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ABSTRACT (academic) 

 
Landslides cause significant damage worldwide and therefore epitomize the most 

important problems in geotechnical engineering. Hence, perceiving the mechanics 

involved in the deformation process of landslides is necessary for risk assessment. In 

addition to the resistance offered by basal shear surfaces, internal shearing also influences 

the stability and kinematics of compound landslides. For compound landslides, internal 

shearing is essential to develop feasible sliding mechanisms. The internal distortion is 

caused by the formation of shear bands that develop within the sliding mass. The strain 

localization is generally attributed to slope changes along the basal sliding surface (or 

topography) that constrain the strain field of the landslide. The development of these 

internal shear bands also controls the energy dissipation, and its distribution determines the 

final degradation of the material. This work focuses on the study of internal failure 

mechanisms that develop in compound landslides. A theoretical model of a compound 

landslide is numerically analyzed using the Material Point Method (MPM), a state-of-the-

art numerical technique appropriate to model large deformation problems. The internal 

failure pattern is identified for different basal sliding geometries. Based on that, a 

generalized method is proposed to estimate the internal failure mechanism of bi-planar 

compound geometries. The material degradation and energy dissipation are evaluated in 

terms of the accumulated deviatoric strain and the reaction forces exerted by the landslide 

on a vertical wall. Moreover, preliminary studies are conducted to analyze the use of 

barriers as a mitigation strategy to counter landslide damage, and their efficiencies are 

investigated. 
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ABSTRACT (general audience) 

 

Landslides consist of movement of rock and debris down a slope. They cause substantial 

damage each year and therefore represent an important class of problems in geotechnical 

engineering. Understanding the deformation process and internal shearing pattern 

occurring in landslides is an important aspect for assessing the risk that a landslide poses. 

The internal shear is caused due to the formation of shear bands that develop within the 

mass flowing down the slope and originate at the points of slope change on an incline. 

These shear bands also affect the amount of energy dissipated and the degradation of flow 

material. In this work, the internal failure mechanism in landslides is analyzed and effects 

on landslide kinematics are studied. Material Point Method (MPM) is used to simulate 

slope instabilities which is an advanced numerical technique appropriate for modeling large 

deformation problems such as landslides. Several theoretical models of compound 

landslides are presented considering variation in geometry (roundedness), friction, and 

slope angle. A generalized failure mechanism of a landslide is proposed based on its 

geometry and physical parameters. Finally, accumulated strains and reaction forces 

impacted by moving mass on a wall are calculated for different landslide geometries, and 

subsequently correlated to energy dissipation material degradation. These results also serve 

as a precursor to studying the role of barriers in mitigating landslide damage.  
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1 Introduction 

 

1.1 Background and motivation 

Landslides are natural disasters and cause enormous damage to humankind and property 

every year. Roughly 25-50 people lose their lives annually in the United States because of 

landslides (USGS 2020). As far as the worldwide death toll is concerned, thousands die 

each year due to landslides. Primarily, these casualties result from rock falls, debris-flows, 

flow slides, and volcanic debris flow (known as lahars). More than 2,600 fatal landslides 

recorded between 2004 and 2010 resulted in more than 32,000 casualties (Petley 2012).  

Therefore, it is imperative to understand the mechanics involved in the mass flow of a 

landslide on a large scale. While the stability and kinematics of a slope depend mostly on 

the resistance of the basal slip surface, the internal distortion and degradation of the 

material can also influence the kinematics, especially in compound landslides. Compound 

landslides consists of an active block which drives a more stable passive block (Hungr et 

al. 2014). These are different from translational slides where the entire body slides in an 

active state. Due to complex motion in more than one direction, internal shearing affects 

the kinematics of compound landslides. 

Taking these facts into account, it can be stated that examining the damage caused by 

compound landslides is essential. Moreover, to keep people and buildings safe from such 

damage, the following questions need to be addressed to: 

• How does internal shearing occur in a landslide? How does internal shearing impact 

the kinematics of compound landslides? What methods have been used to study 

internal shearing patterns in a compound landslide? 

• Given a landslide geometry, can we predict failure patterns around slope transitions 

following a generalized mechanism?  

• Can we correlate the failure geometry with the material shearing and degradation? 

Further, can we estimate corresponding energy losses occurring at slope transitions 

in compound landslides? 
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• How can we mitigate the damage caused by compound landslides? Can we design 

some barriers that could effectively reduce the velocity of moving particles in a 

landslide? If so, what could be a possible efficient design? 

These are some of the key questions that need to be addressed. To search for answers, we 

need to make use of numerical tools and techniques that can accurately model the post-

failure behavior of a compound landslide. The numerical modeling of these processes is 

challenging because of the large deformations suffered by the material during the motion. 

So, understanding the mechanisms involved in the whole deformation process is of utmost 

importance for risk assessment. 

The Material Point Method (MPM) is considered as one of the most suitable methods to 

model this type of geotechnical problems due to its capability to handle large deformation 

problems (Soga et al., 2016). Especially in geotechnical engineering problems such as 

landslides, MPM has been shown to successfully capture the post-failure behavior of a 

landslide and predict the runout, velocity, and displacement of soils with high accuracy. 

Owing to these attributes, MPM can potentially emerge as a useful numerical tool to 

analyze the failure mechanics and risk associated with compound landslides. 

 

1.2 Research goals and plan 

The goals of this research are to: 

o Analyze various types of geometries of compound landslides using MPM and 

observe internal shearing patterns. 

o Propose a generalized internal failure mechanism detailing shear band formation 

and strain localization, given a known landslide geometry (slope, radius of 

curvature of the slope transition), strength parameters at the basal sliding surface, 

and material properties. 

o Examine the effects of internal shearing on landslide kinematics, and qualitatively 

correlate failure geometry landslide with material degradation. 
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o Qualitatively study the energy dissipation occurring at slope transitions in 

compound landslides through analyzing the impact of the mobilized mass against a 

rigid vertical structure. 

o Investigate the role of protective barriers as a mitigation strategy to counter the 

damaging effects of a landslide. 

To achieve these objectives, the research work performed in this thesis was organized in 

several tasks briefly described below:  

First, we survey the academic literature on numerical methods employed to solve large 

deformation problems, and analyze the merits and demerits of each technique. We then 

point out some of the previous work done on the causes and consequences of compound 

landslides.  

Subsequently, we propose a theoretical model of a compound landslide. We modeled the 

slope using MPM along with Anura3D software to identify the internal shear pattern in 

different compound landslides. This is accomplished by performing a parametric analysis 

varying the slope angle, the radius of curvature of slope transition, the basal friction 

coefficient, and the length of the basal shear surface. 

Then, we identify the regions of strain localization, or shear bands by assessing the regions 

of maximum incremental deviatoric strain by post-processing the numerical results. 

Further, to evaluate material degradation caused due to internal shearing, we compute and 

compare the cumulative deviatoric strain among numerous basal geometries. Then, we 

correlate the failure geometry with the material degradation. 

The energy dissipation is qualitatively estimated by studying the impact forces on a vertical  

structure (i.e., rigid wall) located at the end of a landslide runout. We determine the 

magnitude of the reaction force impacted by the landslide on their collision with the vertical 

wall at the end of the basal sliding surface. These reaction forces provide a good idea about 

kinetic energy losses due to changes in internal shearing occurring in slope transitions.  

Finally, we conduct some preliminary simulations involving multiple protective barriers to 

gain elementary insights into mitigation strategies countering landslide damage. These 

models involve soil placed at the top of an incline that slides under gravity and gets 
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impacted by the barriers at regular intervals along the runout.  We draw a relation between 

the number and height of the intermediate protective barriers, and the reduction in the 

reaction force on the final rigid wall. 

 

1.3 Overview and organization of the thesis  

This thesis is organized into four chapters.   

o The first chapter corresponds to the introduction, which discusses the relevance of 

this research and presents the motivation, goals, and organization of the thesis. It 

also includes a literature review. 

o The second chapter is an introduction and brief history of the Material Point Method 

(MPM). It also contains a validation section, where a laboratory experiment of a 

slope instability is reproduced with an MPM model.  

o The third chapter contains most of the research performed in this thesis, which 

includes a description of the numerical model, the parametric analysis, and the 

discussion of the results. In particular, it proposes a generalized internal shearing 

mechanism for compound landslides, a qualitative study of energy dissipation, and 

the role of protective barriers as a mitigation strategy.  

o The fourth chapter provides the thesis conclusions including a summary of the work 

conducted, the key findings, and recommendations for future work. 

 

1.4 Literature review 

A landslide is described as the movement of a rock or soil mass down a slope. Landslides 

have caused damage worldwide, including many places in the US. Previous research has 

mostly focused on the pre-failure behavior of landslides. This literature survey summarizes 

the conventional and state-of-the-art numerical techniques to solve large deformation 

problems in geotechnical engineering including landslides, discusses key contributions 

attempted at studying internal shearing in landslides and concludes that further research is 

essential to understand post-behavior of landslides on its kinematics, which in turn, is 

crucial for assessing risk and developing mitigation strategies.  
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Numerical techniques are nowadays being utilized as primary tools in almost all fields of 

engineering – mechanical, aerospace, material, and civil engineering, including 

geotechnical engineering. This shift from analytical to numerical techniques has happened 

because many problems are too complicated to be solved manually and to reduce the time 

and costs involved in conducting large-scale physical experiments. Computer simulations 

are also particularly useful when physical modeling is challenging and impossible to 

perform, as in the case of landslides, that are difficult to model owing to their large runouts 

and complex internal shearing mechanics.  

At present, the Finite Element Method (FEM), developed in 1943 (Courant 1943), is the 

most popular numerical technique used to perform computer simulations. While FEM is 

recognized in both academic and industrial settings, this method reached its limits when 

the problem in consideration involves a substantial deformation – as in the case of a 

landslide where particles could travel a distance on the scale of kilometers. Hence, for 

large-deformation problems, FEM loses accuracy due to mesh distortion, which can cause 

the simulation to crash beforehand. While remeshing could be done, it is tough to derive 

an optimal mesh adaptation strategy. 

