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ABSTRACT 

 

A fundamental element of the observational method in geotechnical engineering 

practice is the utilization of a carefully laid out performance monitoring system which 

provides rapid insight of critical behavioral trends of the work. Especially in tunnels, this 

is of paramount importance when the contractual arrangements allow an adaptive tunnel 

support design during construction such as the NATM approach. Utilization of 

measurements can reveal important aspects of the ground-support interaction, warning of 

potential problems, and design optimization and forecasting of future behavior of the 

underground work. 

The term back-analysis involves all the necessary procedures so that a predicted 

simulation yields results as close as possible to the observed behavior. This research aims 

in a better understanding of the back-analysis methodologies by examining both 

simplified approaches of tunnel response prediction but also more complex numerical 

methods. Today a wealth of monitoring techniques is available for tunnel monitoring. 

Progress has also been recorded in the area of back-analysis in geotechnical engineering 

by various researchers. One of the most frequently encountered questions in this reverse 

engineering type of work is the uniqueness of the final solution. When possible errors are 

incorporated during data acquisition, the back analysis problem becomes formidable.  Up 

to the present, various researchers have presented back-analysis schemes, often coupled 

with numerical methods such as the Finite Element Method, and in some cases the more 

general approach of neural networks has been applied. 

The present research focuses on the application of back-analysis techniques that 

are applicable to various conditions and are directly coupled with a widely available 

numerical program. Different methods are discussed and examples are given. The 

strength and importance of global optimization is introduced for geotechnical engineering 

applications along with the novel implementation of two global optimization algorithms 

 iii



in geotechnical parameter identification. The techniques developed are applied to the 

back-analysis of a modern NATM highway tunnel in China and the results are discussed. 
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CHAPTER 1. Introduction 

The AMADEUS (Adaptive Mapping Analysis and Design of Underground 

Space) project (2004) sponsored by the National Science Foundation reflects an effort to 

organize, record and utilize in a timely manner, information which can be obtained 

directly from the excavated rock mass. Such information is associated with geologic 

parameters such as rock types and formations, faults and other discontinuity features, 

condition of discontinuities, statistical presence of joints, rock surface image recording, 

real-time rock mass classification, deformation and rock stress measurement data. The 

AMADEUS project involves the synergy of a collection of modern technologies in order 

to organize this wealth of information and use it in an efficient and useful way to 

ultimately optimize the design of underground space and become fundamental 

component of the so called Observational Method as introduced by Peck (1969).  

It is obvious that when such an advanced methodology is realized and applied in 

the field, the engineers and planners of any underground work can improve their designs 

and lower the cost of the final construction only by initially investing on a reliable array 

of techniques to safely record and process information in real time. One of the most 

important components of underground design and construction is the analysis by the use 

of appropriate analytical, stochastic or numerical methods in an attempt to simulate the 

behavior and state of the physical problem and ultimately estimate the behavior or state 

of the surrounding ground. Unfortunately, such attempts are only as good as the values of 

the input parameters used, the models or the methods assumed. In addition, geological 

uncertainties that prevail primarily in jointed rock masses, make such efforts difficult. A 

fundamental component of the Observational Method in tunneling is the use of 

monitoring data to assess the adequacy of the employed design and the safety margins of 

the design. These data can be used to calibrate numerical or analytical models so that 

predicted values of specific magnitudes match the corresponding values of measured 

data. This process known as parameter identification or back-analysis aims in estimating 

values of input parameters for numerical or analytical methods that can be used for 

prediction of rock mass behavior during future construction stages.  
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This research focuses in the development and applicability of various back-

analysis methods for underground excavations. An extensive literature review has been 

performed on previous work involving parameter-identification problems. Various back-

analysis methods and their features are described along with some of the disadvantages.  

The present work pioneers in the application of back-analysis methods using 

widely available numerical modeling software. The main goal is to develop a set of 

principles, methods and guidelines that can be easily employed by engineers in order to 

perform back-analysis under given conditions and limitations. The task of parameter 

identification is not generally easy and the more parameters are involved or the problem 

becomes more complex, the more the analysis becomes elaborate and complex. This 

research studies the issues that revolve around the process of parameter identification and 

attempts to promote methods which have to be reasonable to understand and follow, easy 

to apply using a programmable numerical code, and easy to maintain. The later perhaps is 

one of the most desirable features that can be found in the field of operations research 

algorithms. An algorithm should depend on human interaction as little as possible, yet 

with out sacrificing reliability or performance.  In this study various methods for back-

analysis are discussed and examples of applications are also given.  

Generally the behavior of underground structures in soft soils or jointed rock 

masses can be highly non-linear. This non-linearity imposes a great difficulty to most 

back-analysis procedures, especially when the number of unknowns increases. Very often 

the parameter identification scheme is influenced by the personal judgment used to obtain 

initial trial values of the governing parameters to start the back-analysis. This can be a 

very problematic point and potentially lead the final results to erroneous or unreasonable 

conclusions.  This research has concentrated on development of procedures and 

guidelines, which do not depend on such a limitation yet they retain the advantage of 

applying constraints in the governing parameters throughout the whole analysis. The 

techniques suggested in this research can be adapted to a great range of non-linear 

geotechnical analysis problems and not only to underground excavations. The research on 

back-analysis methods is concluded with the application of one of the suggested methods 

in the case of the Heshang highway tunnel in China. Despite the complex construction 

 2



sequence of this tunnel, the availability of monitoring data deemed the project very 

interesting to examine.    

No matter how sophisticated a back-analysis can be, there needs to be a reliable 

method to collect and process massive geotechnical data especially when dealing with 

jointed rock mass environments. Such data may provide not only an initial estimate of the 

encountered conditions in terms of deformability of strength, but also can be used to 

improve the constraints used in an efficient back-analysis it more efficient.  In the context 

of this research, an outline of the present state on the use of rock mass classification 

systems for underground space design application will be given while also the need for 

more reliable newer data acquisition tools will be pointed out. In the present research, we 

introduce and examine the use of a new electronic tool which aims in making easier and 

more efficient insitu geologic data acquisition. The tool aims in minimizing paper-based 

rock mass quality data collection, based on two of the most widely used rock mass 

classification systems. The tool will have the ability to process the obtained data 

statistically in order to conclude a general qualitative description for a location, based on 

independent observations of the governing parameters. Modern technological advances 

have resulted into useful electronic tools such as the personal digital assistants (PDAs) 

which are excellent in gathering information which can be easily transported. The 

description and features of the PDA-based electronic field book for rock mass 

classification will be given at the end of the present dissertation as a separate appendix. 
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CHAPTER 2. Research summary 

The present research is part of the AMADEUS (Adaptive Mapping Analysis and 

Design of Underground Space) project, sponsored by the National Science Foundation 

dealing with Adaptive Mapping Analysis and Design of Underground Space. In modern 

engineering practices, the Observational Method is a way to optimize the design of a 

structure by continuously monitoring its behavior during construction. This method offers 

significant advantages of cost minimization and avoidance of over-design. Also it is a 

prudent way to identify possible stability problems and modify the construction and 

safety requirements in a timely manner. There are two main elements fundamental to the 

Observational Method. The existence of a carefully matched monitoring system for the 

type of the work, which will provide valuable performance related data and a mechanism 

to use these data in order to optimize the design itself and apply judgment more safely on 

the future stages of the construction. The later is ultimately expressed via the process of 

back-analysis. 

This dissertation is organized as follows: 

Chapter 3 summarizes the most frequently encountered deformation and stress (or 

load) monitoring instrumentation and provides information regarding reliability issues 

and performance properties of each of the different types of monitoring systems. Focus is 

given on the various sources of error during monitoring and its significance in the final 

results. Performance properties such as accuracy, sensitivity and repeatability are briefly 

discussed. 

Chapter 4 provides insight on the state-of-the-art of back-analysis methodologies. 

An extensive literature review is performed and various techniques and applications from 

previous work are outlined. The types and principles of back-analysis methods are 

discussed. The chapter focuses in the description of various optimization algorithm 

classes, which can be used in a parameter identification process. Various algorithms of 

local and global optimization theory are summarized.   

  One target of this research is to identify frequently used techniques in tunnel 

design and relate them to back-analysis methodologies. In chapter 5, traditional methods 

such as the Convergence-Confinement approach, are fundamentally examined and the 

limitations are discussed. Such methods are still used today especially in conjunction 
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with two-dimensional plane strain numerical modeling. This part of the research 

identifies some of the limitations of different convergence-confinement methods and 

presents new models in the form of longitudinal convergence formulae that can be used 

in tunnel modeling. Useful guidelines and examples are given regarding the application 

of the previous and the newly proposed convergence relations. A method is suggested, 

where the above principles can be used at a preliminary stage to perform a simplified 

back-analysis based on instrumentation data. 

One of the most popular methods in numerical modeling of tunnels is the use of 

the two-dimensional plane strain approximation. Despite the modeling shortcomings, it 

allows for faster analysis time and it can be successfully utilized in predicting the ground-

support interaction if some modeling factors are reasonably considered. Chapter 6 

focuses on examining the behavior of a popular gradient-based optimization algorithm, in 

parameter identification problems. The multivariate version of the Newton-Raphson 

method is employed via the use of a popular commercial geotechnical numerical 

program. The limitations of equivalent methodologies are discussed along with the 

requirement of more suitable techniques.  

The limitations of local search optimization techniques lead the research into the 

development and application of alternative methods. Local search algorithms present 

fundamental theoretical problems in their applicability due to the use of a plane-strain 

formulation, especially for plasticity problems. In this part of the research two global 

optimization methods are employed for the first time in back-analysis of tunnel response. 

These are the Simulated Annealing and the Differential Evolution method and they are 

described in chapters 7 and 8, respectively.  

Both algorithms belong to the class of heuristic search methods and both are 

based on simulation of natural process. The novelty at the use of these techniques is 

reflected on the application via a commercially available numerical program of a 

combinatorial optimization algorithm (Simulated Annealing) in continuous parameter 

geotechnical problems, especially in modeling tunneling induced displacements and 

tunnel support loads. The advantages and limitations of this algorithm are described in 

chapter 7. The algorithm is characterized by easy implementation into any type of 

programmable geotechnical software, and since it is not gradient or pattern search 
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direction dependent, it is a strong candidate for highly non-linear constrained back-

analysis problems. 

This research also appears to be the first to employ a type of genetic algorithm 

able to deal directly with floating point continuous variables. In the analysis presented in 

chapter 8, the Differential Evolution strategy proves to be a very powerful optimization 

algorithm. This analysis is the application of the algorithm in stress analysis-based back-

analysis. The performance of this algorithm is compared against the Simulated Annealing 

and comparative examples and results are given. The limitations of the method and how 

these could affect the parameter identification are also discussed. 

 Chapter 9 presents a case study of the Heshang highway tunnel in China. The 

Differential Evolution algorithm is employed to perform a displacement-based back-

analysis of the tunnel based on the available monitoring data. The analysis is performed 

using the program FLAC. This example also helps to formulate guidelines that should be 

used when performing a back-analysis procedure using any numerical program.  

Chapter 10 summarizes the conclusions of the research on back-analysis for 

tunnel design. The main features and characteristics of the proposed methods are 

presented. Guidelines on the use and application of the methodologies are given, some of 

which also apply to any back-analysis method. The advantages and disadvantages of the 

presented methods are outlined.  The essential role of sound engineering judgment is also 

discussed. 

Modern Personal Digital Assistants (PDAs) have strong potential to facilitate and 

improve field data acquisition and logging involved in rock mass characterization by the 

use of rock mass classification systems. A novel approach using an electronic fieldbook 

to perform insitu rock mass classification is presented in Appendix A. This system can 

lead to faster data acquisition as it eliminates the need to transmit and convert paper-

based data to digital form. In turn, the readily available data can be analyzed faster and 

information gained from the analysis can be acted upon in a more timely manner. 

 Finally Appendices B, C and D provide listings of the computer codes, for the 

implementation, using the FISH language of FLAC, of the different back-analyses 

studied in this thesis.    
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CHAPTER 3. Tunnel monitoring systems 

Field monitoring is essential in the observational method in tunneling for various 

reasons. Monitoring provides valuable information especially for back-analysis purposes 

and feedback from the surrounding ground for the safety of the work, but it also protects 

legally the work itself as a record of progress and is the primary legal evidence when 

safety of the tunnel or of nearby structures have been compromised. The type of data and 

their associated uncertainties influence the decision in different tunneling activities but 

also the parameter identification processes and results. For this reason an extensive 

review of modern monitoring equipment and instrumentation was considered necessary 

and beneficial for the AMADEUS project. 

The area of instrumentation monitoring has been examined by various authors 

including von Rabcewicz (1963), Pacher (1963), Müller and Müller (1970), Londe 

(1977), John (1977), Dunnincliff (1988), Dutro (1989), Kovari and Amstad (1993) and 

others. Today a wealth of different systems is available to the engineers of underground 

construction. Nevertheless, Dunnincliff (1988) points out the importance of an 

appropriate instrumentation planning program that matches the needs of the performed 

work.  

The questions that need to be answered in such cases is what type of data are 

required (i.e., deformations, stresses, etc.), the desired accuracy of the measurements, the 

density distribution and locations of the instruments and the monitoring stations as well 

as the frequency of the readings. Gioda and Sakurai (1987), Londe (1977), Sakurai 

(1998) and Sakurai et al. (2003),  discuss the importance of measurements in tunnels for 

back-analysis. Xiang et al. (2003a) discuss the influences of many factors in the optimal 

layout of measurements. The main conclusions of their research suggest that: 

• The measurements should be sensitive to the parameters to be identified, 

• Although the system sensitivity is a very important factor, the layout of optimal 

measurements is not only dependent on it, 

• There is no definite relation between the number of measurements and the optimal 

measurement layout, and 

• The logic of preference for monitoring large magnitudes of displacements or 

strains for back-analysis cannot be established 

 7



  

An outline is given of the most frequently used terms in measurement uncertainties 

of monitoring equipment. Basic features, characteristics and accuracy issues are briefly 

discussed for each instrument or method. According to Dunnincliff (1988), uncertainties 

related to measurement equipment can be described by the following magnitudes: 

conformance, accuracy, precision, resolution, sensitivity, linearity, hysteresis, noise and 

error. The last factor is more general and can affect greatly the feedback received from 

monitoring. Error can be further distinguished into: 

 Gross error: due to inexperience, misreading, misrecording, computational errors 

 Systematic error: calibration problem, hysteresis, nonlinearity 

 Conformance error: improper installation, design problems or limitations 

 Environmental error: weather, temperature, vibration, corrosion 

 Observational error: variation between observers 

 Sampling error: variability in the measured parameters, incorrect sampling 

method 

 Random errors: Noise, friction in components, environmental effects. 

 

In general, measurement methods employed in tunnels should be able to capture 

the overall behavior of the surrounding ground and not just a few typical sections 

according to Dutro (1989). Figure 1 shows a typical measuring section of a tunnel. It is 

often more reliable to measure more sections with decent quality equipment than to have 

fewer measurement stations with high end measuring components. This is partly the 

reason why stress measurements in the rock mass or in the liners are not preferred by 

engineers while deformation measurements are more popular. The simplest rule for 

monitoring equipment planning is that measurements must be abundant enough but the 

cost must not be unreasonably high.   
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Figure 1: Typical layout of instrumentation in a tunnel (from Dunnincliff, 1988). 
 

Displacement measurements on the tunnel boundary are usually conducted with 

surveying measurements from a Total Station device, or with a tape extensometer. In the 

first method, special reflex targets are installed via supporting bolt-studs at the tunnel 

boundary. The total station device measures by laser beam reflection the coordinates of 

each point.  From the coordinate measurements, independent point deformation or any 

relative deformation between two points can be made. A series of measurements in time 

at the same location can reveal the deformation trends of the excavation. The normal 

magnitude of accuracy for such measurements, depending on the weather conditions in 

the tunnel can be in the order of 2-4 mm. It is usual that such measurements via surveying 

are assigned during a project to a special subcontractor who has good experience in such 

measurements so that maximum accuracies are obtained. Dunnincliff (1988) makes a 

comprehensive review of the accuracies associated with different surveying methods. 

Surveying provides absolute deformation measurements when all the analysis is tied to a 

reference benchmark. Figure 2 shows a typical setup of surveying stations along a tunnel 

route and Figure 3 presents a typical readout after post-processing of surveying results.  
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Figure 2: Example of total station-based tunnel monitoring by Hochmair (1998). 
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Figure 3: Example of deformation vectors obtained from reflex target measurements 

around a multi-staged tunneling process. From Kolymbas (2005). 

 

The metal tape extensometer offers typical measuring range of 1-30 m and greater 

accuracy in the order of 0.1-0.5 mm at the expense of manual measurement between 

selected points. The sensitivity of modern tape extensometers is in the order of 0.05 mm 

and repeatability at about 0.1 mm in the best conditions. The metal tape extensometer can 

only measure convergence (change in distances). 

Displacements in the surrounding rock mass are usually made by single or 

multipoint extensometers. In these devices, the head is fixed at the surface of the ground 

(mouth of borehole) and up to eight anchor heads can be fixed in various depths. With 
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this equipment the relative deformation between the head and the individual rod ends can 

be measured (extension). The multi point borehole extensometer (MPBX) provides 

relative displacement and not absolute measurements. If the head position is surveyed 

through time then absolute deformation calculations can be made. Different types of 

borehole extensometer designs have been presented by various manufacturers. Typical 

ranges are 50 – 250 mm and precision is around 0.025 mm. The accuracy of modern 

designs can reach ±0.25% F.S. (full scale) and non linearity is usually less than 0.5% F.S. 

according to Geokon (2005). 

Bolt axial forces can be measured by installed measuring anchors or with a 

specially designed pressure cell. The measuring anchor allows the measurement of axial 

force distribution on the anchor body. It is usually a hollow steel anchor in which a 

compact type of extensometer enclosed. Extensometer measuring wires are pre-installed 

at specified equal distances inside the rockbolt and their deformation can be related to the 

rock bolt axial force via its known elastic properties. Measuring anchors have usual 

lengths of 6.0 m and reading accuracies of 0.01 mm. The anchor cell can only measure 

one point load and is placed at the head of the anchorage on the rock wall. Both of these 

devices can measure pressure changes as the anchorage receives load during tunnel 

advance and results can be used to check the bearing capacity of the installed bolts and 

any potential problems from bolt overloading.  

Shotcrete or concrete stress is measured usually via dedicated flat pressure cells 

encapsulated in the body of the lining during construction. Such an application is shown 

in Figure 4. Cells can be accommodated to measure tangential and radial stresses in the 

shotcrete and are usually installed in pair one perpendicular and one tangential to the 

tunnel radius. This arrangement is frequently named as NATM cell (Geokon, 2005). 

These stress cells can measure tangential pressures up to 20 MPa and radial contact 

stresses up to 5 MPa. They have a resolution of ±0.025 % F.S. and accuracy of ±0.1% 

F.S. Stresses in steel sets are usually measured by strain gages installed on the body of 

the steel sets. The information obtained from the gage elements can be highly variable 

between different sections and is not considered as representative of the overall tunnel 

behavior by many researchers and engineers. 

 

 12



 

 

 
Figure 4: Application of shotcrete stress cells in tunnel monitoring. After Geokon (2006). 
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CHAPTER 4. State of the art in back-analysis methods 

4.1. General principles of back-analysis 

 
The term back-analysis involves a procedure where different parameters and 

hypotheses of a trial problem, which can be expressed numerically, are varied in order for 

the results of the analysis to match a predicted performance as much as possible. This 

procedure is very well tied to the observational method in engineering, promoted as 

concept in geotechnical engineering by Peck (1969). Generally, the back-analysis 

involves two separate approaches. In the inverse approach, all the governing equations of 

a hypothetical numerical model are inverted therefore the known performance becomes 

an input parameter and the original parameters become the solution of the inverted 

solution scheme. This approach can only be applied in very few engineering problems 

under very good control of experiment execution and when a model is simple enough to 

be invertible. The second approach is more general and adaptable to a series of problems 

involving multiple unknowns and non linear governing equations and processes. This is 

known as minimization method, where a dedicated numerical process aims in minimizing 

the error between predicted and measured performance (e.g., deformations or stresses).  

In most geotechnical problems involving underground excavations, stress 

analyses are great tools in the hands of the designers and engineers. In any of these 

analyses some steps are essentially common according to Gioda (1985): 

1. Some initial knowledge of a subsurface condition exists from geotechnical 

investigations, the construction documents, etc. 

2. A model is assumed to simulate the natural system artificially. This involves 

usually a numerical method, such as the finite element, the discrete element 

method etc. A model is also hypothesized for the behavior of elements such as the 

rock mass, the fractures, etc. 

3. Based on laboratory or field tests, initial parameters are chosen to express the 

strength and elasticity of the involved materials. 

4. Assumptions are also made with respect to boundary conditions, initial state of 

stress etc., and 
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5. The problem is solved until a stable solution is reached for the governing 

equations. 

Gioda (1985) points out that a distinction of back-analysis methods can also be 

made considering deterministic and probabilistic approaches. When high precision 

measurements are available or when the back-analysis model is not highly sensitive to 

measurement errors, then a deterministic approach can be followed. On the other hand 

when there can be a quantifiable degree of error in the measuring procedures or when an 

initial estimate of the descriptive statistics of the governing parameters can be made, then 

a probabilistic type of back-analysis is more appropriate. Especially for tunneling 

applications, where complete control of the measuring methods is not possible then 

weight will be shifted on the application of the probabilistic studies as described later. 

The later methodology is often described as “Bayesian” or maximum likelihood 

approaches. 

The method which will be used for the AMADEUS project is the direct approach 

where a separate program routine handles the iterations so that the predictions will 

ultimately match the measured performance. This involves a minimization process of an 

error function. An example of an error function is: 
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In equation (2) wi is a weight factor that can be applied for each measurement. This can 

be related with the reliability and quality of the various monitoring data. For example if 

deformation measurements are considered to be more reliable than lining stress 

measurements, they can be assigned a weight value higher than that of the lining stress 

normalized error.  Other definitions of functions to be minimized are also possible, but in 

all cases a program is required to perform the iterations quickly. Obviously, the more the 
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parameters to be controlled, the longer and more demanding the back-analysis is in terms 

of computer resources. Equations (1, 2) are generally highly non-linear functions of the 

unknown parameters and cannot be expressed analytically. A versatile algorithm should 

therefore be employed to handle the situation.  

4.2. Literature review of back-analysis in geotechnical engineering 

 
Cividini et al. (1981) and Cividini et al. (1983) give an insightful review of back-

analysis principles, aspects, including also examples of both direct and inversion 

methods. Their probabilistic analysis shares the concept presented by Eykhoff (1974) in 

parameter identification. The importance of the error involved in the measurements is 

taken into account in their analyses. Gioda (1985) presents an example back-analysis, of 

a geotechnical embankment problem where both the inverse and the direct approach were 

used. Gioda and Sakurai (1987) also present a survey of back-analysis methods and 

principles with reference to tunneling problems. Their review and examples involve 

deterministic and probabilistic approaches. Sakurai and Abe (1981), Sakurai and 

Takeuchi (1983) present a displacement-based back-analysis methodology that yields the 

complete initial stress and Young’s modulus of the rock mass by assuming the rock as 

linearly elastic and isotropic. Sakurai and Abe (1981) introduce the concept of maximum 

shear strain in the estimation of the plastic region around tunnels by using monitoring 

data for the back analysis. Later Sakurai et al. (1985) introduce the concept of critical 

strain (maximum shear strain on the elasto-plastic boundary) and use the Mohr-Coulomb 

criterion for prediction of failure. The concept of “equivalent” elastic modulus is also 

presented for the overall behavior of jointed rock masses. The concept of critical strain is 

further refined and its association as a degree of safety and as a hazard indicator is 

promoted by Sakurai et al. (1985) and Sakurai (1998). In the same work, it is suggested 

that the term back-analysis should include also a search for a material behavioral model 

and no model should be taken a priori for such an analysis. In that case, the term 

“parameter identification” seems more applicable. Sakurai et al. (2003) present a 

comparison of different back-analysis tools and presents the importance of the 

assumptions and the type of tool chosen for the back-analysis in the validity and 
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“correctness” of the back-analysis results. A thorough review of the critical strain concept 

and its use in back-analysis applications can be found in Sakurai (1993).  

Contribution to the probabilistic methods in back-analysis for tunneling has also 

been provided by Ledesma et al. (1996) and Gens et al. (1996) who describe a 

minimization procedure along with reliability estimates of the final calculated 

parameters, coupled with the finite element method. The main elements of the 

methodology is similar to that of Eykhoff (1974) and Cividini et al. (1981) that make use 

of a priori information from prior geological investigations. A maximum likelihood 

approach with extension to Kalman Filtering principles was presented and used by 

Hoshiya and Yoshida (1996). 

 Swoboda et al. (1999) suggested the use of the boundary control method to 

perform back-analysis along with a local search algorithm. This method was later 

improved and promoted by Xiang et al. (2002) and Xiang et al. (2003b). The numerical 

results revealed that this is a stable and fast-converging algorithm under certain 

circumstances. A displacement-based back-analysis method formulated as a combination 

of a neural network, an evolutionary calculation, and numerical analysis techniques was 

proposed by Feng et al. (2000). A back-analysis approach named as TBA using three 

dimensional modeling, has been successfully used by Zhifa et al. (2000). Chi et al. 

(2001) applied the conjugate gradient method along with a ground volume loss model for 

back-analysis of a shallow tunnel. Deng and Lee (2001) have used a novel method for 

displacement-based back analysis using an error back-propagation neural network and a 

genetic algorithm (GA). An interesting application of back-analysis of insitu stresses 

based on small flat jack measurements has been performed by de Mello Franco et al. 

