might be high, but the error rate is still large. A radio controller can use this
information to make a decision about how to switch its transmission scheme in order to improve
its performance.

62

 0

 0.2

 0.4

 0.6

 0.8

 1

-8 -6 -4 -2 0 2 4 6

P
ro

b
a
b
ili

ty
 o

f
D

e
te

c
ti
o
n

SNR [dB]

packet detection
header decoded

payload decoded

Figure 3.18: Probability of detection for the proposed frame synchronizer vs. signal-to-noise
ratio. The payload is 512 bits of uncoded random BPSK symbols, 10,000 trials.

3.5.4 Performance

Figure 3.18 demonstrates the performance of the framing structure’s detection probability vs. SNR.
The simulation was conducted by fixing the noise power and adjusting the channel gain, forcing the
synchronizer’s AGC module to dynamically adjust to the varying signal levels. By running 10,000
frame trials and measuring how many of these were properly decoded, the likelihood of finding a
frame buried in noise can be determined. The two curves to the left are the most telling: The packet
can be detected with a 0.9 probability at about -3.5dB SNR; however, the frame header needs about
-0.5dB SNR to have a probability of 0.90 to being properly decoded. This is a limitation of the
modulation and coding scheme used in the frame header which must be consistent across all frames.

The limiting factor of placing the carrier recovery loop after the down-sampler, as discussed in
Section 3.4.1, is that any initial carrier phase offset can cause significant distortion in the matched-
filter output if it is large relative to the symbol rate. As stated in Section 3.5.2, framing overhead
can be reduced by limiting the length of the initial phasing pattern at the cost of decreasing
detection probability. Figure 3.19 depicts the probability of frame detection when a significant
carrier offset is present. The simulation was conducted by computing the statistics of 1,000 trials
each for three different phasing lengths. As demonstrated by the figure, the probability of detection
can be kept sufficiently high even with manageable phasing lengths. In fact, with even just a few
phasing symbols the detection probability is over 90% with a carrier frequency offset less than 12%
of the symbol rate.

Figure 3.20 demonstrates the flexframe synchronizer over the air. From the received signal
strength indication of the automatic gain control, the signal level is approximately 20dB above
the noise floor. The received signal starts at around the 400 sample time mark at which point the

63

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 10 12 14 16 18 20

P
ro

b
a
b
ili

ty
 o

f
D

e
te

c
ti
o
n

0 phasing symbols
64 phasing symbols

1024 phasing symbols

Carrier Frequency Offset, νT [% symbol rate]

Figure 3.19: Probability of detection for the proposed frame synchronizer vs. carrier frequency
offset as a percentage of symbol rate. The payload is 512 bits of uncoded random BPSK symbols,
in a AWGN channel with an SNR of 20dB, averaged over 1,000 trials.

BPSK phasing pattern is clearly visible. The slight carrier frequency offset is visible until about the
600th symbol as the BPSK signal rotates through the in-phase and quadrature channels periodically.
The PLL locks onto the carrier quickly as the phase of the output symbols is linear. The phase
jumps at around symbol 380 by π radians due to the P/N sequence correlator flipping the phase of
the BPSK sequence so that the remainder of the frame can be demodulated coherently. Once the
header is received, the remainder of the frame is demodulated as 16-QAM with a relatively tight
signal constellation.

3.6 Conclusions

This chapter has introduced the problem of synchronization of wireless digital communications
signals and introduced several new methods for recovering symbol timing and carrier offsets on
software-defined receivers. The new synchronizers specifically focus on maximum likelihood-based
estimators which are shown to be computationally efficient while exhibiting a variance very near
the lower bound. Additionally a novel framing structure for narrowband signals is proposed which
permits dynamic adjustment of the modulation parameters and payload length with little overhead.
The framing receiver is capable of fast acquisition while recovering data with very low SNR levels,
and its performance is validated with over-the-air reception in a wireless multi-path laboratory
environment.

64

-40

-30

-20

-10

 0 200 400 600 800 1000 1200 1400 1600 1800

A
G

C
 R

S
S

I
[d

B
]

time [samples]

-0.04

-0.02

 0

 0.02

 0.04

 0 200 400 600 800 1000 1200 1400 1600 1800

R
e

c
e

iv
e

d
 S

ig
n

a
l

Time [samples]

real
imag

-3

-2

-1

 0

 1

 2

 3

 0 100 200 300 400 500 600 700 800 900

N
C

O
 p

h
a

s
e

time [symbols]

-0.2

-0.1

 0

 0.1

 0.2

 0 100 200 300 400 500 600 700 800 900

N
C

O
 f

re
q

u
e

n
c
y

time [symbols]

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

q
u
a
d
ra

tu
re

 p
h
a
s
e

in-phase

Figure 3.20: flexframe synchronizer, over-the-air example

65

Chapter 4

Synchronization of Multichannel
Communications Systems

Pulse-shaping filters used in digital communications systems should have good time-frequency local-
ization properties. As demonstrated in Chapter 2, an appropriate multi-carrier system (OFDM/OQAM)
can be derived from a prototype pulse-shaping filter which results in significant spectral compact-
ness improvements over traditional OFDM, even when window tapering is applied to the symbol
transitions. The nature of filtering permits the symbols to overlap in time and the subcarriers
to overlap in frequency. As a consequence, synchronization of OFDM/OQAM is not as trivial as
that of OFDM. Still, the promise of improving spectral efficiency motivates the investigation of
synchronization techniques for OFDM/OQAM.

The previous chapter introduced several new maximum likelihood-based techniques for synchroniza-
tion of digitally modulated single carrier signals. This chapter extends this work by investigating
similar methods for estimation of unknown reference parameters for OFDM/OQAM. Specifically,
this work provides several new estimators for the sample timing offset, carrier frequency/phase,
and equalization coefficients, with their performance characterized in channels exhibiting noise,
multi-path fading, and narrow-band interference. Further included is theory on estimating the
complex gains of pilot subcarriers as well as how OFDM/OQAM may be used to (almost) perfectly
reconstruct the time series of an interfering signal simply by re-routing the channelized output of
the the down-converter into a synthesizer polyphase filter bank.

4.1 System Description

Parallel data telecommunications schemes divide available frequency bands into several channels
by independently modulating a number of carriers of different frequency. The bandwidth of each
channel is much narrower in relation to the entire occupied bandwidth. As a result parallel trans-
mission is effective in combating amplitude and delay distortion and is robust to impulsive noise
as well as narrowband interference. It is tempting to choose subcarriers which do not overlap in
frequency as to avoid inter-channel interference; however, this would result in inefficient use of the

66

spectrum and loss of channel capacity. By permitting adjacent subcarriers to overlap, the system
approaches the theoretical maximum capacity of the channel.

Traditional OFDM guarantees orthogonality between subcarriers by restricting the pulse shape to
be rectangular over the symbol duration. The carriers are chosen such that an even multiple of
sinusoidal periods fits within the pulse duration. The combination of these constraints guarantees
no inter-symbol or inter-channel interference in an additive noise channel. Furthermore, the receiver
(and transmitter) can be efficiently realized with a fast (inverse) Fourier transform. Section 2.2,
however, has discussed the many drawbacks to using OFDM in dynamic spectrum environments,
particularly when used as a spectrum sensing mechanism. One particular drawbacks is the spectral
rolloff of each subcarrier due to the rectangular pulse shape.

4.1.1 OFDM/OQAM

By permitting the baseband channels to be filtered the spectral characteristics of the system can be
precisely controlled. The spectral rolloff of each OFDM subcarrier could be improved if a windowing
function were applied to each symbol; however, this would break the strict orthogonality conditions
of OFDM. Chang and Saltzberg in [17, 83] presented general conditions under which a set of band-
limited channels with a symbol rate 1/T can be separated by 1/2T without the introduction of
inter-symbol and inter-channel interference. The pulse-shaping filter g(t) for each subcarrier is
identical and assumed to be a square-root Nyquist with a rolloff factor β. This eliminates inter-
symbol interference from symbols within the same channel. The center frequencies of successive
subcarriers are separated by 1/2T which is precisely half the signaling rate of each channel. This
implies that adjacent subcarriers overlap by as much as 50% (see Figure 2.5(b)). This overlap
causes cross-talk in the in-phase and quadrature components in neighboring bins. Inter-channel
interference, however, is eliminated when adjacent channels are in phase quadrature with one
another, and therefore the in-phase and quadrature components are delayed by T/2 on alternating
subcarriers. Both filters G(z) in the transmitter and receiver are assumed to be identical and
real, thus assuring optimum performance in the presence of additive white Gauss noise. Because
the filters are band-limited, cross-talk between channels which are not immediately adjacent is
eliminated.

G(ω) ≈ 0, |ω| ≥ π/T

Furthermore, the matched-filter response H(ω) of the transmit and receive filters G(ω) in conjunc-
tion has a Nyquist rolloff,

G2(ω) +G2(π/T − ω) = 1, 0 ≤ |ω| ≤ π/2T

The system is known as orthogonal frequency-division multiplexing using offset quadrature ampli-
tude modulation (OFDM/OQAM). A proof of orthogonality for OFDM/OQAM is available in [83]
and [24, Section 7.3.3].

Consider an M -channel OFDM/OQAM system of which only Mu subcarriers are enabled. The real
and imaginary components for the mth subcarrier transmitted at the pth symbol index are aRm(p)
and aIm(p), respectively, and are separated in time by T/2 (half a symbol period). Furthermore,
the delay between in-phase and quadrature components alternates between successive subcarriers.

67

The resulting transmitted signal is therefore

s(t) =

√
M

2Mu

∞∑

p=−∞

∑

m∈A
ejm(2πt/T+π/2)

[
aRm(p)g(t− pT) + jaIm(p)g(t− pT − T/2)

]
(4.1)

where m is the subcarrier index of M total subcarriers, p is the symbol index at time pMTs, a
R
m(p)

and aIm(p) are the respective real and imaginary symbols at index p on subcarrier m, g(t) is a
square-root Nyquist pulse shaping filter, and A is the set of all enabled subcarriers. Converting to
discrete time samples gives

s(kTs) =

√
M

2Mu

∞∑

p=−∞

∑

m∈A
ejm(2π

T
kTs+π/2)

[
aRm(p)g(kTs − pMTs) + jaIm(p)g(kTs − pMTs −MTs/2)

]

(4.2)
The orthogonality conditions give no restriction on g(t) other than it being a square-root Nyquist
filter (e.g. root-raised cosine). Consequently the filter may have arbitrary length, spectral over-
lap (transition bandwidth) and stop-band suppression. These relaxed constraints on g(t) make
OFDM/OQAM particularly tractable for use in dynamic spectrum environments.

4.1.2 Distortion from Timing and Carrier Offsets

As in Section 3.1 the received signal is defined as a delayed version of s(t) corrupted by carrier
offsets, multi-path fading, noise, and with an additional interference term, viz.

r(t) = ej(νt+θ)γs(t− τ) ∗ hc(t) + n(t) + ψ(t) (4.3)

where as before ν is the carrier frequency offset, θ is the carrier phase offset, γ is the channel
gain (due to path loss, shadowing, etc.), τ is the sample timing phase offset, hc(t) is the the
impulse response of the channel, n(t) is the baseband noise term with single-sided power-spectral
density N0/2. and ψ(t) is an additional narrow-band interference signal with power Pψ. Saltzberg
demonstrated in [83] that the performance of OFDM/OQAM is particularly sensitive to timing,
carrier phase, and carrier frequency offsets, and that the resulting distortion to the input of the
demodulator can have a significant impact on the error rate at the receiver. Furthermore, the
distortion was found to be significantly affected by the choice of the baseband pulse shape g(t),
and in particular it is essential to minimize the amount of overlap between adjacent subcarriers to
reduce inter-channel interference when timing and carrier offsets are introduced.

This differs significantly from traditional OFDM in which timing offsets are compensated through
cyclically extending each OFDM symbol, and carrier phase offsets are translated to a simple phase
rotation in each down-converted subchannel. In this regard, carrier phase offset in OFDM/OQAM
does not translate to a demodulator phase shift in the down-sampled subcarrier because of the T/2
time delay between the in-phase and quadrature components. Distortions due to carrier frequency
offsets, however, are still present on OFDM systems and are exacerbated as the spectral width
of each subcarrier decreases (e.g. as a result of partitioning the spectrum into more subcarriers).
This chapter will later demonstrate that properly designing an OFDM/OQAM preamble results in
accurate knowledge of the channel reference parameters, providing a minimal amount of distortion
in the system.

68

synthesis
filter
bank

synthesis
filter
bank

analysis
filter
bank

analysis
filter
bank

z−M/2 zM/2

+

Re{·}

jIm{·}

Re{·}

jIm{·}
...

jIm{·}

jIm{·}

Re{·}

jIm{·}

Re{·}
...

Re{·}

Re{·}

jIm{·}

Re{·}

jIm{·}
...

jIm{·}

jIm{·}

Re{·}

jIm{·}

Re{·}
...

Re{·}

X0

X1

X2

X3

XM−1

X̂0+

X̂1+

X̂2+

X̂3+

X̂M−1+

Figure 4.1: OFDM/OQAM channelizer using two identical yet separate DFT filterbanks.

4.1.3 Polyphase Filterbank Representation

The OFDM/OQAM transceiver can be represented by a pair of separate but identical DFT
polyphase filterbank channelizers with a T/2 delay between their inputs [24, Section 8.6.9]. The
system employing both the synthesis and analysis filterbanks can be seen in Figure 4.1; in effect, the
channelizers efficiently realize a set of parallel down-sampling filters which recover the original data
symbols when no channel impairments are present. This chapter shows that this basic prototype
needs only slight modification in order to mitigate the effects of channel impairments.

4.1.4 Organization

This chapter will focus on recovering the unknown reference parameters in (4.3) to be congruent
with a receiver based on DFT polyphase filterbanks as to provide as computationally efficient a
receiver as possible. Multi-channel communications systems can extract information for estimation
of the reference parameters in two ways:

1. Before de-multiplexing the subcarriers, typically by taking advantage of correlating whit ex-
plicit training data in the system. Traditional OFDM systems can also exploit cyclostationary
features from the symbol’s cyclic extension, regardless of whether or not the underlying data
are known. The remainder of this chapter will refer to these as time-domain techniques. This
work will later demonstrate that the success of many of these techniques are contingent upon
good channel conditions as well as the absence of narrow-band interference.

69

2. After de-multiplexing the subcarriers, usually by relying on training symbols embedded into
the data pattern. Such pilots carry enough information about the transmitted signal to guide
the receiver towards synchronization. In the remainder of this chapter these will be known
as frequency-domain techniques.

The majority of proposed multi-channel synchronizers employ a combination of both time- and
frequency-domain techniques, typically exploiting temporal auto- and cross-correlation for acquisi-
tion and relying on training symbols embedded into the data sequence for tracking.

4.2 Timing Recovery

Section 3.2 has demonstrated how polyphase filterbanks can be used for timing recovery in nar-
rowband systems, namely by devising a control loop which drives the interpolating filter in a bank.
This motivates investigation into how such techniques can be used to synchronize OFDM/OQAM
multi-carrier communications systems. As mentioned in the previous section, there are two main
categories of timing estimation techniques: those which are run in the time domain, and those
which are run in the frequency (down-sampled) domain. This section observes several estima-
tors in both categories, provide performance results, and describe their importance for different
operating conditions.

4.2.1 Time-domain Estimation

As demonstrated in Section 3.5, the introduction of a special preamble sequence with particular
cyclostationary features can aid the convergence of carrier and timing phase-locked loops. In
fact most existing systems (multi-carrier and otherwise) employ specific preamble convergence
procedures for this purpose. For example, 802.11a is a 64-subcarrier OFDM system which uses
a physical layer convergence procedure (PLCP) consisting of two short-sequence and two long-
sequence OFDM symbols. The short sequences are generated by loading a particular QPSK pilot
on every fourth subcarrier, corresponding to exactly four 16-sample temporal repetitions once
the inverse transform is taken, hence the name “short” sequence. Furthermore, because 802.11a
employs a 16-sample cyclic prefix, the resulting time series consists of ten 16-sample repetitions.
The long sequences are generated by loading a different QPSK pilot sequence on all subcarriers.
The resulting time series represents a unique sequence for which the receiver may correlate against.
A number of resources exist on the topic of synchronizing 802.11a and its derivative protocols. The
most common references deal with estimating the carrier frequency and timing offset parameters
through temporal auto- and cross-correlation.

These 802.11a sequences provide motivation for a timing recovery estimator based on a sequence
cross-correlator. One such an estimator integrates the product of received signal with the known
transmitted sequence. The resulting timing offset estimate τ̂ is that which maximizes the correla-
tor’s output, viz.

τ̂ = arg max
τ̃

{∫ T0

0
r∗(t− τ̃)s(t)dt

}
(4.4)

70

where as in Section 3.1 T0 is the observation time and τ̃ is the trial value of the timing offset. For
discrete-time systems, this is equivalent to finding the index which maximizes the cross-correlator
output. Fractional timing offsets can be resolved by performing parabolic interpolation between
samples. For a sampling rate 1/Ts and an observation period of L0 samples, (4.4) can be rewritten
in its discrete form as

τ̂t = arg max
τ̃

{
L0−1∑

k=0

r∗(kTs − τ̃)s(kTs)

}
(4.5)

Applying this estimator for OFDM is trivial as each frequency-domain symbol set is transformed
into a unique time series via the inverse DFT. This is not the case with OFDM/OQAM as the
symbols overlap in time, an artifact of the pulse-shaping filter g(t) as well as the subsequent I/Q
offset by T/2 seconds. Consequently, estimators based on temporal correlation for OFDM/OQAM
are considerably more difficult.

This estimation technique has several drawbacks. To begin with, any residual carrier frequency
offset will cause the received sequence to rotate its phase, reducing the output of the cross-correlator.
This makes (4.5) particularly sensitive to ν when L0 is large. In fact, if ν = 2π/L0 then the phase
of r(t) is reversed through the period L0 and the cross-correlator output will equal zero on average,
viz.

E

{
L0−1∑

k=0

[
s∗(kTs)e−j2πk/L0 + n(kTs)

]
s(kTs)

}
= 0

Additionally, the introduction of narrowband interference (when ψ(t) 6= 0) corrupts the temporal
correlator output and increases the estimator’s variance. One potential solution is to apply a
filter before the input to the transform as to eliminate this interference; however, this requires
more processing than is desirable. Furthermore, multi-carrier systems are designed to run in the
frequency domain such that data subcarriers which do not overlap the interference are orthogonal
to it. In effect, pre-filtering the signal is only to the benefit of the initial estimation stage and not
for demodulation. This chapter later introduces several novel estimators for the carrier and timing
offset reference parameters, as well as equalization due to multi-path fading. The performance is
characterized in channels undergoing additive white noise, multi-path fading, and interference.

4.2.2 Frequency-Domain Estimation

With the potential of narrowband interference to corrupt temporal estimation techniques, it is
logical to move to estimation methods which operate in the frequency domain. Consider the output
of of the mth down-sampler as

ym(t) = r(t)e−j(ωmt) ∗ g(−t) (4.6)

where the received signal is a delayed version of the transmitted signal corrupted only by noise such
that r(t) = s(t − τ) + n(t). When converted into a discretely sampled time series, the output of
the mth down-sampler after running through a matched filter g(t) over the time span L1 ≤ i ≤ L2

is given by

ym(kTs) =

L2∑

i=L1

r
(
(k − i)Ts

)
e−j
(
ωm(k−i)Ts

)
g (iTs) (4.7)

71

When τ = 0 and the sampling index k is taken at the maximum eye opening of the matched-filter
output, the output ym(kTs) ≈ am(p) may be fed into the detector for demodulation. If a slight
timing offset exists the distortion due to timing mismatch by not sampling at the peak of the eye
is negligible and that the channelized output can be approximated as

ym(kTs) ≈ am(p)ej2πτm/M + ñ(kTs) (4.8)

where ñ(kTs) is the in-band noise term after matched-filtering. As such, the complex gain of the
channel may be expressed as Gm = Ym/Sm where the abbreviations Ym = ym(kTs) and Sm = am(p)
are used for convenience. Clearly τ corresponds to the frequency of the sinusoid in (4.8), and the
phase of the complex gain terms Gm will vary linearly with m. Therefore an estimator for the
timing offset τ may be derived by using the maximum likelihood estimator for the frequency of this
sinusoid. This is accomplished by by summing the phase differences of the complex gain terms Gm
over adjacent subcarriers, viz.

τ̂f =
M

2π
arg

{
M−2∑

m=0

Gm+1G
∗
m

}
(4.9)

Notice that the above expression can be computed for any non-integer value of τ , while the time-
domain correlation estimator τ̂t in (4.5) required parabolic interpolation for estimating fractional
sample delays.

This particular estimator has several drawbacks in its applicability to OFDM/OQAM systems. For
instance, τ̂f neglects the effects of any carrier frequency offset which can cause substantial distortion
in the output of the channelizer. In this situation, the approximation given by (4.8) breaks down
due to inter-channel interference. The fact that the in-phase and quadrature components of s(t)
are delayed from one another causes further problems. Additionally, the assumption that distortion
due to a timing mismatch won’t hold for even moderate timing offsets. The use of τ̂ is convenient
for OFDM where g(t) = 1 over the duration of the symbol plus its cyclic extension, and therefore
the expression in (4.8) is exact. This is not the case with OFDM/OQAM where distortion due to
a mismatch in sample timing is an artifact of inter-symbol interference. As Section 4.4.3 will later
show, this problem can be circumvented by repeating the OFDM/OQAM symbol pilots to force a
flat temporal response, mimicking the behavior of OFDM.

4.2.3 Timing Correction in OFDM/OQAM

Once the timing offset has been properly estimated, it is necessary to correct this error by compen-
sating for the sampling mismatch at the receiver. In OFDM systems this is accomplished by simply
applying a linear complex phase rotation for each subcarrier after the transform. Orthogonality
is preserved so long as the transform is taken within the duration of the cyclic prefix window (in
other words, the buffered samples do not overlap symbols). Unfortunately for OFDM/OQAM this
is not a sufficient condition as the envelope of power changes over the duration of one symbol, thus,
timing offsets cannot be perfectly corrected by applying complex phase rotation after taking the
transform. Consider a single narrowband channel in which a root raised-cosine pulse is applied
to a BPSK signal. If the timing of the matched-filter output is misaligned then the receiver will
observe inter-symbol interference at the filter output. This can be corrected before down-sampling
by applying an interpolating filter which can effectively all but eliminate ISI from the filter output.

72

This technique was presented in Section 3.2 with the use of a polyphase filterbank interpolator. Due
to the frequency overlap of OFDM/OQAM, once the signal has been down-sampled, any residual
timing offset will result in not only inter-symbol interference, but inter-channel interference as well.
This prevents the use of any simple interpolating filter at the output of the channelizer to easily
perform post-filtering timing offset correction.

Consider a simple non-recursive filter which is comprised of an array coefficients and a buffer of
input samples of the same length. The samples are loaded in the buffer from the right one at a time.
Each time the sample is loaded, the filter output is computed by taking the vector dot product
between the buffer and the coefficients array. Section 3.2 has demonstrated that timing recovery
of a narrowband signal requires oversampling by only the Nyquist rate; the resulting symbols can
be recovered by choosing the appropriate filter in a bank to compute the interpolants between
available sample points. Furthermore, the timing could be recovered by controlling the input data
flow into the the filter buffer and selecting the appropriate index to a bank of filter coefficients
interpolate between available samples. Additionally, Section 3.2.5 demonstrated that a bank of
just 32 filters is sufficient to provide interpolation without a significant increase in inter-symbol
interference. Conveniently, the interpolating filter also doubles as the matched filter. This method
is equivalent to, but more computationally efficient that just grossly over-sampling the signal and
simply choosing the optimal matched-filter output sample.

Consider, however, that in an OFDM/OQAM multi-carrier system, each narrowband carrier is
already oversampled by a factor of M due to the nature of the channelizer. This suggests that if
the system contains a sufficient number of subcarriers, the filterbank channelizer itself can be used
for interpolation to correct for timing offsets. The DFT analysis filterbank operates similarly to
the filter banks of Section 3.2; however, the input sequence is sub-sampled by a factor of M into
M buffers. The input buffer for each filter is effectively a set of parallel down-samplers, storing the
interleaved samples in consecutive arrays. But as depicted in Figure 2.4, the samples have already
been loaded into the commutator which are internally buffered. This can easily be solved; if the
samples have been loaded into the wrong buffer by virtue of the input commutator having started
sampling at the wrong time, the alignment can be corrected by permuting the proper buffer to its
corresponding filter. Figure 4.2 depicts the modified DFT filterbank allowing arbitrary alignment
with the sub-sampled input time series.

4.3 Carrier Recovery

As stated in Section 3.3, digital communications systems are limited by carrier offset relative to their
symbol rates. In the case of narrowband systems this carrier offset is commensurate of the signal’s
occupied bandwidth. For multi-carrier systems, however, the occupied bandwidth is much higher
than the symbol rate as many subcarriers are transmitted in parallel. Consequently, multichannel
communications systems are much more sensitive to carrier offsets than single channel systems.
This section investigates several estimators for ν, the carrier frequency offset reference parameter,
in both the time and frequency domains. My intent here is to introduce estimators for ν commonly
used with synchronizing traditional OFDM signals and discuss their viability for OFDM/OQAM
systems.

73

IDFT
W ∗

G0(z)

G1(z)

G2(z)

G3(z)

...

GM−1(z)

b0

b1

b2

b3

...

bM−1

Figure 4.2: Modified DFT polyphase filterbank channelizer system diagram. The filter coefficients
Gm(z) are separated from their buffers bm allowing arbitrary sample alignment. A shift of one
sample is shown here.

4.3.1 Time-domain estimation

Carrier recovery in OFDM systems is typically accomplished by taking advantage of a certain
property of inverse DFTs in which disabling all but every N th subcarrier causes N repetitions in
the output of the transform. Effectively, this amounts to multiplying the spectrum with a sequence
of equally spaced Dirac delta functions and thus causes repetitions in the time domain over the
duration of one symbol. As such the transmitted signal can be represented as

s(t) = s(t− ζ) (4.10)

where ζ is the time between repetitions, equal to the inverse of the bandwidth between enabled
subcarriers. If a carrier frequency offset ν is present, then the received signal will rotate νζ radians
between repetitions, thus r(t) = r(t− ζ)ejνζt. Sampling the received signal at the interval Ts gives
the relationship

r(kTs) = r
(
(k − P)Ts

)
ejνP (4.11)

where P = ζTs is the delay between repetitions in samples. The cyclostationary properties of the
transmitted signal can be exploited to derive an estimator for ν. Regardless of the time index k,
the phase difference between r(kTs) and r

(
(k−P)Ts

)
is constant and implies that E

{
r(kTs)r

∗((k−
P)Ts

)}
= νP . The resulting estimator for carrier frequency offset is

ν̂t =
1

P
arg

{
L0−1∑

k=0

r(kTs)r
∗
(

(k − P)Ts

)}
(4.12)

The above estimator has a phase ambiguity of π/P ; if the phase difference is π radians over P
samples, the estimator cannot differentiate between ν = π/P and ν = −π/P . As a result, the
range for ν̂t is −π/P ≤ ν ≤ π/P . Clearly, the estimator’s range can be improved by decreasing the
delay between repetitions with the drawback of concentrating more energy into fewer subcarriers.

74

A more reliable estimator can be derived which exploits knowledge of the transmitted signal s(t).
This implies that timing information has been recovered—recall that τ̂t in Section 4.2.1 made the
assumption that carrier frequency information had been recovered. Conveniently, ν̂t can be made
blind, independent of the transmitted symbol sequence as well as timing information and carrier
phase offset.

As before with OFDM/OQAM, however, the consequence of applying a band-limiting filter to each
subcarrier is that symbols overlap in time, and therefore (4.10) will only hold true after as many
symbols as the delay of the prototype filter are transmitted. Furthermore, the introduction of
narrowband interference can significantly degrade the performance of ν̂t as discussed with τ̂t.

4.3.2 Frequency-domain estimation

As with τ̂ , the potential for narrowband interference to corrupt temporal estimation techniques
motivates the estimation of ν in the frequency domain. Assuming optimal timing at the receiver,
the complex gain of the channel is Gm(p) = Ym(p)/am(p) where Ym(p) is the output of the mth

down-sampler at symbol index p. For small carrier frequency offsets it may be assumed that
ν � 1/T and that the distortion due to inter-channel interference from matched-filter misalignment
is negligible. The resulting carrier offset will cause the complex channel gain Gm(p) to rotate with
successive symbols equal to ν/M . An estimator for ν can be derived completely in the frequency
domain by averaging this phase rotation between successive symbols for all subcarriers, viz.

ν̂f =
1

M
arg

{
M−1∑

m=0

Gm(p)G∗m(p− 1)

}
(4.13)

As with ν̂t, this estimator has a limited range of operation. Because successive symbols are spaced
M samples apart (neglecting any cyclic extension), ν̂f has a theoretical range −π/M ≤ ν ≤ π/M .
Significant frequency shifts, however, can cause distortion in the matched-filter output which further
limits the practical range of ν̂f .