To overcome these limitations from conventional numerical techniques, mesh-less and 

mesh-free methods started developing. In these approaches, the domain is discretized into 

various points (material-points) or particles, and each point interacts flexibly with its 

neighboring points while carrying the material properties, strain and stress. Some mesh-

free techniques include: Smoothed Particle Hydrodynamics (SPH) by Gingold and 

Monaghan (1977), Generalized Finite Difference Method  (GFDM) by Liszka and Orkisz 

(1980), and Material Point Method (MPM) by (Sulsky et al. 1994) were developed. This 

was followed by the Particle Finite Element Method (PFEM) of Idelsohn et al. (2006) and 

Sabel et al. (2014), and the Optimal Transport Meshfree method (OTM) by Li et al. (2010). 

Recently, MPM has received a good deal of attention in geotechnical engineering, in 

particular, MPM was included in the 2017 Rankine Lecture. Fern et al. (2019) describe the 

use of MPM for many geotechnical problems. Soga et al. (2016) emphasize the need to 

develop numerical modeling methods that can predict both the failure initiation as well as 

the post-failure behavior of landslides. The authors discuss the merits and limitations of 
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various numerical techniques for modeling large-deformation problems involving 

landslides (including FEM, FDM, CEL, EFG, FEMLIP, SPH, PIC, and MPM), and finally 

suggest MPM overall. They  also emphasize that MPM has the advantage of utilizing 

history-dependent constitutive models. Many recent publications in MPM have focused on 

landslides (Alonso 2014, Yerro 2016). Alonso et al. (2014) discussed the effect of rainfall 

on slope stability and presented the capabilities of modern Lagrangian methods like MPM 

to deal with large displacements. Yerro et al. (2016) studied the run-out of landslides in 

brittle soils, in which a saturated slope was analyzed. This work discusses both the pre-

failure and post-failure behavior characteristics, such as run-out distance and sliding 

velocity, determined by employing the Mohr-Coulomb model with strain-softening 

behavior. The authors conclude that the initiation of progressive failure is controlled by 

peak strength whereas run-out is influenced by the residual strength of a material. The 

stability and kinematics of a landslide are governed by internal shearing apart from basal 

friction resistance.  

Hungr (2014) describes compound landslides consisting of an active block which drives a 

more stable passive block, with complex motion in multiple directions. For compound 

landslides, Fell et al. (2007) considered internal shearing to be one of the most critical 

factors to understand rupture mechanisms in landslides, especially in rock and brittle 

materials. Hutchinson (1987) proposed that brittle internal shearing in compound 

landslides, buckling at toes, and sudden ingression of water into landslide mass could 

induce rapid sliding. 

Fell et al. (2007) state that for compound slides, it is essential to determine if the nature of 

internal shearing is brittle since internal shearing is necessary to develop a feasible sliding 

mechanism. Rapid sliding is more likely in the case of brittle internal shear (strain 

weakening accompanied by small displacements on the internal shear surface). Brittle 

internal shears are expected if shear surfaces require fracturing of intact rock, more strength 

on internal shears than residual strength, and high Rock Quality Designation (RQD) of 

slide mass. Non-brittle internal shears are expected when if viable internal shear surfaces 

are parallel to existing continuous shear surfaces or bedding planes, internal shears are at 

residual strength and low RQD of slide mass. 



 

7 
 

Glastonbury and Fell (2010) studied 51 different landslides, in which they identified 26 to 

have been caused due to internal shearing. The typical volume of a landslide mass was of 

the order of 1 – 100 million cubic meters, with most of them occurring on slopes 20 – 40°. 

The authors observed that the internal shear band was generally perpendicular to main 

structures, or bedding planes, or at a high angle to anisotropy. The authors stated that 

passive wedges accounted for about 40% of the total slide volume, which implied 

significant load from the active wedge and internal shearing occurring at a high angle, 

approximately normal to the anisotropy.  

Numerical research conducted on the mechanism of internal failure is limited. Yerro et al. 

(2016b) examine the stability conditions and the post-failure behavior of a compound deep-

seated landslide, inspired in Vajont landslide. The authors analyze the internal shearing 

patterns and degradation using MPM for both pre-failure and post-failure conditions. Their 

results indicated that the stability of the compound slope is controlled by an internal shear 

band which develops along with a progressive failure mechanism. 

The failure mechanism in a landslide, apart from controlling the failure initiation, also 

affects the kinematics, material degradation, and energy losses occurring during its motion. 

The design of protective barriers could also benefit from having a better understanding of 

internal shearing patterns, since they act like these sudden slope transitions. Physical 

barriers help to mitigate landslide damage and are employed in situations where landslides 

can potentially impinge on existing structures. Constructing buttresses, walls, barriers, and 

anchors at the base and regular intervals on the slope are some of the mitigation strategies 

for regions with a high probability of landslide incidents. 

To mitigate landslide damage, further research needs to be conducted in the field of 

constructing protective barriers/obstacles to predict and reduce the velocity of the mass 

mobilized during a landslide. Dry granular materials tend to re-accelerate between 

consecutive rows of barriers placed on a slope due to gravity (Ng et al. 2018). Artificial 

barriers can alleviate the risk by lowering the velocity of particles and the final runout 

distance. They can also divert the flow towards lateral zones that are constrained by the 

barriers (Cuomo et al. 2019). Hence, protective barriers can prove to be effective in 

dissipating energy and alleviating damage. 
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Landslides continue to cause widespread damage throughout the world. For compound 

landslides, unfortunately, the research emphasizing internal shearing, strain localization, 

energy dissipation, using physical and numerical techniques has been sparse. Reflecting 

that immaturity, this literature survey defines the overall problem and points out gaps in 

understanding the failure mechanism of landslides, and its effects on landslide kinematics. 

Further research is needed to understand the internal shearing mechanism in landslides and 

predict failure patterns based on topography and material parameters to develop mitigation 

strategies for risk assessment.  
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2 The Material Point Method and validation with a physical 

experiment 

 

2.1 The Material Point Method 

2.1.1 A brief introduction to the Material Point Method 

The Material Point Method was developed by Sulsky et al. (1994). It is one of the most 

recent developments of Particle in Cell Methods (PIC). The PIC technique dates back to 

1950s by Harlow (1962) which was used to analyze fluid Mechanics problems at Los 

Alamos National Laboratory. However, the PIC methods suffered significant energy 

dissipation. Brackbill and Ruppel (1986) overcame this drawback using the FLIP (Fluid 

implicit particle method) technique. In 1994, Sulsky and her colleagues modified FLIP for 

applications in solid mechanics (Sulsky et al. 1994). Sulsky and Schreyer (1996) coined 

this new technique as Material Point Method (MPM) at the University of New Mexico.  

In the Material Point Method, the continuum body is discretized by a predetermined 

number of Lagrangian particles or Material Points (MP). In addition to carrying external 

loads, these MPs carry all the information of the continuum such as mass, volume, density, 

gradient, displacement, velocity, acceleration, stress, strain, material parameters, strength 

parameters, etc. In geotechnical engineering problems, the MPs represent a small portion 

of the entire continuum and not the individual soil grains. Each material point moves 

attached with the solid body and hence constitutes the Lagrangian representation of the 

medium. 

A Eulerian mesh is present which covers the entire domain in which the body is supposed 

to move. All displacements and deformations are numerically calculated in this 

computational mesh. The system of equilibrium equations is solved in the mesh grid, but 

usually it does not deform with the body, unlike FEM. Mapping functions are used to 

transfer the variables from the MPs to the nodes. The conservation of mass is satisfied 

because each material point contains a fixed amount of mass at all times.  
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2.1.2 The MPM algorithm 

At the start of each time step, all the information regarding the material and state parameters 

(e.g., density, stress, strain, velocity, etc.) remain at the MPs. The MPM algorithm can be 

summarized as follows (Figure 2.1):  

a) The material points (shown in black) are overlain on a computational mesh. The 

blue arrows represent material state parameters like velocity, mass, etc. These are 

projected towards the computational grid nodes by using shape functions.  

b) The governing equations (i.e. dynamic equilibrium) are solved at the nodes to 

calculate the value of updated nodal velocity. 

c) Updated values are mapped back to the MPs. See maroon arrows. 

d) The velocity and position of the MPs are updated, and the computational grid is 

reset. In this phase, the compatibility equation and the constitutive equation are also 

evaluated to update the strain and the stresses at the MPs. The gray dots represent 

the initial positions, while the black dots represent updated positions. See pink 

arrows. 

 
Figure 2.1: Illustration of MPM algorithm (Soga et al., 2016) 
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2.1.3 Advantages and drawbacks of MPM 

The following are the advantages of the MPM: 

• Suitable to model large deformation problems without mesh tangling, especially in 

geotechnical engineering phenomena such as landslides. 

• Accurate transfer of material properties via the motion of material points, which 

allows utilization of history-dependent constitutive models. 

• High resemblance to classical FEM. Governing equations and similar knowledge 

from FEM can be used appropriately applied here, which makes MPM 

implementation intuitive to FEM users.  

• Involves continuum behavior of soil and hence implementing constitute models is 

“easy”. 

• Computationally less expensive than other meshed based methods because re-

meshing is not required after transferring information from material points to grid 

nodes. 

• Implementation of contact algorithm is intuitive. 

• MPM can handle coupled hydromechanical models well. 

The following are the drawbacks of MPM: 

• Computationally expensive because information needs to be transferred twice 

(from MPs to nodes and back to MPs) every time step. 

• Low-order elements are used hence a first-order accuracy of the velocity is 

expected. 

