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Three Essays on Economic Agents’ Incentives

and Decision Making

Dongryul Lee

(ABSTRACT)

This dissertation consists of three essays on theoretical analysis of economic agents’ decision

making and incentives. Chapter 1 gives an outline of the subjects to be examined in the subsequent

chapters and shows their conclusions in brief.

Chapter 2 explores the decision problem of a superordinate (a principal) regarding whether to

delegate its authority or right to make a decision to a subordinate (an agent) in an organization.

We first study the optimal contracting problem of the superordinate that specifies the allocation of

the authority and wage in a principal-agent setting with asymmetric information, focusing on two

motives for delegation, “informative” and “effort-incentive-giving” delegation. Further, we suggest

delegating to multiple agents as a way of addressing the asymmetric information problem within

an organization, focusing on another motive for delegation, “strategic” delegation.

Chapter 3 analyzes the behavior of players in a particular type of contest, called “the weakest-

link contest”. Unlike a usual contest in which the winning probability of a group in a contest

depends on the sum of the efforts of all the players in the group, the weakest-link contest follows a

different rule: the winning probability of a group is determined by the lowest effort of the players

in the group. We first investigate the effort incentives of the players in the weakest-link contest,

and then check whether the hungriest player in each group, who has the largest willingness to exert

effort, has an incentive to incentivize the other players in his group in order to make them exert

more effort.

Chapter 4 examines the decision making of software programmers in the software industry

between an open source software project and a commercial software project. Incorporating both

intrinsic and extrinsic motivation on open source project participation into a stylized economic

model based on utility theory, we study the decision problem of the programmers in the software

industry and provide the rationale for open source project participation more clearly. Specifically,

we examine the question of how the programmers’ intrinsic motivation, extrinsic motivation, and

abilities affect their project choices between an open source project and a commercial project, and

effort incentives.
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Chapter 1

Introduction

An incentive is any factor that motivates a particular course of action. All the people respond to

economic incentives. In other words, people make a decision in accordance with their incentives.

Therefore, to understand the behavior of people or the phenomena shown in the real world, we first

need to consider the incentives behind those. Once the incentives are found and understood well,

we are able to obtain much insight to understand and predict the behavior of people and further

design those toward the direction we want to head to. In this dissertation, while focusing on the

incentives of economic agents in an organization or group, we try to understand how they make

their decisions or choices in a certain environment. Specifically, we try to answer the following

three questions of economic agents by examining the incentives they are facing in each situation:

1. In an organization, should an uninformed superordinate delegate its authority or decision

right to an well-informed subordinate (or subordinates)?

2. In the weakest-link contest where the performance of a group is crucially dependent on the

weakest player in the group, how much effort do players exert to win a prize in the contest?

3. In computer software industry, where does an individual programmer participate in either an

open source project or a commercial project?

First, we consider the decision problem of an superordinate (a principal) within an organization

whether to delegate its authority to a subordinate (an agent) or not. Delegating an authority to

someone is a ubiquitous phenomenon in our reality. Especially, delegation of authority to subordi-

nates is an essential feature of a hierarchically decentralized organization. There are several reasons
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why a person having initially the right to make a decision over something delegates her authority to

others. At first, an economic agent can benefit by delegating its authority to others who have more

information (or ability) to make a decision than herself. Delegation done from this motive is called

“informative” delegation. The strand of literature on “informative” delegation treats delegation

as a means of addressing informational asymmetries within an organization. Second, the motive

for delegation comes from the fact that an economic agent can provide others with a strong effort

incentive by delegating. This is because people tend to work harder when they work with their own

decision or idea than when they are forced to work with other person’s decision or idea. Delegation

done from this motive is called “effort-incentive-giving” delegation. Finally, another motive for

delegation is that an economic agent can benefit by committing its behavior and hence achieving

strategic advantages by delegating its authority to a person whose preference differs from hers. This

sort of delegation is called “strategic” delegation. The literature on “strategic” delegation views

delegation as a means for a principal to commit to a course of action. It is normally modeled as a

two-stage game of complete information: in the first stage, the principal appoints an agent from a

set of potential agents with different types; in the second stage, the agent plays a game with other

players (possibly other agents). Applications have ranged from oligopoly (Vickers (1985), Fersht-

man and Judd (1987)) and central bank independence (Rogoff (1985)) to representative democracy

(Persson and Tabellini (1994), Besley and Coate (2001)).

