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ABSTRACT 

Trailing edge noise is a common noise source in aerodynamic applications, such as wind 
turbines, duct fan blades, and propellers. As sound is a nuisance for people near this 
machinery, methods of reducing trailing edge noise are being investigated. A proven 
method of trailing edge noise reduction is using a serrated trailing edge. Many prior 
experiments have shown that a trailing edge with sawtooth serrations can reduce trailing 
edge noise compared to a straight trailing edge, but the mechanism by which sawtooth 
serrations reduce noise is not fully understood. Previous theoretical models have assumed 
that the turbulence field convecting past a serrated trailing edge is unchanged by the 
presence of the serrations, but experiments have shown that this is not the case in reality. 
This work attempts to further explore the mechanisms behind why trailing edge serrations 
reduce trailing edge noise. Additionally, it evaluates the usefulness of a wall jet wind tunnel 
for use in the study of serrated trailing edges. Experiments were conducted in an anechoic 
wall jet wind tunnel using a straight trailing edge configuration and a serrated trailing edge 
configuration. It was found that there may be differences in the unsteady surface pressure 
over serrated edges in one-sided flows as compared to two-sided flows, like on that of an 
airfoil, most notably in relation to the magnitude of the unsteady pressure on the serrations. 
In the wall jet and in agreement with other studies, it was found that the unsteady pressure 
fluctuations increase towards the tip of the serration in one-sided flows. This is counter to 
what is found in some studies of two-sided flows. Good agreement was found between 
some models of the wavenumber-frequency wall pressure spectrum of a turbulent boundary 
layer and the measured wall pressure spectrum on the straight trailing edge, and these 
models also produced good predictions of the noise produced by this trailing edge using 
Amiet’s equation. A surface pressure microphone array was used to estimate the zero 
spanwise wavenumber surface pressure spectrum. This spectrum was used in Amiet’s 
method to predict the measured trailing edge noise. Predictions using the wavenumber-
filtered measurement tended to overpredict the measured far field noise most likely due to 
the inclusion of broader wavenumber content through the array’s side lobe response and 
the breadth of the main lobe. The serrated trailing edge was found to increase coherence 
between two points on the same serration while reducing coherence between two points on 
different serrations. It was concluded that the presence of the serrations decorrelates small-
scale turbulent eddies. Additionally, it was found that while the serrated trailing edge did 
reduce the noise produced, its destructive effect on the geometry-based resonance of the 
straight trailing edge configuration may have amplified the magnitude of the reduction. 
Finally, it was concluded that the serrations do indeed affect the hydrodynamic field near 
the trailing edge, and the theoretical models which make the assumption otherwise must 
be refined. 
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GENERAL AUDIENCE ABSTRACT 

Trailing edge noise is a common noise source in aerodynamic applications, such as wind 
turbines, duct fan blades, and propellers. As sound is a nuisance for people near this 
machinery, methods of reducing trailing edge noise are being investigated. A proven 
method of trailing edge noise reduction is using a serrated trailing edge. Many prior 
experiments have shown that a trailing edge with sawtooth serrations can reduce trailing 
edge noise compared to a straight trailing edge, but the mechanism by which sawtooth 
serrations reduce noise is not fully understood. This work attempts to further explore the 
mechanisms behind why trailing edge serrations reduce noise. Experiments were 
conducted in an anechoic wind tunnel facility. It was found that a one-sided flow over a 
serrated trailing edge may be significantly different from that over a two-sided flow. Good 
agreement was found between prediction models and measurements of trailing edge noise. 
The serrated trailing edge was effective at reducing the coherence of turbulent eddies across 
the roots of the sawtooth serrations. It was concluded that the serrated trailing edge is 
effective at reducing noise, and that one means of doing so is decreasing the correlation of 
small-scale turbulent eddies, and that current models of the flow over serrations may need 
to be refined. 
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Chapter 1. Introduction 
Trailing edge noise is produced when acoustic sources in a turbulent boundary layer are 

convected past a sharp trailing edge. The sharp trailing edge radiates the sound to the far field 

much more efficiently than it would be radiated without the trailing edge’s presence. As will 

be explored later, this trailing edge noise is a significant contributor of noise in many practical 

applications. 

In the following sections, repeated indices i, j imply a summation over that index. Unless 

otherwise stated, i and j are 1, 2, 3.  In terms of the geometry of a trailing edge in a 1D upper 

surface turbulent boundary layer flow, the 1-direction is streamwise, the 3-direction is 

spanwise, and the 2-direction is the vertical distance from the trailing edge, with positive 

directions indicated below and the origin at the mid-span of the trailing edge. This coordinate 

system is illustrated in Figure 1.1. 

 

Figure 1.1, Coordinate system. 
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The human ear is capable of hearing sounds within a range of 20 – 20,000 Hz. Pressure waves 

vibrate the eardrum, which sends a signal to the brain that we perceive as sound. The 

sensitivity of the eardrum is logarithmic, and thus it is useful to use a logarithmic unit to 

describe sound pressure levels. Typically, in air acoustics calculations, the units of sound 

pressure are expressed as the root mean square of the pressure fluctuation amplitude in 

decibels referenced to 20 μPa [1]. In the following sections, all reported dB values are 

referenced to 20 μPa unless otherwise noted. 

1.1 Aeroacoustics 

The study of aeroacoustics in its present form began with Sir James Lighthill’s 1952 

publication [2]. Lighthill’s paper is concerned with the radiation of the energy of sound by 

turbulent flow. He considers a fluctuating flow within a small part of a large control volume, 

the remainder of which is at rest, and can be considered a uniform acoustic medium at rest, 

with pressure 𝑝𝑝∞ and density 𝜌𝜌∞. The back-reaction of the sound on the fluctuating flow field 

is significantly less than the fluctuations themselves; thus, the flow in the fluctuating region 

can be thought of as a forcing function for the production of sound. 

Starting with the tensor form of the continuity equation: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕(𝜌𝜌𝑣𝑣𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖

= 0 (1.1) 

and the momentum equation: 

 
𝜕𝜕(𝜌𝜌𝑣𝑣𝑖𝑖)
𝜕𝜕𝜕𝜕

+
𝜕𝜕�𝜌𝜌𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗 + 𝑝𝑝𝑖𝑖𝑖𝑖�

𝜕𝜕𝑥𝑥𝑗𝑗
= 0 (1.2) 

Lighthill differentiated the continuity equation with respect to time and took the divergence 

of the momentum equation with respect to 𝑥𝑥𝑖𝑖. Then, he subtracted them, giving: 
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𝜕𝜕2𝜌𝜌
𝜕𝜕𝑡𝑡2

−
𝜕𝜕2�𝜌𝜌𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗 + 𝑝𝑝𝑖𝑖𝑖𝑖�

𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗
= 0 (1.3) 

Now consider the flow region. Lighthill sought to construct an equation that resembled the 

acoustic wave equation in the ambient,  

 
𝜕𝜕2𝜌𝜌
𝜕𝜕𝑡𝑡2

− 𝑐𝑐∞2
𝜕𝜕2𝜌𝜌
𝜕𝜕𝑥𝑥𝑖𝑖2

= 0 (1.4) 

To do this, he simply subtracted the Laplacian term 𝜕𝜕2(𝜌𝜌′𝑐𝑐02)/𝜕𝜕𝑥𝑥𝑖𝑖2  from both sides of 

equation (1.3), and isolated the wave equation “form” on the left-hand side. Then, he 

combined the terms on the right-hand side into one tensor. In this case, the fluctuating density 

𝜌𝜌′ = 𝜌𝜌 − 𝜌𝜌∞ is taken to be the difference of the fluctuating density and the ambient density, 

rather than the mean density in the flow. This is because the observer is never within the 

source region, and therefore all sound observed will be in the region where the density 

fluctuations are relative to the ambient. Thus, the time derivative of the density is equivalent 

to the time derivative of the fluctuating density, and they can be used interchangeably. It 

should also be noted that the compressive stress tensor 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑝𝑝𝛿𝛿𝑖𝑖𝑖𝑖 − 𝜎𝜎𝑖𝑖𝑖𝑖 and that the speed of 

sound in the ambient 𝑐𝑐∞2 = 𝑝𝑝′/𝜌𝜌′. 𝛿𝛿𝑖𝑖𝑖𝑖 is the Kronecker delta, equal to 1 when 𝑖𝑖 = 𝑗𝑗 and 0 

otherwise. Using these relations,  

 

𝜕𝜕2𝜌𝜌′

𝜕𝜕𝑡𝑡2
− 𝑐𝑐∞2

𝜕𝜕2𝜌𝜌′

𝜕𝜕𝑥𝑥𝑖𝑖2
= −𝑐𝑐∞2

𝜕𝜕2𝜌𝜌′

𝜕𝜕𝑥𝑥𝑖𝑖2
+
𝜕𝜕2�𝜌𝜌𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗 + 𝑝𝑝𝑖𝑖𝑖𝑖�

𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

= −𝑐𝑐∞2
𝜕𝜕2𝜌𝜌′

𝜕𝜕𝑥𝑥𝑖𝑖2
+
𝜕𝜕2�𝜌𝜌𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗 + 𝑝𝑝𝛿𝛿𝑖𝑖𝑖𝑖 − 𝜎𝜎𝑖𝑖𝑖𝑖�

𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗
 

(1.5) 

The right-hand side can be further simplified by realizing that the Laplacian operator on the 

scalar 𝜌𝜌′ yields a scalar, and the same result can be achieved by: 

 
𝜕𝜕2𝑐𝑐∞2 𝜌𝜌′

𝜕𝜕𝑥𝑥𝑖𝑖2
=
𝜕𝜕2𝑐𝑐∞2 𝜌𝜌′𝛿𝛿𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

 (1.6) 
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Combining the terms on the right-hand side yields: 

 
𝜕𝜕2𝜌𝜌′

𝜕𝜕𝑡𝑡2
− 𝑐𝑐∞2

𝜕𝜕2𝜌𝜌′

𝜕𝜕𝑥𝑥𝑖𝑖2
=

𝜕𝜕2𝑇𝑇𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑗𝑗

 (1.7) 

where 𝑇𝑇𝑖𝑖𝑖𝑖, known as the Lighthill stress tensor, is defined by: 

 𝑇𝑇𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗 + (𝑝𝑝′ − 𝜌𝜌′𝑐𝑐∞2 )𝛿𝛿𝑖𝑖𝑖𝑖 − 𝜎𝜎𝑖𝑖𝑖𝑖  (1.8) 

This stress tensor represents all the possible ways a turbulent flow can generate noise. The 

first term is the fluctuating Reynolds stress, which is the contribution of velocity fluctuations 

to the mean flow, the second term is stresses caused by non-isentropic pressure and density 

fluctuations, and third term is the viscous stresses. Outside of the flow, 𝑇𝑇𝑖𝑖𝑖𝑖 = 0; this is evident 

because there are no velocity fluctuations, the viscous effects can be ignored, and the pressure 

fluctuation 𝑝𝑝′  is equivalent to the density fluctuation times the scaling factor 𝜌𝜌′𝑐𝑐∞2 . This 

means that any fluctuations in density are propagated acoustically, and thus the left-hand side 

represents sound.  

The result of Lighthill is rather simple, but determination of 𝑇𝑇𝑖𝑖𝑖𝑖 is not simple. Choosing an 

improper source region can lead to a situation where the rounding errors from the integration 

outweigh the contributions from the source terms within the volume integral [1]. Lighthill 

proposed fixing this issue by expanding the volume integral term and identifying the leading 

order source terms; Curle (1955) finished this work [3], and gave the following result: 

 

𝑝𝑝′(𝑥𝑥, 𝑡𝑡) = � ���𝑝𝑝𝑖𝑖𝑖𝑖 + 𝜌𝜌𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦𝑖𝑖

+ 𝐺𝐺
𝜕𝜕�𝜌𝜌𝑣𝑣𝑗𝑗�
𝜕𝜕𝜕𝜕

�𝑛𝑛𝑗𝑗𝑑𝑑𝑑𝑑(𝑦𝑦)𝑑𝑑𝑑𝑑 
𝑆𝑆

𝑇𝑇

−𝑇𝑇

+ � � �
𝜕𝜕2𝐺𝐺
𝜕𝜕𝑦𝑦𝑖𝑖𝜕𝜕𝑦𝑦𝑗𝑗

�𝑇𝑇𝑖𝑖𝑖𝑖(𝑦𝑦, 𝜏𝜏)𝑑𝑑𝑑𝑑(𝑦𝑦)𝑑𝑑𝑑𝑑
𝑉𝑉

𝑇𝑇

−𝑇𝑇
 

(1.9) 

In this equation, the source terms are dependent on the rate of change of mass flux on the 

surface �𝑛𝑛𝑗𝑗𝜕𝜕�𝜌𝜌𝑣𝑣𝑗𝑗� 𝜕𝜕𝜕𝜕⁄ �, the force per unit area on the fluid by the surface term �𝑝𝑝𝑖𝑖𝑖𝑖𝑛𝑛𝑗𝑗�, the 
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momentum flux across the surface �𝜌𝜌𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗�,  and the contribution from Lighthill’s stress 

tensor (𝑇𝑇𝑖𝑖𝑖𝑖(𝑦𝑦, 𝜏𝜏)). One needs to find a Green’s function 𝐺𝐺 to satisfy the boundary condition. 

The most important result to take away from Lighthill and Curle’s formulations for this thesis 

is that the sources producing sound from a turbulent flow can be described as a set of 

quadrupoles (in the volume integral) and dipoles (in the surface integral). All of the sound 

from a turbulent flow is produced entirely within the flow and radiates to the far field through 

an acoustic medium; the quadrupole terms scale on the order of 𝑀𝑀5𝑈𝑈3, while the dipole terms 

scale on the order of 𝑀𝑀3𝑈𝑈3 [1]. This shows that quadrupole sources are much more sensitive 

to flow speed, and in the regime of low Mach number flow, are much quieter than dipoles. 

Since the derivation of Lighthill’s acoustic analogy and Curle’s equation, the field of 

aeroacoustics has expanded drastically. Aerodynamic noise is produced in many 

applications, and understanding its nature is key to predicting the noise that will be produced 

by an aerodynamic system, whether it be an airfoil, turbomachinery, etc. The original theory 

of Lighthill and Curle can help us understand these sources. 

Many aerodynamic sources have been observed from airfoils. Brooks, Pope, and Marcolini 

(1989) [4] summarized five primary sources of self-noise that resulted from the interaction 

between an airfoil and its own boundary layer or wake: 

• Turbulent boundary layer trailing edge noise 

• Laminar boundary layer vortex shedding noise 

• Separation-stall noise 

• Trailing edge bluntness vortex shedding noise 

• Tip vortex formation noise 

Self-noise is noise produced by the unsteady interaction between an airfoil and its boundary 

layer. This thesis is focused on the study of turbulent boundary layer trailing edge noise, as 

described in the beginning of the section. Turbulent boundary layer trailing edge (TBL-TE) 

noise is produced when a turbulent boundary layer flows over a sharp trailing edge. The 
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discontinuity in the flow efficiently scatters noise from the turbulence in the boundary layer 

to the far field. This takes the form of a broadband noise source, as the edge interacts 

efficiently with a wide range of eddy sizes. In a mathematical sense, trailing edge noise is a 

result of equalizing the unsteady pressure of the boundary layers due to the sudden removal 

of the upstream non-penetration condition through the airfoil; the radiated noise is then a 

function of the magnitude of the pressure jump. 

Trailing edge noise is a major noise source in a variety of aerodynamic applications. Wind 

turbines, duct fan blades, and propeller noise are some of the most important fields of 

application for trailing edge noise [5–7]. In the case of wind turbines and duct fan blades, 

trailing edge noise has been identified as a major contributor to the noise they produce; while 

trailing edge noise can be lost in other noise sources that are produced in rotor and propeller 

blades, such as tip vortex noise and leading edge noise [7], it is nonetheless still a component 

of the noise produced. Sound is a nuisance for both civilians and operators of these 

equipment; being able to predict this sound is an important part of the design process to 

ensure that the device being installed will not be overly disruptive. Predicting trailing edge 

noise is typically done with either theoretical formulations or semi-empirical methods, and 

both will be explored in this work. 

1.2 Amiet’s Trailing Edge Noise Prediction Theory 

A useful prediction method for trailing edge noise is that of Amiet (1976) [8], who devised 

a method of calculating the trailing edge noise using the input of the surface pressure 

spectrum upstream of the trailing edge.  

A previous method to predict trailing edge noise was devised by Ffowcs Williams and Hall 

(1970) [9], who found the trailing edge noise in terms of the volume integral from Curle’s 

equation (1.9). This approach utilizes a volume integral that encloses a semi-infinite flat plate 

defined by 𝑥𝑥2 = 0 for 𝑥𝑥1 ≤ 0 but does not include it, using a tailored Green’s function to 

describe such a volume, eliminating the surface integral from Curle’s equation. The 

assumption of a semi-infinite flat plate is generally a good one for acoustic wavelengths 
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smaller than the chord of the airfoil. Performing the integration gives two important results: 

that the directivity of trailing edge noise is a cardioid based on sin2(𝜃𝜃/2), and that the far 

field noise scales as 𝑈𝑈5.  

 

Figure 1.2, Semi-infinite half-plane used in Ffowcs Williams et al. and Amiet 

prediction theories and trailing edge noise directivity diagram. 

In practice, however, it is difficult to measure the content of the volume integral when trying 

to apply Ffowcs Williams and Hall’s method to a real flow. Amiet’s approach considers the 

force of the surface of the wall on the fluid as the noise source as the manifestation of the 

turbulence in the boundary layer. Thus, there are two strategies for predicting trailing edge 

noise. The turbulent quadrupole sources can be considered directly or the surface dipole 

response can be considered independently. Amiet solves for the trailing edge noise using the 

unsteady pressure loading on the surface. It is important to note that in both cases the original 

source of the noise is the turbulence in the boundary layer; while Ffowcs-Williams and Hall 

consider the turbulence itself, solving a pure volume integral problem, Amiet’s approach 

considers the turbulence as it manifests itself as pressure fluctuations on the surface, solving 

an unsteady loading dipole radiation problem.  
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Amiet assumed that the turbulent velocity field is unaffected by the presence of the trailing 

edge, or that the turbulence is statistically stationary as it moves past the trailing edge. This 

compares with Taylor’s “frozen field” hypothesis, which states that eddies do not evolve as 

they convect. Amiet allows for eddy evolution, but the statistical properties of the surface 

pressure field remain the same. This assumption allows the calculation of the trailing edge 

noise from the upstream wall pressure spectrum, which is fairly trivial to measure. 

Another assumption made to simplify the surface pressure field is that for each streamwise 

convective wavenumber component 𝐾𝐾1 = 𝜔𝜔/𝑈𝑈𝑐𝑐 , there is a single associated convection 

velocity 𝑈𝑈𝑐𝑐 . In reality, this is not the case; the pressure at a measured frequency is a 

combination of many 𝐾𝐾1 − 𝑈𝑈𝑐𝑐 pairs, which have a constant product 𝜔𝜔, the frequency. This 

manifests itself as the “convective ridge” [10] in the wavenumber frequency wall pressure 

spectrum, which shows that the dominant components of surface pressure fluctuations at a 

particular frequency are concentrated around a convective wavenumber 𝐾𝐾1  as measured 

relative to 𝑈𝑈𝑐𝑐. This region of the surface pressure spectrum dominates the overall range of 

wavenumbers found at a given frequency and is thus the largest contributor to trailing edge 

noise. More description of the convective ridge can be found in Section 1.5. 

Amiet’s analysis uses the Schwarzschild solution procedure [11] to solve the flat-plate 

pressure equalization problem described in Figure 1.2. The Schwarzschild solution models 

the trailing edge noise as a result of the pressure difference across the plate equalizing 

suddenly at the trailing edge as the two boundary layers meet again. The additional pressure 

field necessary to equalize this pressure beyond 𝑥𝑥1 > 0 manifests as an acoustic field that 

satisfies the non-penetration condition through the plate and cancels the pressure jump for 

the boundary layers downstream of the plate. 

Following Amiet’s derivation, which used the Schwarzschild solution for a single boundary 

layer, the following equation for trailing edge noise as observed in the 𝑥𝑥3 = 0  plane is 

obtained (as written by Glegg and Devenport [1], which is twice the result that Amiet 



 9 

produced due to their introduction of a second boundary layer on the opposite side of the 

plate): 

 𝑆𝑆𝑝𝑝𝑝𝑝(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3 = 0,𝜔𝜔) = 𝜋𝜋𝜋𝜋 �
𝜔𝜔𝜔𝜔𝑥𝑥2
𝜋𝜋4𝑐𝑐∞𝑟𝑟𝑒𝑒2

�
2

|ℒ|2𝜙𝜙𝑝𝑝𝑝𝑝(0,𝜔𝜔) (1.10) 

In this equation, 𝑟𝑟𝑒𝑒2 = 𝑥𝑥12 + 𝛽𝛽2(𝑥𝑥22 + 𝑥𝑥32) is the distance from the source to the observer, 

corrected for the flow speed using the Prandtl-Glauert transformation, 𝑐𝑐 is the chord of the 

airfoil, 𝑏𝑏 is the span of the airfoil, ℒ is the “generalized lift function” [12], which describes 

how the pressure field equalizes at the trailing edge, and 𝜙𝜙𝑝𝑝𝑝𝑝(𝑘𝑘3,𝜔𝜔)  is the spanwise 

wavenumber frequency spectrum of the wall pressure fluctuations.  

There are several important relations to note here. The first is the assumption that the leading-

edge response and trailing edge response do not affect each other; in practical applications 

this is not true, but it is a decent approximation for the purposes of the calculation. Amiet 

later released an addendum to his paper, which clarified that the ℒ term should be modified 

to decay to 0 at the leading edge, since otherwise there would be a leading-edge contribution 

due to the sudden appearance of a pressure field [12]. This assumption of a semi-infinite plate 

is important because it is impossible to resolve a system that contains both a leading edge 

and a trailing edge, and it is a good approximation for airfoils with a chord that is large 

relative to the acoustic wavelength. 

The generalized lift function is essentially an integral of the airfoil response function 𝑔𝑔, 

which is the loading response of the surface due to the turbulence passing the trailing edge. 

The approximation given by Amiet of this integral shows ℒ to be dependent on 𝐾𝐾1, 𝑐𝑐, 𝑈𝑈𝑐𝑐, 𝑀𝑀, 

𝑟𝑟𝑒𝑒 and 𝑥𝑥1.  

The result of zero spanwise wavenumber is tied to the observer being in the 𝑥𝑥3 = 0 plane. 

As the intersection point of a particular gust moves down the straight trailing edge, the 

radiation efficiency becomes stronger and stronger [1]; for a perfectly normal plane wave 

(𝑘𝑘3 = 0), this trace speed is effectively infinite, thus making it the dominant noise source. 
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This dominant noise source only couples with observers in the 𝑥𝑥3 = 0  plane; nonzero 

spanwise wavenumbers will not couple with the observer in the 𝑥𝑥3 = 0 plane, as they will 

radiate with an 𝑥𝑥3 ≠ 0 component. For the purposes of using this formula, then, the zero-

spanwise-wavenumber frequency wall pressure spectrum must be an input.  

Assuming that the turbulent eddies are small relative to the chord (𝑘𝑘𝑘𝑘 ≪ 1), Glegg and 

Devenport [1] show that the |ℒ|2  term can be approximated as: 

 |ℒ|2 ~
4𝐿𝐿2

𝑐𝑐2
1
𝑀𝑀

1
(1 + 𝑥𝑥1/𝑟𝑟𝑒𝑒) (1.11) 

where L is the length scale of the turbulence at the given frequency (𝜔𝜔 ~ 𝑈𝑈/𝐿𝐿). Noting that 

the 𝑥𝑥𝑖𝑖/𝑟𝑟𝑒𝑒  terms are nothing more than direction cosines, they arrive at the following 

expression for the scaling and directivity of the trailing edge noise: 

 𝑆𝑆𝑝𝑝𝑝𝑝(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3 = 0,𝜔𝜔) ~
sin2 �1

2𝜃𝜃�𝜌𝜌0
2𝑈𝑈5𝐿𝐿𝐿𝐿

𝑐𝑐∞|𝑥⃗𝑥|2 𝑆𝑆(𝜔𝜔) (1.12) 

where 𝜃𝜃 is the observer angle from the trailing edge relative to the plane containing the 

trailing edge, positive downstream. This result was similar to that obtained by Ffowcs-

Williams and Hall [9], most notably in the agreement regarding the directivity and the 

velocity scaling. 

The source term 𝜙𝜙𝑝𝑝𝑝𝑝(0,𝜔𝜔) can be further broken down to be expressed as [1]: 

 𝜙𝜙𝑝𝑝𝑝𝑝(0,𝜔𝜔) =
1
𝜋𝜋
𝑙𝑙𝑝𝑝(𝜔𝜔)𝑆𝑆𝑝𝑝𝑝𝑝(𝜔𝜔) (1.13) 

where 𝑆𝑆𝑝𝑝𝑝𝑝(𝜔𝜔) is the autospectrum of the fluctuations and 𝑙𝑙𝑝𝑝(𝜔𝜔) is the spanwise correlation 

length scale of the fluctuations, which can be found by integrating the spanwise cross 

spectrum 𝑆𝑆𝑝𝑝𝑝𝑝(Δ𝑥𝑥3,𝜔𝜔) of the fluctuations  normalized by their autospectrum with respect to 

Δ𝑥𝑥3: 
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   𝑙𝑙𝑝𝑝(𝜔𝜔) = �
𝑆𝑆𝑝𝑝𝑝𝑝(𝛥𝛥𝑥𝑥3,𝜔𝜔)
𝑆𝑆𝑝𝑝𝑝𝑝(𝜔𝜔)  𝑑𝑑Δ𝑥𝑥3

∞

0
= � 𝛾𝛾(Δ𝑥𝑥3,𝜔𝜔) 𝑑𝑑Δ𝑥𝑥3

∞

0
 (1.14) 

While further work was done on this topic, such as that of Howe [13], who combined the 

theories of Ffowcs Williams et al. [9] and Amiet [8] to produce a more general approach that 

requires measurement of both the boundary layer mean velocity field and turbulent wake 

mean velocity field, Amiet’s method is one of the more useful methods for experimentalists 

and engineers. Amiet’s approach is typically used in practical applications because 

measurements of the force on the fluid by the surface (a direct consequence of the pressure 

fluctuations on the surface from the turbulent boundary layer) are much easier to acquire 

experimentally, and critically, does not require solving for a complicated Green’s function. 

The practicality and relative simplicity of Amiet’s approach thus makes it a more ideal 

theoretical method for performing trailing edge noise predictions. Nonetheless, the work of 

Ffowcs Williams and Hall was still useful, as it provided insight into the directivity and 

velocity scaling of trailing edge noise.  

1.3 The Empirical Prediction Method of Brooks, Pope, and Marcolini 

Some experimentalists choose to pursue a semi-empirical approach to the prediction of 

trailing edge noise. Brooks, Pope, and Marcolini [4] employed one such approach. Previous 

studies had shown that knowledge of the mean turbulent boundary layer characteristics was 

not enough to accurately predict the trailing edge noise; in particular, Reynolds number and 

angle of attack affect trailing edge noise beyond their effect on the boundary layer thickness. 

The group ran a series of NACA 0012 airfoils through a test matrix of various angles of 

attack, chord lengths, and speeds, with tripped and naturally-developing boundary layers on 

each side of the airfoil, in an anechoic open-jet tunnel at NASA Langley. Using a Strouhal 

number-based approach for curve-fitting 1/3 octave SPLs, they derived a series of curve-fit 

relations that were dependent on the parameters 𝛿𝛿𝑖𝑖∗, 𝑀𝑀, 𝛼𝛼∗ (the angle of attack corrected to 

give the same amount of lift in free air as measured in the tunnel), 𝑅𝑅𝑒𝑒𝑐𝑐, 𝑓𝑓, and 𝑈𝑈∞, which 

were based on previous theoretical studies. This method, colloquially known as BPM, has 
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been shown to yield accurate predictions in the years since its formulation and continues to 

be used today [1]. 