• Numerical instabilities in the stresses when MPs cross from one element to another 

(i.e., grid-crossing error) reduce the accuracy of the simulation. This issue can be 

minimized by using different technics. 

• The time integration is usually explicit hence the calculation is conditionally stable. 
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2.2 Validation of MPM with physical experiment 

In this section, we attempt to validate the Material Point method with a lab experiment 

conducted by Mancarella and Hungr (2010). The experimental setup consists of a 29° 

downward slope followed by a 33° run-up slope. In that physical model, dry sand is placed 

at the top of the 29° incline. Specifically, a volume of 0.027 m3 of sand is positioned in a 

box with a triangular cross-section at the top. Once released, the granular material flows 

down to the bottom of the slope and then climbs up the 33° upward ramp.  

The basic geometry and material parameters are taken directly from the physical 

experiment (See Fig 2.2 and Table 2.1). The model is considered in plain-strain conditions, 

hence the width of the original model (0.35 m) is not considered. The radius of curvature 

is 0.10 m at the point of change of slope in the lowest part of the incline.  

The model is discretized into a fine mesh (mean element size 0.02 m) that would accurately 

analyze the problem with reasonable computational cost. The model has a total of 19,809 

elements and 9,498 nodes. Initially, 20 MPs per element are initiated in the soil domain 

and the basal material is represented with 4 MPs per element. This is a total of 364,484 

MPs. Regarding boundary conditions, the bottom is fully fixed, and the lateral surface on 

the right is simulated with rollers (only vertical movement is allowed). The interaction 

between the sand and the base material is simulated using a frictional contact algorithm. 

The base friction coefficient (μ) is 0.2. The linear elastic – perfectly plastic Mohr-Coulomb 

constitutive model is considered to model the sand behavior. For simplification, no 

dilatancy is considered for the soil. It may be noted that dilatancy could affect initial failure 

mechanisms, but its effect is expected to diminish with the forward motion of soil. In any 

case, further investigation should be performed in future works.   

Figure 2.3 presents a comparison between laboratory data and numerical results. The flow 

profiles at times 0.6, 1.2, and 2.0 seconds after the soil is released are illustrated. It can be 

noted that there is a good agreement of the run-out for these time steps, up to 1.2 seconds. 

At t = 2.0 seconds, we can see that MPM predicts a slightly higher run-up for the model. 

This could be because the constitutive model used in this case (Mohr-Coulomb model) 

might be too simplistic to accurately predict the grain-to-grain interaction. 



 

13 
 

 

 

 

Table 2.1: Material parameters of numerical model used for validation 

Parameter Value 
Density of solid particles, ρ 2673 kg/m3 

Porosity, n 0.39 

Friction angle of soil, φ 30.9° 

Young’s modulus, E 500 kPa 

Poisson ratio, ν 0.2 

Friction coefficient at base, μ 0.4 

 

 

 

 
Figure 2.2: Numerical model depicting geometry and discretization of the experimental setup 
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Figure 2.3: Comparison of the sand motion down the incline from Mancarella and Hungr (2010) 

experiment (on the left side) with the MPM results (on the right side) at three different times. 
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3 Numerical modeling of compound landslides using MPM 

3.1 Introduction 

In the previous section, we validated the MPM framework with a physical laboratory 

experiment and observed that MPM has the capability to simulate large deformations and 

can predict the displacement of soil particles moving on a slope with relatively good 

accuracy. In this section, we extend the use of MPM to explore the development of internal 

shearing mechanisms in compound landslides 

First, we present a general theoretical model of a compound landslide and define the 

geometrical parameters and physical properties. This general model will serve as a 

reference for all other subsections in this study. We start by identifying what are the 

patterns of internal shear mechanisms for various slope transitions. Then, a parametric 

analysis is performed to observe the effect of basal friction and slope angle on internal 

shear patterns. Moving further, material degradation is qualitatively evaluated in terms of 

cumulative deviatoric strain for different geometries. Then, the impact of the landslide 

against a vertical rigid wall is analyzed in terms of reaction force. Finally, we present a 

preliminary analysis of the role of protective barriers in mitigating landslide damage.  

3.2 General numerical model 

In this section, a plane-strain model of a theoretical compound biplane landslide is 

considered (Figure 3.1). The soil rests on an incline, which makes an angle of 𝜃𝜃 with the 

horizontal. The angle of the soil surface at the toe with the horizontal is 𝛽𝛽, and 𝑏𝑏 is a 

representative measure of the thickness of the landslide which is measured from the kink 

in the direction perpendicular to the soil surface. The slope transition is defined by the 

radius of curvature (𝑅𝑅), which is expressed in multiples of b17T as 𝑅𝑅 = 𝑛𝑛 ∙ 𝑏𝑏, being 𝑛𝑛 the 

multiplication factor. The basal sliding surface has a friction coefficient of 𝜇𝜇 and it is 

included in the model by using a contact algorithm. The soil on the horizontal plane has 

length x, and vertical height h on the incline. The total length and height of the model are 

X and H, respectively. The radius of the slope transition (R), the basal friction coefficient 

(μ), and the slope angle (θ) will be varied later to study their effects in the internal shear 

mechanism.  
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Figure 3.1: General landslide geometry with radius of curvature (R) 

A vertical wall is placed at the right end of the model on which the magnitude of the impact 

forces exerted by the moving mass can be measured. The wall is assumed rigid and fully 

rough which means that no sliding is allowed. The reaction forces on the wall will be 

calculated to qualitatively analyze energy dissipation phenomena, as discussed in Sections 

3.5 and 3.6. 

The linear-elastic perfectly-plastic Mohr-Coulomb constitutive model is used to simulate 

the constitutive behavior of the soil. The soil is assumed frictional and dry (c = 0.01 kPa, 

φ = 35°). See Table 3.1 for material properties. These properties remain the same for 

landslide models considered in this study. 

Table 3.1: Material parameters for soil and basal plane 

Material Parameter Value of parameter 

Soil Basal plane 

Density of solid particles, ρ 2650 kg/m3 4000 kg/m3 

Porosity, n 0.4 0.4 

Young’s modulus, E 10000 kPa 20000 kPa 

Poisson ratio, ν 0.3 0.33 
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For all simulations, 4 Material Points (MPs) per element are assigned to the soil material 

and 1 MP per element to the base material. Regarding boundary constraints, the model is 

fully fixed at the bottom base and the left and right edges are rollers supported in the x-

direction. The mesh size is 0.25 m. This size was found appropriate after performing a 

mesh convergence analysis, considering the optimization of computational time while 

maintaining the accuracy of results. 

The stresses are initialized with an elastic gravity loading. In this step, the quasi-static 

convergence is considered and a homogenous damping factor of 0.75 is applied to avoid 

spurious oscillations. Also, the contact algorithm is off in this initial step assuming fully 

rough contact between soil and base to avoid sliding. Next, the landslide is triggered by 

turning on the contact algorithm, hence sliding is allowed and controlled by the friction 

coefficient 𝜇𝜇. During the sliding mechanism, the damping factor is changed to 0.01 to allow 

for all dynamic effects. The calculation is performed with Anura3D software, and results 

are analyzed in ParaView. 

3.3 Internal shearing pattern  

In this section, we plan to gain an initial insight into the formation and evolution of the 

internal shearing mechanisms in compound landslides.  The internal shearing pattern will 

be described in terms of the landslide parameters (e.g., slope angle, θ, and radius of 

curvature, R). A parametric analysis is performed to study the effect of the slope transition 

(R), basal friction resistance (𝜇𝜇), and slope angle (θ) on the development of the internal 

shear mechanism. Finally, a generalized failure mechanism for compound biplanar 

landslides is proposed. 

3.3.1 Effects of the slope transition 

In this section, five slope transitions are analyzed considering different radius of curvature: 

• R = 0 (kink slope transition, Figure 3.2)  
• R = 0.5*b 
• R = b 
• R = 1.5*b 
• R = 2.0*b 
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Note that 𝑅𝑅 = 0 represents a kink slope transition, with no curvature. Other variables of 

the model remain constant: 𝜃𝜃 = 45°, 𝛽𝛽 = 26.5°, 𝜇𝜇 = 0 , ℎ = 8 𝑚𝑚, 𝑥𝑥 = 8 𝑚𝑚, 𝑏𝑏 = 3.58 𝑚𝑚,

𝑋𝑋 =  20 𝑚𝑚, 𝐻𝐻 = 10 𝑚𝑚. The assumed value of β = 26.5° is small enough to prevent sliding 

of soil mass over itself during the stress initialization and sufficiently large to occupy soil 

volume to observe internal shear patterns conveniently. Note that in this section the basal 

friction is set to zero to maximize the speed of the landslide and reduce the computational 

time.  

3.3.1.1 Kink slope transition: R = 0 

The kink slope transition (R = 0) is an abrupt change in slope from an incline to horizontal, 

45° to 0° in this case (Figure 3.2). After stress initialization, the contact algorithm is 

switched on and the soil slides down the incline across the kink. Internal shear bands need 

to develop to form a kinematically admissible mechanism for sliding to occur. To 

accurately study the strain localization, we consider several intermediate times during 

sliding of the moving mass. 

 

 
Figure 3.2: Kink slope transition 

 

Figure 3.3 shows incremental deviatoric strain at different times (t = 0.5, 1, 1.5, 2 s). The 

incremental deviatoric strain is the strain accumulated during a very small fraction of time 

(time step) of the calculation (5.36 × 10−4 s). This measure allows us to determine the 

evolution and the location of the internal shear failure mechanisms. At t = 0.5 s, a vertical 
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shear band develops vertically from the kink and extending to the soil surface. The shearing 

is more intense at the vertex. The shear band is perpendicular to the basal surface. At t = 

1.0 s the shearing becomes more intense as more and more soil passes through the initial 

vertical shearing plane and a triangular shear region starts to develop. At t = 1.5 s, a 

triangular shear band is observed with the vertex at the kink, and edges almost normal to 

the slip surfaces. The angle that defines the internal failure mechanism (α) is about 45°, 

which coincides with the slope angle (𝜃𝜃). Finally, at t = 2.0 s, the triangular shear zone is 

slightly wider, α  ≈ 55°, which can be represented in terms of the slope angle as: α  ≈ 𝜃𝜃+α’, 

where α’ ranges from 0 – 10°. The incremental angle α’, is possibly created due to the 

forward movement of soil on the horizontal plane.  

