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Chapter 4 Monotonic Shear Wall Tests

4.1 Introduction
The five shear wall configurations described in Section 3.2 were monotonically tested,
displacing the top of the shear wall six inches over a ten minute period.  Monotonic
loading was described in Section 3.6. Data from six LVDT’s, measuring displacements
of the wall during testing, and load cell were collected 10 times per second.  Each of
the five wall configurations was tested once. Of interest was data concerning ultimate
load capacity and drift at capacity, elastic stiffness, ductility, movement of the end
studs, and slip of the tie-down anchors relative to the tie-down stud.

4.2 Property Definitions
This section defines terms used to descibe and analyze the data determined for the
monotonic shear wall tests.

4.2.1 Load-Displacement Curves
Figure 4.1 is a typical monotonic load-drift curve and illustrates terms defined in this
section.  From the load-drift curve, specimen capacity and its corresponding drift,
elastic stiffness, and load resistance and drift at failure were determined.  As defined in
Section 3.5, drift is displacement of the top of the wall minus displacement of the
bottom of the wall.

Capacity, Fmax, was determined as the maximum load resisted by the wall.  ∆max was
defined as the drift corresponding to capacity.

Elastic stiffness, ke, was defined as the secant stiffness taken at 40% of capacity.

Load resistance at failure, Ffailure, was determined as the highest load carried by the
wall before a significant decrease in strength.  Drift at failure, ∆failure, was defined as
the corresponding drift.

4.2.2 Equivalent Elastic-Plastic Curve
An equivalent energy elastic-plastic curve, used for comparison purposes, was
determined for each wall.  This artificial curve, as shown in Figure 4.2, depicts how an
ideal perfectly elastic - plastic wall would perform and dissipate an equivalent amount
of energy as the actual specimen tested.  The equivalent elastic-plastic curve (EEPC)
was defined so that the area under the EEPC is equal to the area under the load-
displacement curve from 0 in. drift to ∆failure.  The elastic portion of the EEPC contains
the origin and has a slope equal to the elastic stiffness, ke.  The plastic portion of the
EEPC is a horizontal line positioned so that the EEPC  and  load-displacement  curve
areas are equal  (i.e. areas A1 and A2 in
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Figure 4. 1 - Typical load-drift curve for monotonic shear wall test
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Figure 4.2 are equal).  Displacement at yield, ∆yield, and load at yield, Fyield, were
defined as the intersection of the elastic and plastic lines of the EEPC. Fyield must be
greater than or equal to 80% of Fmax.  This definition of the EEPC was also used in the
cyclic tests,  and  is  similar  to  that used in the sequential phased displacementtest
developed by the Joint Technical Coordinating Committee on Masonry Research
(TCCMAR) for the United States - Japan Coordinated Earthquake Research Program
and defined by Porter (1987).

Ductility is determined from the EEPC and is defined as:

D = ∆
∆

failure

yield
               (4.1)

where D is ductility, ∆failure is drift corresponding to failure, and ∆yield is drift
corresponding to yield.
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Figure 4. 3- Monotonic load-drift curves for the five shear wall configurations
examined

4.3 Monotonic Test Results
This section presents the monotonic test results from the five shear wall
configurations. Data concerning load resistance, drift, stiffness and ductility is
examined.
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4.3.1 Strength and deflection
Figure 4.3 plots load as a function of drift for the five wall configurations tested.  As
expected, elastic stiffness and capacity of each wall increased as the area of openings

decreased. As shown in Figure 4. 3, Wall A (r = 1.0) and Wall B (r = 0.76)
experienced a sudden drop in load resistance during the test.  Wall D (r = 0.48) and
Wall E (r = 0.30) were able to continue resisting load past 5.0 in. (127 mm) drift.  Wall
C (r = 0.55) did not experience a sudden drop in load resistance, but lost its ability to
resist load at a rate similar to Walls A and B.

As given in Table 4.1 and illustrated as a function of sheathing area ratio in Figure 4.4,
capacity, Fmax, ranged from 8.2 kips (36.5 kN) to 38.8 kips (172.6 kN).  This
represents a 79% change in capacity when the fully sheathed wall capacity is used as
the basis for comparison.  A best fit regression was performed with the data and
plotted in Figure 4.4, resulting in the following third order equation for capacity as a
function of sheathing area ratio:

F r r rmax . . .= ⋅ − ⋅ + ⋅3348 37 06 42 482 3 (4.2)

where Fmax is capacity and r is sheathing area ratio.

Table 4. 1: Monotonic data of five shear wall configurations examined

Wall A Wall B Wall C Wall D Wall E

r = 1.0 r = 0.76 r = 0.55 r = 0.48 r = 0.30

Fmax (kips) 38.8 23.1 13.8 12.1 8.2

∆max (in) 2.0 2.2 1.9 1.6 2.7

Fyield (kips) 35.6 20.9 11.8 10.6 7.5

∆yield (in) 0.56 0.48 0.55 0.57 0.98

Ffailure (kips) 31.0 18.7 8.6 7.9 6.6

∆failure (in) 4.14 4.18 4.00 5.04 5.05

ke (kips/in) 63.7 43.7 22.2 19.4 7.8

Fyield/Fmax 0.92 0.90 0.86 0.88 0.91

Ductility 7.4 8.7 7.3 8.8 5.2
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Figure 4. 4- Monotonic capacity of the five shear wall configurations examined
plotted against sheathing area ratio

As shown in Figure 3.1, Walls C and D differ only by one sheathing panel below an
opening.  Wall C contains a 12 ft. (3.7 m) window, while Wall D contains a 12 ft. (3.7
m) garage door. Current design practices does not include sheathing above and below
openings to resist shear in design.  However, Table 4.1 shows that capacity of Wall C
was 13.8 kips (61.4 kN) and the capacity of Wall D was 12.1 kips (53.8 kN).  Clearly,
the 2.5 ft. x 12 ft. (0.8 m x 3.7 m) sheathing panel below the 12 ft. (3.7 m) opening
resists shear.  It is also noted that failure of Wall C occurred at a lower drift than
Wall D, resulting in a less ductile wall configuration.