The BPM equations take the following form: 

 𝑆𝑆𝑆𝑆𝑆𝑆 = 10 log�10𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝/10 + 10𝑆𝑆𝑆𝑆𝐿𝐿𝑠𝑠/10 + 10𝑆𝑆𝑆𝑆𝐿𝐿𝛼𝛼/10�     (1.15) 

in which 𝑆𝑆𝑆𝑆𝐿𝐿𝛼𝛼, 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝, and 𝑆𝑆𝑆𝑆𝐿𝐿𝑠𝑠 represent the angle of attack, pressure side, and suction side 

contributions to the overall noise, respectively. These contributions take the following form: 

 𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝 = 10 log �
𝛿𝛿𝑝𝑝∗𝑀𝑀5𝐿𝐿𝐷𝐷�ℎ

𝑟𝑟𝑒𝑒2
� + 𝐴𝐴�𝑎𝑎𝑝𝑝� + (𝐾𝐾1 − 3) + Δ𝐾𝐾1  (1.16) 

 𝑆𝑆𝑆𝑆𝐿𝐿𝑠𝑠 = 10 log�
𝛿𝛿𝑠𝑠∗𝑀𝑀5𝐿𝐿𝐷𝐷�ℎ

𝑟𝑟𝑒𝑒2
� + 𝐴𝐴(𝑎𝑎𝑠𝑠) + (𝐾𝐾1 − 3)  (1.17) 

 𝑆𝑆𝑆𝑆𝐿𝐿𝛼𝛼 = 10 log�
𝛿𝛿𝑠𝑠∗𝑀𝑀5𝐿𝐿𝐷𝐷�ℎ

𝑟𝑟𝑒𝑒2
� + 𝐵𝐵(𝑏𝑏𝑠𝑠) + 𝐾𝐾2  (1.18) 

In the above equations, 𝐿𝐿 is the spanwise length of the edge wetted by the flow, 𝐷𝐷�ℎ  is a 

directivity factor that is based on the observer location, 𝑟𝑟𝑒𝑒 is the distance from the trailing 

edge to the observer corrected for thin shear layer refraction, 𝐴𝐴() and 𝐵𝐵() are spectral shape 

functions that are symmetric about their peaks, 𝑎𝑎𝑖𝑖  and 𝑏𝑏𝑖𝑖  are the absolute values of the 

logarithm of the ratio of 𝑆𝑆𝑡𝑡𝑖𝑖 to its peak value, 𝐾𝐾𝑖𝑖 are amplitude functions that set the level of 

the spectral shape functions, and Δ𝐾𝐾1 is a correction for the pressure side contribution at 

nonzero angles of attack. Definitions for 𝑆𝑆𝑆𝑆, 𝐴𝐴(), 𝐵𝐵(), 𝐾𝐾𝑖𝑖, and Δ𝐾𝐾1 based on the geometry of 

the experiments performed in this work will be given in Section 3.3.5. 

While BPM only measured the noise emitted from NACA 0012 airfoils, which are perfectly 

symmetrical and not used often in practical applications, it is common to use the method for 

rough estimates using measured or computed boundary layer parameters for the airfoil in 

question. It is a good method of quickly predicting noise, but as with any extrapolation 
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method, its accuracy necessarily decreases the further the applied conditions are from the 

modelled conditions. It would be better to know the actual surface pressure spectrum beneath 

the boundary layer of the airfoil or other edge noise source and use that directly for noise 

predictions. For this reason, despite its more complex nature, Amiet’s method and its 

derivatives continue to be used today.  

1.4 Experimental Validation of Trailing Edge Noise Prediction Theory 

An early experimental validation confirming the theories purported by Amiet, Ffowcs 

Williams and Hall, and Howe as applied to a two-sided airfoil was done by Brooks and 

Hodgson in 1981 [14]. Brooks and Hodgson ran experiments at NASA Langley using a 

NACA 0012 airfoil embedded in a uniform turbulent flow inside an anechoic chamber, with 

small embedded transducers embedded in the surface and eight condenser microphones to 

measure the radiated far field noise. They tested the dependence of the radiated noise on the 

angle of attack, the flow speed, and the bluntness of the trailing edge. Using Howe’s 

theoretical model [13] and empirical relations for the convection velocity and wavenumber-

frequency wall pressure spectrum of surface pressure as functions of sensor separation, they 

found that they were able to predict the noise directly overhead of the edge quite well in the 

range 𝑓𝑓 = 600 – 4500 Hz and with zero angle of attack. It was also confirmed that the 

velocity scaling and directivity predicted by Amiet and Ffowcs Williams and Hall were 

accurately reflected in a real flow over a two-sided airfoil, with the group finding an empirical 

velocity scaling of 𝑈𝑈5.07 for the sharp trailing edge and 𝑈𝑈5.3 for a blunt trailing edge with a 

thickness of 2.5 mm. This shows that theoretical prediction models begin to perform less well 

in the case of a blunted trailing edge, which is to be expected. Finally, they showed that 

changing the angle of attack tended to not reduce overall sound levels, but did shift the peaks 

in the trailing edge noise spectrum to lower frequencies due to the angle of attack shift 

altering the pressure spectra on each side of the airfoil and causing a greater pressure jump 

at lower frequencies. 

Roger and Moreau [6] sought to confirm the applicability of the expression derived by Amiet 

with a correction to the generalized lift function to correct for the leading edge contribution 
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derived by themselves and Wang [15]. Using pressure taps mounted in a controlled-diffusion 

airfoil with a rounded leading and trailing edge and a single far field microphone on a rotating 

mount, they measured the cases of a turbulent attached boundary layer, laminar boundary 

layer flow with Tollmien-Schlichting (T-S) instability waves, and a vortex shedding regime. 

They found that while both Amiet’s and Howe’s equations predicted the same order of 

magnitude of the total trailing edge noise perpendicular to the flow, the directivity pattern of 

the corrected Amiet equation was found to match the experimental data much better than that 

of Howe, which is attributable to Howe’s model having less similarity to the real world 

formulation of the problem, as it assumes a half plane, while Amiet’s model accounts for 

finite length of the airfoil. They also confirmed the adequacy of using the measured wall 

pressure spectrum to predict the far field noise. 

The leading-edge correction derived by Roger and Moreau [15] used the Schwarzschild 

solution to the half-plane problem, but performed on an opposite semi-infinite plane, starting 

at the leading edge and continuing downstream. The noise scattered by the leading and 

trailing edge of the flat plate in Amiet’s method (and a real airfoil) affect each other; when 

trying to perform the Schwarzschild procedure at the trailing edge, the leading edge noise 

needs to be accounted for, and vice versa, in an oscillating manner that would theoretically 

need to be performed infinitely many times. However, Roger and Moreau found that simply 

the first two iterations of this procedure were enough to adequately predict the noise and 

directivity, and derived an expression for a leading edge correction. 

Herrig et al. [16] performed measurements of trailing edge noise on a NACA 0012 airfoil 

inside a non-aeroacoustic wind tunnel. They compared measurements from surface pressure 

sensors installed very near the trailing edge with measurements from the Coherent Particle 

Velocity (CPV) method. They confirmed the validity of a RANS-based code (Rnoise) used 

to predict the point frequency spectra, and found an exponential decay model for the 

coherence between spanwise microphones, which is most accurate at 𝛼𝛼 = 0° between 𝑓𝑓 =

200 − 2000 Hz. This coherence can be used to calculate the spanwise length scale of the 

wall pressure fluctuations using Equation (1.14). 
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Herrig et al. also explored the effect of placing surface pressure microphones too close to the 

trailing edge. Doing so can allow the trailing edge noise to affect the readings of the surface 

pressure microphones, contaminating the signal; this can not only increase the measured 𝑆𝑆𝑝𝑝𝑝𝑝, 

but also the measured 𝑙𝑙𝑝𝑝 [16], which will cause Amiet’s method to over-predict the sound. 

They observed that changing the angle of attack of the airfoil altered the frequency spectra 

primarily in ranges that were dominated by trailing edge noise, an effect unaccounted for by 

Amiet’s method, which considers an airfoil at zero angle of attack. It was shown that even in 

a non-aeroacoustic wind tunnel, trailing edge noise can be predicted using surface pressure 

measurements. This is primarily because the hydrodynamic fluctuations measured by the 

surface pressure microphones are far louder than any tunnel background noise.  

1.5 Models of Surface Pressure Wavenumber-Frequency Spectra 

Amiet’s prediction method requires, as an input, the wavenumber-frequency spectrum of the 

surface pressure fluctuations 𝜙𝜙𝑝𝑝𝑝𝑝(𝑘𝑘1,𝑘𝑘3,𝜔𝜔) . As measurement of the surface pressure 

spectrum can be cumbersome, it is useful to have a model with which to predict the surface 

pressure wavenumber-frequency spectrum using macroscopic flow parameters, such as 

𝑈𝑈𝑐𝑐, 𝛿𝛿, 𝛿𝛿∗, etc. Several such methods have been explored. 

The wavenumber-frequency wall pressure spectrum is the Fourier transform in time and 

space of the surface pressure field. Turbulent eddies in the boundary layer contributing to the 

surface pressure spectrum will have an associated time scale and length scale, which 

correspond to frequencies and wavenumbers in the Fourier domain. Thus, the wavenumber-

frequency wall pressure spectrum is a full statistical description of the full wall pressure field. 

The spectrum of a single microphone signal only reveals frequency content of the signal, and 

thus it is useful to show the wavenumber content that makes up each frequency component 

of the pressure signal. The wavenumber frequency wall pressure spectrum tends to have a 

primary and secondary lobe when plotted for a constant frequency, centered around the 

convective wavenumber 𝐾𝐾 = 𝜔𝜔/𝑈𝑈𝑐𝑐 and the acoustic wavenumber 𝑘𝑘 = 𝜔𝜔/𝑐𝑐. This plot tends 

to take the form shown in Figure 1.3. 



 16 

 

Figure 1.3, Form of wavenumber-frequency wall pressure spectrum at constant 

frequency. 

When the above plot is shown in the 𝑘𝑘1 − 𝑘𝑘3 plane, circular contours form around the origin 

(𝑘𝑘1 = 𝑘𝑘3 = 0)  and ellipsoid contours stretched in both 𝑘𝑘3  directions form around the 

convective ridge. This shows that streamwise convective wavenumbers are the dominant 

range of wavenumber contributions to the frequency spectrum. Many attempts have been 

made to model the acoustic region of the wavenumber-frequency wall pressure spectrum, but 

it remains near impossible to measure because any measurement made by a microphone will 

be thoroughly dominated by the convective ridge. Thus, it is difficult to assign values to 

empirical constants. 

An early model of the wavenumber-frequency wall pressure spectrum was obtained by 

Corcos [17]. By curve fitting measured space-time correlation data in turbulent boundary 

layers, Corcos produced the following model as written by Howe [18]: 
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 𝜙𝜙𝑝𝑝𝑝𝑝(𝑘𝑘1,𝑘𝑘3,𝜔𝜔) =
𝜙𝜙𝑝𝑝𝑝𝑝(𝜔𝜔)
𝜋𝜋2

𝛼𝛼1

�1 + 𝛼𝛼12 �𝑘𝑘1 −
𝜔𝜔
𝑈𝑈𝑐𝑐
�
2
�

𝛼𝛼3
[1 + 𝛼𝛼32𝑘𝑘32]  (1.19) 

where 𝛼𝛼1 = 9𝑈𝑈𝑐𝑐/𝜔𝜔 and 𝛼𝛼3 = 1.4𝑈𝑈𝑐𝑐/𝜔𝜔. This model is algebraically quite simple and is thus 

attractive for use with measured or predicted single point spectra. It provides a good measure 

of the spectrum in the region of the convective ridge but tends to overpredict the low 

wavenumber region of the spectrum.  

Another very common model of the wavenumber-frequency wall pressure spectrum is the 

Chase spectrum [10,19]. Chase sought to derive a relation for the entire incompressible, 

inviscid regime, and in particular believed that the boundary layer thickness 𝛿𝛿 played a major 

role in determining this relationship. His relation is defined for low Mach number flow over 

a smooth, rigid flat plate with zero pressure gradient. He also assumed that the stream was 

homogeneous in the 𝑥𝑥1 direction, as to ignore the changing boundary layer thickness, and 

thus define the surface pressure spectrum solely as a function of 𝑘𝑘1,𝑘𝑘3, and 𝜔𝜔. The Chase 

spectrum is given by: 

 

𝜙𝜙𝑝𝑝𝑝𝑝(𝑘𝑘1,𝑘𝑘3,𝜔𝜔) =
𝜌𝜌02𝑢𝑢𝜏𝜏3

[𝐾𝐾+2 + (𝑏𝑏𝑏𝑏)−2]
5
2
�𝐶𝐶𝑇𝑇𝐾𝐾2 �

𝐾𝐾+2 + (𝑏𝑏𝑏𝑏)−2

𝐾𝐾2 + (𝑏𝑏𝑏𝑏)−2� + 𝐶𝐶𝑀𝑀𝑘𝑘12� 

𝐾𝐾+2 = �
𝜔𝜔 − 𝑈𝑈𝑐𝑐𝑘𝑘1
ℎ𝑢𝑢𝜏𝜏

�
2

+ 𝐾𝐾2,𝐾𝐾2 = 𝑘𝑘12 + 𝑘𝑘32 

(1.20) 

where 𝑢𝑢𝜏𝜏  is the friction velocity �𝜏𝜏𝑓𝑓/𝜌𝜌0 and 𝐶𝐶𝑇𝑇 , 𝐶𝐶𝑀𝑀  and 𝑏𝑏 are empirical constants. Chase 

proposed values of ℎ = 3,𝐶𝐶𝑇𝑇ℎ = 0.014,𝐶𝐶𝑀𝑀ℎ = 0.466, and 𝑏𝑏 = 0.75 based on experimental 

data. Here, 𝐶𝐶𝑀𝑀 and 𝐶𝐶𝑇𝑇 (and their respective terms) represent the contribution of the mean 

shear and the pure turbulence. 

As is to be expected with any prediction method for a necessarily unpredictable statistic, 

there are limitations to the applications of this prediction method. In the derivation of the 

model, Chase assumed an incompressible medium, which captures the convective region 
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well, but underpredicts the acoustic region, as compressibility is required to have an acoustic 

region. However, as will be explained later, this particular shortcoming is of little detriment 

to the usefulness of its application in this work. 

Although the form of Chase’s model is frequently used in prediction models, the integrated 

form of Chase’s spectrum is not the best representative a zero-pressure gradient turbulent 

boundary layer. A different empirical model conceived by Goody (2004) [20], though not 

actually a wavenumber frequency wall pressure spectrum model, is simply a frequency wall 

pressure spectrum model, which is similar in form to that of Chase, but integrated over all 𝑘𝑘1 

and 𝑘𝑘3. The reduced complexity of this model makes it much easier to derive empirical 

constants for. To use Goody’s model as a wavenumber frequency wall pressure spectrum, it 

can be applied to the normalized form of the Chase model, spreading the single-point pressure 

predicted by the Goody spectrum across the convective ridge modelled by Chase. Another 

way to think of this is as integrating the Goody model in reverse, revealing the substructure 

of wavenumbers that make up the integrated form.  

Goody’s model is based on the notion that the Reynolds number affects the ratio of time 

scales between the outer layer and inner layer of the turbulent boundary layer. Using both his 

own and several others’ spectral data of surface pressure measurements, he modified the 

Chase spectrum in the form presented by Howe [18] to ensure 𝜙𝜙𝑝𝑝𝑝𝑝(𝜔𝜔) ~ 𝜔𝜔−5 decay as 𝜔𝜔 →

∞, as seen in experimental data, and changed other empirical parameters in the model to 

better agree with the experimental data, establishing an emphasis on the time scales of the 

outer and inner layers. The model, based on traditional boundary layer scaling variables like 

Chase’s, was determined to be: 

 
𝜙𝜙𝑝𝑝𝑝𝑝(𝜔𝜔)𝑈𝑈𝑒𝑒

𝜏𝜏𝑤𝑤2 𝛿𝛿
=

3 �𝜔𝜔𝜔𝜔𝑈𝑈𝑒𝑒
�
2

��𝜔𝜔𝜔𝜔𝑈𝑈𝑒𝑒
�
0.75

+ 0.5�
3.7

+ �(1.1𝑅𝑅𝑇𝑇−0.57) �𝜔𝜔𝜔𝜔𝑈𝑈𝑒𝑒
��
7
 (1.21) 

with 𝑅𝑅𝑇𝑇, the ratio of outer to inner time scales, defined as: 
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 𝑅𝑅𝑇𝑇 =
𝑢𝑢𝜏𝜏𝛿𝛿
𝜈𝜈
�𝐶𝐶𝑓𝑓

2
 (1.22) 

This model, like Chase’s, predicts the spectrum beneath a two-dimensional zero-pressure-

gradient flow over a flat plate. Additionally, Goody presented an empirical model for 𝑅𝑅𝑇𝑇’s 

dependence on Reynolds number: 

 𝑅𝑅𝑇𝑇 = 0.11𝑅𝑅𝑒𝑒𝜃𝜃
3/4 (1.23) 

This relation was shown to be valid for a wide range of Reynolds numbers, confirming that 

Goody’s surface pressure spectrum model was accurate for such a range. 

In 1997, Graham [21] compiled a list of models of the wavenumber-frequency wall pressure 

spectrum, including Corcos’ and Chase’s, and gave a nondimensional form of the full Chase 

model normalized on the single point spectrum derived from Chase’s model. Graham gives 

this single point spectrum as: 
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(1.24) 

This form of the Chase spectrum represents the spectrum integrated over all 𝑘𝑘1 and 𝑘𝑘3 like 

Goody and can be applied to the normalized spectrum just like Goody’s spectrum.  

While modeling frequency-dependent surface pressure spectra can be easily experimentally 

validated, modeling the wavenumber-frequency spectrum is much more difficult in regions 
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outside the convective ridge. This is because the content measured by each microphone 

represents a sum of all wavenumber components at a particular frequency; low-wavenumber 

contributions are not only dominated by the convective ridge, but are also contaminated by 

tunnel and facility noise in the acoustic regime. Thus, being able to theoretically model these 

regions is key for making accurate predictions. 

1.6 Methods of Trailing Edge Noise Reduction 

The potential technical applications of studying trailing edge noise center around reducing 

noise. Common trailing edge noise reduction methods are bio-inspired; many owl species, 

such as those studied by Graham (1934) [22], are capable of extremely quiet flight. Graham 

studied several owl species and concluded that three features of owl wings were notable: the 

leading edge comb, the trailing edge fringes, and a soft downy coat over the upper surface of 

the wing. Since then, efforts have been made to understand why these features reduce the 

noise of flight and how they can be adapted to human technology.  

1.6.1 Porous Airfoils 

Porous airfoils reduce trailing edge noise by modifying the surface pressure field that passes 

over the trailing edge. The porous surface reduces the energy of the turbulence via surface 

friction, and therefore reduces the noise; additionally, depending on the material, some 

attenuation can be achieved by the structure of the porous material within the airfoil itself. 

Geyer et al. (2010) [23] noted that the feathers of owls are more porous than that of non-

stealth birds, allowing air flow more easily from the pressure side to the suction side. They 

constructed airfoils out of a wide range of materials to examine the effect of porosity on noise 

reduction. The resistivity of a porous material can be roughly stated as how easily a flow can 

pass through it and is inversely related to the porosity. The group observed that the reduction 

effect was strongest in the airfoils with higher resistivities at frequencies between 7 and 12.5 

kHz, but at high frequencies the sound emission was increased, especially at lower 

resistivities. The increase in high-frequency noise is attributed to roughness noise from flow 

over the porous material. 
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The aerodynamic consequences of changing the material of the airfoil must naturally be 

studied as well. Geyer et al. observed that porous airfoils produce lower lift and higher drag 

than their solid counterparts; this is because the porous airfoil allows air to pass through it, 

reducing the pressure differential between the two sides of the airfoil, and the surface 

roughness creates additional drag. Clearly, if porous airfoils were to be made practical, some 

trade-off would have to be made between acoustic gains and aerodynamic losses. 

Geyer et al. suggested that partially porous airfoils, i.e. airfoils with the section upstream of 

the trailing edge being replaced by a porous insert, would be a worthwhile pursuit. Carpio et 

al. (2017) [24] performed experiments with just such an airfoil, using a metal foam material 

for the porous insert. After confirming that the porous extent does not affect the surface 

pressure field upstream of the extent, concluding that the lift reduction must come from the 

modified pressure distribution along the extent itself, they experimented with three different 

metal foams, two different porous extension lengths, and varying angles of attack. Increasing 

the angle of attack increased noise at lower frequencies, but significantly decreased noise at 

higher frequencies; the airfoils with larger pore diameter (less resistivity) were more sensitive 

to this effect. Increasing the percentage length of the porous insert increased noise attenuation 

at low frequencies and low velocities, and using the shorter porous extension produced more 

effective noise reduction at mid-level frequencies. In general, the shorter insert performs 

better acoustically than the longer insert for frequencies above 1 kHz, and this effect fades 

as the freestream velocity increases. 

Further experiments by Carpio et al. [25] continued to explore the effect of the porosity of 

the insert and characterize the aerodynamic effects of the insert. Using PIV, they reported 

that increasing the porosity of the material increased the boundary layer and displacement 

thicknesses, resulting in a decreased mean velocity, indicating higher surface drag due to the 

porous material. They concluded from their observations of velocity fluctuation spectra that 

the reduction of turbulence energy within the boundary layer was at least partially responsible 

for the attenuation of noise. In particular, they observed that the porous material decreased 

the Reynold stresses (𝜌𝜌𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗), which is one of the components of 𝑇𝑇𝑖𝑖𝑖𝑖, the source term. This 
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indicates a reduction in overall turbulence velocity fluctuations. They reported that increasing 

the porosity enhanced the attenuation of low-frequency noise, and showed that this was 

because the porosity reduces the length of the vertical length scale Λ22 , increasing the 

anisotropy (and thus decreasing the coherent length) of the turbulent eddies. Lastly, they 

showed that the porous surface decreases convection velocity, again due to surface drag from 

the porous material. 

Porous airfoils are debatable as a practical solution for application – the decreased 

aerodynamic efficiency is a major factor in determining whether or not pursuit of a 

commercial application is worthwhile, especially while other potential solutions that do not 

compromise the structural or aerodynamic integrity of the airfoil exist.  

1.6.2 Finlets 

Clark et al. (2014) [26] observed the structure of the upper coating of owl feathers with a 

microscopic camera and observed that the hairs rise nearly straight up before suddenly 

bending to align with the flow, creating a canopy similar to that of a forest. A series of 

experiments measuring surface pressure fluctuations beneath both unidirectional and mesh-

like canopies suspended over rough surfaces showed that such a canopy was capable of 

reducing surface pressure fluctuations beneath it by nearly 30 dB, despite having an open-air 

ratio of 70%. This motivated further research when it was realized that a similar aeroacoustic 

device could be placed near the trailing edge to attenuate surface pressure fluctuations there, 

as the strength of the surface pressure fluctuations 𝜙𝜙𝑝𝑝𝑝𝑝 is shown by Amiet to be directly 

related to the far field noise. Clark et al. (2017) [27] tested two different types of trailing 

edge treatments – a “fence”-type treatment of solid finlets aligned with the flow, and a “rail”-

type treatment of cylindrical rails suspended on a slope above the trailing edge, again aligned 

with the flow. Far field measurements on the treated airfoils showed that the treatments were 

capable of reducing noise by as much as 10 dB. Clark et al. postulated that the mechanism 

by which the finlets reduce trailing edge noise was through the deformation and decorrelation 

of turbulent structures in the boundary layer, noting that the finlets’ performance increased 

with increased finlet height and decreased with decreased finlet density. Decorrelation of 
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turbulent structures occurs because the finlets “cut” the turbulent eddies, breaking up the 

spanwise length scale of the serrations, and reducing this length scale reduces the magnitude 

of the source term, as seen in Equation (1.13). 

In an investigation of the mechanism behind the far field noise reduction, Bodling and 

Sharma (2018) [28] simulated the finlet structure in a LES-based CFD solver. They found 

that the drag increase was small and on the order of the amount of extra wetted area on the 

wing surface due to the finlets (a result previously found by Clark et al. [27]), and that while 

a taller fence was ineffective at reducing noise at lower frequencies, it was more effective at 

reducing noise at higher frequencies. They observed two noise reduction mechanisms – that 

the larger turbulent structures were “lifted up” from the surface, which reduces the high-

frequency noise produced by smaller eddies, and that the spanwise coherence is reduced, 

which reduces the low-frequency noise as shown in Equation (1.14). This second result is 

analogous to Clark et al.’s conclusion that the turbulent structures are “broken up”. The first 

result is also consistent with Clark et al.’s observation that as the spacing between the finlets 

approaches zero, they begin to behave as a single blunt trailing edge. 

Seeking to further understand the mechanisms of finlets’ effectiveness, Afshari et al. (2019) 

[29] performed a series of experiments with a heavily instrumented flat plate with trailing 

edge finlets. They experimented with placing the finlets slightly upstream of the trailing edge, 

as suggested by Clark et al. [27]. They found that the trailing edge noise reduction was very 

sensitive to the finlet spacing. In the case of coarser finlet spacing, the surface pressure 

spectral density was reduced at moderate to high frequencies, and the spanwise length scale 

was increased. They theorized that this was due to a “channeling” effect, where the finlets 

increase spanwise correlation in the channels between them, an effect analogous to eddies 

being convected through them. This would allow for the turbulent energy of these eddies to 

dissipate via friction with the “channel walls”. Reducing the coarseness of the spacing would 

increase this effect. However, when the space between the finlets becomes too small, like 

Clark et al., they observed that a shear layer forms downstream at the finlet height. This leads 

to an increase in the levels of the low-frequency region of surface pressure fluctuations. 
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However, the high frequency regime is reduced significantly, similarly to the results of 

Bodling and Sharma. Furthermore, the effectiveness of the finely spaced finlets was much 

more sensitive to distance from the trailing edge than the coarsely spaced finlets. They 

concluded that both effects identified by Bodling and Sharma play a role in the reduction of 

the trailing edge noise, with the effectiveness of each mechanic being determined by the finlet 

spacing. 

Finlets are a promising method of reducing trailing edge noise because they can theoretically 

be added to an already-existing trailing edge, minimizing development costs. Overall, they 

have low aerodynamic impact, though they tend to be detrimental at high angles of attack; of 

particular note is minimal drag increase and virtually no loss of lift. Finlets are quite fragile, 

however, especially when they are finely manufactured. Additionally, modifying the trailing 

edge characteristics to optimize the reduction potential of any applied finlets is likely to be a 

better solution than simply attaching finlets to an already-existing system [27]. 

1.6.3 Serrations 

Serrations are the primary tool for reducing trailing edge noise in practical applications. Like 

finlets, serrations are aimed at limiting the correlated spanwise loading across the edge at 

wavenumbers which couple with radiating acoustic waves. They accomplish this by changing 

the edge geometry to a smooth or discontinuous waveform.  

Serrated trailing edges were first investigated theoretically by Howe (1991) [30], who 

proposed a prediction model for the amount of attenuation provided by a serrated trailing 

edge. Howe solved a problem very similar to that of Amiet’s theory – a diffraction problem 

featuring a semi-infinite plane with infinite span, but without a straight trailing edge. Instead, 

the trailing edge was described by a function of 𝑥𝑥3, with a mean value of 𝑥𝑥1 = 0. Howe 

proposed that the dominant contributions to the radiated sound in terms of surface pressure 

fluctuation wavevector would be from wavenumber components for which 𝑘𝑘�⃗  is normal to the 

radiating edge. This is analogous to the assumption of Amiet – for a straight trailing edge, 

the dominant wavevector contributions would be from 𝑘𝑘3 = 0. Howe primarily examined a 
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trailing edge that varied as a sinusoid. As the dominant surface pressure fluctuations are in 

the range |𝑘𝑘3| ≤ 1/𝑙𝑙𝑝𝑝, and 𝑙𝑙𝑝𝑝~ 𝑈𝑈𝑐𝑐/𝜔𝜔 [13], Howe concluded that the effective wetted length 

of the trailing edge, 𝑙𝑙𝑒𝑒, was reduced even though the actual path length of the trailing edge 

increases. Only the regions of the sinusoid where the angle between the trailing edge and the 

flow is greater than 45° should radiate noise, and narrower serrations reduce the length of the 

regions of trailing edge that meet this criterion. For sinusoidal serrations with an amplitude 

ℎ  and wavelength 𝜆𝜆 , this corresponds to a reduced far field noise of 𝑆𝑆𝑝𝑝𝑝𝑝(𝑥⃗𝑥,𝜔𝜔) =

𝑆𝑆𝑝𝑝𝑝𝑝,0(𝑥⃗𝑥,𝜔𝜔)/(𝜋𝜋2ℎ/𝜆𝜆), where 𝑆𝑆𝑝𝑝𝑝𝑝,0 is the spectrum produced by a straight trailing edge. This 

expression is based on the wetted length reduction, 𝑙𝑙𝑒𝑒/𝑙𝑙, where 𝑙𝑙 is the wetted length of the 

straight trailing edge; as Equation (1.10) shows, the wetted length of the airfoil (analogous 

to 𝑏𝑏 in Amiet’s formula) directly influences the far field sound spectrum, and reducing it 

should therefore reduce the far field noise. Howe concluded that the best way to reduce the 

noise was to use serrations with sharp “teeth”, with all angles of each serration at an angle of 

less than 45° to the mean flow. 

Howe made several key assumptions to perform the analysis. First, to approximate a Green’s 

function for the semi-infinite flat plane, he used the Green’s function for such a plane with a 

straight trailing edge. Furthermore, he used the slender wing approximation, which is 

intended to be used for low aspect ratio wings, to be applied at local areas where the angle of 

the trailing edge is normal to the wavevector. This fails to account for the interaction between 

adjacent serrations, as shown by Lyu et al. [31]. Finally, he used the statistically frozen field 

assumption, which was discussed in Section 1.2. 

Howe’s analytical formulation showed that the far field noise was proportional to 𝜙𝜙𝑝𝑝𝑝𝑝(𝜔𝜔), 

the frequency surface pressure spectrum, and that the ratio 𝜆𝜆/ℎ was the primary factor to 

which the attenuation level was sensitive. He predicted that noise at low frequencies would 

be largely unaffected by the serrations, as they would be too small to influence the eddies, 

introducing the limiting factor of 𝐾𝐾1ℎ ≫ 1, but that attenuations of high frequency noise in 

this region would be substantial. In the case of 𝜆𝜆/ℎ = 1, he predicted a high frequency noise 
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reduction of 8 dB. The important takeaway is the dependence of the noise reduction 

efficiency on the serration geometry.  