As soil passes through the kink, the region of strain localization becomes more triangular 

after starting from a vertical shape. The material is hence more sheared as it reaches the 

other side of the shear band. Therefore, energy dissipation also takes place in this process. 
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(a) t = 0.5 sec                                                                                       (b) t = 1 sec 

 

              
(c) t = 1.5 sec                                                                              (d) t = 2 sec. 

Figure 3.3: Internal shearing mechanism for a compound landslide with kink slope with geometry at different time intervals 
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3.3.1.2 Curved transition: R = 0.5b  

In this model the slope transition is curved, the radius of curvature is half the maximum 

thickness of the landslide (b), i.e. R = 0.5b =1.79 m (Figure 3.4).  

 
Figure 3.4: General numerical model for a curved landslide geometry  

Figure 3.5 depicts the evolution of the internal shear patterns at four times. At t = 0.5 sec, 

a vertical shear band is developed and a minor second shear band is also observed normal 

to the incline. Despite these shear bands seem to originate around the slope transition, the 

material located just above the curvature seems to remain unsheared. At t = 1.0 s and 1.5 

s, a vertical shear zone develops vertically from the first point of the curved transition. 

Also, a triangular sheared region develops with the vertex at end point of the slope 

transition and the sides perpendicular to the basal slope planes (α ≈ 45°). Finally, at t = 2 

s, the same failure mechanism is observed but the triangular sheared zone slightly widens 

and the shear angle becomes α ≈ 55°.  
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(a) t = 0.5 sec                                                                      (b) t = 1 sec 

 

              
c) t = 1.5 sec                                                                            (d) t = 2 sec. 

Figure 3.5: Internal shearing mechanism for landslide (R = 0.5*b) at different time intervals 
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3.3.1.3 Curved transition: R = b  

The radius of curvature in this model is 3.58 m, equal to the maximum thickness (b) of the 

soil. The evolution of the incremental deviatoric strain is presented in Figure 3.6. At t = 

0.5s, two shear zones develop from the two edge points of the curved transition towards 

the soil surface. Also, a shear arc is distinguished. The shear arc has its end points at the 

start and end of the curvature, and the soil just beneath the transition zone is not sheared. 

At t = 1.0 s and 1.5 s, two triangular shear regions are seen with vertices roughly starting 

at the end points of the curved transition, and edges normal to the incline and horizontal 

surfaces, respectively. The sheared angles of the triangular zones are approximately the 

same, α ≈ 45°. A shear arc connects the vertex of the two triangular sheared zones, at the 

end points of the curvature. At t = 2.0 s, the same shear pattern is observed. While the first 

shear triangular region on the left keeps shrinking as soil flows forward, the second region 

gets larger due to more soil accumulation. The angle α is about 45° for the initial shear 

band. The second shear band on the right has a small increment α’ of about 10° which 

makes the total angle α equal to nearly 55°.  

In this particular case, the radius of the shear arc measures d ≈ 1.5 m. Using trigonometry 

(Figure 3.7), the measured radius (d) can be expressed in terms of slope parameters (i.e., R 

and θ) as follows:  

d =  k R tan (𝜃𝜃/2)      (Equation 1) 

with k being a factor. Also, it can be expressed as d =  k r17T, where 𝑟𝑟 =  𝑅𝑅 𝑡𝑡𝑡𝑡𝑡𝑡(𝜃𝜃/2)   

In this case, r =  3.58 ∗  tan 22.5° ≈  1.5 m. This value coincides with the measured 

radius of the shear arc d . So, d ≈ r, hence k = 1. This means that the center of shear arc 

roughly coincides with theoretical kink in this case.
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(a) t = 0.5 sec                                                                                       (b) t = 1 sec 

              
                                                      (c) t = 1.5 sec                                                                              (d) t = 2 sec 
 

Figure 3.6: Internal shearing mechanism for landslide (R = b) at different time intervals 
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Figure 3.7: Geometrical calculation for shear arc measurements 

 

3.3.1.4 Curved transition: R = 1.5*b  

The radius of curvature in this case is 5.37 m, equal to 1.5 times the maximum width (b) 

of soil, R = 1.5b. The evolution of incremental deviatoric strain is presented in Figure 3.8. 

At t = 0.5 s, an outline of two localized triangular shear regions are observed, which are 

connected by an arc. Note that shear bands have not developed fully yet, and appear to 

originate from the start and end points of the curvature. The radius of shear arc, d = 2.58 
m, which is 0.48 times the radius of curvature (R). Analytically, radius of shear arc, r = 

2.22 m. From our assumption of d = k*r , the value of k = 1.16 in this case.  

At t = 1.0 s, two distinct triangular shear bands are seen with angle α = 45°. A shear arc 

(outlined in black) is also observed. At t = 1.5 s, α is about 45° for the initial shear band. 

For the second shear band, a small increment α’  ≈ 10° is present, which makes α equal to 

nearly 55°. At t = 2 s, the same shear pattern is observed. The first triangle becomes smaller 

with time, and the size of second one increases. In all cases, we note the presence of basal 

accumulation of shear along the curvature. The angle α is roughly 55°, with α' ≈ 10°. 
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3.3.1.5 Curved transition: R = 2b  

The radius of curvature is R = 2b = 7.16 m, which is the largest of all radii that we consider 

in this section. Figure 3.9 depicts the various stages of incremental deviatoric strain. At t = 

0.5 s, triangular shear bands start developing at the end points of the curvature. The radius 

of shear arc, d = 3.3 m, which is approximately 0.46 times the radius of curvature. 

Analytically, r = 7.16 * tan 22.5° ≈ 3.0 m. From the assumption of d = k*r, the value of 

k is 1.1 in this case. 

At t = 1.0 s, two distinct triangular shear bands are observed extending from the end points 

of curvature. The shear arc is faint and hard to visualize. The included angles of these shear 

bands are 45° and 53° respectively. Small increment angle α’ ≈ 8°. At t = 1.5 s, similar 

shear pattern is observed with the angles being 45° and 55°. The increment α' ≈ 10° due to 

forward motion of mass. The shear arc is faintly visible, connecting the two shear bands. 

At t = 2.0 s, the first shear band has shrunk in size and the second one has become larger. 

Shear arc is not visible and is most likely outside the soil surface at this moment. The first 

shear band on the slope includes an angle α = θ = 45°, while the second shear band on the 

horizontal plane includes an angle α ≈ 55° 
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(a) t = 0.5 sec                                                                          (b) t = 1 sec 

 

              
                                              (c) t = 1.5 sec                                                                              (d) t = 2 sec. 

 
Figure 3.8: Internal shearing mechanism for landslide (R = 1.5*b) at different time intervals 
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a) t = 0.5 sec                                                               (b) t = 1 sec 

 

          
                                              (c) t = 1.5 sec                                                                       (d) t = 2 sec 

 
Figure 3.9: Internal shearing mechanism for landslide (R = 2*b) at different time intervals 
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3.3.1.6 Key findings regarding slope transition 

In this section, the internal shear mechanism was studied for a compound landslide with a 

slope angle of 45°. Incremental deviatoric strain was used to identify the regions of 

momentary strain localization for different geometries. It can be observed that as the soil 

slides down the basal surface triangular shear bands develop from the two points where the 

slope changes perpendicular to the slope surfaces. This can be explained because the 

velocity field in the sliding mass is affected by the changes in slope at the basal surface, 

from a rectilinear movement to a circular movement and vice versa. On top of the two 

triangular shear zones, a shear arc connects both zones which indicates the rotation of the 

sliding mass near the slope transition. The totality of these shear bands forms a kinematical 

admissible failure mechanism. A summary of the numerical results is presented in Table 

3.2. 

Despite having different basal geometries, a generalized internal shear mechanism can be 

defined in terms of the shearing angle α of the triangular regions and the radius of the shear 

arc (d). Both parameters are related to the slope angle θ and radius of curvature of the 

slope transition R as follows:  

o Shearing angle: α = θ + α’  (Range of α’: 0 – 10°, increases with the direction of 

the motion) 

o Radius of the shear arc: d ≈ k * r , where r = R  tan (θ/2)  (Range of k: 1.0 – 1.2) 

Note that the kink slope transition (R = 0) becomes a particular case of the proposed 

general mechanism. 

In Figure 3.10 the internal failure patterns are presented for three different R at two 

different times (t = 1 s and t = 1.5 s). From this plot, it can be observed that the magnitude 

of the incremental deviatoric strain increases for smaller R. 

Finally, it is important to highlight that the general shearing pattern observed here is 

consistent with field data from Glastonbury and Fell (2010), who observed that the internal 

shear bands were generally perpendicular to basal sliding planes. 
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(a) 

 

 
(b) 

Figure 3.10: Incremental deviatoric strain at (a) t = 1 s and (b) t = 1.5 s 

Table 3.2: Summary of geometrical observations for shear bands (θ = 45°, b = 3.58 m) 

Radius (R) of 
slope transition 

Number of 
shear bands 

Location of 
shear bands 

Angles of shearing 
(α) 

Measured 
shear arc (d)  Remarks 

R = 0 
 

1 triangular 
region At kink 

Initially,  
α = θ = 45° 

 
Finally, 

 α ≈ 55°= 45°+10° 
 

Hence, α = θ + α’ 
 

Range of α’: 0 – 10° 
 

No arc formed - 

 R = 0.5*b 
(1.78 m) 

1 triangular 
region 

At end of 
curve 

Shear arc 
difficult to see - 

 R = b 
(3.57 m) 

2 triangular + 
shear arc 

At start and 
end of curve. 