As given in Table 4.1, displacement corresponding to capacity, ∆max, ranged from 1.6
in. (41 mm) to 2.7 in. (69 mm), with Wall D (r = 0.48) having a ∆max of 1.6 in.
(41 mm) and Wall E (r = 0.30) having a ∆max of 2.7 in. (69 mm).  As shown in Figure
4.3, resistance close to capacity for the five walls was sustained for a minimum of 0.5
in. (13 mm).

The parameter Fyield was used to compare the monotonic performance with the cyclic
performance.  Fyield, given in Table 4.1, ranged from 7.5 kips (33.4 kN) for Wall E (r =
0.30) to 35.6 kips (158 kN) for Wall A (r = 1.0).  The ratio of Fyield to Fmax, as given in
Table 4.1, ranged from 0.86 to 0.92 for the five wall configurations.  Due to the small
range of the Fyield to Fmax ratio, Fyield can reasonably be modeled as 89% of Fmax.
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Corresponding displacement, ∆yield, given in Table 4.1, ranged from 0.48 in. (12 mm)
to 0.98 in. (25 mm).  Wall E (r = 0.30) was an outlier with a ∆yield of 0.98 in. (25 mm).
Drift at yield of the other four walls ranged from 0.48 in. (12 mm) to 0.57 in. (15 mm).
As shown in Figure 3.1, the configuration of Wall E was unique.  The other four walls
had sheathing distributed throughout the length of the wall, while sheathing was only
located at the extreme ends for Wall E.  Figure 4.3 shows that the load-displacement
curve of Wall E has lower magnitude loads and higher magnitude displacements than
the other four configurations, resulting in the higher ∆yield.

As given in Table 4.1, Ffailure ranged from 6.6 kips (29.4 kN) to 31.0 kips (137.9 kN).
As previously stated, only Walls A and B experienced a sudden drop in load
resistance.  The sudden drop in resistance for both Walls A and B occurred very close
to 80% of Fmax.  Drift corresponding to failure, ∆failure, given in Table 4.1, ranged from
4.00 in. (102 mm) for Wall C (r = 0.55) to 5.05 in. (128 mm) for Wall E (r = 0.30).
For Walls A, B, and C, ∆failure ranged from 4.00 in. (102 mm) to 4.18 in. (106 mm).
For Walls D and E, which contained the largest openings, ∆failure ranged from 5.04 in.
(128 mm) to 5.05 in. (128 mm).

As sheathing and sheathing nailing increases, higher loads can be resisted.  However,
the sheathing nailing is at greater risk of being overstressed which will result in failure
(usually in the form of pull through).  This is the reason Walls A and B experienced
sudden drops in load resistance.  Conversely, nailing in walls with less sheathing, such
as Walls D and E, are able to resist shear at increased drifts due to the added flexibility
of the wall segments rocking at the base.

4.3.2 Elastic Stiffness
Elastic stiffness was determined at as the secant stiffness at 40% of capacity for the
five wall configurations.  The elastic stiffness values are given in Table 4.1 and
illustrated as a function of sheathing area ratio in Figure 4.5.  Elastic stiffness ranged
from 7.8 kips/in (1370 kN/m) to 63.7 kips/in (11150 kN/m), with Wall E (r = 0.30)
having the lowest stiffness and Wall A (r = 1.0) having the highest stiffness.  This
represents an 88% change in stiffness when the stiffness for the fully sheathed wall is
used as the basis for comparison.  A best fit regression determined the following
second order equation for elastic stiffness as a function of sheathing area ratio:

k r re = ⋅ + ⋅16194 48847 2. . (4.3)

where ke is elastic stiffness and r is sheathing area ratio.

The area of sheathing, nailing schedule, location of openings, and anchorage are key
factors effecting elastic stiffness.  The number of full height panels adjacent to loading,
and the path for shear force distribution around openings, effects the initial stiffness of
the walls.  Due to the large number of factors that effect elastic stiffness, a best fit



29

equation of elastic stiffness should encompass more variables than just sheathing area
ratio.
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Figure 4. 5- Monotonic elastic stiffness of the five shear wall configurations
examined plotted against sheathing area ratio

Figure 4.6 examines the relationship between capacity and elastic stiffness for the five
shear wall configurations examined.  Figure 4.6 plots the shear strength ratio on the x-
axis versus shear stiffness ratio on the y-axis.  Shear strength ratio was defined as the
ratio of capacity of a shear wall divided by the capacity of the fully sheathed wall.

Similarly, shear stiffness ratio was defined as the ratio of elastic stiffness of a shear
wall divided by the elastic stiffness of the fully sheathed shear wall.  Although based
on a limited number of tests, the data in Figure 4.6 tends to follow a one-to-one
relationship between capacity and elastic stiffness.