4.4 Joint Timing and Carrier Recovery

The preceding sections have demonstrated that while independent estimators for τ and ν are
available, the performance of each is conditional upon knowledge of the other. Interestingly, the
best estimator for timing occurs in the frequency domain, while the best estimator for carrier
frequency offset occurs in the time domain. This section introduces a joint estimator for τ and ν for
OFDM/OQAM signals by exploiting cyclostationary properties within a novel preamble sequence.
These new estimators are compared to several others which have recently been proposed, and
demonstrate a significant improvement in wireless channels exhibiting narrowband interference.
The performance is characterized in terms of error variance in a variety of channel environments
and is compared to the Cramér-Rao lower bounds.

75

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12

O
u

tp
u

t
T

im
e

 S
e

ri
e

s

Symbol Index

Figure 4.3: OFDM/OQAM filter preamble for a delay of m = 3 symbols and an excess bandwidth
factor of β = 0.9 for R = 2 repetitions using the r-Kaiser filter prototype. The region of repetition
is highlighted.

4.4.1 Temporal Repetition in OFDM/OQAM

Section 4.3 has demonstrated that carrier recovery of multi-channel communications signals often
exploits temporal repetitions in the signal and that OFDM can synthesize this response simply
by disabling all but several equally-spaced subcarriers. With OFDM/OQAM, however, the band-
limiting filter causes the symbols to overlap in time and thus (4.10) no longer holds. Furthermore,
timing recovery in the frequency domain becomes impractical for timing offsets of half a symbol
period where the output of the down-sampler is corrupted by inter-symbol interference.

These limitations, however, can be circumvented if the time series were permitted to repeat. While
trivial with OFDM, this is indeed also possible with OFDM/OQAM by pushing the same symbol
repeatedly through the synthesizer filter bank. Figure 4.3 demonstrates the effect of repeating the
same symbol into a square-root Nyquist filter at the transmitter, and match-filtered at the receiver.
Notice that not only does the time series repeat after 2m symbols—the the full delay of both the
transmit and receive filters—but that the magnitude response is nearly flat over its duration. This
is an artifact of the allowing the excess bandwidth factor of the filter to approach 100%. For R
total symbol repetitions, the transmitter needs to push R + 2m − 1 symbols through the filter.
These repetitions allow estimators based on (4.5) and (4.12) to be used for OFDM/OQAM signals.

4.4.2 Existing Estimators

Several joint estimators proposed in the literature take advantage of the repetition property de-
scribed in the previous section. Fusco et al. in [33] derive a least-squares (LS) estimator by exploiting
the known structure of the training sequence which leads to the following joint estimators for ν and
τ :

τ̂LS = arg max
τ̃

{2 |R(τ̃)| −Q1(τ̃)−Q2(τ̃)} (4.14)

76

ν̂LS =
1

PTs
arg {R(τ̂LS)} (4.15)

with

R(τ̃) ,
(R+2m−1)M−1∑

k=(2m−1)M

r∗(kTs + τ̃)r(kTs + PTs + τ̃) (4.16)

and

Qi(τ̃) ,
(R+2m−1)M−1∑

k=(2m−1)M

∣∣r
(
kTs + (i− 1)PTsτ̃

)∣∣2 (4.17)

where P is the time delay in samples between repetitions and is equal to M (the number of
subcarriers) in these estimators. The authors go on to derive a modified least-squares (MLS)
estimator by dividing the timing metric in (4.14) by the term Q(τ̃) , Q1(τ̃) +Q2(τ̃):

τ̂MLS = arg max
τ̃

{ |R(τ̃)|
Q(τ̃)

}
(4.18)

ν̂MLS =
1

PTs
arg {R(τ̂MLS)} (4.19)

Notice that both of these joint estimators are blind and make no assumption of knowledge of the
training sequence s(kTs). Similarly, Tonello and Rossi in [90] propose a similar least-squares blind
joint estimator which takes advantage of the periodicity in the training burst

τ̂TR1 = arg max
τ̃

{
|R(τ̃)|2
Q2(τ̃)2

}
(4.20)

ν̂TR1 =
1

PTs
arg {R(τ̂TR1)} (4.21)

Tonello and Rossi also proposed a set of joint estimators which exploit knowledge of the transmitted
training burst s(kTs) [90],

τ̂TR2 = arg max
τ̃

{
|S(τ̃)|2
T (τ̃)

}
(4.22)

ν̂TR2 =
1

PTs
arg {S(τ̂TR2)} (4.23)

where

S(τ̃) =

(R+2m−1)M−1∑

k=(2m−1)M

r∗(kTs − τ̃)r(kTs + PTs − τ̃)s∗(kTs + PTs) (4.24)

and

T (τ̃) =

(R+2m−1)M−1∑

k=(2m−1)M

∣∣∣s(kTs)
∣∣∣
2∣∣∣s(kTs + PTs)

∣∣∣
2

(4.25)

Furthermore, blind estimators are proposed in [11] by exploiting the unconjugate cyclostationarity
of the received OFDM/OQAM, while in [34] it is shown that accurate estimators for ν can be
obtained using both the conjugate and the unconjugate cyclostationarity properties of the received
OFDM/OQAM signal. Additionally, a maximum likelihood estimator has been proposed in [32],
but all of these estimators are much more computationally complex than those presented here.

77

4.4.3 Proposed Estimators

All of the joint estimators in the preceding section exploited temporal correlations of the time
series before the down-sampler. It is desirable in dynamic spectrum environments to estimate the
reference parameters in the frequency domain as to remove interfering signals from the estimates.
Frequency-domain estimators in Section 4.2 and Section 4.3, however, make strong assumptions
about the underlying signal structure. In particular, distortion due to timing and carrier phase
offsets are negligible after the down-sampler. Saltzberg, demonstrated in [83] that even a slight
timing offset causes both inter-symbol and inter-channel interference, a carrier phase offset results
in cross-talk between adjacent subcarriers’ in-phase and quadrature channels. However, these
distortions can be mitigated or even eliminated altogether by devising a special preamble structure
for initial acquisition. Inter-symbol interference can be eliminated by permitting the input symbols
to repeat as in Figure 4.3. Furthermore, inter-channel interference can be completely removed if all
odd subcarriers are disabled, which effectively yields two repetitions per symbol period. Finally, the
I/Q mismatch is handled by disabling the quadrature component and only transmitting symbols
on the in-phase channel. This preamble sequence is only several symbols long and only needs to
be transmitted at the beginning of each data frame. Once acquired, the receiver can track to any
residual errors using pilot symbols.

Conveniently, the polyphase OFDM/OQAM receiver channelizer uses two separate yet identical
DFT filterbanks separated in time by M/2 (half a symbol period), as depicted in Figure 4.1.
Considering that data are only transmitted on the even subcarriers, the time series will repeat every
P = M/2 samples (twice a symbol period). As such, the output of the two analysis filterbanks
will reflect sufficient information about the channel impairments to yield estimators for ν and τ .

Specifically, complex gain of the channel may be expressed as G
(i)
m = Y

(i)
m /am where i = 0 and i = 1

correspond to the upper and lower analysis filterbanks, respectively (see Figure 4.1). As in (4.5),
the sinusoidal frequency of the gains over the subcarrier frequencies is proportional to the sample
timing offset at the receiver. An appropriate estimator for τ may be derived as

τ̂G =
M

4π
arg

{∑

m∈P
G(0)
m G

∗(0)
m−2 +G(1)

m G
∗(1)
m−2

}
(4.26)

Notice that the above estimator differs from (4.5) in that only every other subcarrier is used and
that the time spacing between the outputs of the down-sampler are M/2 instead of M . Notice
that unlike the estimators given by Fusco et al. and Tonello et al., τ̂G is derived in closed-form and
does not require an extra search step or parabolic interpolation. The estimator effectively performs
convolution of the known sequence with the received sequence in the frequency domain rather than
the time domain as done with τ̂t and τ̂TR2. This helps to reduce the computational burden of the
receiver as well as increasing the timing resolution.

A frequency-domain estimator for ν is derived in a similar to ν̂f of (4.13). The observable phase
difference between the outputs of the upper and lower analysis filterbanks is proportional to the
carrier frequency offset. Because the output of lower analysis bank has a delay of M/2 samples from
the upper bank, the average phase difference between the two will be proportional to the carrier
frequency offset. Ignoring any distortion due to mis-aligned matched filters, ν may be expressed as

78

the accumulated phase differences between G
(0)
m and G

(1)
m , viz.

ν̂G =
2

M
arg

{∑

m∈P
G(0)
m G∗(1)

m

}
(4.27)

What is convenient about this estimator, as demonstrated later, is that any interference on a
particular subcarrier can be ignored from the set P.

4.4.4 Working Example

Figure 4.4 gives an example of how the the proposed OFDM/OQAM sample timing and carrier

frequency estimators operate. The complex channel gainsG
(0)
m andG

(1)
m are depicted in Figure 4.4(a)

in which a sinusoidal response due to a timing offset is clearly visible. Figure 4.4(b) shows the
relationship of the phase response of the complex channel gains. The slope of the phase relates to
the timing offset while the phase difference is proportional to the carrier frequency offset.

4.5 Numerical Results

This section compares the performance of the existing estimators for τ and ν given by (4.5), (4.12),
given in Section 4.4.2, and proposed in Section 4.4.3 under a variety of channel conditions. The
specific channels of interest are those which exhibit additive white Gauss noise (AWGN), multi-
path frequency-selective fading, and narrow-band interference. The performance of each estimator
is characterized by its root mean-squared error which incorporates both its variance as well as its
bias. Statistics were gathered by running 1000 independent simulations across varying signal-to-
noise/interference ratios. The values of normalized carrier frequency offset ν, carrier phase offset θ,
and sample timing offset τ were uniformly distributed in [−π/M, π/M), [−π, π), and [−M/4,M/4),
respectively. The OFDM/OQAM subsystem has M = 64 subcarriers with the r-Kaiser prototype
filter designed in Section 2.5 with a delay of m = 3 and an excess bandwidth factor of β = 0.6. The
multi-path channel has been modeled to consist of Nm + 1 = 5 independent fading taps with an
exponentially decaying power delay profile such that E{|h(`)|2} = Ce−2`, ` ∈ {0, . . . , Nm} where
C is a constant such that

∑Nm
`=0E{|h(`)|2} = 1. The first tap is drawn from a Rice-K distribution

with a fading factor of K = 10 dB; all subsequent taps are Rayleigh. This model was chosen to
exhibit a weak line-of-sight component so as to compare the estimators’ performances in a dense
multi-path environment. The Cramér-Rao variance bound (CRVB) for τ̂ and ν̂ are derived from
[33, (32)] and [33, (33)] respectively as

CRVB(τ̂) =
M2T 2

s

8π2(γ/N0)

[
1
Mu

∑
`∈A

(
`− 1

Mu

∑
`∈A

`

)2
] (4.28)

CRVB(ν̂) =
3

2π2T 2
s (γ/N0)L3

0

(4.29)

79

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-30 -20 -10 0 10 20 30

Subcarrier Index

real
imag

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-30 -20 -10 0 10 20 30

Subcarrier Index

real
imag

G
ai
n
(u
p
p
er

b
an
k)
,
G

(0
)

m
G
ai
n
(l
ow

er
b
an
k)

G
(1

)
m

(a) Complex channel gains

-14

-12

-10

-8

-6

-4

-2

 0

 2

-30 -20 -10 0 10 20 30

Subcarrier Index

arg{G(0)
m }

arg{G(1)
m }

G
ai
n
P
h
as
e,

ar
g
{G

(d
)

m
}

(b) Phase of channel gains

Figure 4.4: OFDM/OQAM preamble synchronization example for M = 64 subcarriers with
τ = 2Ts, ν = 0.02/Ts, and SNR=20dB.

80

where γ/N0 is the received signal-to-noise ratio, L0 = RM is the number of observed samples.
Notice that both (4.28) and (4.29) are inversely proportional to the received signal’s SNR, and in
particular the variance of τ̂ depends on the location of the enabled subcarriers.

Figure 4.5 demonstrates the performance of the estimators in an AWGN channel. The estimators
with the worst timing performance are τ̂LS , τ̂MLS , and τ̂TR1 which do not rely on knowledge of
the transmitted symbol set and therefore cannot accurately align the receiver with the transmitter.
Interestingly the frequency-domain estimator τ̂G out-performs the time-domain estimator τ̂t as
it does not rely on interpolating between samples. Nearly all the estimators for ν have the same
performance with the exception of ν̂G which does not rely on time-domain correlation of the received
signal. The performance of ν̂G flattens out for higher SNR levels as distortion due to matched-filter
mismatch tends to dominate.

Figure 4.6 demonstrates the performance of the estimators in a dense multi-path environment. Be-
cause the multi-path model exhibits only a weak line-of-sight component, the timing performance
for each of the estimators is poor, even for high SNR levels. Estimators based on cross-correlation
techniques perform poorly in multi-path environments, particularly for low SNR levels. Interest-
ingly, the proposed τ̂G estimator is less affected by multi-path and outperforms the other estimators
at 0 dB SNR. This can be explained by the fact that τ̂G computes its timing estimate in the fre-
quency domain; frequency components within a multi-path fade naturally contribute less to the
estimate of τ and therefore are not as critical to its performance. The carrier frequency offset
estimators, however, perform almost identically to the AWGN channel in Figure 4.5 but with a
slightly higher variance.

Finally, Figure 4.7 demonstrates the performance of each estimator in the presence of a narrow-band
interfering tone. The received signal has a nominal SNR of 20dB before an interfering carrier tone is
injected into the receiver. This carrier tone emulates the presence of a narrow-band legacy user near
the OFDM/OQAM receiver. It is clear from the figures that the performance of the time-domain
estimators is poor when the interfering signal is significantly stronger than the OFDM/OQAM
signal. This is an artifact of the cross-correlation methods which cannot remove the interference
before estimation. Alternatively, because τ̂G and ν̂G operate strictly in the frequency-domain,
a narrowband tone operating in just one or two subcarrier bands has little contribution to the
estimator as a whole. Furthermore, if the frequency of the interference is known a priori then
the contribution to the corresponding subcarriers to the estimators for τ and ν can be disabled
completely. Consequently the proposed estimator can accurately synchronize to the OFDM/OQAM
signal even when the SIR level is -20dB, and has a practical limitation of the prototype filter stop-
band attenuation.

4.6 Equalization

Suppose that the transmitted signal s(t) passes through an unknown channel filter hc(t) of length
Nm. For narrow-band single-carrier systems where the mean excess delay of the channel is a consid-
erable portion of the symbol period, the receiver would see considerable inter-symbol interference,
causing significant distortion to the input of the demodulator and possibly resulting in symbol
errors. The receiver’s equalizer seeks to remove this inter-symbol interference by designing a filter

81

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

 0 5 10 15 20 25 30

R
M

S
E

 o
f

T
im

in
g

 O
ff

s
e

t
E

s
ti
m

a
te

SNR [dB]

CRVB
proposed, τ̂G
correlator, τ̂t

τ̂LS
τ̂MLS
τ̂TR1
τ̂TR2

(a) Timing offset estimator, τ̂

10
-4

10
-3

10
-2

10
-1

 0 5 10 15 20 25 30

R
M

S
E

 o
f

C
a

rr
ie

r
F

re
q

.
O

ff
s
e

t
E

s
ti
m

a
te

SNR [dB]

CRVB
proposed, ν̂G
correlator, ν̂t

ν̂LS
ν̂MLS
ν̂TR1
ν̂TR2

(b) Carrier frequency offset estimator, ν̂

Figure 4.5: OFDM/OQAM parametric estimation in AWGN channels.

82

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

 0 5 10 15 20 25 30

R
M

S
E

 o
f

T
im

in
g

 O
ff

s
e

t
E

s
ti
m

a
te

SNR [dB]

CRVB
proposed, τ̂G
correlator, τ̂t

τ̂LS
τ̂MLS
τ̂TR1
τ̂TR2

(a) Timing offset estimator, τ̂

10
-4

10
-3

10
-2

10
-1

 0 5 10 15 20 25 30

R
M

S
E

 o
f

C
a

rr
ie

r
F

re
q

.
O

ff
s
e

t
E

s
ti
m

a
te

SNR [dB]

CRVB
proposed, ν̂G
correlator, ν̂t

ν̂LS
ν̂MLS
ν̂TR1
ν̂TR2

(b) Carrier frequency offset estimator, ν̂

Figure 4.6: OFDM/OQAM parametric estimation in multi-path channels.

83

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

-30 -20 -10 0 10 20 30

R
M

S
E

 o
f

T
im

in
g

 O
ff

s
e

t
E

s
ti
m

a
te

SIR [dB]

CRVB
proposed, τ̂G
correlator, τ̂t

τ̂LS
τ̂MLS
τ̂TR1
τ̂TR2

(a) Timing offset estimator, τ̂

10
-3

10
-2

10
-1

10
0

-30 -20 -10 0 10 20 30

R
M

S
E

 o
f

C
a

rr
ie

r
F

re
q

.
O

ff
s
e

t
E

s
ti
m

a
te

SIR [dB]

CRVB
proposed, ν̂G
correlator, ν̂t

ν̂LS
ν̂MLS
ν̂TR1
ν̂TR2

(b) Carrier frequency offset estimator, ν̂

Figure 4.7: OFDM/OQAM parametric estimation in channels with narrowband interference and
a nominal SNR of 20dB.

84

which minimizes the error between the transmitted sequence and the received data symbols [76, 45].

For multichannel systems the total bandwidth is assumed to have been split into many smaller
partitions, extending the symbol duration on each particular subcarrier. As a result, the mean
excess delay of the channel impulse response is now much smaller than the symbol period such that
the fading on any particular subchannel is approximately flat. This permits equalization to be ac-
complished after the down-sampler with just one coefficient per channel, a computationally efficient
prospect [65]. Conventional multi-channel equalizers take advantage of a set of pilot subcarriers
with known amplitude and phase responses. For traditional OFDM systems, the signal’s cyclic
prefix is exploited to mitigate the effects of sub-optimal symbol timing. Any residual timing error
is presented to the down-sampler as simply a linear phase shift with frequency (see Figure 4.4(b)).

Saltzberg has shown how carrier phase error can introduce inter-channel interference in OFDM/OQAM
receivers, causing distortion in the signal before demodulation [83]. It is therefore necessary to cor-
rect for this carrier phase error due to the multi-path channel without the presence of subcarrier
overlap. As before with timing and carrier frequency offset, the preamble sequence is assumed to
illuminate only a subset of non-adjacent subcarriers. The equalizer therefore must estimate the
complex channel gain corrections for all subcarriers from only those which were transmitted. Ef-
fectively, the receiver needs to interpolate between available sample points in the frequency domain
to accurately estimate the complex channel gain on those subcarriers which were disabled. While
a number of equalizers have been proposed for traditional OFDM systems, almost no literature
exists on the subject for OFDM/OQAM. In this section a novel equalizer for OFDM/OQAM is
proposed based on the same preamble sequence used to estimate the reference parameters τ and
ν in Section 4.4. Its performance is characterized in terms of the mean-squared error difference
between the ideal equalizer in which the channel gain is known.

4.6.1 Proposed Equalizer

A number of equalization algorithms exist for multi-rate systems, particularly for OFDM. With
traditional OFDM, the gain can be estimated on each subcarrier independently, so long as the carrier
frequency offset isn’t sufficiently high as to risk inter-channel interference, and that the transform
is taken within the duration of the cyclic prefix as to eliminate inter-symbol interference. With
OFDM/OQAM, however, ensuring no interference is more difficult. The preamble pattern described
in Section 4.4.3, however, eliminates inter-symbol and inter-channel interference by disabling all
odd subcarriers on the transmitter, disabling the quadrature channel, and repeating the training
pattern several times. As a result the complex gain on those subcarriers which were disabled must
be interpolated from those which were enabled. As such, the gain estimate on all pilot subcarriers
(the set P) is the ratio of the received symbol to the transmitted symbol as Gm = Ym/am where
m ∈ P. The gain can be approximated on all subcarriers by applying a smoothing function which
serves to both interpolate between pilot subcarriers as well as filter out some of the noise in the
estimation. The estimate of equalizer gain on all subcarriers is therefore

Ĝm =
1

w̄m

∑

`∈P
w(`−m)G` (4.30)

85

where
w̄m =

∑

`∈P
w(`−m) (4.31)

is the normalized gain for the mth subcarrier. The remaining task is to choose the appropriate
windowing function in (4.30) for estimating Gm.

For estimating the complex gain of a finite-length channel response, its time series is truncated to a
fixed number of taps using rectangular window. Such a window with a width Nt samples is defined
by

wt(n) =

{
1 0 ≤ n < Nt

0 else
(4.32)

The resulting frequency-domain window is computed by taking the discrete Fourier transform of
wt(n) as

wf (n) =

Nt−1∑

k=0

wt(k)e−j2πnk/M (4.33)

and can be used for interpolation within (4.30). The expression in (4.33) has no closed-form
expression but is similar to the sinc function; due to the discrete nature of the transform the tails
of the sinc are aliased back into wf (n). An approximation to (4.33) can be derived by ignoring the
aliased components as

ws(n) = sinc
(
Nt

n

M

)
exp

{
−j2π

(n
M

)(Nt − 1

2

)}
(4.34)

where the complex exponential term denotes the fact that the temporal window in (4.32) is not
centered around the time n = 0.

A heuristic window can be derived from the temporal Gauss curve wt(n) = exp(−n2/2σ2
t) which

gives preference to multi-path taps closer to n = 0 and decays quickly with time. The width
of the window is adjusted by σt which can be chosen to meet a specific value p at the desired
temporal width (e.g. when n = Nt). Specifically if exp

{
−n2/2σ2

t

}
= p when n = Nt then

σt = Nt/
√
−2 log(p). Letting p = 0.2 yields σt = 0.55738Nt. The corresponding frequency-domain

window is simply another Gauss curve

wg(n) = exp
{
− (n/M)2 /2σ2

f

}
(4.35)

where σf = 1/Mσt = 1.7941/MNt. The justification for this window is that the multi-path
components decay with time, and therefore their contribution to the equalizer’s complex gain
estimates should be less. Samples with a significant time delay are unlikely to contain much energy
in the power delay profile but will instead contain noise.

4.6.2 Performance Results

The frequency response due to the channel is simply the Fourier transform of its impulse response
hc(t), viz.

Hc(ω) =

∫ ∞

−∞
hc(t)e

−jωtdt (4.36)

86

-30

-25

-20

-15

-10

-5

 0

 5

 10

-0.4 -0.2 0 0.2 0.4

M
a
g
n
it
u
d
e

Normalized Frequency

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-0.4 -0.2 0 0.2 0.4

P
h
a
s
e

Normalized Frequency

Hc(ω)

Hc(ω)

Ĝ−1(ω)

Ĝ−1(ω)

Figure 4.8: OFDM/OQAM equalization example using the wf (n) window for M = 256 subcar-
riers, Nm = 4 paths, Nt = 6 samples, and a nominal SNR of 3 dB.

The performance of the equalizer can be quantified by comparing the inverse of the gain estimates
Ĝm to the actual channel response Hc(ω) in terms of mean-squared error. Specifically the error is
computed as

MSE =
1

M

M−1∑

m=0

[
Hc(ωm)− Ĝ−1(ωm)

]2
(4.37)

Figure 4.8 demonstrates the magnitude and phase response of a 4-tap channel as well as the inverse
of the gain estimate from the equalizer using wf (n) in (4.33) with a nominal SNR of just 3 dB.
Notice that both the magnitude and phase of the equalizer align well with the channel response
suggesting that the proposed equalizer can properly correct for multi-path channel impairments.

Figure 4.9 demonstrates the performance of the equalizer in terms of mean-squared error versus SNR
for the three windows introduced in Section 4.6.1. The channel impulse responses were generated
as in Section 4.5 with the first tap having a Rice-K distribution with K = 10 dB and the remaining
taps following a Rayleigh distribution with an exponentially decaying average power. As expected,
wf (n)—the true transform of the square window in (4.32)—gives the best results. Interestingly
the sinc approximation performs well for low SNR, but eventually hits a performance floor around
20 dB as its RMSE does not improve with SNR. This is a direct consequence of ignoring the aliasing
component in the true Fourier transform of (4.32). The Gauss window wg(n) of (4.35) has a poor
performance for low SNR levels but eventually out-performs the ws(n) window at around 21 dB,
even though it is derived completely heuristically.

87

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 5 10 15 20 25 30 35 40

M
e
a
n
-S

q
u
a
re

d
 E

rr
o
r

SNR [dB]

True, wf (n)
sinc approximation, ws(n)

Gauss approximation, wg(n)

Figure 4.9: OFDM/OQAM equalization mean-squared error vs. SNR for different window types
with M = 64 subcarriers, Nm = 4 paths, Nt = 6 samples, and averaged over 1000 trials.

4.7 (Almost) Perfect Reconstruction of Unknown Signals

Perhaps the most appealing promise of cognitive radio is its ability to sense the unknown radio
frequency environment and adapt accordingly. CR lends itself well to the detection of unused
licensed spectrum through classifying signals emitted from primary user transmitters. This chapter
has demonstrated that OFDM/OQAM can be used to perfectly reconstruct the original down-
sampled time series (with added noise) under the condition that the transform is time-aligned and
any residual carrier frequency and phase offsets are properly compensated. This suggests that a
signal of interest received in a contiguous block of subchannels can be also perfectly reconstructed
and passed to a signal classification algorithm, thus providing a single receiver solution for both
data communication, and interference channelization. This is not possible with traditional OFDM
because the addition of the cyclic prefix removes the continuity of the received signal, even though
the forward and reverse transforms have a unique one-to-one mapping. This means that the received
signal must be passed to a separate channelizer in addition to the OFDM receiver. Furthermore,
the stop-band attenuation of OFDM is insufficient for signal separation, and sidelobe suppression
techniques such as window tapering [88] and subcarrier injection [77] only apply to the spectrum
of the transmitted signal and do not assist in subcarrier isolation in the receiver’s down-converter.

Many multichannel communications systems consist of a synthesis filter bank on the transmitter
and an analysis filter bank at the receiver. The output of the analysis bank at the receiver can be
connected back to back with a synthesis bank, and is said to be a perfect reconstruction system if

88

its output x̂(n) is just a delayed and scaled version of its input x(n) [93, p. 132]. That is,

x̂(n) = cx(n− n0) (4.38)

The necessary and sufficient conditions for perfect reconstruction are given more formally for any
IIR or FIR system in [93, (5.6.6)]. Because OFDM/OQAM uses a matched filter on both the
transmitter and receiver, it is capable of satisfying these conditions for (almost) perfect reconstruc-
tion. In actuality, this system cannot truly perfectly reconstruct the original time series as DFT
filterbanks allow a minimal amount of energy to alias back into the band [24, p. 189]; however,
this distortion can be kept negligible with proper filter design strategies. Conveniently, the pro-
totype filter for OFDM/OQAM has relaxed constraints and can be adjusted to reduce stop-band
attenuation to any desired level at the cost of increased delay and computational complexity.

Figure 4.10 depicts an example of an OFDM/OQAM system in which several of the subcarriers are
disabled at the transmitter and are used to perfectly reconstruct an interesting signal observed at
the receiver. The interfering signal’s power spectral density is clearly visible in the notched band
at f = 0.06/Fs in Figure 4.10(a). Notice that in Figure 4.10(b) the reconstructed time series of the
interfering signal is identical to that of the original, demonstrating that this system indeed satisfies
the criteria given by (4.38) and is a near-perfect reconstruction system. The data subcarriers are
recovered simultaneously by the same down-sampler without any modification to the receiver.

4.8 Conclusions

This chapter has highlighted the benefits of using multi-carrier communications techniques for
dynamic spectrum access, focusing primarily on OFDM/OQAM due to its superior spectral com-
pactness over traditional OFDM. Several new maximum likelihood-based estimators for the timing
and carrier offset parameters were introduced which are derived in the frequency domain (after the
down-sampler) and are thus robust to interfering signals. The performance of the proposed esti-
mators are comparable to other known estimators in AWGN and multi-path channels but exhibit
significantly less variance in channels with narrowband interference, a likely scenario for dynamic
spectrum environments. Furthermore, the estimators do not rely on temporal correlation tech-
niques which help to reduce computational complexity. This chapter also demonstrated how the
same receiver can be used to demodulate data subcarriers while simultaneously reconstructing the
time series of an interfering signal to be used in a classifier.

89

-100

-80

-60

-40

-20

 0

 20

-0.4 -0.2 0 0.2 0.4

P
o

w
e

r
S

p
e

c
tr

a
l
D

e
n

s
it
y
 [

d
B

]

Normalized Frequency

(a) Power spectral density

-0.01

-0.005

 0

 0.005

 0.01

 0 2 4 6 8 10 12 14 16

O
ri
g

in
a

l

Normalized Time

real
imag

-0.01

-0.005

 0

 0.005

 0.01

 0 2 4 6 8 10 12 14 16

R
e

c
o

n
s
tr

u
c
te

d

Normalized Time

real
imag

(b) Time series

Figure 4.10: OFDM/OQAM perfect reconstruction example where an unknown signal spanning
several subchannels is synthesized using an additional polyphase filterbank.