(2002) in the case of a Brazilian rock mine. Lecampion et al. (2002) performed 

identification of constitutive parameters of an elasto-viscoplastic constitutive law from 

measurements performed on deep underground cavities (typically tunnels). Their back-

analysis was based on local search by using the Levenberg–Marquardt algorithm. Back-

analysis based on neural networks has also been presented by Pichler et al. (2003). Their 

method utilizes an artificial neural network which is trained to approximate the results of 

FE simulations. A genetic algorithm (GA) uses the trained neural network to provide an 

estimate of optimal model parameters.  
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 Deng and Nguyen Minh (2003) have presented a back-analysis method based on 

minimization of error on the virtual work principle. The method showed to be valid for 

both linear elastic and nonlinear elasto-plastic problems. Feng and An (2004) suggested 

the integration of an evolutionary neural network and finite element analysis using a 

genetic algorithm for the problem of a soft rock replacement scheme for a large cavern 

excavated in alternating hard and soft rock strata. The method of neural networks in 

back-analysis has also been used by Chua and Goh (2005). In their work, a method 

termed as Bayesian back-propagation (EBBP) neural network was used via a 

combination of a genetic algorithm and a gradient descent method to determine the 

optimal parameters. Finno and Calvello (2005) performed back-analysis of braced 

excavations using a maximum likelihood type of objective function and local search 

optimization.  Artificial neural networks have also been recently applied by Lee et al. 

(2006) in back-analysis of shallow tunnels in soft ground. Zhang et al. (2006) have 

employed a direct search technique and a damping least squares method along with a 

proprietary three dimensional modeling scheme, to back-calculate geotechnical 

parameters.  

4.3. Optimization classes 

Reviews of the generally available optimization algorithm classes can be found in 

Beveridge and Schechter (1970), Himmelblau (1972), Kuester and Mize (1973), Rao 

(1996) Venkataraman (2002) and Baldick (2006). Since most of the geotechnical related 

parameter estimation problems include a highly non-linear function of the involved 

parameters, some of the most important algorithms suited for non-linear optimization will 

be briefly mentioned here.   

4.4. Local optimization methods 

4.4.1. Non linear unconstrained optimization techniques 

Based on the use or not of the derivatives of the functions, these optimization 

algorithms can be further distinguished into two classes: the Direct Search and the 

Descent Search or Gradient-based methods. 
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The Direct search methods do not require the computation of any derivatives and 

as such may be more efficient in some cases at the expense of solution precision. Such 

examples are: 

• Random search method (stochastic-based) 

• Grid search method. The search is based on a predetermined grid formed 

in the multivariate coordinate space 

• Univariate search method. The search is done along one coordinate 

(parameter) and by keeping the other coordinates constant, in a sequential 

fashion 

• Pattern Search methods. The search is based on the information obtained 

from the previous solution steps which guide the solution towards the 

direction of the optimum. This class includes the pattern search method of 

Hooke and Jeeves and the algorithm presented by Powell (1962) and 

Powell (1964). The later is a more advanced pattern search method and 

most widely used direct search technique. It can be proven that it is a 

method of conjugate directions thus it will attempt to minimize a quadratic 

function in a finite number of steps. The main algorithm is shown in 

Figure 5. 

• Rosenbrock’s method of rotating coordinates, which is an extension of the 

Hooke and Jeeves technique presented by Rosenbrock (1960). 

• Simplex method. A type of Simplex analytical algorithm has been 

primarily developed for linear programming problems. A similarly named 

method can be used for non-linear problems. The general Simplex version 

is based on the formulation of a geometric shape of n+1 points in the n-

dimensional space. It was initially introduced by Spendley et al. (1962) 

and later further developed by Nelder and Mead (1965). By sequential 

processes of comparing the objective function value at the vertices, 

reflecting, expanding and contracting the simplex, the algorithm 

approaches a local minimum. It is a very fast and relatively reliable 

algorithm but for highly non-linear problems the simplex may easily 

collapse to its centroid and thus fail  
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Figure 5: Flowchart for optimization using Powell’s method. After Rao (1996). 
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The Descent search or Gradient-based methods require the computation of the 

first or even the second order derivatives and as such may be more time consuming. Such 

examples are: 

• Steepest descent. It requires calculation of the n-dimensional gradient of 

the objective function. Due to the sole exploitation of the gradient, which 

is a local property of the function, the method is not very successful. 

• Conjugate gradient method by Fletcher and Reeves (1964). It has similar 

characteristics to the method of Powell, and it also uses information from 

the function gradient. The property of quadratic convergence close to the 

optimum makes it a fast descent algorithm. Nevertheless it is not as 

efficient as the Newtonian methods described later. 

• The Newton-Raphson method for solving single variable non-linear 

equations can be extended to approximate solutions of multi-variable 

equations. The multivariate Newton method assumes that the function can 

be quadratically approximated by a Taylor series’ expansion at any point. 

As a second order method it utilizes information from the gradient and the 

Jacobian matrix of the gradients thus the Hessian matrix at each solution 

step. It is a local search greedy algorithm, and may become difficult to use 

because of the calculation of so many partial derivatives. More 

information on the use of this method will be provided in chapter 6. 

Instead of the Newton method, the Gauss-Newton method using only first 

order derivatives has shown good results in back-analysis. A modification 

of the Gauss-Newton method is the Levenberg-Marquardt algorithm. It 

attempts to combine the features of the steepest descent method when it is 

away from the optimum and the good convergence of the Newton method 

when it is close to the optimum.   

• Quasi-Newton methods. The computational load of the calculation of the 

Hessian matrix in the Newton method, as well as the problems arising 

from the needs for a positive definite Hessian, make the Quasi-Newton 

methods appealing. They are based on the estimation of the Hessian using 
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an update scheme, rather than recalculating all the partial derivatives 

again. 

• The Broyden-Fletcher-Goldfarb-Shanno method (BFGS). It is perhaps the 

most formidable gradient-based method. It is a type of Quasi-Newton and 

Variable Metric method. It is recognized by quadratic convergence and 

makes use of prior information from the solution history. It is based on a 

continuous update of the Hessian matrix rather by using first order 

derivatives 

4.4.2. Non linear constrained optimization techniques 

The constrained methods involve linear, non-linear, equality or inequality constraints. 

Each method is usually able to address a certain type of constraint. Of those methods the 

most frequently encountered are: 

• The Complex (COnstrained siMPLEX) method by Box (1965). This is a very 

powerful constraint optimization algorithm sharing some of the elements of the 

Simplex method. It is especially suited for highly non-linear objective functions 

and under certain circumstances there is a high chance for the method to converge 

to the global optimum solution. Instead of using n+1 vertices for a geometric 

shape like a Simplex, the Complex is using a shape of at least n+1 vertices 

(usually 2n). This creates a polygon able to adapt better in the n-dimensional 

space and to follow many constraints. In a general sense, the core of this 

methodology resembles the principles of the mutation and crossover of an array of 

genes found in the genetic algorithms. In fact for many genetic algorithms the 

number of trial individuals is in the order of 2n-10n in order to reach a global 

optimum. The Complex algorithm has been successfully used by Saguy (1982) in 

global optimization of fermentation processes. It is perhaps the only direct search 

(non gradient) algorithm which features global optimization strengths. More 

insight on the implementation of the algorithm can be found in Richardson and 

Kuester (1973). 

• The Generalized Reduced Gradient method (GRG). This is a powerful numerical 

method able to address non-linear problems with mixed types of constraints. It is 
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based on the principle of eliminating variables using equality constraints but it 

may require more intensive programming to be implemented in a code. 
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Figure 6: Flochart for the COMPLEX method. After Kuester and Mize (1973). 
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4.5. Global optimization methods 

This is perhaps the most challenging area of Operations Research. The 

development of techniques to search for a globally optimum solution (if there is one) is 

highly involving and interesting when efficiency is required. Excellent reviews of global 

optimization methods can be found in Horst and Pardalos (1994), Pardalos and Romeijn 

(2002) and Neumaier (2007). Some of these techniques are methods of dynamic 

programming, branch and bound methods, annealing methods, and genetic algorithms. Of 

those methods, the last two, which will be further analyzed and presented in the following 

chapters, are very strong candidates for back-analysis in geotechnical engineering and 

both are based on simulation of physical processes. Annealing follows principles of 

metallurgy and thermodynamics while the core of the genetic algorithms is based on the 

Darwinian theory of survival of the fittest. Their main nature is heuristic thus they do not 

involve greedy optimization criteria like gradients or pattern search directions. As we 

shall see, implementation of both of these methods can be advantageous in some 

geotechnical back-analysis problems especially when “a-priori” information may not be 

available or when it is unreliable. More insight on the use and application of these 

methods in back-analysis of geotechnical engineering problems will be provided in 

chapters 6 and 7.  
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CHAPTER 5. Simplified parameter identification for circular tunnels using the 

Convergence-Confinement method 

5.1. General 

The idea of the ground response curve, or otherwise the “characteristic curve” of 

the ground mass is considered to originate from Fenner (1938) who also proposed a 

closed-form solution for the problem of a circular opening in elastoplastic ground. The 

characteristic curve was later used by Pacher (1963) and was further promoted for 

empirical tunnel design by various authors such as Brown and Bray (1982), Brown et al. 

(1983), Panet (1993), Peila and Oreste (1995), Oreste and Peilla (1996), Carranza-Torres 

and Fairhust (1999), Asef et al. (2000), Carranza-Torres and Fairhust (2000), Alonso et 

al. (2003), and Oreste (2003). Guidelines for its use  have also been suggested by the 

French Tunneling and Underground Engineering Association (AFTES, 1984) for 

application in rational tunnel design as described by Panet (2001). 

The principles of the method are outlined briefly here. Initially, the ground is 

assumed to be stressed at an insitu hydrostatic pressure po and a tunnel of radius R is 

excavated. Assuming the radial displacement in the periphery of the opening at a 

reference section, some inward displacement will be recorded as the tunnel face 

progresses towards the point of reference. This deformation can be simulated by the 

action of an equivalent pressure acting internally in the opening which can be expressed 

as a fraction of the initial in situ po stress. This is called the “equivalent support pressure” 

since it gives the same radial deformation at equilibrium. From the initial pressure po the 

ground is gradually unloaded and for some time it behaves elastically. If the ground 

reaches its strength, further unloading causes the mass to deform plastically and a failure 

zone is formed around the opening. If at a certain distance d from the face of the tunnel 

support is installed, then the support pressure versus support deformation can be plotted 

on the same coordinate system as the ground characteristic curve plot. The intersection of 

the rock and support characteristic curves is presumably the point of equilibrium for the 

ground and support assuming that no secondary effects such as creep or long term 

strength loss occur in the ground. Perhaps, the most critical point in the above method is 

estimating how much deformation (or relaxation) has occurred in the rock mass prior to 
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the installation of the support. The knowledge of this pre-deformation would allow the 

positioning of the support curve at the right position on the horizontal axis as shown in 

Figure 7. 
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Figure 7: Relation between longitudinal convergence profile and ground-support 

characteristic curves. 

 

5.2. Back-Analysis using the Convergence-Confinement approach 

The convergence-confinement method is a simple yet insightful approach to the 

problem of ground and support interaction. When it comes to parameter estimation using 

the convergence confinement method, there are some points that need clarification and or 

improvement. The data that can be obtained by an appropriate monitoring program are 

generally deformation measurements and stresses inside the support system. Deformation 

measurements most often are not absolute but relative, e.g. multipoint extensometers can 

only measure relative displacements between different anchor points, or tape 

extensometers measure only relative deformation between two points on the wall of the 
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tunnel. Measurements by solely using surveying methods cannot incorporate 

deformations prior to the beginning of the measurements (often starting at the tunnel 

face). The importance of measurement errors in the use of measurement data for back-

analysis has been stressed by Panet (1993), and Cho et al. (2006). Hence back-analysis 

should be formulated in such a way to use convergence measurements and not absolute 

deformation measurements which are difficult in most cases to achieve.  

In addition, even though support system load monitoring is nowadays more frequent 

due to advancement of proprietary strain gages and pressure cells equipment (i.e., lining 

pressure cells), the information which can be obtained from these monitoring systems is 

susceptible to errors due to uncertainties of the interaction between the ground and the 

support, the interaction between different support systems and because of variations in 

the local geology from a monitored section to another. Nevertheless, it is widely 

acknowledged today that useful qualitative and quantitative information can be obtained 

by a carefully planned and executed deformation monitoring program. To the present 

there are two major ways to use the convergence-confinement theory for back-analysis 

calculations.  

5.3. Use of the characteristic curves  

 Assuming that initial estimates of the ground properties are known, and an 

estimate of the location of the support curve can also be made, then  by knowing two 

measured quantities such as pressure and deformation (or convergence) at equilibrium, it 

is possible to back calculate by use of a minimization algorithm the true properties of the 

ground. This methodology has been presented by Oreste (2005) who proposed back-

analyses under various conditions such as: a) when only one magnitude (i.e., pressure) 

has been measured and two or three uncertain parameters are to be back-calculated, b) 

when two measurements and two uncertain parameters are iterated, and c) when m 

measurements are available and n uncertain parameters are iterated. In general, however, 

it is always prudent to use a higher number of discrete sensors than unknowns for the 

minimization problem otherwise the solution may not be reasonable from a mathematical 

perspective. Hence the above back-analysis is more suited when two or perhaps three 

parameters are unknown, and a reliable support system stress measurement is available.   
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5.4. Use of Longitudinal Convergence Profiles 

 Another approach in back-analysis of ground parameters is to use information 

from convergence measurements as function of the distance from the tunnel face. A 

typical plot of convergence versus distance from the tunnel face is shown on Figure 7. 

Back-analyses using a longitudinal convergence profiles, were performed and studied by 

Gaudin et al. (1981), Panet and Guenot (1982), Guenot et al. (1985), Sulem et al. (1987), 

and Panet (1993). In this approach, an analytical or computational model linking the 

ground properties with the developed convergence must be initially assumed. The above 

researchers used semi-analytical solutions from axisymmetric finite element models to 

predict the behavior of nearly circular tunnels and with soft support. Strain softening and 

creep effects were also included in their analyses. Hoek (1999) has also presented an 

exponential deformation law for total deformation, based on monitoring data from the 

Minghtan Power Cavern in Taiwan, which can also be found in Carranza-Torres and 

Fairhust (2000). However, the above solutions do not incorporate the effects of stiff 

supports in the deformation profiles. In general, all the above models assume a non-

supported or lightly supported tunnel (i.e., thin shotcrete layer or light rock bolting).  

 The above problem of determining the pre-deformation for the convergence-

confinement method by incorporating the effects of the support were discussed by 

Bernaud and Rousset (1992), Nguyen-Minh and Corbetta (1991), Nguyen Minh and Guo 

(1993) and Bernaud and Rousset (1996). Their approximations provided estimates of the 

lost convergence before placement of the support, while incorporating the effects of a 

stiff support. From the above it becomes evident, that the method using longitudinal 

deformation or convergence profiles (LDPs and LCPs) is promising since many 

measurement data can be incorporated as input for back analysis with priority on data 

obtained quickly behind the tunnel front. The use of longitudinal deformation or 

convergence profiles in combination with the ground characteristic curves is investigated 

further in this paper. 

5.5. Review of existing empirical convergence ratio models 

The convergence-confinement method attempts to address the issue of ground-

support interaction in a simplified way. This simplicity of course fails to consider the 
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effects of bending of the structural lining or the effects of interface shear behavior at the 

support-ground contact. For the purpose of simplified back-analysis, the use of a 

longitudinal deformation or convergence profile expression is necessary. The equivalent 

pressure pi is often expressed as a function of the in situ pressure po by the use of the 

confinement loss factor λ which varies from 0 initially to 1 for a full excavated tunnel and 

equilibrium conditions: 

oi pp )1( λ−=           (3)

In general, the convergence C(t) at some time t of a tunnel is defined as the change in the 

distance between two opposing points on the tunnel wall perimeter. Thus: 

)()( tDDtC o −=          (4) 

were Do is the initial distance and D(t) is the distance measured at time t.  

Obviously there will be a delay for the installation of the monitoring equipment and some 

convergence can be lost from the monitoring data. Equivalently the convergence can be 

expressed as (i.e., measured with a tape extensometer):  

)]()([2)( ouxuxC −⋅=         (5) 

where u(x) is the radial displacement at some excavated distance x considered positive 

behind of the tunnel face, towards the equilibrated tunnel section and u(o) is the radial 

displacement of the tunnel wall at the location of the monitoring section.  

 If the measurements commence immediately from the tunnel face after it has been 

excavated, then the error of back-analysis is minimized, since valuable information of the 

tunnel behavior can be obtained via frequent measurements close to the face. Most 

empirical approximations of tunnel convergence are expressed in normalized form as: 

)()(
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=         (6) 

where C(∞) is the ultimate convergence of the tunnel at equilibrium conditions. 

The empirical expression of the deformation as a function of the distance from the 

face becomes:  

)]()([)()()( ouuxaouxu −∞⋅+=        (7) 
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Gaudin et al. (1981), and Panet and Guenot (1982) presented the following estimate of 

radial convergence C(x) at a distance x from the face of the tunnel for elastic ground: 

⎟
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⎜
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∞ X
x

C
xC exp1

)(
)(         (8) 

where X≈0.84R 

 Sakurai (1978) also proposed the calculation of the parameter of the loss factor λ 

along the relative location of the examined section at distance x from the tunnel face, by 

the following expression: 

)1()1()( *X
x

o ex
−

−⋅−+= ολλλ         (9)

where λο=λ(0)=1/3  and X* is a constant 

Panet and Guenot (1982) proposed a convergence relation for elastoplastic ground 

which was validated with various tunnel measurements as well as in general agreement 

with simplified elastoplastic axisymmetric finite element analyses. The convergence law 

is given as: 
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where Rp is the analytically predicted plastic tunnel radius assuming no support 

interaction and for the elastic ground case, Rp is replaced by the tunnel radius R. A 

description of the analytical model can be found in Duncan Fama (1993), and Panet 

(1995). 

 Corbetta et al. (1991) suggested the following law assuming similarity with the 

elastic solution: 
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where ξ=ue(∞)/u(∞)=ratio of the infinite elastic displacement uR(∞) to the infinite 

elastoplastic displacement  u(∞). For a homogenous, isotropic ground the infinite elastic 

displacement is given as:            

R
G

p
u o

e 2
)( =∞           (12)

m=an empirical factor, G is the shear modulus of the rock mass and ξ is ultimately a 

function of the stability number defined as:  

massc

o
s

pN
σ
2

=           (13)  

po is the average ground stress, σc mass is the average unconfined compressive strength of 

the ground.  

 For the case of linearly elastic ground behavior, AFTES recommendations 

suggest the following relation to calculate the confinement loss factor: 

2
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The above relation predicts a loss factor of λd=1-0.75=0.25 for d=0 (exactly at the 

tunnel front) which means that some 25% of final deformation is likely to occur at the 

tunnel face. If Ns≤1 the rock mass remains in the elastic state. For an elastic- perfectly 

plastic ground, the final radial displacement is calculated from the relation: 

G
Rpuu o
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== ∞           (15)

where G is the shear modulus of the mass. As a result the following equations are 

obtained: 
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 The expression by Hoek (1999)  is an exponential deformation relation for total 

deformation, based on monitoring data from the Minghtan Power Cavern in Taiwan, 

which can also be found in Chern et al. (1998). The relation is as follows: 
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 For the case of supported tunnels a simplifying assumption is that of an elastic-

perfectly plastic support of known geometric and behavioral properties. The load-

deformation curve can be obtained and superimposed on the support pressure-

deformation plot of the rock mass. However especially for stiff supports, the actual 

installation of the support changes the characteristics of the convergence profiles and thus 

makes the estimation of the origin of the support curve in the load-deformation plot more 

difficult. This issue was addressed initially by Nguyen-Minh and Corbetta (1991), and 

Bernaud and Rousset (1992) who proposed what is known as implicit methods and which 

are described later. The method by Bernaud and Rousset (1992) was incorporated in the 

simplified back-analysis presented in this paper.  The details of the above method are 

given by Bernaud and Rousset (1996) and only the main elements will be described here. 

The method makes a modification of the original equation (10) by Panet and Guenot 

(1982) to incorporate the effects of the support. The new relation becomes: 
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where , Rxx /'= φ035.082.1* +≈ RSa , and RS is the relative stiffness of the lining to 

the surrounding ground: RS=Ksn/Em. As a general approximation Bernaud and Rousset 

(1996) also suggested the following estimate for the radial deformation at the face: 
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5.6. New convergence ratio models 

5.6.1. General procedure 

 An extensive parametric analysis was performed to determine the effects of the 

stiffness of the support and the unsupported span length d of the tunnel, on the 

longitudinal deformation profiles. The deformation profiles are a useful tool to estimate 

the required pre-relaxation for a 2D (plane strain) numerical analysis and are very often 

used in the tunneling practice for preliminary purposes or to verify support design. The 

commercially available program FLAC 2D  by the Itasca Consulting Group (2005) was 

used in an axisymmetric mode to perform this task.  

 The ultimate goal is to check the validity of the convergence estimates by the 

previous methods and to suggest any modifications if necessary. FLAC is a robust finite 

difference based code which allows for large strain calculations while it retains fairly 

good numerical stability. The axisymmetry mode essentially yields the same results as if 

a three-dimensional analysis code was to be used for a circular opening under hydrostatic 

conditions. With a small modification, the models can also incorporate a support member 

by using continuum elements of higher stiffness i.e. to simulate concrete or shotcrete 

application on the tunnel wall. The Mohr-Coulomb constitutive model was used to 

simulate the elasto-plastic behavior of the rock mass, since it has the most wide use so far 

in the literature and previous research. An example finite difference grid is shown in    

Figure 8.    

The following assumptions were made in the analysis. The tunnel is circular with 

a radius R=5.0, excavated in isotropically stressed ground with po=5.0 MPa (about 200 m 

overburden). The rock mass average elastic modulus is E=5 GPa and the Poisson’s ratio 

is constant at v=0.25. Dilatancy effects are not taken into account in the preliminary 

stage. The tunnel is excavated at a constant rate of d/R normalized advancement and 

when support is implemented in the models, the support is also installed at a constant rate 

and it is finalized at d/R before the tunnel face. The support elements use a linearly elastic 

model.  
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Figure 8: Axisymmetric tunnel model in FLAC. 
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Different cases were studied. These included supported and unsupported tunnels 

in elastic or elastic-perfectly plastic ground. For the plasticity cases a comprehensive set 

of 80 pairs of the shear strength parameters c and φ were first calculated, corresponding 

to stability numbers Ns= 2, 3, 4, and 5. Therefore, there are 20 parameter pairs for each 

stability number. Ns=1 designates the limit state for elastic behavior, while Ns>1 

designates theoretically a plastic state for circular openings with no support at full 

deconfinement. The relative stiffness and the unsupported span were also varied to study 

the change in behavior. A routine was written in FLAC’s proprietary FISH programming 

language to assist in the parametric iterations. Longitudinal deformation profile (LDP) 

data were automatically taken directly from the FLAC output converted to convergence 

data expressed as C(x)/C(∞) and batch-processed thru non-linear regression in the 

program Matlab in order to maintain precision and avoid corruption of data. 

5.6.2. Results of numerical analyses 

Unsupported tunnels 

 After all FLAC results were processed, it was found in agreement to the existing 

literature models that an exponential law can be used with good accuracy to predict 

tunnel convergence. However, this was realized for all cases of unsupported or supported 

ground, in elastic or elastoplastic conditions. This general convergence model can be 

expressed as: 
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 This relation was found to agree the best with the data. Other relations were also 

tried by the regression procedure but with less success. The above expression agrees 

generally with most convergence approximations today. However it is more adaptive due 

to the existence of two parameters, β1 and β2. These two parameters essentially control 

the geometry of the convergence rate versus the distance from the face. So the task was to 

investigate how these parameters change with the materials properties.  
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 For the unsupported tunnel in elastic ground equation (10) by Panet and Guenot 

(1982) was verified in most cases with minor variations in the values of β1≈0.85-1.1 and 

β2≈2.0. For the unsupported tunnel in plastic ground the results showed good fit when β1 

and β2 are given by the following expressions: 
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      (21) 

where Rp the analytically predicted plastic radius. At low values of normalized plastic 

radius Rp/R<1.3, results from (21) are in good agreement with the original approximation 

by Panet and Guenot which predicted that β1=0.84<(Rp/R). For higher values of plastic 

radius a better prediction is obtained by equation (21).  

 With respect to the convergence at the tunnel face it is widely accepted that a 

percentage of 20-30% is lost at the face. This value is important in back-analysis based 

on convergence data since it has to be deducted from the predicted deformations in order 

to estimate convergence values along the tunnel length. Multiple non-linear regression on 

the data showed that the proposed relation (22) gives a good fit. In most cases the ratio 

was in the range 15-25%. 
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where: ,  223.0
1 2.0 sNp = 196.0488.0105.00076.0 23

2 +−+−= sss NNNp

The above relation gives a useful approximation that incorporates reasonably the 

variation of the tunnel face convergence, depending on the stress-strength conditions. 

This approximation can be used for back-analysis of unsupported or lightly supported 

tunnels by use of longitudinal convergence profiles.  

 Of the frequently used approximations, the Hoek-Chern normalized curve has a 

more mild profile and which is constant and irrespective of the plastic conditions. This is 

due to the fact that the convergence rate according to (17) is: 

[ ]
7.0

3.0)(/)(
)(
)( −∞
≈

∞

−HoekChernuxu
C

xC        (23) 

 36



This curve generally predicts slower convergence close to the face than any other 

curve.  The Panet and Guenot, the Nguyen-Minh and Corbetta (1991) approximation and 

the approximation suggested previously yield essentially the similar results for low 

normalized plastic radii as shown in Figure 9 a-e. Assuming the same convergence at the 

tunnel face for consistency, the curves by Panet and Guenot (1982), Nguyen-Minh and 

Corbetta (1991) and the approximations given by relations (20) and (21) show quick 

convergence under mild or heavy stress conditions and are fairly close to each other.  
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Ns=6 

Figure 9: Convergence ratio plots for different models and stability numbers 

Supported tunnels 

 In reality when a support system is installed the behavior of the ground 

characteristic curve will change. This is better understood if we theorize the new 

reinforced or supported rock mass, as a new material with a new stiffer response to 

unloading. Homogenization methods to estimate the overall characteristic curve are 

described by Peila and Oreste (1995), and Kolymbas (2005). Otherwise the effects of the 

support stiffness and the unsupported span must be incorporated in a reasonable basis. 

From a theoretical standpoint, the ultimate goal is to propose a convergence law of the 

form: 
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where p is the parameter vector, d/R is the unsupported normalized distance and RS is the 

relative stiffness of the support liner to the ground.  An extensive series of parametric 
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studies were performed by Vardakos and Gutierrez (2006) on supported tunnels using 

FLAC both assuming linear elastic and elasto-plastic ground. The relations for β1, β2 have 

been revised during this research to incorporate compatibility with a wider range of 

problems based on more parametric analyses. The following cases were examined: d/R= 

0.4, 0.8, 1.0, 1.6, 2.0 and the lining Young’s modulus= 10, 15, 20, 25 and 30 GPa.  