 
 Shear arc in 

between 

d = 1.5 m d = 0.42*R 
d = r 

 R = 1.5*b 
(5.37 m) 

2 triangular + 
shear arc d = 2.58 m d = 0.48*R 

d = 1.16*r 

R = 2*b 
(7.16 m) 

2 triangular + 
shear arc d = 3.3 m d = 0.46*R 

d = 1.1*r 
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3.3.2 Effect of basal friction resistance 

Cases with frictionless (μ = 0) basal shear surfaces were analyzed in the previous section 

to optimize results and make calculations faster. In this section, the effect of the basal 

friction resistance (μ) on the slip surface is studied keeping all other parameters the same 

as discussed in Section 3.1. A non-zero friction coefficient (μ = 0.08 and 0.17) is assigned 

to the slip surface to check if it alters the shearing mechanism of the compound landslide 

observed in the previous section. Note that higher values of friction coefficient are not 

considered because the landslide final runout becomes too small. 

Hereinafter, we use the parameter ψ  to denote the contact friction angle between the soil 

and basal shear surface, where μ = tan ψ.  

3.3.2.1 Friction coefficient, μ = 0.08 

A friction coefficient of μ = 0.08 (corresponding to a basal friction angle of ψ = 5°) is 

assigned to the basal slip surface. The simulation is run for the model with R = 1.5*b, 

because both the shear bands and shear arc were clearly visible in section 3.3.1.4. Figure 

3.11 shows the internal shear band formation when toe is 10 m and 6 m away from the 

edge of the model. The general mechanism obtained for the frictionless case is 

superimposed on top that of this figure, which is in good agreement with the internal 

shearing bands, being α ≈ 45° = θ and d = 2.55 m, r = 2.22. Setting d = k r  gives k = 1.15. 

Something important to be noted is that with the advancement of the landslide, α slightly 

increases (Figure 3.11b). 

 
(a) 
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(b) 

Figure 3.11: Internal shear bands when toe is a) 10 m and b) 6 m from the model edge (μ = 0.08) 

 

3.3.2.2 Friction coefficient, μ = 0.17 

A friction coefficient of μ = 0.17 (corresponding to a basal friction angle of ψ = 10°) is 

assigned to entire the slip surface. Again, the case with R = 1.5*b is analyzed and after 

superimposing the mechanism proposed in section 3.3.1. In Figure 3.12, we see that the 

observed internal shearing pattern matches reasonably well. With the movement of the soil 

mass, α does not seem to increase. d = 2.55 m with k = 1.15.  

 
(a) 

 
(b) 

Figure 3.12: Internal shear bands when toe is a) 10 m and b) 6 m from the model edge (μ = 0.17) 
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It is noted that the landslide stops and stabilizes before reaching the end wall. We also see 

a shear band occurring near the toe almost parallel to the surface. This might be due to the 

difference in velocities of particles of the moving mass. Due to internal shear, some 

particles possess a lower velocity than neighboring ones and come to rest earlier than 

neighboring particles due to friction, causing a shear band to develop near the toe of the 

landslide. 

 

3.3.2.3 Key findings regarding basal friction resistance  

In Table 3.3, we compare the internal shearing mechanism of a landslide with rounded 

geometry (R = 5.37 m) for three cases with basal friction ψ = 0°, 5°, 10°. The incremental 

deviatoric strain is plotted for toe distances 10 m and 6 m from the end, and following 

points are noted: 

o For 10 m distance, the angles in all models are roughly: α = 45°.  

For 6 m distance, the angles for frictionless model are: α = 45 – 55°,  α’ ≈  0 – 10°. 

For the friction model, they are: α = 45°, α’ ≈  0-10°. We note that there is a 5 – 

10° decrease in the total value of α, which could be due to more resistance to motion 

offered from the basal shear surface during forward motion of soil. So,  

α =  θ +  α’ –  ψ17T      (Equation 2) 

The range of α’ is 0 – 10°. 

o The radius of shear arc does not seem to be affected by the basal friction resistance, 

hence the same expression presented in Section 3.3.1 (Equation 1). 

d (when ψ = 0) ≈  d (when ψ ≠ 0) 

From the above analysis, we can comment that the basal friction does not have a significant 

change in internal shearing mechanism. The shape of the shear bands remains very similar, 

with minor changes in α. The change is nearly equal and opposite to the included friction.   
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Table 3.3: Comparison of frictionless and friction models 

Distance of 
toe from end 

μ = 0  (ψ = 0°) μ = 0.08  (ψ = 5 °) μ = 0.17  (ψ = 10°) 

10 m 

 
 
 

 
 

α = 45°,   α’ ≈  0° 
d = 2.58 m 

 

 
 

 
 

α = 45°,   α’ ≈  0-5° 
d = 2.55 m 

 
 
 

 
 

α = 45°,   α’ ≈  0-10° 
d = 2.55 m 

6 m 

 
 
 

 
 

α = 45-55°,   α’ ≈ 0 – 10° 

 
 

 
 

α = 45-50°,   α’ ≈ 0-5° 

 
 
 

 
 

α = 45°,   α’ ≈  0-10° 
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3.3.3 Effect of slope angle 

To study the effect of the slope angle 𝜃𝜃 in development of internal shearing mechanism, 

we construct two additional configurations are analyzed with slope angles of 37° and 26°. 

For each slope angle, different slope transitions are accounted. Note that the models from 

previous sections were performed with 𝜃𝜃 = 45°. 

3.3.3.1 Slope angle, θ = 37° 

Figure 3.13 depicts the general model of the landslide geometry. Particularities of the 

model: 𝜃𝜃 = 37°, 𝛽𝛽 = 26.5°, 𝜇𝜇 = 0 , ℎ = 13.4 𝑚𝑚, 𝑥𝑥 = 9.8 𝑚𝑚, 𝑏𝑏 = 4 𝑚𝑚, 𝑋𝑋 = 15 𝑚𝑚, 𝐻𝐻 =

14.1 𝑚𝑚. Three slope transitions have been considered: R = 0, R = b, and R = 2b. 

 
Figure 3.13: General landslide geometry with 37° slope 

 

i. Kink slope transition, R = 0, with θ= 37° 

Figure 3.14(a) shows the incremental deviatoric strain for a kink slope transition after 

sliding for 1 second from rest position. This is an initial stage during failure mechanism of 

this landslide. The shear band is essentially vertical and develops from the kink. At t = 1.5s 

(Figure 3.14b), the triangular shear band develops similarly to previous cases with the 

vertex at the kink. The angle of the sheared triangular region α is nearly 47°, which is equal 

to the slope angle θ, plus an increment α’ = 10° in this case. 
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(a) 

 
(b) 

Figure 3.14: Internal shear mechanism at (a) t = 1 sand (b) t = 1.5 sec (R= 0, θ = 37°) 

 

ii. Curved slope transition, R = b, with θ= 37°  

Figure 3.15 shows the incremental deviatoric strain of a landslide with radius of curvature 

of 4 m (R = b) after sliding for 1.6 seconds from rest position. This is an intermediate stage 

during failure mechanism of this landslide. Two distinct triangular shear bands and a shear 

arc are observed. The edges of the triangular regions are defined by adjacent lines which 

are nearly perpendicular to the two basal slip surfaces i.e. 37° and horizontal. The included 

angle α is approximately 37° and α’ ≈ 0°. The radius of shear arc (d) is nearly 1.7 m, and 

r ≈ 1.3 m, which makes k ≈ 1.3. 
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Figure 3.15: Internal shear mechanism at t = 1.6 s for round geometry (R = b, θ = 37°) 

iii. Curved slope transition, R = 2b, with θ= 37° 

Figure 3.16 shows the incremental deviatoric strain of the landslide with a radius of 

curvature of 8 m (R = 2b) after sliding for 1.5 seconds from rest position. This is an 

intermediate stage during failure mechanism of this landslide. Two distinct triangular shear 

bands and a shear arc are observed. The included angle for the first shear band is nearly 

37°, which is equal to slope angle θ. For the second shear band, there is a small increment 

α’  ≈ 10°, which makes α  ≈ 47°. The radius of the shear arc, d is nearly 2.9 m, and r = 2.52 

m, which makes k = 1.15. 

 
Figure 3.16: Internal shear mechanism at t = 1.5 s for round geometry (R = 2b, θ = 37°) 

Table 3.4 summarizes the relation between the slope geometry (R, θ), shear band 

characteristics and location, angles of shearing (α), and radius of shear arc (d).  
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Table 3.4: Summary of geometrical observations for shear bands (θ = 37°, b = 4 m) 

Radius (R) of 
transition 

Number of 
shear bands 

Location of shear 
bands 

Angle of shearing 
(α) 

Radius of shear arc 
(d) 

R = 0 m 
(Kink) 

1 triangular 
region At kink Vertical initially. 

α  ≈ 47° later. No arc formed 

R = b = 4 m 2 triangular + 
shear arc 

At start and end of 
curve. Shear arc in 

between α = 37° + α’ 
 

α  = θ + α’ 
Range of α’: 0 – 10° 

d  = 1.7 m 
d = 1.3*r 

R = 2b = 8 m 2 triangular + 
shear arc 

At start and end of 
curve. Shear arc in 

between 

d  = 2.9 m 
d = 1.15*r 

 

3.3.3.2 Slope angle, θ = 26° 

In this subsection, a landslide with 26° slope is studied. Figure 3.17 depicts the general 

geometry of the model. The maximum width of soil, b = 2.6 m in this case. Particularities 

of the model: 𝜃𝜃 = 26°, 𝛽𝛽 = 17°, 𝜇𝜇 = 0 , ℎ = 8 𝑚𝑚, 𝑥𝑥 = 8 𝑚𝑚, 𝑏𝑏 = 3.58 𝑚𝑚, 𝑋𝑋 =

 20 𝑚𝑚, 𝐻𝐻 = 8.5 𝑚𝑚. Two slope transitions are considered: one with a kink (R = 0), and a 

curved one (R = 2b).  