90

Chapter 5

Resource Management

The tradeoffs between platform programmability and its energy consumption are well-known [78],
yet SDR platforms are virtually crippled by their lack of power efficiency; performing baseband
processing on a reconfigurable platform compromises its portability due the consequential power
demands on its battery. This loss of efficiency through the flexibility of baseband processing has
significant implications to the size, weight, and power requirements of the mobile platform [92].
With the onset of software-defined radio, wireless communications engineers have the option to
trade physical performance characteristics (e.g. transmit power and occupied bandwidth) for signal
processing complexity [69, p. 6]. Recently a number of papers have been published on the subject
of cross-layer power management in software-defined and cognitive radios [15, 14, 18]. Dejohnghe
et al. discuss cross-layer power optimization for embedded, mobile wireless multimedia platforms
in [18]. Furthermore, [18] suggest that service demand rates exceed that of technology scaling. To
compete with the size, weight, and power gap between software and hardware radios, designs can be
modified to enable and exploit flexibility of reconfigurable platforms. As a result, energy savings of
up to 40% have been demonstrated under cross-layer optimization [15] through platform-modeling
virtualization. Khajeh et al. in [57] discuss power management in cognitive radios, demonstrating a
20% overall reduction in energy consumption. Their analysis, however, is focused primarily on the
hardware through voltage scaling and is limited to a hypothetical SDR platform without considering
dynamic spectrum usage.

While previous efforts have provided significant insight into reducing power consumption for software-
defined radios, most results are specific to the application, platform, and wireless environment.
Furthermore, energy and power consumption are not the only finite resources in SDR that can
significantly affect system performance. Computational bandwidth becomes a major component
when the baseband algorithms are implemented in software. One might argue that optimization
of source code for the target platform is the solution to data rates throttled by computational
bandwidth on software radio platforms. This is partially true; code optimization plays a signifi-
cant role in the amount of bandwidth the host machine can receive. As such, taking advantage of
specific machine architectures (such as machine-level multimedia processor extensions with vector
floating-point units) and hardware capabilities (such as graphics processors with highly parallelized
architectures) significantly increases the computational bandwidth of the platform. While these
technologies continue to close the performance gap between hardware and software platforms, they

91

might not be sufficient for realizing portable reconfigurable radios. For example, the complexity
of performing a one-dimensional N -point split-radix FFT was described in Section 2.6.2 as being
approximately (89/18)N log2N floating-point operations by the fastest known algorithm [31]. This
is the limiting performance factor for an OFDM or OFDM/OQAM transceiver and cannot be sig-
nificantly improved unless the value of N is reduced. Consequently, the only solution for reducing
the complexity of the receiver is not to modify the algorithm itself, but to modify its parametric
inputs.

Chapter 1 posited that software-defined radio platforms are much more useful than just re-implementing
the same standards on reconfigurable hardware. Such a use only promotes reuse of hardware, and
does little for facilitating data communications in opportunistic networks. As such, the dynamic
processing complexity of the baseband algorithm as well as its memory usage govern the data rate
of the platform. This chapter seeks insight into jointly optimizing radio performance while min-
imizing resource consumption in dynamic spectrum environments by modifying algorithmic-level
parameters in communications systems rather than relying on source code optimization. The anal-
ysis is specifically concerned with resources pertaining to energy and power, and those related to
computational complexity of the baseband receiver. This chapter introduces several techniques for
measuring the dynamic resource consumption of SDR platforms, details several new performance
metrics for quantifying the performance of telecommunications links for software receivers, and
provides results on DSP benchmarks for baseband processing in order to demonstrate trade-offs
between system accuracy, quality of service, and resource consumption. The system is validated
with the assessment of real-time software simulation of slowly fading channels and validated by
over-the-air wireless reconfiguration in a laboratory environment.

5.1 Resource Consumption in SDR

For a wireless communications link, the energy and power loads can be split into those consumed
by the transmitter and the receiver. The transmitter is typically burdened by the radio frequency
front end, of which most of the power drain is attributed to the power amplifier. The software-
defined receiver, however, is limited by its signal processing hardware. Lien et al. demonstrated
that power consumed by the baseband processor increases non-linearly as a function of processor
usage [63, Eq. (2)]. Furthermore, power consumption typically increases with a linear relation to
sampling frequency. This is apparent in analog converter (ADC) chips which demonstrate a strong
relationship between clock frequency and power source current draw [5, TPC 27]. As a result,
both the receiver’s computational complexity and power consumption are strongly related to its
occupied signal bandwidth.

5.1.1 Specific Resources

Radios in general require a variety of resources in order to operate, including power, energy,
and spectrum. Software-defined radios in particular require not only more resources than their
hardware-defined counterparts, but a different set of resources altogether. Specifically, computa-
tional bandwidth and memory are limited resources for software-defined receivers, particularly when

92

operating on embedded platforms. Consequently, the power consumption of a software-defined re-
ceiver is strongly tied to its processing requirements and is typically higher than its hardware
counterpart. Meyr et al. acknowledge that while performance measures for bandwidth and power
are clearly defined, there exists no such universally applicable measures of complexity [69, p. 6].
As such, minimizing the processor usage on SDR platforms is the primary concern of the work
presented in this chapter.

5.1.2 Performance Metrics

Communication link quality is measured through application-driven metrics, such as bit-error rate
(BER), data throughput, and latency. Link quality is contingent upon many controllable factors
(modulation scheme, transmit power, forward error-correction coding) and uncontrollable factors
(noise power spectral density, interference levels, hardware limitations). Some of these factors in
particular can be applied uniquely to the receiver and do not require link-level adaptation. Equal-
ization is a strong example of this; the length of the equalizer directly impacts both the receiver’s
computational complexity and its ability to reduce inter-symbol interference, thus reducing its error
rate. Other factors require radios on both sides of the link to adapt, such as switching modulation
and forward error-correction schemes. The relationship between link-level QoS metrics and radio
parameters for a given channel state is well-known, but quantification of processing complexity and
its impact on these metrics is not. Furthermore, these algorithms’ energy consumption significantly
depends on the implementation and the target platform’s hardware configuration.

For a platform with specific capabilities (e.g. ADC with dynamic sampling frequency, available
processors, IF oscillator tunable range, processor architecture) the radio needs to observe the min-
imum processing requirements to transfer a set of data given the current channel statistics. It is
unnecessary for the moment to make any assumptions of the limitations that protocol might re-
strict the system’s adaptation, be this effective isotropic radiated power, occupied spectrum, pulse
shaping, etc. as to gain insight as to the upper bound of what sort of processing is necessary. The
maximum throughput for a link constrained by transmit power is well-known and is achievable as
the occupied bandwidth approaches infinity, viz. [76, (7.1-34)]

C = W log2

(
1 +

P̄Lp
WN0

)
(5.1)

where P̄ is the average transmit power, Lp is the path loss, W is occupied bandwidth, and N0 is the
noise power spectral density. However increasing bandwidth has considerable implications on the
computational complexity required of the baseband processor of the receiver as well as the power
which it consumes. The receiver’s processing energy efficiency can therefore be defined as

ηe =
C

Pc
=
W log2

(
1 + P̄LP

WN0

)

Pc(W)
(5.2)

where Pc(W) ∝W is the power required by the processor to recover the bits at the receiver. Note
that ηe is measured in bits per Joule and can be though of as the number of usable bits pushed
through the channel per Joule of expended energy by the receiver. Although theoretical channel
throughput increases with bandwidth for a given average transmit power, the efficiency eventually

93

10
0

10
1

10
2

10
3

10
4

10
5

C
a
p
a
c
it
y
 [
b
/s

]

E
n
e
rg

y
 E

ff
ic

ie
n
c
y
 [
b
/J

]

Bandwidth [Hz]

channel capacity, C
energy efficiency, ηe

Figure 5.1: Channel throughput [b/s] and energy efficiency [b/J] as a function of bandwidth for
a fixed transmit power. Energy efficiency assumes power consumption to be a linear function of
occupied bandwidth.

degrades due to an increase in processor complexity and energy consumption at the receiver. The
link can therefore sacrifice throughput for bandwidth efficiency and energy consumption. Several
publications make reference to measure bits per expended energy as a metric for power efficiency in
software-defined radios [15, Fig. 15], [18, Fig. 8]. Figure 5.1 demonstrates this strong relationship
between processing efficiency and bandwidth while assuming that the power consumption has a
linear relationship to occupied bandwidth. Interestingly, (5.2) relates the efficiency of the link
through the transmitter’s and receiver’s expended power, and suggests that reducing P̄ will require
the receiver to work harder to achieve a comparable efficiency.

While the throughput of the link may be easily measured, the task of quantifying the amount
of energy expended attaining it is more difficult for many software radio platforms. Section 5.3
describes several possible techniques for monitoring resources such as energy, including modeling the
characteristics of the hardware using measurable quantities such as processor load and relating it to
immeasurable aspects. It is sufficient to say, however, that the limiting factor for the performance
of many software radio platforms is its processor capabilities. Consequently, it is more practical to
use computational efficiency as a performance metric rather than energy efficiency. The receiver’s
computational complexity K is the average number of clock cycles required to decode a single bit of
information in a wireless channel. The inverse of K can be thought of as computational efficiency,
measured in bits per clock cycle which relates strongly to ηe, measured in bits per Joule. The
following sections make use of K for analysis.

94

5.2 Methodology

The relationship described by (5.2) suggests a non-linear relationship between channel quality and
processing efficiency. For wireless communications, the optimal operating point for the receiver
cannot typically be determined a priori without extensive testing. As such it is necessary for
the software radio to monitor its own resource consumption online to maintain a quality of service
comparable to hardware platforms. This section details the methodology behind the resource-aware
SDR platform, introduces energy-quality scalability for wireless systems, and provides an example
relating filter length to BER degradation.

5.2.1 Fault Tolerance

Recently, a number of articles have been written which relate power management in wireless com-
munications links to quality of service for multimedia applications. Khajeh et al. discuss power
management at the hardware level in [57], demonstrating energy savings exceeding 20% while
running a 3G WCDMA modem and H.264 video decoder. Zhang et al. investigate the power con-
sumption in relation to the rate-distortion curve of decoding video in wireless channels in [97].
When not constrained to any particular standard, Bougard et al. in [13] demonstrated though
simulation an energy consumption savings of a factor of 5 to 20 while considering system-level
parameters only. In all of these examples, the radio was given information about how its link-level
parameters affected both is power consumption and its performance. At a higher level, Khajeh et
al. in [57] acknowledge that not all applications require 100% data correctness; a broad family of
fault-tolerant applications exist, particularly in the wireless multimedia realm.

This methodology can be applied to any wireless link, regardless of the underlying application. For
the case of fault-intolerant applications, erroneous packets are simply detected with a moderate-
length cyclic redundancy check and re-transmitted. The probability of receiving packet errors is
kept sufficiently low by adapting link-level parameters (e.g. power, packet length, modulation
scheme). One can think of packets that need to be re-transmitted as wasted energy because no
useful data was conveyed over the channel. However, one must also recognize that if packets never
need to be retransmitted, it is likely that the radio link isn’t taking full advantage of the capacity of
the channel; again in this situation energy is being wasted, either by expending too many resources
into each individual bit at the link level, or by over-processing the signal at the receiver.

5.2.2 Energy-Quality Scalability

The notion of energy-quality (E-Q) scalability was introduced in [84] for VLSI systems. Concep-
tually, the energy consumed through processing can be dramatically reduced while only minimally
compromising quality of service. The trade-off between accuracy and energy shows diminishing
returns as considerable amount of resources is wasted reducing error below a practical quality tol-
erance. The optimal solution is one that achieves a sufficient quality measure without expending
unnecessary resources attaining it. This is particularly tractable to software-defined radio where
performance is typically measured as actual data throughput; users care little about the under-
lying metrics determining it so long as the radio itself doesn’t consume an inordinate amount of

95

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
e

la
ti
v
e

 Q
u

a
lit

y

Relative Energy

Figure 5.2: Energy-quality scalability relationship.

resources during its operation. From a high-level perspective this primarily amounts to battery life
and system latency and translates easily to adaptive radios, particularly adjusting the modulation
and forward error-correction schemes to a level “just good enough” while avoiding unnecessary
processing. This will be demonstrated by the experiments in Sections 5.6 and 5.6.

As described in [84], the quality of the system (bit error rate, throughput, mean-square error,
etc.) is represented by Q(R) as in Figure 5.2 as a function of the computational resources required
to attain it. This relationship exhibits a strong non-linear relationship in which the majority of
the quality is attained with only a small amount of energy. The remaining quality is achieved
with a disproportionate amount of energy. For the majority of wireless applications—at least
at the physical layer—the radio transceiver does not need to attain 100% functional correctness.
Furthermore, error-correction is typically built into the system, and has contingencies for dealing
with faults. As such, with simple algorithmic modifications, the E-Q behavior of the system can
be modified such that if the available computational bandwidth is reduced the resulting quality
degradation is minimal.

5.2.3 Practical Example: Matched-filter Length

This section provides an example of how a simple modification of a DSP algorithm can translate to
significant energy savings. For digital communications systems, filtering consumes a considerable
portion of energy in baseband processing. The output y(n) of a finite impulse response (FIR) filter
h(n) with M coefficients for an input signal x(n) is defined as y(n) =

∑M−1
k=0 x(n − k)h(k). Sinha

et al. discuss only computing the N th most significant filter taps for a FIR filter. From [84],

96

“...when we analyze the FIR filtering operation from a pure inner product perspec-
tive, it simply involves N multiply and accumulate (MAC) cycles. For a desired E-Q
behavior, the MAC cycles that contribute most significantly to the output y(n) should
be done first.”

As a result, considerable energy savings were demonstrated without sacrificing significant output
quality. While it is impractical to truncate a filter in a radio communications system (each coefficient
plays a significant role in the filter’s frequency response), the same analysis can be applied to the
length of the matched FIR filter before demodulation which contributes to both the inter-symbol
interference as well as the number of clock cycles it requires to operate.

The bit error probability for uncoded QPSK in an AWGN channel with a linear SNR of γ is
approximately Pb = Q(

√
γ). The error rate increases when inter-symbol interference is introduced

as a result of imperfect matched filtering. For an additional ISI ζ, the error rate increases to
P̂b = Q(

√
γζ/(γ + ζ)). The ratio P̂b/Pb gives an indication of the BER degradation due to improper

matched filtering. Figure 5.3 depicts the impact of a matched-filter’s length on its inter-symbol
interference as well as its BER degradation to a nominal SNR of 20dB. Notice in Figure 5.3(b) the
non-linear relationship between the length of the filter and its resulting BER degradation as well as
its similar shape to Figure 5.2. Depending upon the noise power and the modulation scheme used,
the filter length can be reduced while still achieving a target BER. This example demonstrates how
significant energy savings can be achieved through flexible software design. Furthermore, these
energy savings can be accomplished without affecting the policy; only changes at the receiver are
necessary.

The following sections will demonstrate that the parameters which affect both the system perfor-
mance and energy consumption are numerous. Some of which can be adjusted to accommodate
existing protocols, yet some require a more flexible policy to operate.

5.2.4 The Resource-aware SDR Platform

This chapter proposes to extend the typical SDR model to incorporate real-time resource monitoring
modules necessary for reducing energy consumption. SDR designs consist primarily of a set of
inter-connected processing components perhaps running on independent processors. The scenario
is formalized as a classic non-linear optimization problem with the following axioms:

1. both QoS and resource consumption are measurable quantities and are affected by digital
processing blocks’ deployment, allocation, and configuration;

2. QoS performance is measured through the system as a whole. Any solution is considered
valid so long as the constraints of the system are met;

3. processing complexity and power consumption performance is measured as the sum of inde-
pendent processors;

4. the relationship between system performance and the amount of resources consumed to attain
it is highly non-linear with significant favorability towards energy-quality scalability.

97

-90

-80

-70

-60

-50

-40

-30

-20

 0 10 20 30 40 50 60 70

F
ilt

e
r

IS
I
[d

B
]

Filter length [# taps]

ISI (max)
ISI (RMS)

(a) Inter-symbol Interference

10
-2

10
-1

10
0

 0 10 20 30 40 50 60 70

B
E

R
 D

e
g
ra

d
a
ti
o
n
 d

u
e
 t
o
 I
S

I

Filter length [# taps]

(b) BER degradation from ISI, γ =20dB

Figure 5.3: Inter-symbol interference vs. matched filter length using the r-Kaiser filter from
Section 2.5 with an excess bandwidth factor β = 0.2

98

Therefore the performance monitor and radio control components must be aware of the impact
energy-quality trade-off one block has on the entire system performance. For example, power
savings through matched filtering (as demonstrated in Section 5.2.3) might degrade the uncoded
BER to a point where forward error-correction codes cannot sufficiently recover the packet data.
Conversely, there is no need to over-process an otherwise clean signal by applying unnecessary
filtering.

5.3 Monitoring Real-time Resource Consumption

Understanding how algorithm adaptions affect resource consumption in processors is necessary for
an energy-scalable system to adapt itself to changing environments. This section introduces three
methods of monitoring real-time resource consumption on DSP platforms.

5.3.1 Direct Inference

Perhaps the most obvious method for resource monitoring is to measure it directly in real-time
as the system runs. As an example, several DSP platforms support real-time power monitoring
such as the Lyrtech Small Form Factor SDR development platform [64] which can monitor each
processor independently. This involves specialized hardware which samples the voltage and current
drawn from the platform’s power source and supplies the digitized result to the signal processor.
In regards to processor usage, the POSIX kernels offer several possibilities for real-time monitoring
of CPU and memory usage through the rusage interface in the standard sys/resource.h header.
The benefit of direct inference is that the system’s resources can be measured simultaneously with
the algorithms running on the different processors. The algorithms can therefore be adjusted based
on this information to manage resource usage. This method provides the most accurate solution,
but often platforms do not have such capabilities.

5.3.2 Modeling

While directly measuring the platform’s resource consumption is the ideal solution, certain resources
such as energy and power are difficult to measure on a number of platforms lacking specialized
hardware support. Alternatively, certain resources may be modeled through measurable quantities.
For example, [63, 50] demonstrate the strong relationship between CPU usage for general purpose
processors and power that the device consumes. Power can be estimated to within just a few
percent of the actual consumption by measuring CPU usage alone. The relationship between
the two can be characterized offline using a look-up table or low-order polynomial curve-fitting.
Because many platforms can monitor their own CPU usage in real-time, online modeling provides
a tractable solution to power monitoring and energy management. Furthermore, it has been shown
that significant power savings can result from selectively reducing processing to meet a target quality
of service for such applications [96]. It is apparent from these results that the same benefits can be
realized in SDR platforms which provide flexibility over baseband processing blocks (such as filters,
oscillators, and synchronizers). Typical QoS metrics for data radios measure throughput, latency,

99

and error probabilities; all highly sensitive to these baseband processing algorithms. Processing
complexity can therefore be minimized such that a predefined QoS is guaranteed while reducing
power consumption.

5.3.3 Offline Benchmarks

While Section 5.3.2 generalizes resource management by relating one immeasurable resource to a
quantifiable one, modeling in this way provides little information about resource consumption due
to specific algorithms and routines. For example, monitoring CPU usage might indicate the amount
of resources used by the entire receiver chain, but gives little information about the individual filters,
demodulators, and decoders which comprise it. Energy consumption of such processing blocks can
be measured offline on the target platform such that they can be efficiently partitioned when the
application is to be executed. The energy consumption of each processing block can be either
stored in a look-up table or modeled using simple curve-fitting techniques for a variety of typical
operating ranges of the algorithm. Table 5.1 gives an example of several DSP benchmarks running
on a 867MHz PowerPC.

Signal processing algorithms with flexible implementations must be able to be deployed on a variety
of hardware. These implementations, however, might not consume comparable amounts of power on
different platforms, thus making modeling more difficult as each platform needs to be individually
characterized. For example, the same source code when compiled for a PowerPC architecture can
have vastly different binaries from an Intel version. Each processing block might even have different
implementations for each architecture; a vector dot product using SIMD instruction extensions for
the the PowerPC’s AltiVec engine looks vastly different from the Intel’s MMX or SSE instruction
set. As such, the resource consumption of each must be modeled on each processor independently.

5.4 Framework

This section discusses the design of a software framework to manage radio resources as well as
monitor system performance. The framework is built out of necessity to enable the radio to monitor
its own resources in real-time, and is designed using a combination of the resource-monitoring
methods described in Section 5.3. Chapter 6 will show that allowing an intelligent agent to hook into
the framework can provide an engine capable of algorithmic adaptations as unique and unforeseen
scenarios present themselves. Only with a resource-monitoring framework can this intelligent engine
be enabled.

5.4.1 Online Processor Usage Monitor

It is fairly straightforward to benchmark and profile signal processing algorithms running on a
general purpose processor, and the open-source software community has provided a number of
tools to accomplish these tasks. To maintain portability, hardware monitoring methods are ig-
nored and analysis is condensed to strictly observing processor usage alone. Furthermore, spec-
ifying a hardware-specific interface seems hardly relevant for software-defined radio. Regarding

100

Table 5.1: DSP benchmarks for various SDR processing algorithms running on a PowerPC plat-
form with an instruction clock rate of 867MHz

agc_benchmark

agc : 40000 trials in 35.18 ms (1.14 M t/s, 762.6 cycles/t)

dotprod_rrrf_benchmark

dotprod_rrrf_4 : 20000 trials in 1.26 ms (15.87 M t/s, 54.6 cycles/t)

dotprod_rrrf_16 : 20000 trials in 2.70 ms (7.42 M t/s, 116.9 cycles/t)

dotprod_rrrf_64 : 20000 trials in 8.27 ms (2.42 M t/s, 358.4 cycles/t)

dotprod_rrrf_256 : 20000 trials in 30.57 ms (654.32 k t/s, 1325.0 cycles/t)

iir_filter_benchmark

iir_filter_4 : 40000 trials in 4.40 ms (9.09 M t/s, 95.3 cycles/t)

iir_filter_8 : 40000 trials in 7.62 ms (5.25 M t/s, 165.2 cycles/t)

iir_filter_16 : 40000 trials in 13.78 ms (2.90 M t/s, 298.8 cycles/t)

interp_benchmark

interp_m2_h8 : 40000 trials in 17.05 ms (2.35 M t/s, 369.6 cycles/t)

interp_m4_h16 : 40000 trials in 40.04 ms (998.95 k t/s, 867.9 cycles/t)

interp_m8_h64 : 40000 trials in 174.95 ms (228.64 k t/s, 3792.0 cycles/t)

decim_benchmark

decim_m2_h8 : 40000 trials in 11.39 ms (3.51 M t/s, 246.8 cycles/t)

decim_m4_h16 : 40000 trials in 17.85 ms (2.24 M t/s, 386.9 cycles/t)

decim_m8_h64 : 40000 trials in 39.09 ms (1.02 M t/s, 847.3 cycles/t)

resamp2_benchmark

cresamp2_decim_h13 : 40000 trials in 13.32 ms (3.00 M t/s, 288.7 cycles/t)

cresamp2_decim_h21 : 40000 trials in 15.86 ms (2.52 M t/s, 343.8 cycles/t)

cresamp2_decim_h37 : 40000 trials in 20.78 ms (1.93 M t/s, 450.3 cycles/t)

cresamp2_decim_h53 : 40000 trials in 25.75 ms (1.55 M t/s, 558.1 cycles/t)

fft_benchmark

fft_16 : 10000 trials in 86.53 ms (115.57 k t/s, 7502.0 cycles/t)

fft_32 : 10000 trials in 250.54 ms (39.91 k t/s, 21721.8 cycles/t)

fft_64 : 10000 trials in 512.53 ms (19.51 k t/s, 44436.4 cycles/t)

fft_128 : 10000 trials in 1.05 s (9.55 k t/s, 90739.8 cycles/t)

modem_demodulate_benchmark

demodulate_psk2 : 40000 trials in 18.86 ms (2.12 M t/s, 408.9 cycles/t)

demodulate_psk4 : 40000 trials in 19.18 ms (2.08 M t/s, 415.8 cycles/t)

demodulate_psk8 : 40000 trials in 19.46 ms (2.06 M t/s, 421.7 cycles/t)

demodulate_psk16 : 40000 trials in 19.77 ms (2.02 M t/s, 428.5 cycles/t)

demodulate_psk32 : 40000 trials in 20.02 ms (2.00 M t/s, 433.9 cycles/t)

demodulate_psk64 : 40000 trials in 20.29 ms (1.97 M t/s, 439.7 cycles/t)

demodulate_qam4 : 40000 trials in 8.17 ms (4.90 M t/s, 177.1 cycles/t)

demodulate_qam8 : 40000 trials in 8.49 ms (4.71 M t/s, 184.1 cycles/t)

demodulate_qam16 : 40000 trials in 8.66 ms (4.62 M t/s, 187.6 cycles/t)

demodulate_qam32 : 40000 trials in 10.29 ms (3.89 M t/s, 223.1 cycles/t)

demodulate_qam64 : 40000 trials in 9.24 ms (4.33 M t/s, 200.3 cycles/t)

demodulate_qam128 : 40000 trials in 10.12 ms (3.95 M t/s, 219.3 cycles/t)

demodulate_qam256 : 40000 trials in 11.20 ms (3.57 M t/s, 242.7 cycles/t)

nco_benchmark

nco_sincos : 10000 trials in 4.53 ms (2.21 M t/s, 392.7 cycles/t)

nco_mix_up : 160000 trials in 127.12 ms (1.26 M t/s, 688.8 cycles/t)

nco_mix_block_up : 160000 trials in 87.82 ms (1.82 M t/s, 475.9 cycles/t)

101

R0 R1 RN−1
ADC/DAC,

RF Front End

TCP/IP

Socket

Radio Control (high granularity)

Performance monitor (high-level control)

Policy

Module

modular, flexible DSP software components

Figure 5.4: Resource management framework

processor usage, POSIX kernels offer several options for monitoring of CPU and memory usage
in real time and provide a programming interface through the rusage structure in the standard
sys/resource.h library header. The getrusage() interface reports resource usage for a specific
process running on the system, having the capability to estimate not only the amount of time in
which the processor has spent executing instructions but other useful metrics such as memory foot-
print and number of page faults. This interface provides an invaluable window into the processor’s
core, granting the radio access to information which it can use to improve system performance.

While this interface provides the ability to monitor several resource metrics, only the computational
complexity of running the algorithm is considered out of simplicity. The complexity of the algorithm
is directly proportional to the processor load rp, which is simply the relative time the processor
spends executing instructions for the algorithm (Ta) divided by the total amount of time the
program has spent in execution (Te), viz

rp = Ta/Te (5.3)

The quantities Ta and Te are relatively easy to compute, and empirical evidence on several target
platforms shows that these resource usage measurements are both accurate and consistent. Further-
more, invoking these interfaces adds minimal if not negligible overhead to the radio’s performance
during its operation. This implies that a performance monitor can periodically probe the state
of the radio platform and continually observe its resource usage. Figure 5.4 depicts the proposed
real-time resource management framework for monitoring performance of the system on a software
platform. The parametrized resources {R0, R1, . . . , RN−1} are adjusted by the Radio Control mod-
ule which provides an interface for setting the radio’s physical layer parameters (filter parameters,
modulation scheme, transmit power, etc.) while the Performance Monitor evaluates the online
system performance. The purpose of the Policy Module is to ensure that the parametrized solution
set is valid for the regulated protocol.

102

10
-4

10
-3

10
-2

10
-1

 10 100 1000

C
P

U
 U

s
a
g
e
 E

s
ti
m

a
ti
o
n
 V

a
ri
a
n
c
e

rmdaemon Analysis Time [ms]

Figure 5.5: rmdaemon variance of CPU load estimation vs. analysis time with an average CPU
load of approximately 80%. Statistics were drawn over a 180 second duration.

5.4.2 rmdaemon Application Program Interface

Resource monitoring is accomplished in the proceeding sections through a custom interface designed
to observe processor usage. The rmdaemon is a background process which monitors the resource use
of a particular thread and reports this information periodically back to a central controlling unit.
The daemon works by periodically invoking the getrusage() method and comparing the difference
in resource usage.

To test the daemon, a thread was initialized in which the CPU was required to perform a compu-
tational task for some amount of time, and then was allowed to sleep. By adjusting the duty cycle
of computation and sleep, the program allows a fine control over the CPU’s average computational
load. The period of this cycle was designed to be approximately 10ms and is adjustable from nearly
0% to nearly 100% duty cycle. The daemon then monitored the CPU usage many times over the
course of several minutes and reported its estimate r̂p of the processor load. Figure 5.5 shows
the variance of the estimate of the CPU load rp versus analysis time Te. Clearly increasing the
analysis time reduces the variance in the estimation of the CPU load. This is due to the daemon’s
averaging out the processor usage over a longer amount of time. While it is desirable to increase
the observation rate of the processor load to gain a more granular representation of how the CPU
is being used, the error in estimation is kept manageable by increasing the observation time to a
minimum of 100ms.

103

5.5 Experimentation: Adaptive Modulation/Error-Correction in
Slowly-Varying Fading Channels

Several publications make reference to measure expended energy per bit as a metric for power
efficiency is software-defined radios [15, Fig. 15], [18, Fig. 8]. Figure 5.1 demonstrates the strong
relationship between processing efficiency and signal bandwidth. Although theoretical channel
throughput increases with bandwidth for a given average transmit power, the efficiency eventually
degrades due to an increase in processor complexity and energy consumption by the receiver. The
link can therefore sacrifice throughput for bandwidth efficiency and energy consumption. This
section presents the results on measuring energy efficiency on a software-defined radio platform
with reconfigurable DSP components.