For the case of elastic ground, due to the existence of two governing parameters, 

the relative stiffness RS and the unsupported normalized span d/R, the best fit was 

obtained when both the β1 and β2 parameters change according to the following set of 

empirical equations: 
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 By combining the above approximations and by simultaneous use of the ground 

reaction curves one can obtain an estimate of the convergence along the length of a 

supported tunnel in elastic ground. The solution should approximate the behaviour of the 

circular tunnel as long as the relative stiffness RS as expressed above, is in the range 

RS=0.08-0.3. The Poisson’s ratio does not affect the solution much and should not be a 

concern.  

 For the case of supported tunneling in elastoplastic ground, post processing of the 

results showed agreement with the convergence model of equation (20). The variables β1 

and β2 showed a clear tendency to simultaneously increase with the numerically predicted 

by FLAC plastic radius Rp for each case, as they also marginally increase with stability 
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number Ns. Alternatively the model by Bernaud and Rousset will be used along with 

some modifications for back-analysis purposes. Post processing of FLAC results also 

showed a wide ratio and that in most cases the deformation ratio at the tunnel face is in 

the range 22-35%. The approximation given by equation (19) does not consider explicitly 

the effects of support stiffness or the unsupported distance. Useful information was 

gained from the FLAC predictions in order to improve on this estimate. Unlike the case 

of the unsupported tunnel in plastic ground, where the percentage of deformation at the 

tunnel face shows a power relation with the plastic radius, in this case a nearly linear 

relationship exists. Through the parametric analyses it was found that the following set of 

equations can be used to estimate the radial displacement ratio  
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where p1 and p2 depend on the relative stiffness of the lining and the ground and the 

unsupported normalized distance d/R, and the normalized maximum plastic radius of the 

unsupported tunnel Rp/R. Based on regression analysis, the approximations for p1 and p2  

can be expressed as follows:   
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 Hence, by using a closed-form solution for the ground behavior, an empirical 

expression for the convergence rate along the tunnel length and a non linear optimization 

algorithm a simple back-analysis can provide a first degree of approximation to a 

problem. 
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5.7. Probabilistic back-analysis method 

 For simplified back-analysis purposes there are two main elements required to 

perform the calculations. First the computational model which will perform the 

calculations and second a powerful optimization algorithm that handles the iterative 

procedure. The computational model in this case must be able to incorporate the effects 

of the support in tunnels and should not only handle unsupported tunnels. A closed-form 

solution using Mohr-Coulomb or Hoek-Brown plasticity models (and a flow rule) may 

provide the ground characteristic curve for the unsupported tunnel. Advanced solutions 

exist today that can incorporate strain softening constitutive models but for simplicity 

will not be discussed here. 

 The method employed in the computational model incorporates uncertainty by 

using an initial estimate based on field or laboratory characterization of various properties 

and the corresponding variances of the parameters. It also uses uncertainty in the 

measured values of performance via measurement error or correlation between 

measurements. The basic structure of the method can be outlined here and results from 

preliminary applications in back-analysis are given. It is important to note that this 

method should be used when the number of measurements exceeds the number of 

unknowns. A review of the “Bayesian” back-analysis principles are given by  Cividini et 

al. (1981), and Gioda (1985). 

We can assume that  represents a vector of convergence measurements which 

are influenced by errors described by the vector

measu

measuΔ . It is possible to assume that the 

expected value (mean) of the error vector is not significant, thus: 

0=Δ measE u  

The covariance matrix of the errors is then: 

T
measmeasu E

meas
uuC Δ⋅Δ=         (32) 

If all the measurements are statistically independent then Cu meas. is a diagonal matrix. 

Similarly to the Bayesian theory, the “a priori” data assumed in this analysis are the 

expected values of the unknown parameters, and their variances. Thus pp Eo =   where 

 is the parameter vector. p
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If the entries of the po vector are correlated then is a non diagonal matrix.  For 

instance there may be a correlation between strength parameters c, φ and depth (or 

equivalently stress magnitude). The average elastic modulus of the rock mass may also be 

depth (or stress) dependent.  

opC

The error function that is to be minimized is: 
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 This error function is composed of two parts. The first term represents the 

difference between the measured and the predicted performance quantities and the second 

the difference between the assumed and current trial parameter vector. In both terms the 

differences are weighted by the inverted covariance matrices whose elements reduce in 

value with increasing uncertainty. The above equations can be used in conjunction to the 

Convergence-Confinement method and a convergence rate approximation in a 

probabilistic-based back-analysis program by using the Microsoft Excel software and the 

Solver® utility. The later is a powerful non-linear optimization program based on an 

extension of the Generalized Reduced Gradient algorithm and can be used to minimize 

the error function given in equation (34).  

5.8. Simplified back-analysis by using convergence models 

5.8.1. Case of a supported tunnel in elastic ground 

 In this case the model presented in (20, 25, 26) is used as an approximation of the 

convergence rate along the tunnel length. The tunnel has radius R=5.0 m and is supported 

by 20 cm of shotcrete liner. The shotcrete is assumed to have an average Young’s 

modulus of 25 GPa and it is installed at d=4m (d/R=0.8). By closed-form solutions the 

normal stiffness of the liner is Ksn=1100 MPa (RS=0.275). We also hypothesize that 

convergence measurements are available at 25 points behind the face of the tunnel. For 

this reason convergence data were obtained by a FLAC simulation assuming the “true 

optimum” properties show in Table 1. These were used as input for the back-analysis. A 

 42



variable error of 2.0 to 3.0 mm was used for the convergence measurements. Table 1 also 

shows the “a priori” information assumed in the analysis. 

For any set of initial parameters the characteristic curve of the ground is given by: 
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The support curve is described by: 
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The convergence profile, depends on the values of the above parameters, thus the 

back-analysis will also lead to the solution of the above system, with respect to the 

equilibrium conditions. For simplicity we assume that the governing parameters are 

uncorrelated and data from multiple measurements have variations in their errors (i.e. 

extensometer and surveying measurements). The convergence dependent error function 

(34) can be easily programmed in Excel. By using the mean values as the initial trial 

vector, the Excel Solver tool can be utilized to seek the minimum of the error function. 

The execution of the program gives the solution presented in Table 1, which are fairly 

close to the actual parameters that were used in FLAC initially.  

The optimal solution procedure described above yields a local optimum only. 

Other lower minima may still exist if the iterations start from a different trial vector. If  a 

second trial is performed and the the iterations start from the “a priori” information:   

po=7.0±0.5 MPa, Em,o=5000±400 MPa and νo=0.25±0.01, using the same input 

convergence data, we obtain an optimal vector (Table 1)  which is again very close again 

to the initially used properties in FLAC. The results of this example are shown in Figure 

10 and Figure 11. 
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Table 1: True optimum, initial trial and solution vectors of simplified back-analysis 

problem 

Trial 1 Trial 2       Analysis #  
 
Parameter 

True 
optimum Initial Final Initial Final 

Em (ΜPa) 4000 4500±200 4262 5000±400 4000 

po  (ΜPa) 8.0 7.5±0.5 8.29 7.0±0.5 7.83 

ν 0.25 0.25±0.02 0.258 0.25±0.01 0.252 

u(d) (m)   0.01  0.01 
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Figure 10: Original and final convergence estimates for tunnel in elastic ground case. 
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Figure 11: Monitored and predicted by back-analysis convergence ratio estimate. 

5.8.2. Case of a supported tunnel in elasto-plastic ground 

 In this case the model proposed by Bernaud and Rousset (1996) is used to 

approximate the convergence rate along the tunnel. Convergence data from an 

axisymmetric FLAC model were used as input for the back-analysis. The data used to 

generate convergence data from FLAC are summarized in Table 2. Relation (26) was 

used to estimate the ratio of the radial deformation at the tunnel face. Due to the non-

linearity of (26) it is more efficient to enter the u(o) as a search parameter for the 

optimization by superimposing the equity constraints of (18) and (27).    

Convergence data were selected at 25 points behind the face of the tunnel and a 

variable error of 2-4 mm was applied to the data to simulate uncertainty. Again the use of 

Excel Solver is advantageous in order to solve the non-linear system of equations during 

back-analysis. In this case the unknowns are the vector p and the pre-deformation u(d) at 

the point of support installation. The set up of the system of equations for equilibrium is 

composed of the characteristic curve (closed-form solution), the support curve and the 

error function to be minimized. The initial information used for the back-analysis 
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consisted of the property values shown in Table 2. The same table shows the converged 

solution. 

Table 2: True optimum, initial and final vectors, during simplified back-analysis by use 

of the elasto-plastic tunnel convergence model. 

Trial 1       Analysis #  
 
Parameter 

True 
optimum Initial Final 

Em (ΜPa) 3000 2500±700 2500 

ν 0.25 0.25±0.01 0.25 

po  (ΜPa) 7.0 7.5±0.5 6.2 

c (ΜPa) 1.0 0.8±0.1 0.8 

φ (°) 25 20±4 23.4 

ψ (°) 0.0 0.0 0.0 

u(d) (m)   0.019 

 

This solution is generally close to the vector and the value of u(d)=0.02 m 

predicted by the FLAC model, but it is unsatisfactory due to the difference in the estimate 

of the far field stress. Furthermore, other minima may still exist and they need to be 

searched.  

*p

 An alternative approach is to investigate stochastically the existence of 

other local minima in the region of the mean property values. For this reason, a Monte-

Carlo type of simulation was performed using built in functions in Excel. Random trial 

parameter vectors are generated from the initial “a priori” information assuming normally 

distributed always values. A Visual Basic code was written for this purpose. For each of 

these trial vectors the back-analysis is repeated and the optimal vectors are recorded 

along with their respective value of the error function. For this type of problem it was 

observed that around 50 generations would yield enough information for the governing 

parameters. For each back-analysis cycle the minimization process requires 

approximately 15-35 iterations to converge depending on the starting vector. From the 

simulations, it is possible to choose a number of candidates of optimal vectors. These, 

can later be used for a more elaborate back-analysis procedure in order to minimize the 
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computational time. Table 3 presents a series of 40 back-analysis cycles. In some cases 

there was no feasible solution in the process and an error occurred (but without stopping 

the process). From the optimal solutions, six vectors with the lowest error achieved, were 

chosen for comparison. Figure 12 presents the objective function (error) values for the 

back-analysis trials. From we can note the variation and scatter in the optimal values for 

parameters po, φ, E and u(d). The lowest achieved error value (trial 6) corresponds to 

property estimates that are very close to the theoretical solution: 

po=7.12 MPa, φ=24.3°, c=0.95 MPa, ψ=0.1°, E=2912 MPa, ν=0.25. 

The closeness of results can also be attributed to the fact that a good 

approximation for the percentage of radial displacement at the face was used which 

naturally restricts the optimal solution. Figure 13 presents the measurement data with 

their associated noise and the six lowest error fitted curves, corresponding to different 

optimal solution vectors.  
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Table 3: Back-analysis solutions based on convergence data only, and by Monte-Carlo 

procedure.  

trial po φ c ψ E ν Error u(d) 
1 5.71 19.12 0.70 0.10 2300.66 0.278 41.980 0.015 
2 5.82 16.98 0.82 0.10 2450.70 0.250 34.428 0.018 
3 2.60 11.97 1.30 0.09 1086.55 0.310 #N/A 0.020 
4 8.79 30.34 1.32 0.13 4310.26 0.276 2471.087 0.014 
5 7.29 26.53 0.89 0.10 3146.32 0.250 21.319 0.017 
6 7.12 24.33 0.96 0.10 2912.22 0.250 20.583 0.018 
7 5.25 16.76 1.06 0.10 1935.01 0.249 48.740 0.020 
8 5.62 19.00 0.99 0.11 2330.63 0.257 41.374 0.021 
9 6.66 23.38 0.91 0.11 3094.81 0.271 33.405 0.021 
10 3.92 0.00 2.10 0.18 1864.28 0.268 #N/A 0.021 
11 8.04 24.32 1.02 0.11 3256.11 0.261 1457.104 0.014 
12 1.19 11.47 1.05 0.17 1009.64 0.262 #N/A 0.019 
13 7.18 17.40 0.67 0.09 2045.54 0.244 382.863 0.013 
14 7.19 24.14 0.86 0.11 3216.57 0.257 22.388 0.022 
15 7.16 24.03 1.01 0.10 3672.75 0.252 25.962 0.022 
16 6.03 22.19 0.85 0.12 2901.64 0.248 38.813 0.021 
17 6.28 24.15 1.07 0.10 2488.64 0.250 26.220 0.021 
18 3.24 17.28 0.84 0.12 2033.89 0.277 #N/A 0.021 
19 7.57 20.57 0.83 0.10 2599.92 0.251 846.007 0.014 
20 7.11 18.77 1.28 0.10 2255.35 0.257 134.281 0.021 
21 6.03 21.26 0.88 0.13 2677.09 0.261 86.418 0.023 
22 6.06 20.16 1.18 0.10 2353.22 0.235 58.511 0.023 
23 3.99 18.21 1.02 0.04 2191.18 0.262 #N/A 0.023 
24 7.65 21.16 0.86 0.10 2703.46 0.253 1014.895 0.015 
25 2.82 14.49 1.10 0.15 1536.32 0.269 #N/A 0.021 
26 7.75 21.97 0.90 0.10 2843.90 0.255 1105.500 0.015 
27 3.02 16.68 0.76 0.20 1930.58 0.267 #N/A 0.021 
28 7.77 22.13 0.91 0.11 2871.96 0.255 1079.798 0.014 
29 5.40 16.18 0.91 0.10 2618.08 0.250 43.216 0.020 
30 7.38 25.56 0.83 0.10 3501.81 0.250 22.863 0.020 
31 5.92 14.97 1.17 0.11 2750.15 0.261 44.283 0.021 
32 7.21 19.20 1.27 0.10 2347.35 0.252 129.669 0.021 
33 3.98 18.12 1.01 0.04 2176.48 0.270 #N/A 0.023 
34 7.60 20.77 0.84 0.10 2634.81 0.252 971.191 0.016 
35 3.94 17.46 1.01 0.10 2058.78 0.267 #N/A 0.022 
36 6.77 14.17 0.51 0.09 1479.57 0.235 143.152 0.015 
37 6.54 22.37 1.10 0.10 1780.24 0.242 76.549 0.026 
38 7.53 22.10 1.70 0.08 2856.30 0.147 #N/A 0.028 
39 7.93 23.40 0.97 0.11 3095.20 0.259 1676.825 0.019 
40 7.16 19.36 1.50 0.10 2376.91 0.251 163.854 0.023 
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Figure 12: Error estimate from 40 Monte-Carlo back-analysis cycles using convergence 

data only. 
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Figure 13: Convergence estimates by Monte-Carlo based back-analyses  
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It becomes apparent from the above, that the use of the Convergence-

Confinement method along with an empirical relation of convergence rate and the use of 

convergence data can be used efficiently in a multi-parametric back-analysis. The 

methodology, however, is sensitive to the estimation of the ratio of radial deformation at 

the tunnel face to the ultimate equilibrium deformation. With an imprecise estimate 

function it is difficult to achieve a unique solution. The same conclusion can be extended 

to a back-analysis using a plane strain two dimensional model. During such an analysis 

one would need to use an approximation for the pre-relaxation, and most often 

convergence, instead of deformation measurements (e.g., from extensometers or 

surveying methods).  

 It is also possible to extend the method by incorporating stress measurements. 

Stress measurements are generally more difficult to perform and are most susceptible to 

error, due to the variation of ground properties, support system or monitoring equipment 

installation issues, ground-support interaction mechanisms, etc. It is interesting though to 

examine the back-analysis procedure from a fundamental standpoint by incorporating 

lining stress measurements. The same back-analysis procedure and model as the above 

were used in this case. From the FLAC model that was used to create artificial 

monitoring data for the back-analysis, the average stress at the lining-rock mass interface 

was calculated at    and a typical measurement error of 0.07 

MPa was assumed. This measurement was incorporated in the objective error function (at 

each trial step of the process an equilibrium support pressure is calculated by the system 

of non-linear Convergence-Confinement equations). The results from 40 Monte-Carlo 

back-analysis cycles are shown in 

MPapeqp iFLAC 7.0)( ≈=

Table 4 and Figure 14. Again there is scatter in the 

local optima but considering the non linearity of the problem and the imposed constraints 

few solutions are actually acceptable. The solution from cycle 35 gives the minimum 

error: 

po*=7.25 MPa, φ*=28.3°, c*=0.84 MPa, ψ*=0.1°, E*=3054 MPa, ν*=0.25, p(eq)*=0.67 

MPa. 

 This result is very close to the theoretical optimal solution corresponding to the 

initially used FLAC input properties. The characteristic curves of the ground and the 

support corresponding to the optimal solution are shown in Figure 15. The difference in 
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the solutions obtained by using convergence data only and by combining convergence 

and stress data, is very small since a good approximation was already assumed in the 

analyses. The stress measurement should be incorporated in the back-analysis whenever 

unreliable deformation measurements exist or when an unreliable estimate (i.e., an 

arbitrary choice of 25 or 30% deformation ratio) is used to access the radial displacement 

at the face. Depending on the reliability of this estimate, fitting a convergence profile 

approximation curve to convergence data only does not warrant the uniqueness of the 

solution even by using a probabilistic approach which can scan over a wide range of 

values.  
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Table 4: Back-analysis solutions for the supported, circular tunnel in plastic ground 

model. 

trial po φ c ψ E ν p(eq) Error u(d) 
1 3.37 15.84 0.88 0.09 1776.73 0.257 #N/A #N/A 0.027 
2 7.59 20.72 0.82 0.10 2626.25 0.252 1.53 899.48 0.018 
3 3.03 17.70 0.58 0.09 2102.92 0.277 #N/A #N/A 0.024 
4 7.38 19.04 0.78 0.10 2331.94 0.248 1.86 811.80 0.017 
5 1.19 12.57 0.58 0.09 1211.52 0.270 #N/A #N/A 0.024 
6 7.97 23.72 0.89 0.10 3151.35 0.259 1.27 1047.23 0.016 
7 5.24 19.52 0.79 0.10 2446.36 0.274 0.59 59.03 0.021 
8 2.40 17.56 0.43 0.10 2058.92 0.274 #N/A #N/A 0.021 
9 8.55 28.44 1.01 0.10 3976.43 0.271 0.91 1364.57 0.015 
10 6.90 28.79 0.86 0.10 2738.99 0.250 0.71 21.78 0.018 
11 6.56 31.65 0.91 0.10 2226.01 0.249 0.64 27.21 0.019 
12 7.96 23.71 0.90 0.10 3149.60 0.257 1.06 130.73 0.020 
13 1.94 14.89 0.55 0.09 1604.26 0.281 #N/A #N/A 0.022 
14 7.28 18.24 0.76 0.10 2192.73 0.246 2.05 791.42 0.015 
15 7.83 22.68 0.87 0.10 2968.41 0.257 1.06 152.50 0.023 
16 7.62 22.32 1.14 0.10 2901.94 0.250 0.69 122.76 0.025 
17 0.77 16.20 0.31 0.09 1856.27 0.227 #N/A #N/A 0.025 
18 7.25 17.98 0.75 0.10 2145.90 0.245 2.00 788.43 0.017 
19 7.74 21.91 0.85 0.10 2834.74 0.255 1.09 236.41 0.025 
20 6.19 11.24 1.32 0.08 955.16 0.073 1.96 1946.57 0.026 
21 7.66 22.93 1.68 0.11 3002.16 0.205 #N/A #N/A 0.032 
22 8.42 27.38 0.98 0.10 3791.00 0.268 0.53 1795.73 0.022 
23 2.46 18.70 0.54 0.10 2284.10 0.288 #N/A #N/A 0.024 
24 8.22 25.80 0.94 0.10 3514.96 0.264 1.07 1216.76 0.016 
25 7.16 22.18 1.06 0.10 3507.42 0.245 0.58 35.35 0.020 
26 1.56 12.39 0.58 0.09 1171.44 0.298 #N/A #N/A 0.020 
27 8.24 25.94 0.95 0.10 3539.32 0.265 1.23 1096.48 0.014 
28 1.43 13.81 0.45 0.10 1408.65 0.295 #N/A #N/A 0.018 
29 8.51 28.04 1.00 0.10 3907.44 0.270 1.13 1179.30 0.012 
30 6.95 24.40 0.81 0.10 3255.20 0.259 0.88 30.32 0.017 
31 5.35 28.28 0.86 0.10 1563.48 0.249 0.829701 40.46 0.018 
32 1.69 17.30 0.31 0.10 2014.58 0.274 #N/A #N/A 0.020 
33 8.57 28.59 1.01 0.10 4003.80 0.271 0.977452 1313.40 0.014 
34 6.46 28.22 0.85 0.10 2379.14 0.249 0.801058 25.32 0.017 
35 7.25 28.37 0.84 0.10 3054.58 0.250 0.674713 21.50 0.019 
36 6.36 22.45 0.84 0.10 2915.57 0.268 0.706226 30.94 0.020 
37 5.98 21.82 0.83 0.10 2814.47 0.249 0.61623 30.52 0.020 
38 4.12 4.75 1.36 0.10 3153.57 0.288 #N/A #N/A 0.021 
39 7.48 19.83 0.80 0.10 2470.42 0.250 1.892154 803.64 0.014 
40 5.50 21.56 0.79 0.10 2465.70 0.250 0.571786 37.84 0.021 
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Figure 14: Error estimate from 40 Monte-Carlo back-analysis cycles using convergence 

and support system stress data. 
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Figure 15: Characteristic curve after probabilistic-based back-analysis 
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5.9. Conclusions 

From the above analysis is becomes obvious, that a simplified, probabilistic-based 

back-analysis for circular tunnels can be accomplished using a combination of closed 

form solutions and an empirical convergence rate approximation. Especially in the elasto-

plastic ground case, the optimization system is generally sensitive to small value changes 

of far field stress po, strength properties and Young’s modulus. The assumption of an 

empirical approximation for the convergence development also influences the solution. 

Experience from multiple parametric analyses using axisymmetry models has shown that 

variations in the convergence profiles cannot easily be quantified. Equation (20) was 

shown to be valid for the majority of the examined cases, and further study is performed 

to investigate the variation of parameters β1 and β2 with the ground and support 

conditions. Today, in many cases, the previously mentioned convergence-profiles are 

used to make an assessment of pre-convergence before the tunnel is supported, or to fit 

such curves in convergence data for an first estimate of ground properties.  

  When using the objective function (33), the traditional assumption is made that 

the first trial (in absence of other information) is the mean value vector of the governing 

parameters. This paper shows that this assumption can be misleading for a back-analysis 

procedure in the absence of a reliable way to incorporate the ground relaxation at the 

face, or in the absence of support stress measurement data. In this case it is recommended 

to combine the approach incorporating the uncertainties in the rock mass and the data 

quality through the use of a “Bayesian” type of approach given in equation (34) in 

combination with a heuristic type of simulation of the starting trial values during the 

simplified back-analysis. The descriptive statistics of the governing parameters are kept 

constant and always reflect the engineering judgment of the modeler. The choice of 

starting vector proves significant to overlook. From the analyses it was also evident that 

the assumption of radial displacement ratio at the tunnel face can influence the back-

analysis solution, therefore it is recommended to check the change in the solution vector 

by varying the initial estimate of the ratio of radial deformation at the face. Two 

approximations have been presented in this paper in order to estimate this ratio under 

elasto-plastic conditions of unsupported and supported circular tunnels.  
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 The software Excel incorporating the Generalized Reduced Gradient algorithm 

proves is a powerful and convenient optimization tool for quick back-analysis of circular 

tunnels. Hence a better appreciation of starting parameters for a more time consuming 

numerical-based back-analysis is possible.    
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CHAPTER 6. Parameter identification using a local optimization method 

6.1. General 

A gradient based local optimization method is used to perform back-analysis of 

tunneling induced deformations. The method is based on the multivariate version of the 

Newton-Raphson algorithm. This algorithm, due to its quadratic convergence properties, 

is considered to be fairly fast. As such, it can be proved that it establishes the minimum 

of a quadratic function in one iteration. Jeon and Yang (2004) have used this method in 

back-analysis of two geotechnical parameters. Other possible local optimizer candidates 

to be used in geotechnical problems would be the Broyden- Fletcher-Goldfarb-Shanno 

(BFGS) method and the Complex method described in section section 4.4 from the 

classes of gradient and non-gradient optimization techniques respectively. The main 

points and issues when using a gradient technique can be summarized as follows: 

 

• The gradient of a function f, f∇ , establishes the direction of steepest ascent. 

Hence the negative of the gradient represents the direction of steepest descent 

• The evaluation of the gradient is based on the evaluation of partial derivatives. 

There may be cases where the objective function being minimized is 

differentiable but the derivative calculation is impractical 

• The gradient may not be defined at all points especially close to constraint 

boundaries of the function or in other abrupt points 

• Even if all the above problems are solved, the final solution will be influenced by 

the initial trial values and the solution will be closest to the original trial. This of 

course holds true for any local search method. The global optimum may not be 

attained easily 

 

Nevertheless, from a fundamental point of view it is interesting to study how such an 

algorithm can be used to perform a simple yet frequently encountered problem of 

tunneling related back-analysis. The problem of a deep circular tunnel will be used in the 

application of the algorithm.  
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6.2. The Newton-Raphson algorithm  

The function  can be expanded using the Taylor series including its quadratic terms 

as:  
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From equations (38) and (39) we have: 
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If the Hessian matrix is not singular the solution of equation (40) gives: 

iiii fJ ∇−= −
+

1
1 ][XX          (41) 

For non-quadratic non-linear functions, equation (41) may have difficulty in approaching 

the minimum. It may converge to a relative maximum or diverge or reach a saddle point. 

A modification of the Newton-Raphson method is the following: 

iiiii fJ ∇−= −
+

1*
1 ][λXX            (42) 

where is the optimal step size along the direction . The optimum value of 

step size λ can be found by using one of the one-dimensional optimization techniques 

such as the Golden Section method. For this step the objective function must be unimodal 

*
iλ ii fJ ∇− −1][

 57



in a short range of λ to find the optimal λ*. The Golden Section method requires the input 

of a range in which to seek the optimal value of λ and a maximum number of iterations. 