In chapter 2, we seek to answer the question of whether a superordinate within an organization

should delegate its authority to a subordinate who has more information but different preferences

from the perspective of “informative” and “effort-incentive-giving” delegation. In order to answer

the question, we study an optimal contracting problem of the superordinate in a principal-agent

setting with asymmetric information. Much literature (see chapter 2) studied a principal’s decision

of delegating its authority to an agent or keeping it from the perspective of either “informative” or

“effort-incentive-giving” delegation. In this dissertation, we link these two views of delegation in the

setting of a hierarchically decentralized organization. In the organization, the uninformed principal

faces the choice problem between retaining its authority and delegating it to an informed agent

(possibly multiple agents). That is, we incorporate the effort-incentive-giving motive for delegation

with the informative motive in a principal-agent setting with asymmetric information. In such

a setting, we try to understand why an uninformed principal (e.g., company owners and senior

management) may grant formal decision rights to an agent or possibly multiple agents (e.g., senior
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or middle management) who are better informed but have different objectives. We also suggest

a new type of delegation, delegation to multiple agents, as a way of addressing the asymmetric

information problem the principal faces. That is, we show that the principal can indirectly extract

information from the agents by strategically delegating its authority to multiple agents who have

different preferences. In a sense, hence, we study the principal’s decision problem in view of

“strategic” delegation as well as “informative” and “effort-incentive-giving” delegation.

In chapter 3, we examine the behavior of the economic agents participating in a certain type

of contest. A contest is a situation where each player or group competes against each other to win

a prize or award, and that situation is an easily observed phenomenon in the real world. In this

dissertation, we consider a particular type of group contest where each group competes with each

other to win a prize and the likelihood of each group’s winning in the contest is dependent on the

minimum performance of the players in that group. In other worlds, the performance of a group

participating in a contest depends on the overall performance of all the players in that group and

especially the performance of the weakest player in that group. We call this type of group contest

the “weakest-link contest”, using the term of Hirshleifer (1985). Much literature (see chapter 3)

analyzed a group contest. They assume that the winning probability of each group participating

in the contest depends on the total performance (sum) of all the players in the group. That is,

they assume that the efforts of the players in a group are perfectly substitutive. Due to the perfect

substitutability among efforts of the players in a group, we can intuitively expect that each player

may have much incentive to free ride on the others in his group. Therefore, in equilibrium, only

the hungriest player in each group exerts some efforts and the others in the group free ride on the

hungriest one in their group (Baik (1993)).

However, in the weakest-link contest, we assume that the players’ efforts in a group are not

perfectly substitutive but perfectly complementary. Then what happens to the players’ incentives

in the contest? Given the fact that the players’ efforts are perfectly complementary in a group,

each player in the group will realize that his extra effort, which exceeds any other player’s effort in

his group, is wasteful. Consequently, in equilibrium, all the players in a group match their effort

to the effort level exerted by the least hungry player in their group. That is, there is no incentives

for each player to free ride on others and the least hungry player in each group has an important

role in determining the success of its group in the weakest-link contest. Considering these points,

we can also cast the following question: Is there any incentive for the hungriest player, who has
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more willingness to expend effort, in each group to motivate the least hungry one, who has less

willingness to expend effort, in his group in order to increase his group’s winning probability in

the contest? Interestingly, we find that the answer is “Yes.”. We show that the hungriest player in

each group has an incentive to subsidize the other players’ effort in his group.

Finally, in chapter 4, we analyze an interesting phenomenon observed in the computer software

industry. There are primarily two types of software: commercial software and open source software.