4.3.3 Ductility
Ductility was determined using Equation 4.1.  Table 4.1 shows that the ductility for the
five wall configuration ranged between 5.2 and 8.8.  Wall E had the lowest ductility
ratio and was significantly lower than the other four wall specimens.  The range of
ductility for Walls A - D ranged from 7.3 to 8.8.
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Figure 4. 6- Correlation of monotonic shear load ratio and stiffness ratio for the
five shear wall configurations examined

Drift at failure, ∆failure, for Walls A (r = 1.0), Wall B (r = 0.76) and Wall C (r = 0.55)
fell in the relatively small range of 4.00 in. (102 mm) to 4.18 in. (106 mm) and ∆yield

ranged between 0.48 in. (12 mm) and 0.56 in. (14 mm).  However, due to the fact that
∆yield is in the denominator of Equation 4.1, the ductility ratio is sensitive to small
differences in ∆yield. This results in Wall A (r = 1.0) having a ductility ratio of 7.4, Wall
B (r = 0.76) having a ductility ratio of 8.7, and Wall C (r = 0.55) having a ductility
ratio of 7.3.  Even though these three walls had relatively similar load-displacement
curves, ductility ranged form 7.3 to 8.7.  This illustrates why the acceptable
performance of structures can not be judged by considering ductility alone.

Walls D and E had similar load-displacement curves, both with ∆failure over 5 in.
(127 mm).  However, due to the sheathing configuration ∆yield of Wall E was much
higher than the other four walls, resulting in a lower ductility.  ∆yield of Wall E was
72% higher than ∆yield of Wall D.  Wall D had a ductility ratio of 8.8 while Wall E had
a ductility ratio of 5.2.

While providing an important indication of performance, ductility must be viewed in
relation to stiffness, yield resistance, and capacity to provide an overall evaluation of
monotonic performance.
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4.3.4 Wall Behavior
Movement of the end studs relative to the foundation and performance of the tie-down
anchors is discussed in this section.  Due to computer error, the data pertaining to the
end stud behavior and the slip of the tie-downs for Wall E (r = 0.30) wall was not
recorded correctly.  However, the other four walls provided quantitative information
and the deflection pattern observed during the monotonic tests of Wall E was similar.
Therefore, the behavior of the studs and anchor slip for this wall should be similar.

4.3.4.1 End Stud Movement
Loading each wall resulted in uplift zones and compression zones at the ends of the
walls.  On the uplift end of the wall, the end studs separated from the bottom plate.
Separation was resisted by the sheathing nails and the tie-down anchor at the bottom
of the studs.  Uplift of the end studs was measured with LVDT #3, and Table 4.2
shows a relatively small magnitude of separation ranging between 0.08 in. (2 mm) to
0.18 in. (5 mm) at capacity.  Without tie-down anchors connecting the end studs to the
foundation, uplift measured would have been significantly higher.  The effect of tie-
down anchors on shear wall performance is currently being investigated and the results
will be presented by Heine (1997).

On the compression end of the wall, the sheathing and compression strength
perpendicular-to-grain of the sill plate resisted the overturning moment.  It was
observed prior to testing that each wall contained a small gap (less than 0.1 in. (2 mm))
between the end stud and the bottom sill plate.  The displacement recorded with LVDT
#2 recorded closure of this gap as well as crushing of the bottom sill plate.  As shown
in Table 4.2, movement of the end studs ranged from 0.06 in. (1.5 mm) to 0.126 in.
(3 mm) at Fmax.  Only Wall A (r = 1.0) recorded movement greater than 0.09 in. (2
mm).  Significant crushing of the bottom sill plate by the end studs was not observed.

4.3.4.2 Slip of Tie-Down Anchors
Shear wall failures in seismic events have resulted from slip or separation of the tie-
down anchor from the end studs.  For purposes of monitoring slip between anchor and
end stud, a LVDT was placed on each metal tie-down anchor. After observing that slip
of tie-down anchors relative to the double end studs for the majority of the tests was
negligible, data regarding tension forces transmitted to the foundation by the tie-down
anchor bolts was acquired for Wall C.  For this reason, Wall C (r = 0.55), which was
the last wall tested, does not have data regarding slip between tie-down anchors and
end studs.

As shown in Table 4.2, the slip relative to the stud for anchors in tension, recorded
near peak load, was less than 0.05 inches (1 mm), which is negligible.  Figure 4.7 plots
slip of the tension side tie-down against load resistance.  Figure 4.8 plots drift against
slip of the tension side tie-down anchors.  A sudden drop in slip of the tension side tie-
down anchor for both Walls A and B is recorded in Figures 4.7 and 4.8.  In both cases,
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Figure 4. 7- Slip between tension side tie-down and end studs  for Walls A, B and
D plotted against lateral load resistance

Table 4. 2: Monotonic end stud displacement and tie-down slip at capacity for the
five shear wall configurations examined

Wall A Wall B Wall C Wall D

r = 1.0 r = 0.76 r = 0.55 r = 0.48

LVDT #3 -
uplift of end studs

0.16 in.
(4 mm)

0.08 in.
(2 mm)

0.18 in.
(5 mm)

0.09 in.
(2 mm)

LVDT #2 -
crushing of bottom plate

0.126 in.
(3 mm)

0.06 in.
(2 mm)

0.085 in.
(2 mm)

0.086 in.
(2 mm)

LVDT #5 -
slip of tension side tie-down

0.048 in.
(1 mm)

0.04 in.
(1 mm)

* 0.024 in.
(1 mm)

LVDT #6 -
slip of compression side tie-down

0.0003 in.
(0 mm)

0.008 in.
(0 mm)

* 0.003 in.
(0 mm)

* no data
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the drop occurs after ∆max, but before ∆failure had been reached. This indicates that the
first panel was unable to continue resist load prior to complete failure of the wall. After
the first panel failed, the remaining panels had to resist the load until complete failure
occurred.