Howe released a follow-up paper [32] exploring the case of sharp teeth used as serrations. 

He found that this sawtooth configuration of serrations could be expected to reduce the far 

field noise by 10 log(1 + (4ℎ/𝜆𝜆)2) dB, in contrast to the 10 log(6ℎ/𝜆𝜆) reduction predicted 

for the sinusoid serrations. Using Chase’s [19] model of the wavenumber-frequency wall 

pressure spectrum integrated with respect to 𝑘𝑘1 and keeping only leading-order terms, he 

gave the following expression for the predicted far field spectrum of a sawtooth serrated 

edge: 

 
𝑆𝑆𝑝𝑝𝑝𝑝(𝑥⃗𝑥,𝜔𝜔)

(𝜌𝜌𝑢𝑢𝜏𝜏)2(𝑏𝑏/𝑐𝑐0)(𝛿𝛿/|𝑥⃗𝑥|) = �
𝐶𝐶𝑚𝑚
𝜋𝜋
� sin2 �

𝜃𝜃
2
� sin(𝛼𝛼)Ψ(𝜔𝜔) (1.25) 

In the above expression, 𝑐𝑐0 is the freestream speed of sound, 𝐶𝐶𝑚𝑚 ≈ 0.1533 is the empirical 

constant given by Chase [19] in Equation (1.20), 𝜃𝜃 and 𝛼𝛼 are the angles from the origin to 

the observer with 𝜃𝜃 as defined in Figure 1.2 and 𝛼𝛼 defined as cos−1(𝑥𝑥3/|𝑥⃗𝑥|), and Ψ(𝜔𝜔) is 

the nondimensional frequency spectrum associated with the serration geometry. For a 

sawtooth edge, this is given by: 

  Ψ(𝜔𝜔) = �1 +
1
2
𝜖𝜖
𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑓𝑓 �

𝜔𝜔𝜔𝜔
𝑈𝑈𝑐𝑐

,
ℎ
𝜆𝜆

,
ℎ
𝛿𝛿

, 𝜖𝜖� (1.26) 

Substituting 𝐴𝐴 for 𝜔𝜔𝜔𝜔/𝑈𝑈𝑐𝑐, 𝐵𝐵 for ℎ/𝜆𝜆, and 𝐶𝐶 for ℎ/𝛿𝛿, 𝑓𝑓(𝐴𝐴,𝐵𝐵,𝐶𝐶, 𝜖𝜖) is given by: 

 

  𝑓𝑓(𝐴𝐴,𝐵𝐵,𝐶𝐶, 𝜖𝜖) =
1

{𝐴𝐴2[1 + (4𝐵𝐵)2] + 𝜖𝜖2}

× �1 +
64𝐵𝐵3𝐶𝐶−1𝐴𝐴2 �cosh �� 𝐶𝐶2𝐵𝐵��[𝐴𝐴2 + 𝜖𝜖2]� − cos(2𝐴𝐴𝐴𝐴)�

�[𝐴𝐴2 + 𝜖𝜖2]{𝐴𝐴2[1 + (4𝐵𝐵)2] + 𝜖𝜖2} sinh �� 𝐶𝐶2𝐵𝐵��[𝐴𝐴2 + 𝜖𝜖2]�
� 

(1.27) 

where 𝜖𝜖 = 1.33 is another empirical constant. When ℎ is zero, as for a straight trailing edge, 

Equation (1.26) reduces to Ψ0(𝜔𝜔) = 𝐴𝐴2/(𝐴𝐴2 + 𝜖𝜖2)2. 
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An experimental paper showing both that trailing edge noise was the dominant source of 

wind turbine noise for an observer near the ground and that serrations were an effective 

mechanism for reducing the overall noise at the observer location was published by 

Oerlemans et al. in 2009 [5]. Using a horizontal microphone array placed on the ground in 

front of the turbine and using a beamforming algorithm, it was shown that nearly all of the 

noise observed was produced during the downward motion of the blade, and from the outer 

25% of the blade. This is the region at which the highest local-velocity flow occurs, and since 

the directivity of trailing edge noise is dominant upstream, this confirms that the dominant 

noise source of a wind turbine is trailing edge noise. However, contrary to Howe’s prediction, 

the modified serrated blade was effective at reducing noise at low frequencies, and actually 

increased noise at high frequencies. Regardless, the overall noise level of the serrated blade 

was about 3 dB lower than that of the unmodified blade. As was shown by Gruber et al. [33], 

it is likely that the source of the increased high-frequency noise is the flow rushing through 

the serrated teeth due to the angle of attack of the blades.  

Gruber et al. (2011) [33] performed experiments in an open-jet aeroacoustic wind tunnel on 

a NACA 65(12)-10 cambered airfoil with a series of 0.8 mm-thick serrated trailing edge 

inserts ranging from ℎ/𝜆𝜆 = 0.167 to 10. He observed that between 400 and 7000 Hz and with 

the airfoil at an angle of attack of 5°, the serrations were capable of reducing noise by up to 

5 dB for an amplitude of ℎ = 10 mm and up to 7 dB for an amplitude of ℎ = 15 mm. The 

noise reduction tended to increase as 𝜆𝜆 became smaller and the serrations became sharper 

and narrower. Above 8 kHz, the noise was increased for all serration shapes, with a greater 

noise increase for wider serrations. They found that Howe’s theory far over-predicted the 

amount of potential noise reduction from sawtooth trailing edge serrations, and confirmed 

the high-frequency noise increase observation of Oerlemans et al. [5]. Nonetheless, an overall 

reduction in sound level was achieved. The general transition point from noise reduction to 

noise increase was at the 𝛿𝛿-based Strouhal number, 𝑆𝑆𝑡𝑡𝛿𝛿 = 𝜔𝜔𝜔𝜔/𝑈𝑈𝑐𝑐. They theorized that the 

cause of the high-frequency noise increase is the flow passing between the teeth and 

interacting with the flow on the other side, a feature that would not be present for large low-

wavenumber eddies. They confirmed this by releasing smoke on the pressure side of the 
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airfoil and observing its convection past a straight trailing edge and a sawtooth trailing edge. 

Naturally, this implies that at a high angle of attack, more high-frequency noise will be 

produced, reducing the effectiveness of the serrations. The group confirmed Howe’s 

prediction that a serrated trailing edge would be ineffective if the sawtooth amplitude was 

smaller than the eddies. Additionally, they observed that the reduction in noise was equally 

sensitive to both ℎ  and 𝜆𝜆 , rather than simply their amplitude. They concluded that the 

turbulence at the roots and tips of the teeth was largely uncorrelated, and that there were three 

conditions upon which noise reduction would be dependent: 𝑓𝑓𝑓𝑓/𝑈𝑈∞ < 1, ℎ/𝛿𝛿 > 0.5, and 

small 𝜆𝜆. 

In his dissertation, Gruber [34] provided further data obtained from the same configurations 

as Gruber [33]. In this work, he also measured the surface pressure on serrations using flush 

pressure taps connected to microphones. These taps were mounted in a serrated edge on two 

adjacent serrations, with dimensions 𝜆𝜆 = 9 mm and 2ℎ = 30 mm. He recorded a significant 

increase in the surface pressure autospectrum along the serration in a hump centered at 350 

Hz and ranging from 100 Hz to 2 kHz. This was attributed to acoustic backscatter from the 

trailing edge being measured by the microphones. As the measurement location moves 

downstream, the two sides of the serration approach convergence, the distance between them 

decreases, and this increases the radiation measured by the transducers. Additionally, Gruber 

measured the surface pressure coherence for microphone pairs along the edge of the serration 

and spanwise microphone pairs on the same serration, and compared along-the-edge 

serrations to direct microphone pairings on a flat plate, rather than to separate streamwise 

and spanwise pairs. He observed an increase in along-the-edge coherence below a frequency 

threshold that increased with the microphone pair’s proximity to the tip. This was again 

attributed to backscatter, as the coherence of acoustic radiation decays far less rapidly than 

turbulent eddies [34]. A reduction of about 15% of the coherence in the region where trailing 

edge noise reductions were observed was also recorded. Significant increases in spanwise 

coherence were also observed with the same frequency cutoff trend observed in the along-

the-edge measurements, and the same cause was attributed.  
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Additionally, Gruber [34] observed that the phase speed of the turbulent eddies was reduced 

in the frequency ranges where a noise reduction was observed. This reduction was attributed 

to interaction between the acoustic pressure and the boundary layer incident pressure. The 

reduction in phase speed indicates a reduction of the speed at which scattering of turbulent 

energy takes place, which was postulated as a noise reduction mechanism by Howe [32]. The 

coherence reduction along the edge in the frequency range of noise reduction also indicates 

that the correlation length 𝑙𝑙𝑝𝑝 along the edge is decreased, which is another potential factor in 

the noise reduction according to Amiet’s equation. 

Moreau and Doolan (2013) [35] performed further experiments on sawtooth trailing edge 

serrations, and measured velocity fluctuations in the near-trailing edge wakes. They used a 

flat plate with two different geometries, 𝜆𝜆/ℎ = 0.2 and 0.9. They noted that both the narrow 

and wide serrations attenuated noise well in the low and high frequency regions, and 

increased noise in the mid frequency region. They concluded that the wide serrations 

performed better overall due to the increased attenuation at the low frequencies. This was in 

contrast to theory, which predicted that narrow serrations would outperform wider ones, but 

agreed with experimental data gathered by Chong et al. [36], who found that wider serrations 

are more effective at reducing tonal noise. The velocity fluctuation measurements showed 

that Howe’s frozen field assumption was inaccurate – the serrations altered the behavior of 

the flow field around the trailing edge quite significantly, and that the noise reduction and 

increases observed directly corresponded with changes in the turbulent energy distribution 

close to the trailing edge. Moving a downstream hotwire probe in a spanwise sweep, the 

turbulent energy was observed to be highest at points nearest to the tip of a serration, and 

lowest at the roots; this is because points on the tip are closer to the measurement point, 

meaning the probe is closer to the boundary layer it is measuring. This means that the 

boundary layer stays attached longer due to the presence of the serration, another alteration 

to the flow field. Additionally, the narrow serrations appear to cause a mid-frequency (600-

6000 Hz) increase in turbulent fluctuations, explaining the observed increase in mid-

frequency trailing edge noise. They concluded that rather than the wavevector-trailing edge 

interaction, it was the observed alterations to the hydrodynamic field’s turbulent energy 



 30 

distribution that was the primary driver of the reduction capabilities of a serrated trailing 

edge. 

Lyu et al. (2016) [31] sought to create an improved model for predicting the noise reduction 

from serrated trailing edges. Like Howe, they assumed a semi-infinite plate and a frozen 

turbulent field, but they solved the problem for sharp teeth, as seen in experiments, rather 

than a sinusoid. They used an approach similar to that of Amiet, using the Schwarzschild 

technique [11] to solve an edge noise problem based on a sawtooth trailing edge geometry. 

The study found that the serration geometry as defined by the “sharpness” of the teeth and 

the length of the serration relative to the size of the turbulent eddies were key factors in the 

potential for sound reduction, like Howe. A key difference between their model and Howe’s 

was including the coupling effect between adjacent serrations. The acoustic field radiated by 

a sawtooth affects adjacent teeth, and Howe’s use of the straight-edge Green’s function as 

the model for the trailing edge was valid, but only locally. They concluded that the 

mechanism of noise reduction was destructive interference of the scattered pressure, caused 

by the sound radiating off of serrations. At low frequencies, or for wide serrations, the net 

effect of serration-induced phase interference can be constructive, which they posited as the 

reason for increased low-frequency noise in these cases. They found this destructive 

interference effect to be most significant at angles near that of the leading edge. However, 

this was not experimentally validated, as placing a microphone at upstream locations is often 

made difficult by the geometry of the measurement chamber – placing a microphone at this 

location would place it in the flow.  

Using the same technique Howe used to non-dimensionalize the far field acoustic spectrum, 

and using the same integration and reduction of the Chase spectrum, Lyu et al. posited the 

following model: 

 
𝑆𝑆𝑝𝑝𝑝𝑝(𝑥⃗𝑥,𝜔𝜔)

(𝜌𝜌𝑢𝑢𝜏𝜏2)2(𝑏𝑏/𝑐𝑐0) =
𝐶𝐶𝑚𝑚
2𝜋𝜋

Ψ(𝑥⃗𝑥,𝜔𝜔)  (1.28) 
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where, as before, Ψ(𝑥⃗𝑥,𝜔𝜔) represents the nondimensional frequency spectrum of the serration 

influence on the radiated sound, and is given by: 

Ψ(𝑥⃗𝑥,𝜔𝜔) = �
𝑥𝑥3𝑐𝑐
𝑟𝑟𝑒𝑒2
� �
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𝑐𝑐0
� � �ℒ �𝜔𝜔,𝐾𝐾1,

2𝜋𝜋𝜋𝜋
𝜆𝜆
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2 (𝜔𝜔𝜔𝜔/𝑈𝑈𝑐𝑐)4

[(𝜔𝜔𝜔𝜔/𝑈𝑈𝑐𝑐)2 + (2𝑚𝑚𝑚𝑚𝑚𝑚/𝜆𝜆)2 + 𝜖𝜖2]2

∞

𝑚𝑚=−∞

  (1.29) 

The infinite sum in Equation (1.29) is similar to that which was derived by Howe in the 

process of coming to Equation (1.26). A major difference between the two models is the 

introduction of the far field sound gust response function ℒ, a concept that mirrors Amiet’s 

idea of the airfoil response function. Lyu et al. showed that a second order approximation of 

this term was adequate for prediction of trailing edge noise from both wide and narrow 

serrations; however, it is a very complex function that requires an iterative solver. For the 

full form of ℒ, the reader is referred to Reference [31].  

The model predicted overall reductions much lower than those of Howe, and which agreed 

much better with experimental data, representing a significant amount of progress in the 

theoretical understanding of trailing edge serrations. Another advantage to their model is its 

validity at any Mach number, since Howe’s model neglected the effects of convection and 

therefore is only valid at low Mach numbers. Their model failed to explain the high-

frequency noise increase that was observed by Gruber et al. [33], which suggests that it needs 

additional refinement with more flow parameters incorporated. 

1.6.4 Summary of Trailing Edge Noise Reduction Methods 

All of the techniques mentioned in this section are reliant on modifying the way the turbulent 

boundary layer interacts with the trailing edge. All three are shown to change the structure 

of the boundary layer in some way. However, particularly with serrations, there is much to 

be learned regarding modification of the surface pressure spectrum near the trailing edge, 

especially since they are the most commonly used method of reducing trailing edge noise. 

As shown, the common assumption of similarity between a straight trailing edge and a 

serrated trailing edge is inaccurate, and it is necessary to understand just how the serrations 
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affect the surface pressure spectrum to maximize the potential of trailing edge noise 

reduction.  

1.7 Objective 

The objectives of this work are as follows: 

• Understand the noise produced by an undercut step trailing edge in a wall jet tunnel 

and relate it to the production of trailing edge noise for fundamental studies of the 

sound source and its control. 

• Assess the impact of serrations on the unsteady surface pressure and the noise 

produced by the undercut edge. 

• Evaluate the variation of the surface pressure spectrum and coherence between points 

on a single serration and across the serrated edge. 

Amiet’s theory is based on the turbulent boundary layer’s manifestation as surface pressure 

fluctuations; to explore the validity of the statistically frozen flow assumption, surface 

pressure measurements at various points along the serrated trailing edge, including the teeth 

themselves, have been made. These are compared to the pressure field for a straight trailing 

edge and used to show that the flow field is indeed affected by the presence of the serrations.  
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Chapter 2. Apparatus and Instrumentation 
In this section, the facilities and instruments used for the experiments will be described.  

2.1 Wall Jet Tunnel 

All of the experiments, aside from some microphone calibrations, were performed in the 

anechoic wall jet tunnel at Virginia Tech. This facility, built in 2017-2018, is the successor 

to a previous facility, which was originally intended to be a temporary structure [37]. 

Experiments in the old facility (including the work in references [26,27,38]) have proven the 

utility of the anechoic wall jet design for aeroacoustic research.  

2.1.1 Wall Jet Tunnel Geometry 

The wall jet tunnel at Virginia Tech comprises a driving fan, settling chamber, contraction 

nozzle, and anechoic chamber, with the flow exhausting to the ambient outside the anechoic 

chamber. The driving fan is a Cincinnati Fan model HP 8D20, capable of pushing 0.945 m3/s 

of air [37]. It is equipped with an SSA-8 steel discharge silencer, which reduces broadband 

noise significantly, up to 10 dB [37]. This blower is capable of producing nozzle velocities 

up to 𝑈𝑈𝑗𝑗 = 70 m/s. 

 

Figure 2.1, Wall jet settling chamber internal structures, top-down view. 
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After the flow leaves the settling chamber it is passed into the nozzle. The nozzle is a 

horizontally-oriented contraction chamber that vertically narrows the flow until it passes 

through the nozzle, a 12.7 mm (1/2”) x 1206.75 mm slit [37]. The slope of each of the 

contraction chamber’s walls is defined by a cubic function and prescribed inflection point, 

which is a common method of wind tunnel square and 2D nozzle design developed by Morel 

[39] and furthered by Fang et al. [40]. The method is designed to eliminate separation in the 

tunnel flow, producing a clean, quiet flow, and maximize uniformity in the test section [39]. 

While the previous facility used a splice into a rounded edge for the upper side of the nozzle, 

a piece of aluminum angle bracket has been added to the top of the nozzle in the new tunnel 

to ensure that the flow separates from the upper lip of the nozzle instead of producing a 

Coanda effect [37].  

 

Figure 2.2, Wall jet anechoic chamber. 

The flow passes through the rectangular nozzle exit and exhausts in a generally uniform 

manner across the 3.048x1.524 m (𝑥𝑥1, 𝑥𝑥3) flat aluminum plate that serves as the “wall”. The 

inside of the anechoic chamber, which has dimensions 4.572x2.744x3.098 m (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3),  

contains the test section, a horizontal and vertical baffle to help shield the microphones from 

jet noise from the nozzle, and an overhead gantry made from 25.4 mm (1”) 1010 80/20 
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aluminum beams from which to mount far field microphones. This gantry provides the means 

to mount microphones in a linear array spanwise or streamwise, or some combination of the 

two if desired. All surfaces aside from those comprising the support structure for the wall are 

acoustically treated with foam.  

2.1.2 Characteristics of Wall Jet Flow 

In a wall jet flow, there are two primary regions: the inner boundary layer, which forms much 

like a traditional boundary layer along the plate, and a mixing layer between the stagnant air 

in the anechoic chamber and the top of the inner layer. The inner and outer layers of the wall 

jet flow are self-similar over a wide range of Reynolds numbers when normalized on 𝑈𝑈𝑚𝑚, the 

local maximum velocity, and 𝑦𝑦1/2 or 𝛿𝛿, the height above the wall at which the local velocity 

in the mixing layer is half of 𝑈𝑈𝑚𝑚 or the inner layer thickness [41]; this makes the task of 

predicting the flow characteristics at a given location trivial once the tunnel has been 

calibrated. 

To calibrate the tunnel, flat head pitot tube measurements were taken of the velocity profile 

at different 𝑥𝑥1 locations along the plate. The data was calibrated and collapsed well using 𝑈𝑈𝑚𝑚 

and 𝑦𝑦1/2, which can be seen in reference [37]. The power law relations for wall jet velocity 

profiles proposed by Narasimha et al. [42] and developed by Wygnanski et al. [43] are as 

follows: 

 
𝑈𝑈𝑚𝑚
𝑈𝑈𝑗𝑗

= 𝐴𝐴𝑈𝑈𝑅𝑅𝑒𝑒𝑗𝑗𝑛𝑛+1𝑅𝑅𝑒𝑒𝑥𝑥𝑛𝑛 (2.1a) 

 𝛿𝛿∗

𝑏𝑏
= 𝐴𝐴𝛿𝛿𝑅𝑅𝑒𝑒𝑗𝑗

𝑝𝑝−2𝑅𝑅𝑒𝑒𝑥𝑥
𝑝𝑝 (2.1b) 

 
𝑦𝑦1/2

𝑏𝑏
= 𝐴𝐴𝑦𝑦𝑅𝑅𝑒𝑒𝑗𝑗𝑚𝑚−2𝑅𝑅𝑒𝑒𝑥𝑥𝑚𝑚 (2.1c) 

 𝛿𝛿 = 𝐴𝐴𝛿𝛿∗ (2.1d) 
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 𝜃𝜃 = 𝐵𝐵𝛿𝛿∗ (2.1e) 

In the above equations, 𝑅𝑅𝑒𝑒𝑗𝑗 is the Reynolds number based on the nozzle height 𝑏𝑏 and the jet 

velocity 𝑈𝑈𝑗𝑗 , 𝑅𝑅𝑒𝑒𝑥𝑥  is the Reynolds number based on the distance from the nozzle to the 

measurement point and the jet velocity, 𝑛𝑛, 𝑝𝑝, and 𝑚𝑚 are power law empirical constants, and 

𝐴𝐴𝑈𝑈, 𝐴𝐴𝛿𝛿 , 𝐴𝐴𝑦𝑦, 𝐴𝐴, and 𝐵𝐵 are empirical coefficients. The empirical constants are determined from 

a multitude of velocity profiles taken at different nozzle exit velocities and streamwise 

locations along the plate, and are given in the table below [37]. 

Table 2.1, Self-similarity coefficients for Virginia Tech wall jet tunnel. 

𝒏𝒏 -0.4684 
𝒑𝒑 0.9232 
𝒎𝒎 0.9649 
𝑨𝑨𝑼𝑼 1.497 
𝑨𝑨𝜹𝜹 0.0049 
𝑨𝑨𝒚𝒚 0.1972 
𝑨𝑨 16.012 
𝑩𝑩 0.8387 

 

With these relations, the values of 𝑈𝑈𝑚𝑚, 𝛿𝛿∗, 𝑦𝑦1/2, 𝛿𝛿, and 𝜃𝜃 can be easily predicted for a given 

test location given 𝑏𝑏, 𝑈𝑈𝑗𝑗 and 𝜈𝜈, the kinematic viscosity of the flow, which can be estimated 

from the flow’s temperature and density using the Sutherland equation. 

A key advantage offered by a wall jet facility is the ability to place microphones wholly 

outside of the flow. This makes the wall jet flow extremely useful for acoustic applications, 

as the microphone data does not have the acoustic contamination from the microphones being 

mounted in the flow (see Ref. [1]). The sound from the wall jet test section must still pass 

through the mixing layer; however, any shear layer corrections are assumed to be negligible 

at the low speeds considered in this study. 
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2.1.3 Experimental Conditions 

In these experiments, data were taken from speeds of 𝑈𝑈𝑗𝑗 = 15 m/s and 𝑈𝑈𝑗𝑗 = 20-70 m/s in 

increments of 10 m/s. Equations (2.1a-e) predict the following values of these parameters at 

the location of the trailing edge, which is 1.283 m downstream of the nozzle. The values of 

ambient temperature and pressure must be known to compute the ambient density, which is 

used to estimate the viscosity. Table 2.2 reports the boundary layer parameters for the straight 

trailing edge experiments based on ambient conditions on the day of testing, with 𝑝𝑝∞ = 

94.327 kPa and 𝑇𝑇∞ = 295.2 K.  

Table 2.2, Estimated boundary layer parameters for wall jet flow in experimental 

conditions, straight trailing edge conditions. 

𝑼𝑼𝒋𝒋 
(m/s) 

𝑼𝑼𝒎𝒎 
(m/s) 

𝜹𝜹  
(mm) 

𝜹𝜹∗  
(mm) 

𝜽𝜽  
(mm) 

𝒚𝒚𝟏𝟏/𝟐𝟐 
(mm) 

15 4.671 16.76 1.047 0.878 111.5 
20 6.343 16.04 1.002 0.84 109.3 
30 9.761 15.07 0.941 0.789 106.2 
40 13.25 14.42 0.9 0.755 104.1 
50 16.80 13.93 0.87 0.73 102.5 
60 20.40 13.55 0.846 0.71 101.2 
70 24.03 13.23 0.826 0.693 100.1 

 

The analysis was repeated for each of the trailing edge testing ambient conditions, and it was 

found that the maximum normalized standard deviation of the five estimated parameters 

�𝜎𝜎(𝜙𝜙)
𝜙𝜙
� was 0.044%. Thus, it will be assumed that the boundary layer parameters remain 

constant for all tests. 

2.2 Microphones and Data Acquisition 

To capture the surface pressure spectrum and far field noise, various microphones were used. 

Microphones measure pressure fluctuations and output a voltage signal by measuring the 

capacitance of a cavity created by the microphone’s diaphragm, usually a very thin piece of 

metal, and a charged metal wall inside the microphone.  
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Bruel & Kjaer (B&K) Type 4190 1/2” microphone-preamplifier units were used in the far 

field and in the beamforming array. Knowles FG-23329 microphones were used for all 

surface pressure measurements. B&K Type 4138 1/8” microphones were used for calibration 

of the Knowles microphones and validation of their functionality within the frequency range 

of interest.  

2.2.1 Far Field – B&K 1/2” Microphones 

B&K Type 4190 microphones were used for far field measurements. These microphones 

were chosen for their excellent free field response; the response is relatively flat at 0 degrees 

incidence, meaning that the microphone is pointed directly at the source, up to 20 kHz [38]. 

As our source is a trailing edge, it is a compact location that can be easily identified and 

aligned with.  

 

Figure 2.3, B&K Type 4190 1/2" microphone-preamplifier unit. 

The microphones are purchased as units from Bruel & Kjaer pre-attached to Type 2669-L 

preamplifiers. They are mounted upon the overhead gantry shown in Figure 2.2. Aluminum 

rods with plastic microphone holders are attached to the gantry using rubber-lined ring 

clamps that screw in to the 80/20 material of the gantry, as shown below: 
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Figure 2.4, B&K Type 4190 microphones mounted on gantry. 

The microphones are mounted in an arc to capture a range of different measurement locations. 

Full geometries of the mounting locations will be given in the sections regarding trailing edge 

geometry.  

2.2.2 Surface Pressure – Knowles FG-23329-P07 Microphones 

The Knowles FG-23329 microphone was chosen for surface pressure measurements due to 

its physically small size and flat response. The microphone body is 0.101” in diameter and 

0.101” tall. The -P07 version of the microphones are pre-wired, meaning the signal, power, 

and ground wires were soldered to the microphone by the manufacturer and wrapped in a 

shielded cable. They have a nominal sensitivity of 33.0 ± 3.0 dB re 1 V/Pa between 100 Hz 

and 10000 Hz, and a pinhole diameter of 0.76 mm (0.030”) [44].  
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The microphones were assembled into two boxes. Each box consists of ten microphones 

wired to a breadboard for power and to externally mounted BNC female plugs, which can be 

modularly used via BNC cables to connect to our data acquisition system. Each microphone’s 

cable shield is connected to the power supply ground to curtail interference from any 

intermittent electrical signal.  

 

Figure 2.5, Knowles microphone box. 

The breadboard is connected to the lead wires, which can be seen in Figure 2.5 as the large 

gray wire that terminates in three banana plugs. These plugs are connected to the power 

supply, which supplies 2.8 V to power the breadboard, which distributes the power to the 

microphones. 

2.2.3  Surface Pressure – B&K 1/8” Microphones 

The final type of microphone used was the B&K 4138 1/8” microphone. These are paired 

with B&K 2670 preamplifiers.  
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Figure 2.6, B&K Type 4138 microphone-preamplifier unit with pinhole cap. 

These microphones have a flat frequency response up to 140 kHz [38] and are thus ideal for 

use in calibration of the Knowles microphones and ensuring that the Knowles data can be 

treated with high confidence in its accuracy. These were not used in large numbers because 

of their large size relative to the Knowles microphones, meaning a higher spatial resolution 

could be achieved by using the Knowles microphones.  