Modeling processing complexity for DSP algorithms and the power they consume on a variety
of platforms is a difficult task. When mapping platform-independent to platform-specific models
one must incorporate a host of hardware design considerations, such as floating-point capabilities,
available cache size, memory constraints, instruction sets/extensions, etc. Typical communications
processing blocks which consume a significant portion of processing power are filters, channelizers,
FEC coding (e.g. Viterbi decoder), channel estimation (e.g. RAKE receiver), and equalization [60,
Table 1]. The analysis presented in this section is focused on a specific case study of running a
modulator/demodulator and forward error-correction encoder/decoder pair on a on a GPP with
a PowerPC architecture. Simulations demonstrate energy-quality trade-off for error rates through
adaptive modulation and forward error-correction schemes.

5.5.1 Algorithm/Complexity Relationship

Analysis begins by formulating a model to demonstrate the trade-off between bit error rate and
energy consumed by the GPP for each coded bit. The average bit-error probability (P̄b) for an
uncoded modulation scheme with a linear signal-to-noise ratio γ can be approximated as

P̄b ≈ c0e
−c1γ + c2e

−2c1γ (5.4)

For a coded modulation scheme, the approximation takes another form, viz.

P̄b ≈
c0

1 + c2γc1
(5.5)

These approximations were chosen on the basis of being uniquely invertible to give a required
signal-to-noise ratio γ for a target average bit error rate P̄b. The values for the coefficients c0, c1,
and c2 are given in Table 5.2 and the accuracy of the approximation is shown in Figure 5.6. Trials
were conducted on 1024-bit blocks running a minimum of 1000 errors using hard-decision input
to the FEC decoders. It is apparent from the BER performance of Figure 5.6 and the processing
efficiency, K, in Table 5.2 (bold column) that a strong performance trade-off exists between the two.
The processing efficiency—in terms of the number of CPU clock cycles per transmitted bit—can
be directly related to the energy efficiency of the radio. This preliminary work demonstrates the
need for SDR platforms to incorporate resource management capabilities in order to reduce power
consumption without significantly sacrificing quality of service. This is a requisite feature for
portable cognitive radio platforms.

104

Table 5.2: Computational Complexity of Modulation/FEC Sets Running on a 867MHz PPC

Modulation FEC η, [b/s/Hz] K, [cycles/bit] c0 c1 c2 label

BPSK uncoded 1 86.2 0.2013 1.11 0.13136 a
BPSK r = 1/2, K = 9 0.5 514.6 0.456 24.799 10.667 b
BPSK r = 1/3, K = 9 0.33 726.6 0.478 5641.4 10.6 c

QPSK uncoded 2 46.7 0.193 0.5512 0.15594 d
QPSK r = 1/2, K = 9 1 435.5 0.4773 0.0121 10.998 e
QPSK r = 1/3, K = 9 0.67 608.0 0.4429 3.2696 10.400 f

16-QAM uncoded 4 69.5 0.1358 0.1088 0.17282 g
16-QAM r = 1/2, K = 9 2 481.2 0.491 1.09e-7 9.497 h
16-QAM r = 1/3, K = 9 1.33 676.5 0.494 7.48e-5 9.2219 i

64-QAM uncoded 6 48.0 0.084 0.025 0.2111 j
64-QAM r = 1/2, K = 9 3 438.1 0.4973 1.4999e-10 8.2301 k
64-QAM r = 1/3, K = 9 2 611.9 0.493 5.50e-9 9.222 l

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

-5 0 5 10 15 20 25

B
E

R

SNR [dB]

a b

c

d

e

f

g

h

i

j

k

l

Figure 5.6: Bit error probabilities for example modulation and FEC coding scheme pairs with
approximations defined by (5.4) and (5.5). Labels are given in Table 5.2.

105

5.5.2 Selecting appropriate modulation/coding schemes

Figure 5.7(a) demonstrates the simulated capacity of different modulation/coding scheme pairs vs.
Eb/N0 to achieve a bit error rate of Pb = 10−5 along with the theoretical Shannon capacity bound.
The pairs were chosen from all combinations of available modulation (BPSK, QPSK, {8, 16, 32, 64}-
PSK, {16, 32, 64, 128, 256}-QAM, {8, 16, 32, 64, 128}-APSK) and forward error-correction schemes.
The pairs are grouped into two sets: those with low-complexity FEC schemes (no coding, repeat
r1/3, r1/5, Hamming(7,4) block code, and a Hamming(12,8) block code) and those with high-
complexity FEC schemes (convolutional with r1/2 (K=7,9), and punctured rates from 2/3 through
7/8, convolutional with r1/3 (K=9), and convolutional with r1/6, (K=15)). Values nearest to
the capacity bound are traditionally preferable due to their high spectral efficiency in relation to
the energy required to achieve a particularly low error rate. The pairs lying along the empirical
Pareto frontier (see Section 6.2.3) are listed in Table 5.3. As one can observe from the figure,
certain combinations are particularly spectrally inefficient, and typically include pairs with a high
modulation index and low coding rate (e.g. 64-QAM with r 1/3 convolutional encoding).

Conversely, Figure 5.7(b) shows the same set of modulation and FEC scheme pairs’ computational
complexity plotted against Eb/N0. Notice that while the “low complexity” pairs achieve a poor
capacity for low EB/N0, some have a capacity comparable to the “high complexity” pairs while
expending much fewer clock cycles. The pairs lying along the Pareto frontier are listed in Table 5.4.
As will be demonstrated later in this section, certain pairs achieve nearly the same efficiency while
requiring significantly less computational complexity.

Adaptively switching modulation and coding schemes based on instantaneous received power is a
technique which as been incorporated in a wide population of wireless radios; however, the impact
these switching mechanisms have on baseband processors implemented on reconfigurable platforms
has garnered little investigation. This section takes a renewed look at adaptive switching modula-
tion/coding schemes not simply for the sake of improving spectral efficiency but how appropriately
choosing a set of schemes can significantly reduce the complexity of the receiver without unneces-
sarily sacrificing capacity [38].

5.5.3 System Model

Given a fading distribution fγ(γ; Ω) for instantaneous received signal power γ and average power Ω,
an upper bound on the average bit error rate for a modulation/coding scheme pair can be computed
by averaging its instantaneous BER performance over the distribution, viz. [91]

P̄m,fb (Ω) =

∞∫

0

Pm,fb (γ)fγ(γ; Ω)dγ (5.6)

For slowly-varying channels, the received signal power is assumed to be flat over the duration of a
data packet, and thus the switching procedure chooses the “optimal” modulation/coding scheme
pair in the set which matches the estimated target error probability to the received signal power.
The appropriate pairs for subsequent packets are chosen on the basis of signal strength alone. The
average BER of an adaptive switching scheme is therefore computed by summing the marginal

106

 0.1

 1

 10

 0 5 10 15 20 25

R
a

te
 [

b
/s

/H
z
]

Eb/N0 [dB]

low complexity
high complexity
Shannon bound

(a) Capacity, optimum values listed in Table 5.3

10
1

10
2

10
3

10
4

10
5

 0 5 10 15 20 25 30

C
o

m
p

u
ta

ti
o

n
a

l
C

o
m

p
le

x
it
y
 [

c
y
c
le

s
/b

it
]

Eb/N0 [dB]

low complexity
high complexity

(b) Complexity, optimum values listed in Table 5.4

Figure 5.7: Simulated capacity/complexity vs. Eb/N0 for Pb = 10−5 with each point representing
a specific modulation/coding scheme pair.

107

Table 5.3: Spectrally Efficient Modulation/FEC Sets

Modulation FEC η, [b/s/Hz] K, [cycle/bit] Eb/N0

BPSK conv. r = 1/6, K = 15 0.167 63954.0 2.73

QPSK conv. r = 1/6, K = 15 0.333 64529.0 3.29

8-PSK conv. r = 1/6, K = 15 0.500 62136.0 4.39

16-APSK conv. r = 1/6, K = 15 0.667 63704.0 5.08

QPSK conv. r = 1/2, K = 9 1.000 1524.2 5.85

QPSK conv. r = 2/3, K = 9 1.333 1289.2 6.31

QPSK conv. r = 4/5, K = 7 1.600 822.5 7.29

QPSK conv. r = 7/8, K = 9 1.750 1079.5 7.40

16-QAM conv. r = 1/2, K = 9 2.000 1014.2 8.65

8-APSK conv. r = 3/4, K = 9 2.250 1173.6 9.92

16-APSK conv. r = 2/3, K = 9 2.667 1083.0 10.03

16-QAM conv. r = 3/4, K = 9 3.000 851.4 10.57

16-QAM conv. r = 6/7, K = 9 3.429 779.8 10.98

16-QAM conv. r = 7/8, K = 9 3.500 788.1 11.63

16-QAM uncoded 4.000 285.1 13.35

32-QAM conv. r = 6/7, K = 9 4.286 720.3 13.79

64-QAM conv. r = 3/4, K = 9 4.500 740.3 14.47

64-QAM conv. r = 4/5, K = 9 4.800 717.5 14.97

64-QAM conv. r = 6/7, K = 9 5.143 682.6 14.97

64-QAM conv. r = 7/8, K = 7 5.250 379.9 15.71

64-QAM uncoded 6.000 201.8 17.91

128-QAM conv. r = 7/8, K = 9 6.125 663.2 18.77

256-QAM conv. r = 6/7, K = 9 6.857 622.3 19.98

256-QAM conv. r = 7/8, K = 7 7.000 320.9 20.93

256-QAM uncoded 8.000 150.1 22.55

108

Table 5.4: Computationally Efficient Modulation/FEC Sets

Modulation FEC η, [b/s/Hz] K, [cycle/bit] Eb/N0

BPSK conv. r = 1/6, K = 15 0.167 63954.0 2.73

8-PSK conv. r = 1/6, K = 15 0.500 62136.0 4.39

BPSK conv. r = 1/2, K = 9 0.500 1332.5 5.33

BPSK conv. r = 2/3, K = 7 0.667 814.2 5.97

BPSK conv. r = 3/4, K = 7 0.750 743.4 7.25

BPSK conv. r = 6/7, K = 7 0.857 670.0 7.61

BPSK conv. r = 7/8, K = 7 0.875 657.0 8.07

8-PSK conv. r = 1/2, K = 7 1.500 396.9 8.93

8-PSK conv. r = 2/3, K = 7 2.000 359.8 9.75

8-PSK conv. r = 3/4, K = 7 2.250 339.6 10.03

8-PSK conv. r = 4/5, K = 7 2.400 324.0 11.15

8-PSK conv. r = 5/6, K = 7 2.500 320.9 11.18

8-PSK conv. r = 7/8, K = 7 2.625 310.8 11.22

8-PSK Hamming (12, 8) 2.000 218.7 11.65

8-PSK uncoded 3.000 141.3 12.80

16-PSK uncoded 4.000 107.7 17.73

32-PSK uncoded 5.000 87.2 22.40

64-PSK uncoded 6.000 73.8 27.50

109

BER over the partitioned distribution:

P̄b(Ω) =

N−1∑
i=0

kiri
∫ γi+1

γi
Pi(γ)fγ(γ,Ω)dγ

N−1∑
i=0

kiri
∫ γi+1

γi
fγ(γ,Ω)dγ

(5.7)

where Ω is the average signal power, ki = log2(Mi) bits per symbol for the modulation type, ri
coding rate, γi is the threshold SNR, and Pi(γ) is the BER distribution for the ith of N modu-
lation/coding pairs under an AWGN channel. Note that the expression for average BER is now
no longer a function of the instantaneous received signal power γ but the average received signal
power Ω. Note also that the denominator in (5.7) is the average spectral efficiency, η̄(Ω), viz

η̄(Ω) =
N−1∑

i=0

kiri

γi+1∫

γi

fγ(γ,Ω)dγ (5.8)

In a similar fashion the average receiver complexity K̄ can be defined as

K̄(Ω) =

N−1∑

i=0

Ki
γi+1∫

γi

fγ(γ,Ω)dγ (5.9)

where Ki is the computational complexity of the modulation/coding pair measured in terms of
CPU clock cycles per uncoded bit.

5.5.4 Results

In order to gain insight into the tradeoffs between computational complexity and link quality this
analysis adopts the Rayleigh fading model, a typically pessimistic assumption about mobile channel
conditions. The Rayleigh fading model for instantaneous received signal power γ is

fγ(γ; Ω) =
1

Ω
e−γ/Ω (5.10)

where Ω is the average power.1 Error rates were generated by encoding data packets using a
discrete set of modulation/coding scheme pairs, pushing the resulting symbols through an AWGN
channel, and measuring the resulting bit errors. For each data point, a minimum of 10,000 trials
were performed ensuring at least 2000 observed errors. A block interleaver was inserted after the
encoder to help randomize bit errors within the data packet to aid the decoder. Computational
complexity measurements were conducted by running 100,000 iterations of each demodulator and
FEC decoder on an embedded 867 MHz PowerPC processor with AltiVec SIMD extensions [56].

Two sets of adaptive modulation/coding switching schemes were compared; the first set contains
typical half-rate convolutional codes with constraint lengths K = 7, K = 9, and punctured codes

1It is important to note that while fading models typically are expressed in terms of signal amplitude, (5.10)
denotes fading in terms of signal power. This is a trivial variable transformation necessary for analysis.

110

Table 5.5: Available modulation/FEC scheme pairs, broken into 2 sets (experiment 5.5)

Modulation scheme FEC scheme η, [b/s/Hz] Ki, [cycles/bit] γi [dB]

Sη, spectrum efficiency-driven set

QPSK conv. r=1/3, K=9 0.67 612.5 6.45

QPSK conv. r=1/2, K=9 1.00 492.9 7.84

QPSK conv. r=2/3, K=9 1.33 521.2 9.57

QPSK conv. r=3/4, K=9 1.50 511.5 10.34

16-QAM conv. r=1/2, K=9 2.00 519.1 13.52

16-QAM conv. r=2/3, K=9 2.67 540.8 15.32

16-QAM conv. r=3/4, K=7 3.00 211.7 16.61

16-QAM conv. r=4/5, K=9 3.20 526.0 17.02

16-QAM conv. r=7/8, K=9 3.50 501.3 18.06

64-QAM conv. r=2/3, K=9 4.00 520.7 20.39

64-QAM conv. r=3/4, K=9 4.50 511.0 21.48

64-QAM conv. r=4/5, K=9 4.80 509.2 22.23

64-QAM conv. r=7/8, K=9 5.25 485.9 23.40

64-QAM uncoded 6.00 33.8 24.28

SK, computational efficiency-driven set

BPSK Hamming (7,4) 0.57 104.8 8.92

BPSK uncoded 1.00 56.2 10.07

QPSK Hamming (7,4) 1.14 66.3 10.49

QPSK uncoded 2.00 34.2 12.77

8-PSK uncoded 3.00 141.4 17.28

16-QAM uncoded 4.00 47.3 18.90

64-QAM uncoded 6.00 33.8 24.28

with rates from ranging from 2/3 to 7/8; the second contains either no error-correction (uncoded) or
only a computationally efficient Hamming(7, 4) block code. These pairs are presented in Table 5.5
along with the average computational complexity to receive each coded bit, and the required in-
stantaneous SNR to achieve a BER of 10−3 in an AWGN channel.

Given the simplicity of the distribution of signal power for the Rayleigh fading model, the expres-
sions for average spectral efficiency in (5.8) and average computational complexity (5.9) can be
rewritten in closed form respectively as

η̄(Ω) =
N−1∑

i=0

kiri

(
e−γi/Ω − e−γi+1/Ω

)
(5.11)

111

K̄(Ω) =
N−1∑

i=0

Ki
(
e−γi/Ω − e−γi+1/Ω

)
(5.12)

The values for average error probability given by (5.7), were computed through numerical integra-
tion. The switching levels for adaptation are given in Table 5.5.

The marginal BER in (5.7) was computed through numerical integration of the instantaneous BER
curves, evaluated through simulation. Finally, a fair assessment of throughput was established
by multiplying the average spectral efficiency by the probability of receiving a packet correctly,
measured empirically through simulation. While the average BER was targeted to be 10−3, this
value cannot be achieved for small values of Ω unless stronger forward error-correction codes are
used.

Figure 5.8 depicts the results of the simulations. While it is hardly surprising that the stronger
convolutional codes provide a higher capacity than the uncoded/weakly-coded set, the actual spec-
tral efficiency does not suffer a significant hit. The strongest discrepancy of η̄ between the two sets
exists at Ω ≈ 23 dB where the difference in spectral efficiency is only about 0.25 b/s/Hz (a 7%
degradation) as seen in Figure 5.8(a). In contrast, Figure 5.8(b) demonstrates that the difference
in computational complexity between the two sets is nearly a factor 6 for low SNR in favor of the
weaker codes. For both sets, the average complexity decreases with Ω. Eventually the complexity
for the spectrum efficiency-driven set declines steeply (around 20 dB) as the probability of running
the computationally efficient uncoded 64-QAM dominates. Analysis could easily be run for any
number of modulation/coding combinations, with appropriate sets sought to maximize spectral
efficiency, minimize complexity, or some middle-ground combination of the two; the particular sets
were chosen specifically to accentuate this trade-off.

5.6 Experimentation: Adaptive Modulation/Error Correction Over
the Air

The previous section demonstrated the strong relationship between channel conditions and compu-
tational complexity required by the receiver, specifically through the adaptation of forward error-
correction (FEC) coding in conjunction with the scheme used to modulate the underlying data.
While the tradeoffs between received signal strength (relative to the noise level) to error rate per-
formance is well known within the wireless engineering community, its impact on computational
resources is not. This is in part due to the complexities of modeling complex algorithms on various
hardware devices and is significantly dependent upon the algorithm, the physical characteristics
of the platform, and the implementation. Professional signal processing engineers use sophisti-
cated benchmarking and profiling tools to eliminate any and every unnecessary instruction in the
algorithm to ensure its performance is streamlined and as near to optimum as possible. While a
useful design approach, it is impractical to apply it to the modern model-based software design
in which there exists a strict disconnect between the platform-independent and platform-specific
models. This section demonstrates the use of online processor complexity monitoring specifically
to improve the computational efficiency of the receiver in a dynamic wireless environment.

112

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40

SNR [dB]

S
p
ec
tr
u
m

E
ffi
ci
en
cy
,
η
[b
/s
/H

z]

spectrum efficiency-driven set, Sη
computational efficiency-driven set, SK

(a) Average spectral efficiency, η̄(Ω)

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35 40

SNR [dB]

C
om

p
u
ta
ti
on

al
C
om

p
le
xi
ty
,
K

[c
yc
le
s/
b
it
]

spectrum efficiency-driven set, Sη
computational efficiency-driven set, SK

(b) Average computational complexity, K̄(Ω)

Figure 5.8: Performance of adaptive switched modulation/coding scheme sets in a slowly-fading
Rayleigh channel.

113

5.6.1 System model

As demonstrated in the previous section through extensive base-band simulation, receivers need to
work harder to recover signals which are weaker, noisier, and in general more corrupted. Traditional
radio designs implement standards in hardware; the physical layer is designed to operate under
the predicted worst-case scenarios and has little flexibility for on-the-fly modification to adapt to
changing wireless conditions aside from switching between modulation and forward error-correction
coding schemes. While these adaptations play a significant role in link throughput, data reliability,
and energy consumption, other common physical-layer parameters such as filter length, number of
equalizer taps, rake fingers, and image-rejection filter length are often left untouched by the receiver
and viewed as pre-specified. Neglecting these dimensions of communications signal processing
during the design process results in an acute sub-optimal solution. Just as any embedded software
development must consider resource consumption on its host platform, so must SDR in this regard.

Understanding the dynamics behind algorithms and the resources they consume is necessary in
gaining back what SDR sacrifices for flexibility. This chapter proposed the use of computational
channel efficiencyK as a performance metric for comparing receiver designs. Computational channel
efficiency is simply the number of properly synchronized and decoded bits of information conveyed
over a communications link per clock cycle on the host platform. It is therefore necessary to
monitor waveform complexity at the receiver in order to gain insight as to how good the receiver
structure performs. The processor’s clock cycles are a restricted commodity and limited resource for
facilitating communications. The complexity K has units clock cycles per bit and can be measured
by several methods. For most platforms, processor usage can be easily measured on certain running
processes as a strict percentage of its maximum load. As such, a processor with a master clock
frequency of Fp cycles/second operating at rp percent of its maximum while running a receiver
capable of decoding η bits per second per Hz has a processing efficiency of

K = Fprp/η (5.13)

While the quantity in (5.13) gives an indication of peak computational efficiency, it does not
thoroughly describe the actual throughput of the link given its channel quality. As demonstrated
by the results in the previous section, channel quality has significant implications on the workload
required by the receiver. Spectral efficiency, in this case, is a measure of properly received data in
the link, compensating for erroneous packets. Normalized spectral efficiency is computed as

ζ(γ) = η
(
1− Pp(γ)

)
(5.14)

where again η is the theoretical spectral efficiency of the transmission scheme (e.g. modulation/-
coding scheme pair with framing overhead) and Pp is the packet error rate at the receiver under
an instantaneous signal-to-noise ratio (SNR), γ. Both η and Pp are strongly affected by the choice
of radio transmission scheme, as is the resulting receiver complexity. This normalized quantity
describes the actual efficiency of data being conveyed over the wireless channel. The quantity in
(5.14) is theoretically bounded by γ and is well known in information theory. Typically channel
capacity is referenced not in terms of the ratio of signal energy to noise (Es/N0), but of bit energy
to noise (Eb/N0). The use of Eb/N0 is viewed as a fair comparison of different transmission schemes
as it incorporates the rate of the transmission into its analysis of signal strength. However the anal-
ysis in this section uses Es/N0 because the receiver’s signal-to-noise ratio incorporates its ability

114

to synchronize the entire physical-layer frame, including detection, acquisition, and tracking. The
ratio Eb/N0 is really only useful once the receiver has synchronized, ignoring a very important and
practical component of wireless communication.

For a fair comparison of transmission schemes, the complexity of the receiver must be normalized
to the actual throughput. Incorporating (5.13) and (5.14) gives

K̇(γ) = K/Pp(γ) (5.15)

which can be understood as the average number of clock cycles to decode a single bit of data
through a communications link, while accounting for erroneous data.

5.6.2 Scenario

Consider a scenario in which two software radios need to establish a communications link in a
wireless network. These nodes need to negotiate a protocol which achieves the highest data rate
possible without exceeding the capabilities of either node. For most protocols, the burden of
computation is much higher at the receiving end of the link and is therefore the limiting factor.
Furthermore heterogeneous networks are likely to contain nodes of vastly different capabilities; some
with higher computational bandwidth than others. Should they just select one of a pre-determined
set of protocols, it is likely that if their capabilities overlap their solution will be sub-optimal
and the resulting performance poor. The previous section demonstrated that simply choosing an
appropriate set of modulation and FEC coding scheme pairs can result in a significant performance
improvement. Here, these results are validated through over-the-air data transfer in a packet radio
network. While a number of other radio parameters significantly affects the computational efficiency
of the receiver, the analysis is limited to simply modulation and coding schemes as to be consistent
with the results in Section 5.5.

5.6.3 Framing structure

In order to validate the results in Section 5.6, a simple physical-layer wireless protocol was devel-
oped in which narrowband packets were transmitted between two software-defined radio platforms.
The structure for framing the packets was designed to be as versatile as possible, allowing for
fast acquisition, reliable detection, variable payload lengths, coherent demodulation of any number
of modulation schemes, and decoding of layered, interleaved FEC schemes. The framing struc-
ture consists of six basic components, as depicted by Figure 3.15. A fully-reconfigurable software
transceiver was implemented in the C programming language capable of synchronizing to packets
transmitted over a wireless channel. The receiver consists of the following modules: automatic gain
control with squelch to disable unnecessary processing when the signal strength is low, received
signal strength and signal-to-noise radio estimation, numerically-controlled oscillator and second-
order PLL for carrier synchronization, multi-rate decimator for symbol timing recovery [39], frame
lock detection, variable-level demodulation, block de-interleaver, forward error-correction decoder,
and cyclic redundancy check validator. The details of the framing structure and synchronizer can
be found in Section 3.5.

115

5.6.4 Experimental Setup

The goal of the experiment was to achieve a maximum spectral efficiency (ζ) given an instantaneous
signal-to-noise ratio (γ) by switching between available modulation and forward error-correction
schemes from within a set. As with the previous experiment, two different sets were chosen: one on
the basis of maximizing spectral efficiency, and the other on the basis of minimizing computation
complexity. The first set, Sη (designed for spectrum efficiency), contains typical r = 1/2 and
r = 1/3 convolutional codes with a constraint length K = 9 and punctured at rates ranging
from 2/3 to 7/8. The second set, SK (designed for computation efficiency), uses either no error-
correction (uncoded) or only a computationally efficient Hamming(12, 8) 2/3-rate block code. The
two sets are depicted in Table 5.6 along with their average computational loads measured in the
number of processor clock cycles (in thousands) required to decode a single bit of data through the
entire receiver chain. These complexity measurements were conducted by invoking getrusage()

as described in Section 5.3 using (5.13) and (5.3). Notice that their spectral efficiencies have nearly
the same range (from 0.6667 b/s/Hz at a minimum to about 5 b/s/Hz at a maximum), yet have
starkly different receiver complexities.

Frames were transmitted over a wireless link in a laboratory environment with varying transmit
powers such that the receiver’s signal-to-noise ratio spanned approximately -2 dB to 23 dB. The
transmitter and receivers ran on independent Intel Pentium processors, each connected to a USRP
[21] and operating at a symbol rate of W=225 kHz with a payload of 1024 bits (128 bytes). The
receiver made an estimate γ̂ of each frame’s signal-to-noise ratio using a combination of the received
signal strength relative to its pre-characterized noise level and the variance of its demodulator error
vector magnitude. Statistics were gathered for the data throughput and computational complexity
under each modulation and coding scheme pair from each of the two sets depicted in Table 5.6.
Computational complexity analysis was conducted by way of the methods described in Section 5.3.
It is important to recognize that the clock cycle measurements in Table 5.6 incorporate the entire
receiver including filtering, gain control, frame detection, carrier frequency/phase recovery, symbol
timing synchronization, decimation, demodulation, and forward error-correction decoding, while
the results in the first experiment only incorporated the demodulator and FEC decoder.

5.6.5 Results

Figure 5.9 depicts the measured spectral efficiencies for the two modulation/coding scheme sets
measured over the air in a laboratory environment, computed using (5.14). As the received signal
level degrades, the packet error rate approaches unity, and therefore the throughput approaches
zero. As expected, this transition occurs sharply with γ such that an SNR threshold is required to
achieve any suitable throughput. This threshold varies for each modulation/coding scheme pair, as
does the actual peak throughput.

In an adaptively switching protocol, the radios choose the pair with the highest spectral efficiency
for a given γ in order to maximize the total throughput for the link. To compare, the peak spectral
efficiency for each set—the value riding along the crest of Figures 5.9(a) and 5.9(b)—is plotted in
Figure 5.10(a). This shows the maximum spectral efficiency possible for the system given a specific
channel condition. Finally, Figure 5.10(b) shows the normalized computational complexity K̇ of

116

 0.1

 1

 10

 0 5 10 15 20

SNR [dB]

S
p
ec
tr
al

E
ffi
ci
en
cy

ζ
(γ
)

(a) Sη, spectrum efficiency-driven set

 0.1

 1

 10

 0 5 10 15 20

SNR [dB]

S
p
ec
tr
al

E
ffi
ci
en
cy

ζ
(γ
)

(b) SK, computational efficiency-driven set

Figure 5.9: Performance of adaptive switched modulation/coding scheme sets’ average spectral
efficiencies ζ(γ) measured in an over-the-air in a laboratory test environment.

117

 0.1

 1

 10

 0 5 10 15 20

SNR [dB]

P
ea
k
S
p
ec
tr
al

E
ffi
ci
en
cy
,
ζ
(γ
)
[b
/s
/H

z]

spectrum efficiency-driven set, Sη
computational efficiency-driven set, SK

(a) Peak spectral efficiency ζ(γ)

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20

SNR [dB]

C
om

p
u
ta
ti
on

al
C
om

p
le
xi
ty
,
K

[k
cy
cl
es
/b

it
]

spectrum efficiency-driven set, Sη
computational efficiency-driven set, SK

(b) Average computational complexity, K̇

Figure 5.10: Performance of adaptive switched modulation/coding scheme sets over the air in a
laboratory wireless environment.