Slip between the anchors and the end studs in compression never exceeded 0.003 in.
(0.076 mm).  Connection of the tie-down anchor to the double end studs with 32 16d
sinker nails, as described in Section 3.3, did not experience significant slip and was
therefore not a significant cause of failure.
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Figure 4. 8- Slip between tension side tie-down anchor and end studs for Walls A,
B and D plotted against drift

4.3.4.3 Tension Bolts
Tension load bolts were used to connect the tie-down anchors to the foundation for the
monotonic test of Wall C (r = 0.55).  Figure 4.9 plots the load experienced by the
tension side load bolt as a function of drift.  For comparison, Figure 4.9 also includes
the lateral load- drift curve for Wall C (r = 0.55).  As shown in Figure 4.9, the tension
anchor bolt initially resists more load than the wall.  This is attributed to the reduced
moment arm between the tension bolt and the center of rotation of the panel at low
load magnitudes.  Using conventional static methods, the sum of the moments in the
first panel must balance.  The moment resisted by the anchor bolt is equal to the
magnitude of the force resisted mulitplied by the moment arm (the distance from the
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anchor bolt to the center of rotation of the panel).  The exterior edges of the plywood
end panels are attached with two rows of 8d sheathing nails, which results in the panel
rotating closer to the double row of nailing rather than the center of the panel.  As the
double row of sheathing nails sustain higher stresses and becomes more flexible, the
center of rotation moves closer to the center of the panel.  For this reason, the moment
arm is reduced at low load magnitudes and results in higher forces in the anchor bolt
than the lateral load resisted by the shear wall.
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Figure 4. 9- Tension side tie-down anchor bolt load resistance of Wall C plotted
against drift

Shear distribution is not uniform in walls with openings because full height panels at
the ends of the walls resist more shear than other full height panels due to the tie-down
anchorage.  The best estimate of panel shear capacity for panels adjacent to the tension
side tie-down are based on results from the fully sheathed wall.  From the test of Wall
A (r = 1.0), the unit shear capacity equals 38,800 lbs / 40 ft or 970 plf.  The
overturning couple design value would then be determined as 970 plf (14.2 kN/m)
times the wall height of 8 ft (2.4 m), or 7760 lbs (34.5 kN).  The actual peak load
experienced by the tension side anchor bolt was 8900 lbs (39.6 kN), which exceeds the
expected value by 15%.  This performance parameter should be investigated in more
detail in future experimental tests.
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4.3.4.4 Modes of Failure
All of the walls tested under monotonic loading had similar failure characteristics.
Typically, each wall performed relatively elastically until a drift of about 0.50 in. (13
mm) at which point the stiffness of the walls began to decrease.  There was no
apparent visual damage to the walls at this point.

At a drift near 1 in. (25.4 mm), the walls underwent some minor damage but load
resistance was still increasing.  All drywall tape joints around openings cracked, and
some tape joints between full drywall panels had failed at this drift.  Drywall nails near
the corners of panels had begun to fail, while field nailing of gypsum board still
performed adequately.  Racking of plywood panels was observed for fully sheathed
panels, while the plywood above and below windows acted as a rigid body.

As load capacity of the walls plateaued, bending of the plywood sheathing near the
loaded end was observed in some instances.  Bending of plywood nails caused
crushing of the plywood around the nail hole, decreasing friction between wooden
elements and sheathing nailing.  After peak capacity had been reached, the nails
usually tore through in the edges of plywood.  Nails in the buckled panels showed both
nail pull out from the framing (top and bottom plates) and nail head pull through.  As
this failure mode progressed, the nails progressively failed along the bottom plate in
the walls with openings.  This progressive failure along the bottom plate (unzipping)
occurred in the wall sections that had no tie-down anchor to resist the uplift on the
tension side.  These failures usually showed signs of the nails tearing out of the
plywood edge or pulling through the plywood leaving a small hole.  At large
deformations the edge nails tore through the edge of the gypsum or the head pulled
through the gypsum panel.

4.4 Prediction of Capacity
This section presents two methods for capacity prediction of shear walls with openings
that only have tie-down anchorage at the ends of the wall.  Both prediction methods
rely upon the known capacity of the fully sheathed wall with identical materials and
dimension.  Because actual capacity of the fully sheathed wall is usually not known in
design situations, the ultimate capacity determined from current design procedures
used in the 1994 UBC can be used in the two prediction methods.  For this reason, this
section first discusses the capacity using current design procedures and then examines
the two prediction methods.

4.4.1 Current Design Capacity
Current design procedures only include full height wall panels to distribute shear. To
determine the capacity of a shear wall, the following equation is used:

V V Vwall ply ult gyp ult= + ⋅( ), , Length of full height sheathing (4.4)
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where Vwall is the ultimate capacity of the shear wall, Vply,ult is the ultimate shear for
plywood sheathing and Vgpy,ult is the ultimate shear for the gypsum wallboard.