Commercial software is software that is distributed under commercial license agreements with the

purpose of making profit. On the contrary, Open Source Software (OSS) is software whose source

code is publicly known to everyone, enabling anyone to copy, modify and redistribute its source code.

The success of the open source software project cannot be achieved without the tremendous efforts

made by self-motivated individual programmers who are willing to spend their time without getting

paid for their effort and time. Then, the question is “What motivates these programmers to join in

open source software projects that never give them any monetary benefit?”. In this dissertation, we

study the incentives of the economic agents who participate in open source software projects and

examine their decision problems whether to join either open source software projects or commercial

software projects.

From a behavioral perspective grounded on survey data, the various motivations to participate

in open source project have been grouped under two broad categories: intrinsic and extrinsic

motivation (Lakhani and Wolf (2003), Rossi (2004), Robers et al. (2006)). Intrinsic motivation is

defined as the performing of an activity for its inherent satisfactions rather than for some separable

consequence. In the context of open source software, intrinsic motivations can be the enjoyment of

programming, satisfaction, accomplishment as a member of the community, altruism, generalized

reciprocity, and a gift-giving attitude (Rossi (2004)). On the other hand, extrinsic motivation refers

to motivation that stems from factors outside an individual. Rewards like reputation and monetary

compensation are examples of extrinsic motivation. In the context of the open source software, peer

recognition or potential job offers may motivate the open source software developers extrinsically.

Learner and Tirole (2002), from an economic perspective, argue that a programmer participates

in a project only if she derives a net benefit. They also argue that existing economic theory can

explain the motivation for open source project participation as long as a programmer’s benefits and

costs are articulated in her utility function. However, very little research in the economic literature

attempts to explain the motivation of the open source software developers with an economic model
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based on utility theory. In this dissertation, we aim to bridge the gap between economic literature

and behavioral science on the motivation for open source project participation by examining the

programmers’ decision making between open source and proprietary software projects in a stylized

economic model.
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Chapter 2

Information, Incentives, and

Delegation of Authority

2.1 Introduction

Delegation of authority to subordinates is an essential feature of a hierarchically decentralized

organization. Why delegation within an organization? There are two main motives for delegation.

First, a superordinate (she) can benefit by delegating authority to a subordinate (he) who has more

information than herself and having him make a decision on behalf of her. That is, delegation can

be used as a means of addressing informational asymmetries in an organization. Second, delegation

can be used as a way to solve the moral hazard problem because, under delegation, the subordinate

makes his own decision and hence he may work harder for the success of his decision than if he

was forced to work on the superordinate’s decision. Along with these two benefits from delegation,

delegation entails a cost on the superordinate. Once authority is delegated to the subordinate, the

superordinate cannot control the subordinate’s behavior, and hence the subordinate will make his

most favorite decision that is different from the superordinate’s one. That is, delegation results in

a loss of control. Comparing these two rationales for delegation with the cost of delegation, we

study the optimal allocation of authority within an organization, i.e., the question of whether a

superordinate in an organization should delegate or not.

For instance, consider project choices within a firm that consists of a firm owner and several

branch managers. The firm owner wants to select and implement a project that maximizes the

firm’s economic profit or market value but she does not have any information about an economic
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environment that determines the return of each project. That is, the firm owner does not know

which project generates the maximum profit of the firm. Each of the branch managers is well-

experienced and then well-informed about the economic environment but he wants to undertake a

project that maximizes the benefit of his branch rather than a profit-maximizing project because

he is concerned with his career. Hence, if the firm owner delegates her authority to select a project

to one of the branch managers, the manager tends to undertake an inefficient project that is not

the best for the firm owner. However, the manager is willing to exert high effort in implementing

the project, because it gives him high private benefit. In other words, the manager may be highly

motivated to expend his effort on the project. Should the firm owner delegate her authority to one

of the managers or not? If she delegate, to whom and how?