118

Table 5.6: Available modulation/FEC scheme pairs, broken into 2 sets, Sη and SK (over-the-air
experiment in Section 5.5)

Modulation scheme FEC scheme η, [b/s/Hz] Ki, [kcycles/bit]

Sη, spectrum efficiency-driven set

QPSK conv. r = 1/3, K = 9 0.667 12.512

QPSK conv. r = 2/3, K = 9 1.333 8.135

QPSK conv. r = 3/4, K = 9 1.500 7.568

QPSK conv. r = 7/8, K = 9 1.750 7.064

16-QAM conv. r = 2/3, K = 9 2.667 6.138

16-QAM conv. r = 3/4, K = 9 3.000 5.733

16-QAM conv. r = 4/5, K = 9 3.200 5.753

16-QAM conv. r = 7/8, K = 9 3.500 5.281

64-QAM conv. r = 2/3, K = 9 4.000 5.254

64-QAM conv. r = 3/4, K = 9 4.500 4.975

64-QAM conv. r = 4/5, K = 9 4.800 4.840

64-QAM conv. r = 7/8, K = 9 5.250 4.831

SK, computational efficiency-driven set

BPSK Hamming (12, 8) 0.667 7.874

QPSK Hamming (12, 8) 1.333 3.239

QPSK uncoded 2.000 3.013

8-PSK uncoded 3.000 2.264

16-QAM uncoded 4.000 1.938

32-QAM uncoded 5.000 1.474

the two sets, as computed by (5.15).

As expected, Sη has typically a higher spectrum efficiency than SK, but for certain values of γ it
is actually slightly lower. This is demonstrated in Figure 5.10(a) near γ = 6dB and again near
γ = 10dB where the computational efficiency-driven set exhibits a slightly higher spectral efficiency
than that of Sη. This discrepancy can be attributed to the synchronizer’s inability to lock onto
signals with moderate carrier phase and frequency offsets as well as timing phase offsets. While
simulation suggests that the packet error rate should be lower for certain modulation schemes, the
receiver is unable to extract an adequate channel phase estimate due to noise and therefore cannot
establish a carrier lock. This results in a constellation with a gross carrier phase offset and thus a
higher bit error-rate than theory under ideal carrier recovery assumptions. In a practical sense, the
limiting factor of the physical layer is the distance between signal points as they are responsible for
proper demodulation and proper carrier recovery. As a result, the errors introduced by increasing
the modulation scheme cannot easily be recovered by using forward error correction.

Clearly the introduction of convolutional decoding increases the required number of computations

119

at the receiver. This is a well-known phenomenon and makes a significant impact on the receiver’s
computational complexity. Not only does using a stronger forward error-correction scheme typically
increase computational requirements of the receiver by running the algorithm alone, but decreasing
the rate of the code also increases the length of the frame. This, in turn, requires the receiver to run
more filtering and gain operations which directly impact its computational load. The processing
complexity of Sη is roughly three times higher than that of SK at the highest signal-to-noise ratio;
this suggests that the receiver could actually increase its spectrum bandwidth running at several
times its nominal speed, increasing its data rate. Alternatively, the same receiver could be deployed
on a more primitive piece of hardware, allowing for nearly the same throughput to be achieved on
nodes without higher capabilities. In either case, choosing appropriate schemes implies a more
efficient receiver.

For very low signal-to-noise ratios (less than 3dB) the spectrum efficiency-driven set actually out-
performs the computation efficiency-driven set; this is because the receiver’s throughput is so low
that the denominator in (5.15) approaches zero causing K̇ to explode. However, this is only an
issue for low values of γ in which both sets suffer.

5.7 Conclusions

This chapter has analyzed and demonstrated the advantages of monitoring resource consumption of
software-defined radio platforms, and the results are promising; adapting link-level parameters to
match channel conditions suggest not only performance improvements through spectral efficiency
but computational complexity (and therefore power efficiency) as well. Simulated results have been
confirmed with an over-the-air implementation of an adaptive radio capable of switching modulation
and coding schemes, saving the host receiver valuable computational bandwidth while sacrificing
minimal spectral efficiency. These results suggest an even greater increase in performance is possible
by extending the analysis to encompass the full receiver architecture and allowing the radio to
adjust nearly all aspects of its receiver. The next chapter extends these results by incorporating
the physical layer synchronizers of the preceding chapters with the proposed resource monitoring
framework into an adaptive packet radio system controlled by an intelligent engine.

120

Chapter 6

Cognitive Engine Design

While the modern concept of cognitive radio promises specific enhancements such as spectrum
compactness, efficiency, and higher throughput, the sole purpose in introducing artificial intelligence
and cognition into radio design [46] is simply to facilitate communication. The motivation in this
Chapter for employing cognition in radios and wireless networks resides in the fact that observations
about the surroundings are incomplete and mathematical models used to describe the environment
are imprecise. As such, it is necessary for the radio to learn specific characteristics about its
environment in order to provide a sufficient quality of service to its users. This is particularly
critical for dynamic spectrum environments which are not governed by any particular protocol,
and as a result link quality is highly dependent upon spectrum availability and interference levels.

This chapter presents a generalized informal definition of cognitive radio and discusses optimization
methodology for its autonomous operation. A generalized theory for describing the relationship
between radio parameters, goals, and environmental observables is provided. A novel utility func-
tion is introduced which provides metric abstraction and allows for generalized used in cognitive
engines. Furthermore, a generic case database-enabled cognitive engine is proposed which uses
specific knowledge and experience rather than general knowledge from within a problem domain.
The engine is used to control the parameters of a wireless communications link between a pair
of radios operating in a laboratory environment, and its performance is validated by adapting its
transmission scheme to varying channel conditions while reducing the computational burden at the
receiver.

6.1 Taxonomy of Radio Cognition

With the onset of cognitive radio technologies comes a definition for each implementation. Pre-
dominantly considered to be an extension of software-defined radio, cognitive radios have been
proposed to enable such technologies as dynamic spectrum access for efficient whitespace re-use.
While DSA is a useful application for CR, it is by no means the only one. This section gives a
broad definition for cognitive radio and breaks down its objectives into several levels within the
domain of machine learning. The intent here is to abstract from any particular application, and

121

Table 6.1: Taxonomy of the Cognitive Domain

Category Description Radio Domain Examples

Knowledge the ability to recall data and infor-
mation

look-up table; memory; case
database

Comprehension understand meaning, symbolic rep-
resentation

pre-programmed rules

Application apply knowledge to a new situation statistical inference of data to draw
trends

Analysis separation of concepts into its com-
ponent parts to understand organi-
zational structure

determine reason for low perfor-
mance by observing individual pro-
cessing blocks; “recognize logical
fallacies in reasoning”

Synthesis building structure or pattern from
diverse elements

on-the-fly reconfigurability; creat-
ing new policy

Evaluation make judgments about the value of
ideas or materials

select the most effective solution
by understanding its performance
characteristics

provide a unified definition for comprehension.

6.1.1 Bloom’s Taxonomy of the Cognitive Domain

The Taxonomy of Educational Objectives was developed by Benjamin Bloom in the 1950s as a set of
learning objectives for educators [10]. Bloom’s Taxonomy is a hierarchical classification with three
domains: affective, psychomotor, and cognitive. Most references to Bloom’s Taxonomy refer to the
cognitive domain, which is broken up into six categories: knowledge, comprehension, application,
analysis, synthesis, and evaluation, each being a requisite for all higher categories. While classically
used in educational psychology, Bloom’s cognitive domain relates very strongly to other types of
learning; in this case radio intelligence. Table 6.1 dissects each category and gives a brief example
of its application in the radio domain.

6.1.2 Cognitive Engine

The radio itself is supervised by a controlling entity called the cognitive engine. The goal of a
cognitive engine may simply be stated as optimally manage the radio’s finite resources within a
dynamic environment; however the details of this action are specific to its application. Resources
can take many forms, both the tangible and intangible, and typically include energy, power, memory,
computational bandwidth, and shared electromagnetic spectrum. Despite the flexibility in software-

122

defined radio platforms, the engine must still operate within a strictly confined set of policies.
Depending upon the scenario its operator may grant leniency to the engine, allowing it to create
its own protocol with relaxed constraints. As a result, cognitive radios have been shown to provide
significant resource savings through waveform adaption [57].

6.1.3 Informal Definition

A number of definitions exist for cognitive radio which attempt to tie its intended application
formally into its description; the most common application being dynamic spectrum access. Binding
a potential application to its definition is short-sighted as its potential applications may change with
time. Cognitive radio is further defined by some to be built on a software-defined platform; while
SDR is a likely candidate for cognitive radio whose operation likely requires waveform flexibility, it
is not a necessity.

Within the context of the cognitive domain, a cognitive radio must be driven by a set of goals and
must be capable of understanding and learning how its actions impact these goals. This might
involve recalling and correlating past actions, scenarios, and performance, and requires awareness
of its environments and its own capabilities. At the lowest level, the radio must be capable of
the statistical inference of data to draw trends on performance bounds, and at the very least
perform simple adaptations using a set of pre-programmed rules to improve its performance. At
a higher level it can make judgments about the value of certain adaptations in order to select the
most effective solution, and understand its performance characteristics by evaluating its experience.
Finally, all of its actions must be made transparent to its user. Using Section 6.1.1 as a guide, this
chapter conforms the following simple, informal working definition of a cognitive radio:

A cognitive radio is one in which autonomous goal-driven operation is supervised by the
evaluation of its current operating environment and past experiences.

6.2 Theory

A radio can have multiple objectives other than simply the reliable transmission of data. Goals such
as increasing battery life by reducing power consumption, occupying less spectrum, and conserving
static memory are all examples of radio resource management (see Section 5.1). While it is possible
that many solutions exist to achieve a particular desired performance, the engine itself must be
capable of evaluating each solution to determine which is optimal. In this section I formalize the
radio’s operation as a classic non-linear multi-objective optimization problem and demonstrate
exactly how the engine can reduce its search space without loss of generality.

6.2.1 Subspaces

In order for the radio to make informed decisions about its adaptation strategy, the radio must
first retain knowledge about its experiences. There are three primary subspaces to cognitive radio
information: utilities, observables, and parameters. The design of the engine itself abstracts from

123

explicitly specifying these subspaces in the context of the radio’s domain. As such, a single engine
design can be used for many vastly different applications whose operation can be formalized as
a classic non-linear optimization problem; the radio must maximize a set of goal-driven utilities
u = {u0, u1, . . . , uNu−1} by adjusting a set of parameters θ = {θ0, θ1, . . . , θNθ−1} subject to a set
of observable operating conditions φ =

{
φ0, φ1, . . . , φNφ−1

}
.

The utilities supply the engine with quantitative information about system performance in relation
to the engine’s goals. The engine’s utilities are directly related to the radio’s performance metrics,
β = {β0, β1, . . . , βNu−1} through a monotonic utility function. For example, if one goal of the engine
is to achieve a data rate of at least 100 kbps, yet the established link is only supplying 25 kbps,
then resulting utility should reflect this poor performance. The utility does not necessarily (and
perhaps should not) scale linearly with performance.

The observables (or “operating conditions”) are quantities relating to the environment over which
the radio has no control. These should provide a complete scenario description to the engine and can
amount to such metrics such as path loss, Doppler shift, or fading index. As a good design principle,
the observables should be independent of the radio’s parameters and should only reflect information
about the operating environment itself. For example, using bit error rate as an observable would be
a poor choice if the transmitter can adapt its modulation scheme, as the two are strongly related
to one another. As a result, the observable is linked to its parameter set, making the search more
obfuscated. Similarly, using signal-to-noise ratio is again a poor choice if the transmitter can adjust
its radiated power. A more robust choice would be to use path loss which is only affected by the
distance between the transmitter and receiver, antenna gain, and multi-path power delay profile:
values over which typically the radio has no control. In fact, modification of any of the parameters
should ideally have no affect on the measured environmental conditions. The reason for this is due
to how the engine needs to access its knowledge base.

The parameters are chosen by the engine such that the utilities are maximized, given the current
state of the environment. As such, the engine will need to retain its experience in order to later recall
this information. It is important to recognize that the radio only has control over θ (transmit power,
modulation scheme, etc.); however, it cannot change φ (path loss, Doppler shift, etc.). Examples
of such goals include achieve a data rate of 100 kbps, or maximize the link’s spectral efficiency. The
solution space is strictly bounded by policy and the radio’s own physical capabilities. Furthermore,
parameters can take either a continuous or discrete form, and can be either ordered or unordered.

6.2.2 Mapping subspaces

The subspaces defined by θ (parameter), φ (observable), β (goal), u (utility), and v are related by
their mapping functions. Consequently the Nθ-dimensional parameter space and Nφ-dimensional
observable space are mapped onto Nu-dimensional goal space using f , viz

f (θ|φ) : RNθ+Nφ → RNu

The mapping function f is typically non-realizable and is measured empirically. Within the context
of cognitive radios, the goals are often values measured by the system itself, and include some
random variation. For example, throughput of a system degrades with packet error rate, which

124

θ ∈ RNθ

parameter space

φ ∈ RNφ

observable space

β ∈ RNu

goal space

u ∈ RNu

utility space

v ∈ R1

collapsed utility space

f(θ|φ)
q(β, β̇) g(u)

Figure 6.1: Mapping optimization spaces. The mapping functions f and g are not strictly one-
to-one as multiple solutions can produce the same set of utilities. The utility function q, however,
has a strict one-to-one mapping between the goal and utility spaces.

can fluctuate with each measurement. The goal space is converted to the utility space through the
injective utility function:

q (β) : RNu → RNu

It is necessary to collapse the Nu-dimensional utility space into a one-dimensional subspace so that
the performance of each adaptation can be properly quantified. This is done through the simple
mapping function, g:

g(u) : RNu → R1

This collapsed utility space mapping function is completely user-defined and can significantly affect
the engine’s choice of adaptation. While a number of subspace mapping functions have been pro-
posed, their usefulness to radio learning in the context of non-simulated data is limited. Figure 6.1
depicts the relationships between θ, φ, β, u, v, f , q, and g through solution space mapping. Due
to stochastic observations, however, the values of the observables φ and performance metrics β are
only estimates, viz.

φ → φ̂

β → β̂

As a result, the error due to the variance in the estimates are propagated downstream to the
utility and collapsed utility spaces. This can give rise to errors in the engine’s decisions if not
properly accounted for. For example, let one the performance metrics, β̂k, represent the packet
error rate observed over a finite number of packets. The variance of β̂k can cause the engine to

125

Pareto Optima
Emperical Pareto Frontier

Sub-optima

First Utility (u0)

S
ec
on

d
U
ti
lit
y
(u

1
)

Figure 6.2: Example of Pareto efficiency with the utility space u ∈ R2

make errors in its decisions due to imprecise information about its environment. However, with
sufficient observation and knowledge collection these errors can be kept to a minimum.

6.2.3 Pareto Efficiency

The purpose of the cognitive engine is to retain empirical data about channel conditions and to
search the available parameter space leading to a solution as near to optimal as possible. Both
the terms channel condition and optimal solution, however, are very broad in the context of radio
performance. Impairments such as multi-path fading, path loss, and interference all fall under the
umbrella of channel conditions. The engine itself must handle the optimization of multiple objec-
tives; performance of radio systems is typically focused on improving spectral efficiency, increasing
throughput, and reducing errors introduced by the channel. In multi-objective optimization theory,
a Pareto improvement is one in which choosing a new parameter set results in at least one utility im-
provement without degrading any others. A solution set is deemed to be Pareto efficient (or Pareto
optimum) when no more Pareto improvements can be made. The boundary along this optimum is
called the Pareto frontier. Formally, a parameter set θk is Pareto efficient if and only at least one
of its utilities is greater than or equal to the that of every other parameter set. This, conveniently,
allows the solution space to be significantly reduced as the majority of possible solutions can easily
be determined to be inefficient.

An example of a Pareto-efficient system can be found in Figure 6.2 in which a discrete parameter
set yields the displayed utility space. In this example, the objective is to maximize the two utilities
u0 and u1. The solid line connecting the Pareto efficient solutions represents the empirical Pareto

126

frontier, providing the boundary of the performance of the system. All of the sub-optimal solutions
(open circles) are inferior to any of the Pareto efficient solutions and can be discarded from the
set of candidates as their performance is strictly dominated by one or more of the Pareto optima.
However, if a new utility is introduced, then all of the potential solutions will need to be re-evaluated.
In such a case it is possible that solutions initially deemed inferior now could provide a feasible
solution. A practical example of this can be seen in Figure 5.7 in which channel capacity and
computational complexity are compared against Eb/N0 for various modulation and forward error-
correction coding schemes. Considering just capacity, it seems obvious that the low complexity
pairs are inferior as they require a higher bit energy to convey less data. However, as soon as the
utility to minimize computational complexity is introduced, pairs such as QPSK/Hamming(12, 8)
are re-introduced into contention because of their reduced computational requirements.

6.2.4 Utility Function: Abstracting Performance Metrics

The engine uses performance metrics to determine the quality of the current adaptation relative
to the operating state of the system. In the context of radios, these usually refer to bit error
rate, throughput, and occupied spectrum. These metrics, however, operate on different scales and
have completely different units, giving the engine the difficult task of making a fair comparison
of cumulative performance. This section introduces the utility function which maps the received
metric to a normalized quantity. The intent here is to abstract the physical representation about
the metrics describing the outcome of a particular adaptation to the engine. Consider, for example,
an engine whose purpose is to maximize the rate of a communications link subject to minimizing
the transmitter’s radiated power. Is a link that achieves an average throughput of 100 kbps twice as
good as one which provides 50 kbps? Given that the radio operates with a finite resource set, were
the tradeoffs made to achieve this rate worthwhile? If one of the goals were to achieve a data rate
of 200 kbps then the tradeoffs were indeed probably worthwhile as the adaptation has moved the
link quality significantly closer to this achievement. The resulting utility should reflect this change,
and suggest that a significant improvement has been made with this adaptation. Alternatively, if
the goal was initially to create a link with just 50 kbps, then it is likely that significant resources
were wasted in this adaptation, and again, the utility should reflect this.

A generic utility function used to abstract from the metrics observed by the cognitive engine has
been proposed in [98]. Specifically, the utility function for a metric β is defined as

q
(
β, β̇; η, σ

)
=

1

2
+

1

2
tanh

{
σ

[
log

(
β

β̇

)
− η
]}

(6.1)

where β̇ is the target metric, σ is the spread parameter, η is the threshold parameter, and tanh(z) =
(ez − e−z)/(ez + e−z) is the hyperbolic tangent. Therefore (6.1) is monotonic and strictly bounded
by q ∈ (0, 1). The threshold and spread parameters can be chosen arbitrarily and govern at exactly
what utility value q(β) gives when the metric β meets its target. More specifically, choosing
q(β̇) = q0 and q(pβ̇) = qp results in

σ =
1

2 log p

[
log

(
1

q0
− 1

)
+ log

(
qp

1− qp

)]
(6.2)

127

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100

Relative Metric (β/β̇)

U
ti
lit
y
F
u
n
ct
io
n
q(
β
)

Figure 6.3: Generic utility function for metric abstraction, defined by (6.1) for a target of 0.95
when β = β̇ and 0.05 when β = β̇/10.

and

η =
1

2σ
log

(
1

q0
− 1

)
(6.3)

Notice that there is no restriction on the choice of q0, qp, and p except that p 6= 1 and q0, qp ∈ (0, 1),
q0 6= qp. This flexibility permits total control over the shape, transition region, and slope of the
utility function. For example, choosing the utility to be 95% when the metric achieves the target
(β = β̇) and 5% when the metric is one decade below (β = β̇/10) gives q0 = 0.95, qp = 0.05, and
p = 0.1. Inserting these numbers into (6.2) and (6.3) gives σ = 1.27875352 and η = −1.15129256,
respectively. The resulting utility function is plotted in Figure 6.3. Notice that η is negative which
implies that p < 1 and the knee defined by β = pβ̇ is below β = β̇. If p > 1 then the shape of the
utility function is reversed.

The design choice of having a monotonic function begs the question: why not adopt a utility function
which is maximized by the metric meeting its goal? This could be accomplished by adopting a utility
such as the normal curve q = exp{−(β − β̇)2/2σ2} which achieves a maximum of 1 at β = β̇. The
reason why this is avoided relates to the injective nature of the utility function which allows its
input/output mapping to be unique between domains. This helps significantly with reasoning
within the engine which would not be able to distinguish between a poor utility due to a metric
being too low from a poor utility due to a metric being too high. One might think that a bell-shaped
utility function has a multi-objective optimization nature built into it. For example, if βk represents
the throughput of a link with the goal β̇k=100 kbps, then providing a data rate of 200 kbps must
be in some way wasting resources; This demonstrated in Chapter 5 for radios adaptively switching
modulation and forward error-correction codes. Properly designed engines, however, will weigh all

128

of the utilities proportionately and make a decision as to appropriately trade the improvement of
one utility for another. It is therefore necessary to choose sufficient utilities within the engine itself
which encompass its true objectives. For this example, another utility chosen to minimize radiated
power at the transmitter might outweigh the benefit of the additional data rate. It is well known
that one cannot simultaneously decrease transmit power while increasing channel capacity (see
Figure 5.7(a)); consequently, one utility will increase while the other decreases. To put it another
way, it is up to the engine to decide if the cost attributed to increasing one utility only marginally
is worth the cost of decreasing another substantially.

The benefits of using the utility function in (6.1) are highlighted below.

1. The shape of q(β) is monotonically increasing which improves convergence of most search
algorithms. Because it is never perfectly flat (its derivative is always positive), q(β) has a
strict one-to-one mapping to its input utility. Furthermore, this injective nature prevents
gradient-based search algorithms from hitting a plateau, increasing the speed of convergence.
It also assists in the engine’s reasoning capabilities by allowing it to distinguish between
unique performance characteristics.

2. The utility function can be parametrized to describe the desired relationship between any
number of metrics and the respective goal of the system. Specifically, when p < 1 it is used
to describe metrics which need to be maximized (throughput, spectral efficiency, etc.) and
when p > 1 its shape is inverted and describes metrics which need to be minimized (transmit
power, bit-error rate, etc.). The steepness of the curve can also be adjusted, and provides
emphasis on the relative importance of meeting a particular goal.

3. Because (6.1) accepts the ratio of the input metric to its goal, the utility function abstracts
any dependency of units from the resulting utility. Furthermore, q(β) is strictly bounded
by the interval (0, 1) which provides a standardized output scaling to the engine. This is
particularly useful in problems involving multiple objectives where the resulting utilities need
the quantification abstracted from the metrics they represent.

4. By forcing an unattainable upper bound, the utility function suggests to the engine that there
is always room for improvement, even if the target metric has been achieved. The particular
shape of q(β), however, provides a diminishing marginal return on the utility for its particular
metric.

6.2.5 Production Function: Collapsing the Utility Space

The dimensionality of radio parameters can be staggering, providing such a massive number of
combinations that it would be impractical to retain information about each one. However, once
the solution space is pruned to its Pareto efficient candidates, the search process becomes more
manageable. The issue now becomes one of choosing an appropriate solution set from within those
lying on the Pareto frontier. A classic example given in the literature involves a company which
must choose a processes for manufacturing a product. The company’s goal is to choose a process
which maximizes both manufacturing ability (labor) and production (capital goods). The two
utilities, however, have an inverse relationship to one another on the system’s Pareto frontier; one

129

cannot simultaneously increase labor while also increasing capital. There exists an inherent trade-
off between the two utilities, and consequently the company must choose a process which serves
its purposes accordingly by compromising one utility for improvement of the other. In neoclassical
economics, the output quality of a firm can be specified by a production function which accepts a
set of input quantities (e.g. capital, labor, raw materials).

Similarly, the cognitive engine can have contradicting utilities. For example, keeping all other
factors at a constant, it is impossible to reduce the occupied spectrum while increasing the capacity
of the channel (see Figure 5.1). The engine must therefore compromise some utilities for the sake of
the improvement of others. The collapsed utility space exists strictly in R1. The mapping function
g : RNu → R1 to select the appropriate solution is therefore open to choice. The collapsed utility
may be therefore computed by taking the weighted geometric mean of all utilities, viz.

v = g(u) =

[
Nu−1∏

k=0

q(uk)
αk

]1/Nu

(6.4)

where αk > 0 denotes the relative importance of utility uk. In essence the collapsed utility is
considered a global utility for the system, providing a balanced metric for comparing potential
solutions. The equation in (6.4) is quite similar to the Cobb-Douglas production function to
relate inputs to outputs–probably the most widely used functional representation in neoclassical
economics [87]. By assigning a multiplicative sub-space mapping onto the collapsed utility space,
the result is inherently fair. That is, if any one particular utility is low, so is the global utility v. By
contrast consider an additive production function v =

∑Nu−1
k=0 αkq(uk) where

∑Nu−1
k=0 αk = 1; this

function tends give an unbalanced preference to utilities with a higher importance while completely
ignoring others. The drawbacks of selecting this type of production function are further discussed
in Section 6.4.1. Because q(uk) is conveniently bounded by the interval (0, 1), so will v be bounded
by this same interval, regardless of the values of the weighting factors αk. This helps to compare
potential solutions by providing a normalized reference. Because the engine only needs to compare
solutions by observing relative values of v, the logarithm of v may be computed for simplicity:

log(v) =
1

Nu

Nu−1∑

k=0

αk log q(uk) (6.5)

Note that it is not necessary for the weighting factors αk to sum to unity, nor are their individual
values required to be less than one. In fact the only constraint on the weighting factors are that
they must be greater than zero. This ensures that utilities with higher values of α are given a
higher preference. However, the examples given in this chapter impose that 0 < αk < 1 and∑Nu−1

k=0 αk = 1 for consistency. Conveniently for a system with two goals the collapsed utility v will
equal the individual utilities u0 and u1 when α0 + α1 = 1. Therefore when u = u0 = u1,

g(u) = uα0
0 uα1

1 = uα0+α1 = u

Furthermore, v will be at a maximum where u0 = u1 if and only if α = α0 = α1.

130

Example #1: Bandwidth vs. Capacity

Consider a communications link which operates at a fixed transmit power and has control over a
single parameter, bandwidth (θ0 = W). The link undergoes a constant path loss, which translates
to a static ratio of energy per bit to noise power at the receiver (φ0 = Eb/N0). The system has two
goals, each with a target: maximize the channel capacity (β0 = C) while achieving a minimum rate
(β̇0 = 200 kbps), and minimize occupied bandwidth (β1 = W) while not exceeding a maximum
(β̇1 = 100 kHz). The resulting utilities from these performance metrics (u0 and u1, respectively)
are weighted such that maximizing the rate of the link is given significantly more emphasis than
minimizing occupied bandwidth (α0 = 0.8 and α1 = 0.2).

The channel capacity can be computed by solving the following equation for the rate C/W [76,
(7.1-34)] measured in b/s/Hz (plotted in Figure 5.7(a))

C

W
= log2

(
1 +

C

W

Eb
N0

)
(6.6)

which exhibits a theoretical lower limit at Eb/N0 = 10 log10 (log(2)) ≈ −1.6 dB. Figure 6.4 demon-
strates the production function under two separate scenarios. In the first case, the channel quality
is high as Eb/N0 = 8 dB. The resulting production function achieves its maximum at W = 83.1 kHz
which corresponds to a capacity of 418.4 kbps. In this particular case both the target metrics were
achieved and the shape of the production function is quite wide with its maximum at v = 0.976,
as can be seen in Figure 6.4(a). In the second case, however, the channel quality is low as
Eb/N0 = 1/2 dB which gives a theoretical maximum capacity at the upper bandwidth limit of
100 kHz is only 129.3 kbps. Consequently it is not possible to meet both target metrics. Given
that the system emphasizes the first utility (maximizing throughput) over the second (minimizing
bandwidth), the maximum of the utility function is achieved at a bandwidth of 172.3 kHz which
yields a data rate of 222.8 kbps. In this case, the shape of the production function is narrower with
its maximum at only v = 0.866, as can be seen in Figure 6.4(b). Notice that the capacity utility
u0 has shifted considerably to the right from the previous example. Further degradations in Eb/N0

cause the production function to degrade quickly, sacrificing even more bandwidth for data rate.

Example #2: Bandwidth and Power vs. Capacity

Considering the results gathered from the first example, it is interesting to observe the effects of
allowing the transmitter to adjust its power as well as its bandwidth. This example uses a two-
parameter system: transmit power (θ0) and bandwidth (θ1). From a theoretical standpoint, the
capacity of the channel increases logarithmically with transmit power and can increase infinitely.
In a practical scenario, a wireless system is limited by the amount of power it can transmit;
Furthermore, from a standpoint of efficiency, it is usually desirable to minimize the amount of
power radiated by the transmitter. Consequently, a new utility is introduced with a goal to minimize
transmit power. The system now has three goals: maximize the channel capacity (β0 = C) while
achieving a minimum of β̇0 = 100 kbps, minimize occupied bandwidth (β1 = W) while not exceeding
a maximum of β̇1 = 100 kHz, and minimize the transmit power (β2 = Eb/N0) while not exceeding
a of β̇2 = 10 dB. As before, the channel capacity is computed by solving (6.6) for C/W and then
multiplying by the bandwidth. The relative weights were given this time as α0 = 0.5, α1 = 0.3,

131

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

Bandwidth (W) [kHz]

U
ti
lit
y

Throughput Utility, u0
Bandwidth Utility, u1

Collapsed Utility, v

(a) Eb/N0 = 8 dB, β0 = 418.4 kbps, β1 = 83.1 kHz

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

Bandwidth (W) [kHz]

U
ti
lit
y

Throughput Utility, u0
Bandwidth Utility, u1

Collapsed Utility, v

(b) Eb/N0 = 1/2 dB, β0 = 222.8 kbps, β1 = 172.3 kHz

Figure 6.4: Collapsed utility space example vs. occupied bandwidth θ0 = W given the observable
φ0 = Eb/N0 where u0 and u1 represent maximizing throughput for the channel and minimizing
occupied bandwidth, respectively. The target metrics are β̇0 =200 kbps and β̇1 =100 kHz.