From Table 23-I-K-1 of the 1994 Uniform Building Code (UBC), the allowable shear
for 15/32 in. (12 mm) structural I plywood with 8d nails at 6 in. (152 mm) perimeter
spacing is 280 plf (4100 N/m).  This design value assumes proper anchorage is
provided at the ends of all full height wall segments to resist uplift.  A factor of 0.82
must be applied to this value to account for the lower specific gravity of the spruce-
pine-fir framing used in this experimental study.  From APA PRP-108, shear wall
criteria is based on a minimum load factor of 2.8.

According to Chapter 25 of the 1994 UBC, the allowable shear for gypsum board is
100 plf (1500 N/m).  A minimum load factor of 2.5 is taken for the gypsum.

Using the allowable shears and load factors just described, the ultimate design shear of
full height wall segments is determined as:

( ) ( ) ( )[ ]V plf plf

lbs kN

wall = ⋅ ⋅ + ⋅ ⋅

=

280 2 8 082 100 2 5 40

35 700 1588

. . . '

, ( . )

This capacity compares well with the actual capacity for Wall A (r = 1.0) of 38,800 lbs
(172.6  kN), and corresponds to a unit shear of 890 plf (13000 N/m).

The walls examined in this thesis only contained tie-down anchorage at the ends of the
wall, thus making Wall A, the fully sheathed wall, the only wall with adequate
anchorage provided.  Walls that contained openings contained two shear wall panels
with only one tie-down anchor (only one of the tie-downs was in tension) and the other
shear wall panels (if any) did not contain tie-down anchors at all.  Wall B (r = 0.76)
consisted of three wall panels, Walls C and D consisted of four wall panels and Wall E
consisted of two. It is noted that shear is not uniformly distributed in walls with
openings.  End panels resist greater shear relative to interior full height panels due to
the double row of end nailing and the tie-down anchors.  To demonstrate that
allowable shears given in Table 23-I-K-1 of the 1994 UBC are not applicable to shear
wall panels without proper tie-down anchorage, the unit shear of 890 plf (13000 N/m)
is applied to the five wall configurations in Table 4.3.  As shown, only the design
value of the fully sheathed wall is lower than the actual capacity, indicating that tie-
down anchorage at the ends of the wall only is not sufficient to achieve full engineered
capacity for shear walls with openings.  Capacity per length of full height sheathing
panels ranged from 680 plf (9900 N/m) to 860 plf (1260 N/m) for Walls B - E.

4.4.2 Sugiyama’s Empirical Prediction Equations
The results from three independent studies of one-third scale monotonic racking tests
of typical North American, plywood-sheathed shear walls with openings are presented
in Yasumura and Sugiyama (1984).  Load required to displace the top of the wall at
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apparent shear deformation angles of 1/60, 1/75, 1/100, 1/150, and 1/300 was
collected for each test.  Apparent shear deformation angle, γ, was defined as
displacement of the top of wall, δtop, minus displacement of the bottom of wall, δbottom,
divided by total height, h, and is shown in Equation 4.5:

γ
δ δ

=
−t o p b o t t o m

h   (4.5)

Sugiyama et al (1994) presents an empirical equation for the calculation of the
shear load ratio, f, of a shear wall segment with openings for an apparent shear
deformation angle of 1/100 radian.  Shear load ratio is defined as the ratio of the
strength of a wall with openings to the strength of the fully sheathed wall.  Shear load
ratio, f, at an apparent shear deformation angle of 1/100 was calculated by the
following expression: 

f
r

r
=

− ⋅3 2   (4.6)

where r is sheathing area ratio (Equation 3.1).  It had been proposed that Equation 4.6
is applicable for prediction of capacity for typical light-frame shear walls.

Sugiyama et al (1994) determined additional empirical equations (referred to as the
W.U. equations) relating load and sheathing area ratio, based on all the tests performed
for apparent shear deformation angles of 1/60, 1/100 and 1/300.  These equations
determine the shear load ratio at a particular apparent shear deformation angles.  For a
shear deformation angle of 1/60 radians:
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For a shear deformation angle of 1/300 radians:
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where f is shear load ratio and r is sheathing area ratio.

For an 8 ft. (2.4 m) high wall, shear deformation angles of 1/300, 1/100, and 1/60
correspond to racking displacements of  0.32 in. (8 mm), 0.96 in. (24 mm), and 1.6 in.
(41 mm), respectively. 

Predicted capacity of shear walls with openings is obtained by multiplying the shear
load ratio, f, by the actual capacity of the fully sheathed wall.  However, the actual
capacity is not known in design situations.  For this reason, predictions determined
from Equation 4.6, using the capacity of the fully sheathed wall determined in Section
4.4.1 as the reference capacity are also presented.
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Table 4. 3: Comparison of monotonic capacity of the five shear wall
configurations examined with ultimate design capacity

Wall A Wall B Wall C Wall D Wall E

r = 1.0 r = 0.76 r = 0.55 r = 0.48 r = 0.30

Actual Capacity (kips) 38.8/0.97 23.1/0.83 13.8/0.86 12.1/0.76 8.2/0.68

Design Capacity (kips) 35.7/0.89 25.0/0.89 14.3/0.89 14.3/0.89 10.7/0.89

Actual / Design 1.11 0.92 0.97 0.85 0.77

Table 4.4 compares actual load resistance at 0.32 in. (8 mm), 0.96 in. (24 mm), 1.6 in.
(41 mm) and capacity with the predicted load resistance.  Also included in Table 4.4
are the actual and predicted shear load ratios, where shear load ratio is as previously
defined.  The ratio of actual load resistance to predicted load resistance is included in
Table 4.4, where a ratio greater than 100% indicates a conservative prediction by
Sugiyama’s empirical equations and a ratio less than 100% indicates an
unconservative prediction by Sugiyama’s empirical equations.