To assess how the allocation of authority within an organization depends on the information

structure and the effort incentives, we study a principal-agent model in which a principal contracts

with an agent (possibly multiple agents). In our main model, a principal and an agent chosen by

the principal should select a project and implement it. The principal is ignorant about an economic

environment (or a state of the world) which determines the payoff of each project when it succeeds,

while agents have the exact information about that. Initially, the authority of selecting a project

is given to the principal, but the principal can delegate the authority to an agent. The probability

that a selected project succeeds or fails depends on the agent’s non-observable effort. Therefore,

the principal should design the optimal allocation of authority and the optimal effort incentive

to solve a problem involving both adverse selection (asymmetric information) and moral hazard

(non-observable effort).

Following the incomplete contracts approach, we assume that a principal and an agent cannot

make a contract on the agent’s private information, the selection of a project, and their payoffs.1

However, the allocation of the authority over project selection is contractible. Thus, the contract

between the principal and the agent specifies the allocation of the authority to select a project

and a wage schedule. A wage schedule cannot be conditioned on the selection of a project or the

principal’s payoff. It is only contingent on the outcome of the project, that is, whether the project

succeeds or fails. Since the authority is initially given to the principal, the principal has an option

to keep the authority of selecting a project or delegate the authority to an agent. In this setting,

we first consider the optimal contract between a principal and a single agent. Then, we study the
1See Aghion, Dewatripont, and Rey (2002) for the incomplete contract literature.
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optimal contract in the case where a principal delegates the authority to multiple agents.

Our main finding is that consideration of effort incentives and asymmetric information within

an organization makes the principal more likely to delegate the authority over project selection to

an agent. However, if information is symmetric, the principal never delegates. We also find that

a well-informed agent has an incentive to reveal the information about an economic environment

to the principal truthfully and voluntarily but the information transmission from the agent to the

principal does not happen because of the time inconsistency problem (commitment problem) in the

agent’s behavior. Furthermore, we suggest delegation to multiple agents as a way of addressing the

asymmetric information problem, and find that the principal can extract the information about an

economic environment indirectly by delegating the authority to multiple agents biased in opposite

directions.

Many papers study the optimal allocation of authority within an organization, i.e., the choice

between delegation and centralization, in a principal-agent setting. Focusing on the informational

benefits of delegation, some papers consider a trade-off between the loss of control resulting from

delegation and the loss of information in case of centralization. Other papers consider the trade-

off between delegation and centralization, focusing on increasing the agent’s effort incentive as

the benefit of delegation. In this chapter we study the principal’s choice between delegation and

centralization from both the information and the effort-incentive perspective of delegation. For

doing this, we combine the models of two papers, Dessein (2002) based on the information view

of delegation and Bester and Krähmer (2008) based on the effort-incentive view of delegation.

Specifically, we extend the model of Bester and Krähmer (2008), where there is no asymmetric

information between a principal and an agent, to the case of asymmetric information as examined

in Dessein (2002). This is one of the main contributions of the current chapter. The other is to

suggest several ways of inducing information revelation by the well-informed agents.

The chapter proceeds as follows. In Section 2.2, we review some literature related to our work.

In Section 2.3, we present the basic model and set up the game. In Section 2.4, we examine the

optimal contracts between a principal and a single agent. Section 2.5 suggests three different forms

of delegation with multiple agents and analyzes the optimal contract between the principal and

multiple agents for each case. We discuss an open question that is important and interesting to

study for our future work in Section 2.6, and finally conclude in Section 2.7.
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2.2 Related Literature

Many papers compare delegation and centralization from the information perspective of delegation.