2.2.4 Data Acquisition System and Processing 

All pressure data were acquired using Bruel & Kjaer Type 3050 DAQs and B&K Pulse 14 

software. Both the three-channel module and six-channel modules were used; microphone 

data were acquired using a series of six-channel modules and tunnel temperature and dynamic 

pressure data were collected using a three-channel module. These DAQs were chosen as 

front-end instrumentation because of their high sample rate and compatibility with the 

microphone equipment. The B&K 4190 and 4138 can connect to the DAQs using the UA-

2101 200V microphone front panel. This panel is capable of providing the polarization 

voltage which drives the condenser microphones’ function, as well as reading the 

microphone’s serial number and nominal sensitivity. The Knowles FG-23329 and other data 

are acquired using the UA-2100 front panel, which contains six BNC ports. Data were 

sampled at 65536 Hz, well above the Nyquist frequency for the acoustic range (20 – 20,000 

Hz), ensuring that no aliasing would occur in the spectra. To reduce uncertainty, all 
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microphone time series were divided into records of 𝑁𝑁 = 8192 samples and processed with 

50% record overlap; additionally, Hanning windows were applied to each record to reduce 

spectral leakage in comparison with a square window. This gives a frequency resolution of 8 

Hz, which is more than fine enough for a study of broadband noise. The equation for 

determining the confidence interval of a power spectral density estimator is given by [1,45]: 

 𝛿𝛿95 =
2

�𝑛𝑛𝑑𝑑
  (2.2) 

where 𝛿𝛿95  is the 95% confidence nondimensional averaging uncertainty and 𝑛𝑛𝑑𝑑  is the 

number of records, in this case 511. The 95% confidence interval is then given by [45]: 

 �(1− 𝛿𝛿95)𝐺𝐺�𝑥𝑥𝑥𝑥(𝑓𝑓)� ≤ 𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓) ≤ �(1 + 𝛿𝛿95)𝐺𝐺�𝑥𝑥𝑥𝑥(𝑓𝑓)�  (2.3) 

where 𝐺𝐺�𝑥𝑥𝑥𝑥(𝑓𝑓) is the estimated power spectral density. It is expected that 95% of estimates of 

the power spectral density will lie within this range. For the processing method outlined 

above, 𝛿𝛿95 = 0.0885; this corresponds to a dB 95% confidence interval of 𝛿𝛿𝐺𝐺𝑥𝑥𝑥𝑥,𝑑𝑑𝑑𝑑(𝑓𝑓) =

±0.366 dB. 

2.3 Microphone Calibration 

The sensitivity of a microphone relates the voltage signal it outputs to the pressure data which 

it is recording. The microphone must thusly be calibrated to establish the transfer functions 

by which the pressure data can be determined from the voltage data. While some calibration 

factors for our microphones were provided by the manufacturers, other analyses were 

performed based on the geometry and frequency response of the microphones used. These 

steps are critical to obtaining and understanding the signal measured by the microphone. Two 

analyses must be done to account for spatial averaging and frequency response.  

2.3.1 Microphone Spatial Averaging  

Consider a plane wave in an acoustic medium traveling in the 𝑥𝑥1 direction, as shown in 

Figure 2.7. A circular microphone with diaphragm radius 𝑅𝑅  measures the total pressure 
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applied to its diaphragm as a spatial average of the pressure at each point on the diaphragm. 

A microphone aligned perfectly normal to the propagation direction of this plane wave would 

experience the entirety of the wave’s pressure at once, and thus the microphone signal would 

perfectly capture that wave, as the average pressure across the diaphragm would be equal to 

the wave pressure.  

However, to avoid disturbing the flow with the surface pressure microphones, the surface 

pressure microphones must be mounted flush with the surface, oriented upwards, as shown 

in Figure 2.7.  

 

Figure 2.7, Example of flush-mounted microphone spatial alignment. 

For large low-frequency waves this is not a problem, but for small high-frequency waves this 

orientation will cause the microphone signal to represent the spatial average of the signal 

distributed over its diaphragm, rather than the exact wave profile. This is illustrated in Figure 

2.8, which shows a sine wave distributed in space. 
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Figure 2.8, Sine wave pressure signal spatial averaging. 

As the frequency of the wave increases, the transducer size 𝐷𝐷 = 2𝑅𝑅 begins to approach the 

wavelength 𝜆𝜆; thus, the percentage of the waveform that is captured in the average reported 

by the microphone increases, and it becomes a less accurate representation of the actual 

waveform. When the transducer diameter equals the wavelength, the microphone will report 

no signal at all; any measurements at frequencies beyond this will be severely attenuated. 

This spatial response must be accounted for when studying the surface pressure data at high 

wavenumbers. 

The wavenumber response function of a transducer is simply expressed as the Fourier 

transform of the spatial response function. Assuming a spatially homogeneous and 

temporally stationary turbulence field, the wavenumber response function is expressed by 

[46]: 

 𝐻𝐻�𝑘𝑘�⃗ � = � 𝑆𝑆(𝑥⃗𝑥)𝑒𝑒−𝑖𝑖𝑘𝑘�⃗ ∙𝑥⃗𝑥𝑑𝑑2𝑥⃗𝑥
𝑚𝑚

 (2.4) 

where, as before, 𝑘𝑘�⃗ = 𝑘𝑘1𝑥𝑥1� + 𝑘𝑘2𝑥𝑥2� + 𝑘𝑘3𝑥𝑥3�, 𝑚𝑚 indicates the microphone face, and 𝑆𝑆(𝑥⃗𝑥) is 

the normalized spatial response function of the transducer face and is necessarily zero outside 
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of the transducer, with 𝑥⃗𝑥 measured from the center of the transducer face. The normalization 

of this function is such that: 

 � 𝑆𝑆(𝑥⃗𝑥)𝑑𝑑2𝑥⃗𝑥 = 1
𝑚𝑚

 (2.5) 

The function 𝐻𝐻�𝑘𝑘�⃗ �  essentially represents a transfer function that relates the frequency 

response of the microphone to the wavenumber-frequency spectrum of the pressure field it 

is attempting to measure. To show this, Blake and Chase [46] write: 

 𝜙𝜙𝑝𝑝𝑝𝑝,𝑚𝑚(𝜔𝜔) = � 𝜙𝜙𝑝𝑝𝑝𝑝(𝑘𝑘1,𝑘𝑘3,𝜔𝜔)|𝐻𝐻(𝑘𝑘1,𝑘𝑘3)|2𝑑𝑑𝑘𝑘1𝑑𝑑𝑘𝑘3
∞

−∞
 (2.6) 

where 𝜙𝜙𝑝𝑝𝑝𝑝,𝑚𝑚(𝜔𝜔) is the spatially averaged frequency response of the microphone. 

Farabee and Geib [47] presented the following form of the microphone spatial sensitivity 

function, which is derived from the work of Blake and Chase: 

 
𝑆𝑆(𝑟𝑟/𝑅𝑅)
𝑆𝑆(0) =

𝐽𝐽0(𝛼𝛼) − 𝐽𝐽0(𝛼𝛼𝛼𝛼/𝑅𝑅)
𝐽𝐽0(𝛼𝛼) − 1

 (2.7) 

where the function is assumed to be circularly symmetric and 𝑟𝑟/𝑅𝑅 is a coordinate based on 

the distance from the center of the diaphragm 𝑟𝑟 and the total radius of the diaphragm 𝑅𝑅. 𝐽𝐽𝑛𝑛 is 

a 𝑛𝑛th order Bessel function of the first kind. This function is bounded by 𝑆𝑆(𝑟𝑟/𝑅𝑅) = 0 at and 

beyond the diaphragm radius (𝑟𝑟 ≥ 𝑅𝑅). The constant 𝛼𝛼 was obtained by curve fitting data 

obtained by the manufacturer for a similar microphone diaphragm and was chosen to be 2.675 

by Farabee and Geib. Performing the Fourier transform described in Equation (2.4), they 

obtain: 

 �𝐻𝐻��𝑘𝑘�⃗ 𝑅𝑅���
2

= �
2𝛼𝛼2��𝑘𝑘�⃗ 𝑅𝑅�𝐽𝐽0��𝑘𝑘�⃗ 𝑅𝑅��𝐽𝐽1(𝛼𝛼) − 𝛼𝛼𝐽𝐽0(𝛼𝛼)𝐽𝐽1��𝑘𝑘�⃗ 𝑅𝑅���

�𝑘𝑘�⃗ 𝑅𝑅� ��𝑘𝑘�⃗ 𝑅𝑅�
2
− 𝛼𝛼2� [𝛼𝛼𝐽𝐽0(𝛼𝛼) − 2𝐽𝐽1(𝛼𝛼)]

�

2

 (2.8) 
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This equation decays quickly as 2𝑅𝑅  approaches 𝜆𝜆 , then quickly regains value before 

plummeting again as 2𝑅𝑅 approaches 2𝜆𝜆, and so forth. Using the characteristics of the flow, 

the wavenumber response at each flow speed can be calculated in terms of the frequency 

associated with each wavenumber, assuming a constant convection velocity at each flow 

speed.  

Devenport et al. [48] experimentally measured the convection velocity in a wall jet boundary 

layer by studying the way a sinusoid pattern on the surface scattered the surface pressure 

spectrum. They measured values of 𝑈𝑈𝑐𝑐/𝑈𝑈𝑚𝑚 = 0.44 at 𝑈𝑈𝑗𝑗 = 40 m/s and 𝑈𝑈𝑐𝑐/𝑈𝑈𝑚𝑚 = 0.41 at 

𝑈𝑈𝑗𝑗 = 60 m/s, which are lower than the traditionally reported value of 𝑈𝑈𝑐𝑐 = 0.6 − 0.8𝑈𝑈𝑒𝑒, and 

this was attributed to the turbulence in the mixing layer above the flow slowing down the 

turbulence. However, during this work, the convection velocity was measured using two-

point correlation data over a separation distance of 6.15 mm, and was found to range from 

0.796𝑈𝑈𝑚𝑚 to 0.896𝑈𝑈𝑚𝑚 over the velocity range of 𝑈𝑈𝑗𝑗 = 15 m/s to 70 m/s. A detailed analysis 

is conducted in Section 3.1.3; the convection velocity values are reported in Table 2.3. 

Table 2.3, Convection velocity measured using two-point correlation data. 

𝑼𝑼𝒋𝒋 (m/s) 𝑼𝑼𝒄𝒄/𝑼𝑼𝒎𝒎 
15 0.796 
20 0.796 
30 0.819 
40 0.853 
50 0.875 
60 0.890 
70 0.896 

 

Because of this difference, computations were performed for both the Devenport et al. 

convection velocities and the measured convection velocities. 

The far field 1/2” B&K microphones were aligned normal to the wave front, and thus needed 

no spatial resolution correction. The Knowles FG-23329 and B&K Type 4138 microphones 

were not aligned this way and therefore required analysis of their spatial resolution. The B&K 
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Type 4138 microphones were fitted with custom pinhole caps; these effectively reduce the 

size of the diaphragm of the microphone, allowing for much higher wavenumber resolution 

per transducer, as the domain of wavelengths that suffer from attenuation is much higher. In 

the model, the value of the function �𝐻𝐻��𝑘𝑘�⃗ 𝑅𝑅���
2
 stays close to 1 longer for a smaller pinhole 

diameter. The manufacturer pinholes on the Knowles FG-23329 have a diameter of 0.76 mm 

and the caps on the Type 4138 have a diameter of 0.52 mm. The resulting spatial response 

function can be seen in Figure 2.9. 

 

Figure 2.9, Microphone spatial response function �𝑯𝑯�𝒌𝒌��⃗ 𝑹𝑹��
𝟐𝟐
. 

Using -3 dB as a lower cutoff for the region at which the spatial averaging does not 

significantly affect the microphone response, the Knowles microphone data is trustworthy up 

to �𝑘𝑘�⃗ � ≈ 5500 rad/m, and the B&K microphone data is trustworthy up to �𝑘𝑘�⃗ � ≈ 8100 rad/m. 

Numerous further response lobes occur for higher wavenumbers than shown here, but these 

are attenuated well below -10 dB and are thus not included.  

The wavenumbers in Figure 2.9 were converted to their corresponding hydrodynamic 

frequencies to show the spatial averaging effects in the context of our spectra, which are 
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plotted against frequency. These values are converted using both the measured convection 

velocity and that of Devenport et al. and are shown in Figure 2.10 as a function of frequency. 

 
             a) Measured 𝑼𝑼𝒄𝒄                       b) Devenport et al. 𝑼𝑼𝒄𝒄 

Figure 2.10, Microphone spatial response function �𝑯𝑯�𝒌𝒌��⃗ 𝑹𝑹��
𝟐𝟐
 as a function of 

frequency (dashed – B&K response, solid – Knowles response). 

Figure 2.10 shows that the spatial averaging effects for the Knowles microphones at the 

measured convection velocities begin to exceed -3 dB at frequencies ranging from 3300 Hz 

at 𝑈𝑈𝑗𝑗 =  15 m/s to 18.8 kHz at 𝑈𝑈𝑗𝑗 =  70 m/s, and for the B&K microphones the cutoff 

frequencies range from 4800 Hz at 𝑈𝑈𝑗𝑗 = 15 m/s to over 20 kHz at 𝑈𝑈𝑗𝑗 = 70 m/s. Conversely, 

for the Devenport et al. convection velocities, these ranges are 1950 Hz to 8350 Hz and 2870 

Hz to 12.2 kHz, respectively.  

2.3.2 Frequency Response Calibration 

Attaching pinhole caps to the microphones comes with an unfortunate side effect – this 

effectively turns them into Helmholtz resonators. At a certain fluctuation frequency the 

geometry of the cavity and pinhole causes the diaphragm and air to become a second-order 

resonating system, similar to that of a forced spring-mass oscillator [1]. This effect manifests 

in the frequency response of the pinhole microphones as a large peak at high frequencies, 

which must be accounted for and used to calibrate the frequency response of the microphones. 
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To do such a calibration requires the calculation of a transfer function. The process outlined 

by Joseph [49] was used: the frequency response of a microphone with a known flat response 

to a white noise signal emitted by a speaker is computed; then, the pinhole microphone 

records the same white noise signal from the same speaker, and a transfer function is 

calculated which relates the pinhole microphone’s response to that of the flat-response 

microphone. This function can then be applied to future signals recorded by that pinhole 

microphone to correct for the Helmholtz resonance response. This is formalized in the 

following equation: 

 𝐻𝐻𝑝𝑝(𝑓𝑓) =
𝐺𝐺𝑝𝑝𝑝𝑝(𝑓𝑓)
𝐺𝐺𝑓𝑓𝑓𝑓(𝑓𝑓)

𝐺𝐺𝑠𝑠𝑠𝑠1(𝑓𝑓)
𝐺𝐺𝑠𝑠𝑠𝑠2(𝑓𝑓) 𝑆𝑆𝑓𝑓  (2.9) 

In the above equation, 𝐻𝐻𝑝𝑝(𝑓𝑓) is the frequency response of the pinhole microphone, 𝐺𝐺𝑝𝑝𝑝𝑝(𝑓𝑓) 

and 𝐺𝐺𝑓𝑓𝑓𝑓(𝑓𝑓) are the cross spectra of the pinhole and flat response microphones with the white 

noise signal, respectively, 𝐺𝐺𝑠𝑠𝑠𝑠1(𝑓𝑓) and 𝐺𝐺𝑠𝑠𝑠𝑠2(𝑓𝑓) are the autospectra of the white noise signal 

during the flat response and pinhole microphone measurements, respectively, and 𝑆𝑆𝑓𝑓 is the 

sensitivity of the flat response microphone. 

The above calibration procedure was performed in two different setups: one in the anechoic 

chamber of the wall jet wind tunnel, and one in the anechoic chamber in Durham Hall. The 

two setups are shown in Figure 2.11. 
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Figure 2.11, Frequency response calibration setups. 

Figure 2.11a shows the Durham Hall anechoic chamber setup, and Figure 2.11b shows the 

wall jet anechoic chamber setup. In both setups, an NTi Audio Minirator MR2 signal 

generator was used to generate a white noise signal that was collected by a DAQ and 

simultaneously fed into a Crown XTI 4000 power amplifier, which boosts the signal and 

sends it to the speaker. In setup a), the speaker is an Abaca Audio AAT414 4Ω tweeter, which 

is a speaker designed to have good, flat output at high frequencies; in setup b), the speaker is 

a University Sound ID60C8 model, another tweeter-type speaker with an impedance of 8Ω. 

The microphone is mounted to a horizontal rod suspended from a vertical mounting pole, and 

its position constant is kept constant throughout the calibration process; this ensures that each 

microphone measures the same signal measured by the reference microphone without any 

spatial effects, and that any sound reflecting off of the surfaces of the anechoic chamber is 

statistically repeatable. The reference microphone used was a B&K Type 4138 with a salt-

and-pepper-shaker cap attached, similar to that shown in Figure 2.3. The 250 Hz sensitivity 

of this microphone was determined using a B&K Type 4228 pistonphone calibrator, and this 

sensitivity was used as the flat response sensitivity for the entire frequency range.  

The amplitude calibration results for the Type 4138 with 0.5 mm pinhole cap microphones 

are shown below: 
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Figure 2.12, Amplitude calibration of B&K Type 4138 microphones. 

The Helmholtz resonance effect and flat response can be clearly seen in Figure 2.12. For 

microphone 1, the peak occurs at 15.4 kHz, and for microphone 2, it occurs at 16 kHz. The 

noisy calibration curves have been smoothed using a piecewise method. Smoothing 

minimizes the large fluctuations and reduces uncertainty particularly at low frequency below 

the anechoic limits of the calibration facilities and at frequencies beyond the speakers’ range 

of response. The levels below 808 Hz have been flattened to the average value in the flat 

region (above 256 Hz). The levels above 808 Hz are smoothed by 1/3-octave-band 

logarithmic binning, as this captures the overall shape of the resonant peak well while 

eliminating much of the noise from the measurement. The additional benefit of enforcing a 

flat frequency response at lower frequencies is the ability to use the pistonphone calibrator 

to capture the day-to-day 250 Hz sensitivity changes of the Type 4138 microphone and apply 

this difference to the calibration curve by a simple transfer function. 
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As Equation (2.9) includes cross spectra, there is a complex component to the calibration 

curve as well. This is the phase delay of the microphone response to a pressure signal. For a 

good quality microphone, this delay should be near zero at low to medium frequencies and 

increase at high frequencies. The difference at high frequencies can be attributed to the 

physical properties of the microphone, but microphone positioning error during the 

calibration procedure can also manifest in the phase calibration. This would appear as a linear 

change in the phase angle with frequency. The phase response curve for the Type 4138 

microphones is shown in Figure 2.13. 

 

Figure 2.13, Phase response calibration of B&K Type 4138 microphones. 

B&K microphones normally have a flat phase response in the audible range, but the 

Helmholtz resonance introduced by the pinhole caps results in a significant amount of phase 

delay. This phase delay must be accounted for in measurements made by these microphones, 



 53 

and is done here. The slight decrease in the flat region for microphone 2 can be explained by 

the microphone being placed slightly farther away from the speaker than the reference 

microphone, causing a small time delay in the measured signal. For B&K Mic 2, which has 

a notable phase delay, this extra distance was calculated to be 2.2 mm using the relation 𝜃𝜃 =

𝑘𝑘𝑘𝑘 , where 𝑘𝑘  is the acoustic wavenumber and 𝑟𝑟  is the distance between the reference 

microphone’s position and the calibrated microphone’s position. The computed displacement 

for B&K Mic 1 is less than 0.3 mm, and the effect on the phase angle is negligible. 

The Knowles microphones were calibrated in this manner as well. While the Helmholtz 

resonance effect is not as strong on the Knowles microphones, as these microphones are 

designed with the pinhole cap, it is still necessary to have a good measure of both the actual 

flat response level and the range over which that flat response is valid. They were calibrated 

in the same facility and in the same manner as the B&K Type 4138 microphones. 

 

Figure 2.14, Frequency and phase response calibration curves for Knowles box 1 

microphone 1. 
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Figure 2.14 shows an example calibration of one of the Knowles microphones. The frequency 

response is smoothed above 2200 Hz using 1/6 octave bands, and the phase response is 

smoothed above 872 Hz using 1/3 octave bands. The flat response is computed in the same 

away as the B&K flat response. As is to be expected, the performance of the less expensive 

microphones begins to drop off at lower frequencies than the B&K microphones. The 

sensitivity drops sharply above 10 kHz.  

Figure 2.15 illustrates the spread of the sensitivity for all of the Knowles microphones used 

in this study. All but one of the flat region responses fall within the sensitivity range 

prescribed by the manufacturer (-36 to -30 dB ref 1 V/Pa). 

 

Figure 2.15, Sensitivity range of Knowles microphone frequency response. 
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Each of the calibrations appears to have a small hump at 12.6 kHz; this is likely the Helmholtz 

resonance of the microphones. Using these calibration files, the contamination this imposes 

on the cross-spectral and auto-spectral data can be eliminated, as illustrated in Equation 

(2.10). 

 𝑝𝑝𝚤𝚤𝚤𝚤2�(𝜔𝜔) =
𝑉𝑉𝚤𝚤𝚤𝚤�(𝜔𝜔)
𝑆𝑆𝑖𝑖𝑖𝑖(𝜔𝜔)  𝑖𝑖, 𝑗𝑗 = 1 …𝑁𝑁 (2.10) 

Here, 𝑉𝑉𝚤𝚤𝚤𝚤� and 𝑆𝑆𝑖𝑖𝑖𝑖 are the cross spectrum of the voltage measured by each microphone and the 

microphone calibration matrix, which comprises the combined frequency response and phase 

response of each microphone, and 𝑁𝑁 is the number of microphones. Each component of the 

microphone calibration matrix is calculated by:  

 𝑆𝑆𝑖𝑖𝑖𝑖(𝜔𝜔) = 𝑆𝑆𝑖𝑖𝑆𝑆𝑗𝑗∗, 𝑆𝑆𝑖𝑖 = 𝐴𝐴𝑖𝑖(𝜔𝜔)𝑒𝑒−𝑖𝑖𝜙𝜙𝑖𝑖(𝜔𝜔)  (2.11) 

where 𝐴𝐴𝑖𝑖  and 𝜙𝜙𝑖𝑖  are the frequency response in V/Pa2 and phase response in rad of 

microphone 𝑖𝑖.  

2.3.3 Microphone Dynamic Range 

The B&K microphones have a manufacturer-provided dynamic range, and their performance 

limits were never reached during the course of the experiments. However, it became clear 

that it was necessary to evaluate the performance of the inexpensive Knowles microphones 

to determine if they were adequate for our purposes. Every microphone has a threshold above 

which it can no longer effectively record noise. This can be provided as the dynamic range 

of a microphone or the acoustic overload point. In the measured surface pressure spectra this 

tends to show up as a flattening of the low-frequency content of the signal, where the highest 

portion of the energy content resides.  

To conclusively determine the range of jet speeds and frequencies over which the Knowles 

microphones could provide an adequate result, a Knowles microphone and two B&K Type 

4138 microphones were recorded at the same streamwise position, in the region in which the 
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flow is expected to be relatively uniform across the span [37]. The Knowles data was 

evaluated in comparison to the B&K data to determine the performance of the microphone. 

The recording setup as constructed in the wall jet is shown in Figure 2.16, with B&K 

microphones 1 and 2 mounted flush in the two holes to the left of the Knowles microphone 

in Figure 2.16.  

 

Figure 2.16, Layout of Knowles performance validation experiment. 

Measurements were taken at nozzle exit velocities of 15 m/s and 20 m/s to 70 m/s in 10 m/s 

increments. The results for each microphone are shown in Figure 2.17. The autospectra for 

each microphone are presented as well as the both the coherence between B&K microphone 

1 and microphone 2 and the coherence between B&K microphone 1 and the Knowles 

microphone at each tunnel velocity. 
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a) 𝑼𝑼𝒋𝒋 = 15 m/s 

 
b) 𝑼𝑼𝒋𝒋 = 20 m/s 

 
c) 𝑼𝑼𝒋𝒋 = 30 m/s 
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d) 𝑼𝑼𝒋𝒋 = 40 m/s 

 
e) 𝑼𝑼𝒋𝒋 = 50 m/s 

 
f) 𝑼𝑼𝒋𝒋 = 60 m/s 



 59 

 
g) 𝑼𝑼𝒋𝒋 = 70 m/s 

Figure 2.17, Comparison of flat-plate Knowles and B&K Type 4138 autospectra (left) 

and spanwise coherence between equally-spaced pairs of microphones (right). 

Figure 2.17 shows good agreement between the Knowles and B&K microphones for most of 

the velocity and frequency range of interest. Data are only displayed in the acoustic range 

(20-20000 Hz). From a), b), and c), the Knowles microphones appear to have a noise floor 

of 0 dB. The erroneous dip in the B&K spectra at the pinhole frequency is due to the noise 

floor of the microphone being reached before the pinhole frequency; thus, the frequency 

response designed to eliminate the pinhole response is applied incorrectly. To determine the 

B&K noise floor, the B&K data were calibrated by applying the flat-response level through 

the entire frequency range. This is shown in Figure 2.18. 
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Figure 2.18, Comparison of B&K pinhole response and flat response at low speed. 

𝑼𝑼𝒋𝒋 = 15 m/s. 

From Figure 2.18, the noise floor of the B&K microphones is estimated to be 10 dB. The 

upper cutoff frequency for the Knowles and B&K microphones can be estimated by 

determining when the spectrum begins to deviate from the linear roll-off at higher frequencies.  

There is also low-frequency attenuation at higher speeds, which indicates that the upper limit 

of the Knowles’ dynamic range is being reached. Integrating the spectra between 16 and 

20000 Hz (or the noise floor) gives the overall sound pressure level for the given spectrum. 

The OASPL at each speed in Figure 2.17 is shown in Figure 2.19 as the relationship between 

the OASPL and the local maximum velocity corresponding with each jet speed. A straight 

line indicating the expected relationship of 𝑆𝑆𝑝𝑝𝑝𝑝~𝑈𝑈𝑚𝑚4 , which extrapolates the 𝑞𝑞~𝑈𝑈2 

relationship of dynamic pressure, is also plotted in this figure, as well as a line showing the 

relationship 𝑆𝑆𝑝𝑝𝑝𝑝~𝑈𝑈𝑚𝑚4.4, which better fits the data. 
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Figure 2.19, OASPL of Knowles microphone spectrum vs. nozzle velocity. 

Figure 2.19 shows that the OASPL of the Knowles microphone measurements begins to 

asymptote to a value of around 𝑆𝑆𝑆𝑆𝑆𝑆 ≈ 115 dB. This is the maximum sound pressure level 

that the microphone is capable of measuring, and as shown in Figure 2.19, this limit begins 

to affect the spectrum at speeds of 𝑈𝑈𝑗𝑗 ≥ 50 m/s, where the OASPL measurements begin to 

diverge from the 𝑈𝑈𝑚𝑚4.4 fit. As shown in Figure 2.17, this effect is primarily at the lowest 

frequencies in both the autospectrum and coherence, and the lower cutoff for this frequency 

increases with increasing edge velocity.  

Additionally, at all speeds, the spatial attenuation of the Knowles microphones above a 

particular frequency becomes apparent, as predicted by Figure 2.9. This cutoff frequency 

increases with flow speed because as the speed increases, the wavenumber at a particular 

frequency decreases. In other words, eddies of a particular size convect faster, and thus their 

frequencies increase. This region is not apparent at nozzle velocities of 20 m/s and below, 

and for 𝑈𝑈𝑗𝑗 = 30, 40, 50, 60, and 70 m/s, the Knowles autospectrum diverges from the B&K 

autospectrum by >3 dB on average above approximately 𝑓𝑓 = 6800 Hz, 8300 Hz, 8960 Hz, 

9550 Hz, and 10200 Hz, respectively. These cutoff frequencies are higher than those 
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predicted by using the Devenport et al. convection velocity in Section 2.3.1, but lower than 

those predicted by the measured two-point correlation convection velocity. Unlike the noise 

floor cutoff and clipped data cutoff, the spatial attenuation region can still be useful for 

analysis, as the decrease in measured value can be estimated, and thus data beyond these 

frequencies will not be entirely ignored in the analysis. From Figure 2.17, at 𝑈𝑈𝑗𝑗 = 30 m/s, 

the attenuation due to spatial averaging slowly increases up to about 5 dB before the cutoff, 

and at 𝑈𝑈𝑗𝑗 = 40 m/s, up to 6 dB. At 𝑈𝑈𝑗𝑗 = 50 m/s, the attenuation increases up to 5 dB by 14 

kHz, at which point it remains constantly 5 dB until the acoustic region maximum. The same 

is true at 𝑈𝑈𝑗𝑗 = 60 m/s. At 𝑈𝑈𝑗𝑗 = 70 m/s, the same is true, but the data for B&K mic 2 are about 

2 dB lower than mic 1. The Knowles data is still 5 dB lower than mic 1 in this region.  

Table 2.4 compiles the estimated valid frequency ranges for the Knowles and B&K 

microphones across the full domain of test conditions.  

Table 2.4, Valid frequency range for surface pressure microphone autospectra and 

spanwise coherence measurements. 

 Autospectra Spanwise Coherence 
𝑼𝑼𝒋𝒋 (m/s) Knowles 1/8” B&K  Knowles 

15 𝑓𝑓 ≤ 3000 Hz 𝑓𝑓 ≤ 2500 Hz 𝑓𝑓 ≥ 24 Hz 
20 𝑓𝑓 ≤ 5500 Hz 𝑓𝑓 ≤ 5000 Hz 𝑓𝑓 ≥ 24 Hz 
30 𝑓𝑓 ≤ 10500 Hz 𝑓𝑓 ≤ 11000 Hz 𝑓𝑓 ≥ 32 Hz 
40 𝑓𝑓 ≤ 16500 Hz N/A 𝑓𝑓 ≥ 96 Hz 
50 𝑓𝑓 ≥ 40 Hz N/A 𝑓𝑓 ≥ 352 Hz 
60 𝑓𝑓 ≥ 176 Hz N/A 𝑓𝑓 ≥ 560 Hz 
70 𝑓𝑓 ≥ 800 Hz N/A 𝑓𝑓 ≥ 800 Hz 

The acoustic limits, 20-20000 Hz, are implied. The Knowles lower frequency limit was 

defined as the point where the measured autospectrum deviates by >1 dB from the B&K-

measured autospectrum. The upper frequency limit for both microphones is defined as the 

inflection point where the slope of the autospectrum departs from the high frequency linear 

slope region. The spanwise coherence lower limit is defined as the point where the spanwise 

coherence between the B&K and Knowles microphones deviates from the coherence 
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between the B&K and B&K microphones by 0.05 or more. The autospectral frequency ranges 

are hard cutoffs, outside of which data cannot be trusted. The spanwise coherence cutoff may 

still show useful trends below the cutoff line, although the data should be interpreted with 

greater scrutiny. 