 
Figure 3.17: General landslide geometry for slope, θ = 26° 

i. Kink slope transition, R = 0, with 𝜃𝜃 = 26° 

Figure 3.18 shows the incremental deviatoric strain in kink slope transition geometry at 

time 1.2 s. We superimpose our assumed failure mechanism on top of the figure. From 

geometrical constructions, α ≈ 36°, which is equal to sum of θ and increment α’ = 10°. 
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Figure 3.18: Incremental deviatoric strain at t = 1.2 sec for a kink transition (θ = 26°) 

ii. Curved slope transition, R = 2b,  with 𝜃𝜃 = 26° 

Figure 3.19 shows incremental deviatoric strain with radius 5.2 m (R = 2b) at t = 2 s. After 

superimposing the proposed failure mechanism, we find α to be nearly 36°, which agrees 

with our assumption, α = θ + α’ with α’ = 10°. Two shear bands originate from the end 

points of the curved transition. The shear arc is not clearly visible, which might due to 

small slope angle θ. Note that the shear magnitude in this case is very small compared to 

previous simulations. 

 
Figure 3.19: Incremental deviatoric strain at t = 2 sec for R = 2b (θ = 26°) 

Table 3.5: Summary of geometrical observations for shear bands (θ = 26°, b = 3.58 m) 

Radius of slope 
transition (R) 

Number of 
shear bands 

Location of shear 
bands 

Angle of shearing 
(α) 

Depth of shear arc 
(d) 

R = 0 
(Kink) 

1 triangular 
region At kink 

α = 36° ≈ θ + α’ 
α’ ≈ 10° 

No arc formed 

R = 2b = 5.2 m 2 triangular At start and end of 
curve 

Arc not visible due 
to small slope and 

curvature 
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3.3.3.3 Key findings regarding slope angle 

On comparing the results from Tables 3.4 and 3.5, we can conclude that the slope angle 

does not have a big impact on the geometry of the internal shearing mechanism. Also, from 

the results, the magnitude of shearing consistently decreases with the reduction of θ. 

3.3.4 Proposing a generalized internal shearing mechanism 

Hence, given a landslide geometry with slope angle θ, radius of curvature R, friction 

coefficient μ (μ = tan ψ), we propose a generalized mechanism for internal shearing of 

biplane compound landslides: 

Kink transitions: Kink slope transitions will initially develop a vertical shear band at the 

kink, followed by a triangular shear band development. The edges of shear band are nearly 

perpendicular to the slope planes.  

Curved transitions: The curved geometries with low radii would develop triangular shear 

bands with edges normal to basal slip planes. The shear arc will be small. Transitions with 

large radius of curvature would develop two distinct shear bands and a shear arc. The shear 

bands are located at the start and end of the curved transition, and the shear arc connects 

the two end points.  

o The angle between adjacent edges of a triangular shear band (α) can be generally 

approximated by the slope angle θ, i.e. α ≈ θ.  

o Due to forward movement of soil, the shear bands tend to increase by a 

small angle α’. For frictionless surfaces, the range of α’ is 0 – 10°.  

o Due to the basal friction, the value of α may decrease. The change Δα is 

equal to the negative of the basal friction angle ψ, implying Δα ≈ – ψ. 

 𝛼𝛼 =  𝜃𝜃 +  𝛼𝛼’ –  𝜓𝜓     (Equation 2) 

The range of α’  is 0 – 10° 

o The shear arc extends from the start to end of the curvature. It becomes visible when 

the radius is more than half the maximum width of soil (b), i.e. R > 0.5*b.  

o The radius of the shear arc(d) is related to the analytical radius(r):     

  𝑑𝑑 ≈  𝑘𝑘 ∗  𝑟𝑟           (Equation 1) 

where range of k: 1.0 – 1.3 ;  and      𝑟𝑟 =  𝑅𝑅 ∗  𝑡𝑡𝑡𝑡𝑡𝑡 (𝜃𝜃/2)  
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o The value of d is not influenced appreciably by the presence of friction. 

o The shear mechanism observed in kink transitions can be considered a particular 

case of the curved transition. 

o As θ increases, the magnitude of shearing also increases. 

Please note that this is a preliminary study, and the effects of the material properties, 

landslide thickness, and surface topography were not accounted for. 

 

3.4 Effects of internal shear mechanisms on the accumulated shear strain and 

material degradation 

In the previous section, we determined the geometry of the internal shearing mechanism in 

biplanar compound landslides. We noted that the magnitude of internal shearing is more 

intense in landslides with kink slope transitions as compared to round geometries. Moving 

on, in this section, we qualitatively investigate the material degradation in terms of 

accumulated shear strain. First, we analyze the same slope angle (θ = 37°) considered 

earlier, and then, we examine another slope angle (θ = 30°) with a longer runout. 

3.4.1 Material degradation for different slope transitions 

The theoretical numerical model presented in Section 3.3.3 with a slope angle of θ = 37° 

is considered. For b = 4 m, five radii of curvature are analyzed, being R = 0, b, 2b, 4b, and 

6b (0 m, 4 m, 8 m, 16 m, and 24 m, respectively).  

The cumulative deviatoric strain for these five models is examined to qualitatively evaluate 

the material degradation occurring at slope transition. Each simulation is run for 5 seconds. 

For all geometries, the time which the toe impacts the wall is approximately found to be in 

the range of 1.6 – 1.8 seconds after being set into motion; with the least time for the model 

having the largest curvature (Figure 3.20). At this moment, sufficient mass has passed the 

slope transition, and the toe of the landslide is about to impact the wall at the end of the 

model. 

From Figure 3.20, it is seen that the mass above the slope transition does not have 

accumulated shear strain since the material in this zone moves together similar to a rigid 
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solid. Once the mass crosses through the shearing zones, the accumulated shear strain 

increases, and as soon as it reaches the horizontal basal surface, the shear strain remains 

essentially constant. The material that is initially located at the downside (near the toe) of 

the internal shearing mechanism, remains unsheared during the motion until it reaches the 

vertical wall at the end of the model. The shear strain accumulates along with a band, whose 

thickness (z) depends on the curvature of the transition zone. Note that for the kink case 

(R=0), z is equivalent to the thickness of the landslide (z = b). For curved transitions, as 

R increases, the degradation zone becomes thinner, leaving a band of unsheared material 

close to the basal sliding surface. This effect is the result of the development of the shear 

arc described in the previous sections. 

It is important to note that for curved transitions if the runout of the landslide is small (less 

than the length of the internal failure mechanism) and the instability is a first-time failure, 

an unsheared zone with intact material can remain in between two degraded zones (Figure 

3.20 d and e). 
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                                        (a)  R = 0                                                                         (b)   R = b =4 m                                                                          (c)   R = 2b = 8 m 

 

 
                                                                        (d)  R = 4b =16 m                                                                     (e)  R = 6b =24 m              

 

Figure 3.20: Cumulative deviatoric strains for five landslide geometries just before impacting with wall 
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3.4.2 Effects of internal shear on material degradation for landslides with large 

runouts  

In this section, the effects of internal shearing on the degradation of material in landslides 

with large runouts is discussed. A theoretical landslide geometry with slope angle θ = 30° 

is considered taking into account two slope transitions. Particularities of the model are θ = 

30°, β = 30°,  𝜇𝜇 =  0, ℎ =  10.5 𝑚𝑚, 𝑥𝑥 =  4 𝑚𝑚, 𝑏𝑏 =  2 𝑚𝑚, 𝑋𝑋 = 30 𝑚𝑚, 𝐻𝐻 = 10.5 𝑚𝑚.  

Figure 3.21 represents the geometry with a kink slope transition. One variation of this 

geometry is a model with a curved transition of radius R = 7.35*b = 14.7 m. The slope 

instability is triggered using gravity and subsequently reducing the basal friction angle 

down to 0 (μ = 0). 

 
Figure 3.21: Kink slope transition geometry for slope angle, θ = 30° 

First, the internal shearing mechanism proposed in section 3.3.4 is validated for this 

geometry. In Figure 3.22, the incremental deviatoric strain is visualized for kink and curved 

slope transitions.  

 
(a)                                                                             (b) 

Figure 3.22: Internal shear pattern in kink and curved slope transitions (θ = 30°) 
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Intense shearing is observed at the kink slope transition, and a roughly triangular shear 

band originates from the kink and spreads to the soil surface. For the curved transition, 

strain localization occurs at the start of the curved transition. The shear angle α = 26 – 36°, 

and is equal to the sum of slope angle θ and increment α’, which agrees with our assumed 

failure mechanism hypothesis.  

The cumulative deviatoric strain for the two models is presented at two times during the 

sliding process (t = 2 s and just before impacting the wall) in Figure 3.23. In Figure 3.23a, 

for the kink slope transition, a region of intense shear occurring as soon as soil crosses the 

internal shearing mechanism. For the curved transition case, the cumulative deviatoric 

strain is lesser, which implies the material is mostly unsheared, and therefore less degraded. 

Less energy losses occur, and the material mostly slides like a rigid body. Some shearing 

is observed at the top of the incline for both kink and curved geometries, which could be 

occurring due to difference in velocities of material points at the base and surface of the 

soil.  

Figure 3.23b shows the accumulated deviatoric strain in both geometries just before 

impacting the wall at the end. A large red region is observed in kink slope case, which 

indicates intense shearing. For the round geometry, a large blue portion signifies less 

internal shearing and therefore, lower material degradation. On comparing the amount of 

shearing undergone in both cases, it can be said that material degradation occurring in slope 

transitions with high curvatures is less compared to sharp ones. 