132

and α2 = 0.2 for the three respective utilities. Figure 6.5 demonstrates the production function.
The corresponding peak is v = 0.977 at W = 69.0 kHz and Eb/N0 = 8.2 dB which yields a rate of
C = 353.7 kbps. Notice that for this particular scenario, all three targets were met.

6.3 Components

The cognitive engine can be formally dissected into four primary components: the knowledge base,
performance monitor, fitness estimator, and adjudicator. It is not imperative to discuss either the
implementation of each component or the interaction between them. Instead, the discussion shall
be limited to the distinct purpose of each.

6.3.1 Knowledge Base

As discussed in Section 6.1.1, the first category of Bloom’s Taxonomy of the cognitive domain
is knowledge. The ability to recall information is the first and most critical step towards radio
cognition. Knowledge retention can be realized on software-defined radio platforms by any number
of methods, including look-up tables, random access memory, filters, databases, and artificial neural
networks. In the context of cognitive radios it is perhaps most logical to store events in a case
database in which the performance of a particular adaptation under a scenario is retained. This
is an important aspect to radio learning as recalling previous experience is paramount to adapting
quickly to changing conditions. Given the previous discussion of optimization, each case should
accurately represent the sets parameters, observables, and utilities.

6.3.2 Performance Monitor

The learning process is enabled on intelligent systems by relaying information about the current
solution state to its adaptation algorithm. The potential of each adaptation is valued in relation
to achieving each goal, typically realized through a well-defined utility function. The performance
monitor retains this information in the cognitive engine’s internal knowledge base.

6.3.3 Fitness Estimator

Because both the utilities and the operating conditions are measured values and therefore stochastic,
the result of an adaptation cannot be determined by direct observation alone. The fitness estimator
provides an estimate of how a particular adaptation will perform for the operating condition of the
radio. This aspect of cognition is extremely important for the efficient convergence of non-linear
optimization techniques. Evaluating the performance of each candidate parameter set by direct
observation is inherently flawed in two ways:

1. Actual fitness measurements require considerable observation time. This in itself is imprac-
tical as channel conditions in dynamic spectrum environments are changing too quickly for
the fitness of any particular adaptation to be reliably observed;

133

 0
 5

 10
 15

 20 1

 10

 100

 1000

 0

 0.2

 0.4

 0.6

 0.8

 1

Eb/N0 [dB] Ban
dwi

dth
(W

) [k
Hz]

In
d
iv
id
u
al

U
ti
lit
ie
s,
{u

0
,u

1
,u

2
}

 0
 5

 10
 15

 20 1

 10

 100

 1000

 0

 0.2

 0.4

 0.6

 0.8

 1

Eb/N0 [dB] Ban
dwi

dth
(W

) [k
Hz]

C
ol
la
p
se
d
U
ti
lit
y,
v

 0
 5

 10
 15

 20 1

 10

 100

 1000

Eb/N0 [dB] Ban
dwi

dth
(W

) [k
Hz]

Figure 6.5: Collapsed utility space example: power and bandwidth vs. capacity where u0, u1, and
u2 represent maximizing throughput, minimizing occupied bandwidth, and minimizing transmit
power (Eb/N0) with targets β̇0 = 200 kbps, β̇1 = 100 kHz, and β̇2 = 10 dB, respectively.

134

2. In the presence of other cognitive radios, channel state conditions are exacerbated. This
is an artifact of the channel state being a non-ergodic process, under which condition the
observation is fallacious.

Direct-observation feedback methods eliminate classical optimization techniques such as Newton-
Raphson which assume a smooth error surface. Figure 6.6 demonstrates the importance of fitness
estimation in cognitive radios. The observed of the relationship between the operating parameters
θ1 and θ2 and the fitness function F (θ1, θ2) is noisy, as depicted by Figure 6.6(a). The fitness
estimator function ζ(θ1, θ2) maps the observation to a continuously smooth surface, Figure 6.6(b).
The mapping can be achieved by any number of methods, particularly multi-dimensional polynomial
curve-fitting or artificial neural networks [43, 58, 82, 23]. This permits the use of classical non-
linear optimization techniques such as Newton-Raphson, gradient-based, and hill-climbing search
algorithms.

6.3.4 Adjudicator

The adjudicator is the decision-making entity of the cognitive engine. It’s purpose is to balance the
tradeoffs observed in multi-objective optimization problems prevalent in cognitive radio scenarios.
This is commonly implemented by the weighted combination of the output of individual utility
functions [98, (6)]. Section 6.2.5 has shown how merging multiple utilities collapses its quantitative
representation into R1.

6.3.5 Policy Module

As cognitive networks are proposed to overlay legacy system bands, such radios must comply with
spectrum policy to minimize electromagnetic interference to primary users. The amount of interfer-
ence to which primary users can handle before legacy systems exhibit a noticeable quality of service
degradation is a point of contention between regulators and standards committees. The Federal
Communications Commission strictly limits the amount of transmit power allowable on particular
frequency bands, as well as the permissible modulation and multiplexing schemes. For example,
the IEEE 802.22 standard dynamically adjusts the transmit power spectral density mask depend-
ing upon the primary users (television broadcast stations, Part 74 devices, wireless microphones,
etc) [51]. The policy module holds information about the admissible system parameters, based on
location, time of day, and current spectrum occupancy. The radio environment map (REM) has
been suggested to drive the information stored within the policy module and is particularly useful
for wireless mobile networks [99, 98].

6.4 Evolution of the Cognitive Engine Architecture

There exist nearly as many cognitive radio designs as there are applications for them. This section
details several cognitive engine development projects designed for software radio platforms and

135

-1

-0.5

 0

 0.5

 1-1

-0.5

 0

 0.5

 1

 0

 1

 2

 3

 4

 5

 6

θ1

θ0

F
(θ

0
,θ

1
)

(a) Fitness Observation

-1

-0.5

 0

 0.5

 1-1

-0.5

 0

 0.5

 1

 0

 1

 2

 3

 4

 5

 6

θ1

θ0

ζ
(θ

0
,θ

1
)

(b) Fitness Estimation

Figure 6.6: Fitness function F and its estimator ζ for a two-parameter system

136

provides the motivation behind the case database-enabled cognitive engine architecture proposed
in Section 6.5.

6.4.1 CoRTekS

A preliminary cognitive radio design was created in 2005 using an artificial neural network-based
cognitive engine to adjust modulation, power, and carrier frequency, all while complying with a
programmable user-defined policy that restricted the permutation of each of these parameters.
The radio itself was constructed from Tektronix test equipment and a personal computer. As such,
it was dubbed CoRTekS for cognitive radio Tektronix system. The transmitter was built from
a Tektronix arbitrary waveform generator AWG430 acting as baseband generator, a Tektronix
AWG710B as the local oscillator, and a variety of external SMA components such as mixers,
amplifiers, filters, cables, and a UHF antenna. Together, these components acted as a flexible
RF transmitter, capable of switching carrier frequency, modulation scheme, and transmit power.
A Tektronix real-time spectrum analyzer 3408A and another UHF antenna acted as the receiver,
capable of both signal demodulation and spectrum sensing. A personal computer running an
early version of Virginia Tech’s open-source software communications architecture implementation,
OSSIE, [73] acted as the waveform controller. All the components were connected using a set
of general purpose interface bug cables to the host PC which could control both the transmitter
and receiver independently. The data transmitted over the air represented a bit-mapped image of a
chameleon sitting on a limb. A graphical user interface was designed to display the policy, spectrum
usage, current adaptation, performance, as well as both the transmitted and received images; as
errors were received, the image would be corrupted allowing a relatively simple visualization of the
radio’s performance.

In order to demonstrate spectrum robustness an RF emitter was designed consisting of a battery
and a filtered resistor network connected to a voltage-controlled oscillator and a line-matched
antenna. The emitter acted as a narrowband jammer and could be tuned from the operating range
of the radio, 480-490MHz, using a potentiometer. Because the transmit power of the radio was so
low, the jammer, when enabled and tuned to the radio’s center frequency, could easily disrupt the
communications link. When the receiver detected this resulting increase in error rate, the engine
would switch into a search mode, disabling the transmitter and putting the RTSA into its spectrum
analyzer mode. A snapshot of the received spectrum was then sent to the engine which would then
estimate which frequency bands were being occupied by primary users. This detection process
simply used the received power spectral density to estimate which frequencies exhibited power
above the estimated noise floor. A simple search algorithm then determined the best available
frequency slot (if any existed). In fact, the engine would request that the radio enter its search
mode periodically, even if the received image had not been corrupted. This intermittent sensing
enabled the engine to continually monitor spectrum usage and ensure that it was not interfering
with incumbent devices.

After the appropriate channel selection, the engine would choose the best transmit power and
modulation scheme; by adjusting these parameters the engine could improve upon its utilities to
improve spectral efficiency, decrease the bit error rate, and minimize transmit power (used to keep
the amount of interference the radio imparts to incumbent devices to a minimum). The engine itself

137

was built upon an artificial neural network and a case database. The concept of the engine was
to use the database to retain the radio’s experiences by storing the resulting utility of its previous
decisions given the channel state condition. The artificial neural network was used to interpolate
between knowledge points and acted as the fitness estimator in the engine. The engine observed the
channel conditions by employing a channel reliability metric which gave an indication of the stability
of the link. When the channel was stressed by interference, the metric was decreased; otherwise its
value was steadily increased. The metric itself was a combination of the time-averaged bit error rate
measured at the receiver as well as the amount of interference measured by the spectrum manager.
The neural network accepted three inputs: one observable and the two parameters:

φ0 : the channel reliability metric

θ0 : the transmit power of the receiver, measured in dBm

θ1 : one of five available modulation schemes: QPSK, 8-PSK, 16-QAM, 32-QAM, or 64-QAM

These inputs fully described the capability of the system in regards to the current status of the
link. The outputs of the network were defined as the three utilities

u0 : decrease the bit error rate

u1 : improve spectral efficiency, measured in b/s/Hz

u2 : minimize transmit power

The utilities were computed by pushing the resulting three empirical metrics (BER, spectral effi-
ciency, and transmit power) through a normalization function similar to that of (6.1) such that they
were strictly bounded by [0, 1]. The case database stored the six-element state/decision/outcome
vector1 as

sk : {φ0, θ0, θ1, u0, u1, u2} (6.7)

in a first-in/first-out queue, retaining only the most recent N vectors. When the radio operated in
its search mode, it would train the neural network on its experience collected in the case database.
Once complete, the engine would perform a search over the network by adjusting θ0 and θ1 while
holding the empirical channel reliability metric φ0 a constant. The resulting output solutions were
compared using an additive weighting function of their utilities as u = 0.5u0 + 0.3u1 + 0.2u2;
the adaptation producing the maximum global utility was chosen. To prevent over-training as
well as promote the exploration of additional solutions, the engine would intermittently add a
random permutation to the resulting parameter set. Introducing random perturbations into the
decision of the engine caused it to periodically explore solutions which could potentially result
in better performance, driving the engine to a more well-balanced knowledge base. This draws
strong parallels to genetic algorithm theory which permits its potential solution sets to merge

1Retaining the outcome of a particular decision given the channel state became the precursor to this work in
attempt to fully describing the scenario to the cognitive engine, and later became the parameter, observable, utility
subspace set that are described in Section 6.2.1. This analysis is congruent with the analysis of Kolodner who suggests
in [61] that all cases should include at least a problem-situation description, a proposed solution, and an outcome.
Section 6.5.2 gives a more detailed explanation of case representation.

138

(“crossover”) and transform (“mutation”). As both the transmitter and receiver were connected
to the same machine, feedback between them was relatively simple. In a true wireless network,
feedback takes more effort on the part of the receiving node in that it must convey to the transmitter
the results of its adaptation process. As Section 6.4.3 will discuss, this can be accomplished using
a packet feedback response mechanism between master and slave nodes, each capable of both the
transmission and the reception of data.

The radio was able to learn its mistakes and adapt to them, even with no prior understanding of
the relationships between radio parameters. This learning process, however, was relatively slow,
and required a considerable amount of experience before the radio was able to adapt in accordance
to environmental changes. As a result, the database was initialized with a knowledge set represent-
ing pre-defined solutions. One of the key aspects of this experiment was that while the artificial
intelligence can be quite simple and yet provide significant gains, it also reinforced the need for
exhaustive training with simulation before applying real-world experience. Additionally, the case
database needed constant pruning as it contained a number of contradictory entries; due to interfer-
ence and noise, the same parameter set under similar channel reliability observations could produce
different outcomes. This was exacerbated when link would undergo channel impairments outside
the scope of the engine’s ability to measure. For example, if someone were to touch or move the
receiving antenna, the received signal strength would visibly drop on the RTSA causing an increase
in bit error rate. However, because the engine had no way to measure signal degradation (aside
from the consequential increase in errors), the resulting drop of service quality would contradict an
earlier adaptation. This was in fact the reasoning behind introducing the channel reliability metric
φ0 in the first place as it was intended to incorporate any aspect of signal degradation, regardless of
the reason. Furthermore, any contradictions within the case database was to be handled explicitly
by the artificial neural network which could “smooth out” radical jumps in case entries. Clearly
the engine needed an enhanced situational awareness, and required more sophisticated information
about the link’s dynamic channel conditions.

Interestingly, another drawback existed when link conditions were ideal; when running for an
extended period after having found a global optimum would result in wiping the case database’s
knowledge about other adaptations, causing the neural network’s training set to under-represent
the engine’s experience. As a result the engine would eventually “forget” its past experience and
lose its ability to adapt to environmental changes, even the radio was presented a situation it
had previously encountered. Furthermore, increasing the size of the database would cause the
adaptation time for the engine to increase dramatically. Information stored in the case database
needed to be retained longer than just in a first-in/first-out manner. This has motivated the design
of the case database-enabled cognitive engine, described in Section 6.5.

Although one of its goals was to minimize transmit power, the radio often chose the highest mod-
ulation type available with the largest transmit power. This is because the goals maximize spectral
efficiency and meet quality of service were given a significantly higher collective utility than the
minimize transmit power goal. The radio thus determined that the small reduction in utility caused
by increasing its transmit power was offset by the improvement in data reliability. Without other
radios to contend with, the benefits perhaps warranted this decision, but a radio acting alone is
a poor representation of a practical scenario. This can also be described by the neural network’s
tendency to try to describe the channel’s reliability as a continuous variable. In a practical sense,

139

if the channel exhibits interference or has encountered a deep fade, the channel is completely un-
reliable. These sudden changes make adaptivity in the radio’s memory difficult; good decisions
it made one moment are suddenly poor the very next. The radio thus determines that the only
good way to mitigate this uncertainty is to ensure that the channel is always as reliable as possible
all the time, and therefore makes a “greedy” decision, in this case, to increase transmitted power,
perhaps unnecessarily. This is the drawback of applying an additive production function instead of
the multiplicative one as in (6.4).

This work was sponsored by Tektronix Instruments [89] and was personally demonstrated to Tek-
tronix’s hardware research laboratory in November of 2005 as well as at the 2005 Software-Defined
Radio Forum in Orange County California.

6.4.2 ETRI’s 802.22 Cognitive Engine

The first cognitive engine to support the Electronic and Telecommunications Research Institute’s
(ETRI) implementation of IEEE 802.22 [20] was designed in 2006 [80, 98]. Using a case-based
reasoning in conjunction with non-linear multi-objective optimizations, the engine allocated re-
sources to users in the form of OFDM subcarriers, power, and adaptive bit loading. Much of the
insight into designing this engine was derived from a 2005 study supported by the Army Research
Office to compare and contrast various artificial intelligence algorithms in their applicability to
radio resource management. The 802.22 specification gives strict guidelines as to how quickly sec-
ondary users must vacate channels occupied by incumbent devices. As such, fast adaptation was
paramount to the engine’s success. The conclusions of the project were that the use of evolutionary
and genetic algorithms could be circumvented by seeding a simple hill-climbing search with a case
database. The resulting performance was nearly optimum, achieving its solution in a fraction of
the time. The engine, while effective, operated completely in a simulated environment making its
applicability towards laboratory tests impractical.

6.4.3 Ciren

In 2007 the Software-Defined Radio Forum hosted its first annual student radio challenge com-
petition [36, 44]. The challenge involved designing and implementing dynamic spectrum wireless
radios capable of communicating in a network, particularly targeting emergency scenarios where
communications infrastructure has been disabled. This involved implementation of the baseband
digital signal processing software, as well as designing the protocol, cognitive engine, components,
and waveform. The wireless capabilities of this project far exceeded those of CoRTekS, yet the
embedded cognitive engine was significantly less complicated.

System Description

First response teams following major disasters such as earthquakes or floods require accurate and
reliable radio links to provide voice and data communications between team members. Frequently,
however, emergency teams cannot inter-communicate due to relying on fixed-frequency legacy ra-

140

dios. Furthermore, current systems are incapable of relaying information such as high resolution
area maps, streaming audio, building floor plans, images, and other pertinent data that can signifi-
cantly assist both rescue personnel and the people they are trying to help. The system, named the
cognitively intrepid radio emergency network (Ciren), automatically establishes data links in the
licensed family radio service (FRS) band by employing a novel rendezvous protocol while avoiding
interference and primary users with dynamic frequency access algorithms. Furthermore, simple
cognitive algorithms assist the radio in determining not only which channels are most likely to
be unoccupied, but appropriate adaptation strategies when necessary. The Ciren radios support
both point-to-point data links as well as broadcast modes all without the use of an expensive base
station. Furthermore, periodic channel scanning allows the nodes to disseminate spectrum usage
information to other nodes, mitigating the hidden incumbent user problem. The Ciren system is
designed to be deployed on embedded and portable platforms running OSSIE [73], an open-source
implementation of the Software Communications Architecture, an open industry standard. The
test platform has sufficiently low power requirements as to provide a demonstrable mobile and
portable cognitive transceiver.

The radios operate in a master/slave mode with either a point-to-point (PTP) connection, or in a
voice broadcast (VB) mode. The protocol specifications are flexible enough to support most basic
digital services over voice or data channels. One of the most difficult tasks for this problem was
developing a reliable protocol for rendezvousing with the intended receiver to establish a connection,
maintaining link quality, and avoiding incumbent FRS users.

Ad-hoc Rendezvous

Ad-hoc rendezvous is a difficult problem in wireless communications, particularly when no base
station or reliable control channel exist. This is exacerbated by the necessity to share the precious
spectrum with incumbent/primary users entering and leaving the FRS channels in a stochastic
manner, making this quite possibly the most critical development for this problem. The link is first
established even before the user of one Ciren radios invokes the push-to-talk button. This radio,
the mater node, transmits a beacon on one of the free FRS channels. The framing structure used
in this system, in fact, was a precursor to the one described in Section 3.5; however its preamble
phasing pattern and payload were a fixed length, and the encoded header was slightly different.
While not connected, each receiver scans the 14 FRS channels looking for the beacon signal and
gathering information about channel availability. Detected Ciren signals are decoded by the slave
node and correlated with its own UID m-sequence (and a special m-sequence for VB mode). The
slave node sends a reply when the correlator output is high. Otherwise, after a short time, the
receiver will move on to the next channel. This scanning process also allows for the radios to
determine which channels are available or, if occupied, what type of user in which the channel
currently resides.

Once nodes have established a connection, they immediately provide each other with a list of
ordered backup channels such that if their communications link is broken–presumably due to a
legacy FRS radio entering the channel–they can instantly re-connect on a different carrier. If they
haven’t yet initially established a connection, they have no way to determine on which frequency
bands the other nodes exist. Therefore they operate in a scanning mode, regardless of the user’s

141

request to send data. This primarily serves two purposes: to sense the spectrum for primary users
as well as other Ciren nodes, and to establish a connection with another node to reduce latency
in communication when the user requests a data transfer. While in scanning mode, the slave node
keeps a database of available channels through the use of a channel selection score for each of the 14
FRS channels. The appropriate selection score is increased if the channel is empty and decreased,
otherwise. The channel selection is in fact random, but its probability distribution follows the
resulting channel selection score. This means that if a channel is repeatedly found to be occupied
then its score is low, reducing the probability of it being sensed again. This significantly increases
rendezvous in dynamic spectrum environments between nodes which have not previously established
a connection. Ultimately, this primitive spectrum sensing information is shared amongst all of the
nodes in the network.

A flowchart of the operational mode in the Ciren radios can be found in Figure 6.7. This protocol
allows for great flexibility in radio networks and can be extended to incorporate ad hoc network
packet routing for scenarios where more bandwidth is available.

6.5 The Case Database-Enabled Cognitive Engine

The preceding sections have described the basic necessities of a cognitive engine; this section dis-
cusses practical engine design. Case-based reasoning (CBR) is an area in artificial intelligence
that focuses on applying similar experience to guide the problem-solving process has been actively
investigated in the fields of optimization and expert systems [1, 62]. What sets CBR apart from
other artificial intelligence techniques is that rather than relying on general knowledge within a
problem domain, CBR is able to use specific knowledge of previously-experienced solutions (cases).
This distinction has proven to be exceedingly useful in the development of cognitive radios as the
details of the communications link which each wireless receiver is unique. In this sense, models
attempting to generalize channel conditions prove to be imprecise and lead to inferior solutions.
CBR has recently been investigated for use within cognitive engines [37, 80, 98, 47], particularly
to amalgamate radio learning with adaptation. This section extends the analysis from specific
protocols to a generalized design strategy.

6.5.1 Issues with Radio Applications

The fact that the radio’s parameters can be a various mixture of types only exacerbates the search
procedure. These types include continuous/discrete, bounded/unbounded, and ordered/unordered.
Discrete parameters, as the name would suggest, only account for one which takes a finite set of val-
ues. The modulation index for a linear M -ary QAM modem is an example, as M ∈ {4, 8, 16, 32, . . .}.
For the most part, continuous parameters are usually bounded as well—e.g. the available transmit
power is typically limited not only by policy, but by the radio’s own supply. Furthermore, such
values are often limited to finite precision in practical systems. For example, the transmit power on
an embedded platform might be capable of a range of 1 mW to 100 mW but can only be adjusted
in 0.1 dB steps. Consequently it is common practice to represent continuous parameters with
discrete values. For example, transmit power can take on the values {0, 0.1, 0.2, 0.3, . . . , 20} dBm.

142

START

Wait for input from spectrum
sensing module or push-to-talk

TRANSMIT
PROCESS

(master node)

RECEIVE
PROCESS
(slave node)

Send beacon

Send pream-
ble sync pattern

Reply received?

ACK/NAK?

Send frame: header,
payload, footer

Quiet time (chan-
nel sensing)

Wait for reply

Make cognitive adapta-
tion (channel, power,

modulation, etc.

Send control packet

EOM?

Return to START

Update candidate
channel database

Input data
(voice, video,
image, etc.)

REM

Wait for sync beacon

Sync received?

Send reply (ACK/NAK)

Wait for data

Quiet time (chan-
nel sensing)

Send reply (ACK/NAK)

Wait for control packet

Make cognitive adapta-
tion (channel, power,

modulation, etc.

EOM?

Return to START

yes

ACK

yes

no

NAK

no

yes

yes

no

no

Figure 6.7: Flow chart of the Ciren protocol. Highlighted blocks are used in PTP mode only
(ignored in VB mode).

143

Parameters can take the form of ordered or unordered values. Ordered parameters suggest that
the utilities could be correlated with the value of the parameter itself. For example, increasing the
payload length in number of bytes can directly improve the forward error-correction capability at
the receiver while simultaneously increasing latency. The engine can therefore learn that increasing
the payload improves packet error rates but degrades link latency. Unordered parameters, however,
give no indication of correlation to utility. With the case of discrete parameters, its values take the
form of a list. As an example, carrier frequency gives no direct bearing on throughput. This does
not mean that throughput is independent of carrier frequency; interference in a particular channel
can certainly increase errors at the receiver and reduce the link’s capacity. The significance is that
there does not exist a direct correlation between the value of carrier frequency and throughput.

6.5.2 Case Representation

In [61], Kolodner focuses on the content in which cases need to have to support the human decision-
making process, suggesting that cases should include a problem-situation description (the “state of
the world at the time the case was happening”), the proposed solution (sometimes including traces of
how the problem was solved), and the outcome (the resulting “state of the world when the solution
was carried out”). This draws parallels to the state/decision/outcome vector in which CoRTekS
stored its knowledge (see section 6.4.1). Kolodner continues to suggest that the case database can
additionally represent predictive features which can project the output of the case before it is even
applied. There exist a wide variety of methods for representing cases in the database including
feature vectors, object-oriented expressions, hierarchical representations, and even textual entries
[6].

For the purposes of describing radio ontology, cases represented as feature vectors as certainly the
most relevant. The case is structured by concatenating the parameters, observables, and perfor-
mance metrics into a single vector, viz.

sk :
{
θ0, θ1, . . . , θNθ−1

}{
φ0, φ1, . . . , φNφ−1

}{
β0, β1, . . . , βNu−1

}
(6.8)

Notice that (6.8) uses performance metrics (β) instead of utilities (u). This is a design choice
made only out of convenience–recall that the utility function q(β) is injective and is therefore
fully reversible. Section 6.2.4 explained the importance of abstracting the performance metrics’
quantities from the engine and its decision. This means that adjusting the goal priorities is simply
a matter of re-calculating the utilities from the performance metrics stored in the case. This
also brings up an interesting point regarding which cases should be stored in the database itself.
Ideally, all instances of all adaptations should be retained as they contain valuable information
about each experience. Retaining all experience, however, would result in the database growing in
memory beyond the capabilities of the embedded platform. Furthermore, searching the database
can become exhaustively slow if its size is not properly managed. Further analysis on case database
management is provided in Section 6.5.4.

144

6.5.3 Case Selection

Case selection is process of finding the case in the database most relevant to the current scenario.
While this is a broad definition, case selection typically involves computing a distance metric
between what is currently being observed in the environment and what has already been seen by
the engine and stored in the database. This work defines distance between an input vector of
observables φ̂ and the ith entry in the case database is

D
(i)
φ =

 1

Nφ

Nφ∑

k=0

∣∣∣∣∣
φ̂(k)− φi(k)

max{φ(k)} −min{φ(k)}

∣∣∣∣∣

2

1/2

(6.9)

where Nφ are the number of observables in each vector and min{φ(k)} and max{φ(k)} are the
minimum and maximum values of φ in the database along the kth dimension. This is necessary
to normalize the distance metric along each dimension as the observable’s values can have vastly
different quantities. For example, suppose a database were designed for a wireless system such that
φ0 represented the path loss in dB and φ1 represented the packet error rate. It is possible that
the database would contain entries for φ0 spanning 50 to 100 dB while φ1 spanning 10−6 to 10−1.
Clearly these values require normalization before they can be aggregated into the distance metric.
Retaining the maximum and minimum is trivial and in fact does not need to be updated when
entries in the database are removed.

Similar to (6.9), a distance metric can be derived for the utility as

D(i) = (1− ζ)D
(i)
φ + ζ (1− g(ui)) (6.10)

where D
(i)
φ is the case distance defined in (6.9), g(u) is the production function defined in (6.4)

and ζ is a parameter which controls the relative weight between the two. The introduction of ζ
permits the engine to give preference to a solution which closely matches the scenario over one
which has a better utility. This is an important concept for case selection, particularly when the
database is sparse and does not have sufficient information to describe the situation. Suppose,
for example, that the engine is presented with a scenario which it has not yet encountered and
consequently does not have any relevant entries in its database. Selecting the case with the least
distance will likely result in a poor utility. But simply choosing an entry based on utility alone is
sure to have similarly poor results considering that the environment has been ignored altogether.
The introduction of ζ in (6.10) effectively fuses the results of cases by driving the engine’s choice
in a direction of improvement.

6.5.4 Case Management

The previous chapters have discussed the importance of radio resource management on reconfig-
urable SDR platforms. One of the key requirements for embedded SDR is the reduction of the
memory footprint on such devices. The case database consists simply of a dynamically reconfig-
urable block of memory which stores relational information about the radio’s previous experiences.
As entries are appended to the database unchecked, two things happen. First, the memory foot-
print grows beyond the capabilities of the host platform which reduces its performance. Second,

145

the search time for the engine increases O(N) as each new case needs to be compared to each one
existing in the database. The size of the database can be managed by periodically merging cases
which are relatively similar. This reduces the necessary memory footprint for the database and
never allows the number of entries to expand beyond a manageable level.

Trimming

Trimming is the simplest method for managing the size of a database by removing entries whose
utilities are below a certain value. Because each adaptation is retained within the database initial
solutions with poor performance will consume a considerable amount of memory. As the database
matures and the engine’s knowledge grows, the old entries need to be removed. Trimming the
case library based on utility alone, however, has its drawbacks. The maximum global utility might
not be known given the state of the channel, and scenarios where the channel is poor result in a
similarly poor utility. In such a situation removing an entry based on its utility alone might result
in removing the best solution given the situation.

Pruning

An improvement on database trimming is pruning; this technique searches for similar entries in
the database using the metric described by (6.9). When a pair of entries are found which are too
similar, the entry with the lower utility is removed from the database. This process is repeated for
each entry in the database. The maximum complexity of this algorithm for a database of N entries
is O(N2) as each entry needs to be compared to every other entry. Realistically this complexity is
pessimistic as entries which are removed from the database no longer need comparing.