2.4 Straight Trailing Edge 

The straight trailing edge used in this work was originally used by Millican [50,51] in 

experiments at Virginia Tech regarding trailing edge noise reduction via fence and rail finlets, 

like the work of Clark et al. [26,27]. Called a “mock” trailing edge due to the one-sided flow 

design, it was designed to sit on top of the solid plate of the wall jet test section, so flow only 

passes over the top of the piece. This edge was manufactured as two pieces due to machine 

limitations and is milled from solid aluminum. The total span of the two pieces is 971.55 mm, 

and the height of each piece is 12.7 mm. The trailing edge itself has a thickness of 0.794 mm. 

To ensure smooth flow transition from the wall jet plate to the top of the trailing edge piece, 

an aluminum ramp with a gradual curve is placed upstream of the edge. The upstream portion 

of this ramp is sealed to the wall jet plate using aluminum foil tape to ensure a smooth 

transition from the wall jet plate to the ramp and beyond. Millican showed that in the previous 

wall jet facility, this ramp had minimal effect on the flow speed, increasing 𝑈𝑈𝑚𝑚 by up to 1% 

[50]. For additional smooth transition, edge-rounding pieces were 3D printed that smooth the 

12.7 mm spanwise edges of the trailing edge as they transition down onto the plate, similar 

to the upstream ramp. The sharp 12.7 mm edge of the ramp that extends well beyond the 

trailing edge is smoothed by a rounded piece of aluminum that minimizes the amount of noise 

scattered by this edge. 

Figure 2.20 shows the full setup described above as mounted in the wall jet tunnel. Figure 

2.21 shows the geometry of the “mock” trailing edge as it sits mounted on the plate. 
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Figure 2.20, Straight trailing edge setup in wall jet tunnel. 

 

Figure 2.21, Geometry of “mock” trailing edge (dimensions in mm). 

Above the straight trailing edge are the far field microphones, arranged in the following 

locations, as shown in Figure 2.22.  
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Table 2.5, Far field microphone positions for straight trailing edge experiments. 

Mic 𝒙𝒙𝟏𝟏 (m) 𝒙𝒙𝟐𝟐 (m) 𝒙𝒙𝟑𝟑 (m) |𝒙𝒙��⃗ | (m) 𝜽𝜽 (°) 
1 -0.3493 0.6239 -0.00476 0.715006 119.23 
2 -0.2397 0.6683 -0.00476 0.710042 109.73 
3 -0.1524 0.6888 -0.00318 0.705636 102.48 
4 -0.00635 0.7080 -0.0127 0.708167 90.514 

The dimensions in Table 2.5 are referenced to the coordinate system described in Figure 1.1 

and Figure 1.2. Mounting the microphones in an arc like this is unlikely to allow for a good 

study of trailing edge noise directivity, as the expected change in trailing edge noise levels is 

+1.69 dB between Mic 4 and Mic 1, according to Equation (1.12). However, the arc can still 

be used to find a location with a good signal-to-noise ratio. The upstream microphones are 

expected to have much better signal-to-noise ratios than the downstream microphones 

because of the horizontal and vertical baffle shielding. The far field microphones are shown 

mounted in Figure 2.22 to illustrate their location relative to the trailing edge. 

The Knowles microphones are mounted flush with the surface of the trailing edge 3 mm from 

the edge itself. It is desirable to mount the microphones as close to the trailing edge as 

possible, as this increases the validity of the statistically frozen field assumption. Figure 2.23 

shows some of the microphones mounted within the straight trailing edge to illustrate this. 
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Figure 2.22, Far field microphone arc in straight trailing edge configuration. 

 

Figure 2.23, Knowles microphones mounted flush with mock trailing edge surface. 
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Beneath the trailing edge, hot glue was used to both hold the microphones in place and to 

ensure that no air could flow around the microphones to the underside of the edge, which 

would affect the lift response function. The hot glue shown in Figure 2.23 is fully recessed 

under the edge and is not visible from the top side. The microphones are distributed 

irregularly along the 𝑥𝑥3 axis; this is by design, to form a wavenumber filter that rejects high-

order spanwise wavenumbers. In addition, slots are cut in the top of the wall jet plate to allow 

the microphone wires to feed through to the power supply and DAQs beneath. This slot was 

sealed from the underside with aluminum foil tape to prevent flow between the top and 

bottom of the wall jet plate.  

Table 2.6 shows the microphone locations on the straight trailing edge that form the 

wavenumber filter. Each microphone is located at 𝑥𝑥1 = -3 mm.  

Table 2.6, Surface pressure microphone spanwise distribution for straight trailing 

edge. 

Mic 𝒙𝒙𝟑𝟑 (mm) Mic 𝒙𝒙𝟑𝟑 (mm) Mic 𝒙𝒙𝟑𝟑 (mm) Mic 𝒙𝒙𝟑𝟑 (mm) 
1 304.8 5 39.40 9 -8.509 13 -50.90 
2 182.8 6 23.60 10 -11.56 14 -84.91 
3 109.6 7 14.20 11 -18.29 15 -141.5 
4 65.71 8 8.509 12 -30.50 16 -236.0 

 

This spacing is visualized in Figure 2.24.  

 

Figure 2.24, Surface pressure microphone spanwise distribution for straight trailing 

edge. 



 68 

This uneven spacing is determined logarithmically and will be discussed in Section 2.7. 

In Figure 2.22 and Figure 2.23, holes can be seen in the surface of the wall jet test plate. 

These holes were drilled in a previous experiment, and in this experiment are covered with 

clear tape that has a thickness of 40 𝜇𝜇m, hereafter referred to as micron tape. This tape is 

used to smooth out any discontinuities as much as possible and is used over every bolt hole 

and seam in the setup, including the joint between the two halves of the trailing edge. A 

surface with nondimensional roughness of height 𝑦𝑦+ = 𝑦𝑦𝑢𝑢𝜏𝜏/𝜈𝜈 < 5 can be considered to be 

hydrodynamically smooth [52]; as 𝑦𝑦+~𝑢𝑢𝜏𝜏, the largest value will occur at the highest speed; 

for 𝑈𝑈𝑗𝑗 = 70 m/s, the value of 𝑦𝑦+ for micron tape at the trailing edge is 3.0, indicating that the 

micron tape is hydrodynamically smooth at all tunnel speeds. 

To verify the result of Millican [50], a study of the surface pressure field on the flat plate 

compared to the surface pressure field on the mock trailing edge was done using the setup in 

Figure 2.16. First, two Knowles microphones were placed in the two holes upstream of the 

central Knowles microphone; the distance between these holes is 3 mm. Surface pressure 

data from the experiment in Section 2.3.3 were compared to these data and surface pressure 

data taken from the configuration in Figure 2.20. The surface pressure fields at 𝑈𝑈𝑗𝑗 = 20 m/s, 

40 m/s, and 60 m/s are shown in Figure 2.25. 

Figure 2.25 shows that at each speed, there is a region where the trailing edge surface pressure 

autospectrum is increased by about 2 dB. For 𝑈𝑈𝑗𝑗 = 20 m/s, this region begins at 120 Hz and 

continues through the rest of the frequency range; for 𝑈𝑈𝑗𝑗 =  40 m/s, this region is 

approximately 250 to 3000 Hz; and for 𝑈𝑈𝑗𝑗 = 60 m/s, this region is from approximately 400 

Hz to 8000 Hz. The increase in pressure can likely be attributed to the maximum speed 

increase reported by Devenport et al. [48] and Millican [50], though it is of somewhat greater 

magnitude, as the measured discrepancy is outside of the uncertainty of the individual 

microphones, though not outside of the range of surface pressure uniformity. Both of these 

results are shown in Section 2.8. 
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a) 𝑼𝑼𝒋𝒋 = 20 m/s    b) 𝑼𝑼𝒋𝒋 = 40 m/s 

 
c) 𝑼𝑼𝒋𝒋 = 60 m/s 

Figure 2.25, Comparison between flat plate surface pressure and trailing edge surface 

pressure autospectra. 

2.5 Serrated Trailing Edge 

The serrated trailing edge was designed to resemble the mock trailing edge as closely as 

possible. It was designed with the same height, 12.7 mm, and to be used with the same ramp 

and rounded aluminum. The serrations had a sawtooth shape with a wavelength 𝜆𝜆 of 1.5 cm 

and an amplitude 2ℎ of 1.5 cm, as shown in Figure 2.27, which comprise the entire trailing 

edge span. The serrated trailing edge was manufactured by Proto Labs, Inc., and the printed 

microphone holes were further drilled out by the Virginia Tech AOE machine shop. It was 
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again manufactured in two pieces, each with a span of 457.2 mm. The length was chosen 

such that the centers of the serrations were located in the same 𝑥𝑥1 position as the previous 

straight trailing edge. New edge-rounding pieces were printed to fit the new trailing edge 

dimensions. The full geometry of the serrated trailing edge can be seen in Figure 2.26 and 

Figure 2.27. 

 

Figure 2.26, Side view of serrated trailing edge (dimensions in mm). 

One key difference between the serrated edge and the straight edge is the thickness of the 

serrations, which had to be made 2.38 mm thick in order to remain structurally sound. This 

is a notable deviation from theory [30,31], which assumes an infinitesimal edge thickness. 

 

Figure 2.27, Top view of serrated trailing edge. 𝝀𝝀 = 1.5 cm, 𝟐𝟐𝟐𝟐 = 1.5 cm. 

In Figure 2.27, a top view of the serrated trailing edge is shown. Each trailing edge piece has 

30 serrations, for a total of 60 serrated teeth across the whole span. Additionally, as shown 

in Figure 2.26, reinforcing ribs were added beneath each serration to prevent them from 
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flexing and/or breaking during installation and experiments. These ribs extend out to the 

midpoint of each serration and have a thickness of 0.794 mm. The microphone holes are 

numbered 1-18 from left to right as shown in Figure 2.27.  

In Figure 2.28, the locations of the working microphones are shown and labeled. As before, 

they are flush with the top surface and sealed underneath with hot glue. The microphone 

locations were chosen to study the surface pressure field in as many different locations on 

each serration as possible, and singular microphones were placed on separate serrations to 

measure coherence and to compare the result from each tooth, to see if the measurements at 

each tooth in the same location are consistent. A local coordinate system defined for each 

serration is shown in Figure 2.28 to match the locations of similarly placed microphones on 

different serrations. 

 

a) 

  

b) 

Figure 2.28, Close up view of microphone locations on serrated trailing edge 

(dimensions in mm). 
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The remaining three microphones on the right side of Figure 2.27 were not used. Microphone 

16 was found to not work after installing the system, and Microphones 17 and 18 were 

installed but not used, due to a manufacturing defect in the serration that prevented the 

microphones from sitting flush with the top surface. Data were taken from these microphones 

uncovered, covered, and covered with micron tape with a hole punched to expose the 

diaphragm of the microphone while sealing the mounting hole. Despite our efforts, the data 

from these two microphones were significantly contaminated by the effects of not being flush 

to be useful for the study. Thus, a total of fifteen microphones were available for data 

collection.  

Table 2.7 reports the locations of the surface pressure microphones in both local and global 

coordinates. These local coordinates are defined from the nearest root in the −𝑥𝑥3 direction 

as shown in Figure 2.28 and are used to cross-reference microphone positions for comparison. 

Table 2.7, Actual surface pressure microphone positions for serrated trailing edge. 

Mic 𝒙𝒙𝟏𝟏 (mm), 
local 

𝒙𝒙𝟑𝟑 (mm), 
local 

𝒙𝒙𝟏𝟏 (mm), 
global 

𝒙𝒙𝟑𝟑 (mm), 
global 

1 8.76 7.46 1.26 97.45 
2 1.85 10.88 -5.66 85.88 
3 5.30 9.12 -2.20 84.12 
4 8.81 7.40 1.31 82.40 
5 5.29 5.70 -2.21 80.70 
6 1.80 4.05 -5.70 79.05 
7 1.78 10.89 -5.72 70.89 
8 1.75 7.42 -5.75 22.42 
9 8.75 7.32 1.25 22.32 
10 3.39 9.85 -4.11 -20.15 
11 6.97 6.91 -0.53 -23.10 
12 3.37 5.07 -4.13 -24.93 
13 -2.69 0.00 -10.19 -29.99 
14 1.49 7.56 -6.01 -67.44 
15 1.51 4.14 -5.99 -70.86 

 

Note that Table 2.7 lists the actual positions of the microphones, while Figure 2.28 shows the 

prescribed positions of the microphones. The drilling out performed by the machine shop 
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necessitated an examination of the actual locations of the microphones, and the locations 

were determined using overhead photo measurements performed in MATLAB. The 

manufacturing error is tabulated in Table 2.8. 

Table 2.8, Prescribed surface pressure microphone positions and placement error. 

Mic Prescribed 
𝒙𝒙𝟏𝟏 (mm), 

global 

Prescribed 
𝒙𝒙𝟑𝟑 (mm), 

global 

|𝚫𝚫𝒙𝒙𝟏𝟏| 
(mm) 

|𝚫𝚫𝒙𝒙𝟑𝟑| 
(mm) 

1 1.27 97.5 0.01 0.05 
2 -5.60 85.93 0.1 0.05 
3 -2.16 84.22 0.04 0.1 
4 1.27 82.5 0.04 0.1 
5 -2.16 80.78 0.05 0.08 
6 -5.60 79.07 0.1 0.02 
7 -5.60 70.93 0.12 0.04 
8 -5.60 22.5 0.15 0.08 
9 1.27 22.5 0.02 0.18 
10 -4.00 -20.10 0.11 0.05 
11 -0.45 -23.12 0.08 0.02 
12 -4.00 -24.90 0.13 0.03 
13 -10.04 -30 0.15 0.01 
14 -5.98 -67.5 0.03 0.06 
15 -5.98 -70.88 0.01 0.02 

 

Table 2.8 shows that that maximum absolute placement error is on the order of 0.15 mm. 

This length is 1% of 𝜆𝜆 and ℎ, indicating that the microphones are placed with a good degree 

of accuracy. Additionally, some measurement error could come from the extremely small 

scale being measured on and the pixel resolution of the photos examined in MATLAB. This 

error is estimated to be ±0.02 mm. 

Figure 2.29 shows the serrated trailing edge mounted in the tunnel with the far field 

microphones situated above it, and Figure 2.30 shows the Knowles microphones mounted in 

the serrated edge. The far field microphones are in very slightly different positions from their 

positions in the straight trailing edge runs, due to them being moved between the straight 

trailing edge runs and the serrated edge runs. The new locations are tabulated in Table 2.9.  
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Figure 2.29, Serrated trailing edge and far field microphones in wall jet. 

 

Figure 2.30, Microphones mounted in serrated trailing edge. 



 75 

Table 2.9, Far field microphone positions for serrated trailing edge experiments. 

Mic 𝒙𝒙𝟏𝟏 (m) 𝒙𝒙𝟐𝟐 (m) 𝒙𝒙𝟑𝟑 (m) |𝒙𝒙��⃗ | (m) 𝜽𝜽 (°) 
1 -0.3620 0.6286 -0.00635 0.7254 119.9 
2 -0.2492 0.6715 0 0.7163 110.4 
3 -0.1556 0.6905 0.00635 0.7079 102.7 
4 -0.003175 0.7033 0.009525 0.7033 90.26 

 

As before, the far field microphones were aligned to point directly at the trailing edge using 

a laser. To correct for the slight radial distance differences between this setup and that of the 

straight trailing edge for comparison, the measured pressures in both setups were normalized 

to |𝑟𝑟| = 1 m using the inverse square law.  

 

2.6 Beamforming Array 

An important step in characterizing the sound production of the straight trailing edge was to 

ensure that the source of the observed sound is the turbulence being scattered by the trailing 

edge. This is done using a technique called beamforming, which is used in a wide variety of 

acoustics applications to determine the locations of sound sources. In this work, a common 

beamforming technique, delay and sum beamforming, was used to characterize the sound 

produced by the trailing edge.  

2.6.1 Array Design 

In this experiment, the linear microphone array designed and manufactured by Alexander 

[38] was used. A long Delrin block with aluminum mounting pins on each end has 36 holes 

drilled into it, each designed to fit a B&K Type 4190 microphone-preamplifier such that its 

face is flush with the face of the block. The microphones are spaced 15.1 mm apart, which 

was the closest spacing possible. The mounting pins are connected to aluminum mounts, 

which can be attached to the 80/20 gantry hanging over the plate.  
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Figure 2.31, Linear microphone array for beamforming experiment. 

Figure 2.31 shows the linear array in both orientations, streamwise and spanwise, mounted 

within the wall jet. The center of the array, between Microphones 18 and 19, is placed directly 

overhead of the coordinate system origin. In the streamwise orientation, this height is 0.8041 

m, and in the spanwise orientation, this height is 0.7818 m. Note that the edge rounding pieces 

are not present for this experiment; the beamforming results are what prompted the addition 

of these rounding pieces. 

2.6.2 Delay and Sum Beamforming 

Delay and sum beamforming is commonly used in aeroacoustic applications because it is 

capable of characterizing a wide range of potential sources and their distribution.  
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Billingsley and Kinns [53] contributed an early study of how a microphone array could be 

used to ascertain a spatial distribution of sound sources. Consider a monopole in free space 

with a linear array of microphones distributed along 𝑥𝑥1, as shown in Figure 2.32: 

 

Figure 2.32, Acoustic monopole in free space with linear array of microphones. 

Assume that the source is in the acoustic far field. The wave fronts striking the linear 

microphone array can then be approximated as linear themselves, and thus each microphone 

would see the same instantaneous signal, and the array output could be calculated by simply 

summing the microphone signals and dividing by the number of microphones. If the position 

of the source is moved such that it is no longer aligned with the center of the array, but the 

positions of the microphones stay the same, the microphones will no longer all see the same 

signal. The signal at each microphone is phase-shifted. 
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Figure 2.33, Two acoustic monopoles in free space with linear array of microphones. 

As shown in Figure 2.33, the signal seen by the array microphones from the source at position 

𝑟𝑟1���⃗  introduces a time delay component to each microphone signal, and this is the key to 

forming a map of the acoustic source.  

As the microphone signals are summed, there will be destructive interference introduced by 

phase delay. To determine a source location, the array can either be physically rotated to 

point at a known source, or a time delay can be introduced to the signals during processing 

that simulates rotating the array. This time delay is introduced as a phase delay in the Fourier-

transformed pressure signal given by each microphone. It is this delay that gives the 

procedure its name, “delay-and-sum beamforming”.  

When delay-and-sum beamforming is used as a diagnostic, a map of source locations is 

prescribed and the array is mathematically focused onto each point to determine the output. 

If the source is at or near the investigated location, the array output at that focus point will be 

higher; otherwise, the array output will be very weak. By repeating this procedure over a 

large range of focal points, an acoustic “image” can be formed of the distribution of source 
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strength within the source region; Billingsley and Kinns originally proposed the method as a 

way to characterize jet engine noise.  

If the cross spectral density matrix of the individual recorded signals in the array is known, 

it can be used to calculate the output of the array at a given focal point as well. Tester and 

Glegg [54] showed that the output of the phased array for a range of sources can be written 

as 

 𝑩𝑩(𝜔𝜔) = 𝑮𝑮𝒊𝒊𝒊𝒊𝒊𝒊𝑪𝑪𝑮𝑮𝒊𝒊𝒊𝒊𝒊𝒊𝑯𝑯   (2.12) 

where each row of 𝑮𝑮𝒊𝒊𝒊𝒊𝒊𝒊 is a steering vector that focuses the array on the 𝑗𝑗th focal point, and 

𝑪𝑪 is the cross spectral density matrix at the investigated frequency 𝜔𝜔. The superscript 𝐻𝐻 

denotes the Hermitian transpose, which is a complex-valued matrix transpose that 

additionally replaces all its values with their conjugates. If the source field is assumed to be 

composed of uncorrelated monopole sources, then each diagonal element of 𝑩𝑩 is the output 

from focusing the array at the 𝑗𝑗 th investigation point and each off-diagonal element is 

ignored. Therefore, to use this matrix calculation, the investigated points must be rearranged 

into a single vector and later reshaped into a mapping of the source distribution. 

Following Alexander [38], the steering vectors are calculated as the inverse of the Green’s 

function for a monopole, given by: 

 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖
(𝑗𝑗𝑗𝑗) =

𝑒𝑒−𝑖𝑖𝑖𝑖𝑟𝑟𝑗𝑗𝑗𝑗

√𝑀𝑀
     𝑟𝑟𝑗𝑗𝑗𝑗 = �𝑥⃗𝑥𝑚𝑚 − 𝑦⃗𝑦𝑗𝑗� (2.13) 

This formulation for 𝑮𝑮𝒊𝒊𝒊𝒊𝒊𝒊  accounts for both phase delay and amplitude decay of the 

propagating sound. The designation of 𝑩𝑩 as a function of 𝜔𝜔 becomes clear here, as each 

investigated frequency will result in a different steering vector acoustic wavenumber. 

Additionally, a factor of 𝑀𝑀−1/2, where 𝑀𝑀 is the number of microphones, is included; this 

accounts for the division by number of array elements, as there are two factors of 𝑮𝑮𝒊𝒊𝒊𝒊𝒊𝒊 in the 

formulation. 
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2.6.3 Beamforming Performance of the Linear Array 

To understand the results of the beamforming algorithm, it is also important to note the 

response characteristics associated with the specific array configuration. To this end, two 

parameters must be calculated: the point spread function and the beamwidth. The point 

spread function is the array’s theoretical response to a monopole in the target region. This is 

determined by computing the theoretical cross spectral density matrix of the monopole signal 

as measured by the array. The beamwidth is a portion of the point spread function and is 

defined as the range about the peak at which the signal is within 3 dB of the peak value along 

the axis of the array (𝑥𝑥3 = 0). This is shown in Figure 2.34, with the 3 dB cutoff marked. 

 
        a) Point spread function            b) Beamwidth 

Figure 2.34, Point spread function and beamwidth for 𝒇𝒇 = 2000 Hz monopole at 

origin, normalized on peak value. 

Knowing the point spread function of the array at a given frequency is important because it 

shows how the array will interpret a point source at a given frequency due to the spatial 

resolution that the algorithm provides. The result in Figure 2.34, for example, shows that 

even though the source is a single point, it will manifest as a spanwise band of width 0.235 

m. This means that a widely spread band at lower frequencies does not represent a wide 

region of sources spread out over the region of the trailing edge, but rather that the trailing 

edge itself is definitively the noise source. The beamwidths for 𝑓𝑓 = 6000 Hz, 10000 Hz, and 
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15000 Hz are 0.07 m, 0.04 m, and 0.025 m, respectively. Another important detail to note is 

that even though the source is a point source, it manifests as a wide band. This is because the 

array has zero resolution in the spanwise direction (when in the streamwise configuration), 

and thus only points along 𝑥𝑥3 = 0 represent real data for the streamwise results, and vice 

versa for spanwise results. 

Another feature to be noted in Figure 2.34a is the spurious lobe appearing in the point spread 

function at and above 2000 Hz; at higher frequencies, these lobes are more numerous. This 

is due to the linear, equally spaced arrangement of the array microphones and will be further 

discussed in Section 2.7. 

2.7 Wavenumber Filtering 

As stated in Section 1.2, it is desirable to measure the surface pressure spectrum at zero 

spanwise wavenumber to make a prediction using Amiet’s theory. This represents the case 

of plane waves with wave fronts that are parallel to the trailing edge. This wavevector content 

is the dominant source of trailing edge noise within the turbulent boundary layer. 

Measuring this zero-wavenumber content requires use of a wavenumber filter. Corcos [55] 

modeled the response function of a single transducer to show how a single transducer of finite 

size could act as a wavenumber filter all by itself. He also showed that a very large transducer 

is capable of differentiating between convective and acoustic components of the surface 

pressure spectrum. As the size of the transducer increases, the magnitude of the needed 

attenuation correction increases. This effect was later developed by Blake and Chase [46] 

and Farabee and Geib [47], and becomes the analysis laid out in 2.3.1. However, using a 

large transducer is quite impractical and can be disruptive to the flow. 

Thus, it becomes practical to use an array of surface pressure microphones to discretely 

sample the pressure field in space. As before, the data from each individual transducer in the 

array is summed and divided by the total number of transducers, and the array will have a 

different response depending on the spatial scale of the waves it is measuring. The response 

function of the array, therefore, depends on both the response functions of the individual 
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microphones and the response characteristics of the array, which can be affected by both the 

arrangement of the microphones and how each signal is weighted.  

The measured response of a wavenumber array to a surface pressure field is written as: 

  𝜙𝜙𝑚𝑚(𝜔𝜔) = ∬ |𝑆𝑆(𝑘𝑘1,𝑘𝑘3,𝜔𝜔)|2𝜙𝜙(𝑘𝑘1,𝑘𝑘3,𝜔𝜔)𝑑𝑑𝑘𝑘1𝑑𝑑𝑘𝑘3 (2.14) 

where 𝑆𝑆(𝑘𝑘1,𝑘𝑘3,𝜔𝜔)  is the spatial and temporal response of the microphone array. The 

temporal response is encapsulated in the frequency calibration performed in Section 2.3.2. 

The total wavenumber response component |𝑊𝑊(𝑘𝑘3)|2 of a microphone array that is linear 

along 𝑥𝑥3����⃗  can be generalized by [46,56]: 

  |𝑊𝑊(𝑘𝑘3)|2 = |𝐻𝐻(𝑘𝑘3)|2|𝐴𝐴(𝑘𝑘3)|2 (2.15) 

where 𝐻𝐻(𝑘𝑘3) is the response function of a single microphone and 𝐴𝐴(𝑘𝑘3) is the array response 

function. The function |𝐻𝐻(𝑘𝑘3)|2 has already been shown in Section 2.3.1. 

Literature regarding wavenumber filtering arrays is largely focused on equally spaced linear 

arrays with identical microphones. Maidanik and Jorgensen [56] described the construction 

of a wavenumber filter from linearly spaced circular microphones, and showed that in an 

arrangement of equally spaced microphones, altering the weighting of the sensitivities could 

produce different response functions from the same arrangement of microphones. The 

geometry of each individual transducer and the way they are arranged affect the output of the 

array as well; each different shape of diaphragm will have its own spatial response function, 

and the arrangement of the microphones and the weighting on each signal can be tuned to 

accept or reject specific ranges of wavenumbers, as Maidanik and Jorgensen showed. As an 

example, their derived �𝐴𝐴�𝑘𝑘�⃗ ��
2
 takes the following form when the microphone signals from 

an equally spaced array of 𝑁𝑁 microphones in the 𝑥𝑥3����⃗  direction (each transducer separated by 

Δ𝑥𝑥3) are simply added together: 
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|𝐴𝐴(𝑘𝑘3)|2

𝑠𝑠2
=

sin2(1/2𝑁𝑁𝑘𝑘3Δ𝑥𝑥3)
𝑁𝑁2 sin2( 1/2𝑘𝑘3Δ𝑥𝑥3)

 (2.16) 

Note that this formulation of |𝐴𝐴(𝑘𝑘3)|2 is sensitivity-normalized, where 𝑠𝑠 is the sensitivity of 

each microphone, assuming that all microphones have equal sensitivity. At first glance, this 

function has an obvious peak value and narrow lobe at 𝑘𝑘3 = 0, and since this function is part 

of a greater transfer function between the measured pressure spectrum and the actual pressure 

spectrum, this should theoretically suppress signals measured from wavenumbers 𝑘𝑘3 ≠ 0. 

However, this is actually not the case; it can be clearly seen in Equation (2.16) that at each 

𝑘𝑘3 = 𝑗𝑗2𝜋𝜋
Δ𝑥𝑥3

, where 𝑗𝑗 is an integer, a response lobe of equal magnitude is produced. While this 

does account for 𝑘𝑘3 = 0, it also adds strong unwanted side lobes. Maidanik and Jorgensen 

proposed countering this by coupling the size of the transducers and their transducer response 

functions to the separation distance to suppress the unwanted side lobes by nature of the 

individual transducer response functions. This principle is used in the works of Blake and 

Chase [46] and Farabee and Geib [47], who both attempted to measure the low-wavenumber 

components of the wall pressure spectrum of a turbulent boundary layer. In both cases, 

facility noise was found to be a significant contaminant. Blake and Chase suggested that 

adding more microphones to the array would help reduce this problem. 