In this section, the material degradation of moving mass in a landslide was qualitatively 

visualized in terms of accumulated deviatoric strain. From our analysis, we can conclude 

that material in sharp/kink slope transitions undergoes more shearing and material 

degradation than curved/rounded geometries. Also, in large runouts, the material has 

already lost a significant portion of its energy due to internal shearing. Hence, internal 

shearing mechanism influences material degradation, which in turn leads to energy 

dissipation. In the next section, we will qualitatively study energy dissipation by analyzing 

impact forces of moving mass on a wall located at the end of horizontal basal surface. 
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(a) 

 

 
(b) 

 
Figure 3.23: Cumulative deviatoric strain for kink and curved transition geometries at a) t = 2 s, and 

b) just before impacting wall. 
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3.5 Effect of internal shearing on energy dissipation in slope transitions 

The capacity of damage caused by a landslide depends on the energy it possesses and on 

the amount of energy it is capable of transferring to a structure. Initially, a landslide 

possesses potential energy at rest due to its altitude. After a landslide is triggered, the 

material starts flowing down the slope, initiating the conversion of potential energy into 

kinetic energy, as per the law of energy conservation. At the lowest point of the slope, the 

energy possessed by the mass is mostly kinetic.   

During the motion of soil, some energy is lost due to overcoming friction, plastic shearing, 

and interactions between grains. In particular, for compound landslides, one of the most 

relevant causes of energy loss is due to plastic internal shearing occurring along the basal 

surface and the internal shearing bands. Therefore, the amount of energy loss depends on 

the extent and type of internal shear formation patterns.  

To qualitatively compute the energy loss due to different internal shearing mechanisms, 

the moving mass in the models is allowed to impact against a vertical rigid rough wall, and 

the reaction force as a result of the impact is measured. During the impact, the kinetic 

energy gets transferred to the wall before the landslide comes to rest. Therefore, analyzing 

the reaction forces on the wall as a result of the impact is an effective way to qualitatively 

estimate the energy dissipation taking place in different slope transitions. 

We examine the impact forces on the wall for several slope transitions defined by radius 

of curvature. The impact forces are evaluated by calculating the total magnitude of the 

reaction force vector over a period of time. 

3.5.1 Qualitative analysis of energy dissipation in terms of reaction forces for 
different slope transitions 

In this section, we qualitatively estimate the effect of energy loss due to different slope 

transitions. The impact forces are determined on the vertical wall at the end the landslide 

model. First, the model presented in section 3.4.1 is considered for reference. Note that five 

different slope transitions are considered, and a small runout (𝑋𝑋 = 3.75 𝑏𝑏) is allowed. 

Figure 3.24 presents the evolution of the reaction forces on the wall with time. 
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Figure 3.24: Combined plot of reaction forces exerted on wall by moving mass 

 

Observations from Figure 3.24: 

 R = 0 (Kink): The reaction force is lower than in curved geometries. The peak 

reaction force is as around 460 kN/m. The mobilized material impacts the wall 

latest of all cases, at nearly 1.7 seconds after the instability initiation, which 

indicates that the landslide velocity is the lowest. 

 R = b = 4 m: The average reaction force on the wall is more than the kink slope 

transition. The peak force is about 490 kN/m. This can be explained by the fact that 

particles undergo lower material degradation due to the presence of a curved 

transition instead of the sharp kink. The mass impacts the wall at about 1.65 

seconds, which is also faster than the previous case. 

 R = 2b = 8 m: The average reaction force on the wall is more than that of R = 0 

and R = 4 m case. The reaction peak is at about 495 kN/m. The time of impact is 

1.6 seconds.   
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 R = 4b = 16 m: The average reaction force on the wall is higher than in previous 

cases. The force peaks at about 520 kN/m at about 2.8 seconds. The moving mass 

impacts the wall at t = 1.55 seconds.  

 R = 6b = 24 m: The peak force magnitude is approximately 530 kN/m, which is 

the greatest of all the cases considered here. Due to a larger radius of curvature, the 

particles undergo less shearing, which means that the landslide possesses more 

kinetic energy at the moment of the impact hence a higher reaction force is required 

from the wall. The toe of the landslide reaches the wall the fastest, about 1.51 

seconds after the landslide initiation. 

Based on the results above, the reaction force exerted in the case of landslides with rounded 

geometries was generally greater than the ones with small curvatures (kink type 

transitions). This is because more internal shearing occurs in a kink slope transition, 

implying higher material degradation. So, more energy is dissipated at sharp slope changes 

(kink) which results in lower particle velocities as compared to particles in curved slope 

transitions. 

 

3.5.2 Qualitative analysis of energy dissipation in terms of reaction forces for a 
longer runout 

Here, we study the influence of roundedness on the energy dissipation phenomenon for a 

landslide with a longer runout (𝑋𝑋 = 15 𝑏𝑏). The geometry is the same as described in 

section 3.4.1. Again, the magnitude of the reaction force on the vertical wall is measured 

for two slope transitions (𝑅𝑅 = 0, 𝑅𝑅 = 7.35𝑏𝑏). The evolution of the reaction force is plotted 

in Figure 3.25. We observe the same pattern as for shorter runouts, but in this case, the 

differences in terms of average reaction force are even larger. Consistently, the rounded 

model reaches the wall faster than the model with a kink. 
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Figure 3.25: Evolution of reaction forces on the wall for kink and curved slope transitions 

 

3.5.3 Key findings from reaction forces of the landslide on a vertical rigid wall: 

o The capacity of damage caused by a landslide on a structure is related to the kinetic 

energy it possesses. This energy can be lost or dissipated during slope transitions 

and material degradation.  

o More energy is dissipated in a kink slope transition which is qualitatively 

represented by lower reaction forces on the impact wall. The reaction force against 

the wall is larger for the rounded models than for the kink model. It is highest for 

the models with a larger radius and keeps on decreasing subsequently as the radius 

is decreased.  

o In longer runouts, the influence of roundedness on energy dissipation is observed. 

A higher value of average impact force is estimated for large curvature landslide 

geometries. Lower reaction forces are found for kink slope transitions.  

o Study of the energy dissipation in terms of reaction forces is an efficient and 

practical way of qualitatively investigating energy dissipation phenomena in 

compound landslides. This research can be extended to examine the impact of 

landslide on retaining structures. 
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3.6 Role of protective barriers in mitigating landslide damage (Preliminary 

insights) 

To mitigate landslide damage, we examine the usefulness of protective barriers placed 

along the path of a landslide. The barriers are installed with an aim to slow down the 

moving mass and dissipate most of the kinetic energy of soil particles. In other words, we 

expect the barriers to reducing the velocity of moving mass of particles by bringing them 

to momentary stops at periodic intervals on the incline. This phenomenon enhances internal 

shearing and material degradation. Hence, the impact against further structures can be 

avoided or is minimized.  

To analyze the numerical models for barrier efficiencies, a soil mass is placed at the top 

and which would slide down under the under the influence of gravity and hit the wall at 

the lower part of the incline. First, impact forces are calculated for a model with no barrier. 

Then, we simulate models with different number of barriers and spacings to note any 

changes in the impact forces. Finally, a comparison is drawn for impact forces on the wall 

for a different number of barriers and different spacings. Using impact forces as a practical 

method of visualization, we can qualitative estimate the energy losses occurring due to the 

involvement of protective barriers. 

Kindly note that the results obtained in this section are very preliminary and simplistic 

intending to gain elementary insights on the role of barriers in landslide damage mitigation.  

3.6.1 General numerical model 

A new numerical model was developed to study the role of protective barriers. Figures 3.26 

and 3.27 show numerical models with no barrier and 3 barriers, respectively. The geometry 

consists of a 26.5° slope followed by a vertical wall at the end to measure the impact force 

from the moving mass. The length of the basal shear surface is L and has a friction 

coefficient of 0.2. The distance between the soil block and the middle barrier is X. Barrier 

spacing and height are represented by c and h, respectively. Soil block has dimensions a 

by b. The mesh size used was 0.5 m, considering time optimization and result accuracy. 

Three material points per element are chosen for the soil and the plane. The soil material 

properties are consistent with Table 3.1.  
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The soil block is placed at the top of the slope and gravity is applied. The instability is 

triggered by a reduction from the basal friction coefficient, from fully rough to 0.2. Three 

sets of barriers with different height and spacing are considered– Type 1, Type 2, and Type 

3 (Figure 3.28). 

 
Figure 3.26: General numerical model with no barrier 

 
Figure 3.27: General numerical model with 3 barriers 
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Type 1 

 
Type 2 

 
Type 3 

Figure 3.28: Types of barriers used 

 

3.6.2 Effect of using protective barriers  

Protective barriers can be used to dissipate energy possessed by moving particles. These 

absorb the impact of motion, and reduce the momentum by bringing the particles to a 

momentary stop. We study energy dissipation in three types of barrier setup qualitatively 

by analyzing the loss in reaction forces on vertical wall.  

3.6.2.1 Barriers Type 1 

The Type-1 barriers have one edge vertical and one perpendicular to the incline. The 

spacing between the barriers is c = 4.5 m and barrier height, h = 1 m. Other particularities: 

X = 6.7 m, L = 32 m. The soil block has dimensions: a = 4.5 m and b = 3.4 m.  

The simulations are run for 1 and 3 barriers, and are compared with the case of non-barriers. 

The reaction force on the end vertical wall is measured as a function of time for models 

with 0, 1, and 3 barriers. This force provides a qualitative estimate of the energy transferred 

in the impact. The plots in Figure 3.29 provides a graphical representation values of 

maximum impact forces vs number of barriers used. 