Capacity predictions made by Equation 4.6 are compared in Table 4.4 and Figure 4.9
using both the actual experimental capacity of Wall A and the design capacity
determined in Section 4.4.1 as the reference capacity.  The use of the actual
experimental capacity of the fully sheathed wall condition as the reference capacity is
used to verify Sugiyama’s empirical method.  Predictions based on the design capacity
are only provided to show the applicability in design.  With the actual capacity of the
fully sheathed wall used as the reference, Table 4.4 shows that the actual to predicted
ratio is 100% to 168%.  When the design capacity is used as the reference, the actual
to predicted ratio ranged from 111% to 178%.  In both cases, Equation 4.6 makes
conservative predictions.  It is noted that as the sheathing area ratio decreases (i.e.
amount of openings increase), the more conservative capacity predictions become.
Figure A-1 in Appendix A plots capacity data from this thesis and Rose and Keith
(1995).  As shown in Figure A-1, predictions made using Equation 4.6 were
conservative in all cases.

At a drift of 0.32 in. (8 mm), Equation 4.8 is used to predict shear load ratios.  Table
4.4 shows that the actual to predicted ratio is 98% to 117%. Sugiyama’s equation was
slightly unconservative for Wall E (r = 0.30) at this drift. However, predictions made
by Equation 4.8  at  0.32 in. (8 mm) are more representative of the actual load
resistances determined in this investigation relative to predictions made at capacity.
This is advantageous for analyzing existing structures.
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Table 4. 4: Comparison of actual load resistances at capacity and drifts of 0.32
in., 0.96 in., and 1.6 in. for the five shear wall configurations examined with load
resistance’s determined from Sugiyama’s shear load ratio equations

Wall A Wall B Wall C Wall D Wall E
r = 1.0 r = 0.76 r = 0.55 r = 0.48 r = 0.30

Peak Load (kips) 38.8 23.1 13.8 12.1 8.2

Actual Shear Load Ratio 1.0 0.60 0.36 0.31 0.21

Predicted Shear Load Ratio 1.0 0.51 0.29 0.24 0.13

Eqn 4.6 Predicted Capacity (kips) with
Actual Capacity as reference 38.8 19.9 11.2 9.1 4.9

Actual Capacity / Predicted Capacity 100% 117% 122% 132% 168%

Eqn 4.6 Predicted Capacity (kips) with
Design Capacity as reference 35.7 18.2 10.4 8.6 4.6

Actual Capacity / Predicted Capacity 109% 127% 133% 141% 178%

@0.32 in. drift (γγ = 1/300)
Actual Load (kips) 18.5 11.4 6.3 5.5 2.5

Predicted Load (kips) (Eqn 4.8) 18.5 10.0 5.8 4.8 2.6

Actual Shear Load Ratio 1.0 0.62 0.34 0.30 0.14

Predicted Shear Load Ratio 1.0 0.54 0.31 0.26 0.14

Actual Load / Predicted Load 100% 114% 109% 117% 98%

@0.96 in. drift (γγ = 1/100):
Actual Load (kips) 33.6 20.0 11.4 11.0 6.3

Predicted Load (kips) (Eqn 4.6) 33.6 17.3 9.7 7.9 4.2

Actual Shear Load Ratio 1.0 0.60 0.34 0.33 0.19

Predicted Shear Load Ratio 1.0 0.51 0.29 0.24 0.13

Actual Load / Predicted Load 100% 116% 117% 140% 152%

@1.6 in. drift (γγ = 1/60):
Actual Load (kips) 37.7 22.6 13.5 12.1 7.4

Predicted Load (kips) (Eqn 4.7) 37.7 23.1 14.3 11.9 6.6

Actual Shear Load Ratio 1.0 0.60 0.36 0.32 0.20

Predicted Shear Load Ratio 1.0 0.61 0.38 0.32 0.18

Actual Load / Predicted Load 100% 98% 94% 102% 111%
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Figure 4. 10- Actual monotonic shear load ratios at capacity of the five shear wall
configurations examined and Sugiyama’s shear load ratio prediction equation

plotted against sheathing area ratio

At a drift of 0.96 in. (24 mm), Equation 4.6 was used to predict shear load ratios.
Table 4.4 shows that the actual to predicted ratio is 100% to 152%.  Similar to
Sugiyama’s equations at capacity, as the sheathing area ratio decreases, the more
conservative Equation 4.6 becomes. Figure A-2 in Appendix A plots data determined
at an apparent shear deformation angle of 1/100 with data ,determined from Wakatsuki
and Uchida (referenced in Sugiyama and Matsumoto, 1994.)  Equation 4.6 is
conservative for the majority of the one-third scale tests performed by Wakatsuki and
Uchida.