This hybrid method was implemented in the commercially available, finite difference-

based numerical code FLAC 2D ver. 5.0. 

The required finite difference approximations can be obtained from the following 

finite difference formulae for functions of two or more variables.  
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These approximations are used to assembly the n-dimensional gradient of the 

function and the n x n Hessian matrix. As we will see, a critical step in this process is the 

choice of the step size for each of the governing parameters.  For the assembly of the 

Hessian matrix it is assumed that the mixed derivatives of the objective function are 

continuous functions. Therefore, according to Schwartz’s theorem, the order of 

differentiation does not matter. This is generally true for the smooth type of “least 

squares” type of objective function (equation 2) used herein (assuming infinitesimal 

function behavior). 
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6.3. Back-analysis using the Newton-Raphson method 

Very often the back-analysis of tunneling-induced displacements is based on the 

assumption of linear-elastic behavior of the rock mass. Even though this may be 

misleading for excavations were a plastic zone occurs around them, it is still an 

interesting problem and quite true for supported tunnels were the ground failure is kept to 

a minimum. A set of two problems was examined in this case. In the first case the case of 

an unsupported tunnel under isotropic stress conditions, was examined. In the first case, 

two parameters were searched during the back-analysis, the elastic modulus E and the far 

field isotropic stress po. In the second case an unsupported tunnel is being excavated in 

elastic ground under anisotropic stress conditions. In the later case, the unknowns are the 

elastic modulus E, the Poisson’s ration ν, the vertical and horizontal stresses σy and σx (or 

equivalently the vertical stress and the Ko ratio). Both of these cases where chosen as 

reference problem for the back-analysis, since they are distinguished by uniqueness of 

their respective solutions and the existence of a closed-form solution makes cross 

comparison easy. The commercial software FLAC 2D ver. 5.0 was used in the analysis. 

The tunneling problem and the back-analysis algorithm were implemented by using the 

proprietary FISH programming language of FLAC. Initially the problem was solved 

using a known set of elastic, and stress level parameters. A plane strain condition was 

assumed for this case. A more elaborate discussion on the choice of plane strain versus a 

full three dimensional analysis will be further discussed in chapter 7. Figure 16 shows the 

quarter tunnel model designed in FLAC. The tunnel has radius R=5.0 m and the model 

extends 50 m. 
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R=5 m 
 

 50 m 
 

Figure 16: Circular tunnel numerical model in FLAC (x10 m.) 

6.3.1. Case of a circular tunnel in elastic ground – two-variable problem 

In this case an initial tunnel model was solved using the properties shown in Table 

5. The radial displacements at three gridpoints with R1=R=5.0, R2=5.9 and R3=8.7 m were 

obtained from the analysis and used as input for the back-analysis. The objective function 

of equation (2) with weighting factors wi=1 for all points was used. In this case the one-

dimensional step size calculation was omitted, thus the step size λ was constant and equal 

to 1. Three different initial trial vectors were assumed. The convergence criterion used, 

was an accepted total parametric convergence of 10-4. The total parametric convergence 

is taken as: 

∑
=

+ −
=

n

i i

ii
tot p

pp
c

1

1~          (48) 

where pi and pi+1  are values of the parameters at iteration i and i+1 respectively.  
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Table 5: Input properties and back-analysis results for the twin parameter problem 

Trial 1 Trial 2 Trial 3 Parameter True 
optimum 

FDD 
step size Initial Final Initial Final Initial Final 

E (MPa) 3000 60 2500 3002 4000 3000 4500 3006 
po 7.0 0.05 7.5 7.0 8.0 7.0 6.0 7.0 

 
 

The results presented in Table 5 show extremely smooth behavior and 

repeatability of results. This is primarily due to the simplicity of the problem, having only 

one optimum in the search space. The quadratic nature of the method becomes evident 

from the fast convergence. Representative results from trial 3 are shown in Figure 17. 

The method essentially reaches the correct and converged solution at cycle 7. The 

convergence criterion is satisfied at cycle 12 and the analysis is stopped. The FISH 

program for the ordinary Newton-Raphson method is available by contacting the author. 
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Figure 17: Results from back-analysis using the Newton-Raphson method in FLAC. 
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6.3.2. Case of a circular tunnel in elastic ground – four-parameter problem 

In this case, the hybrid methodology of the Newton-Raphson and the Golden 

Section were employed for the back-analysis of four parameters. Initially the problem 

was attempted to be solved with the ordinary Newton-Raphson method, but as the earlier 

discussion identified, the method becomes unstable. The scanning range for the Golden 

Section was taken to be [-1.2, 1.2] and the number of Golden Section iterations was set to 

22. Measurements were taken along two sets of three gridpoints with R1=R=5.0, R2=5.9 

and R3=8.7 m, three on the centerline above the crown and three on the springline of the 

tunnel. The deviatoric stress as well as the Poisson’s ratio will be easier to identify using 

these points, due to the sensitivity of the measurements at these locations. Table 6 

presents the results of the analyses. Once again, the adequate performance of the 

algorithm was evident. Both trials results in the same and exact solution. The solution is 

practically obtained in 7 cycles and it converges at the specified convergence after 17 

cycles. The results are shown in Figure 18 and the FISH program containing the hybrid 

algorithm can be obtained by contacting the author.   

 

Table 6: Input properties and back-analysis results for the four parameter problem 

Trial 1 Trial 2 Parameter True 
optimum 

FDD 
step size Initial Final Initial Final 

E (MPa) 4500 200 5500 4527 6000 4524 
ν 0.25 0.018 0.26 0.252 0.25 0.252 

py (MPa) 7.0 0.3 7.5 7.01 8.0 7.0 
px (MPa) 4 0.3 4.5 4.0 4.7 4.0 
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Figure 18: Results from back-analysis of four paramters using the Newton-Raphson 

method in FLAC. 
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6.4. Conclusions 

The gradient based methods are formidable algorithms, but present some 

shortcomings. The involvement of gradients makes the process difficult when using 

numerical analysis for each function evaluation such as the finite element method. When 

the number of unknowns is low (i.e., two or three parameters) the back-analysis could be 

dealt with easily. However, when the number of unknowns increases then the process 

becomes not only computationally expensive but sometimes impossible. In the case of 

the Newton-Raphson algorithm, the first and second order derivatives need to be 

calculated so that the Hessian matrix (diagonal matrix of the second partial derivatives) is 

assembled at each temporary solution vector. A finite difference-based derivative sub-

routine needs to be executed in order to perform this calculation. For each function term 

involved in the finite differences, a dedicated numerical analysis needs to be performed. 

Even when all this is programmed the required step sizes hi for the finite difference 

derivatives should be calibrated. Too short or too large of a step may yield erroneous 

derivatives. A general rule of thumb would be to keep the ratio of the step size over the 

average expected parameter value constant for all parameters.   

Furthermore in most of the direct and gradient based algorithms, a one-

dimensional step calculation must be performed along a pre-calculated direction of 

optimization in order to optimize the solution at that stage (monotonous decrease of the 

objective function is the characteristic response of such algorithms). This involves a sub-

routine such as the Golden Section method to estimate the required step size λ. This 

process requires more iterations so that a reasonable and efficient step size is found. The 

process may become quite time consuming. 

Another difficulty is the implementation of constraints. A penalty function 

procedure by assigning a large error value upon violation of a constraint, could provide 

the constraints, but could easily make the objective function non-differentiable. The 

above methodology was attempted for the more realistic case of a supported circular 

tunnel in elastic and in elasto-plastic ground. In this model it was realistically assumed 

that the support is installed after a 50% relaxation of the tunnel and the measurements 

from multipoint extensometers commence at that time. This monitoring time lag is very 

often the case in the actual construction and a proper back-analysis approach should be 
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able to deal with this as well. When the relative measurements are used for the back-

analysis, i.e., extensometer measurements or underground surveying methods then the 

objective function becomes highly non-linear and the possible number of local extrema 

multiply. Thus, there can easily be a variety of parameter vectors that minimize the 

function. This is one of the reasons why displacement monitoring should commence not 

only as soon as possible after the excavation but also it should be performed by various 

methods to increase the potential and the reliability of a back-analysis.  The application 

of the hybrid Newton-Raphson method for a supported tunnel, using any type of relative 

measurement or even with the assistance of incorporating lining stress measurements, 

showed poor results. Tests with four and six parameter problems revealed that the 

gradient-based approach is not a reliable tool when the problem becomes complicated.  

The issues that often come up revolve mainly around the gradient calculations. 

The first order derivatives are relatively straightforward to estimate. However the 

estimation of the Hessian matrix can the most daunting task. The choice has to be made 

for a good estimate of finite difference derivative step sizes. Even in the simplest case of 

two variables, the step size should be chosen so that the incremental change in the 

governing parameter has an impact in the model behavior and thus in the objective 

function. A small step size can be undetected by the analysis, thus instead of a good 

estimate of the derivative the method creates “noise” instead. A large step size hi, on the 

other hand can make the analysis oscillate without being able to stabilize in a proper 

search direction. This in conjunction with a non-linear objective function which has 

multiple local optima, makes the back-analysis a difficult task. The core of Newton-

Raphson method is generally based on the ability to calculate or at least estimate the 

gradients and the Hessian matrix reliably. Thus it is influenced greatly by computational 

precision. Step sizes must be increased as the number of unknowns increases to overcome 

precision tolerance and subsequent data noise in finite difference derivative evaluations. 

The nature of the objective function used, is such that many local optima theoretically 

exist, and these are densely located close to each other, especially when plastic 

parameters are involved (many nearby sets of strength, stress or elastic parameters can 

minimize the function). When such conditions exist the Hessian matrix may be 

impossible to estimate practically. Even if it was possible, then the final answer would 
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inevitably suffer from the “a-priori” assumption of the first trial, since the Newton is very 

good at finding local optima close to the initial trial.  

Therefore alternative methods should be developed that can adapt and deal with 

the non-linear behavior of the ground and also with the highly non-linear objective 

function that will be minimized. As it was shown in chapter 5, even the use of a very 

robust local search algorithm (Generalized Reduced Gradient) can give misleading back-

analysis results and a more thorough investigation may be required. The conclusions of 

chapter 5, revealed the requirement for a more global search strategy. In fact the hybrid 

Monte-Carlo and local search approach is the oldest global search strategy in 

optimization. It features the notion that many trials are made, and of those trials the ones 

yielding the worst results are discarded in favor of the “strong” and more probable 

solutions. This simple yet powerful logic of the theory of global optimization will be 

presented in the next chapters. Two of the most pronounced representatives from the area 

of global optimization are employed in a novel fashion by using the programming 

capabilities of the commercial software FLAC. 
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CHAPTER 7. Back-analysis of tunnel response using the Simulated Annealing method 

7.1. General 

An alternative methodology to deal with this complexity and sensitivity of the 

various methods can be found in the recent evolution in the areas of the genetic 

algorithms, the neural networks, but also in the heuristic nature of algorithms such as the 

Simulated Annealing (SA) introduced by Kirkpatrick et al. (1983). The last method 

belongs to a general class of combinatorial optimization techniques and it has gained 

attention for the solution of large scale discrete or even continuous optimization problems 

where highly irregular objective functions with multiple local optima may exist. The SA 

algorithm has been used by Long (1993) and by Mauldon et al. (1993) in modeling of 

hydraulic fracture conductivity. It was also applied by Scherbaum et al. (1994) in 

parameter identification of earthquake induced ground motion modeling. The following 

section describes the features of the SA algorithm used in the proposed back-analysis.  

7.2. Description of simulated annealing  

The SA algorithm shares its name from the metallurgical process of metals such 

as steel. A gradual and sufficiently slow cooling procedure from the heated phase, leads 

to a final material with theoretically perfect crystalline structure with the minimum 

number of imperfections and internal dislocations. This corresponds to the state of low 

internal energy. On the contrary when a quick cooling schedule is followed, then the final 

product attains more imperfections and higher energy state. During cooling, nature 

follows inevitably its own optimization path for the given circumstances. This is what the 

annealing algorithm tries to simulate. The theoretical basis of the SA algorithm is that 

when the cooling schedule is sufficiently slow, the higher is the probability of converging 

to the global optimal solution, assuming that there is one in the mathematical sense. This 

is particularly useful in cases of nonlinear objective functions of geotechnical back-

analysis problems where multiple minima may exist. A true downhill algorithm will 

attempt to approximate the closest feasible solution. Here lies the strength of the SA 

algorithm. It is not a “greedy” algorithm since its structure allows for uphill movements 

as well. This is especially beneficial to nonlinear elasto-plastic geotechnical problems. In 

the case that an elasto-plastic model is assumed and the actual behavior is purely elastic, 
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then back-analysis of the involved plasticity parameters may never converge to an 

optimal solution. The use of a heuristic approach, as implemented here, bypasses the 

problem. The algorithm is allowed to scan the behavior of the numerical system under 

various conditions, purely elastic or elasto-plastic. Even if the back-analysis is started 

from the global optimal vector, the annealing will proceed and not get stuck at that point. 

As it will be seen later, even if the annealing process leads to a non global but optimal 

point, significant information can be gained from the behavior of the objective function 

during the annealing. Simulated annealing has been initially used in discrete optimization 

problems, such as the traveling salesman problem, or on the optimization of circuit board 

design. Later on its use was extended to applications in continuous optimization. An 

extensive review on the method and its behavior can be found in Otten and Ginneken 

(1989). 

 The SA algorithm as was described earlier posses an interesting thermodynamic 

analogy. When sufficient time is available for cooling, the higher is the probability of 

attaining a minimum energy state at the end. Or otherwise if the solution of a numerical 

system is controlled in such a way, that the system “scans” at progressively less feasible 

vector solutions, then there is good chance to converge to a global optimum. The process 

is related with the Boltzmann probability distribution: 

⎟
⎠
⎞

⎜
⎝
⎛ −∝

kT
EEP exp)(          (49) 

Thermodynamically equation (49) expresses that if a system has equilibrium at 

each temperature T, its energy is probabilistically distributed among various possible 

energy levels E. In the above equation, k is the natural Boltzman constant relating 

temperature to energy. This is significant for the SA algorithm. Even if the system has 

reached a low temperature, thus it more restricted in its possible energy states, it still has 

a small chance to escape from a locally optimum energy state in attempt to find a better 

globally optimum, by taking an essentially uphill movement with corresponding 

temporary increase in the energy (or the value of the objective function).  

Let’s assume that the generic objective function is: 

)(Xf   and  is the n-dimensional solution vector      (50)         X
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We are seeking the  subject to the following constraints: [ )(XfMin ]

)

u
ii

l
i xxx ≤≤:Ω , i=1,…,n        (51) 

The solution starts from an initial trial (or prior geotechnical assumption) .  An initial 

starting temperature  also needs to be assumed. A dedicated cooling schedule is 

required to perform the SA. This cooling schedule function determines how the 

temperature is decreased from an initial value  during the annealing. This is an 

important stage and various cooling schedules can be tried. An example annealing 

schedule often encountered in the literature is to use an exponential cooling: 

1X

oT

oT

k
ok CRTT ⋅=            (52) 

where, Tk is the temperature at each cooling stage k, and CR is a cooling rate (CR<1). As 

the number of cooling stages increases the temperature close to to theoretical optimal 

procedure should approximate zero. The cooling schedule will be composed of a large 

number of cooling stages NT and temperature is kept constant during each stage. 

 The temperature is initially set to To and the objective function is calculated and 

stored at the initial trial point. At each temperature stage Ti, the system is let to try a large 

number NI of different, sequentially and randomly generated combinations (or 

permutations) of solution vectors around the present trial. Hence: 

( XXX Δ+=+ ii 1           (53) 

The vector change ΔX must yield a new vector relatively close to the previous 

point and not too far. The constraints can also be implemented at this step. If a new 

perturbation does not satisfy relation (51) then the random generation is repeated until a 

valid trial vector is found.  

The new vector is used as input in the numerical analysis and a new objective 

function value is found. The new trial is accepted if it leads to a decrease of the 

objective function value: 

)( 1+if X

0)()( 1 ≤−=Δ + ii fff XX  
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On the other hand, if , then the criterion by Metropolis et al. (1953), is 

used to control the acceptance or not of the present trial. The probability of the objective 

value change is calculated and compared to a random number

0>Δf

]1,0[∈r . Thus, by omitting 

the Boltzmann’s constant k from (49): 

⎟
⎠
⎞

⎜
⎝
⎛ Δ−

=Δ
T

ffP exp)(          (54) 

If this probability is greater than a randomly generated number r, the new solution 

is accepted and becomes the starting solution for the next iteration. Otherwise, if the 

probability is less than r, the new solution is rejected and the present solution remains the 

same from the previous step. The algorithm flow chart is presented in Figure 19.  

 The random generation ΔX of perturbations around a present solution vector also 

needs some consideration. Press et al. (1999) discusses the importance and efficiency of 

various methods of calculating the ΔX vector. The present implementation involves a 

simple scheme which was found to be efficient for this type of problem. Let’s assume 

that the parameter i has a present solution value of xi, and constraints . 

Similar constraints are involved for all other parameters. A new perturbed value may be 

found by: 

u
ii

l
i xxx ≤≤

)5.0(2 −⋅Δ⋅+= iii
new

i rndsxx         (55) 

where,  is the new value by perturbation, new
ix isΔ  is the specific parameter perturbation 

step size, and rndi is a random number between 0 and 1, for the ith parameter. Therefore, 

there is a uniformly distributed probability of choosing any new parameter value in the 

 range, as long as it satisfies the constraints, as shown in ],[ iiii sxsx Δ+Δ− Figure 20. 

The choice of the step size Δsi, which is different for each parameter, depends on many 

factors and may also be problem specific. A good general rule, which was followed in the 

present analysis, was to choose Δsi in such a way that the values of the ratio 

 are comparable between all parameters. The step sizes Δs)/( l
i

u
ii xxs −Δ i, need to be 

relatively small in order to yield a new parameter value close to the previous one, but 

large enough so that the whole feasible solution vector space is scanned during the 
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annealing process. If the step size becomes too short then there can be gaps in the 

possible reconfigurations (perturbations) in the trial parameter sets. If the step sizes are 

too large, then the solution could easily wander all over the space. It is a good tactic to 

calibrate the annealing properties in combination with the step sizes, so that the trial 

vectors present a gradual transition from point to point. This requires some 

experimentation with the algorithm.  
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START
Initial vector X1

Set initial temperature to To
Set cooling schedule parameters:

Temp. reduction steps: NT
Perturbations at each temp. NI

Set parameter perturbation step size

Calculate f(X1)
Set i=1

Perform random perturbation around present trial vector:
Xi+1=Xi+ΔX

Employ constraints in Xi+1
Calculate f(Xi+1)

Calculate Δf=f(Xi+1)-f(Xi)

Decision of acceptance 
based on the Metropolis 

Criterion

Is number of perturbations 
≥ NI ?

YES

NO

Set temperature according to 
annealing schedule

Set current point as temporary 
optimum

Is number of temperature 
reductions 
≥ NT ?

STOP

Store accepted trials
Store best ever solution

YES

NO

Alternative convergence 
criteria can also be used, as 
long as the final temperature 

is significantly low

Compare final solution with 
best ever solution

Significant difference could 
mean convergence to a local 

optimum
Can also restart SA from 

best solution  
Figure 19: Flow chart of Simulated Annealing algorithm implemented in FLAC 
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Figure 20: Implementation of constraints and perturbation sampling range during the 

annealing process 

 

An approach which can also increase the algorithm’s efficiency is to reduce the 

step size for some or all of the parameters, after a prescribed number of temperature 

reductions. This can potentially lead to better and more precise solution, by allowing 

narrower sampling, after the algorithm has approached the general area of the global 

optimum. This approach was implemented in the present algorithm by reducing the step 

size at 70% of the cooling. Corana et al. (1987) have applied the SA algorithm to 

continuous variable function minimization and identify the difficulties associated with 

this implementation. They suggest a modification using a stochastic sampling scheme so 

that the average number of successful (accepted reconfigurations) is approximately half 

of the total number of trials. Their implementation was tested against the Simplex method 

of Nelder and Mead (1965) and against a type of Adaptive Random Search, using highly 

non-linear functions of multiple local optima. Their results showed the superiority of this 

algorithm over others when it comes to estimation of minima. A similar modification 

scheme has been suggested by Venkataraman (2002) to boost the performance and 

efficiency of the original algorithm. Another implementation that could be followed in 

order to minimize the computational time is to modify the problem from a continuous 

optimization to a discrete one. By assuming an accepted solution precision, each 

parameter search space can be discretized into a finite number of prospective trials. For 

example during back-analysis, for each parameter, the feasible search range can become a 

discontinuous series where each trial is increased from its previous value by an amount:  

(pmax-pmin)/Ni           (56) 
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where pmin, pmax are the constraints and Ni the desired finite number of possible values of 

each parameter. Such an implementation deviates significantly from the general 

continuous optimization scheme, but by reducing the theoretically high precision demand 

of the continuous minimization problem, a more efficient and fast solution progress could 

be attained. The above method may not necessarily yield the true global optimum which, 

as a vector, may not be represented by any combination of the discrete parameter values, 

but a solution very close to it can be obtained, especially when the feasible solution 

search range is not particularly extended. Thus by simplifying the problem to a discrete 

form the solution time can be greatly reduced, at the expense of solution precision. 

7.3. Back-analysis of a circular tunnel in elastoplastic ground using a closed-form 

solution and SA 

In this case the theoretical closed form solution of the problem of a circular hole 

in an infinite Mohr-Coulomb medium is used for verification of back-analysis using the 

Simulated Annealing algorithm. The FISH programming language was used to perform 

the closed-form calculations. The finite difference grid model presented in Figure 16 was 

used to store the analysis results by using the provisional extra grid variable commands of 

FLAC. The closed-form solution uses only the model’s grid geometry for the calculations 

and for storage purposes only. It is also an efficient way to program the algorithm in the 

same language that can be used later for full numerical analysis-based parameter 

identification.  The tunnel was assumed to be unsupported for simplicity, but a support 

system can be also included by using the approximations presented in chapter 5. The 

ground is assumed to be elastic-perfectly plastic and there are six parameters to be 

identified. The Elastic modulus E, the Poisson’s ratio ν, the far field stress po, the 

cohesion c, the friction angle of the ground φ and the dilation angle ψ. The total 

deformations at six grid points and the tangential stress close to the tunnel were used as 

monitoring data for the back-analysis. The six grid points were located in such a way that 

they penetrate in the average expected plastic zone around the tunnel opening, given the 

range and relation of strength and stress parameters used. The cooling schedule chosen is 

expressed by equation (52). The back-analysis was executed three times to investigate the 

repeatability of the results. The initial assumptions along with the converged solution as 
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well as the values of the true optimum are shown in Table 7. The table shows all the 

parameters used for each of the analyses, along with the configuration of the annealing 

schedule. The constraints of all the parameters along with the step size for each parameter 

are also shown. From the results it is shown that generally there is a good agreement 

between the converged-solution and the theoretical global optimum. Trial 2 has 

converged to a nearby local optimum since both the elastic modulus and the far field 

stress are lower than the globally optimum parameters. It is remarkable though that the 

predictions of the strength and dilatancy parameters are all very close. Trials 2 and 3 were 

started from the same initial trial vector which does not matter since the algorithm is 

heuristic based and independent on the initial trial point. The evolution of the objective 

function values is shown in Figure 21.  

Table 7: Back-analysis results of circular tunnel problem in Mohr-Coulomb ground. 

1 2 3       Analysis 
 
# Parameter 

True 
optimum Initial Final Initial Final Initial Final 

E (MPa) 8000 7000 8365 6000 7380 6000 8436 

ν 0.25 0.26 0.26 0.23 0.28 0.23 0.26 

po (MPa) 7.0 8.0 7.2 8.0 6.1 8.0 7.1 

c (MPa) 0.8 1.2 0.93 1.0 0.6 1.0 0.64 

φ (°) 30 28 27.6 32 31.3 32 33.3 

ψ (°) 2.0 0.8 1.9 1 2.4 1 1.99 

To  1.4  1.4  1.4  

ΝΤ  200  200  200  

ΝΙ/NI[NT>70]  150/300  150/300  150/300  

CR  0.95  0.95  0.95  

E min–max 
ΔsE

 6000-9000 
400  6000-9000 

400  6000-9000 
400  

v min–max 
Δsν

 0.23-0.3 
0.01  0.23-0.3 

0.01  0.23-0.3 
0.01  

po min–max 
Δpo

 6.0-9.0 
0.4  6.0-9.0 

0.4  6.0-9.0 
0.4  

c min–max 
Δsc

 0.3-1.5 
0.15  0.3-1.5 

0.15  0.3-1.5 
0.15  

φ  min–max 
Δsc

 25-35 
1  25-35 

1  25-35 
1  

ψ min–max 
Δsψ

 0.1-3.0 
0.4  0.1-3.0 

0.4  0.1-3.0 
0.4  
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Figure 21: Evolution of objective function value during back-analysis using the 

Simulated Annealing algorithm. 
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7.4. Case of a deep circular tunnel in elastoplastic ground 

7.4.1. Problem description 

 The SA method was used for the back-analysis of a circular tunnel in elastoplastic 

ground. The target was to use a frequently encountered case of the circular tunnel in 

plastic ground and perform the back-analysis under plane strain conditions. The use of a 

widely available numerical code is also advantageous. The plane strain numerical 

approximation is still today perhaps the most often encountered and used analysis tool. 

The main advantage is the execution speed, which leads to timely solutions for a wide 

range of geotechnical scenarios of a particular problem. Conversely, a plane strain 

approach, requires the approximation of the three-dimensional tunneling effect, that 

occurs ahead of the excavation face, using an approximation such as the approximation 

relationships presented in chapter 5. Clearly, by using a three-dimensional code all these 

elements are bypassed at the expense of computing time.   

 The choice of the numerical code (plane strain vs. three-dimensional) can also 

influence the amount and type of monitoring data that can be used for a back-analysis. 

Deformation and lining stress measurements often take place in deep rock tunnels. It is 

also rare that a complete history of deformation measurements is available, unless 

instrumentation in the form of multi point borehole extensometers has commenced ahead 

of the main tunnel heading, from a pilot tunnel or from the ground surface. Deformation 

measurements are therefore, almost always relative. An amount of displacement has 

already occurred by the time the monitoring starts, and it is not always easy to assess. 