From the results, the maximum reaction force on the wall is reduced by about 37.5% by 

just including one barrier on the incline located midway between the flowing soil and the 

wall. Furthermore, including three barriers would roughly reduce the force to half of the 

maximum force imparted on the wall with no barrier.  
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Figure 3.29: Impact forces on wall Vs number of barriers (Barriers Type-1) 

Energy loss occurs on impact of soil with the barriers. Due to energy dissipated during the 

collision, the particles possess a lower kinetic energy, which means a lower moving 

velocity. So, at the final collision, the particles transfer less energy to the wall than they 

normally would have in the absence of protective barrier.  

 

3.6.2.2 Barriers Type 2 

Type 2 barriers are a slight variation to the shape of Type 1 barriers. In Type 2, the barrier 

edges are vertical and rounded at the top. All other model parameters remain same as 

described in section 3.6.1.1. The simulation is run for the 0, 1, 2 and 3 barriers. The plots 

in Figure 3.30 provides a graphical representation values of maximum impact forces vs 

number of barriers used. Similar trends for energy dissipation are reflected in Type 2 

barriers also.  

The reduction in reaction force is 52% for 1 barrier and about 70% for 3 barriers.  It is 

noted that barriers rounded at the top are more effective in dissipating kinetic energy of 

moving mass. 
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Figure 3.30: Impact forces on wall Vs number of barriers (Barriers Type-2) 

3.6.2.3 Barriers Type 3 

A larger numerical model is used in this simulation for simulating the response of Type-3 

barriers. In this numerical model, length of slope is increased, and the soil block dimensions 

are changed. This is done to observe the any change in energy losses due to change in 

increased spacing between barriers. Particularities of the model: c = 10 m, h = 2 m, X = 

21 m, L = 46 m. Soil dimensions: a = 4.5 m, b = 3.4 m.  

Four numerical simulations are run: one each the model with 0, 1, 2, and 3 barriers. The 

reaction force on the wall is measured as a function of time for the 0, 1, 2, and 3 barrier 

cases. The plots in Figure 3.31 provides a graphical representation values of maximum 

impact forces vs number of barriers used. 

It is noted that the maximum force is reduced by 26%, which is less than the reduction 

caused by closely spaced barriers used in Type 1 and Type 2. This may be due to a longer 

landslide runout, where, by virtue of gravity, the mass is able to regain the kinetic energy 

lost upon impact with a barrier. Also, for Type-3 barrier setup, the reduction is about 51%, 

which is less than Type-2 barrier orientation. This may be due to a larger barrier spacing 

in this setup as compared to the previous setup. It can be said that a greater number of 

barriers per unit length of runout would be more effective in reducing the final impact 

forces on a wall.  
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Figure 3.31: Impact forces on wall vs number of barriers (Barriers Type-3) 

 

3.6.3 Key findings regarding protective barriers 

From these simulations, we note that the maximum reaction force on the wall is roughly 

reduced by 25 – 50% by the introduction of just 1 barrier midway in the incline in the path 

of the moving mass (See Figure 3.32). Including 2 barriers reduces the maximum reaction 

by 30 – 60%. On using 3 barriers, the maximum reaction force on wall decreases by 50 – 

70 %. These numbers suggest that using barriers are effective in dissipating a large amount 

of kinetic energy, and hence a useful technique to mitigate landslide damage.  

The amount of soil mass that reaches the final structure (wall) decreases with increasing 

the number of barriers. During each collision, some soil momentarily stops, loses some of 

its momentum, and gets deposited at the barrier points. The effect is more pronounced if 

the spacing between the barriers is less, which makes more soil to get deposited at lower 

velocities (Figure 3.33). Hence, less soil mass, and less velocity at the destination means 

less momentum and less kinetic energy to encounter.  

We conclude that a greater number of barriers with less spacing would be the most effective 

in mitigating damaging consequences of a landslide.  
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Figure 3.32: Percentage loss in impact forces for three types of barriers 

 

 
Figure 3.33: Soil deposits near barriers
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4 Thesis Conclusions 

4.1 Summary  

The main objective of this thesis was to analyze the internal shearing mechanism in 

compound landslides and study some of their effects on landslide kinematics. First, the 

Material Point Method (MPM) was introduced, and the advantages and disadvantages were 

mentioned. After its validation, we first presented a general theoretical model of a 

landslide. Anura3D software and MPM were used to model the slope instabilities in 

compound biplanar landslides.  

The study primarily focused on correlating internal shear patterns with the slope geometry. 

Models with a variety of slope transitions, slope angles (between 25 – 45°) and basal 

friction coefficients were simulated numerically to study the changes in failure 

mechanisms. A generalized failure mechanism was then proposed correlating the internal 

shear pattern with landslide geometry (R and 𝜃𝜃). 

This research also involved qualitatively studying material degradation and energy 

dissipation for different slope configurations as a result of the internal shearing. Impact 

forces measured on a wall at the end of the landslide runout was used to estimate kinetic 

energy losses. The cumulative deviatoric strain was assessed as a measure of material 

degradation.  

The final part of this thesis aimed at gaining preliminary insights into the role of protective 

barriers in mitigating landslide damage. The number, spacing, and height of barriers were 

varied in different scenarios. We attempted to draw a relation between the characteristics 

of these barriers and the reduction in the reaction force on the final wall using different 

combinations of these parameters. 

 

4.2 Key findings 

Numerical models of compound landslides were developed and simulated using MPM 

algorithms for various types and geometries. Starting with a simplified approach is key to 

understand the basics of a problem followed by building complexity levels to produce 



 

59 
 

realistic results. After starting with simulating a simple model, the general mechanism of 

internal shearing was identified. High internal shearing occurs in a landslide at abrupt 

changes in slope, especially in a kink slope transition type of geometry, as compared to 

curved slope transitions.  

A generalized failure mechanism is proposed based on numerical results that relates the 

failure geometry parameters (α, d) with the known landslide parameters (R, θ, ψ). 
Triangular regions with the sides perpendicular to the basal sliding surfaces constitute the 

boundaries of localized shear bands. In geometries with a large radius of curvature, these 

shear bands occur at the start and endpoint of the curved transition (Figure 4.1).  

 
Figure 4.1: Schematic diagram depicting internal shear mechanism 

α is the angle between the adjacent boundaries of shear bands with vertex at the point of 

slope change. Its value is approximately in the range of the slope angle (θ) of the landslide. 

α depends on the slope angle (θ) of landslide, increment (α’), and base friction angle (ψ) 

as 𝛼𝛼 =  𝜃𝜃 +  𝛼𝛼’ –  𝜓𝜓  , where α’ lies between 0 - 10°. The triangular shear bands are 

connected by a curved shear band (shear arc). The radius of the shear arc (d) is closely 

related to the analytical radius (r) as 𝑑𝑑 =  𝑘𝑘 ∗ 𝑟𝑟 , where 𝑟𝑟 = R tan(𝜃𝜃/2) and range of k is  

1.0 – 1.3. Also, the value of d is not influenced appreciably by basal friction.  

Energy dissipation and material degradation are qualitatively evaluated in this study. These 

are proportional to the degree to the cumulative deviatoric strain experienced after the 

development of a kinematically admissible mechanism in a compound landslide. More 
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energy was dissipated in the case of kink slope transitions, which renders the moving mass 

more sheared and degraded. Due to high energy losses experienced, the Material Points in 

a landslide with kink slope transition had a lower velocity than curved transition 

counterparts and would impact the wall latest among all the models. The corresponding 

impact forces on the wall are less, which translates to higher energy dissipation at the sharp 

changes on the slope. 

The material degradation and energy dissipation due to sudden slope changes motivated us 

to investigate the use of barriers to mitigate landslide damage. The protective barriers along 

the landslide runout dissipate a portion of the kinetic energy of moving mass in a landslide. 

Closely spaced barriers with greater height and number proved to be most effective in 

mitigating damage. A reduction of about 25 - 50% was estimated in the case of 1 barrier, 

30-60% on using 2 barriers and 50-70% on using 3 barriers installed on the landslide runout 

at regular intervals.  

 

4.3 Recommendations for future work 

Simple theoretical models of compound landslides are analyzed using MPM in this study. 

Although MPM can predict results for simple models with good accuracy, results might 

deviate when considering more complicated and realistic landslides involving complex 

topography, variable basal friction, variable material properties, and strength parameters 

along the slope. Physical experiments are therefore necessary to corroborate and validate 

the results obtained by numerical simulations in our analysis. 

Also, all numerical models in this research assume Mohr-Coulomb constitutive model for 

soils to predict the internal shear mechanism in soils. This constitutive model has 

limitations and cannot be applied to all large-deformation problems. Further investigations 

may be required for better a calibration. Switching to more complex constitutive models 

that include grain-grain contacts would be vital to predicting post-failure behavior of 

compound landslides with higher levels of accuracy.   

Most of the numerical models developed in this study are 2D plain strain models which 

might not fully capture the real-world behavior of complex materials like soils and rocks. 
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Developing full-scale 3D models of landslides would be a good idea to replicate real world 

scenarios of landslide that already occurred and calibrate those to predict post-failure 

behavior of landslides in disaster-prone area. However, developing 3D models also comes 

at a very high computation cost which might not be feasible in all situations. One needs to 

find a balance between the accuracy and cost of calculated results which would depend on 

the scale, scope, and importance of the problem in question.  

The energy dissipation was qualitatively estimated by means of impact forces on the wall 

and material degradation using analyzing accumulated strain. A quantitative method of 

predicting the exact energy dissipation is necessary to obtain numerical values that are 

directly applicable for design purposes, such as retaining structures. 

Further, very elementary results were obtained for the role of protective barriers in 

landslide damage mitigation. Better numerical models and efficient barrier designs are 

required to improve upon the basic models used in this research and develop sound 

mitigation techniques helpful in countering landslide damage.
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