At a drift of 1.6 in. (41 mm), Equation 4.7 is used to predict shear load ratios.  Table
4.3 shows that the actual to predicted ratio is 94% to 111%.  Predictions at 1.6 in. (41
mm) based on Equation 4.7 were slightly unconservative for Wall C (r = 0.55) and
Wall B (r = 0.76).  The predictions determined at 1.6 in. (41 mm) drift are a closer
representation of the actual data, but is slightly less conservative than predictions at
0.32 in. (8 mm).  It is also noted that all of the wall configurations tested reached
capacity at or above 1.6 in. (41 mm) drift.

A method of predicting elastic stiffness would be beneficial for design and analysis.
The use of Sugiyama’s empirical equations have been applied to stiffness prediction at
a drift of 0.32 in. (8 mm).  At this drift, Figure 4.3 shows that the five wall
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configurations were behaving elastically.  The predicted load resistance at 0.32 in. (8
mm) drift, determined using Equation 4.8, is divided by 0.32 in. (8 mm) to determine
to predicted stiffness.  Equation 4.6 was also used to predict load resistance at 0.32 in.
(8 mm) and elastic stiffness.  The predicted elastic stiffness’ are compared in Table
4.5. Using Equation 4.6, predicted elastic stiffness ranged from 7.5 kips/in (1300
kN/m) to 57.8 kips/in (10100 kN/m), and was 4% to 49% higher than actual elastic
stiffness.

Table 4. 5: Comparison of monotonic elastic stiffness of the five shear wall
configurations examined with elastic stiffness determined from Sugiyama’s shear
load ratio equations

Wall A Wall B Wall C Wall D Wall E

r = 1.0 r = 0.76 r = 0.55 r = 0.48 r = 0.30

Actual Elastic Stiffness (kips/in) 63.7 43.7 22.2 19.4 7.8

Actual Stiffness Ratio 1.0 0.69 0.35 0.30 0.12

Actual Load Resistance @ 0.32 in. 18.5 11.4 6.3 5.5 2.5

Actual Load Ratio @ 0.32 in. 1.0 0.62 0.34 0.30 0.14

Load Resistance Predicted @ 0.32 in.
(kips) (Eqn 4.6)

18.5 9.4 5.4 4.4 2.4

Predicted Stiffness (kips/in)
(=predicted load/ 0.32 in.)

57.8 29.4 16.9 13.8 7.5

Actual Stiffness / Predicted Stiffness 1.10 1.49 1.31 1.41 1.04

Load Resistance Predicted @ 0.32 in.
(kips/in) (Eqn 4.8)

18.5 10.0 5.8 4.8 2.6

Predicted Stiffness (kips/in)

(=predicted load/ 0.32 in.)
57.8 31.3 18.1 15.0 8.1

Actual / Predicted Stiffness 1.10 1.40 1.23 1.29 0.96

Using Equation 4.8, predicted elastic stiffness ranged from 8.1 kips/in (1400 kN/m) to
57.8 kips/in (10100 kN/m).  The predicted elastic stiffness of Walls A - D were 10% to
40% higher than actual.  Predicted stiffness of Wall E was 4% lower than actual.
When compared to actual elastic stiffness, Equation 4.8 predicts closer than Equation
4.6.  However, both over predict stiffness.

When predicted stiffness is used to calculate estimated drifts, unconservative estimates
of drifts are found (i.e. estimated drifts are lower than actual).  When predicted
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stiffness is used to calculate estimated load, unconservative load estimates are found
(i.e. estimated load is higher than actual).

4.4.3 Natural Log Prediction Method
Although Sugiyama’s predictions were found to be conservative at capacity for all
wall specimens tested, the prediction equations became overly conservative as the
amount of openings increased.  It is desirable to find a better prediction equation that
has better precision (i.e. similar reserve capacities) at all sheathing area ratios.

The method of prediction presented here for shear walls with openings and tie-down
anchorage at the extreme ends of the wall is referred to as the natural log method.  It is
based on capacity data from the five shear walls examined.  The natural log of the
capacities of the five shear walls were plotted against sheathing area ratio, and a linear
regression was found to fit the data well.  Keeping the slope constant, the natural log
method adjusts the y-intercept of the best fit linear regression so that the equation
predicts the capacity of the fully sheathed wall condition determined from current
design methodology with conservative load factors. The same procedure is also done
for prediction of cyclic capacity in Section 5.6.3.  As shown in Figure 4.11, the natural
log of Fmax and the natural log of the actual shear load ratio was plotted against
sheathing area ratio and a first order regression fits the data very well.  The equation of
the regression is as follows:

LN F r( ) . .max = + ⋅1420 2 24 (4.9)

where Fmax is capacity, and r is sheathing area ratio.

To determine the natural log method prediction equation, the y-intercept of Equation
4.9 is lowered so that the design capacity of the fully sheathed wall condition is
predicted.  The natural log method prediction equation for monotonic capacity is:

LN F r( ) . .max = + ⋅1335 2 24 (4.10a)

where Fmax is capacity and r is sheathing area ratio.

The corresponding natural log method prediction equation for predicted shear load
ratios is:

LN f r( ) . .= − + ⋅2 24 2 24 (4.10b)

where f is the shear load ratio and r is sheathing area ratio.  To determine capacity,
Fmax, multiply the shear load ratio, f, by the capacity determined through current design
methodology with conservative load factors.

Table 4.6 tabulates the actual capacity of each wall with capacity determined from
Equation 4.10a.  The ratio of actual capacity to capacity from the best fit regression of
the natural log of capacity fell in the range of 106% to 111%.  For sheathing area
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ratios between 0.3 and 1.0, the natural log method gave conservative predictions of
capacity.