The advantage pruning has over trimming is that the best entry for each scenario is retained
regardless of its utility. Case pruning, however, has a significant computational increase over
trimming by requiring all the case entries to be compared to one another. The complexity can be
reduced by choosing a random selection of entries for comparison rather than pruning all entries at a
time. Pruning has the additional drawback of perpetuating solutions with falsely optimistic utilities.
Consider a solution for a given observation set which initially gives a high utility. Subsequent
applications of the same solution might not yield such a high utility due in part to immeasurable
quantities and otherwise random factors. However the database will always retain the initial case
due to its high utility, even if it wasn’t actually good on average. Ideally the cognitive engine should
realize that the initial adaptation was optimistic and decrease the stored utility as a consequence.
This is effectively what case merging does and is discussed in the following section.

Merging

Case merging operates similarly to pruning; however, instead of simply retaining the case entry
with the best utility all nearby entries contribute to a new case. The steps for case merging are as
follows:

• The case Ck at index k is chosen as an initial starting point.

146

• Using the distance metric given by (6.9), all entries within a specified distance Dmin in the
database are selected to be in the subset Sk.

• A new case C̃k is generated by averaging each of observables and each of the performance
metrics in Sk; the parameters from the case with the best utility in Sk are retained in C̃k.

• All the cases within Sk are removed from the database and C̃k is retained.

• The process is repeated for all cases in the database.

Merging has the benefit of smoothing the resulting performance metrics by filtering the result of
each adaptation with similar cases. Merging existing cases together not only reduces the database
size by eliminating redundant cases but it additionally provides the effect of the fitness estimator
(see Figure 6.6).

6.6 Experiment 1: Global Optimization

For the sake of demonstrating the efficacy of the proposed engine, this experiment provides a basic
conditional optimization problem. Consider a two-parameter system with just one observable and
one utility:

u = umax · exp
{
−
[
(cosφ− θ0)2 + (sinφ− θ1)2

]
/2σ2

}
(6.11)

where σ = 0.3 is a constant spreading factor and umax = exp {−0.80472(1− cosφ)} is the maximum
possible utility given φ. The shape of (6.11) is a two-parameter Gauss curve having a peak which
lies on the circle defined by θ0 = cosφ, θ1 = sinφ. Furthermore, the value of the utility at this
optimum is a function of φ; a maximum of 1.0 when φ = 0 and a minimum of 0.2 when φ = ±π.
This choice was made to emulate a practical situation where the constraints of the system limit the
optimal utility. Throughput in wireless communications links, for example, degrades significantly
with received power, and therefore the resulting best solution might provide a poor quality of
service. Consequently, both the position of the global optimum and its value cannot be known a
priori; it is left up to the engine to draw appropriate relationships between its environment and
available parameters in order to determine which solutions are best.

In this example, the goal of the engine is to find the values of θ0 and θ1 given the observation φ
which maximize u through its own learning process. For each iteration, the engine is given a single
value of φ for which it must choose an appropriate pair θ0 and θ1 to maximize u. The values of
φ are uniformly distributed on the interval [−π, π] and are uncorrelated. After each iteration, the
engine’s performance is evaluated by sweeping φ through its full span and computing the RMS of
the utility from the engine’s resulting estimates of θ0 and θ1. The results of the simulation are shown
in Figure 6.8. Figure 6.8(a) depicts the root mean-square of the utility after each epoch. During the
initial stages, the engine’s case database is empty as it has no knowledge of the relationship between
u, θ0, θ1, and φ, and the resulting utility is poor. As demonstrated in Figure 6.8(b), however, the
number of entries in the database grow quickly with the first fifty iterations and the resulting
performance increases sharply. Furthermore the size of the database is kept at a manageable level
by periodically pruning entries that are too similar. As described in Section 6.5.4, this serves to
keep the memory footprint small as well as reduce the engine’s search time.

147

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2000 4000 6000 8000 10000

R
o
o
t
M

e
a
n
 S

q
u
a
re

 o
f
U

ti
lit

y

Iteration

(a) Utility root mean square

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2000 4000 6000 8000 10000

C
a
s
e
 D

a
ta

b
a
s
e
 S

iz
e
 [
#
 e

n
tr

ie
s
]

Iteration

(b) Case database size

Figure 6.8: Convergence of the case database-enabled cognitive engine; root mean-square global
utility and case database size vs. adaptation time.

148

6.7 Experiment 2: Over-the-air Performance

The previous experiment demonstrated the performance of a case database-enabled cognitive engine
in a controlled simulation. This experiment extends the previous by enabling the engine to control
a wireless link between a pair of radios operating in a laboratory environment.

6.7.1 System Description

Each radio was equipped with a transceiver capable of half-duplex medium access operating in the
FRS band. A simple packet network protocol was created to enable bi-directional communication
between the nodes such that packet acknowledgments could be sent to validate the data transmitted
across the link. If the master node had not received an acknowledgment packet after a timeout
period, the packet would be retransmitted. This would occur for all lost and erroneous packets,
providing persistent data integrity of the link. Before transmitting each data packet, the master
node would first sense the channel for interference by observing the average received signal energy
as an indication of channel availability. Only after the energy was consistently below a threshold
would the master node transmit a data packet.

Both nodes assembled packets according to the flexframe structure described in Section 3.5. Each
frame includes detailed information about its underlying structure including payload length, multi-
level forward error-correction, modulation scheme, and modulation depth. The advantage to this
structures is that the receiving node can automatically reconfigure its physical layer description to
each individual packet, allowing the transmitting node flexibility in choosing the best configuration
for a given channel state. The packet transmission protocol can be seen in Figure 6.9 in which
packet 123 was never received by the slave node and needs to be re-transmitted. Clearly the
throughput is limited by the latency of the radio’s ability to respond to incoming packets as well
as the number of packets that need to be re-transmitted across the channel.

The domain of the cognitive engine is shown in Table 6.2 which lists the engine’s five parameters,
one observable, and three performance metrics/utilities. Specifically the engine, residing in the
master node, had the objectives of maximizing link throughput while reducing transmit power and
computational complexity at the slave node. The occupied bandwidth of each link was 100 kHz.
Each data packet contained a header describing to the slave node the parameter set, including
the transmit power used. Upon reception of each data packet the slave node would compute its
average computational load rp (see Section 5.4.2) and estimate the channel path loss from the
master node’s transmit power and the received packet’s signal strength. For each packet that was
properly decoded the slave node would send a short acknowledgment frame back to the master
node (see Figure 6.9) which would report both the path loss and its computational complexity for
decoding the data payload. A varying path loss was emulated by modifying the transmit gain of
the master node (independent of the transmit gain parameter θ4) to exhibit a sinusoidally periodic
response in time with a range of 18 dB.

The master node would gather performance statistics and update its case database every 500 ms.
Based on the channel conditions and the performance of the link the engine would take action
and adjust its parameters accordingly. Each adaptation consisted of modifying the master node’s

149

Master node Slave node

...

timeout
(re-transmit)

...

time

channel
sensing

transmit packet 122

ACK packet 122

transmit packet 123

re-transmit packet 123

ACK packet 123

Figure 6.9: Cognitive engine over-the-air example protocol flowchart. Spectrum sensing by the
master node is highlighted before each packet transmission. Acknowledgment (ACK) frames are
sent after the proper reception of each data packet.

150

Table 6.2: Cognitive Engine Over-the-Air Example Domain

Item Description

Parameters

θ0, Modulation Scheme Linear modulation scheme used in the payload of each
packet: BPSK, QPSK, {8,16}-PSK, {16,32,64,128,256}-
QAM

θ1, θ2, FEC (inner/outer) Forward error-correction codes: uncoded, Hamming(7,4),
Hamming(12,8) block codes, convolutional with r1/2
(K=7,9), and punctured rates from 2/3 through 7/8, con-
volutional with r1/3 (K=9), and a r = 0.875 Reed-Solomon
(255,223) block code

θ3, Payload length Number of bytes of the raw payload before applying forward
error correction and modulating, ranging from 1 to 1024

θ4, Transmit gain Transmit power gain of the master node, ranging from -25
to 0 dB

Observables

φ0, Path loss Average signal strength degradation due to path loss be-
tween master and slave nodes

Utilities

β0, Throughput Maximize link throughput, achieving an average data rate
of 130 kbps (α0 = 0.5)

β1, Transmit power Minimize transmit power of the master node (α1 = 0.3)
β2, Complexity Minimize computational complexity of the receiver node

(α2 = 0.2)

151

modulation and dual-level forward error-correction schemes, transmit power gain, and payload
length. It is important to highlight that like any real system this link had no perfect control
channel; all feedback in the link (e.g. slave node packet acknowledgments) was subject to error and
consequently required the engine to compensate accordingly. Furthermore, all of the data measured
in this experiment was completely empirical and not derived from models programmed within the
system. In particular the data throughput of the link—in terms of bits per second—incorporates
erroneous packets, channel sensing times, and latency between the nodes.

6.7.2 Numerical Results

The results of the experiment can be found in Figures 6.10 and 6.11. Figure 6.10 shows the
measured path loss, average global (collapsed) utility, actual throughput for the link, transmit
power gain, and receiver computational complexity as a percentage of the CPU under a full load.
The throughput was calculated by simply counting the number of bits for which the master node
received an acknowledgment divided divided by the time of observation. Figure 6.11 re-plots the
empirical path loss measurement for convenience and shows the average computational efficiency
(measured in valid bits per 1,000 clock cycles) of the receiver. The following observations can be
made from the figures:

1. The utility within the first 100 iterations of the engine is initially very poor, evidenced by
the resulting low throughput, high transmit power, and high receiver complexity. This can
be attributed to the fact that the engine’s case database is initially empty and that the
preliminary solutions are inferior and little more than guesses;

2. The engine’s average performance improves with time, achieving a maximum average utility
of about 0.98 when the path loss is low. This implies that the engine gains experience with
each iteration, applying it efficiently to each scenario. Not until the 600th iteration is the
utility reliably high which suggests that the engine initially spends a considerable amount of
effort exploring alternative solutions rather than benefiting from reliable experience;

3. In general the utility has an inverse relationship to path loss and the metrics are highly
dependent upon the channel conditions. When the path loss is high the resulting throughput
is low as the receiver’s SNR consequently degrades and more packets are received in error.
The engine’s initial adaptation is to increase transmit power which degrades the metric β1.
Ultimately the engine increases the reliability of the transmission scheme by reducing the
rate of the link and dropping back to a more conservative modulation depth and forward
error-correction coding at the expense of increasing the receiver’s complexity. When the path
loss eventually decreases the engine reverts to a more spectrally and computationally efficient
scheme and the link performance is improved;

4. After about 600 iterations the global utility never drops below about 0.65 demonstrating
that even in poor channel conditions the engine finds a solution suitable to the problem.
The performance of the engine becomes more consistent with time as its case database is
populated with improved adaptations;

152

 100

 105

 110

 115

 120

 0 200 400 600 800 1000

P
a

th
 L

o
s
s
 [

d
B

]

Epoch

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

A
v
e

ra
g

e
 G

lo
b

a
l
U

ti
lit

y

Epoch

 0

 50

 100

 150

 200

 0 200 400 600 800 1000

T
h

ro
u

g
h

p
u

t
[k

b
p

s
]

Epoch

-10

-5

 0

 0 200 400 600 800 1000

T
X

 G
a

in
 [

d
B

]

Epoch

 20

 40

 60

 80

 0 200 400 600 800 1000

C
o

m
p

le
x
it
y
 [

%
 C

P
U

]

Epoch

Figure 6.10: Cognitive Engine performance, over-the-air example. All values are measured
empirically.

153

 100

 105

 110

 115

 120

 0 200 400 600 800 1000

P
a

th
 L

o
s
s
 [

d
B

]

Epoch

 0

 0.1

 0.2

 0.3

 0 200 400 600 800 1000

A
v
a

re
g

e
 B

it
s
 p

e
r

1
,0

0
0

 C
lo

c
k
 C

y
c
le

s

Epoch

Figure 6.11: Slave node average computational efficiency 1/K (bits per 1,000 clock cycles) over
time.

154

5. The computational efficiency of the slave node shown in Figure 6.11 also demonstrates a
strong relationship to channel quality. Specifically the slave node needs to work harder when
the path loss is high (channel quality is poor) which is particularly visible within the first 200
iterations of the engine. When the channel improves (path loss is low) the engine drops back
to a less computationally complex transmission scheme allowing for an improved resource
efficiency at the slave node. There is roughly a factor of three difference in computational
efficiency of the receiver between maximum and minimum path loss extrema, corroborating
the results of Sections 5.5 and 5.6.

6.8 Conclusions

This chapter has introduced a generalized theory for cognitive radio which describes the relation-
ship between radio parameters, goals, and environmental observable subspaces. In addition, a novel
utility function was proposed which provides metric abstraction and allows for generalized use in
cognitive engines. The utility function is monotonically increasing and parametrized to describe the
relationship between any number of metrics. This chapter additionally contributed theory behind
case database reasoners for cognitive engine design including algorithms for case selection and merg-
ing in abstract applications. A case database-enabled cognitive engine was devised, demonstrating
blind learning with fast adaptation and resource management. The performance of the engine was
validated by controlling the parameters of wireless link in a laboratory multi-path environment to
maximize throughput while simultaneously limiting transmit power and receiver complexity. The
engine demonstrated real-time learning and was able to adapt to varying channel conditions while
retaining a relatively high global utility. In particular the computational complexity of the receiv-
ing node was kept to a minimum by reserving spectrally efficient yet computationally intensive
algorithms (e.g. convolutional decoding) to situations where no other options were available. As
a result the engine demonstrated a minimal quality of service penalty for a significant increase in
resource efficiency.

155

Chapter 7

Conclusions

The demand for global wireless internet connectivity has caused an astounding expansion in tech-
nological advances, motivating the research community to explore software-defined radios as a
mechanism for swift reconfiguration and waveform adaptation. Furthermore, the desire for in-
creased broadband coverage has motivated the exploration of dynamic spectrum access networks,
typically through cognitive radio technologies. The accompanying flexibility has come at the cost
of increased power demands and a reduction of energy efficiency on the targeted platforms. This
work has demonstrated the benefits of resource management in software-defined radios, specifically
those operating in dynamic spectrum environments. Spectrum access is achieved by devising new
synchronization techniques for spectrally efficient OFDM/OQAM multi-carrier signals capable of
recovering carrier frequency and timing information in the presence of strong interference. The
developed system has demonstrated significant performance improvements by allowing the radio to
monitor its own dynamic resource consumption and adjust its operational modes accordingly.

7.1 Original Contributions

The design requirements to enable wireless access to dynamic spectrum environments, both for
single- and multi-carrier operations were introduced in Chapter 2. In particular the benefits of us-
ing OFDM/OQAM as a multi-carrier technology over traditional OFDM were highlighted. A novel
approximate square-root Nyquist filter design was discovered to have significant improvements over
the raised-cosine filter in both stop-band attenuation and inter-symbol interference performance.
The filter has similar properties to best known hM-3 design without relying on cumbersome iter-
ations over the Parks-McClellan algorithm, providing a simpler implementation capable of being
designed at run time. The resulting r-Kaiser filter was used to demonstrate the superior spectral
compactness of OFDM/OQAM over traditional OFDM while using only a fraction of the subcar-
riers.

Several novel techniques for synchronizing single-carrier communications signals were introduced in
Chapter 3. These techniques exploit maximum likelihood-based timing and carrier frequency off-
set estimators, and were shown to be both computationally efficient while achieving the minimum

156

variance of any linear unbiased estimator. A joint timing and carrier recovery architecture was
introduced based on polyphase filterbanks. Furthermore, an innovative framing structure was pro-
posed to enable narrowband dynamic spectrum access through fast synchronization of short packet
bursts. The frame exploits cyclostationary properties in the preamble to reduce the synchronizer’s
acquisition time and includes a short internal descriptor allowing the receiver to automatically
reconfigure to the frame’s dynamic properties (modulation and forward error-correction schemes,
payload length, etc.). Its performance was characterized through baseband simulation and val-
idated with over-the-air experiments conducted in a wireless indoor environment demonstrating
signal detection and decoding in very low SNR regions.

The results shown for single-carrier signals motivates the investigation of synchronizing multi-
carrier systems in Chapter 4, emphasizing the recovery of OFDM/OQAM signals using polyphase
analysis filterbanks. In particular, the compact spectral advantages of OFDM/OQAM gives rise
to temporally overlapping symbols, complicating the necessary estimation of reference parameters.
As with the single-carrier chapter, a novel preamble signature was proposed to enable both time-
and frequency-domain estimators for sample timing and carrier frequency offsets. Furthermore,
a pair of novel closed-form estimators were shown to exhibit comparable performance to known
estimators in AWGN and fading channels while providing significant performance improvements
in interference-laden channels. The results confirm the applicability of using OFDM/OQAM in
dynamic spectrum environments where legacy signals can operate in the center of the desired band
while neither exhibiting interference to nor experiencing interference from the secondary user. Ad-
ditionally, OFDM/OQAM was demonstrated to perfectly reconstruct signals overlaying its band
while simultaneously decoding data subcarriers, all without the use of an additional receiver. Con-
sequently, the proposed system promotes true spectrum coexistence in dynamic spectrum environ-
ments.

An architecture was proposed in Chapter 5 to enable online resource management in software-
defined radios by permitting the platform to monitor its own resources and adapt accordingly.
Additionally, an online processor usage monitor was proposed capable of accurately estimating
the CPU load without a significant impact on the processor itself. The framework was tested
by simulating a system capable of adapting modulation and forward error-correction schemes in
slowly-fading fading channels, and validated through over-the-air experimentation in a wireless
multi-path environment. As a result, a 2.5× reduction in computational requirements was observed
without significantly affecting the service quality. The results suggest that even greater performance
improvements can be achieved by granting the system full access to the receiver, permitting all
aspects of the radio to be adapted based on the dynamics of the wireless channel.

A unifying definition and framework for cognitive radios was presented in Chapter 6, generically
describing the relationship between a radio’s goals, adjustable parameters, and observed environ-
ment. Additionally proposed was a novel utility function benefiting from a monotonic shape and
capable of being parametrized to describe the relationship between any number of metrics and
the respective goals of the radio, all while abstracting the radio’s underlying performance metrics.
Furthermore, a generic cognitive engine was proposed based on a case database using specific knowl-
edge of previously-experienced solutions rather than relying on general knowledge from within a
problem domain. Consequently, the engine itself is generic to the specific radio application by rep-
resenting cases as abstract feature vectors and normalizing distance metrics between new and past

157

experiences. Its performance was demonstrated to quickly and blindly adapt to unique scenarios
without the use of an initial knowledge base. Furthermore, the size of the database is automatically
managed by periodically merging similar cases, retaining only those which have proven to work best
in relevant situations.

7.2 Closing Remarks

The interactions between a radio’s operational modes and its performance in a dynamic wireless
environment are complex, and while waveform adaptation has suggested performance improvements
the most significant challenge of this research has been to demonstrate this response in a practical
sense. Synchronization of radio signals has a significant impact on the quality of service in dynamic
spectrum environments and is the limiting factor for the portability of broadband wireless handsets.
The benefits of dynamic online resource management can be easily observed in software-defined
radios when considering the limited processing bandwidth of an embedded platform. However,
these benefits can still be extended to hardware platforms when considering that a significant
amount of energy is expended performing tasks in the physical layer that might not be necessary
given the conditions of the wireless environment. In this regard, the platform’s computational
complexity demands are less of an issue as the signal processing is accomplished with dedicated
hardware, and while individual tasks are not shared by common silicon as they are in SDR, one
would still expect to see similar performance improvements. However, as wireless systems are
constantly evolving, the eventual migration to platforms defining their physical characteristics in
software seems imminent. Consequently, machine learning has been promised to improve network
coverage by opening unlicensed spectrum to secondary users; however, the application of artificial
intelligence into radios is still an unproven technology in everyday life. As such, the future of
software-defined and cognitive radios is still undetermined as each has yet to make its mark in
technological history.

158

Appendix A

List of Abbreviations

ACK acknowledgment (packet)

APSK amplitude/phase-shift keying

AWGN additive white Gauss noise

BER bit error rate

CE cognitive engine

CPU central processing unit

CR cognitive radio

CRC cyclic redundancy check

CRVB Cramér-Rao variance bound

BPSK binary phase-shift keying

dB decibels

DFT discrete Fourier transform

DSA dynamic spectrum access

DSP digital signal processor

dMF dervative matched filter

FEC forward error correction

FFT fast (discrete) Fourier transform

FPGA field-programmable gate array

hM-3 harris-Moerder-3 filter [29]

159

ISI inter-symbol interference

ISM industrial, scientific, and medical (frequency band)

LS least squares

MCRB modified Cramér-Rao bound

MF matched filter

MLS modified least squares

NCO numerically-controlled oscillator

OFDM orthogonal frequency-division multiplexing

OFDM/OQAM OFDM using offset quadrature amplitude modulation

PLL phase-locked loop

P/N pseudo-noise (sequence)

PSK phase-shift keying

QAM quadrature amplitude modulation (quaternary amplitude-shift keying)

QPSK quaternary phase-shift keying

PER packet error rate

RF radio frequency

RMS root mean-square (error)

r-Kaiser approximate square-root Nyquist Kaiser filter

SDR software-defined radio

SIR signal-to-interference ratio

SNR signal-to-noise ratio

USRP univeral software radio peripheral [21]

160

Appendix B

Lists of Symbols

Table B.1: Symbols for Chapter 2: Physical Layer Mechanisms for Dynamic Spectrum Access

Symbol Description

k matched-filter over-sampling rate [samples/symbol]
m matched-filter delay [symbols]
β matched-filter excess bandwidth factor
N non-recursive filter order (number of coefficients)for (root) Nyquist filters N = 2km+1
Fs sampling frequency [samples/s]
ωp filter pass-band cutoff frequency [radians/s]
ωs filter stop-band cutoff frequency [radians/s]
∆ω filter bandwidth [radians/s], ∆ω = ωp − ωs
ω0 critical sampling frequency [radians/s],ω0 = πFs/k
δp filter pass-band ripple
δs filter stop-band ripple
As filter stop-band attenuation [dB], As = −20 log10(δs)
α Kaiser-Bessel window shape parameter
Iν(z) modified Bessel function of the first kind, order ν
H(z) Nyquist filter
G(z) square-root Nyquist filter
γ r-Kaiser bandwidth correction factor
ρ r-Kaiser bandwidth correction factor (normalized to β)

161

Table B.2: Symbols for Chapter 3: Synchronization of Narrowband Channels

Symbol Description

a transmitted symbol
g(t) square-root Nyquist transmit and receive filters
s(t) transmitted signal
r(t) received signal
ν carrier frequency offset [radians/s]
θ carrier phase offset [radians]
τ timing offset [samples]
γ channel gain, relating to signal-to-noise ratio
hc multi-path channel impulse response
n(t) noise
p symbol index
k sample time index
T symbol period
Ts sampling period
T0 observation time [s], continuous
L0 observation time [samples], discrete
µ irrational fractional sampling interval
m polyphase filterbank index
M number of polyphase filters in the bank
y interpolating (matched) filter output sample
η spectral efficiency [b/s/Hz]
<{·} real component
={·} imaginary component

162

Table B.3: Symbols for Chapter 4: Synchronization of Multichannel Communications Systems

Symbol Description

G(ω) square-root Nyquist filter response
s(t) transmitted signal
r(t) received signal
aR OFDM/OQAM symbol (real component)
aI OFDM/OQAM symbol (imaginary component)
p symbol index
m subcarrier index (also matched filter delay)
M number of subcarriers
Mu number of all enabled subcarriers
g(t) square-root Nyquist transmit and receive filters
ν carrier frequency offset [radians/s]
θ carrier phase offset [radians]
τ timing offset [samples]
γ channel gain, relating to signal-to-noise ratio
hc multi-path channel impulse response
n(t) noise
ψ(t) interference
T0 observation time [s], continuous
L0 observation time [samples], discrete
k sample time index
T symbol period
Ts sampling period
y downsampler symbol output
Gm complex channel gain on mth subcarrier
R number of repetitions in OFDM/OQAM preamble
P time delay between repetitions [samples]
A set of all enabled subcarriers
P set of all pilot subcarriers
w(`) equalizer window
w̄m equalizer window gain normalization

163

Table B.4: Symbols for Chapter 5: Resource Management

Symbol Description

C channel capacity [b/s]
W bandwidth [Hz]
P̄ average transmit power [W]
Lp path loss
N0 noise power spectral density [W/Hz]
Pc receiver power consumption [W]
ηe receiver processing energy efficiency [b/J]
η spectral efficiency [b/s/Hz]
K computational complexity [cycles/bit]
rp processor load rate
Ta processor time spent running algorithm [s]
Te total processor time spent in execution [s]
Pb bit error rate
Pp packet error rate
γ instantaneous signal-to-noise ratio (SNR)
Ω average signal-to-noise ratio (SNR)
Eb/N0 bit energy to noise ratio
fγ(γ) fading distribution for instantaneous received signal power
Fp processor master clock frequency [cycles/s]
ζ normalized spectral efficiency, compensating for packet loss [b/s/Hz]
Sη set of spectrally efficient modulation/error-correction scheme pairs
SK set of computationally efficient modulation/error-correction scheme pairs

Table B.5: Symbols for Chapter 6: Cognitive Engine Design

Symbol Description

β set of radio performance metrics
θ set of adjustable radio parameters
φ set of environmental observable operating conditions
v collapsed utility (production function output)
q(β) utility function

β̇ target radio performance metric
η utility function threshold parameter
σ utility function spread parameter
g(u) production function
α production function weighting coefficients
sk case representation vector
D case selection distance metric
ζ case selection weighting parameter

164

Appendix C

Approximations for the I0 Kaiser
Window for Non-recursive Filter
Design

This appendix deals with approximating the modified Bessel function of the first kind for its use in
non-recursive (finite impulse response) filter design. A commonly used expansion of the modified
Bessel function of the first kind is given by

Iν(z) =
(z

2

)ν ∞∑

k=0

(
1
4z

2
)k

k!Γ(k + ν + 1)
(C.1)

which, for ν = 0 collapses to

I0(z) =

∞∑

k=0

[
(0.5z)k

k!

]2

(C.2)

The challenge for finite precision machines is to compute the ratio of two large numbers for the
Kaiser window. As it happens, the ratio, once computed, is manageable and in [0, 1]. Observing
that the first term of the series (k = 0) yields 1 (C.2) can be rewritten as

I0(z) = 1 +

∞∑

k=1

[
(0.5z)k

k!

]2

(C.3)

Additionally, the shape of I0 grows very quickly. Performing a variable transformation t = log(z)
and plotting it against I0(t) on a log scale reveals a piece-wise linear dependency, as depicted by
Figure C.1 Therefore the modified Bessel function of the first kind (order 0) may be approximated
using piecewise polynomials as

log
(

log
(
I0(z)

))
≈ c0 + c1t+ c2t

2 + c3t
3 (C.4)

where t = log(z) and the coefficients c0, c1, c2, and c3 are given in Table C.1. This is a particularly
useful approximation for the Kaiser window in fixed-point math where w[n] is computed as the
ratio of two large numbers. The absolute error of (C.4) is depicted in Figure C.1, demonstrating
the efficacy of this approximation.

165

-10

-5

 0

 5

 10

10
-2

10
-1

10
0

10
1

10
2

10
3

-1

-0.5

 0

 0.5

 1

10
-2

10
-1

10
0

10
1

10
2

10
3

lo
g
(lo

g
(I 0

(z
)))

z

z

A
b
so
lu
te

E
rr
or

×
10

2

Figure C.1: Piecewise polynomial approximation to the modified Bessel function of the first kind.

Table C.1: Piece-wise polynomial coefficients to approximation for log
(
log
(
I0(z)

))
given by (C.4)

Region c0 c1 c2 c3

log(z) ≤ −0.3 -1.41802979 1.97680664 -0.00466919 -0.00024033
−0.3 < log(z) < 2.4 -1.43916631 1.91274643 -0.17395020 0.00218964

else -0.85644531 1.41308594 -0.06835938 0.00382996

166

Appendix D

flexframe Synchronizer Performance

The flexible framing structure described in Section 3.5 promises fast synchronization of This section
observe the performance of the synchronizer in terms of both average execution time and spectral
efficiency as the length of the payload is increased. The true spectral efficiency is calculated in
(3.26) and is clearly impacted by the framing overhead, the length of the data payload, and the
rate of the underlying modulation and forward error-correction coding schemes.

Figure D.1 depicts the performance of the synchronizer as the payload length is adjusted. As the
length of the payload is increased so does the receiver’s performance as the relative effects of the
framing overhead diminish. In particular, the execution time becomes linearly dependent with the
payload as depicted in Figure D.1(a) after approximately 1000 bits. This suggests that an initial
overhead in framing acquisition accounts for a considerable portion of processing at the receiver.
When the payload is sufficiently long, this contribution is negligible and the majority of computation
is spent in synchronizing the payload, thus its linear response. Furthermore the spectral efficiency
exhibits a similar response and asymptotically reaches its maximum as the payload increases. This
is made evident both by (3.26) and Figure D.1(b).