This is a true fact and plays equal role in back-analysis using any of the above methods. 

The above conditions formulate a highly non-linear objective function which is difficult 

to address. In the tunnel case examined here, the plane-strain models were used for quick 

solution times. The same algorithm can be applied to a three-dimensional model.  

 It was assumed that the tunnel is excavated under anisotropic stress conditions, in 

an isotropic ground characterized by a Mohr-Coulomb failure criterion. Initially the 

problem was solved using a known set of elastic, plastic and stress level parameters. The 

parameter values used are shown in Table 8. The same model as the one used for the 

back-analysis using the Newton-Raphson method was employed. 
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 Other additional parameters such as the insitu shear stress τxy, or the dilation angle 

ψ°, may also be implemented easily in the algorithm. The three-dimensional tunneling 

effect is simulated by the Convergence-Confinement approach. The tunnel periphery is 

let to relax at 50% of its initial insitu stress, and then support is installed. This amount of 

relaxation is taken arbitrarily for this example and practically corresponds to support 

installed at some small distance from the tunnel face. Support composed of a one-pass, 20 

cm thick shotcrete liner, is installed and then the tunnel is let numerically to relax fully, 

until ground-support equilibrium is achieved.   

Relative displacements and lining loads were used as input for the back-analysis. 

To simulate closer a real case, the hypothesis is made that monitoring does not 

commence before the tunnel is excavated, but commences at the installation of the 

support liner. These conditions, in conjunction with the plane strain approximation, result 

in a very irregular objective function with multiple local optima. These factors are the 

most frequently encountered in construction monitoring and in the post processing of 

results. Instrumentation is composed of three multipoint borehole extensometers, one at 

the wall, one at 45° angle from the horizontal, and one at the crown. The locations of the 

instrumentation are shown in Figure 22. The length of the extensometers was taken so 

that they penetrate through a potential plastic zone, estimated using average strength 

parameters. The axial loads developed in the shotcrete, were also monitored at the same 

three points as the heads of the extensometer locations.  

Since the analysis is plane strain, the objective function of the back-analysis can 

be better “shaped” by employing measurements susceptible to changes of the parameters 

of interest. All measurements were assumed to have the same weight factor wi=1.  The 

use of relative displacements only (in two dimensional analyses) can potentially lead to 

multiple local extrema of the objective function, thus making back-analysis difficult. The 

inclusion of lining loads allows the function to become more sensitive in changes of 

ground strength parameters and ground elastic modulus and can save time during the 

back-analysis process. The tunneling problem and the back-analysis algorithm were 

implemented by using the proprietary FISH programming language by Itasca. The next 

paragraph presents the results of a series of back-analysis and the performance of the 

used algorithm.     
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Figure 22: Monitoring locations and instruments around the circular tunnel 

7.4.2. Algorithm performance and results 

 A series of back-analyses were performed using various starting points, in order 

to study the behavior of the algorithm. The results from six analyses will be presented 

here and discussed. Table 8 presents the initial trial vectors, along with the annealing 

properties tried for each analysis. The exponential cooling schedules used are shown in 

Figure 23. At NT=70, corresponding to approximately 95% of the cooling, the step size 

for the elastic modulus, Poisson’s ratio, σy and σx, was reduced to approximately half of 

the original value. Other methods of gradually reducing the step sizes ΔSi may also be 

implemented. The annealing schedule was followed to a 99.5% cooling percentage, at 

which the analysis was assumed to have converged.  
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Figure 23: Exponential cooling schedules used for the Simulated Annealing back-analysis 

 

The results of the analysis are summarized in Table 9. The final solution and the 

best solution found are shown for each of the trials. The results show that there is 

generally a good agreement with the theoretically accurate solution of Table 8, especially 

for cases 1, 3, 5 and 6. In cases 2 and 4 the best ever solution is closer to the actual 

optimum. The best solution of case 4 is the closest to the global solution vector. It is 

apparent that in some cases the solution was influenced by the presence of nearby local 

optima and attempted to converge there.  
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Table 8: Initial trial properties and SA parameters used in back-analysis  

      Analysis #  
 
Parameter 

True  
optimum 1 2 3 4 5 6 

E (GPa) 6.0 5.2 7.0 5.7 5.3 5.3 6.5 

ν 0.25 0.23 0.27 0.24 0.26 0.26 0.24 

σy (MPa) 14 12 13 13.5 12.8 12.8 13.2 

σx (MPa) 6 5 7 6 5.3 5.3 5.7 

c (MPa) 0.8 0.5 0.9 1.2 1.3 1.3 1 

φ (°) 30 26 27 32 28 28 26 

To  2.5 2.5 2.5 2.5 2.5 2.5 

ΝΤ  95 95 110 110 110 110 

ΝΙ/NI[NT>70]  150/180 150/180 150/250 150/250 150/270 150/270 

CR  0.95 0.95 0.96 0.96 0.96 0.96 

E min–max 
ΔsE

 5.0–7.5 
300 

5.0–7.5 
300 

5.0–7.5 
300 

5.0–7.5 
300 

5.0–7.5 
300 

5.0–7.5 
300 

v min–max  0.22–0.3 
0.01 

0.22–0.33 
0.01 

0.22–0.33 0.23–0.33 
Δsν 0.01 0.01 

0.23–0.33 
0.01 

0.23–0.33 
0.01 

σy min–max 12–15 
0.6 

12–15 12–15 
0.5 

12–15 12–15 
0.6 

12–15  Δsy 0.6 0.6 0.6 
σx min–max 
Δsx

5–8 
0.5 

5–8 5–8 5–8 5–8 5–8  0.5 0.4 0.5 0.5 0.5 
c min–max 0.3–1.5 0.3–1.5 0.3–1.5 0.3–1.5 0.3–1.5 0.3–1.5  Δsc 0.15 0.15 0.15 0.15 0.15 0.15 

25–33 25–33 25–33 25–33 
1 

25–33 
1 

25–33 
1 

φ min–max  1 1 1 Δsφ
 

Table 9: Back-analysis results for deep tunnel problem using SA 

    Analysis  
# Param. 1 2 3 4 5 6 

 final best final best final best final best final best final best 

E (GPa) 5.8 5.5 6.2 5.7 6.0 5.9 5.2 6.0 5.9 7.1 5.7 5.2 

ν 0.25 0.25 0.26 0.25 0.26 0.25 0.24 0.25 0.26 0.25 0.25 0.25 

σy (MPa) 14.1 13.4 13.2 13.4 14.4 13.7 13.1 14.0 14.9 14.7 14.4 13.4 

σx (MPa) 6.3 5.8 5.5 5.7 6.1 5.8 5.6 6.0 6.3 6.2 6.4 6 

c (MPa) 0.81 0.79 0.75 0.77 0.76 0.77 0.97 0.75 0.73 0.75 0.83 0.86 

φ (°) 30.3 29.7 29.2 30.0 31 30.1 27.3 30.5 31.8 30.4 30.6 29.4 
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The result outcome can be better understood, in relation to the order of magnitude 

of the objective function value at the optimum. The exact solution essentially yields a 

very low value of the function having an order of magnitude 10-9. This level of precision 

may be difficult to be attained by the SA algorithm and FLAC by using large step sizes. 

The existence of multiple local optima can be expected since the objective function 

makes use of relative displacements and some useful information has been lost due to the 

delay in the monitoring instrument installation. That information, which is predominantly 

composed from elastic strains developed during the first stages of the tunnel relaxation, 

could have been useful for the back-analysis by shaping the numerical problem to a well 

defined one. The algorithm may find some local optima, which are not too far away from 

the theoretical solution. A small perturbation of the globally optimum parameter vector 

may lead the function to attain small but higher order values comparable to those of other 

local optima. This issue becomes apparent from the solution record. The SA method 

attempts to search the feasible solution domain and any local minima should be captured 

and identified in the history of stored successes.  

 From all analyses it was evidenced that the solution would eventually show 

preference to two or three local solution clusters amongst which one corresponds to the 

correct one. The most pronounced local minima areas attract the algorithmic process, and 

can be identified from the solution history. This is advantageous over the traditional 

algorithms that drive the analysis towards the closest optimal solution. The parameters 

most unstable to the back-analysis are shown to be the average elastic modulus E of the 

ground and the vertical insitu stress σy. Despite the nonlinear nature of the problem, the 

plastic parameters are always back-analyzed with fair success and precision, even though 

the constraints are fairly wide. This is a considerable advantage of the algorithm. During 

the analysis the method attempted to minimize the objective function even at low 

temperatures, where the algorithm evolves into a downhill optimization process. It is 

important to have a high number of perturbations at low temperatures, so that the solution 

is better tracked. 

 Figure 24 presents the expected plastic zone, the vertical displacements and lining 

axial loads at the globally optimum solution. For comparison, the results of the back-

analysis are shown in Figure 25-30. Figure 31 shows the characteristic uphill movements 
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of the Simulated Annealing during the optimization progress. The algorithm converges to 

the area of the global minimum towards the end.  
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Figure 24: Results from global optimum point . a) Plastic zone around the tunnel, b) 

Vertical displacements and lining axial load distribution (MN). 
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Figure 25: Back-analysis results from trial #1. 
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Figure 26: Back-analysis results from trial #2. 
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Figure 27: Back-analysis results from trial #3. 
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Figure 28: Back-analysis results from trial #4. 
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Figure 29: Back-analysis results from trial #5. 
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Figure 30: Back-analysis results from trial #6. 
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Figure 31: Plot of the objective function values during the execution of the back-analysis 

for trial #6. The frequent uphill movements are characteristic of the Simulated Annealing 

algorithm. 

 
In order to study the importance of the relative displacement measurements, as they were 

used in the previous examples, back-analysis was performed on several models assuming 

plastic ground conditions and no support. This is also a difficult task to perform, since 

there are no lining stress measurements. In these cases it was assumed however that 

measurements at the same nodal points (as the extensometer locations) commenced 

before the ground is excavated. Such a condition occurs frequently at shallow urban 

excavations.  The results which are summarized in Table 10 showed good behavior of the 

algorithm used.  Representative results of the later back-analysis are shown in Figure 32. 

The optimization progress is shown in the objective function plot of Figure 33. Mostly 

sure, the proposed methodology is promising and may be applied easily in commercially 

available software. The most significant features of the method are its heuristic nature 

and its ability to take uphill movements during the optimization. Problems regarding 

back-analysis of elasto-plastic parameters can be addressed in this way. The 

representative algorithm programmed in the FISH programming language is available by 

the author. 
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Table 10: Back-analysis results of unsupported circular tunnel in plastic ground using SA 

and FLAC. 

      Analysis #  
 
Parameter 

True  
optimum 1 

E (GPa) 6.0 5.5 

ν 0.25 0.25 

σy (MPa) 12 12.2 

σx (MPa) 6 5.9 

c (MPa) 1 0.97 

φ (°) 30 30.2 

To 2.5  

ΝΤ 90  

ΝΙ/NI[NT>70] 150/200  

CR 0.95  

E min–max 
ΔsE

4500-8000 
300  

v min–max 
Δsν

0.22-0.3 
0.01  

σy min–max 
Δsy

10-14 
0.5  

σx min–max 
Δsx

5-8 
0.4  

c min–max 
Δsc

0.3-1.5 
0.15  

φ min–max 
Δsφ

25-33 
1  
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Figure 32: Back-analysis results from unsupported tunnel model in plastic ground. 
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Figure 33: Evolution of objective function during the progress of Simulated Annealing in 

unsupported tunnel model. 
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7.5. Case of a shallow circular tunnel in plastic ground 

7.5.1. Problem description 

Based on the previous analyses it is evident that the Simulated Annealing is a very 

formidable algorithm for optimization of highly non-linear problems, and can cope 

adequately in cases where multiple local optima may exist. Clearly the performance of 

this algorithm is superior to previously examined techniques in establishing the global or 

a solution very close to the global one if such one exists. The ability to incorporate 

constraints and any number of parameters easily makes it ideal for geotechnical 

parameter identification problems. The importance of a powerful optimization technique 

was also stressed out, especially when relative displacements are used for monitoring the 

excavation and for the back-analysis as well. In this section, the same algorithm is 

employed to perform a back-analysis of a shallow excavation. This problem arises when 

tunneling in urban environments, where ground surface deformations should be kept to a 

minimum. Even though it is a more challenging problem from a construction stability 

standpoint, it may offer a wealth of useful monitoring data. In such cases monitoring 

most often starts before the excavation, via ground inclinometers, multipoint 

extensometers installed from the ground surface, or with surface surveying. Shallow 

excavations through soft soils often suffer from ground or otherwise volume loss. Thus 

the settlement observed at the surface is mainly due to two reasons. One is due to the 

elastic or inelastic strains that develop from the gradual tunnel excavation. The short 

overburden often does not allow the advantageous formation of an arching effect 

(existing in deep tunnels) thus these problems are more prone to instability. On the other 

hand when this instability is increased, tunnel closure may be counteracted by over-

excavating ground material leading to volume loss and further deformations on the 

surface. Other phenomena such as consolidation or even secondary deformation of soft 

clays can also exist. Timely monitoring is thus very important and should be done not 

only for parameter identification purposes but also for modeling technique and 

assumption verification.   

In this case the problem of a supported shallow tunnel in plastic ground is 

examined. The monitoring is assumed to commence at a pre-construction stage, thus the 
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majority of significant strains in the ground should be captured by the equipment. For this 

example only the tunnel relaxation before installation of the support is modeled.  

Figure 34  shows the constructed finite difference grid in FLAC.  Due to 

symmetry only half the geometry is modeled.  
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Figure 34: Shallow tunnel model in FLAC. 
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Figure 35: Deformation monitoring points  
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Figure 35 shows the locations of the selected deformation monitoring gridpoints. 

During back-analysis it was assumed that the overburden displacements are monitored 

relatively, using a multipoint extensometer. Therefore all displacements along AA’ were 

subtracted from the displacements of the surface point A. It was also assumed that 

horizontal movements were monitored close to the tunnel by an inclinometer BB’. 

7.5.2. Algorithm performance and results 

In this fundamental example, four parameters would be estimated by back-

analysis. The ground elastic modulus E, the Ko ratio, the cohesion c and friction angle φ 

of the ground.  The initial parameters used to create the monitoring data in FLAC are 

shown in Table 11 along with the results of the back-analysis. The stresses were 

initialized using a constant unit weight γ=23 kN/m3 but by altering the Ko ratio at each 

iteration.  

 

Table 11: Back-analysis results for shallow tunnel problem using SA.  

      Analysis #  
 
Parameter 

True  
optimum final best 

E (kPa) 30000 29450 29260 

Ko 0.5 0.48 0.5 

c (kPa) 8 3.7 5.96 

φ (°) 25 27.5 25.2 

To 2.5   

ΝΤ 80   

ΝΙ/NI[NT>70] 150/200   

CR 0.96   

E min–max 
ΔsE

20000-45000
1700   

Ko min–max 
ΔsKo

0.3-0.6 
0.02   

c min–max 
Δsc

2-20 
1.2   

φ  min–max 
Δsφ

20-35 
1   
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From the results it is obvious that the method is successful in establishing a 

solution very close to the theoretical global optimum. Figure 36 presents the progression 

of the parameter identification during the annealing progress. The non smooth behavior 

with the parameters perturbating constantly is characteristic of the algorithm used. The 

solution vector is attracted to the region of the global minimum towards the end of the 

cooling schedule as evidenced also by the objective function value from Figure 37. 
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Figure 36: Progression of parameter identification problem using the SA algorithm in 

FLAC. The theoretical global optimum is shown in dotted line, while the final solution is 

shown in circles. 
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Figure 37: Objective function value during back-analysis of shallow tunnel problem. 

7.6. Conclusions 

 In the present paper a new methodology of performing back-analysis for 

underground excavations, or other geotechnical problems is introduced. The method is 

based on the use of the Simulated Annealing algorithm, and shows good performance 

under ill defined non-linear problems. The algorithm attempts to simulate the annealing 

process of metals from the hot semi-solid phase to a complete cooled solid phase. This 

numerical process performed in analogy to the thermodynamic principles characterizing 

the cooling of steel. At high temperatures the natural system is allowed to perturb its 

formation in order to decrease its energy. Equivalently the numerical system is allowed to 

test different solutions, thus parameter combinations, so that it minimizes the objective 

function. The ability to take uphill movements during the heuristic process is 

advantageous for non-linear problems, having multiple minima. When sufficient cooling 

time and sufficient re-arrangements of the system are performed, then the method has a 

high probability of finding the global optimum solution, assuming that there is one. 

 The suggested method is very promising for wide range of problems, but its 

application is problem specific. The algorithm can be modified and altered to better suit 

certain problems. The most important parameters in the analysis are the initial 

temperature, the cooling schedule and the time allocated for possible re-arrangements at 

each temperature. A discussion of the choice of the importance and efficiency 

characteristics of cooling schedules is given by Hajek (1988). The search step size for 
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each parameter also influences the convergence end efficiency of the code. A possible 

way is to program a gradual reduction of the search step sizes of the involved parameters, 

along with the annealing schedule. It is recommended to calibrate the SA model 

parameters before applying the method efficiently in back-analysis. The method also 

offers practically no user intervention during the execution of the algorithm and 

constraints can be easily employed. It may also be practical to restart the SA process from 

the “best ever” solution found either at a pre-described number of temperature reductions 

or even at the end of the original annealing process. Generally the method should be 

calibrated in such a way that the algorithm retains its efficiency at narrow valleys of the 

objective function. The solution search should progressively become more restricted as 

the temperature decreases. 
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CHAPTER 8. Back-analysis of tunnel response using the Differential Evolution method  

8.1. General 

The analysis presented so far has been aimed to reveal some of the problems of 

parameter identification and possible ways to overcome these. It has been observed that 

the performance of local search methodologies is not efficient for geotechnical problems, 

where the objective function possesses multiple local optima and when the problems are 

ill-defined due to lack of appropriate type and quantity of monitoring data. A novel way 

has been presented, where back-analysis is performed using the Simulated Annealing 

algorithm. The application of the standard algorithm by Kirkpatrick et al. (1983) has 

shown that it has a good potential for use in non-linear geotechnical problems. The 

downside of the method is that it generally requires a slow annealing schedule with ample 

“time” for perturbations at each temperature so that the probability of finding the global 

optimum increases. This may be computationally inefficient if a faster solution is 

required. On the other hand the method allows for complete tracking of the solution 

progress and its use of memoryless and heuristic nature offers the potential identification 

of various local optima with strong regions of attraction of the solution. Further 

advancements in the implementation of the algorithm in addition to the high performance 

of modern computing machines, allow for its use in continuous variable optimization 

problems. 

An alternative optimization scheme is the use of another method that also 

attempts to simulate natural processes. The use of Genetic Algorithms (GA) is a very 

attractive candidate in a parameter identification scheme. Simpson and Priest (1993) 

provide a discussion on the use of GAs in geotechnical applications. Feng et al. (2000), 

and Feng and An (2004) have employed GAs in back-analysis of geotechnical problems. 

Wang et al. (2004)  have also used GAs in identification of dynamic rock properties. 

Fundamentally this method and its derivatives are the only that can perform global 

optimization and offer similar advantages if not more, than the Simulated Annealing 

method. The problems that the Genetic Algorithms address are similar to the usual 

workload of Simulated Annealing. According to Rao (1996) often mixed continuous and 

discrete variables may be searched for during optimization in a discontinuous or 
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nonconvex search space. The Genetic Algorithms are well adapted to address such 

problems. The development of the Genetic Algorithms is attributed to Holland (1975) 

and the main core of the method rests on the Darwinian theory of the survival of the 

fittest. The majority of the Genetic Algorithms perform the optimization process in the 

binary system using string lengths representing the design variables and subsequently the 

whole design vector. The main elements of a Genetic Algorithm are as follows (Rao, 

1996): 

 

• The procedure starts from a population of trial vectors, instead of a single 

point. For an n-variable problem, the usual population size is 2n to 4n. For 

highly non-linear objective function higher sizes may be required. This is 

very similar in principle to the Complex method where the Complex shape 

is composed of k x n vertices (k≥2). 

• There is no gradient or pattern search direction exploitation. 

• Each variable resembles to a chromosome in genetics. 

• The objective function value is the equivalent of fitness in genetics. In 

minimization problems a vector corresponding to a very low function 

value is a strong candidate and may survive in the future. 

• The process is based on repeated generations of new population vectors. 

The trial vectors of these populations are the result of randomized parental 

selection, crossover and mutation processes. They are essentially the 

offspring of previous trial vectors.    

8.2. Description of the Differential Evolution Algorithm  

As stated previously most of the Genetic Algorithms handle the optimization 

process using the binary system. This may create programming difficulties and 

inefficiencies in problems of continuous variable optimization where floating point 

numbers are used. The Evolution Strategies deal exactly with this issue by bypassing the 

requirement of binary system usage and also makes the algorithm more user-friendly. A 

type of Evolutionary Strategy called the Differential Evolution (DE) has been proposed 

by Storn and Price (1997), and Price and Storn (1997). The DE, like Simulated 
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Annealing, is a stochastic-based direct method. As a heuristic method it is based on the 

experimental behavior of a function. With the modern computational power and the 

particularities of numerical-based back-analyses it is more prudent to test for the fitness 

of a trial independently from pattern directions or gradients whose existence is 

questionable. The application of the DE in locating earthquake hypocenter has been 

examined by Růžek and Kvasnička (2001). Insight on the use and implementation of DE 

algorithms is also given by Reed and Yamaguchi (2004). The use of the DE in estimation 

of rock fracture sizes is described by Decker and Mauldon (2006). 

 The Differential Evolution algorithm, uses two arrays to store a population of 

, D-dimensional real parameter vectors (D=number of parameters=n). The two arrays 

are called the primary, which contains the present vector population and the secondary 

array which stores sequentially the products for the next generation. The algorithm starts 

by filling the primary array with NP vectors with parameters randomly generated. The 

initial random generation should satisfy the constraints on the parameters. The primary 

array is also called as Trial Vector, since it contains NP vectors that will later be tried for 

fitness. Each of those individual randomly generated vectors X

NP

i is considered sequentially 

for genetic operations. For each of the chosen vectors, three other vectors XA, XB, XC are 

randomly chosen from the remaining vectors of the primary array.  

A mutation can then be performed by using the following relation: 

 )         (57)  (1 CBA
m F XXXX −+=

m
1X  is the new mutant vector and F is a scaling factor in the range 2.10 ≤< F . 

According to Price and Storn (1997)the optimum value of F is in the range 0.4-1.0. A 

small modification of the main algorithm is applied here. At this stage the mutant vector 

 is checked for constraint violation. Even though the initially generated Xm
1X A, XB, XC 

vectors are feasible, their linear combination may be violating the constraints. If any 

parameter constraint is violated, then the sampled vectors XA, XB, XC are discarded and a 

new sampling is performed until a feasible vector  is found. This intervention is 

seamlessly integrated in the algorithm and also keeps the true heuristic process of the 

problem intact. 

m
1X
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At this stage the crossover takes place. A random integer number randint(i) in the 

range [1,n] is generated. For each parameter j=1,..,n a random number randnum(j)  is 

generated in the space [0,1]. Then a new vector is created from the original Xi parent and 

the mutant vector using the crossover criterion: 

⎪⎩

⎪
⎨
⎧

≠>
=≤

=
jirandintandXRrandnumifx

jirandintorXRrandnumifx
x

ji

ji
m

ji )(
)(

'
,

,
,      (58) 

where XR is a crossover rate in the range [0,1].  
 

The crossover scheme essentially means that if randnum>XR the new ith trial 

vector will receive the j parameter from the parent vector, otherwise the parameter will be 

obtained from the mutant vector . In this way if XR=1, then every trial vector will be 

obtained from the mutant vector, or if XR=0, then all except for one parameter will be 

called from the parent trial vector.  

m
1X

The new vector   is tested against Xji ,'X i for fitness. Thus two function 

evaluations occur at this stage. For minimization problems, the vector corresponding to 

the lower value (fittest candidate) is entered in the secondary array. The same procedure 

is followed until all vectors of the original primary array are processed and an equal size 

secondary array has been formed. At this stage the secondary array values are transferred 

and update the primary array while the secondary array is purged. This constitutes the 

end of one generation. Obviously many generations are required for convergence. The 

above steps are repeated until a maximum number of generations is reached. When the 

algorithm converges to the global optimum, then all vectors of the primary array become 

equal. This is exactly the same again, as the Complex method where the complex vertices 

collapse to its centroid if an optimum has been found. The flowchart for one generation 

of the method is shown in Figure 38.  
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Figure 38: Flowchart for Differential Evolution algorithm 
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8.3. Case of a deep circular tunnel in plastic ground 

The performance of the algorithm was investigated during back-analysis of the 

deep seated tunnel problem. The exact same model and monitoring data with the model 

described in section 7.4.1, were used. The Differential Evolution algorithm was 

programmed in the FISH language of FLAC. In this case n=6 and NP=60. The mutation 

scaling factor F was taken as F=0.5 and the crossover rate XR=0.7. A total of 70 

generations was executed during the back-analysis. The solution shows convergence to 

the exact theoretical global optimum solution of the problem: 

Table 12: Global (true) optimal solution for deep tunnel problem 

      Analysis #  
 
Parameter 

True  
optimum 

E (GPa) 6.0 

ν 0.25 

σy (MPa) 14 

σx (MPa) 6.0 

c (MPa) 0.8 

φ (°) 30 

 

There is some scatter mainly in the elastic modulus but this is probably due to the 

execution of 70 generations. At a higher number all parameters should converge to a 

more stable solution, but even at 70 generations the results reveal very good behavior of 

the code. Given the highly non-linear nature of the problem with multiple local minima, 

the performance is considered to be outstanding. The primary array results at the end of 

70 generations are shown in Table 13. The same analysis was repeated to test the 

behavior of the code. Five more analyses were executed. In all trials the primary array 

converged the theoretically true global optimum.  The results of three trials will be 

included herein. From these analyses it is apparent that the specific algorithm is very 

powerful and may address the difficult problem of having multiple local minima in the 

objective function. In order to further test the algorithm, the problem of the shallow 
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tunnel excavation described in section 7.5 was used. The algorithm can by obtained by 

contacting the author. 