As shown in Figure 2.7, the strong side lobe contamination is due to the repetition of 

microphone spacings (Δ𝑥𝑥3). Logically, it follows that these strong side lobes can be reduced 

by using an unequal spacing of microphones. For example, using this concept, Arguillat et 

al. [57] used a circularly arranged, rotating, flush-mounted array of 63 microphones and were 

able to obtain measurements of the two-dimensional wavenumber spectrum of flow in an 

acoustically treated wind tunnel. Their array was able to separate the convective and acoustic 

fluctuations. They found that the convective region was up to 15 dB stronger than the acoustic 

region and that pure acoustic fluctuations accounted for just 5% of the total pressure 

fluctuations, illustrating the difficulty of measuring the acoustic region. They also found that 

the measured convective region agreed well with Corcos’s model of the convective region 

[55]. Ehrenfried and Koop [58] showed that an array of 48 sensors in which nearly every 
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combination of sensors had a unique total separation distance was able to adequately 

deconvolve the measured frequency spectrum into its wavenumber components with a more 

uniform resolution in wavenumber space. They used the DAMAS2 beamforming technique 

on the array signals with steering vectors based on the separation distances between 

microphones. While they were able to measure the convective ridge quite well, they were 

unable to confidently identify acoustic components of the wavenumber spectrum, suspecting 

contamination from trailing edge noise radiating upstream and side lobes of the beamforming 

result, as well as background noise. They concluded that the deconvolution technique is able 

to help reduce the influence of background noise, but it is unable to fully overcome the 

shortcomings of the limited number of sensors, which reduces the spatial resolution of the 

array. Regardless, they were still able to show that the influence of the acoustic region is 

much greater at lower frequencies relative to high frequencies.  

In this work, for the straight trailing edge a logarithmic spacing of 16 microphones over a 

total 𝑥𝑥3 range of 540.8 mm was used. The logarithmic spacing was chosen to have a good 

range of both shorter and longer separations, while avoiding repetition of microphone 

spacings which would give unwanted side lobes in the array response |𝐴𝐴(𝑘𝑘3)|2 . The 

(sensitivity-normalized) array response can be calculated by: 

 
|𝐴𝐴(𝑘𝑘3)|2 =

1
𝑁𝑁2��𝑒𝑒−𝑖𝑖𝑘𝑘3𝑟𝑟𝑖𝑖𝑖𝑖

𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 

𝑟𝑟𝑖𝑖𝑖𝑖 = �𝑥𝑥𝚤𝚤���⃗ − 𝑥𝑥𝚥𝚥���⃗ � 

(2.17) 

In this equation, 𝑟𝑟𝑖𝑖𝑖𝑖 is the distance between microphones 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 in the array. Summing the 

cross spectral density of the entire array at each separation distance gives the total 

wavenumber response of the array at each wavenumber. 

The wavenumber response function of this array assuming each microphone is an ideal sensor 

is shown in Figure 2.35 as a fraction of the maximum output and compared to an equally 
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spaced array with Δ𝑥𝑥3 = 36.1 mm, which represents Equation (2.16) evaluated for 𝑁𝑁 = 16 

(as is the case here), and an equally spaced array with Δ𝑥𝑥3 = 3 mm.  

 

Figure 2.35, Wavenumber response function |𝑨𝑨(𝒌𝒌𝟑𝟑)|𝟐𝟐 for different microphone 

spacings. 

Figure 2.35 shows that the logarithmic array rejects wavenumber content by an average of 

about 90% for 𝑘𝑘3 = 0, with some spurious lobes adding up to 20% of their content. It 

becomes immediately obvious that a tight microphone spacing is better for rejecting high 

wavenumber content than a sparse spacing in the context of equal spacing, but for an equal 

number of microphones the total aperture is reduced. This reduces the spacing between 

sidelobes in the response. Ehrenfried and Koop showed this in their work in an experimental 

context, though it has been known since the work of Maidanik. The logarithmic array has its 

strongest lobe at 𝑘𝑘3 = 0, with several weak spurious lobes distributed throughout the entire 

wavenumber spectrum. As the response function is squared, these side lobes will have 

drastically reduced magnitude relative to the zero-wavenumber content, providing an 

adequate rejection of undesired wavenumber content for our purposes. 

Finally, the full function |𝑊𝑊(𝑘𝑘3)|2 can be computed from Equations (2.8) and (2.17). The 

results of this computation are shown in Figure 2.36. 
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Figure 2.36, Full array response |𝑾𝑾(𝒌𝒌𝟑𝟑)|𝟐𝟐 of wavenumber filter array. 

Comparing with Figure 2.35, it is clear that the full array response is virtually unaffected by 

the individual microphone response. This is due to the very small microphone pinhole 

diameter, which confines spatial averaging effects to very high frequencies, above 6 kHz. 

2.8 Measurement Uncertainty 

Before any further results are presented, an analysis of the measurement uncertainty is 

necessary to contextualize the presented data. Of primary concern are the repeatability of the 

surface pressure microphone data and far field data recorded by the Knowles FG-23329 

microphones and B&K Type 4190 microphones. The uncertainty is introduced in several 

different manners, including but not limited to inconsistencies in flow conditions due to 

unsteadiness of nozzle conditions, structural imperfections in the flow region including the 

sealing tape and flat plate surface, imperfections in the mounting of surface pressure and far 

field microphones, placement errors in positioning the trailing edge, and averaging 

uncertainty, as defined in Section 2.2.4. 

A potentially major source of uncertainty was the unsteady conditions in the tunnel as 

measured at the nozzle. The tunnel speed was controlled by measuring the flow temperature 
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and dynamic pressure and using them to compute the flow speed at the nozzle. The measured 

velocity was observed to fluctuate by about ±0.3 m/s throughout the course of a data run. 

Additionally, the atmospheric pressure and temperature were not constant between data runs. 

The atmospheric pressure changed over a total range of about 5.2 mbar, and the temperature 

changed by about 0.3 K. Using the Wygnanski functions (Equation (2.1)), the expected 

variation in the flow parameters at the edge due to variations in atmospheric conditions and 

nozzle velocity was found to be less than 1% for all values except for 𝑈𝑈𝑒𝑒 at 𝑈𝑈𝑗𝑗 = 15, 20, and 

30 m/s. These uncertainties are ±2.11%, ±1.58%, and ±1.05%, respectively. With the 𝑈𝑈5 

scaling predicted by Ffowcs Williams et al. and Amiet, this predicts a maximum far field 

noise variation of ±0.45 dB at low speeds. 

After computing averaging and nozzle uncertainty, the measurement uncertainty can be 

examined. This involves taking repeated measurements and comparing them to show the 

repeatability of a given measurement. Measurements taken at the same flow conditions from 

the same location are expected to be the same between runs, and the variation in the curves 

determines the measurement uncertainty. In Figure 2.37, the surface pressure measurement 

uncertainty is assessed; it shows a view of the full acoustic spectrum as well as a zoomed-in 

section at medium frequency, the region of highest confidence in validity of Knowles 

measurements. 

 
Figure 2.37, Repeatability comparison for three runs of data measured by microphone 

13 on the straight trailing edge at 𝑼𝑼𝒋𝒋 = 70 m/s. 
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Figure 2.37 implies a total uncertainty of ±1 dB for surface pressure measurements from the 

Knowles microphones. This accounts for averaging uncertainty, flow condition fluctuations, 

and structural imperfections in the flow region; however, it does not account for uncertainty 

introduced by taking down and re-setting up the testing apparatus. Nonetheless, this is a 

reasonable amount of uncertainty for such a measurement. 

Data from these same three 70 m/s runs were used to examine the far field noise repeatability 

in Figure 2.38. 

 
Figure 2.38, Repeatability comparison for three runs of data measured by microphone 

1 in the far field of the straight trailing edge at 𝑼𝑼𝒋𝒋 = 70 m/s. 

Taking the previous statements into consideration, the uncertainty in the far field noise is 

estimated to be ±1 dB as well. This is because while the far field microphones are of much 

higher quality than the surface pressure microphones, the number of factors contributing to 

far field noise that can introduce uncertainty is much greater, as detailed above.  

Finally, the uniformity of the spanwise surface pressure spectrum must be considered. While 

variations in the boundary layer across the flow are small [37], they must still be considered 

as the dynamic pressure varies with velocity squared. Additionally, inconsistencies and errors 

in installation can introduce discrepancies to the surface pressure spectrum downstream. To 
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this end, autospectrum data from all microphones embedded in the straight trailing edge at 

once are presented in Figure 2.39. 

 

Figure 2.39, Surface pressure spectrum uniformity measured at 𝑼𝑼𝒋𝒋 = 50 m/s. 

Figure 2.39 shows that the spread of the surface pressure spectrum across the trailing edge is 

about 3 dB across the full valid frequency range. These values appear to be randomly 

distributed throughout the full frequency range; though certain microphones consistently 

measure lower levels than others, there is no arrangement or pattern to these that is consistent 

with the geometry. Therefore, this spread is likely due to uncertainty in the sensitivity 

calibrations and installation inconsistencies. This and the previous uncertainty estimates 

should be considered when examining the data to be presented in this paper. 
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Chapter 3. Results and Discussion 
3.1 Characterization of Wall Jet Turbulent Boundary Layer 

Before any analysis or prediction can be made of the trailing edge noise emitted by the 

straight trailing edge, the characteristics of the boundary layer producing the noise must be 

known. Presented here are the results of several experiments done to characterize the flow. 

3.1.1 Evaluating the statistically frozen flow hypothesis 

To provide baseline expectations of the streamwise flow characteristics, further experiments 

were conducted with the smooth wall setup shown in Figure 2.16 with the surface pressure 

microphones in the streamwise orientation (as pictured). The results of this experiment will 

provide confirmation of the expected valid range of the Knowles microphones, establish a 

baseline measure of streamwise coherence for comparison with the serrated trailing edge, 

and confirm that the wall pressure spectrum does not significantly evolve between the 

measurement location of the spanwise microphone array and the trailing edge, allowing for 

the prediction of downstream flow conditions from those upstream. The surface pressure 

autospectra for nozzle velocities of 𝑈𝑈𝑗𝑗 = 15 m/s, 40 m/s, and 70 m/s are shown in Figure 3.1.  

At low speed, the noise floor of the microphones is visible in the spectra above a frequency 

of approximately 3 kHz, and at high speed, the low-frequency content of the Knowles 

microphone is suppressed due to clipping. The increasing spatial attenuation cutoff can be 

seen as well. In the ranges where the Knowles microphone is expected to work adequately, 

the spectral levels are similar between the microphones. As the total spatial separation 

between all three microphones is Δ𝑥𝑥1 = 12.3 mm, this is a good indicator that the single-

point measurements made by Knowles microphones 3 mm upstream of the trailing edge will 

be good representations of the surface pressure spectra scattered by the trailing edge for valid 

frequency ranges of the Knowles response, a function of flow velocity. 
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a) 𝑼𝑼𝒋𝒋 = 15 m/s    b) 𝑼𝑼𝒋𝒋 = 40 m/s 

 
c) 𝑼𝑼𝒋𝒋 = 70 m/s 

Figure 3.1, Autospectra of surface pressure microphones �𝝓𝝓𝒑𝒑𝒑𝒑(𝒇𝒇)� in streamwise 
orientation in wall jet flat plate. 

The streamwise coherence for Δ𝑥𝑥1 = 6.05 mm was also calculated and compared to the 

model proposed by Leclercq and Bohineust [59], who measured an open-jet turbulent 

boundary layer flowing along a wall with 42 embedded wall pressure transducers and 

proposed the following semi-empirical model for streamwise coherence: 
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  𝛾𝛾2(Δ𝑥𝑥1,Δ𝑥𝑥3 = 0, 𝑓𝑓) = 𝑒𝑒−2
�𝜈𝜈𝑓𝑓3𝛼𝛼2𝛥𝛥𝑥𝑥12/𝑢𝑢𝜏𝜏2𝑒𝑒−2�𝛽𝛽Δ𝑥𝑥1𝑢𝑢𝜏𝜏/(𝑓𝑓𝛿𝛿2) (3.1) 

In the above equation, 𝜈𝜈  is the kinematic viscosity of the mean flow, and 𝛼𝛼  and 𝛽𝛽  are 

empirical constants determined by Leclercq and Bohineust to be 0.43 and 0.25, respectively. 

Using a wall profile obtained from Equation (2.1), the predicted coherence curves are plotted 

atop the experimental data in Figure 3.2. 

 
a) 𝑼𝑼𝒋𝒋 = 15 m/s    b) 𝑼𝑼𝒋𝒋 = 40 m/s 

 
c) 𝑼𝑼𝒋𝒋 = 70 m/s 

Figure 3.2, Experimental and predicted streamwise coherence curves for wall jet flat 

plate. 
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Leclercq and Bohineust’s model is not intended to be used for a wall jet boundary layer, but 

Figure 3.2 shows relatively good agreement above the frequency at which the coherence is 

0.5, with all curves within 0.05 of each other. The model underpredicts the low-frequency 

coherence over the entire range up to 𝛾𝛾2 = 0.5; this is due to the nature of the boundary layer 

being measured. A wall jet contains a large mixing layer with larger, slow-moving eddies 

above the inner boundary layer, and therefore it is expected that more low-frequency content 

will be present in the spectrum, and higher low-frequency correlation. The low-frequency 

cutoff for interpretation of streamwise coherence with the Knowles microphone as defined 

in Section 2.3.3 was found to be 48 Hz for 𝑈𝑈𝑗𝑗 = 15 m/s, 248 Hz for 𝑈𝑈𝑗𝑗 = 40 m/s, and 1296 

Hz for 𝑈𝑈𝑗𝑗 = 70 m/s. The limits determined in Section 2.3.3 for spanwise coherence at these 

jet velocities (24 Hz, 96 Hz, 800 Hz) are somewhat lower than those found here for 

streamwise coherence. Nonetheless, this figure is still promising, as it once again shows good 

agreement between the B&K and Knowles data at frequencies (>1 kHz) and speeds at which 

trailing edge noise is expected to be observable. 

3.1.2 Streamwise coherence length scale 

From the coherence curves shown above, a streamwise coherence length scale can be 

calculated for the flow. The coherence length scale represents an exponential curve fit that 

describes the coherent power decay rate [60]; this decay rate is a curve fit of the constant-

frequency coherence data at different separation distances, and is given by Leclercq and 

Bohineust [59] to be: 

 𝛾𝛾2 = 𝑒𝑒
−2|𝛥𝛥𝑥𝑥1|
ℒ𝛾𝛾(𝑓𝑓)   (3.2) 

The coherence length scale is defined as a frequency-dependent value that is determined by 

a curve fit of 𝛾𝛾2(Δ𝑥𝑥1,𝑓𝑓) vs. Δ𝑥𝑥1, varying the frequency to determine the coherence length at 

each frequency. Thus, physically, it represents the characteristic decay scale in distance along 

the plate of the coherent structures of the flow for structures with a particular frequency. The 

coherence length is a similar measure to the correlation length scale, except it enables a 

separation of scale by frequency rather than producing a broadband measure of characteristic 
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length. Thus, in the particular case of a wall jet, a correlation length scale calculated from the 

peak in a cross-correlation measurement instead of the frequency-dependent coherence 

would be strongly influenced by the large, low-frequency structures in the mixing layer [60]. 

This would give an inaccurate representation of characteristic turbulence scales associated 

with the trailing edge noise produced at higher frequencies.  

From the B&K-B&K coherence data in Figure 3.2, considered to be of high accuracy, this 

expected length scale was computed for each jet speed. The results are shown in Figure 3.3, 

and compared to the size of the serrations and the separation distance between the surface 

pressure microphones and the straight trailing edge. 

  

 Figure 3.3, Streamwise coherence decay length. 

The plot shows that below 1 kHz, the streamwise coherence decay length is greater than the 

planned separation distance between the microphones and the trailing edge at all flow speeds. 

This decay length increases with increasing flow speed at fixed frequency. Above 5 kHz, the 

decay length falls below the microphone and trailing edge separation distance at all flow 

speeds. The cutoff frequency below which the streamwise coherence length scale is the size 
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of the trailing edge serrations is 200 Hz for the lowest flow speed and 1300 Hz for the highest 

flow speed.  

3.1.3 Convection velocity 

The convection velocity is another important flow parameter that is important to know for a 

boundary layer flow; for the purposes of this work, it is used to evaluate the frequency range 

over which the flush-mounted pinhole microphones are spatially attenuated, and is a 

parameter in many of the wavenumber-frequency wall pressure spectrum models.  

To measure the convection velocity, the cross spectra of the B&K surface pressure 

microphones separated by 6.15 mm was computed and the phase angle of the cross spectra 

was converted to a time delay. Dividing the separation between the two microphones by this 

time delay gives the convection velocity as a function of frequency (Δ𝑡𝑡 = 𝜙𝜙12/2𝜋𝜋𝜋𝜋). This 

method does require there to be significant coherence between the two microphones, and as 

such measuring the convection velocity above a certain frequency threshold is difficult. 

Using 𝛾𝛾12 ≈ 0.1 as a cutoff, the phase angle and convection velocity for selected jet velocities 

are shown in Figure 3.4 and Figure 3.5.  
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a) 𝑼𝑼𝒋𝒋 = 20 m/s    b) 𝑼𝑼𝒋𝒋 = 40 m/s 

 
c) 𝑼𝑼𝒋𝒋 = 60 m/s 

Figure 3.4, Phase angle of cross spectrum between B&K 1/8” microphones mounted in 

flat plate. 
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a) 𝑼𝑼𝒋𝒋 = 20 m/s    b) 𝑼𝑼𝒋𝒋 = 40 m/s 

 
c) 𝑼𝑼𝒋𝒋 = 60 m/s 

Figure 3.5, Ratio of convection velocity to maximum velocity as a function of 

frequency. 

Figure 3.4 shows the as-expected linear relationship between the phase difference and 

frequency. This trend exists from 0 Hz all the way up to the cutoff frequency, which is marked 

as the axis limits on each figure. The slope of each line decreases with increasing jet velocity, 

indicating that the phase difference for a given frequency decreases with velocity, as expected. 

Figure 3.5 shows that the ratio of the convection velocity to the maximum velocity tends to 

increase with jet velocity – from around 0.8 at 20 m/s to about 0.9 at 60 m/s. This trend is 

likely due to the decreasing thickness of the boundary layer, resulting in mid- to high-
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frequency eddies being located closer to the edge of the boundary layer. Note that data below 

100 Hz are removed from Figure 3.5; the data in this region show a significant decrease in 

convection velocity ratio. Pressure fluctuations in this range may be dominated by the very 

large scales in the outer portion of the boundary layer, which have a much slower convection 

velocity. As the scales reduce at higher frequency to a scale similar to the boundary layer 

thickness, corresponding to Figure 3.3, the convection velocity increases. Note that there may 

be additional contamination at low frequencies as well which produce the anomality in Figure 

3.5c where the ratio rises above 1, an impossibility.  

To estimate an average value of convection velocity for use in this work, the mean value of 

the convection velocity ratio in the region above 1200 Hz is computed. This value is chosen 

because it is the lowest frequency at which trailing edge noise is emitted (see Section 3.2); 

for velocities without coherence in this frequency range, the average of the flat region of their 

ratio plots is computed. For 𝑈𝑈𝑗𝑗 = 15 and 20 m/s, the lower limit was 100 Hz, and the upper 

limits were 500 and 600 Hz, respectively; for 𝑈𝑈𝑗𝑗 = 30 m/s, the limits were 450 Hz < 𝑓𝑓 < 

900 Hz; for 𝑈𝑈𝑗𝑗 = 40 m/s, the limits were 600 Hz < 𝑓𝑓 < 1200 Hz; and for 𝑈𝑈𝑗𝑗 = 50, 60, and 

70 m/s, the upper limits were 1600, 2000, and 2400 Hz, respectively. The computed 

convection velocities across the jet velocity range used in this study are tabulated in Table 

3.1. 

Table 3.1, Far field microphone positions for serrated trailing edge experiments. 

𝑼𝑼𝒋𝒋 (m/s) 𝑼𝑼𝒄𝒄/𝑼𝑼𝒎𝒎 
15 0.796 
20 0.796 
30 0.819 
40 0.853 
50 0.875 
60 0.890 
70 0.896 

 

These results do not agree with the results of Devenport et al. [48], who found that the 

convection velocities at 𝑈𝑈𝑗𝑗 = 40 m/s and 60 m/s were 0.44𝑈𝑈𝑚𝑚 and 0.41𝑈𝑈𝑚𝑚, respectively. 
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Some differences do exist between the measurements made in this work and those made by 

Devenport et al., primarily the frequency range being examined – Devenport et al.’s result is 

found by examining the far field noise produced by a hydrodynamically smooth surface. The 

designed surface produced noise which corresponds to the scattering of a “cut” through the 

wavenumber-frequency wall pressure spectrum at a wavenumber 𝑘𝑘1 = 5000 rad/m. They 

located the approximate peak of the convective ridge of the wall pressure by examining the 

peak of the radiated sound field compared to a line with slope 𝜔𝜔2. A convection velocity 

could then be calculated using the peak frequency of the convective ridge with the associated 

wavenumber cut, 𝑈𝑈𝑐𝑐 = 𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝑘𝑘1. This process assumes that the measured peak is due to the 

convective ridge and the form of the wavenumber-frequency wall pressure spectrum is the 

same for wall jets as it is for conventional turbulent boundary layers. Both methods are 

theoretically viable ways of measuring the convection velocity, though the one in this work 

is a direct measurement of the flow field. Therefore, this result neither proves nor disproves 

the validity of the previous result; rather, it presents another measurement, and invites further 

investigation into the topic. In this work, where necessary, calculations involving convection 

velocity will be presented for both the measured result and the result of Devenport et al. 

3.2 Trailing Edge Noise from Straight Trailing Edge 

Now that the wall jet boundary layer is adequately characterized, the measured trailing edge 

noise can be analyzed. To do so, the trailing edge noise must be separated from the 

background noise of the facility. To this end, the facility was run without the trailing edge 

installed, then run with the straight trailing edge. The four far field microphones shown in 

Figure 2.22 were used to measure the far field noise in both the empty tunnel configuration 

and trailing edge configuration, and noise spectra were compared to determine which regions 

of the frequency range experienced increased noise due to the presence of the trailing edge. 

In the following sections, all far field measurements are distance-corrected using the inverse 

square relation to a radius of |𝑟𝑟| = 1 m. 
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a) Mic 1     b) Mic 2 

 
c) Mic 3     d) Mic 4 

Figure 3.6, Straight trailing edge signal-to-noise, distance-corrected. Dotted lines are 

background measurements, solid lines are with trailing edge installed. 

All four microphones show very little discernible trailing edge noise at low and medium 

speeds, but the range of trailing edge noise produced is relatively consistent throughout the 

full range of speeds tested; generally, trailing edge noise is produced at all frequencies above 

~1200 Hz. At Mic 1, the maximum noise increase is around 7 dB at 2000 Hz and 𝑈𝑈𝑗𝑗 = 70 

m/s; for Mic 2, 6.7 dB at 1850 Hz; for Mic 3, 7.5 dB at 1800 Hz; and for Mic 4, 7.5 dB at 

2200 Hz. Overall, noise levels appear to be relatively consistent between all four 

microphones. Using the sin2(𝜃𝜃/2) directivity predicted by Ffowcs Williams et al. and Amiet, 
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the difference between the overhead and upstream microphone trailing edge noise should be 

1.69 dB. This should be hardly noticeable on a plot scaled as in Figure 3.6, and is only just 

outside the uncertainty of the far field measurements. The level of background noise is also 

observed to increase with further downstream measurement locations, owing to the fact that 

the horizontal baffle provides better acoustic shielding for the upstream microphones. Mic 1 

in particular has a noise reduction of about 1 dB above 1.2 kHz relative to the other 

microphones. 

Now that the observed frequency range of trailing edge noise is established through 

comparison with background noise spectra, the background noise can be subtracted from the 

noise measured in the full tunnel setup to isolate the trailing edge noise. In Figure 3.7, this 

background-subtracted noise is shown at all speeds for frequencies at which the difference 

between the background and trailing edge setup noise is at least 1 dB. Data below 1 kHz, 

where increased noise was not observed, has been excluded. 

 
a) Mic 1     b) Mic 4 

Figure 3.7, Background-subtracted trailing edge noise from straight trailing edge. 

The noise from each jet velocity appears to peak at around the same frequency, 2000 Hz for 

Mic 1 and 2100 Hz for Mic 4, reaching a maximum of 23.9 dB at Mic 1 and 24.9 dB at Mic 

4. A good indicator that this measured noise is actually trailing edge noise would be if it 

follows theoretical scaling relationships, such as the 𝑈𝑈𝑚𝑚5  scaling implied by Equation (1.12). 
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To this end, the full spectra shown in Figure 3.7 were integrated between 1 kHz and 20 kHz 

to obtain a better representation of the noise produced at each speed, and a line representing 

a scaling of 𝑈𝑈𝑚𝑚5  fitted to the integrated values was plotted over these points. The result is 

shown in Figure 3.8 on logarithmic axes to show the power fit as a straight line. 

 
a) Mic 1        b) Mic 4 

Figure 3.8, 𝑼𝑼𝒎𝒎
𝟓𝟓  curve fit to integrated background-subtracted spectra. 

The maximum difference between the curve fit and the integrated spectra is 1.4 dB for Mic 

1 and 2.5 dB for Mic 4. This is outside the range of measurement uncertainty, but nonetheless, 

the 𝑈𝑈𝑚𝑚5  scaling seems to match the data, an indicator that what is being measured here is 

trailing edge noise or at least scales similarly. The slope of the integrated spectra on the 

logarithmic axes appears to increase as the flow speed increases as well; the data from lower 

speed is more uncertain due to the limited observed frequency range of data, and thus the 

higher slope at high speed indicates that the power in the random relationship is likely 

somewhat higher than 5. 

Three distinct humps in the spectrum begin to emerge at higher speeds, becoming more 

clearly defined as speeds increase, and more clearly defined upstream, where jet noise is 

better attenuated. Notably, these humps all occur in the same frequency ranges; for Mic 1, 

they appear to range from 1200 Hz to 3400 Hz, 3600 Hz to 7000 Hz, and 7000 Hz to 12000 

Hz. At Mic 4, the frequency ranges are roughly the same, but the humps are much less well-
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defined. The general shape of each curve remains self-similar for each microphone position, 

noting the double peaks at 1750 Hz and 2000 Hz, the double peaks at 4400 Hz and 5200 Hz, 

and the trough between 2750 Hz and 4100 Hz. The fact that the curves at each microphone 

are so self-similar suggests that these humps are produced by the geometry of the edge rather 

than flow phenomena – for example, vortex shedding would occur at a constant Strouhal 

number, which would mean the frequency of the humps would increase with speed. 

What remains to be determined is whether or not these plots are actually displaying noise 

produced by the trailing edge or the source of the spectral humps. 

3.2.1 Beamforming to Identify Noise Sources 

The delay and sum beamforming method described in Section 2.6 was used to investigate the 

location of the noise source at different frequencies. The streamwise array was used to 

determine the approximate streamwise location of the noise sources, and likewise for the 

spanwise array. Select frequencies have been chosen for reporting in Figure 3.9. Note that 

each figure will be symmetric about the array location due to the array being linear – this 

causes contributions at both positive and negative angles relative to the array to be equal. 

 
a) 704 Hz 
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b) 2000 Hz 

 
c) 6000 Hz 

 
d) 10000 Hz 
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e) 15000 Hz 

Figure 3.9, Beamforming experiment results, streamwise array (left side) and 

spanwise array (right side) at 𝑼𝑼𝒋𝒋 = 70 m/s. The black dashed line represents the 

location of the trailing edge. 

From the streamwise results, it is clear that at each frequency above 2000 Hz, the dominant 

noise source is the trailing edge. The spanwise results confirm that this noise is coming from 

the trailing edge. The contributions at 6 kHz and 10 kHz tend to come from the unrounded 

sides of the trailing edge piece. This was a major factor in the decision to add the side-

rounding pieces shown in Figure 2.20. Along the black dotted line, the variation in dB of the 

noise sources along the central region of the trailing edge, 𝑥𝑥3 = -0.3 to 0.3 m, is 1.97 for 704 

Hz, 2.34 for 2000 Hz, 1.59 for 6000 Hz, 3.14 for 10 kHz, and 10.38 for 15 kHz. At 704 Hz, 

the dominant source of noise is upstream of the trailing edge region, indicating that this 

source is jet noise from the nozzle. Each presented frequency was chosen because it 

represents a neighborhood of the frequency domain over which noise was measured; thus, it 

is concluded that the sound being measured above 1200 Hz is indeed produced by the trailing 

edge, although above 10 kHz the spanwise distribution of the noise can no longer be 

considered uniform with a spanwise variation over the central 0.6 m greater than 2.5 dB.  
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3.2.2 Cavity Resonance 

The humps in Figure 3.7 appear at constant frequencies with increasing flow velocity, 

peaking roughly at 2000 Hz, 5500 Hz, and 10 kHz. The lack of variation with flow speed 

indicates that the source of the humps is based on the geometry of the vicinity of the trailing 

edge. Since the humps occur at the same frequencies across the entire velocity range, the 

velocity clearly does not affect the frequency at which the hump occurs, meaning that some 

other constant factor between runs must be responsible (i.e. the geometry).  