167

 1

 10

 100

 1 10 100 1000 10000

E
x
e
c
u
ti
o
n
 t
im

e
 p

e
r

p
a
c
k
e
t
[m

s
]

Payload length [bits]

(a) Average execution time

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

S
p
e
c
tr

a
l
e
ff
ic

ie
n
c
y
 [
b
/s

/H
z
]

Payload length [bits]

(b) Spectral efficiency

Figure D.1: Impact of packet length on flexframe synchronizer performance in terms of av-
erage execution time and normalized spectral efficiency using an uncoded payload with BPSK
modulation.

168

Appendix E

Introduction to liquid

liquid is a free and open-source digital signal processing (DSP) library designed specifically for
software-defined radios on embedded platforms [35]. Its aim is to provide a lightweight DSP library
that does not rely on a myriad of external dependencies or proprietary and otherwise cumbersome
frameworks. Included in the package are modules for automatic gain control, audio source encoding,
internal sample buffering, vector dot product computations, adaptive equalization, basic forward
error correction and cyclic redundancy checks, simple fast Fourier transforms, filtering, math and
matrix operations, modulation and demodulation, non-linear optimization, random number gen-
eration, and much more. All signal processing elements are designed to be flexible, scalable, and
dynamic, including filters, filter design, oscillators, modems, synchronizers, and complex mathe-
matical operations. liquid was created out of necessity to perform complex digital signal processing
algorithms on embedded devices without relying on proprietary and otherwise cumbersome frame-
works. Its intent is to be portable to embedded platforms while using flexible configurations with
a minimal dependence on external libraries. All the software in this dissertation used liquid in
analysis and is free for anyone to download and try.

E.1 A Brief Tutorial

Most of liquid’s signal processing elements are C structures which retain the object’s parame-
ters, state, and other useful information. The naming convention is basename xxxt method where
basename is the base object name (e.g. interp), xxxt is the type definition, and method is the
object method. The type definition describes respective output, internal, and input type. Types
are usually f to denote standard 32-bit floating point precision values and can either be represented
as r (real) or c (complex). For example, a dotprod (vector dot product) object with complex input
and output types but real internal coefficients operating on 32-bit floating-point precision values is
dotprod crcf.

Most objects have at least four standard methods: create(), destroy(), print(), and execute().
Certain objects also implement a recreate() method which operates similar to that of realloc()
in C and are used to restructure or reconfigure an object without completely destroying it and

169

creating it again. Typically, the user will create the signal processing object independent of the
external (user-defined) data array. The object will manage its own memory until its destroy()

method is invoked. A few points to note:

1. The object is only used to maintain the state of the signal processing algorithm. For example,
a finite impulse response filter needs to retain the filter coefficients and a buffer of input
samples. Certain algorithms which do not retain information (those which are memory-less)
do not use objects. For example, design rrc filter() calculates the coefficients of a root
raised-cosine filter, a processing algorithm which does not need to maintain a state after its
completion.

2. While the objects do retain internal memory, they typically operate on external user-defined
arrays. As such, it is strictly up to the user to manage his/her own memory. Shared pointers
are a great way to cause memory leaks, double-free bugs, and severe headaches.

E.1.1 Learning by example

While this document contains numerous examples listed in the text, they are typically condensed
to demonstrate only the interface. The examples/ subdirectory includes more extensive demon-
strations and numerous examples for all the signal processing components. Many of these examples
write an output file which can be read by octave [19] to display the results. For a brief description
of each of these examples, see examples/README.

E.1.2 Why C?

A commonly asked question is “why C and not C++?” The answer is simple: portability. The aim
is to provide a lightweight DSP library for software-defined radio that does not rely on a myriad
of dependencies. While C++ is a fine language for many purposes (and theoretically runs just
as fast as C), it is not as portable to embedded platforms as C is. Furthermore, the majority of
functions simply perform complex operations on a data sequence and do not require a high-level
object-oriented programming interface. The importance in object-oriented programming is the
techniques used, not the languages describing it.

While a number of signal processing elements in liquid use structures, these are simply to save the
internal state of the object. For instance, a firfilt crcf (finite impulse response filter) object is
just a structure which contains–among other things–the filter taps (coefficients) and an input buffer.
This simplifies the interface to the user; one only needs to “push” elements into the filter’s internal
buffer and “execute” the dot product when desired. This could also be accomplished with classes,
a construct specific to C++ and other high-level object-oriented programming languages; however,
for the most part, C++ polymorphic data types and abstract base classes are unnecessary for
basic signal processing, and primarily just serve to reduce the code base of a project. Furthermore,
while C++ templates can certainly be useful for library development, their benefits are of limited
use to signal processing and can be circumvented through the use of pre-processor macros at the
gain of targeting more embedded processors. Under the hood, the C++ compiler’s pre-processor

170

expands templates and classes before actually compiling the source anyway, so in this sense they
are equivalent to the second-order macros used in liquid.

The C programming language has a rich history in system programming– specifically targeting
embedded applications–and is the basis behind many well-known projects including the Linux kernel
and the python programming language. Having said this, high-level frameworks and graphical
interfaces are much more suited to be written in C++ and will beat an implementation in C any
day, but lie far outside the scope of this project.

E.1.3 Data Types

The majority of signal processing for SDR is performed at complex baseband. Complex numbers
are handled in liquid by defining data type liquid float complex which is binary compatible with
the standard C math type float complex and C++ type std::complex<float>. Although liquid
is written in C, it can be seamlessly compiled and linked with C++ source files. Here is an example:

1 // file: listings/nco.c++

2 // build: g++ -Wall nco.c++ -lliquid -o nco_test

3

4 # include <iostream>

5 # include <math.h>

6

7 # include <liquid / liquid.h>

8

9 // NOTE: the definition for liquid_float_complex will change

10 // depending upon whether the standard C++ <complex>

11 // header file is included before or after including

12 // <liquid/liquid.h>

13 # include <complex>

14

15 int main() {

16 // create nco object and initialize

17 nco_crcf n = nco_crcf_create(LIQUID_NCO);

18 nco_crcf_set_phase(n,0.3f);

19 nco_crcf_set_frequency(n,0.0f);

20

21 // Test liquid complex data type

22 liquid_float_complex x;

23 nco_crcf_cexpf(n, &x);

24 std::cout << "liquid complex: "

25 << x[0] << " + j" << x[1] << std::endl;

26

27 // Test native c++ complex data type

28 std::complex<float> y;

29 nco_crcf_cexpf(n, reinterpret_cast<liquid_float_complex*>(&y));

30 std::cout << "c++ native complex: "

31 << y.real() << " + j" << y.imag() << std::endl;

32

33 // destroy nco object

171

34 nco_crcf_destroy(n);

35

36 std::cout << "done." << std::endl;

37 return 0;

38 }

E.2 Installation Guide

liquid was designed to be portable, and in doing so requires minimal dependencies to build and
run. The required software packages are

1. gcc, the GNU compiler collection

2. libc, the standard C library

3. libm, the standard math library (eventually will be phased out to optional)

The project takes advantage of other libraries if they are installed on the target machine, including
fftw3 (a fast Fourier transform library [31]) and libfec (a forward error-correction encoding/de-
coding library [56]). The build system checks to see if they are installed during the configure

process and will generate an appropriate config.h if they are.

The core development of liquid uses git distributed version control [41] which is open source and
freely available. Building liquid is easily accomplished by moving into the unpacked directory,
running the bootstrap configuration scrips, and invoking make, viz

$ cd /path/to/liquid/

$./reconf

$./configure

$ make

make install

The install target copies the global header file liquid.h and the shared object file libliquid.a

to the system directories. You must have root access to run make with the install target. Addi-
tionally, the uninstall target removes these files from the system directory. You may also want
to build and run the optional validation program via

$ make check

and the benchmarking tool

$ make bench

In order to keep the project relatively organized, the source code is broken up into separate “mod-
ules” under the top src/ directory. Each module consists of a top-level included makefile, a README,
the library source files, a set of test scripts, and a set of benchmarks.

172

Bibliography

[1] Agnar Aamodt and Enric Plaza. Case-Based Reasoning: Foundational Issues, Methodological
Variations, and System Approaches. AI Communications, 7(1):35–9, March 1994.

[2] Joydeep Acharya, Harish Viswanathan, and Sivarama Venkatesan. Timing Acquisition for
Non Contiguous OFDM based Dynamic Spectrum Access. In IEEE International Symposium
on Dynamic Spectrum Access Networks, 2008.

[3] Joydeep Acharya, Harish Viswanathan, and Sivarama Venkatesan. Feasibility of NC-OFDM
Transmission in Dynamic Spectrum Access Environments. In IEEE Military Communications
Conference, 2009.

[4] P. Amini, R. Kempter, and B. Farhang-Boroujeny. A Comparison of Alternative Filterbank
Multicarrier Methods for Cognitive Radio Systems. In Proceedings of the Software-Defined
Radio Forum, 2006.

[5] Mixed-Signal Front-End (MxFETM) Processor for Broadband Communications. Analog De-
vices Product Datasheet, 2002.

[6] Ralph Bergmann, Janet Kolodner, and Enric Plaza. Representation in case-based reasoning.
The Knoweldge Engineering Review, 0(0):1–4, 2005.

[7] Jan W. M. Bergmans. Effect of Loop Delay on Stability of Discrete-Time PLL. IEEE
Transactions on Circuits and Systems–I: Fundamental Theory and Applications, 42(4), April
1995.

[8] Jan W. M. Bergmans. Effect of Loop Delay on Phase Margin of First-Order and Second-
Order Control Loops. IEEE Transactions on Circuits and Systems–II: Express Briefs, 52(10),
October 2005.

[9] Roland E. Best. Phase-Locked Loops: Design, Simulation, and Applications. McGraw-Hill, 3
edition, 1997.

[10] Benjamin S. Bloom, editor. Taxonomy of Educational Objectives, Handbook I: Cognitive
Domain, volume 1. David McKay Company, Inc., New York, 1956.

[11] Helmut Bölcskei. Blind Estimation of Symbol Timing and Carrier Frequency Offset in Wire-
less OFDM Systems. IEEE Transactions on Communications, 49(6):988—999, 2001.

173

[12] Helmut Bölcskei, Pierre Duhamel, and Rima Hleiss. Design of Pulse Shaping OFDM/OQAM
Systems for High Data-Rate Transmission over Wireless Channels. In IEEE International
Conference on Communications, volume 1, 1999.

[13] Bruno Bougard, Gregory Lenoir, Francky Catthoor, and Wim Dehaene. A New Approach to
Dynamically Trade Off Performance and Energy Consumption in Wireless Communication
Systems. In IEEE Workshop on Signal Processing Systems, 8 2003.

[14] Bruno Bougard, David Novo, Frederick Naessens, Lieven Hollevoet, Thomas Schuster, Miguel
Glassee, Antoine Dejonghe, and Liesbet Van der Perre. A Scalable Baseband Platform for
Energy-Efficient Reactive Software-Defined-Radio. In CROWNCOM, volume 1, pages 1–5, 6
2006.

[15] Bruno Bougard, Sofie Pollin, Antoine Dejonghe, Francky Catthoor, and Wim Dehaene. Cross-
layer power management in wireless networks and consequences on system-level architec-
ture. EURASIP Signal Processing Journal, Special Issue on Advances in Signal Processing,
86(8):1792–1803, 2006.

[16] Ibrahim Budiarjo, Homayoun Nikookar, and Leo. P. Ligthart. Cognitive Radio Modulation
Techniques. IEEE Signal Processing Magazine, 25(6):24–34, 11 2008.

[17] R. W. Chang. Synthesis of band-limited orthogonal signals for multi-channel data transmis-
sion. Bell Systems Technical Journal, 45:1775–1796, 12 1966.

[18] A. Dejonghe, J. Declerck, F. Nassens, M. Glassée, A. Dusa, E. Umans, A. Ng, B. Bougard,
G. Lenoir, J. Craninckx, and L. Van der Perre. Low-power SDRs through cross-layer control:
concepts at work. In Mobile and Wireless Communications Summit, pages 1–6, 2007.

[19] John W. Eaton. Octave Website. http://www.gnu.org/software/octave/, 2011.

[20] Electronics and Telecommunications Research Institude. http://www.etri.re.kr/eng/, October
2010.

[21] Matt Ettus. Ettus Research LLC. http://www.ettus.com/, July 2010.

[22] Behrouz Farhang-Boroujeny. Filter Bank Spectrum Sensing for Cognitive Radio. IEEE
Transactions on Signal Processing, 56(5):1801–1811, May 2008.

[23] Albrecht J. Fehske, Joseph D. Gaeddert, and Jeffrey H. Reed. A new approach to signal clas-
sification using spectral correlation and neural networks. In IEEE International Symposium
on Dynamic Spectrum Access Networks, pages 144–50. DySPAN, November 2005.

[24] N. J. Fliege. Multirate Digital Signal Processing. John Wiley & Sons, Ltd, 1994.

[25] L. E. Franks. Carrier and bit synchronization in data communication–a tutorial review. IEEE
Transactions on Communications, COM-28(8), August 1980.

[26] fred harris and Erik Kieldsen. A Novel Interpolated Tree Orthogonal Multiplexing (ITOM)
Scheme with Compact Time-Frequency Localization: an Introduction and Comparison to
Wavelet Filter Banks and Polyphase Filter Banks. In Proceedings of the Software-Defined
Radio Forum, 2006.

174

[27] fredric j. harris. On the Use of Windows for Harmonic Analysis with the Discrete Fourier
Transform. Proceedings of the IEEE, 66(1):51–83, January 1978.

[28] fredric j. harris. Multirate Signal Processing for Communication Systems. Prentice Hall, 2004.

[29] fredric j. harris, Chris Dick, Sridhar Seshagiri, and Karl Moerder. An Improved Square-Root
Nyquist Shaping Filter. In Proceedings of the Software-Defined Radio Forum, 2005.

[30] fredric j. harris and Michael Rice. Multirate Digital Filters for Symbol Timing Synchro-
nization in Software Defined Radios. IEEE Journal on Selected Areas of Communications,
19(12):2346–2357, December 2001.

[31] Matteo Frigo and Steven G. Johnson. The Design and Implementation of FFTW3. Proceedings
of the IEEE, 93(2):216–231, 2005. Special issue on “Program Generation, Optimization, and
Platform Adaptation”.

[32] Tilde Fusco, Luciano Izzo, Angelo Petrella, and Mario Tanda. Blind Symbol Timing Esti-
mation for OFDM/OQAM systems. In International Conference on Communications and
Signal Processing, 2008.

[33] Tilde Fusco, Angelo Petrella, and Mario Tanda. Data-Aided Symbol Timing and CFO Syn-
chronization for Filter Bank Multicarrier Systems. IEEE Transactions on Wireless Commu-
nications, 8(5), May 2009.

[34] Tilde Fusco and Mario Tanda. Blind Frequency-Offset Estimation for OFDM/OQAM Sys-
tems. IEEE Transactions on Signal Processing, 55(8):1828—1838, May 2007.

[35] Joseph D. Gaeddert. liquid-dsp website. https://github.com/jgaeddert/, 2011.

[36] Joseph D. Gaeddert, Carl B. Dietrich, Philip J. Balister, Carlos R. Aguayo Gonzalez, Drew
Cormier, S.M. Shajedul Hasan, Kyehun Lee, Shereef Sayed, Haris I. Volos, and Chen Zhang.
Spectrum Access for First Responders; Ciren: Cognitively Intrepid Radio Emergency Net-
work. Technical report, Wireless @ Virginia Tech, September 2007.

[37] Joseph D. Gaeddert, Kyouwoong Kim, Rekha Menon, Lizdabel Morales, Youping Zhao,
Kyung K. Bae, and Jeffrey H. Reed. Development of a Cognitive Engine and Analysis of
WRAN Cognitive Radio Algorithms. Technical report, Wireless @ Virginia Tech, December
2006.

[38] Joseph D. Gaeddert and Jeffrey H. Reed. Leveraging Flexibility in Reconfigurable Base-
band Processors for Resource Management in Software-Defined and Cognitive Radios. In
Proceedings of the Software-Defined Radio Forum, December 2009.

[39] Joseph D. Gaeddert, Haris I. Volos, Drew Cormier, and Jeffrey H. Reed. Multi-rate Syn-
chronization of Digital Receivers in Software-Defined Radios. In Proceedings of the Software-
Defined Radio Forum, 2007.

[40] Floyd M. Gardner. Interpolation in Digital Modems–Part I: Fundamentals. IEEE Transac-
tions on Communications, 41(3):501–507, March 1993.

175

[41] official git website. http://git-scm.com/, 2011.

[42] Alessandro De Gloria, Daniele Grosso, Mauro Olivieri, and Giuseppe Restani. A Novel
Stability Analysis of a PLL for Timing Recovery in Hard Disk Drives. IEEE Transactions
on Circuits and Systems–I: Fundamental Theory and Applications, 46(8):1026–1031, August
1999.

[43] Madan M. Gupta. Static and Dynamic Neural Networks: from Fundamentals to Advanced
Theory. Wiley, New York, 2003.

[44] S.M. Hasan, Philip Balister, Joseph D. Gaeddert, Carlos Aguayo Gonzalez, Kye Hun Lee,
Haris I. Volos, Shereef Sayed, Chen Zhang, Xuetao Chen, Timothy R. Newman, Carl B.
Dietrich, and Andrew Cormier. Spectrum Access for First Responders using Cognitively
Intrepid Radio Emergency Network. In Proceedings of the Software-Defined Radio Forum,
December 2009.

[45] Simon S. Haykin. Adaptive Filter Theory. Prentice Hall, Upper Saddle River, N.J., 4 edition,
2002.

[46] An He, Kyung K. Bae, Timothy R. Newman, Joseph D. Gaeddert, Kyouwoong Kim, Rekha
Menon, Lizdabel Morales-Tirado, James “Jody” Neel, Youping Zhao, and Jeffrey H. Reed.
A Survey of Artificial Intelligence for Cognitive Radios. IEEE Transactions on Vehicular
Technology, 59(4):1578–92, May 2010.

[47] An He, Joseph D. Gaeddert, Kyung K. Bae, Timothy R. Newman, Jeffrey H. Reed, Lizdabel
Morales, and Chang-Hyun Park. Development of a case-based reasoning cognitive engine for
IEEE 802.22 WRAN applications. ACM Mobile Computing and Communications Review,
13(2):37–48, 2009.

[48] O. Herrmann, Lawrence R. Rabiner, and D. S. K. Chan. Practical Design Rules for Optimum
Finite Impulse Response Lowpass Digital Filters. Bell Systems Technical Journal, 52:769–799,
July-August 1973.

[49] Botaro Hirosaki. An Orthgonally Multiplexed QAM System Using the Discrete Fourier Trans-
form. IEEE Transactions on Communications, COM-29(7):982–989, 7 1981.

[50] Yu Hu, Qing Li, and C.-C. Jay Kuo. Run-time Power Consumption Modeling for Embedded
Multimedia Systems. In Proceedings of the 11th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, 2005.

[51] Functional Requirements for the 802.22 WRAN. http://www.ieee802.org/22/, September
2005.

[52] IEEE Computer Society. IEEE Standard 802.15.1. 10.1109/IEEESTD.2005.96290, June 2005.
IEEE Standard for Information technology—Telecommunications and information exchange
between systems—Local and metropolitan area networks—Specific requirements. Part 15.1:
Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wire-
less Personal Area Networks (WPANs).

176

[53] IEEE Computer Society. IEEE Standard 802.11. 10.1109/IEEESTD.2007.373646, June 2007.
IEEE Standard for Information technology—Telecommunications and information exchange
between systems—Local and metropolitan area networks—Specific requirements. Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[54] James F. Kaiser. Nonrecursive Digital Filter Design Using the I0-sinh Window Function. In
Proceedings of the IEEE International Symposium on Circuits and Systems, pages 2O–23,
April 1974.

[55] James F. Kaiser and Ronald W. Schafer. On the Use of the I0-sinh Window for Spectrum
Analysis. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-28(1):105–7,
February 1980.

[56] Phil Karn. http://www.ka9q.net/code/fec/, August 2007.

[57] Amin Khajeh, Shih-Yang Chen, Ahmen M. Eltawil, and Fadi J. Kurdahi. Power Management
for Cognitive Radio Platforms. In IEEE Global Telecommunications Conference, pages 4066–
4070, 11 2007.

[58] Namjim Kim, Nasser Kehtarnavaz, Mark B. Yeary, and Steve Thornton. DSP-Based Hi-
erarchical Neural Network Modulation Signal Classification. IEEE Transactions on Neural
Networks, 14:1065–71, September 2003.

[59] Hisashi Kobayashi. Simultaneous adaptive estimation and decision algorithm for carrier mod-
ulated data transmission systems. IEEE Transactions on Communication Technology, COM-
19(3):268–80, June 1971.

[60] Rainer Kokozinski, Dieter Greifendorf, Joerg Stammen, and Peter Jung. The Evolution of
Hardware Platforms for Mobile ’Software Defined Radio’ Terminals. In IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications, volume 5, pages 2389–
2393, 9 2002.

[61] Janet L. Kolodner. Improving Human Decision Making through Case-Based Decision Aiding.
AI Magazine, 12(2), 1991.

[62] David B. Leake, editor. Case-Based Reasoning: Experiences, Lessons, and Future Directions.
MIT Press, Cambridge, MA, 1996.

[63] Chia-Hung Lien, Ying-Wen Bai, and Ming-Bo Lin. Estimation by Software for the Power
Consumption of Streaming-Media Servers. IEEE Transactions of Instrumentation and Mea-
surements, 56(5):1859–1870, October 2007.

[64] Lyrtech SFF SDR Development Platform. http://www.lyrtech.com/DSP-
development/dsp fpga/sffsdrdevelopmentplatform.php.

[65] Damián Marelli and Minyue Fu. A subband approach to channel estimation and equalization
for dmt and ofdm systems. IEEE Transactions on Communications, 53(11):1850–8, November
2005.

177

[66] James H. McClellan, Thomas W. Parks, and Lawrence R. Rabiner. A Computer Program
for Designing Optimum FIR Linear Phase Digital Filters. IEEE Transactions on Audio and
Electroacoustics, AU-21(6), December 1973.

[67] Umberto Mengali and Aldo N. D’Andrea. Synchronization Techniques for Digital Receivers.
Applications of Communications Theory. Springer, New York, 1 edition, 1997.

[68] M. H. Meyers and L. E. Franks. Joint carrier phase and symbol timing recovery for PAM
systems. IEEE Transactions on Communications, COM-28(8):1121–9, August 1980.

[69] Heinrich Meyr, Marc Moeneclaey, and Stefan A. Fechtel. Digital Communications Receivers:
Synchronization, Channel Estimation, and Signal Processing, volume 2 of Wiley Series in
Telecommunications and Signal Processing. John Wiley & Sons, New York, 1998.

[70] Apurva N. Mody. IEEE 802.22 Working Group on Wireless Regional Area Networks.
http://www.ieee802.org/22/, September 2010.

[71] Kurt H. Mueller and Markus Müller. Timing Recovery in Digital Synchronous Data Receivers.
IEEE Transactions on Communications, COM-24(5), May 1976.

[72] Holly C. Osborne. A Generalized “Polarity-Type” Costas Loop for Tracking MPSK Signals.
IEEE Transactions on Communications, COM-30(10):2289–2296, October 1982.

[73] Open-Source SCA Implementation::Embedded (OSSIE) Development Site.
http://ossie.wireless.vt.edu/, October 2010.

[74] Thomas W. Parks and James H. McClellan. Chebyshev Approximation for Nonrecursive
Digital Filters with Linear Phase. IEEE Transactions on Circuit Theory, CT-19(2), March
1972.

[75] Jeffrey D. Poston and William D. Horne. Discontiguous OFDM Considerations for Dynamic
Spectrum Access in Idle TV Channels. In IEEE International Symposium on Dynamic Spec-
trum Access Networks, pages 607–610, 2005.

[76] John G. Proakis. Digital Communications. McGraw-Hill, New York, 4 edition, 2001.

[77] Daiming Qu, Zhiqiang Wand, and Tao Jiang. Extended Ative Interference Cancellation
for Sidelobe Suppression in Cognitive Radio OFDM Systems With Cyclic Prefix. IEEE
Transactions on Vehicular Technology, 59(4), May 2010.

[78] Jan M. Rabaey. Reconfigurable Processing: The Solution to Low-Power Programmable DSP.
In Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Processing, volume 1,
pages 275–278, April 1997.

[79] Lawrence R. Rabiner, James H. McClellan, and Thomas W. Parks. FIR Digital filter Design
Techniques Using Weighted Chebyshev Approximations. Proceedings of the IEEE, 63(4):595–
610, March 1975.

178

[80] Jeffrey H. Reed, Joseph D. Gaeddert, Kyouwoong Kim, Rekha Menon, Lizdabel Morales,
Youping Zhao, Kyung K. Bae, and Jeffrey H. Reed. Development of a Cognitive Engine and
Analysis of WRAN Cognitive Radio Algorithms. Technical report, Wireless @ Virginia Tech,
December 2007.

[81] Michael Rice and fred harris. Loop Control Architectures for Symbol Timing Synchronization
in Sampled Data Receivers. In MILCOMM Proceedings, volume 2, pages 987–991, October
2002.

[82] G.A. Rovithakis, M. Maniadakis, and M. Zervakis. A hybrid neural network/genetic algorithm
approach to optimizing feature extraction for signal classification. IEEE Transactions on
Systems, Man, and Cybernetics, 31(1):695–703, 2004.

[83] Burton R. Saltzberg. Performance of an Efficient Parallel Data Transmission System. IEEE
Transactions on Communication Technology, COM-15(6):805–811, December 1967.

[84] Amit Sinha, Alice Wang, and Anantha Chandrakasan. Energy scalable system design. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 10(2):135–145, April 2002.

[85] David Slepian. Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty—V:
the Discrete Case. Bell Systems Technical Journal, 57:1371–1430, May-June 1978.

[86] Steven G. Johnson and Matteo Frigo. A modified split-radix FFT with fewer arithmetic
operations. IEEE Transactions on Signal Processing, 55(1):111–119, 2007.

[87] George J. Stigler. Production and Distribution Theories: the Formitive Period. Macmillan,
New York, 1941.

[88] Paul Sutton, Baris Ozgul, Irene Macaluso, and Linda Doyle. OFDM Pulse-Shaped Waveforms
for Dynamic Spectrum Access Networks. In IEEE International Symposium on Dynamic
Spectrum Access Networks, 2010.

[89] Tektronix Test and Measurement Instrumentation. http://www.tek.com/, October 2010.

[90] Andrea M. Tonello and Fabio Rossi. Synchronization and Channel Estimation for Filtered
Multitone Modulation. In Proceedings of International Symposium on Wireless Personal
Multimedia Communications, 2004, pages 590–4, September 2004.

[91] J.M. Torrance and L. Hanzo. Upper bound performance of adaptive modulation in a slow
Rayleigh fading channel. IEEE Electronics Letters, 32(8):718–9, April 1996.

[92] Manuel Uhm. The Power of Software Defined Radio: A Holistic Approach to Designing SDRs
for Power. In COTS Journal, 1 2007.

[93] P. P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice Hall Signal Processing
Series. Prentice Hall, New Jersey, 1993.

[94] T.A. Weiss, J. Hillenbrand, A. Krohn, and F.K. Johndral. Mutual Interference in OFDM-
Based Spectrum Pooling Systems. In IEEE 59th vehicular Technology Conference, 2004.

179

[95] Marilynn P. Wylie-Green. Dynamic Spectrum sensing by Multiband OFDM Radio for In-
terference Mitigation. In IEEE International Symposium on Dynamic Spectrum Access Net-
works, pages 619–625, 2005.

[96] Shirang M. Yardi, Michael S. Hsiao, Thomas L. Martin, and Dong S. Ha. Quality-Driven
Proactive Computation Elimination for Power-Aware Multimedia Processing. Proceedings of
the Design, Automation and Test in Europe Conference and Exhibition, 2005.

[97] Qian Zhang, Zhu Ji, and Ya-Qin Zhang. Power-Minimized Bit Allocation for Video Com-
munication Over Wireless Channels. IEEE Transactions on Circuits and Systems for Video
Technology, 12(6), June 2002.

[98] Youping Zhao, Joseph D. Gaeddert, Lizdabel Morales, Kyung Bae, Jung-Sun Um, and Jef-
frey H. Reed. Development of Radio Environment Map Enabled Case- and Knowledge-Based
Learning Algorithms for IEEE 802.22 WRAN Cognitive Engines. In IEEE International Con-
ference on Cognitive Radio Oriented Wireless Networks and Communications, pages 44–49,
8 2007.

[99] Youping Zhao, Lizdabel Morales, Joseph D. Gaeddert, Kyung Bae, Jung-Sun Um, and Jef-
frey H. Reed. Applying Radio Environment Maps to Cognitive Wireless Regional Area Net-
works. In IEEE International Symposium on Dynamic Spectrum Access Networks, pages
115–8, 2007.

[100] Rodger E. Ziemer, William H. Tranter, and D. Ronald Fannin. Signals & Systems: Contin-
uous and Discrete. Prentice Hall, Upper Saddle River, NJ, 4 edition, 1998.

180