Table 13: Results from back-analysis of the deep seated tunnel problem using the 

Differential Evolution. The primary array of trial 1 at 70 generations is shown 

Individual E (MPa) ν σy (MPa) σx (MPa) c (MPa) φ (ο) 
1 5.66E+03 2.45E-01 -1.39E+01 -6.10E+00 8.42E-01 2.96E+01 
2 5.99E+03 2.49E-01 -1.42E+01 -6.09E+00 8.27E-01 3.00E+01 
3 5.92E+03 2.46E-01 -1.37E+01 -5.88E+00 8.35E-01 2.92E+01 
4 6.03E+03 2.44E-01 -1.39E+01 -5.99E+00 8.27E-01 2.96E+01 
5 6.32E+03 2.49E-01 -1.44E+01 -6.15E+00 7.88E-01 3.03E+01 
6 6.11E+03 2.50E-01 -1.43E+01 -6.06E+00 8.04E-01 3.02E+01 
7 6.04E+03 2.50E-01 -1.40E+01 -6.00E+00 7.91E-01 3.00E+01 
8 6.63E+03 2.49E-01 -1.44E+01 -6.07E+00 7.42E-01 3.06E+01 
9 6.43E+03 2.49E-01 -1.49E+01 -6.39E+00 7.97E-01 3.07E+01 

10 6.10E+03 2.47E-01 -1.39E+01 -6.00E+00 7.99E-01 2.98E+01 
11 5.99E+03 2.47E-01 -1.39E+01 -5.94E+00 8.00E-01 2.99E+01 
12 5.16E+03 2.44E-01 -1.27E+01 -5.56E+00 8.59E-01 2.83E+01 
13 5.68E+03 2.53E-01 -1.44E+01 -6.25E+00 8.42E-01 3.05E+01 
14 5.70E+03 2.45E-01 -1.39E+01 -6.12E+00 8.62E-01 2.96E+01 
15 5.74E+03 2.51E-01 -1.44E+01 -6.26E+00 8.31E-01 3.06E+01 
16 5.93E+03 2.44E-01 -1.39E+01 -5.99E+00 8.28E-01 2.96E+01 
17 5.86E+03 2.49E-01 -1.38E+01 -5.95E+00 8.16E-01 2.98E+01 
18 5.78E+03 2.51E-01 -1.42E+01 -6.13E+00 8.23E-01 3.02E+01 
19 5.45E+03 2.45E-01 -1.39E+01 -6.23E+00 8.67E-01 2.98E+01 
20 5.34E+03 2.51E-01 -1.37E+01 -6.02E+00 8.62E-01 2.96E+01 
21 6.16E+03 2.53E-01 -1.41E+01 -5.97E+00 8.10E-01 2.98E+01 
22 6.13E+03 2.48E-01 -1.42E+01 -6.10E+00 8.00E-01 3.02E+01 
23 6.13E+03 2.50E-01 -1.43E+01 -6.11E+00 7.94E-01 3.04E+01 
24 6.39E+03 2.40E-01 -1.41E+01 -6.10E+00 8.01E-01 2.99E+01 
25 5.68E+03 2.49E-01 -1.35E+01 -5.86E+00 7.78E-01 2.99E+01 
26 6.26E+03 2.46E-01 -1.48E+01 -6.38E+00 8.53E-01 3.02E+01 
27 5.39E+03 2.52E-01 -1.34E+01 -5.79E+00 8.45E-01 2.92E+01 
28 6.02E+03 2.46E-01 -1.41E+01 -6.04E+00 8.28E-01 2.98E+01 
29 6.43E+03 2.51E-01 -1.46E+01 -6.25E+00 7.44E-01 3.10E+01 
30 6.07E+03 2.51E-01 -1.43E+01 -6.12E+00 8.08E-01 3.03E+01 
31 5.49E+03 2.46E-01 -1.32E+01 -5.71E+00 8.47E-01 2.88E+01 
32 5.55E+03 2.49E-01 -1.41E+01 -6.18E+00 8.68E-01 2.98E+01 
33 6.16E+03 2.44E-01 -1.42E+01 -6.12E+00 8.47E-01 2.96E+01 
34 6.16E+03 2.44E-01 -1.37E+01 -5.89E+00 8.17E-01 2.93E+01 
35 5.37E+03 2.48E-01 -1.39E+01 -6.19E+00 8.65E-01 2.98E+01 
36 6.14E+03 2.42E-01 -1.40E+01 -6.03E+00 8.35E-01 2.95E+01 
37 5.78E+03 2.50E-01 -1.36E+01 -5.88E+00 8.15E-01 2.96E+01 
38 5.81E+03 2.49E-01 -1.44E+01 -6.30E+00 8.29E-01 3.05E+01 
39 5.49E+03 2.44E-01 -1.32E+01 -5.68E+00 8.17E-01 2.91E+01 
40 6.23E+03 2.50E-01 -1.41E+01 -6.05E+00 7.55E-01 3.05E+01 
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41 6.24E+03 2.48E-01 -1.47E+01 -6.37E+00 8.24E-01 3.05E+01 
42 6.14E+03 2.50E-01 -1.36E+01 -5.79E+00 7.89E-01 2.94E+01 
43 6.78E+03 2.55E-01 -1.48E+01 -6.18E+00 7.18E-01 3.13E+01 
44 5.74E+03 2.56E-01 -1.43E+01 -6.12E+00 8.14E-01 3.05E+01 
45 6.32E+03 2.47E-01 -1.46E+01 -6.29E+00 8.14E-01 3.02E+01 
46 6.29E+03 2.53E-01 -1.41E+01 -5.98E+00 7.33E-01 3.06E+01 
47 6.51E+03 2.45E-01 -1.36E+01 -5.78E+00 8.33E-01 2.86E+01 
48 6.36E+03 2.43E-01 -1.42E+01 -6.07E+00 7.84E-01 3.00E+01 
49 6.08E+03 2.44E-01 -1.44E+01 -6.23E+00 8.15E-01 3.01E+01 
50 6.07E+03 2.53E-01 -1.40E+01 -5.95E+00 8.24E-01 2.98E+01 
51 6.34E+03 2.50E-01 -1.43E+01 -6.10E+00 7.47E-01 3.07E+01 
52 6.23E+03 2.45E-01 -1.39E+01 -5.96E+00 7.73E-01 3.00E+01 
53 5.42E+03 2.47E-01 -1.34E+01 -5.91E+00 8.14E-01 2.96E+01 
54 5.94E+03 2.44E-01 -1.38E+01 -5.96E+00 8.18E-01 2.96E+01 
55 5.10E+03 2.48E-01 -1.30E+01 -5.62E+00 8.71E-01 2.86E+01 
56 6.25E+03 2.55E-01 -1.47E+01 -6.22E+00 8.08E-01 3.07E+01 
57 5.23E+03 2.46E-01 -1.33E+01 -5.90E+00 8.40E-01 2.94E+01 
58 5.67E+03 2.51E-01 -1.35E+01 -5.82E+00 8.16E-01 2.96E+01 
59 5.57E+03 2.43E-01 -1.38E+01 -6.07E+00 8.46E-01 2.95E+01 
60 5.81E+03 2.51E-01 -1.40E+01 -6.03E+00 8.08E-01 3.00E+01 
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Table 14: Results from back-analysis of the deep seated tunnel problem using the 

Differential Evolution. The primary array of trial 2 at 70 generations is shown 

Individual E (MPa) ν σy (MPa) σx (MPa) c (MPa) φ (ο) 
1 6.43E+03 2.48E-01 -1.41E+01 -6.03E+00 7.49E-01 3.04E+01 
2 6.03E+03 2.46E-01 -1.40E+01 -6.04E+00 8.00E-01 2.99E+01 
3 5.33E+03 2.53E-01 -1.35E+01 -5.83E+00 8.29E-01 2.96E+01 
4 6.40E+03 2.46E-01 -1.49E+01 -6.42E+00 8.00E-01 3.08E+01 
5 6.60E+03 2.42E-01 -1.43E+01 -6.13E+00 7.71E-01 3.02E+01 
6 5.91E+03 2.49E-01 -1.35E+01 -5.79E+00 7.72E-01 2.97E+01 
7 5.54E+03 2.53E-01 -1.34E+01 -5.73E+00 8.08E-01 2.95E+01 
8 5.72E+03 2.51E-01 -1.39E+01 -5.98E+00 8.17E-01 2.99E+01 
9 5.81E+03 2.46E-01 -1.37E+01 -5.94E+00 8.07E-01 2.97E+01 

10 6.00E+03 2.45E-01 -1.39E+01 -6.00E+00 7.94E-01 2.98E+01 
11 6.88E+03 2.42E-01 -1.48E+01 -6.29E+00 7.79E-01 3.04E+01 
12 5.66E+03 2.51E-01 -1.35E+01 -5.84E+00 7.85E-01 2.98E+01 
13 6.54E+03 2.48E-01 -1.46E+01 -6.25E+00 7.84E-01 3.05E+01 
14 6.09E+03 2.47E-01 -1.40E+01 -6.03E+00 7.74E-01 3.03E+01 
15 6.39E+03 2.55E-01 -1.44E+01 -6.04E+00 7.43E-01 3.08E+01 
16 5.81E+03 2.53E-01 -1.41E+01 -6.03E+00 8.01E-01 3.03E+01 
17 5.79E+03 2.50E-01 -1.38E+01 -5.93E+00 8.00E-01 2.99E+01 
18 5.14E+03 2.55E-01 -1.28E+01 -5.50E+00 8.26E-01 2.89E+01 
19 6.14E+03 2.48E-01 -1.43E+01 -6.15E+00 8.02E-01 3.02E+01 
20 6.11E+03 2.51E-01 -1.43E+01 -6.12E+00 7.97E-01 3.03E+01 
21 6.37E+03 2.45E-01 -1.44E+01 -6.19E+00 7.98E-01 3.02E+01 
22 6.23E+03 2.50E-01 -1.45E+01 -6.20E+00 7.95E-01 3.05E+01 
23 6.36E+03 2.50E-01 -1.45E+01 -6.20E+00 7.79E-01 3.06E+01 
24 6.34E+03 2.43E-01 -1.45E+01 -6.23E+00 7.96E-01 3.03E+01 
25 5.98E+03 2.47E-01 -1.37E+01 -5.88E+00 7.88E-01 2.97E+01 
26 6.30E+03 2.44E-01 -1.46E+01 -6.30E+00 8.16E-01 3.03E+01 
27 6.29E+03 2.51E-01 -1.44E+01 -6.10E+00 7.62E-01 3.06E+01 
28 6.71E+03 2.44E-01 -1.44E+01 -6.12E+00 7.82E-01 3.00E+01 
29 5.98E+03 2.47E-01 -1.39E+01 -5.96E+00 7.87E-01 2.99E+01 
30 6.03E+03 2.49E-01 -1.43E+01 -6.19E+00 8.20E-01 3.02E+01 
31 5.81E+03 2.50E-01 -1.39E+01 -6.00E+00 8.17E-01 2.99E+01 
32 6.02E+03 2.54E-01 -1.42E+01 -6.04E+00 7.93E-01 3.02E+01 
33 6.11E+03 2.52E-01 -1.43E+01 -6.09E+00 7.80E-01 3.05E+01 
34 6.44E+03 2.49E-01 -1.44E+01 -6.10E+00 7.41E-01 3.07E+01 
35 6.15E+03 2.46E-01 -1.38E+01 -5.95E+00 7.64E-01 3.00E+01 
36 6.07E+03 2.47E-01 -1.44E+01 -6.22E+00 8.20E-01 3.02E+01 
37 5.71E+03 2.52E-01 -1.37E+01 -5.89E+00 8.02E-01 2.99E+01 
38 6.40E+03 2.48E-01 -1.44E+01 -6.11E+00 7.89E-01 3.02E+01 
39 6.19E+03 2.53E-01 -1.43E+01 -6.04E+00 7.80E-01 3.04E+01 
40 6.56E+03 2.45E-01 -1.46E+01 -6.25E+00 7.64E-01 3.06E+01 
41 5.85E+03 2.53E-01 -1.41E+01 -6.04E+00 7.86E-01 3.04E+01 
42 5.99E+03 2.46E-01 -1.42E+01 -6.17E+00 8.24E-01 3.00E+01 
43 5.99E+03 2.50E-01 -1.41E+01 -6.03E+00 8.27E-01 2.98E+01 
44 6.28E+03 2.53E-01 -1.40E+01 -5.96E+00 7.35E-01 3.05E+01 

 108



45 5.97E+03 2.48E-01 -1.43E+01 -6.18E+00 8.23E-01 3.02E+01 
46 6.13E+03 2.50E-01 -1.47E+01 -6.33E+00 8.00E-01 3.07E+01 
47 6.15E+03 2.48E-01 -1.46E+01 -6.29E+00 8.21E-01 3.04E+01 
48 5.83E+03 2.47E-01 -1.42E+01 -6.16E+00 8.31E-01 3.00E+01 
49 6.61E+03 2.51E-01 -1.45E+01 -6.15E+00 7.59E-01 3.06E+01 
50 6.10E+03 2.46E-01 -1.44E+01 -6.22E+00 8.11E-01 3.02E+01 
51 5.56E+03 2.51E-01 -1.33E+01 -5.72E+00 8.17E-01 2.94E+01 
52 5.62E+03 2.55E-01 -1.37E+01 -5.86E+00 7.93E-01 3.00E+01 
53 6.38E+03 2.45E-01 -1.44E+01 -6.17E+00 7.81E-01 3.03E+01 
54 5.58E+03 2.53E-01 -1.38E+01 -5.91E+00 8.08E-01 2.99E+01 
55 6.10E+03 2.46E-01 -1.40E+01 -6.04E+00 8.13E-01 2.97E+01 
56 6.56E+03 2.46E-01 -1.46E+01 -6.24E+00 7.80E-01 3.05E+01 
57 6.08E+03 2.52E-01 -1.38E+01 -5.87E+00 7.51E-01 3.02E+01 
58 6.50E+03 2.51E-01 -1.43E+01 -6.05E+00 7.30E-01 3.08E+01 
59 5.59E+03 2.49E-01 -1.35E+01 -5.85E+00 8.13E-01 2.96E+01 
60 5.98E+03 2.49E-01 -1.41E+01 -6.03E+00 8.05E-01 3.00E+01 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 109



Table 15: Results from back-analysis of the deep seated tunnel problem using the 

Differential Evolution. The primary array of trial 3 at 70 generations is shown. 

Individual E (MPa) ν σy (MPa) σx (MPa) c (MPa) φ (ο) 
1 5.73E+03 2.54E-01 -1.37E+01 -5.85E+00 7.99E-01 2.99E+01 
2 5.83E+03 2.55E-01 -1.36E+01 -5.76E+00 7.84E-01 2.99E+01 
3 6.87E+03 2.49E-01 -1.46E+01 -6.17E+00 7.40E-01 3.08E+01 
4 6.21E+03 2.56E-01 -1.41E+01 -5.92E+00 7.69E-01 3.03E+01 
5 6.05E+03 2.50E-01 -1.40E+01 -5.98E+00 8.14E-01 2.98E+01 
6 5.58E+03 2.55E-01 -1.31E+01 -5.58E+00 8.09E-01 2.90E+01 
7 6.59E+03 2.53E-01 -1.47E+01 -6.23E+00 7.03E-01 3.14E+01 
8 6.44E+03 2.51E-01 -1.48E+01 -6.28E+00 7.96E-01 3.06E+01 
9 6.28E+03 2.49E-01 -1.44E+01 -6.16E+00 7.99E-01 3.03E+01 

10 5.94E+03 2.52E-01 -1.41E+01 -6.02E+00 8.08E-01 3.00E+01 
11 5.90E+03 2.53E-01 -1.39E+01 -5.91E+00 7.86E-01 3.01E+01 
12 5.39E+03 2.46E-01 -1.36E+01 -5.95E+00 8.76E-01 2.92E+01 
13 6.02E+03 2.52E-01 -1.41E+01 -6.05E+00 8.03E-01 3.01E+01 
14 6.46E+03 2.54E-01 -1.45E+01 -6.12E+00 7.51E-01 3.08E+01 
15 5.94E+03 2.53E-01 -1.41E+01 -6.03E+00 8.16E-01 3.01E+01 
16 6.76E+03 2.37E-01 -1.47E+01 -6.32E+00 8.06E-01 3.01E+01 
17 5.67E+03 2.49E-01 -1.39E+01 -6.04E+00 8.17E-01 2.99E+01 
18 6.12E+03 2.51E-01 -1.40E+01 -5.99E+00 7.57E-01 3.03E+01 
19 6.37E+03 2.46E-01 -1.44E+01 -6.16E+00 7.88E-01 3.03E+01 
20 5.64E+03 2.50E-01 -1.35E+01 -5.86E+00 7.89E-01 2.99E+01 
21 6.31E+03 2.51E-01 -1.43E+01 -6.08E+00 7.79E-01 3.04E+01 
22 6.01E+03 2.53E-01 -1.43E+01 -6.14E+00 7.94E-01 3.04E+01 
23 6.19E+03 2.48E-01 -1.37E+01 -5.86E+00 7.77E-01 2.99E+01 
24 5.25E+03 2.52E-01 -1.31E+01 -5.66E+00 8.57E-01 2.88E+01 
25 5.67E+03 2.52E-01 -1.36E+01 -5.81E+00 8.35E-01 2.94E+01 
26 5.29E+03 2.50E-01 -1.36E+01 -5.90E+00 8.49E-01 2.95E+01 
27 6.19E+03 2.46E-01 -1.36E+01 -5.78E+00 7.74E-01 2.96E+01 
28 6.35E+03 2.51E-01 -1.49E+01 -6.40E+00 7.94E-01 3.09E+01 
29 5.80E+03 2.45E-01 -1.36E+01 -5.91E+00 8.38E-01 2.93E+01 
30 5.85E+03 2.51E-01 -1.38E+01 -5.92E+00 7.73E-01 3.01E+01 
31 5.53E+03 2.45E-01 -1.31E+01 -5.65E+00 8.25E-01 2.88E+01 
32 6.17E+03 2.48E-01 -1.45E+01 -6.22E+00 8.21E-01 3.02E+01 
33 5.60E+03 2.52E-01 -1.35E+01 -5.80E+00 7.83E-01 2.99E+01 
34 6.02E+03 2.52E-01 -1.39E+01 -5.94E+00 8.17E-01 2.97E+01 
35 6.08E+03 2.50E-01 -1.41E+01 -6.03E+00 7.72E-01 3.02E+01 
36 6.27E+03 2.55E-01 -1.44E+01 -6.11E+00 7.56E-01 3.07E+01 
37 5.32E+03 2.52E-01 -1.30E+01 -5.59E+00 8.34E-01 2.90E+01 
38 5.16E+03 2.51E-01 -1.32E+01 -5.73E+00 8.46E-01 2.92E+01 
39 7.20E+03 2.37E-01 -1.50E+01 -6.41E+00 7.63E-01 3.06E+01 
40 6.31E+03 2.51E-01 -1.45E+01 -6.18E+00 7.49E-01 3.09E+01 
41 6.11E+03 2.48E-01 -1.45E+01 -6.27E+00 8.20E-01 3.03E+01 
42 5.64E+03 2.41E-01 -1.36E+01 -5.95E+00 8.61E-01 2.91E+01 
43 5.60E+03 2.45E-01 -1.37E+01 -5.96E+00 8.49E-01 2.93E+01 
44 5.39E+03 2.47E-01 -1.30E+01 -5.66E+00 7.93E-01 2.93E+01 
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45 6.36E+03 2.53E-01 -1.45E+01 -6.13E+00 7.84E-01 3.04E+01 
46 5.79E+03 2.46E-01 -1.37E+01 -5.94E+00 8.33E-01 2.95E+01 
47 5.57E+03 2.43E-01 -1.35E+01 -5.90E+00 8.45E-01 2.92E+01 
48 5.35E+03 2.49E-01 -1.32E+01 -5.72E+00 8.54E-01 2.91E+01 
49 5.83E+03 2.44E-01 -1.38E+01 -5.99E+00 8.41E-01 2.94E+01 
50 5.43E+03 2.46E-01 -1.30E+01 -5.61E+00 8.14E-01 2.89E+01 
51 5.71E+03 2.56E-01 -1.29E+01 -5.46E+00 7.97E-01 2.89E+01 
52 6.10E+03 2.51E-01 -1.36E+01 -5.79E+00 7.75E-01 2.96E+01 
53 6.37E+03 2.49E-01 -1.46E+01 -6.21E+00 7.82E-01 3.06E+01 
54 5.06E+03 2.50E-01 -1.34E+01 -5.83E+00 8.88E-01 2.90E+01 
55 6.25E+03 2.47E-01 -1.42E+01 -6.09E+00 7.97E-01 3.01E+01 
56 5.92E+03 2.54E-01 -1.35E+01 -5.74E+00 7.85E-01 2.96E+01 
57 6.81E+03 2.50E-01 -1.47E+01 -6.19E+00 7.37E-01 3.09E+01 
58 5.50E+03 2.49E-01 -1.37E+01 -5.99E+00 8.43E-01 2.96E+01 
59 6.29E+03 2.50E-01 -1.49E+01 -6.40E+00 8.08E-01 3.07E+01 
60 5.95E+03 2.49E-01 -1.41E+01 -6.07E+00 7.82E-01 3.03E+01 

 
 

8.4. Case of a shallow circular tunnel in plastic ground 

The performance of the Differential Evolution algorithm was investigated by 

performing back-analysis of the shallow tunnel problem described in section 7.5. Again 

all conditions are kept equal in order to compare the solutions. In this case the objective 

function to be minimized is better defined and with fewer local optima since 

measurements commence prior to the excavation. This is reflected by the excellent 

converged solution shown in the results of Table 16. All the individuals of the primary 

array have practically converged to the same optimal vector which is the global minimum 

solution. This performance along with the ability to perform the back-analysis using a 

widely available commercial program makes the method ideal for back-analysis 

purposes.  

 

 

 

 

 

 

 

 

 111



Table 16: Back-analysis results of shallow tunnel problem using the Differential 

Evolution algorithm. Results at 70 generations. 

Individual E (kPa) Ko c (MPa) φ (ο) 
1 2.96E+04 5.01E-01 7.41E+00 2.49E+01
2 3.02E+04 5.01E-01 7.74E+00 2.47E+01
3 3.00E+04 5.02E-01 7.48E+00 2.48E+01
4 3.05E+04 4.98E-01 9.24E+00 2.46E+01
5 2.98E+04 5.01E-01 7.73E+00 2.47E+01
6 3.00E+04 4.98E-01 8.02E+00 2.49E+01
7 3.04E+04 5.01E-01 8.35E+00 2.46E+01
8 2.95E+04 4.97E-01 8.11E+00 2.50E+01
9 2.97E+04 5.00E-01 7.30E+00 2.49E+01

10 3.03E+04 5.00E-01 8.07E+00 2.47E+01
11 3.03E+04 5.01E-01 7.89E+00 2.47E+01
12 3.04E+04 5.02E-01 7.76E+00 2.47E+01
13 3.01E+04 5.00E-01 8.06E+00 2.47E+01
14 3.02E+04 4.99E-01 8.42E+00 2.47E+01
15 3.03E+04 4.98E-01 8.71E+00 2.47E+01
16 3.06E+04 5.03E-01 8.24E+00 2.45E+01
17 2.99E+04 4.98E-01 7.72E+00 2.50E+01
18 3.01E+04 5.02E-01 7.68E+00 2.47E+01
19 2.97E+04 4.97E-01 8.01E+00 2.50E+01
20 2.97E+04 5.00E-01 7.39E+00 2.49E+01
21 3.02E+04 5.02E-01 7.32E+00 2.48E+01
22 3.05E+04 5.00E-01 8.63E+00 2.46E+01
23 2.98E+04 4.99E-01 7.53E+00 2.49E+01
24 3.04E+04 5.04E-01 8.10E+00 2.44E+01
25 2.95E+04 5.00E-01 7.15E+00 2.50E+01
26 3.08E+04 5.03E-01 8.28E+00 2.44E+01
27 3.07E+04 5.00E-01 9.24E+00 2.44E+01
28 3.07E+04 4.96E-01 9.90E+00 2.45E+01
29 3.02E+04 4.99E-01 7.68E+00 2.49E+01
30 3.01E+04 5.03E-01 6.90E+00 2.48E+01
31 3.03E+04 5.00E-01 8.26E+00 2.47E+01
32 3.00E+04 5.00E-01 7.66E+00 2.49E+01
33 3.02E+04 5.00E-01 7.95E+00 2.48E+01
34 3.00E+04 5.01E-01 7.74E+00 2.48E+01
35 3.03E+04 5.00E-01 8.08E+00 2.47E+01
36 3.02E+04 5.00E-01 8.10E+00 2.47E+01
37 3.02E+04 5.02E-01 7.65E+00 2.46E+01
38 3.00E+04 5.00E-01 7.74E+00 2.48E+01
39 3.06E+04 5.00E-01 8.57E+00 2.46E+01
40 3.01E+04 5.01E-01 7.75E+00 2.48E+01
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8.5. Conclusions  

In this chapter the novel use of a Genetic Algorithm type is introduced for back- 

analysis of tunneling induced displacements. The Differential Evolution algorithm of 

Storn and Price (1997) is a heuristic type of global optimization algorithm which shows 

very good convergence properties and efficiency. It is perhaps the only algorithm 

comparable to the heuristic features of the Simulated Annealing method of global 

optimization. It has been seen that when plane strain approximations are used in 

conjunction with relative displacement monitoring, then the objective function to be 

minimized will by characterized by multiple local minima and therefore the performance 

of a local search algorithm is questionable. The DE algorithm is more efficient than the 

standard form of Simulated Annealing and requires less computational effort. The 

implementation of the method in FLAC via the FISH programming language is also 

appealing. It was also seen that the method shares some of the population-driven logic of 

the Simplex and Complex methods. In fact the population used by the DE algorithm is 

directly comparable to the Complex vertices.  

 The method has shown, via two different but frequently encountered tunneling 

problems that it is able to respond well to the challenge. The global search strategy is also 

very appealing. However due to the population-based nature, the method becomes almost 

deterministic from a global optimization standpoint. If reasonable crossover and mutation 

parameters are used it has a high chance of finding the global optimum, provided that 

there is one. This may cause some implications when there is noise in the monitoring data 

due to the uncertainties and reliability issues with their performance, installation etc. as 

discussed in chapter 3. This error theoretically affects the shape of the objective function. 