Dessein (2002) considers a principal-agent relationship where they have diverging preferences on

project selection and have asymmetric information about a state of the world that determines the

optimal project for both the principal and the agent. When the principal delegates her authority

to the agent, she faces a cost, a loss of control, because the biased agent selects his favorite project

that is different from the principal’s favorite. If the principal keeps her authority, there occurs

communication between the principal and the agent, i.e., the principal asks the agent to advise

her on project selection. In this case, communication is a cheap talk game (Crawford and Sobel

(1982)) because the agent does not truthfully report the state of the world. Hence, the principal

faces a cost, a loss of information, in case of keeping her control. In such a setting, Dessein (2002)

shows that delegation is preferred by the principal when the loss of control is relatively small, that

is, the agent’s bias is not too large relative to the principal’s uncertainty about the state of the

world. With a setting similar to Dessein (2002), Harris and Raviv (2005) examine the question

of what determines the allocation of investment decision within a firm consisting of a CEO (a

principal) and a division manager (an agent). Their model differs from Dessein (2002) in that both

the principal and the agent have private information regarding the profit maximizing investment

level. In this setting, Harris and Raviv (2005) show that the likelihood of delegation decreases with

the importance of the principal’s information. Acemoglu et al. (2007) analyze the relationship

between the diffusion of new technologies and the allocation of authority of firms empirically, and

show that firms closer to the technological frontier, firms in more heterogeneous environments, and

younger firms are more likely to delegate.

Some papers compare delegation and centralization from the effort-incentive perspective of

delegation. Aghion and Tirole (1997) study a principal-agent model where a principal hires an

agent to collect information about projects. The principal and the agent acquire information about

projects’ payoffs with some probability, which depends on their effort. They show that delegating

the formal authority to the agent increases his incentives to expend effort for acquiring information

about projects’ payoffs because the principal cannot overrule the agent’s choice under delegation.

Stein (2002) takes into account a distinction between soft and hard information relevant to a

principal’s and an agent’s decision, and shows that when information is soft, delegation increases the

agent’s incentive to search for information. On the contrary, when information is hard (verifiable),
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centralization always dominates delegation. Zábojńık (2002) finds that delegating the authority to

the agent may be optimal even if the principal has better ability to choose a profitable project,

because if the agent chooses a project in his favor, he will be more optimistic about the success

of the project and be more encouraged in exerting effort. Bester and Krähmer (2008) study the

relation between authority and incentives in a standard principal-agent model where a principal

and an agent have different preferences over project selection and the agent’s effort level depends

not only on the selected project but also on monetary incentives. They find that the consideration

of effort incentives makes the principal less likely to delegate the authority to the agent.

In this chapter we study the principal’s choice between delegation and centralization from

both the information and the effort-incentive perspective of delegation. We combine the two lit-

eratures, the information view of delegation taken by Dessein (2002) and the effort-incentive view

of delegation assumed by Bester and Krähmer (2008). We then suggest several ways of inducing

information revelation by the well-informed agents. Specifically, we suggest delegation to multiple

agents as a tool to induce information revelation by the well-informed agents. Hence our work

is related to Legros (1993) and Gautier and Paolini (2007) who consider delegation as a tool to

transmit information. Legros (1993) considers a two-period model of repeated delegation with

asymmetric information. In his model, the principal delegates the decision of the first project to a

better informed agent chosen from a given set of agents. In the second period, the principal can

either reselect the same agent and let him choose the second project or she can hire a new agent

to implement the second decision. The agent chosen in the first period faces a trade-off between

the immediate benefit of implementing his preferred policy (revealing his private information) and

the probability of being reselected that increases when he can convince the principal that his pref-

erence is close to her. So, the first period decision is used by the agent to signal the agent’s private

information (his type) to the principal. Gautier and Paolini (2007) compare two different organi-

zational structures: centralization and partial delegation. Under centralization, the agent transmit

a message about the state of the world to the principal, and the principal then chooses projects.

Under partial delegation, the principal delegates the decision of the first period to the agent. After

observing the agent’s choice in the first period, the principal chooses a project in the second period.