The humps appear to correspond to modes of an acoustic resonance, which for an open-ended 

cylinder with one side closed occur at frequencies 𝑓𝑓 = 𝑛𝑛𝑐𝑐0/4𝐿𝐿, where 𝑛𝑛 is an odd whole 

number and 𝐿𝐿  is the length of the cylinder. The quarter-wavelength factor places the 

theoretical acoustic node at the cavity entrance and the antinode at the closed wall on the 

other end of the cylinder, and the odd mode numbers are necessary to preserve this 

relationship. While the open cavity in this experiment is not a cylinder, this formula still 

approximates the frequencies at which the resonance occurs quite well, assuming the two-

dimensional resonance based on cavity depth and ignoring the spanwise modes. Spanwise 

modes would coincide with much lower frequencies based on the spanwise length of the edge. 

The formula above predicts the first three resonant modes to occur at 𝑓𝑓 = 2259 Hz, 6777 Hz, 

and 11295 Hz. These appear to be slightly higher than the frequencies at which the suspected 

resonance actually occurs, and this is accounted for by an end correction that considers that 

the node may form slightly outside the opening. This correction factor usually takes the form 

of adding a fraction of the cavity diameter 𝑑𝑑 to the cavity length; each open end of the 

cylinder adds 0.3𝑑𝑑 to the effective length of the cavity [61]. Treating the cavity as a single 

open-ended cylinder places resonant modes at 2054 Hz, 6161 Hz, and 10269 Hz. However, 

at higher frequency humps this over-predicts the frequency; increasing the end correction to 

0.6𝑑𝑑 better approximates the resonance at higher frequency nodes, at 1883 Hz, 5648 Hz, and 

9413 Hz. These frequencies are overlaid atop the background-subtracted trailing edge noise 

from Figure 3.7 in Figure 3.10. 
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Figure 3.10, Background-subtracted trailing edge noise with predicted resonant 

frequencies overlaid. Blue dashes are frequencies with correction of 0.3𝒅𝒅 and red 

dashes are frequencies with correction of 0.6𝒅𝒅. 

It can be seen that while the 30% end correction fits the lowest resonant node quite well, 

neither of the high frequency end corrections are perfect fits to the data. There are two factors 

that account for this discrepancy: the cavity is not a cylinder, and thus the cylinder model is 

only useful as an approximation; and the fact that the resonating cavity is flared at the end 

means that resonances can occur slightly outside of the normal resonant mode frequencies 

[61]. In all, it is important to note that the humps do appear to multiples of one another and 

are approximately related to the resonant frequency of a simple quarter-wavelength resonator. 

3.2.3 The Image in the Wall 

Another potential trailing edge geometry effect is the proximity of the trailing edge to the 

wall. The sound produced by the unsteady pressure difference across a flat plate radiates as 
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a dipole, and the wall effectively adds an “image” trailing edge with opposite orientation on 

the opposite side of the wall, as illustrated in Figure 3.11 simplified to a single 2D dipole. 

This is a simplification which ignores the true directivity of trailing edge noise, which was 

expressed in Equation (1.12). The ideal directory is a cardioid which is a result of the loading 

response of the plate to turbulence scales which are much smaller than the plate’s chord. 

Instead, the simplification in Figure 3.11 ignores the trailing edge plate geometry completely 

and the ideal acoustic dipole source is located in free space 12.7 mm above the flat wall. This 

geometric simplification is necessary and sufficient to determine the general impact of the 

nearby wall on the radiated sound. 

 

Figure 3.11, Image of the undercut trailing edge in the wall as seen by Microphone 1. 

Ideal acoustic sources can be superimposed, and thus the far field noise at the observer is the 

summation of the sound from the two individual dipole sources: 

  𝑝̂𝑝(𝑥⃗𝑥,𝜔𝜔) = 𝐴̂𝐴 �
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In the above equation, 𝐴̂𝐴  is the arbitrary complex amplitude of the dipole. For some 

frequencies, the image dipole may provide constructive interference at the observer, and for 

others, it may provide deconstructive interference. Therefore, it is useful to plot the ratio of 

the signal from the dipole-image combination to the single dipole by plotting the relationship: 

  Δ𝑑𝑑𝑑𝑑 = 10 log�
�𝑝̂𝑝𝑤𝑤/𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

2

�𝑝̂𝑝𝑠𝑠𝑠𝑠𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔�
2 � (3.4) 

where 𝑝̂𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is computed from the first term in Equation (3.3). This relation is plotted across 

the trailing edge noise frequency range in Figure 3.12 for the upstream and downstream ends 

of the microphone arc.  

 
a) Mic 1        b) Mic 4 

Figure 3.12, Change in far field sound pressure level due to image in wall effects. 

From Figure 3.12, it can be seen that the upstream microphone will see full cancelation at 

15460 Hz and the overhead microphone at 13560 Hz; conversely, the upstream microphone 

predicts a peak of +5.92 dB at 7720 Hz, and the overhead microphone’s peak occurs with 

+6.2 dB at 6770 Hz. It can also be seen that less attenuation is expected at the lower frequency 

end of the trailing edge noise range for the overhead microphone, which may also contribute 

to the relative lack of directivity effects observed in the far field data. 
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Comparing the curve in Figure 3.12 to the signal-to-noise plot in Figure 3.6, it becomes clear 

that there is a region near 14.3 kHz at which the signal-to-noise ratio becomes essentially 

zero. However, the location of this trough shifts to lower frequency, about 12 kHz, for the 

upstream microphone, as opposed to the expected increase to 15460 Hz. Nonetheless, this is 

likely the “fingerprint” of the predicted attenuation effects of the image in the wall. Notably, 

the attenuation seems to be much stronger for the downstream microphones, and hardly 

noticeable upstream. This is because the image in the wall analysis presented above does not 

account for the Green’s function of the trailing edge geometry. Therefore, the undercut 

trailing edge may be “shielding” the upstream microphones from being affected by the 

acoustic image, by virtue of blocking the acoustic line of sight.  

As can be seen from Figure 3.10, the resonance effects are dominant in modifying the shape 

of the trailing edge noise spectrum in the form of spectral humps. The wall image effects 

decrease the observed noise below 2500 Hz at Mic 1 and 2200 Hz at Mic 4 and increase it 

above those frequencies up to 13 kHz at Mic 1 and 11.3 kHz at Mic 4. Its effect is expected 

to be most noticeable at 15000 Hz where deconstructive interference may be an issue. It is 

now concluded that the measured noise shown in Figure 3.7 is indeed produced by the trailing 

edge, although the spectral shape has been modified by the experimental arrangement.  

3.3 Surface Pressure and Predictions of Trailing Edge Noise for Straight 
Trailing Edge 

Now that the flow has been characterized and the trailing edge noise from the straight trailing 

edge has been identified, the wavenumber filter can be applied to the measured surface 

pressure spectrum and the noise from the mock trailing edge can be compared to predictions 

derived from experimental and theoretical analyses of noise from flat-plate and airfoil 

geometries.  

3.3.1 Wavenumber Filtered Spectrum 

As detailed in Section 2.7, the arrangement of surface pressure microphones on the straight 

trailing edge approximates a wavenumber filter for 𝑘𝑘3 ≈ 0. The spurious response spikes of 



 111 

the array can be seen in Figure 2.35. The important takeaway from this figure is that while 

the majority of the content captured by the wavenumber filter is at 𝑘𝑘3 = 0, enough energy is 

present at other wavenumbers that this approximation is far from perfect.  

As stated, the time series data of each surface pressure microphone is added up and divided 

by the total number of microphones to produce a single summed time signal. The original 

voltage signal is calibrated to a pressure value by using the flat response sensitivity shown in 

Figure 2.14, which can introduce error at higher frequencies in the filtered spectrum. The 

Fourier transform of this time signal roughly approximates the 𝑘𝑘3 = 0 frequency spectrum. 

The result of performing this computation on the time data is displayed in Figure 3.13. Also 

shown are the single-point spectra of each of the individual surface pressure microphones for 

level comparison. 

It can be seen that in general, the single-point spectra of the surface pressure microphones 

are around 25 dB higher than the filtered signal. This is to be expected, as the single-point 

spectra represent the wavenumber-frequency wall pressure spectrum integrated over all 𝑘𝑘1 

and 𝑘𝑘3, and the filtered signal approximates a single slice of that spectrum, at 𝑘𝑘3 = 0. The 

magnitude of the filtered spectrum is closer to the single point spectra at frequencies below 

100 Hz, around 20 dB, which speaks to the general effectiveness of the wavenumber filter at 

rejecting high wavenumber content. 
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a) 𝑼𝑼𝒋𝒋 = 20 m/s      b) 𝑼𝑼𝒋𝒋 = 40 m/s 

 
c) 𝑼𝑼𝒋𝒋 = 60 m/s 

Figure 3.13, Filtered surface pressure spectrum compared to single-point spectra of 

microphones. 

3.3.2 Potential Unsteady Loading 

In order to use the single boundary layer form of Amiet’s equation with our measured surface 

pressure spectrum, it must be proven that what is being measured atop the surface is the only 

significant contributing pressure fluctuation field; in other words, that any pressures 

fluctuating between the trailing edge and the wall are insignificant relative to the top surface 

loading. To this end, a single Knowles microphone was placed directly beneath the trailing 

edge in the plate, 12.7 mm below the edge; this arrangement is pictured in Figure 3.14. The 
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resulting pressure field measured is shown in Figure 3.15 and shown alongside the surface 

pressure spectrum on the top surface upstream of the trailing edge for comparison. 

 

Figure 3.14, Undercut microphone mounted in wall jet. 

 
Figure 3.15, Pressure spectrum beneath trailing edge as measured by microphone 

embedded underneath. Dashed lines are surface pressure data from Mic 8 on the top 

side (flow side) of the trailing edge. 

It is clear that the pressure field beneath the trailing edge is several orders of magnitude 

smaller than that of the pressure field upstream of the edge, and therefore it is concluded that 

there are no significant unsteady loading effects from pressure fluctuations on the underside 

of the trailing edge that must be accounted for when Amiet’ prediction method assuming a 
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single-sided flow. Also notable are the resonant peaks that were seen earlier, though these 

appear at slightly lower frequencies than those which appeared in the far field spectra; here, 

the peaks appear at 1800 Hz, 6000 Hz, 9 kHz, 14 kHz, and 19 kHz. These are visible here 

because the pressure fluctuations at the resonant frequencies are weak enough underneath the 

edge to not drown out the resonant acoustic pressure fluctuations, as opposed to on top of the 

plate, further supporting the conclusion that the boundary layer at the edge can be considered 

single-sided. 

3.3.3 Single-Point Models of Surface Pressure Spectra 

With the measured flow parameters as reported in Section 3.1, the prediction models of Chase, 

Goody, and Graham can be computed. The single-point spectra given by these models are 

shown in Figure 3.16, using the measured values of 𝑈𝑈𝑐𝑐. In the case of the Chase spectrum, 

the model is integrated in 𝑘𝑘1 and 𝑘𝑘3. 

 
Figure 3.16, Single-sided surface pressure frequency spectra model comparison. The 

full Chase wavenumber-frequency wall pressure spectrum model is numerically 

integrated in 𝒌𝒌𝟏𝟏 and 𝒌𝒌𝟑𝟑, and Real is the averaged measured surface pressure 

spectrum. 
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It is immediately obvious that the surface pressure spectrum models are inadequate for 

predicting the measured spectrum of the wall jet boundary layer below 1 kHz. The difference 

between the modeled spectra and the real spectrum becomes larger as the frequency is 

lowered; a difference of around 3 dB is present between the real and predicted spectra at 1000 

Hz, and it gradually increases to a difference of around 15 dB at 30 Hz. The large difference 

at these frequencies exists because the models are designed for a conventional zero-pressure-

gradient turbulent boundary layer. A wall jet boundary layer includes a large mixing layer, 

which provides more low-frequency fluctuations than a conventional turbulent boundary 

layer. Above 1 kHz, the slope of the Chase and Graham single point spectra matches that of 

the measured spectrum, but the curves are 4 dB lower. This trend continues up to 3 kHz, 

when the high-frequency drop off region of the turbulent boundary layer spectrum is reached 

for the measured spectrum, and at 7 kHz the measured spectrum drops below the Chase 

model as the Chase spectrum reaches its known region of overprediction [20]. The Goody 

spectrum separates from the Chase spectrum at about 700 Hz, and slowly approaches the 

measured spectrum before crossing over at 3300 Hz and overpredicting the spectrum by 

about 6 dB at higher frequencies. Goody’s model explicitly corrected the high-frequency 

region to decay as 𝜔𝜔−5 [20], but still tends to overpredict the high frequency noise in this 

case. This could be due to the total turbulent energy being more contained in the larger eddies 

of the mixing layer. Nonetheless, the models will still be useful as inputs to Amiet’s equation 

to predict the behavior of a single-sided flat plate conventional boundary layer. 

The single point spectra must be converted into full wavenumber-frequency wall pressure 

spectra for use in Amiet’s calculation. This is done by assuming the form of the Chase model 

is correct but adjusting the spectral levels according to the magnitude of the single point 

spectra. This is done by normalizing the Chase wavenumber-frequency model on the single 

point spectrum, essentially using the normalized spectrum as a transfer function between the 

single point spectrum and the full wavenumber-frequency spectrum. The Graham single 

point spectrum was used as the single point spectrum to normalize the Chase model.  
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 𝜙𝜙𝑝𝑝𝑝𝑝,𝑖𝑖(𝑘𝑘1,𝑘𝑘3,𝜔𝜔) =
𝜙𝜙𝑝𝑝𝑝𝑝,𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘1,𝑘𝑘3,𝜔𝜔)
𝜙𝜙𝑝𝑝𝑝𝑝,𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑎𝑎𝑎𝑎(𝜔𝜔) 𝜙𝜙𝑝𝑝𝑝𝑝,𝑖𝑖(𝜔𝜔)  (3.5) 

Here, 𝜙𝜙𝑝𝑝𝑝𝑝,𝑖𝑖  is the wavenumber-frequency spectrum for one of the various single-point 

measurements. The Chase-form wavenumber-frequency wall pressure spectrum model 

adjusted to the levels implied by the Goody spectrum is used throughout this section when 

referring to the Goody spectrum. 

3.3.4 Predictions of Trailing Edge Noise Using Amiet’s Method 

To use Amiet’s method, the various wavenumber-frequency surface pressure spectra were 

integrated over all 𝑘𝑘1 and evaluated at 𝑘𝑘3 = 0 to produce the 𝜙𝜙𝑝𝑝𝑝𝑝(0,𝜔𝜔) input to Amiet’s 

method. Using 𝜙𝜙𝑝𝑝𝑝𝑝(0,𝜔𝜔),𝑏𝑏, 𝑐𝑐, 𝑐𝑐∞,𝑈𝑈𝑚𝑚,𝑈𝑈𝑐𝑐, 𝑢𝑢𝜏𝜏,𝛽𝛽, 𝛿𝛿,𝜌𝜌0 and 𝜈𝜈, the Amiet far field spectra were 

computed. 

A prediction of the wavenumber filter output can be done using Equation (2.14). Applying 

the computed wavenumber filter response to a model of the surface pressure spectrum 

produces a prediction of the wavenumber filter’s response to a surface pressure field. 

Equation (2.14) is repeated here for convenience: 

  𝜙𝜙𝑚𝑚(𝜔𝜔) = ∬ |𝑆𝑆(𝑘𝑘1,𝑘𝑘3,𝜔𝜔)|2𝜙𝜙(𝑘𝑘1,𝑘𝑘3,𝜔𝜔)𝑑𝑑𝑘𝑘1𝑑𝑑𝑘𝑘3 (2.14) 

The real filtered spectrum, which is computed by summing the time series data and dividing 

by the number of microphones, is in units of dB per angular frequency. A slice through the 

wavenumber-frequency spectrum at 𝑘𝑘3 = 0 is essentially replacing 𝑆𝑆 with a delta function at 

𝑘𝑘3 = 0 and has units of dB per angular frequency per wavenumber. Therefore, in order to 

compare the filter response to a slice through the wavenumber-frequency spectrum at 𝑘𝑘3 = 

0, the filtered response of the measured data and the Chase and Goody spectra must be 

divided by the width of the main response lobe of |𝐴𝐴(𝑘𝑘3)|2 to add units of per wavenumber 

to 𝜙𝜙𝑚𝑚. 
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Figure 3.17 shows the Chase and Goody spectra with the filter function computed using 

Equation (2.14) and the real filtered spectrum compared to the Goody spectrum integrated in 

𝑘𝑘1 and evaluated at 𝑘𝑘3 = 0. 

 

Figure 3.17, Comparison of 𝝓𝝓𝒎𝒎(𝝎𝝎) implied by Goody and Chase models and real 

signal with wavenumber filter applied. 𝝓𝝓𝒎𝒎(𝝎𝝎) is double-sided in this figure. 

Comparing the wavenumber filtered Goody spectrum to the Goody spectrum evaluated at 

𝑘𝑘3 = 0 directly, it can be seen that the wavenumber filtered spectrum is greater than the 𝑘𝑘3 = 

0 by about 6 dB at 100 Hz. This difference gradually increases to about 14 dB at 10 kHz. At 

100 Hz, the filtered Goody and Chase models underrepresent the wavenumber-filtered 

spectrum by about 15 dB. The difference slowly decreases until around 800 Hz, when the 

filtered models overestimate the filtered spectrum by about 2 dB. The level of the filtered 

Chase spectrum is within 2 dB of the real filtered spectrum up to 8 kHz, after which it begins 

to increasingly differ from the real spectrum. After a gradual crossover occurs between the 

filtered Goody spectrum and the filtered real spectrum at about 1.8 kHz, the difference 

between the filtered Goody spectrum and the filtered real spectrum gradually increases from 

about 2 dB at 6 kHz to about 10 dB at 20 kHz. The high frequency drop-off in the filtered 



 118 

spectrum occurs at a somewhat lower frequency in the measured data than that of the Goody 

model. The Goody spectrum evaluated at 𝑘𝑘3 =  0 underrepresents the filtered measured 

spectrum by about 6 dB at 1 kHz, and this difference increases to about 7 dB at 3 kHz before 

decreasing as higher frequencies are approached. Though the filter is not perfect, the similar 

values for high-frequency drop-offs between the filtered Goody, 𝑘𝑘3 = 0 Goody, and real 

filtered spectra is an encouraging sign. It should also be noted that the single point Goody 

spectrum in Figure 3.16 crosses the real single point spectrum at 𝑓𝑓 = 1.8 kHz, while in Figure 

3.17 the filtered Goody spectrum crosses the real filtered spectrum at 𝑓𝑓 = 500 Hz. This 

suggests that the spanwise form of the Chase model may not be a very accurate representation 

of a wall jet boundary layer. The relatively increased levels of the Chase model after applying 

the filter implies that the width of the 𝑘𝑘3 convective ridge modeled by Chase is too broad to 

accurately represent the spectrum of a wall jet boundary layer. 

Figure 3.18 shows the result of using Amiet’s method to predict the trailing edge noise using 

the Chase wavenumber-frequency spectrum, the Goody wavenumber-frequency spectrum 

using the form of Chase, the measured single-point spectrum using the form of Chase, the 

wavenumber-filtered spectrum shown in Figure 3.17, the measured background-subtracted 

far field noise, and the measured single-point spectrum using the form of Chase computed 

with the 𝑈𝑈𝑐𝑐 estimated by Devenport et al. [48]. Each of the inputs assuming the Chase form 

is integrated in 𝑘𝑘1 and evaluated at 𝑘𝑘3 = 0. 
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Figure 3.18, Amiet’s method predictions of trailing edge noise at Mic 1, 𝑼𝑼𝒋𝒋 = 60 m/s. 

Figure 3.18 shows that the measured single-point spectrum applied to the Chase model 

oscillates around the value of the wavenumber-filtered real spectrum when used to predict 

trailing edge noise using Amiet’s method up to about 1000 Hz. These values are around 15 

dB higher than the Chase and Goody spectra at 100 Hz; this is because the wall jet boundary 

layer has much more low frequency content than a traditional boundary layer. At 1000 Hz, 

the wavenumber-filtered spectrum prediction begins to overpredict the rest of the far field 

spectra, as well as the measured spectra, by up to 10 dB. This shows the wavenumber filter’s 

inability to adequately reject higher 𝑘𝑘3 wavenumber content. Above 1000 Hz, the Goody 

spectrum prediction stays within 3 dB of the measured single point spectrum prediction, 

owing to the greater ability of Goody’s model to accurately predict the form of the wall 

pressure spectrum; the Chase model once again fails to taper off at high frequency. The 

measured single-point prediction using the measured 𝑈𝑈𝑐𝑐 stays within 4 dB of the measured 

background-subtracted noise over the full region where the background-subtracted noise is 

measurable; the Devenport et al. 𝑈𝑈𝑐𝑐  real single-point curve underpredicts the noise by 

between 3 and 10 dB up until 12 kHz, at which point it begins to severely underpredict the 

noise; and the Goody spectrum stays within 6 dB throughout the full frequency range. 
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Though the Goody spectrum tends to overpredict the high-frequency noise (above 6 kHz), in 

the region of the first two resonant humps, the Goody and real (measured-𝑈𝑈𝑐𝑐) single point 

predictions tend to predict the background-subtracted noise equally well, to within about 4 

dB. Additionally, the measured-𝑈𝑈𝑐𝑐 real single point spectrum appears to be a better prediction 

input than the Devenport et al. 𝑈𝑈𝑐𝑐 real single point spectrum. This is a promising result, as it 

shows the potential for the Goody model and measured-𝑈𝑈𝑐𝑐 single-point spectrum applied to 

the form of the Chase model to be used for trailing edge noise predictions. Nonetheless, as 

shown in Figure 3.16 and Figure 3.17, it is likely that there are differences between the wall 

jet’s surface pressure spectrum and the assumed form of the Chase wavenumber-frequency 

wall pressure spectrum. Additionally, an improved design of the microphone wavenumber 

filter may improve the results of the prediction using the measured surface pressure spectrum 

as well. 

An examination of the image in the wall effects computed in Section 3.2.3 was also 

performed. The curve in Figure 3.12 was added to the Amiet prediction of the Goody 

spectrum, and the result is shown in Figure 3.19. 
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Figure 3.19, Amiet predictions of trailing edge noise at Mic 1 for 𝑼𝑼𝒋𝒋 = 60 m/s 

including image in wall effects. 

Figure 3.19 shows that the idealized image in the wall prediction does not provide a good 

prediction of the characteristics of the actual measured trailing edge noise. This is due to the 

image in the wall analysis being performed for a dipole in free space, which does not account 

for the geometry of the edge. The point at which the image in the wall does not affect the 

prediction, 2700 Hz, also seems to be a point at which the Goody, measured single point, 

image in the wall, and measured background-subtracted noise all agree, though this is likely 

to be no more than a coincidence, as there is nothing notable about this frequency in terms 

of scales.  

3.3.5 Brooks-Pope-Marcolini Predictions 

In Section 1.3, the Brooks-Pope-Marcolini method of predicting trailing edge noise was 

discussed. These take the form of Equation (1.15), which sums the contributions from the 
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pressure- and suction-side boundary layer properties and any additional contribution due to 

the angle of attack. Since this is a single-sided, zero angle of attack boundary layer flow, only 

the pressure side contributions need be considered. These are computed using Equation 

(1.16), which is repeated here for convenience: 

  𝑆𝑆𝑆𝑆𝐿𝐿𝑝𝑝 = 10 log �
𝛿𝛿𝑝𝑝∗𝑀𝑀5𝐿𝐿𝐷𝐷�ℎ

𝑟𝑟𝑒𝑒2
� + 𝐴𝐴�𝑎𝑎𝑝𝑝� + (𝐾𝐾1 − 3) + Δ𝐾𝐾1  (1.16)  

𝛿𝛿𝑝𝑝∗ and 𝑀𝑀5 are known parameters of the flow, 𝐿𝐿 is the span of the edge, and 𝑟𝑟𝑒𝑒 is the position 

of Mic 1. No shear layer refraction effects need be considered. What remains is to calculate 

the shape function 𝐴𝐴 and amplitude function 𝐾𝐾1. For an airfoil at zero angle of attack, Δ𝐾𝐾1 is 

zero. 

The amplitude function is designed to be symmetric about the point 𝑎𝑎𝑖𝑖 = 0, where 𝑎𝑎𝑖𝑖 =

|log(𝑆𝑆𝑡𝑡𝑖𝑖/𝑆𝑆𝑡𝑡1)|, the ratio between the Strouhal number 𝑆𝑆𝑡𝑡𝑖𝑖 = 𝑓𝑓𝛿𝛿𝑖𝑖∗/𝑈𝑈𝑒𝑒 and the peak Strouhal 

number 𝑆𝑆𝑡𝑡1 = 0.02𝑀𝑀−0.6 , which comes from a curve fit through BPM’s data. 𝐴𝐴  then 

describes a curve that is interpolated between an upper and lower curve, 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚. 

These curves are described by the following equations: 

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎) = �
�67.552 − 886.788𝑎𝑎2 − 8.219 𝑎𝑎 < 0.204

−32.655𝑎𝑎 + 3.981 0.204 ≤ 𝑎𝑎 ≤ 0.244
−142.795𝑎𝑎3 + 103.656𝑎𝑎2 − 57.757𝑎𝑎 + 6.006 0.244 < 𝑎𝑎

  (3.6) 

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎) = �
�67.552 − 886.788𝑎𝑎2 − 8.219 𝑎𝑎 < 0.13

−15.901𝑎𝑎 + 1.098 0.13 ≤ 𝑎𝑎 ≤ 0.321
−4.669𝑎𝑎3 + 3.491𝑎𝑎2 − 16.699𝑎𝑎 + 1.149 0.321 < 𝑎𝑎

  (3.7) 

From these curves, a simple linear interpolation is performed. 

 𝐴𝐴(𝑎𝑎) = 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎) + 𝐴𝐴𝑅𝑅(𝑎𝑎0)�𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎) − 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎)�  (3.8) 

𝐴𝐴𝑅𝑅 is the interpolation factor, and is computed by: 
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 𝐴𝐴𝑅𝑅(𝑎𝑎0) =
�−20 − 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎0)�

𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎0) − 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎0)  (3.9) 

where 𝑎𝑎0 is dependent on 𝑅𝑅𝑒𝑒𝑐𝑐, the chord-based Reynolds number. In the  𝑈𝑈𝑗𝑗 = 60 m/s case, 

𝑅𝑅𝑒𝑒𝑐𝑐 = 1.3166x106, which corresponds to 𝑎𝑎0 = 1.13. 

The amplitude function 𝐾𝐾1 is added to the shape function 𝐴𝐴 and is meant to set the level of 

the overall curve. It is also dependent on 𝑅𝑅𝑒𝑒𝑐𝑐, and in this case takes the value of 128.5. The 

subtraction of 3 from 𝐾𝐾1  separates the pressure-side contribution from the suction-side 

contribution. 

Finally, the directivity factor 𝐷𝐷ℎ���� is given by: 

  𝐷𝐷ℎ����(𝜃𝜃𝑒𝑒 ,𝜙𝜙𝑒𝑒) =
2 sin2 �𝜃𝜃𝑒𝑒2 � sin2(𝜙𝜙𝑒𝑒)

(1 + 𝑀𝑀 cos 𝜃𝜃𝑒𝑒)[1 + (𝑀𝑀−𝑀𝑀𝑐𝑐) cos(𝜃𝜃𝑒𝑒)]2 (3.10) 

The bar over 𝐷𝐷ℎ���� indicates that the value is normalized on the noise radiated in the 𝜙𝜙𝑒𝑒 = 90°, 

𝜃𝜃𝑒𝑒 = 90° direction. Since there are no shear layer refraction effects, 𝜙𝜙𝑒𝑒 and 𝜃𝜃𝑒𝑒 are given by 

the microphone position alone (𝜙𝜙 = atan(𝑥𝑥2/𝑥𝑥3) , 𝜃𝜃 = acos(𝑥𝑥1/𝑟𝑟𝑒𝑒)). 𝑀𝑀𝑐𝑐 is the convective 

Mach number, 𝑀𝑀𝑐𝑐 = 𝑈𝑈𝑐𝑐/𝑐𝑐0.  

Putting all of these equations together, a curve fit for the predicted 1/3 octave band trailing 

edge noise spectrum was produced. The BPM prediction for the 𝑈𝑈𝑗𝑗 = 60 m/s case is shown 

in Figure 3.20 as compared to the predictions in Figure 3.18 computed as 1/3 octave band 

spectra. 
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Figure 3.20, 1/3 octave band predicted and measured trailing edge noise at Mic 1, 

𝑼𝑼𝒋𝒋 = 60 m/s. 

In the primary regions of trailing edge noise, above 1200 Hz, the BPM prediction tends to 

under-predict the measured trailing edge noise by up to 10 dB. However, there are frequency 

bins, especially between the resonant peaks, where the BPM prediction is quite close to the 

measured noise, within 1-2 dB. At around 7.2 kHz, the BPM prediction begins to overpredict 

the noise. Notably, the BPM prediction also predicts far less noise than the theory-based 

methods at low frequencies, between 𝑓𝑓 = 100 Hz and 𝑓𝑓 = 2500 Hz. This is because the 

Brooks-Pope-Marcolini model is derived from measurements on airfoils, not zero-pressure-

gradient turbulent boundary layers, and the data that are curve fit by the symmetrical function 

𝐴𝐴  exist at higher frequencies; the long decrease at low frequency is thus the result of 

extrapolating the shape function to a region where it may no longer be valid. 