Considering the precision tolerance of FLAC or any other finite element or finite 

difference program, this could mean that if some noise is introduced then the global 

minimum could also change position. It also possible, that depending on this error, the 

global minimum could be balancing between a few but strong local minima which could 

be quite apart in some cases. In that case the Simulated Annealing algorithm posses a 

significant advantage. The ability to scan these minima with strong regions of attraction 

and inform the analyst of their existence, based on the scanning history.  
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CHAPTER 9. Case study of the Heshang highway tunnel in China 

9.1. General geology and preliminary data 

 
The Heshang highway tunnel is located in South East China at the Fujian 

province, about 5km southeast of the Fuzhou city. It will serve as part of the 

transportation system between the local airport and Fuzhou city. It is a twin tunnel project 

with and it is approximately 450 m long. The tunnel passes through highly weathered old 

volcanic material. The tunnel construction was completed on August 30, 2006. Despite 

the short length, during construction of the twin tunnel, instrumentation was used to 

assess the performance of the excavation. Due to the poor quality of the surrounding rock 

mass, and also due to the lateral proximity of the two tunnels, numerous ground 

stabilization techniques as well as a wide array of instrumentation methods were 

employed. Towards the Northwest portal the tunnel penetrates through weathered tuff 

lavas and residual loam. In the central section, the majority of the rock mass is weathered 

tuff lava while at the Southeast portal the quality drops again, with moderate and highly 

weathered tuff lava. Figure 39 presents the longitudinal geologic section along the tunnel 

route.  

 
Figure 39: Geologic section of the Heshang tunnel in China.  
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Typical geotechnical properties of the various rock quality grades of the general 

geologic region were available from preliminary geological studies and are shown in 

Table 17. The tunnel passes mostly through rock grades III-VI. At the portal sections the 

quality is very low and corresponds to grades V-VI.  

 

Table 17: Typical properties per rock grade of the Heshang tunnel.  

Rock grade E (GPa) μ γ (kN/m3) c (MPa) ϕ (º) 
I >33 <0.2 26~28 >2.1 >60 
II 20~33 0.2~0.25 25~27 1.5~2.1 50~60 
III 6~20 0.25~0.30 23~25 0.7~1.5 39~50 
IV 1.3~6 0.3~0.35 20~23 0.2~0.7 27~39 
V 1~2 0.35~0.45 17~20 0.05~0.2 20~27 
VI <1 0.4~0. 5 17~17 <0.2 <20 

 

9.2. Tunnel design and monitoring data 

9.2.1. Tunnel design 

The sequential excavation of the Heshang tunnel was designed in accordance to 

anticipated ground conditions and excavation sequence varied between the two tunnels. 

During construction three sections were fully instrumented. Such instrumentation 

included surface subsidence, convergence measurements, crown subsidence by 

surveying, anchor tensioning, lining axial and radial pressure, as well as multipoint 

extensometer measurements. The locations of the three fully instrumented sections are 

shown in Table 18 along with the corresponding estimates of the rock mass grade. For the 

back-analysis presented here later, section K6+300 was examined. The goal of the back-

analysis is to validate the prior design assumptions and improve prior estimate for 

forward modeling of subsequent excavations (e.g., experience from the behavior from 

one portal region can be applied to predictions during excavation of the other portal).  
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Table 18: Rock mass grade for three instrumented sections. 

NO. Section Rock  grade 

1 K6+300 V 
2 K6+500 III 

V 3 K6+630 
VI 

  

For section K6+300 the sequential excavation pattern is shown in Figure 40. In 

order to simplify the back-analysis, only monitoring data from the left tunnel are 

considered since the right tunnel had not yet been advanced to the degree that it will 

influence the left tunnel. The multi-staged excavation of the left tunnel is a typical 

sequential type, with two side drifts, a top and a bottom core. The right tunnel is 

excavated by a top heading, two bench sections and followed by an invert. The tunnels 

are approximately 11.5 m. high by 15.0 m. wide.   

 

 
 

Figure 40: Construction sequence pattern at station K6+300. The rock mass quality 

corresponds to grade V in both right tunnel and left tunnel. 

  

A variety of primary support systems and ground improvement techniques was 

used at the Heshang tunnel. More specifically, the ground around the tunnel is reinforced 

before the excavation using a sequential forepoling umbrella. The reinforcement is 

composed of 50 mm diameter steel pipes of 5.0 mm thickness and 5.0 m length. These 
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are installed at two alternating angles of 15° and 40° relative to the tunnel axis. The 

circular interval of the pipes is 300 mm and the longitudinal spacing is 2.5 m. 

Forepoling was also used for the intermediate rock wall between the two tunnels. 

The details of the forepoling umbrella are shown in the parallel to the tunnel longitudinal 

cross section of Figure 41 and the perpendicular cross section of Figure 42. The 

forepoling system included concrete injection through the pile elements. 

The primary support system consisted of 270 mm thick shotcrete. The shotcrete 

was reinforced with a steel mesh of 6 mm diameter bar using a 200 mm x 200 mm grid. 

U type steel beams were installed at every 0.5 m. The tunnel walls and roof were also 

reinforced with hollow rock bolts of 25 mm outside diameter and 4.0 m length. The bolts 

were installed at a 0.8 m x 0.8 m grid. The secondary (final lining) composed of 

reinforced impermeable concrete lining of 550 mm thickness. Details of the rock bolt 

arrangement and the steel beam section are given in Figure 43 and Figure 44 respectively.  

 

 

 
 

Figure 41: Detailed longitudinal cross section of the forepoling umbrella. 



 
 
 
 

Figure 42: Cross section view of the ground improvement work around the tunnels 
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Figure 43: Location of rock bolt reinforcement around the tunnels. 

Figure 44: Steel beam cross section dimensions. 
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9.2.2. Excavation monitoring 

The back-analysis for the left tunnel at section K6+300 was performed using 

deformation data. These included surface subsidence measurements and multipoint 

extensometer data. Vertical displacements were monitored at points P1-P8 shown in 

Figure 45. The surface settlement data are shown in Figure 46.  

 

 
Figure 45: Layout of surface subsidence monitoring points in Heshang tunnel at station 

K6+300. 

 

 
Figure 46: Surface settlement data. 
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For the left tunnel, data from extensometers KO1 and KO2, were utilized in the 

back-analysis. The locations of the extensometers are shown in Figure 47. Figures 48 and 

49 depict the data from the multipoint extensometers KO1 and KO2. For the back-

analysis, data from two different stages of the construction were used. The first set was 

taken after the end the right drift tunnel was excavated and some additional deformation 

has occurred because of the advancement of the left drift tunnel. This is represented by 

point B in Figures 48 and 49 which designates the start of the excavation of the left drift 

tunnel (some pre-deformation due to this stage has already occurred). The second 

measurement set was assumed after the excavation and support equilibrium of the top 

core of the same tunnel. By this time the right tunnel had not reached or influenced the 

monitored section. This is represented by point D in the above figures. The same 

construction stages are represented by the second and fourth settlement curves from the 

top, of Figure 46.  

 

 

 

Figure 47: Layout of multiple point extensometers in Heshang tunnel at station K6＋300. 
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Figure 48: Curves of multiple point extensometer data with time in borehole K01 at 

station K6＋300. 

 

 

 
Figure 49: Curves of multiple point extensometer data with time in borehole K02 at 

station K6＋300. 
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9.3. Back-analysis of the Heshang tunnel 

9.3.1. Modeling setup 

A model extending 80 m. laterally and approximately 40 m high was designed in 

FLAC. The model is shown in Figure 50. The region around the tunnel is refined in order 

to better simulate a possible plastic zone. Certain gridpoints where measurements take 

place were located to conform to the actual monitoring points of the construction. The 

Mohr-Coulomb failure criterion is assumed for the ground and the forepoling elements. 

The forepoling umbrella is simulated using finite difference zones, instead of using 

structural elements. The equivalent forepoling properties are calculated using a simple 

homogenization scheme described later. The unknowns are the elastic properties, the 

strength parameters c, φ and the average unit weight of the rock. The numerical 

simulation steps are the following: 

 

1. At the start of every iteration, the model is reset to its initial state. All 

deformations, velocities and stresses are reset to zero. Any previously 

installed support elements (liner and cables) are deleted. Any previous null 

excavation zones or forepoling zones are re-assigned new ground 

properties as the rest of the model. 

2. A calculation is performed to initialize the stresses in the model since a 

new unit weight is introduced. After the consolidation stage, the 

displacements and velocities are reset to zero.  

3. The right drift tunnel is let to relax by 30% by gradually relaxing the 

initial gridpoint forces around the tunnel periphery. This is done to 

simulate some initial pre-deformation which occurs in the rock mass 

before the forepoling becomes effective. Should the forepoling have 

longer pile elements, then this step would be avoided due to the greater 

pre-excavation supporting effect. 

4. The forepoling section of the right tunnel drift is installed by assigning 

new properties to the corresponding finite difference zones. 
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5. The right drift tunnel is let to relax by 65% (of the initial forces). This 

slightly high relaxation is assumed in order to compensate the model for 

volume loss, the gradual shotcrete hardening and the some deformations 

that occur in the ground, before the steel beams come in contact with the 

ground. 

6. The primary support system is installed. 

7. The tunnel is fully let to relax at 100%. 

8. The left drift tunnel is relaxed by 30%. 

9. The first set of data at the measurement points is taken via a FISH 

function. 

10. The left section of the forepoling is installed by assigning appropriate 

properties in the forepoling zones. 

11. The left drift tunnel is let to relax by 65%. 

12. Primary support is installed at the left drift. 

13. The left drift tunnel is let to fully relax until ground-support equilibrium is 

achieved. 

14. The top core is let to relax by 30%. 

15.  Forepoling is installed at the crown section to complete the forepoling 

umbrella. 

16. The top core is let to relax by 70% due to delays in the support which has 

to be structurally connected with the beam elements from the left and side 

drift. 

17. The left and right supporting beam sidewalls, enveloping the top core are 

deleted. Primary support is installed at the roof. The roof lining is 

structurally connected to the left and right drift lining elements. 

18. The top core is let to relax fully 

19. The second set of measurements is taken via a FISH function. 

 

 



Figure 50: FLAC tunnel model and measurement gridpoint locations. 
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 The above process is assumed to yield a numerical model comparable to the 

actual construction. Due to the shallow overburden and the poor quality of the rock mass, 

deformations are expected to be relatively large, which is also evidenced by the 

monitoring results of Figures 46, 48 and 49. 

A simple averaging scheme, suggested by Hoek (2003), was used in order to 

estimate the properties of the forepoling region. According to this approach, the strength 

and deformability of the equivalent forepoling material can be estimated using weighted 

average contributions of the respective hosting rock and reinforcing material quantities, 

in a unit cross section of the homogenous material. Thus, the uniaxial strength is 

estimated by summing the products of the strength of each participating material (steel 

pipe, grout, rock) by their corresponding cross sectional area and by dividing the sum 

with the total forepoling section area. It was also assumed that the equivalent forepoling 

properties remain constant during the back-analysis. The later is generally a valid 

assumption since the reinforced ground has more predictable properties than the native 

ground. Based on the above, the equivalent forepoling properties, assuming properties for 

a rock grade V (see  Table 17) as the native ground, are estimated as follows: 

• γ=24 kN/m3 (saturated unit weight) 

• E=3000 MPa 

• v=0.3 

• c=4.5 MPa 

• φ=25° 

• Tensile strength = 1.0 MPa 

9.3.2. Back-analysis results 

Before executing the back-analysis, a preliminary forward analysis was 

performed, in order to study the performance of the numerical model, using average input 

properties. The following properties were used: 

•   γ=18.5 kN/m3 

• E=500 MPa 

• v=0.35 

• c=0.02 MPa 
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• φ=25° 

 

The main purpose of the preliminary analysis is to overview the performance of the 

model and to specify constraints for the analysis. By using average properties for the rock 

mass it is possible to assess to a first degree, how close to the optimum an initial trial 

based on prior field investigations can be. In the second case, the model’s input 

parameters are perturbed manually, to investigate on the stability of the code under 

unfavorable parameter combination. This can be used effectively to adjust the parameter 

constraints, so that even under the most unfavorable combination of stress vs. strength the 

model will be stable and error free. This ensures a problem-free subsequent execution of 

the optimization algorithm and generally increases the efficiency of the process.  

Figure 51 presents the calculated initial stresses. The stresses are initialized 

automatically using gravity loading and the boundary conditions. The only parameter 

essentially affecting this step is the unit weight and the Poisson’s ratio (i.e., no lateral 

deformations) of the rock mass. 

 

 

Principal stresses
Max. Value =  -5.121E-06
Min. Value =  -7.192E-01

Figure 51: Stress initialization stage for station K6+300 of the Heshang tunnel model. 

 
 Figure 52 shows contours the vertical displacements at equilibrium of the right 

drift tunnel and after 30% relaxation of the left tunnel. The right tunnel drift is supported 

by its corresponding forepoling region, a continuous closed composite beam and rock 

bolts. At this time the first set of measurements is taken and stored in memory using a 
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FISH function in FLAC. Figure 53 shows contours of vertical displacements at full 

relaxation of the left drift tunnel and after 30% relaxation of the top core. The ground has 

been improved by the two forepoling regions of the left and right drift and the third 

region (roof) will be installed at the next step. The left drift is supported by rock bolts and 

a continuous closed composite beam.   

 
 

 
Figure 52: Vertical displacements at equilibrium of right drift tunnel and 30% relaxation 

of the left tunnel. The first set of measurements is taken at this time. 

 

 
Figure 53: Vertical displacements at full relaxation of the left drift tunnel and after 30% 

relaxation of the top core. 
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Figure 54 depicts vertical displacement contours at equilibrium after the top core 

excavation.  The second set of measurements is taken at this stage. The analysis predicts 

significantly lower displacements than the monitored values. Specifically at the tunnel 

crown line, the vertical displacement is approximately 16 mm while the measured value 

is closer to 50 mm. Despite the fact the delays in the support installation and some 

volume loss have been incorporated in the analysis, the preliminary results are still in 

disagreement with the measured values. Even though the strength and deformability 

parameters used are rather conservatively low the above discrepancy suggests that a 

lower strength material exists in the region of interest. The full scale back-analysis will 

be employed to investigate this behavior. Due to the higher efficiency of the Differential 

Evolution relative to the standard Simulated Annealing algorithm, the earlier was chosen 

for the back-analysis. Two back-analysis trials were performed. In the first trial data from 

all deformation measurements were taken. The normalized error function of (2) was used. 

In the second trial, only the extensometer data were used in the analysis.  

 

 

 

Y-displacement contours
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Figure 54: Vertical displacements at full top core relaxation. The supporting sidewalls are 

removed as the top core advances and the roof lining is closed to form a continuous 

support. 
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The first back-analysis performed, took approximately 40 generations to converge 

and yielded the results shown in Table 19. The comparison plots shown in Figure 56 and 

Figure 56a,b reveal a relative agreement between predictions and measurements of the 

surface settlement data but a disagreement in the extensometer data. This behavior most 

probably designates a problem in the available monitoring data. More specifically, it is 

evident that the large displacements in the order of 4.5 cm close to the tunnel are 

practically incompatible with the small displacements at the tunnel surface. This could be 

due to modeling uncertainties in the model (e.g., varying ground properties with depth). 

More specifically the measurements suggest low surface displacements and very large 

deformations very close to the tunnel. The FLAC model on the other hand, predicts a 

more uniform displacement field, with fairly high surface settlements as well. It is 

possible that the model cannot predict explicitly the gradual increase in displacements 

perhaps due to inhomegenity in the ground. Moreover, the surface data may not reliable 

in relation to the extensometer data. Judging from the results of the first back-analysis, 

most properties are of reasonable range. However, the predicted Young’s modulus E and 

the unit weight of the surrounding ground may be considered as low, since their values 

have converged to their lower constraints respectively. Another back-analysis was 

performed assuming the extensometer data only.  

 

Table 19: Back-analysis results using surface settlement and extensometer data 

Parameter E (MPa) ν γ (kN/m3) c (MPa) φ (°) 

Constraints 100-1500 0.3-0.45 16-23 0.02-0.1 24-35 

Final 
solution 142.6 0.36 16.2 0.037 23 
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Figure 55: Measured and predicted surface settlement plots from the firth back-analysis 

trial. 
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Figure 56: Comparison plots from the first back-analysis of the Heshang tunnel,              

a) extensometer KO1, b) extensometer KO2. 
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The results from the second back-analysis are shown in Table 20. The solution 

vector is very close to the previously obtained, with the exception of the unit weight and 

cohesion parameters. The unit weight is estimated at 21 kN/m3 and the cohesion is lower 

at 0.02 MPa. The unit weight is more compatible with a low quality rock mass and the 

low strength parameters also suggest the same. A comparison between the measured and 

predicted extensometer deformations is shown in Figure 57. It is apparent that the 

extensometer deformation predictions are in better agreement with the measurements. 

More specifically for extensometer KO1 the predictions almost match the measurements 

while for extensometer KO2 the predictions even though they do not match exactly, they 

are in fair agreement with the magnitudes of the measured deformation values. Such 

differences could be the result of the assumption of a homogenous ground material 

throughout the model or a  

Table 20: Back-analysis results using extensometer data only 

Parameter E (MPa) ν γ (kN/m3) c (MPa) φ (°) 

Constraints 100-1500 0.3-0.45 16-23 0.02-0.1 24-35 
Final 

solution 200 0.35 21 0.02 24 
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Figure 57: Comparison of measured and predicted extensometer deformations from back-

analysis using extensometer displacements. 
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 The previous analysis reveals some important issues when applying optimization-

based back-analysis. The solution is highly dependent on the objective function used, 

which in turn is a function of the type and amount of monitoring data used. Very often 

various methods of monitoring have different uncertainties associated with them, or 

reliability issues. The extensometer data may be more appropriate and reliable to use in 

shallow excavations, when they start recording the tunnel behavior from the beginning of 

the construction. They also record information inside the ground rather than at a ground 

boundary. The implementation of various monitoring data in the same back-analysis 

should be checked for consistency between the data. In the previous example, it was 

evident that the surface measurements were most probably affected by some error. The 

inclusion of extensometer data only provided more insight on the validity of the back-

analysis results. The finally obtained results yield predictions comparable to the measured 

extensometer data.  

 The modeling process is also a factor to consider carefully. The Hashang tunnel 

example is a fairly difficult case to study using a two-dimensional modeling approach 

and thus it may deviate from the actual three-dimensional problem to some extent. The 

relaxation factors used in order to simulate the three-dimensional tunnel closure in FLAC 

can influence the back-analysis results as well. It is practically impossible to exactly 

estimate and incorporate all these parameters in a two-dimensional model. On the other 

hand, three-dimensional back-analysis even though it is possible, it would require an 

excessive amount of solution time. Therefore a balance between reliability and efficiency 

using a two-dimensional modeling sequence has to exist. In some cases the assumption of 

more advanced constitutive models may be more appropriate and require the 

incorporation of other parameters in the back-analysis (e.g., strain softening material 

models). It is the responsibility of the modeler and engineer to assess the degree of 

analogy between the physical and numerical model and based on that, start a back-

analysis. A fully satisfying solution, which will closely lead to a match of monitored and 

predicted performance, is rather difficult to achieve. The various unknowns with respect 

to the subsurface conditions and the model behavior can make the back-analysis difficult 

since multiple local optima may exist. The use of global optimization algorithms, even 

though it is more time consuming than a local optimization algorithm, it is able to cope 
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with non-linearity of the objective function and provide a good solution estimate. The 

example of the Heshang tunnel shows the dependency of this method to the assumed 

model and of course the reliability of the data. Nevertheless, it is the conclusion of this 

analysis that the proposed method is very promising for a wide range of problem and the 

algorithms presented can be adapted easily to other numerical simulation software. Both 

Simulated Annealing and the Differential Evolution method are formidable candidates for 

problems with large numbers of unknowns. Representative results from the final back-

analysis are shown in Figure 58 for the first stage of the measurements and in Figure 59 

for the final stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 134



 

 

 

Y-displacement contours
       -1.25E-02
       -1.00E-02
       -7.50E-03
       -5.00E-03
       -2.50E-03
        0.00E+00
        2.50E-03
        5.00E-03
        7.50E-03

X-displacement contours
       -5.00E-03
       -2.50E-03
        0.00E+00
        2.50E-03
        5.00E-03
        7.50E-03
        1.00E-02
        1.25E-02

b 

a 

User-defined Groups
--tuff
--forepoling

Grid plot

0  1E  

Displacement vectors
max vector =    1.497E-02    

c

Figure 58: Back-analysis results at the first measurement stage. a) contours of vertical 

displacements, b) contours of horizontal displacements and c) total displacement vectors. 
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Figure 59: Back-analysis results at the final measurement stage. a) contours of vertical 

displacements, b) contours of horizontal displacements and c) total displacement vectors. 
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CHAPTER 10. General research conclusions 

 
This research has focused in the application of parameter identification methods 

for optimal design of underground construction. Simplified and more elaborate 

techniques were explored and their use has been demonstrated with insightful examples.   

The primary target of this research has been to develop parameter identification 

methodologies that can be directly applied to actual problems, by using one of the most 

widely available numerical programs for geotechnical analyses. These methods were 

implemented in such a way that they can be easily used by engineers and practitioners. 

Many of the methods suggested can be extended to other types of geotechnical back-

analysis, i.e., soil or rock slope stability, retaining wall performance or foundation 

problems. During application of the method, the back-analysis procedure must be 

frequently applied to confirm the initial designs or simulations. The consecutive analyses 

will gradually build a database of design parameters along the direction of the excavation 

and better forecasting can be made. 

The back-analysis methodologies suggested herein are based on principles of 

Operations Research and as such, they utilize an appropriate optimization algorithm. 

Other methods such as the Artificial Neural Networks (ANNs) are not included in this 

research. The use of optimization driven back-analysis allows for more transparent use 

and interaction with the identification process and it can be applied relatively easily. 

The problem of the circular tunnel under isotropic stress conditions in elastoplastic 

ground has been the benchmark reference in ground-support interaction for a long time 

and advancements in the application of the convergence confinement method were 

suggested. The use of longitudinal convergence profiles for simplified back-analysis is 

more appropriate in order to capture a more overall behavior of the excavation than to use 

only the ground and support characteristic curves. However, in more irregular tunnel 

designs under various conditions, a continuum based numerical method is more 

applicable. New convergence ratio models were presented for unsupported and supported 

tunnels and compared to previous approximations from the literature. Usually the 

coefficient and exponential parameters of such relations like equation (20) are obtained 

from a least squares type of fitting to monitoring convergence data. This formulates a 
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simplified type of back-analysis but with some shortcomings. It was demonstrated that 

even the use of very efficient local search algorithms can lead to erroneous results with 

respect to the identified parameters. The assumed model to describe the behavior of the 

rock mass (e.g., elastic or elastoplastic) as well as the convergence ratio model used can 

influence the back-analysis results. The importance of the assumption regarding the 

ground relaxation at the tunnel face was also examined through parametric analyses and 

useful relations are suggested. The simplified back-analysis presented herein focuses on a 

hybrid Monte-Carlo and local search approach which is essentially a variation of the 

Random Search method. This part of the research demonstrated the need for an algorithm 

able to deal with uncertainties and the highly non-linear nature of the objective function. 

The proposed method contains elements of global optimization and heuristic search 

approaches. 

In chapters 6, 7 and 8 the commercially available program FLAC was used to 

develop and test back-analysis methods. The method involving a local gradient-based 

minimization algorithm, even though it performs very well in well defined problems, 

failed to locate a local optimum in more complex problems. This is mainly attributed to 

the existence of multiple local minima all of which are close to each other. In the 

fundamental problems that were examined, a known global optimum solution exists since 

it was initially used to generate measurement data for the back-analysis tests.  

When the modified Newton-Raphson method was invoked for back-analysis in 

plastic ground conditions the algorithm failed to converge. It could either converge to a 

local optimum or not converge at all. Even if the original trial vector was taken to be 

sufficiently close to the theoretical optimum, the algorithm deviated greatly and failed to 

converge. A significant difficulty of gradient based approaches is the need to estimate the 

derivatives involved. In the Newton-Raphson method, the presence of second order 

partial derivatives makes the process even more difficult. The choice of the required step 

size is a significant disadvantage and requires testing for calibration of the back-analysis 

algorithm. Too small of a step can “confuse” the algorithm and the function perturbations 

may be undetectable during a finite difference approximation of the derivatives. It should 

be understood that the numerical precision required by the algorithm may be 

overshadowed by the precision limits of the finite element or finite difference program. 
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Thus the chosen step size for any gradient based approach should be such that a 

reasonable estimate of the finite difference partial derivatives is obtained. Too small of a 

size can lead to inaccurate derivative estimates and a completely unreliable Hessian 

matrix. Too large of a step, however, proved to be too rough for the algorithm, in order 

for it to be able to follow the local characteristics of the objective function. Thus a 

balance between the two should prevail.  

During the application of the Newton-Raphson method, it was also evidenced that 

the use of a normalized objective function such as equation (2) is preferred by the 

algorithm over a simple least squares error function like equation (1). In fact this could be 

problematic in applying a function like equation (34). The normalization helps the 

algorithm by essentially boosting the sensitivity of the objective function on the 

governing parameters. When using equation (34) the required precision could become 

quite high depending on the order of magnitude of squared measurement-prediction error 

and the order of magnitude of the squared error expressing the deviation from the original 

estimate. There can be cases where one part can overshadow the importance of the other 

only due to differences in the order of magnitude. In turn, there could be cases where a 

small change in one of the parameters could result in minor change of some monitoring 

points and large change in other measurement points. This can be problematic, as in this 

way some points become essentially unimportant for the algorithm. The normalization 

addresses this effectively.  

The initial trials of the Newton-Raphson method showed inability to converge if 

an objective function like equation (1) was used. Other local search methods can also be 

applied. Gradient based methods should be applied with extreme caution even though 

they are fast converging algorithms. Direct algorithms such as Powell’s algorithm and the 

Complex method may be more appropriate but can require extended programming 

depending on the programming language used. Furthermore, the majority of local search 

algorithms (with the exception of the Nelder-Mead and the Complex algorithms) 

necessitates the use of a one-dimensional optimization calculation at every new point 

(e.g., in the Newton method) or after a series of some points (e.g., in Powell’s method). 