Unlike Sugiyama’s predictions, similar reserve capacity is determined for the five wall
configurations.  Figure A-3 in the appenidix plots the natural log prediction equation
with data from this investigation and from Rose and Keith (1995).  The natural log
method gave conservative predictions from Rose and Keith’s (1995) data.

Equations 4.10a and 4.10b can be solved for capacity, Fmax, and predicted shear load
ratios, f,:

F e r
max

(1. . )= + ⋅335 2 24 (4.10c)

f e r= − + ⋅( . . )2 24 2 24 (4.10d)

Then if a safety of factor of 3.0 is desired, the design value would be

F
F e r

design = =
+ ⋅

max
(1. . )

. .30 30

335 2 24

(4.8e)

f
f e

design

r
= =

− + ⋅

30 30

2 24 2 24

. .

( . . )

(4.8f)

where Fdesign is the allowable shear capacity of the wall and fdesign is the allowable shear
load ratio.

Equations 4.10e and 4.10f can be used to predict the actual wall racking capacity and
ensure a reasonably uniform factor of safety.

Table 4. 6: Comparison of monotonic capacity of the five shear wall
configurations examined with capacity determined from natural log method

Wall A Wall B Wall C Wall D Wall E

r = 1.0 r = 0.76 r = 0.55 r = 0.48 r = 0.30

Actual Fmax 38.8 23.1 13.8 12.1 8.2

Predicted Fmax 35.7 20.9 13.0 11.1 7.4

Actual/ Pred. 109% 111% 106% 109% 111%
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Figure 4. 11- Natural log of monotonic capacity of the five shear wall
configurations examined and the natural log method prediction equation plotted

against sheathing area ratio

The applicability of prediction, based on the natural log of capacity, developed in this
research is limited due to the small number of variables examined.  However, a linear
empirical equation predicting the natural log of capacity based on framing, sheathing,
sheathing nailing, tie-down anchorage, openings and wall length potentially can be
determined with more shear wall tests examining more variables found in typical shear
wall construction.  For example, a possible prediction equation encompassing
sheathing area ratio and nailing schedule would be of the form:

F e y y r y n
design =

⋅ + ⋅+( )

.

1 2 3

30
where Fdesign is allowable design capacity, r is sheathing area ratio, n is a nailing
schedule factor, and y1, y2, and y3 are regression coefficients.

The same methodology used to determine capacity prediction with the natural log
method is applied to predict elastic stiffness.  There is one drawback to stiffness
prediction, and that is there is not a design elastic stiffness to use as a reference.
Figure 4.12 is similar to Figure 4.11, but the natural log of elastic stiffness is plotted
instead of capacity.  The best fit regression fits best when Wall E was excluded, so a
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higher lower limit on sheathing area ratio may be necessary for elastic stiffness
estimates.  The natural log best fit equation for elastic stiffness is:

LN k re( ) . .= + ⋅185 2 36                                                                                (4.11)

where ke is elastic stiffness and r is sheathing area ratio.

From Table 4.7, the actual to predicted ratio ranged from 95% to 114%.  These are
good estimates of elastic stiffness, but more data needs to be applied to the natural log
method to determine its validity for a larger range of shear walls.

Although beyond the scope of this thesis, existing monotonic data with openings
should be examined to determine if the natural log method can be used to design
shearwalls with openings with better accuracy.
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Figure 4. 12- Natural log of monotonic elastic stiffness of the five shear wall
configurations examined, and the natural log method prediction equation plotted

against sheathing area ratio

4.5 Conclusions
The data from the monotonic shear wall tests has been presented and the following
conclusions were drawn:

• Sheathing above and below openings resists shear
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• Slip of nailed tie-down anchorage, relative to the end studs, did not occur
• Gypsum sheathing helps resist shear in the low to moderate loading, but the

plywood sheathing is the predominant shear resisting element near capacity
• Pull through of the plywood sheathing nails was the predominant mode of failure
• Current estimation of tie-doen forces was shown to be unconservative for one wall.

Further research is needed to investigate this concern.
• Sugiyama’s method of prediction of shear walls with openings at capacity was

found to be conservative for the five wall configurations examined
• The natural log prediction method, although based on a limited data, provides good

prediction of capacity and stiffness of shear walls in this study

Table 4. 7: Comparison of monotonic elastic stiffness of the five shear wall
configurations examined with elastic stiffness determined from the natural log
method

Wall
A

Wall B Wall C Wall D

r = 1.0 r =
0.76

r =
0.55

r =
0.48

Actual elastic stiffness (kips/in) 63.7 43.7 22.2 19.4

Natural log elastic stiffness
(kips/in)

67.4 38.2 23.3 19.7

Actual / predicted 95% 114% 95% 98%

4.6 Summary
This chapter has dealt with the data from the monotonic shear wall tests.  Load - drift
and equivalent elastic-plastic curves were determined for each wall configuration.
Capacity, elastic stiffness and ductility results were discussed.  Performance of the tie-
down anchors was evaluated.  Slip between tie-downs and the end studs was
determined not to be a cause of failure.  Movement of the end studs, relative to the
bottom plate, was measured.  This movement was significantly reduced by the tie-
down anchors.  Pure tension load bolts were used to connect the foundation to the tie-
down anchors for one monotonic wall configuration. Two methods of prediction were
discussed and shown to give conservative results.