Overall, for the case of 𝑈𝑈𝑗𝑗 = 60 m/s, the prediction method that seems to have the best 

accuracy for the mock trailing edge uses the Goody single point spectrum applied to the 

normalized Chase wavenumber-frequency spectrum. This wall pressure model is then used 
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in Amiet’s noise prediction method. However, it must be noted that all of these methods are 

designed for traditional boundary layers and without any resonance or image in the wall 

effects.  

3.4 Straight Trailing Edge Spanwise Coherence 

An important measure of the flow over the straight trailing edge that will serve as a 

comparison point for the serrated trailing edge flow is the coherence along the span, 𝛾𝛾(Δ𝑥𝑥3). 

As the surface pressure field is homogeneous, this can be described solely in terms of the 

separation distance between any two pairs of microphones. The spanwise coherence for all 

separation distances on the order of the serration width is shown in Figure 3.21. Gray boxes 

in the coherence figures indicate the low-frequency region in which the coherence 

measurement may not be accurate due to the dynamic range limitations of the Knowles 

microphones, as detailed in Section 2.3.3. The dashed magenta lines representing coherence 

measured between two B&K microphones are excluded from this limitation. 

It can be seen from Figure 3.21 that, as expected, the spanwise coherence at low frequencies 

is much higher than that at high frequencies, and as the flow speed increases the peak 

coherence shifts to higher frequency. Additionally, the trend of coherence decreasing with 

increasing separation distance is clear and matches expectations. Note that the decreased 

coherence at frequencies below 96 Hz for b) and below 560 Hz for c) is not real, as shown 

by the B&K data in Figure 2.17.  
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a) 𝑼𝑼𝒋𝒋 = 20 m/s    b) 𝑼𝑼𝒋𝒋 = 40 m/s 

 
c) 𝑼𝑼𝒋𝒋 = 60 m/s 

Figure 3.21, Spanwise coherence between surface pressure microphones on straight 

trailing edge. Dashed lines are data from flat plate measurements, with black 

representing the B&K-B&K pair and magenta representing the B&K-Knowles pair. 

The spanwise coherence length scale is calculated similarly to the streamwise coherence 

length scale, using spanwise microphone pairs instead of streamwise. Using the B&K-B&K 

data from Figure 2.17, the spanwise coherence length scale was computed, and is shown in 

Figure 3.22. As before, the coherence length is compared to the serration length; additionally, 

the smallest spanwise separation distance between microphone pairs on the straight trailing 

edge, 3.05 mm, is marked for comparison. 
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Figure 3.22, Spanwise coherence decay length. 

Figure 3.22 shows that the spanwise coherence decay length is much smaller than the 

streamwise decay length, as expected. The cutoff frequency below which the spanwise 

coherence length scale is the size of the trailing edge serrations is 60 Hz at the lowest flow 

speed and 440 Hz at the highest flow speed. Additionally, the spanwise coherence decay 

length is less than the smallest separation distance at all speeds above 1400 Hz. 

3.5 Far Field Noise from Serrated Trailing Edge 

The background-subtracted far field noise produced by the serrated edge is examined here. 

These data were computed in the same way as those for the straight trailing edge in Section 

3.2. Figure 3.23 shows the background-subtracted trailing edge noise from the serrated 

trailing edge corrected to a distance of |𝑟𝑟| = 1 m using the inverse-square law. 
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a) Mic 1     b) Mic 4 

Figure 3.23, Background-subtracted trailing edge noise from serrated trailing edge. 

No significant noise was measured below 1 kHz at any nozzle exit velocity. The noise 

increases with speed and the measurable noise at 70 m/s and a frequency of 1600 Hz is 20 

dB. This is a significant reduction from the value for the straight trailing edge, 23 dB. 

Additionally, the constant-frequency humps still appear upstream at Mic 1, and at the same 

frequency ranges as those observed in the straight trailing edge spectra. However, they are 

of greatly reduced magnitude. This suggests that the irregular shape of the serrations reduces 

some of the resonance effects. To further examine this effect, the serrated trailing edge’s 

noise is compared directly to the straight edge’s noise for 𝑈𝑈𝑗𝑗 = 50 m/s and 70 m/s in Figure 

3.24. 
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a) Mic 1     b) Mic 4 

Figure 3.24, Comparison between distance-corrected background-subtracted trailing 

edge noise from serrated trailing edge and straight trailing edge. Solid lines are 

serrated edge, dotted lines are straight edge. 

The serrated edge is much more effective at reducing far field noise radiated upstream, by 

about 6 dB in the ~2 kHz hump, 7 dB in the ~6 kHz hump, and 5 dB up to 10000 Hz. In the 

regions without resonance effects, the noise reduction is reduced to about 3-3.5 dB. For the 

overhead microphone, the reduction is similar in the region of the resonant humps, but the 

humps are narrower and the frequency range over which significant reduction is attained is 

much smaller. In the region outside the spectral humps, the reduction averages approximately 

2 dB. Previous experiments have shown that the noise reduction from a serrated trailing edge 

is often on the order of 2-4 dB [5,34,36]. It is interesting to note that despite the relative 

thickness of the serrations used in this experiment, 2.38 mm, and the one-sided flow, as 

opposed to two-sided flow used in previous experiments, the noise reduction is still on the 

order of previous experimental results using thinner serrations.  

3.6 Measurements of Surface Pressure Autospectra on Serrations 

In this section, the differences between the measured surface pressure autospectra on the 

serrated trailing edge and that on the straight trailing edge will be presented and discussed. 
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3.6.1 Positional Comparisons 

The local coordinates of each microphone are tabulated in Table 2.7. These positions are used 

to locate microphones that are in similar positions relative to the serration they are embedded 

in. The local positions of each microphone are shown in Figure 3.25. 

 

Figure 3.25, Local positions of surface pressure microphones visualized on a single 

serration. 

The sizes of the holes in Figure 3.25 represent the size of the microphone pinholes. 

Microphones 14 and 15 are slightly upstream of microphones 8 and 6, about 0.4 mm, but are 

included in the 𝑥𝑥1 category of 6, 2, and 7 for comparison. There are thus five 𝑥𝑥1 positions 

with multiple microphone measurements each. The autospectra of the microphones at each 

of the 𝑥𝑥1 positions will be compared to establish whether or not the flow is uniform across 

the serration. These microphone sets are 1-4-9, 3-5, 10-12, 2-6-7-8, and 14-15.  
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a) 

 
b) 

 
c) 
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d) 

 
e) 

Figure 3.26, Streamwise microphone similarity comparisons with averaged straight 

trailing edge autospectrum. Left column is measurements with 𝑼𝑼𝒋𝒋 = 20 m/s, right 

column is 𝑼𝑼𝒋𝒋 = 60 m/s. 

The results of comparing the autospectra of microphone pairs at similar 𝑥𝑥1 positions are 

shown in Figure 3.26, and comparisons are also made to the averaged autospectrum of the 

straight trailing edge surface pressure microphones. Each plot shows good agreement 

between the microphone pairs through the full valid range of the Knowles microphones (𝑓𝑓 ≤ 

5500 Hz for 20 m/s due to spatial resolution, 𝑓𝑓 ≥ 176 Hz for 60 m/s due to clipping), with 

any discrepancy within the uncertainty of the microphones. Of note are the low-frequency 
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spikes in the Knowles data that appear at 𝑓𝑓 = 60 Hz and 180 Hz in the 20 m/s spectra. These 

appear to be electrical noise, as they do not correspond to any hydrodynamic or acoustic 

length scale on the order of the serration geometry. Another notable feature is the broadband 

hump that appears in Figure 3.26a at 60 m/s, the microphones position closest to the tip, 

between 𝑓𝑓 = 300 Hz and 𝑓𝑓 = 1500 Hz. This peak is 4 dB above the theoretical straight, 

collinear line expected to connect the region below 300 Hz and the region above 1500 Hz 

similarly to the flat plate wall pressure spectrum and straight edge wall pressure spectrum 

shown in Figure 3.26 for comparison. 

3.6.2 Contour Plots of Surface Pressure on Serrations 

Ragni et al. [62] used overhead PIV imagery to examine the pressure field very near a 

serrated trailing edge. One result they produced was a contour plot of the evolution of the 

surface pressure autospectrum along the serrated edge, which showed a clear and significant 

reduction in the strength of fluctuations along the serration and near the edge. Using the 

results in Section 3.6.1, the surface pressure field can be assumed to be symmetric about the 

centerline of the serration, another result obtained by Ragni et al. Using this justification, the 

pressure spectrum at each 𝑥𝑥1 location shared by two or more microphones was averaged, and 

for 𝑥𝑥1 locations with a single microphone, the spectrum was duplicated on the opposite side 

of the centerline. This results in an area of observation in the center of the serration that, 

while smaller than that of Ragni et al., should give a good understanding of the evolution of 

the surface pressure field within this region. 

Since the direct surface pressure measurements were only available around the perimeter of 

the triangle, the surface pressure field within the triangle was estimated using 2-D linear 

interpolation. The surface pressure field at frequencies corresponding to characteristic scales 

of 2ℎ, 3ℎ, 4ℎ, and 6ℎ (1.5, 2.25, 3, 4.5 cm) are shown at 𝑈𝑈𝑗𝑗 = 20 m/s and 60 m/s in Figure 

3.27; these scales were computed using the measured convection velocities (𝑓𝑓 = 𝑈𝑈𝑐𝑐/𝐿𝐿). The 

frequencies corresponding to each length scale are given in Table 3.2. 
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Table 3.2, Frequency bins corresponding to contour plot length scales. 

Scale 𝒇𝒇(𝑼𝑼𝒋𝒋 = 20 m/s) 𝒇𝒇(𝑼𝑼𝒋𝒋 = 60 m/s) 𝒌𝒌𝟏𝟏𝒉𝒉 
2ℎ 336 Hz 1210 Hz 3.14 
3ℎ 224 Hz 807 Hz 2.09 
4ℎ 168 Hz 605 Hz 1.57 
6ℎ 112 Hz 403 Hz 1.05 

 

 
a) 𝑳𝑳 = 𝟐𝟐𝟐𝟐,𝑼𝑼𝒋𝒋 = 20 m/s   b) 𝑳𝑳 = 𝟐𝟐𝟐𝟐,𝑼𝑼𝒋𝒋 = 60 m/s 

 

 
c) 𝑳𝑳 = 𝟑𝟑𝟑𝟑,𝑼𝑼𝒋𝒋 = 20 m/s   d) 𝑳𝑳 = 𝟑𝟑𝟑𝟑,𝑼𝑼𝒋𝒋 = 60 m/s 
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e) 𝑳𝑳 = 𝟒𝟒𝟒𝟒,𝑼𝑼𝒋𝒋 = 20 m/s   f) 𝑳𝑳 = 𝟒𝟒𝟒𝟒,𝑼𝑼𝒋𝒋 = 60 m/s 

 
g) 𝑳𝑳 = 𝟔𝟔𝒉𝒉,𝑼𝑼𝒋𝒋 = 20 m/s   h) 𝑳𝑳 = 𝟔𝟔𝟔𝟔,𝑼𝑼𝒋𝒋 = 60 m/s 

Figure 3.27, Contour plots of surface pressure autospectra on serrations. Black 

triangle denotes the full serration size, green triangle denotes the interpolated region, 

and blue markers denote microphone locations. 

Figure 3.27 shows that over this region of the frequency domain, the magnitude of the 

fluctuations increases by up to 2 dB at 𝐿𝐿 = 3ℎ and 𝐿𝐿 = 4ℎ, and up to 1 dB at 𝐿𝐿 = 2ℎ, from 

the root to the tip of the interpolated region. The trend observed here agrees with the 

measurements of Gruber [34] and Chong and Vathylakis [63], who observed this trend on 

much larger serrations using remote microphone probes in a one-sided conventional 

boundary layer flow. However, it contrasts the results of Avallone et al. [64] and Ragni et al. 
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[62], who observed the pressure fluctuations decreasing in magnitude along the serration by 

about 3 dB. Avallone et al. performed their experiments on a NACA 0018 airfoil with two-

sided flow, and used indirect methods to obtain the surface pressure, including Lattice-

Boltzmann computational fluid dynamics and tomographic PIV, to obtain their surface 

pressure data. They postulated that the reason for the decreased surface pressure fluctuations 

near the tip was the result of the two-sided boundary layer gradually thinning and 

approaching equalized pressure towards the tip. These factors suggest that the difference 

between the single-sided results and the double-sided results may be simply the experiment 

geometry itself. There may be fundamental differences in serration behavior between the two 

configurations that account for the observed differences in spectral levels along the serration, 

and single-sided flat plate flows may not be sufficient to determine the performance and 

behavior of serrations on an airfoil. Finally, outside of the presented range of hydrodynamic 

scales, the fluctuations over the interpolated region do not vary more than the measurement 

uncertainty of the microphones. This is an unfortunate consequence of the limited region of 

possible measurement locations on the serrations due to the physical size of the 

instrumentation. 

3.7 Measurements of Coherence on Serrations 

The wide range of microphone locations over the serration allows for the computation of 

coherence across various regions of the serrated edge. Specifically, the coherences across the 

root, across the serration, and along the serrated edge were calculated and compared to the 

coherence of microphone pairs with similar separation distance along the straight trailing 

edge. In the following section, the line labels in figures denote the separation distance over 

which the coherence is computed, and grayed out regions indicate a frequency range over 

which the microphone response is clipped, as shown in Figure 2.18 and listed in Table 2.4 

(spanwise coherence) and Section 3.1.1 (streamwise coherence). 

3.7.1 Coherence Between Center and Side of Serration 

Figure 3.28 shows the measured coherence between microphones 14 and 15, at the center of 

the serration and towards the edge at the same 𝑥𝑥1 location and separated by Δ𝑥𝑥3 = 3.40 mm, 
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at jet speeds of 𝑈𝑈𝑗𝑗 = 20, 40, and 60 m/s. These are compared with the same measurements 

taken from the straight trailing edge for separation distances of Δ𝑥𝑥3 = 3.05 mm and 5.69 mm. 

A diagram indicating the approximate position of the microphones on the serration is 

included with each figure; these diagrams are not to scale. 

 
a) 𝑼𝑼𝒋𝒋 = 20 m/s    b) 𝑼𝑼𝒋𝒋 = 40 m/s 

 
c) 𝑼𝑼𝒋𝒋 = 60 m/s       

Figure 3.28, Coherence between center and side of serrations. 

Figure 3.28 shows that the coherence between the center and side of the serrations is slightly 

higher than that of the straight trailing edge for frequencies below a crossover frequency, at 

which the coherence becomes equal to that of the straight trailing edge. For 𝑈𝑈𝑗𝑗 = 20, 40, and 
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60 m/s, this crossover frequency is approximately equal to 250 Hz, 550 Hz, and 900 Hz, 

respectively. There is very little increase at 𝑈𝑈𝑗𝑗 = 20 m/s, but for 𝑈𝑈𝑗𝑗 = 40 m/s and 60 m/s, the 

coherence is increased by 0.1 and 0.1-0.15 in this frequency range, respectively.  

3.7.2 Coherence Across Serration Centerline 

Next, we examine if the trend observed in Figure 3.28 is also present across the entire 

serration, using microphone pairs mirrored about the centerline. Microphone pairs 3-5, 10-

12, and 2-6 are plotted in Figure 3.29, as well as the same straight trailing edge coherence 

data and the coherence between centerline and edge discussed in the previous section. 

 
a) 𝑼𝑼𝒋𝒋 = 20 m/s    b) 𝑼𝑼𝒋𝒋 = 40 m/s 

 
c) 𝑼𝑼𝒋𝒋 = 60 m/s        

Figure 3.29, Coherence across centerline of serrations. 
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There is little discernible difference at 𝑈𝑈𝑗𝑗 =  20 m/s between the straight and serrated 

coherence, owing to the lack of congruity between the microphone spacings. Above 80 Hz, 

the total spread of the coherence data is 0.3 up until coherence is lost at 1000 Hz. The 

coherence for the 3.42 mm spacing is roughly the same as the coherence for the 3.05 mm 

spacing on the straight trailing edge, indicating an increase in coherence for short separation 

distances at this location. At 𝑈𝑈𝑗𝑗 = 40 m/s, the difference in measured coherence between the 

3.42 mm separation and 4.78 mm separation begins to increase above 300 Hz; this trend does 

not continue in the valid frequency range at 60 m/s. There are a few regions where the 3.40 

mm center-to-edge coherence (14-15) is greater than the 3.42 mm edge-to-edge coherence 

(3-5) by up to 0.1, but generally the center-to-edge coherence is only slightly higher than the 

edge-to-edge coherence. The 3.42 mm coherence stays within 0.1 of the 3.05 mm straight 

trailing edge coherence and is almost universally higher than the straight edge coherence. 

It appears that the spanwise coherence across a single serration is increased compared to a 

straight trailing edge. That said, the coherence is not just a simple function of the spanwise 

separation distance but is also a function of the measurement locations themselves, as shown 

in the comparison of similar separation distances between microphones at different serration 

relative locations. The spanwise coherence near the center of the serration may be slightly 

increased above that across the width of the serration closer to the tip. 

3.7.3 Coherence Across the Root 

Next, the effect of the serration roots on the spanwise coherence is considered. Microphone 

pairs 6-7 and 1-4, corresponding to cross-root distances of 8.16 mm and 15.05 mm (the 

serration length scale) compared to straight trailing edge separation distances of 9.40 mm 

and 15.09 mm in Figure 3.30. Microphones 1 and 4 are located at the serration tip of two 

adjacent serrations, while microphones 6 and 7 are located nearest the root of two adjacent 

serrations. 
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a) 𝑼𝑼𝒋𝒋 = 20 m/s    b) 𝑼𝑼𝒋𝒋 = 40 m/s 

     
c) 𝑼𝑼𝒋𝒋 = 60 m/s        

Figure 3.30, Coherence across roots of serrated edge. 

Right away it can be seen that the roots are quite effective at reducing coherence along the 

span. At 𝑈𝑈𝑗𝑗 = 20 m/s, the coherence is decreased by up to 0.3 for the tip-to-tip spacing and 

by 0.2 for the smaller spacing; additionally, the point at which coherence is lost, below 𝛾𝛾2 = 

0.1, is reduced by around 200 Hz for both spacings. At 𝑈𝑈𝑗𝑗 = 40 m/s, there is a crossover 

frequency at which both the small and large spacings across the root have increased 

coherence, but this is within the invalid region reported in Section 2.3.3 and is unlikely to be 

a real feature of the flow. Again, the coherence is reduced by up to 0.2 across the full 

frequency range of coherence, a feature that is again seen for the narrow spacing in the 60 



 141 

m/s case. However, in this case, the coherence reduction for the wide spacing is less, about 

0.1.  

These results clearly indicate that the roots significantly affect the flow field across the 

trailing edge. One possible mechanism of reducing coherence is that observed by the earlier 

experiments of Gruber et al. [33], of flow “channeling” through the roots. Turbulent eddies 

flowing through this region would be severely distorted compared to eddies that did not 

encounter a root. The evidence cited for this phenomenon in that experiment, an increase in 

high-frequency noise due to the small jets the cross-flow creates, does not appear to be 

present in the trailing edge noise spectrum measured in this experiment; this is because the 

experiment in which this phenomenon was observed was performed on a lifting airfoil with 

a two-sided boundary layer, creating a large pressure difference between the two sides of the 

airfoil and allowing these jets to form. However, even without the channeling of flow through 

the serration roots from the pressure side to the suction side of an airfoil, the roots clearly 

have an effect on the spanwise coherence from serration to serration. The discontinuity in the 

wall boundary condition, this gap between measurement locations, significantly disturbs the 

coherence. This effectively suppresses the spanwise coherence at high frequencies for scales 

smaller than the serration size. 

3.7.4 Streamwise Coherence Along Serration 

Microphone pair 8-9, with a separation distance of Δ𝑥𝑥1 = 7.00 mm, was used to examine the 

streamwise coherence along the centerline of the serration. The results for  𝑈𝑈𝑗𝑗 = 20, 40, and 

60 m/s are shown in Figure 3.31, along with the streamwise coherence data from the flat plate 

shown in Section 3.1.1. 
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a) 𝑼𝑼𝒋𝒋 = 20 m/s    b) 𝑼𝑼𝒋𝒋 = 40 m/s 

 
c) 𝑼𝑼𝒋𝒋 = 60 m/s       

Figure 3.31, Streamwise coherence along centerline of serration. Blue line represents 

coherence between two B&K microphones, green line represents coherence between 

B&K and Knowles microphones. 

It can be seen that at low frequencies, the coherence along the serration is reduced compared 

to the flat plate. This is particularly noticeable at lower speeds where the range of valid data 

extends to lower frequencies. This range of reduction extends up to 260 Hz at 20 m/s, 700 

Hz at 40 m/s, and 1200 Hz at 60 m/s. As the trailing edge is not straight, it is possible that 

streamwise effects from the serration edges can be observed in measurements along the 

centerline of the serration, particularly at low frequencies where the associated spanwise 
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scales are larger. Moreover, this is another indication of an alteration to the flow field induced 

by the serrations. 

3.7.5 Coherence Along the Serration Edge 

Of central importance to the theories of Howe [30] and Lyu et al. [31] is the surface pressure 

wavenumber component that couples with the far field observer’s location. For a straight 

trailing edge, this component is 𝑘𝑘3 = 0; however, for a serrated trailing edge, this coupled 

wavenumber component is non-zero, and dependent on the angle between the serration edge 

and the flow. These wavenumbers are given by 𝑘𝑘3 = 2𝑛𝑛𝑛𝑛/𝜆𝜆  [34], and they represent 

wavevector components normal to the edge. As shown by Equation (1.13), this wavevector 

component can also be described by the single point frequency spectrum and the coherence 

decay length 𝑙𝑙𝛾𝛾. Reducing either of these components should result in a reduction in scattered 

sound. These are then used as inputs to a generalized form of Amiet’s method; for a 

conventional boundary layer and assuming frozen turbulence past the serrated edge, a model 

of the wavenumber-frequency wall pressure spectrum can be evaluated at the wavevectors 

that correspond to this edge-normal condition. For a wall jet boundary layer, however, this 

component should be directly measured. A reduction of coherence length corresponds with 

an overall reduction in coherence, but because it is an integrated value, this does not 

necessarily mean that the coherence must be decreased over the entire frequency range.   

This “spanwise” coherence was measured in this experiment and compared to the coherence 

along the straight trailing edge, which is simply the spanwise coherence reported earlier. 

Figure 3.32 shows the coherence along the edge compared to the coherence along the straight 

trailing edge. Microphone pairs 2-3 and 5-6 are near the root, microphone pairs 3-4 and 4-5 

are nearer to the tip, and microphone pair 11-12 is located between the upstream and 

downstream pairings. Each separation distance listed in Figure 3.32 is the distance along the 

edge. 
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a) 𝑼𝑼𝒋𝒋 = 20 m/s    b) 𝑼𝑼𝒋𝒋 = 40 m/s 

 
c) 𝑼𝑼𝒋𝒋 = 60 m/s       

Figure 3.32, Coherence along the serrated edge compared to coherence along the 

straight trailing edge. 

The coherence along the serrated edge is much greater than that along the straight edge; this 

is because the serrated edge introduces a streamwise component to the coherence 

measurement, and streamwise coherence is naturally greater than spanwise coherence given 

the direction of eddy convection. The downstream microphone pairs also have a higher 

amount of low-frequency coherence than the upstream pairs; at 𝑈𝑈𝑗𝑗 = 20 m/s this effect is 

hardly discernible, but at 𝑈𝑈𝑗𝑗 = 40 and 60 m/s, the coherence curves seem to collapse into a 

broadband hump. Below this hump, which is located at approximately 400 Hz for 𝑈𝑈𝑗𝑗 = 40 
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m/s and at approximately 650 Hz for 𝑈𝑈𝑗𝑗 = 60 m/s, the coherence for the microphone pairs 

closer to the tip is higher than those closer to the root by about 0.05 at 𝑈𝑈𝑗𝑗 = 40 m/s and 0.1 

at 𝑈𝑈𝑗𝑗 = 60 m/s; however, at least for 𝑈𝑈𝑗𝑗 = 60 m/s, this peak also occurs at the edge of the 

valid frequency range for coherence measurements. Therefore, the peak may not be a real 

phenomenon of the flow. This peak occurs in the same frequency range as the broadband 

hump in the surface pressure autospectrum reported in Figure 3.26a.  

As there is a streamwise component to the coherence along the edge, this coherence was 

compared to the flat plate streamwise coherence data. This comparison is shown in Figure 

3.33. The edge coherence curves happen to coincide with the flat plate streamwise coherence 

curves for frequencies above the hump frequencies mentioned above, and above 150 Hz for 

𝑈𝑈𝑗𝑗 = 20 m/s. The coherence at these shorter edge relative distances indeed seem to have 

increased coherence due to a streamwise component of separation. This would seem to make 

the edge potentially a more efficient scatterer of sound, but the relationship between the 

pressure across the edge and the far field sound is also a function of the trace speed of the 

disturbance along the edge. This would be akin to rotating the wavevector scattering 

component away from 𝑘𝑘3 = 0 as expressed in Equation (1.10), thus reducing the overall 

efficiency of the scattering edge. 
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a) 𝑼𝑼𝒋𝒋 = 20 m/s    b) 𝑼𝑼𝒋𝒋 = 40 m/s 

 
c) 𝑼𝑼𝒋𝒋 = 60 m/s       

Figure 3.33, Coherence along the serrated edge compared to streamwise coherence on 

the flat plate. 
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Chapter 4. Conclusions 
In this work, the trailing edge noise radiated by two different trailing edge configurations in 

a wall jet wind tunnel and the surface pressure upstream of the trailing edge were examined. 

These configurations consisted of a straight trailing edge 12.7 mm above a solid surface and 

a serrated trailing edge with amplitude 2ℎ = 1.5 cm and wavelength 𝜆𝜆 = 1.5 cm at the same 

streamwise location and distance above the solid surface. The far field noise was measured 

with an arc array of microphones and a linear beamforming array, which was used to 

determine the noise source. The surface pressure was measured by embedded microphones 

which were flush with the surface. In the straight trailing edge configuration, the microphones 

were distributed along a straight trailing edge to produce a linear array which was designed 

to extract low spanwise wavenumber components of the wavenumber-frequency wall 

pressure spectrum. The developed experimental configuration was shown to produce 

measurable trailing edge noise in the wall jet. Theoretical predictions of the noise were shown 

to agree with the measured far field noise from the straight trailing edge. The surface pressure 

results from the straight trailing edge indicate that the Chase wavenumber-frequency wall 

pressure spectrum’s convective ridge may be slightly broader in the spanwise 𝑘𝑘3 direction 

than needed to accurately represent the surface pressure spectrum of a wall jet. Additionally, 

a disagreement was found with previous experimental results regarding the convection 

velocity of a wall jet boundary layer, which warrants further examination. 

From the far field noise measurements from the serrated trailing edge configuration, it was 

found that the serrations were effective in providing a baseline reduction of around 3-3.5 dB, 

and further reduction was observed in regions where the straight trailing edge experienced 

resonance with the plate below. Thus, the reduction of the far field noise may not be solely 

due to the serrations themselves, and there is at least a partial component of reduction of the 

resonance effects due to disruption of the resonant cavity.  

Fifteen surface pressure microphones were distributed on and across multiple serrations to 

reveal the surface pressure evolution on a single serration as well as the coherence of surface 

pressure fluctuations across serrations. It was found that the surface pressure PSD rises 
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towards the tip in agreement with the findings of Gruber [34] and Chong and Vathylakis [63], 

and in contrast to the findings of Avallone et al. [64] and Ragni et al. [62]. This discrepancy 

is thought to be due to the difference in configuration between the experimental setups, with 

the work of Gruber, Chong and Vathylakis, and this work examining a single-sided flat plate 

boundary layer and the work of Avallone et al. and Ragni et al. examining a two-sided airfoil 

boundary layer. This suggests that there may be some fundamental differences between a 

single sided flat plate boundary layer and the flow over a real airfoil that need to be addressed 

for the purpose of examining the flow around trailing edge serrations. The spanwise 

coherence between two locations on the same serration was found to increase, while the 

spanwise coherence between two locations on different serrations was found to decrease. It 

was concluded that larger scales are incoherent when spanning two serrations because the 

coherence length decreases due to the disruptive presence of the root. The increase in 

coherence along the serration edge is due to the introduction of a streamwise component to 

the coherent measurement, and it is concluded that the relationship between the surface 

pressure and far field sound is also dependent on the trace speed of the disturbance along the 

edge, which counters the theoretical increase in far field noise from the increased coherence 

along the edge. 

Future work should include a more comprehensive study of the evolution of surface pressure 

field on a single serration. While it may not be possible to comprehensively model the surface 

pressure field on a serration and therefore analytically predict the trailing edge noise, further 

exploration of the coupling between the coherence length change and the far field noise 

change should be done, in accordance with the conclusions of Lyu et al. [31]. This “model” 

should be expanded to include the effects of the serrations on the overall flow as seen in 

previous experiments and in these experiments. Our understanding of the mechanism of 

trailing edge noise reduction due to serrations remains incomplete, but it is becoming an ever 

more realizable goal.  
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