Methods like the Golden Section have to be employed. This further slows down the 

performance, due to more function evaluations required.  
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For the reasons described above, an alternative approach was investigated for the 

first time. Two global search strategies are intuitively employed to solve the constrained 

optimization problem. Both attempt to simulate natural processes and demonstrate 

excellent characteristics in back-analysis. They are able to adapt to various optimization 

conditions, and can be programmed easily in the FISH proprietary language of Itasca’s 

codes. Constraints for the governing parameters can be easily implemented in both 

algorithms without modifications of the objective function, and without interrupting or 

altering the algorithms’ stochastic nature.  

It is demonstrated that Simulated Annealing and the Differential Evolution can be 

successfully applied in back-analysis using two-dimensional plane strain models. A three 

-dimensional version using the finite element or finite difference methods, would be 

computationally expensive to run as an iterative back-analysis procedure. Hybrid 

boundary element-finite element analyses can potentially overcome this. The problems 

that need to be focused on are the type of monitoring data (e.g., deformations, strains, 

stresses) and the time when these were taken. When a two-dimensional analysis is 

performed, the three-dimensional or construction time effect is completely lost unless a 

controlled relaxation method is followed, which brings again the use of some form of 

longitudinal profiles into the problem in order to associate the degree of relaxation with 

the distance from the tunnel face. In modern tunneling it is widely acknowledged that the 

degree of relaxation before any support is installed plays the most crucial role in optimal 

design and safety. In addition the fact that most often convergence instead of absolute 

deformation magnitudes are measured, complicates the mathematical solution of the 

problem in a two-dimensional approach. There can be much more than one solution for 

the same given measured convergence values from a tunnel section. For these reasons a 

probabilistic or global search approach needs to be followed.  

Back-analysis is generally a difficult task and in order to be reliable, a large 

number of iterations needs to be executed. The use of plane strain numerical simulations 

inevitably limits the back-analysis from using longitudinal deformation or convergence 

profiles. Thus, only few measurements can be incorporated to the numerical model and 

these should comply with the actual location and construction time. A simple example is 

the use of different sets of measurements at different construction times such as after a 
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top heading and after a bench excavation monitoring. All these can be incorporated in an 

objective function of the type given in equations (2) or (34). This generally leads to an 

increase in the number of local optima, especially when a non-linear or a plastic 

constitutive model is used. The use of advanced optimization algorithms like the 

Simulated Annealing or the Differential Evolution does not guarantee an ideal solution. If 

the numerical model does not emulate the physical model adequately then the back-

analysis is unreliable. It is the responsibility of the engineer, to apply judgment in the 

analogy between the numerical and the physical model before execution of the back-

analysis. This holds true for any back-analysis method. These reasons are why the global 

optimization algorithms are suggested for parameter identification. As stated above, the 

search of an “ideal” solution may be futile, due to modeling uncertainties, accumulation 

of error in the data, geotechnical uncertainties, etc. However, the above algorithms are 

very capable of searching for a global or at least a local optimum with a very strong 

region of attraction in the n-dimensional space.  

Experience using the Simulated Annealing reveals that the various parameters 

involved, are problem dependent. A very important factor is the annealing schedule. 

Some schedules may work for a particular problem while others may not work. The 

exponential cooling schedule of (52) has shown good results in the problems examined. 

The parameters of the cooling schedule should also be tested. Similarly for the Genetic 

Algorithm usage, there is no mathematically fundamental explanation or proof, of 

convergence to a global optimum or an expected iteration time, until this occurs. 

Provided that there is ample annealing time in SA or ample generations and individuals in 

the GAs, there is a high chance of convergence to a global optimum. Simulated 

Annealing is very good memory-less global evolutionary progress. The implementation 

presented here is the simplest form of annealing but shows the strengths and potential of 

the algorithm. Various enhancements can be made in order to make the algorithm more 

efficient, e.g., by modifying the acceptance criterion so that approximately 50% of the 

trials are accepted. Such modifications in conjunction with the improvement of computer 

processing capabilities can promote the use of SA in geotechnical applications. The SA 

has a advantage over DE, because the areas of strong attraction can become evident by 

observing the history of the solution path. These are the areas of the strongest local 
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optimum solutions and very good final candidates. During annealing the best solution 

should always be recorded simultaneously with the current accepted trial and both could 

be interpreted as potential results.  

The Differential Evolution is a very efficient global optimization approach. It 

requires less function evaluations for the same problem and like annealing it is not 

influenced by the continuity of differentiability of the objective function. It is based on 

the theory of the survival of the fittest and it attempts to find the global optimum by 

continuously “reshaping” an array of possible trial vectors (primary array of individuals). 

Towards the end, the array vectors should coincide. This is very similar to the Complex 

method. The success of the method is based on the size of the array (number of 

individuals) and the efficiency is controlled by the crossover scheme. Different crossover 

schemes can be used. In the present algorithm the crossover is based on independent 

binomial experiment outcomes. The DE was modified in this research, in order to 

account for parameter constraints while preserving the stochastic nature of the algorithm. 

The DE should converge to the global optimum possible solution, provided that a 

reasonably large population is used. According to Price and Storn (1997) this 

population’s size should be )(105 nparametersofnumberDDDNP ==−≥ . For the 

mutation scaling factor they suggest: ]2.1,0(∈F   and more often: , while 

. 

]0.1,4.0[∈F

)0.1,0[∈XR

 For any of these methods, precalibration can be computationally expensive 

but efficient in the long run for the back-analysis algorithm. In this case, the numerical 

model is set up to approximate the natural process as much as possible. The finite 

element mesh or finite difference grid has to be modified so that the actual measurement 

points coincide with existing nodes or gridpoints of the model (for displacement 

measurements). An initial analysis is performed to generate artificial data at the desired 

monitoring points. These data are used for a “calibration back-analysis” during which the 

parameters of the algorithm are chosen so the back-analysis yields comparable results (if 

not the same) to the original input used. The algorithm parameters are retained from the 

calibration process, and the back-analysis is repeated using the true data. This ensures 

more reliable parameter identification, and can also be used to assess any problems in the 

modeling assumptions before the actual back-analysis is performed.  
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APPENDIX A 

A1. Rock mass classification using a PDA-based field-book 

 
The potential merits of data acquisition using handheld devices are significant in 

relation to their cost. Current handheld devices such as PDAs are distinguished by low 

weight, relatively low cost, availability of many types of peripherals, ease of use, and 

good processing power and data storage capacity. PDAs have strong potential to facilitate 

and improve field data acquisition and logging involved in rock mass characterization by 

the use of rock mass classification systems. Geosyntec (2001) developed a database PDA 

form to perform field drill core logging. Another example of such work has been 

presented by Rose (2005) who developed a PDA-based database for a proprietary rockfall 

management system for the Tennessee Department of Transportation.  

Two of the most widely accepted and used rock mass classification systems are 

the Geomechanics Classification  System (RMR/SMR) by Bieniawski (1989) and the Q 

System developed by Barton et al. (1974). Other classification schemes exists and a 

review of the different systems is given by Bieniawski (1989). Both rock mass 

classification systems have been developed on an empirical basis based on many case 

histories of excavations in rocks. There are some key differences between the two 

systems which will be described below. It should also be recognized that in general there 

is no general-purpose system since rock mass classification systems are typically 

developed for specific applications. 

The formats of the RMR/SMR and the Q systems allow for good conversion into 

a portable electronic database system. Combination of these two classification systems 

with technologies such as Global Positioning System, digital photography, and wireless 

data transmission to a personal computer, all in a compact form, can be a useful and 

promising tool for geological field work. Several benefits can accrue from the use of 

digital field books using PDAs. Digital field acquisition and recording can lead to faster 

data acquisition and logging as it eliminates the need to transmit and convert paper-based 

data to digital form. In turn, the readily available data can be analyzed faster and 

information gained from the analysis can be acted upon in a timelier manner. Faster data 

acquisition and recording also means more data can be gathered in the field for a given 

 143



time. Digital field recording can also provide a more robust and safer storage of data than 

paper-based system. Digital field books can be programmed to quality-control and pre-

edit data in the field and reduce errors associated with the data gathering With GPS and 

digital camera, supporting materials such GPS coordinates and digital pictures can be 

gathered and stored together with the other information required in the rock mass 

classification system. Use of wireless of communication allows real-time field data 

transmission and seamless integration in databases. Finally, easy-to-use menus and digital 

forms can help train and familiarize new users in the application of rock mass 

classification systems.  

A2. Software and hardware components 

Software component 

In order to construct dedicated rock mass classification systems in a PDA digital 

field book, the Pendragon Forms 4.0® by Pendragon Software Corporation (2004) was 

used in the programming. This software permits the development of data collection forms 

in a personal computer environment (PC format). Once developed, the forms are then 

transmitted for use in a PDA. With this utility, a data entry forms can be conveniently 

constructed in a PC according to the designer’s preferences. The Pendragon Forms also 

provide a utility to temporarily store data in the PC after a PC-PDA synchronization.  

The Pendragon software permits the user to design a form that suits his/her needs 

and make a unique and purpose-specific interface. The form is basically constructed as a 

series of related fields where data are inputted. Data from the input fields are stored 

sequentially (and can be later be modified) in single file each time the form is called by 

the PDA Pendragon program. Early versions of Pendragon Forms were specifically 

developed for Palm Pilot® devices, while newer versions are also compatible with PDAs 

that run under the Pocket PC format. A useful feature of Pendragon Forms is the 

provision for relational or mathematical subroutines which can be written by the user as a 

script code. The script code supports a wide variety of commands, some best suited for 

mathematical calculations and some suited for more general database related actions, i.e., 

programming of commands for buttons, field value manipulations, etc. 
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Hardware component 

The vast majority of PDA’s currently available in the market, either Palm Pilots 

or Pocket PC’s, are compatible with the latest version of the Pendragon Forms. The data 

acquisition system described in this paper was developed using a Palm Tungsten T2® 

PDA. However, the system is general enough and can be used in other types and brands 

of PDAs. The Palm Tungsten T2 PDA includes a 144MHz core processor, 30 MB RAM 

of memory and a 320x320 pixel color monitor. This PDA has built-in infrared and 

Bluetooth wireless communication systems, and an SD expansion slot for additional 

memory or other input devices. The size of the screen allows for good viewing during the 

pen-based input process even under strong sunlight conditions. The PDA is augmented 

by an external wireless Bluetooth GPS receiver by DeLorme (Model Earthmate 

BlueLogger GPS) for coordinate data acquisition. This GPS was chosen for its 

compatibility with the software and hardware used.  It is also one of the few WAAS 

enabled portable receivers that can obtain Differential GPS data for higher precision post-

processing of the obtained coordinates. Using the GPS, a user can select and lock the 

coordinates by simply clicking a button and the coordinates will automatically be entered 

and viewed in the database. With the present hardware the connection was performed via 

Bluetooth and the baud rate was set to 19200 bps, which is fairly fast.  

During the development of the digital field book, it was quickly evident that a 

digital photo accompanying field data would be useful. The Pendragon software allows 

for direct photographing controls for various PDA models and this provision was taken 

into account during the development of the forms. Many new models of PDAs offer a 

built-in small digital camera. However, most of these built-in cameras offer only low 

resolution images. An alternative is to use a Bluetooth enabled separate pocket digital 

camera which can wirelessly sent files to the PDA. The user, while using the electronic 

field book, can select an image file to be stored in the database. This is a more flexible 

solution since higher quality photos can be taken for the classification purposes. Cost 

effective Bluetooth enabled cameras are nowadays available from many electronic 

manufacturers. Otherwise another solution is to obtain photos separately by a digital 

camera and then share the memory chip with the PDA and store the photos in the 
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database. Based on the described software and hardware elements, the principles of the 

rock mass classification field book are depicted in Figure 60.  

 

 
 

Figure 60: Use of PDA as digital field book for field rock mass classification 
 

A3. Rock mass classification systems used 

The RMR/SMR Systems 

The Geomechanics classification was developed by Bieniawski (1973). By 1989, 

around 350 case histories have been used as the basis of the system. As also recognized 

by Bieniawski (1989), the system benefited from extensions and modifications by various 

researchers, and such developments allowed the system to adapt it to various engineering 

applications. The parameters used by the Geomechanics classification are: 1) The 

uniaxial compressive strength UCS  or the point load strength of the intact rock material, 

2) The rock quality designation RQD, 3) The spacing of the discontinuities, 4) The 
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condition of the discontinuities (persistence, aperture, roughness, filling, and weathering), 

5) The groundwater conditions, 6) The orientation of the discontinuities, and 7) The 

intended type of project. 

For each parameter, the rating is often provided in a tabulated format, where an 

average rating is given for a representative range of the governing parameter. For the case 

of the intact rock strength parameter, the RQD and the discontinuity spacing parameter, 

Bieniawski (1972, 1973) presented curves of the rating versus actual parameter value. 

These curves were directly programmed into the digital field book. The user needs only 

to enter the observed parameter value (i.e., spacing of each joint set) and the rating is 

calculated automatically. The calculation is done by internal execution of three 

polynomial equations that approximate the Bieniawski curves. Alternatively the user can 

enter a rating manually. The approximation equations are given as follows: 

Intact rock:    (59)    2-0.0002  + 0.1065  + 0.8693Rating UCS UCS= ⋅ ⋅

RQD:     (60)  20.0006   0.1148   2.7808Rating RQD RQD= ⋅ + ⋅ +

Joint spacing:   (61)  9 3 -6 21.3 10 -5.579 10  + 0.0135  + 5.31Rating S S S−= ⋅ ⋅ ⋅ ⋅ ⋅

In the above equations, UCS is in MPa and S is the spacing in mm (S≤2000 mm). 

With respect to joint orientation, spacing, persistence, separation, roughness, infilling and 

alteration, the form was designed so that the user can collect information for up to four 

joint sets independently. This allows for better conclusions to be drawn during post-

processing.  

For the case of rock mass classification for slopes, Romana (1985) presented a set 

of four correction factors to adjust the RMR rating. This extension of the RMR also 

known as Slope Mass Rating (SMR) is a very useful tool for preliminary assessments of 

slope stability and more details are described by Romana (1993). Romana has 

summarized frequently observed slope failure modes, which are: planar failures, wedge 

type failures, toppling failures, soil like failure modes. The SMR rating is obtained from 

the basic RMR rating value using the following relation:  

1 2 3( )SMR RMR F F F F= + ⋅ ⋅ + 4        (62) 

where F1,2,3,4 are correction factors.    
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The Q System 

Classification using the Q system of Barton et al. (1974) can be used for core 

logging and field mapping results that are quantified and represented statistically. Initially 

introduced in 1974, the Q system received gradual refinements and verifications, the last 

being in 1993-1994 as described by Barton and Grimstad (1993, (1994). According to the 

Q system, the rock mass quality is designated by the index Q which is a function of the 

form: 

SRF
J

J
J

J
RQDQ w

a

r

n

⋅⋅=          (63) 

The parameters involved in the Q system are: RQD: the rock quality designation (%), Jn: 

the number of joint sets, Jr: the joint roughness, Ja: the alteration of the joints; Jw: seepage 

and water effects in the joints, and SRF: parameter considering the effects of stress, 

squeezing or fault induced instability phenomena. The Q index varies from 0.001 for 

exceptionally poor rock masses to 1000 for exceptionally good qualities.  

Barton (1974) notes that the parameters Jr/Ja must be made with respect to the 

weakest or most influencing discontinuity set in a given classified zone of rock mass. Full 

guidelines in using the Q system are not the scope of the present paper and can be found 

in Barton and Grimstad (1993) and Barton (2002). The second step in the application of 

the Q index system is the quantitative estimation of the type of support to be used 

depending on the ground conditions and the size of the excavation. An updated reference 

chart by Barton and Grimstad (1994)  is used to assist in the permanent support 

estimation in accordance to the Norwegian Method of Tunneling described by Barton and 

Grimstad (1994). 

A4. Data acquisition using the RMR system 

The digital field book for the Geomechanics Classification is composed of a series 

of fields were the user enters the information, depending on the type of the field, either by 

typing information (text or numeric format) or by selecting choices from dropdown 

menus. This form was design so that each record will handle the observations of the user 

for a specific location. This design is mostly helpful not only for experienced but also 
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novice users. The user may also jump to a section of interest in the form, back and forth 

to make changes as needed.  

Initial information are recorded for the location or jobsite, the structural region 

were classification will take place, the name of the field geologist or engineer, etc. Time 

and date are recorded automatically. For the case were the classification is done 

underground, the user can enter a range of chainage stations between which the 

observations were made. In case the data are obtained in open field, coordinate data can 

be logged manually or automatically via a GPS device. Digital pictures or snapshots can 

also be obtained and stored. Next the rock mass classification parameters are entered. 

Figure 61 presents the RMR form fields for the previously described data entries.  

 

 

b a 

c d 

 
Figure 61: General data, GPS coordinates and digital image fields for the rock mass 

classification using the PDA. 
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The uniaxial compressive strength in MPa is entered and the rating is calculated 

automatically using equation (59). For RQD, a convenient field in a slider form varying 

from 0 to 100% is provided which is depicted in Figure 62a. Following the RQD, the user 

is asked to select up to four joint sets that exist in the observed rock mass. The user is 

also asked to choose between a simplified or detailed method of joint orientation data 

logging. In the former, an equivalent number of fields will unfold and the user will enter 

information regarding mean orientation, discontinuity spacing (mm), persistence, 

aperture, roughness, infilling type and weathering. If the detailed method is selected, then 

the user is automatically guided to a new subform. This subform allows for detailed field 

recording of joint orientation data of any planar or linear geologic feature. The user can 

choose either a strike/dip or a dip/dip direction format. When the entry of data in the 

subform is completed, the user is redirected to the parent form. This setup is very useful 

since the subform can be also used independently. It is important to note, however, that 

when the user enters the subform from a parent form record, then the subform was 

designed to store identification properties of the parent form so that the parent record is 

specifically linked to the multiple subform record entries. This feature is desirable for 

geo-locating of the obtained data. The remaining parameters are entered similarly by 

dropdown lists interactively and the ratings are calculated automatically by the tool. 

Examples of these database entries are shown in Figure 62.  

The user can also specify stress-related conditions in subsequent fields. Such 

fields record an estimate of the magnitude and level of in situ stresses (σ1 and σ3), depth 

of excavation and any observations of squeezing conditions. The existence of faulting in 

the observed location can be recorded in a separate page or otherwise in the previously 

described subform. Fields for the general description of the fault, the fill material and 

numerical fields to record the orientation of the fault have been incorporated. Finally, 

corrections of the RMR rating can be made by choosing a work type such as tunnel, rock 

foundation or rock slope. In the later case, the SMR correction factors are used. Again, all 

the necessary corrections are made in a user-friendly manner by using dropdown menus. 

At the end of the input process, the form calculates the basic RMR rating as well as the 

adjusted RMR from the optional corrections along with the corresponding rock mass 

class number (1 to 5). The user may also quickly observe a overall average of the RMR 
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rating from the existing records in the form, a feature available by the Pendragon 

database. For the case of slopes and tunnels, the form subsequently leads the user to some 

empirical estimates of required support according to literature references.  The primary 

result output is shown in Figure 63.  

 

 

a b c 

d e f 
 

Figure 62  a) Slider field for the RQD in the RMR classification form; b,c,d) Detailed 

joint orientation fields in RMR subform; e) Joint set spacing parameter and d) Joint 

condition parameters in RMR form. 
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Figure 63  a) Final results in terms of basic RMR (based on properties of joint set 1 and 

adjusted RMR/SMR; b) Averaging of results while working in an open record of the 

RMR form. 
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When the user completes the acquisition and synchronizes the PDA with a 

personal computer, the “parent” and “child” databases are updated in the PC and the data 

become available for post-processing. In the current version of the digital field book, the 

user can specify using Pendragon Forms to directly export the data to Microsoft Excel®. 

For this reason, a proprietary post-processing spreadsheet was developed to assist in data 

analysis. Other numerical, database and geo-referencing applications can similarly be 

used.  

A5. Data acquisition using the Q system 

Barton (2002) suggested a convenient way to record and to evaluate trends of the 

Q parameters by constructing histograms of the different parameter. Based on this 

logging chart, it is possible to quickly estimate a typical range of the Q-values, as well as 

a mean value of the rating. This is the framework typically used for storing, handling and 

visualizing results from rock mass classification when working in the field, in a tunnel or 

simply by examining boxes of core materials. A similar technique was adapted for the 

development of the digital field book for field mapping using the Q system.  

There are two possible ways to implement the Q-logging described above. The 

first approach is to use an interactive type of form which will collect many records 

independently like the previously described database for the Geomechanics RMR/SMR 

System. Since the main purpose of the form is data collection, this type of form can assist 

the user by providing reference lookup lists and dedicated help menus when needed for 

each parameter. In the second approach, the user can manually enter directly a number of 

observations in specified fields, for each possible value of a parameter (e.g., 15 observed 

instances of the RQD being in the range 70-80%). This necessitates that a single record in 

the form will handle many observations at the same time. However, due to restrictions in 

PDA visual capabilities in terms of what can be viewed on the screen, an inexperienced 

user may find it cumbersome to use such a scheme of data collection. On the other hand, 

experienced users can use this scheme immediately. Both the above proposed collection 

formats were implemented and two distinct form designs were developed with the 

Pendragon software. In the following sections, the use of the forms is briefly explained 

and examples are also given. 
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Independent record form 

This form was developed similarly with the previously described RMR/SMR 

form. The user initially enters all the general data regarding the project, its location, and 

any electronic image files for attachment to the record. The multitude of the different 

cases for the parameters in the Q-system required the use of cascading lookup references. 

This means that when the user selects a general description of the parameter (e.g.,. thin 

mineral fillings in the Ja parameter) then the next field will depend on the previous 

selection. This is useful as an interface since the database stores not only the value of a 

specific rating but also its general description. 

When it comes to entering information for the rock mass jointing via the Jn 

parameter, the user can also enter information in a separate subform. The subform has the 

same design as in the RMR system, and each parent Q logging record can be linked to 

multiple joint orientation entries.  Example snapshots of the Q system independent record 

form are shown in Figure 64. In this figure the final result screen is also shown. Once the 

data collection is completed, post-processing in a spreadsheet allows for quick data 

evaluation. The spreadsheet can calculate typical minimum, maximum, mean and most 

frequent values of the Q rating. The Q minimum involves estimation of the minimum 

values of RQD, Jr and Jw and maximum ratings of the Jn, Ja and SRF parameters. 

Maximum values of the individual parameters are used to calculate Q maximum. The 

weighted average is calculated for each of the six parameters p from the corresponding 

number of observations according to. 

∑

∑
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         (6) 

where  is the number of distinct rating classes (or ranges) for each parameter p as 

suggested by the Q system reference tables, r is the rating value for each parameter class, 

and n is the number of observations per class of parameter. For example, the RQD 

parameter i distinguished into k=11 ranges for ease of use: 10, 10-20, 20-30, 30-40,…, 

90-100, 100 with mean rating in each range as: r

k

ai=10, 15, 25, 35, …, 95, 100. If n=4 

observations were made at a location for the range RQD=70-80, 5 observations for 
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RQD=80-90, 12 observations for RQD=90-100 and 4 observations for RQD=100, then 

for that location the mean RQD calculated by the PDA is: 

4 5 5 85 12 95 4 100 90.6
4 5 12 4

RQD × + × + × + ×
= =

+ + +
 

In some cases there are parameters of the Q system that have the same rating 

under different conditions. For example, the parameter Jr has the same value of 1.5 for 

slickensided undulating surfaces and for rough or irregular and planar rock joint surfaces. 

This information is ultimately lost during the overall statistical classification process 

although it still exists in the database records. An example of typical results from data 

processing using the Q system is shown in Figure 65 . The plots present frequency plots 

of the different ratings after processing. Such plots can be made for a specific location in 

a tunnel section or for a series of sequential sections. Additionally the data can be 

processed and clustered.  

 

 
 

Figure 64: Screenshots of the Q system independent record form for the Jn, Jr and SRF 

parameters. The final results screen is also depicted. 
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Post-processing using a spreadsheet allows for plotting of the results in the NMT 

support chart developed by Barton Barton (2002). After specification of an excavation 

span or height and the Excavation Support Ratio (ESR), the minimum, maximum, mean 

and weighted average results are plotted on top of the design chart. Figure 66 displays 

how the calculated range of Q-values can be used to estimate a support system for the 

excavation.  

 

 
a 

 

 
b 
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Figure 65  a,b,c: Statistical post-processing of the results (after Barton, 2002) 

 
 

 
 

Figure 66: Post-processed database records plotted in the reference design chart of the Q-

NMT system (Barton and Grimstad, 1994) leading to estimates of a range of 

recommended supports. 
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Cumulative record form 

The previously described data acquisition approach offers user friendliness but 

may be cumbersome to use when the records or numbers of observations are too 

numerous. Instead, it might be useful to compress and summarize data from several 

independent records into a single record. Each record can include multiple observations 

for each of the six Q parameters. This type of  data recording uses typical value ranges 

for the parameters in accordance to the suggestions by Barton (2002) and the user inputs 

the number of observations for each of these range of values. For example, for the RQD 

range from 60-70 the input is how many observations of this range were encountered on a 

specific section of the site. This format can is more convenient for an experienced user. 

Example screenshots of the data entry are shown in Figure 67. Statistical processing of 

the accumulated data can be performed by a spreadsheet in a similar fashion to the 

previous cases.  

 

 
 
 

Figure 67: Example of occurrence entries for the RQD and Jn fields in the cumulative for 

for the Q System  

 

 157



A6. Conclusions 

The PDA-based digital field book for rock mass classification presented here is 

intended to be used by civil, mining engineers, geologists and anyone performing rock 

mass classification in the field. The main function of the digital field book is to provide a 

user friendly interface for the systematic paper-free recording of data, and transmission 

and quick processing of collected data in a desktop/laptop computer. The digital field 

book can provide immediate initial estimates of rock mass quality whenever a record is 

completed. Optional geo-referencing by using a wireless GPS receiver makes field data 

easily incorporated into larger organizational project or worksite databases and GIS 

utilities. The Geomechanics RMR/SMR and Q systems are currently implemented in the 

digital field book. However, the same procedures used for these two system can be 

employed to program other rock mass classification systems such as the Geological 

Strength Index rock mass classification suggested by Hoek et al. (2000) and Marinos and 

Hoek (2000).   
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