By observing the agent’s choice in the first period, the principal may acquire the agent’s private

information. They show that partial delegation is a mechanism to induce full revelation by the

well-informed agent.
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Our work is also related to the literature studying the optimal form of delegation. Krähmer

(2006) considers a partially incomplete contracting environment where the principal’s commitment

is limited by non-contractibility of actions, but message from the agent to the principal and decision

right are contractible. Since decision rights and message are contractible, the principal can transfer

control on a contingent basis, depending on a report by the agent (contingent delegation). He

shows that contingent delegation provides the principal with an additional instrument to structure

the agent’s incentives to reveal information. Mylovanov (2008) establishes the veto-power principle

in a principal-agent model with hidden information and no monetary transfers. He argues that

veto-based delegation is an attractive decision mechanism because with a proper choice of a default

decision it achieves the optimal separation of decision initiation and decision control. Under veto-

based delegation, the principal encourages the agent to use his knowledge through delegation of

formal rights to initiate and implement decisions, while she prevents him from being excessively

opportunistic by holding the right to block his decision. Alonso and Matouschek (2008) study the

characterization of optimal decision rules by a principal who faces an informed but biased agent

and who is unable to commit to contingent monetary transfers. They show that the principal

benefits from delegation if and only if the principal and the agent are minimally aligned. They

also consider how much discretion the agent should have, i.e., which decisions the agent should be

allowed to make and which should be ruled out, and show that interval delegation (Holmström,

1984), specifying an interval of decisions from which the agent is allowed to choose his preferred

one, is optimal when the agent is sufficiently aligned with the principal.

2.3 The Basic Model

Consider an organization in which a risk-neutral principal and risk-neutral agents should jointly

undertake a project d ∈ D, where D is a set of projects. We adopt an incomplete contracting

approach by assuming that project selection is not verifiable to the third party and hence cannot

be contracted upon but the right over project selection can be assigned contractually either to

the principal or the agent. The right over project selection is initially given to the principal. We

call this decision right authority. If the principal keeps authority, she retains the right to select a

project. On the other hand, if she delegates her authority, she grants the right over project selection

to an agent. There exist various types of agents. Agent i, denoted by Ai, is represented by his type

bi ∈ B. B = [−b,−b] ∪ [b, b] is a set of possible agents’ types where 0 < b < b. The type of each
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agent is observable to the principal.

The success or failure of a project depends on the agent’s effort e. The agent exerts his effort

after a project is chosen. Thus, at the stage where the agent exerts his effort, he knows which

project is chosen, i.e., a selected project d. If the agent chooses his effort level e, he incurs the effort

cost c(e) = e2/2 and the project succeeds with probability p(e) = e ∈ [0, 1]. Following a standard

principal-agent model with moral hazard, we assume that the agent’s effort is not verifiable.

If the project fails both the principal and the agent get zero. If a project succeeds the principal

and the agent receive the private benefits uP and uA, respectively. These benefits depend on a state

of the world described by a parameter θ ∈ Θ. A state of the world θ is a random variable which

has twice differentiable distribution F (θ) with positive density f(θ) supported on [−L,L], where

L > 0. We assume that only the agents observe the realization of θ and the principal only knows

Θ = [−L,L] and the distribution F (θ). The private benefits of the principal and the agent, when

a project d succeeds, are defined as

uP (d) = rP − kP (θ − d)2

and

uAi(d) = rAi − kAi(θ + bi − d)2,

where the project-space D is defined as [−(L + b), L + b].2 These benefits are not verifiable to

the third party and hence are not contractible. In order to guarantee the nonnegativity of private

benefits, we assume that rP > kP (2L + b)2 and rAi > 4kA(L + b)2. The parameters kP > 0 and

kAi > 0 describe how much the principal and the agent care about project selection. Thus the

principal’s benefit reaches a unique maximum when the project d = θ is chosen and the agent’s

benefit is maximized when the project d = θ + bi is chosen. The principal and the agent have

conflicting interests over the selection of a project by assuming bi 6= 0. We refer to bi as the bias

of agent i because, for a given state of the world θ, the most favorite project of the principal (θ)

is different from the one of the agent (θ + bi). In other words, the principal and the agent have

different ideal projects, which are dependent on θ.

The agents are identical except for their own biases in the sense that, regardless of agents’

types (biases), each agent gets the same maximum private benefit when his ideal project is selected

and it succeeds, and each agent has the same weight of how much he cares about the selection of
2This utility function is used in Crawford and Sobel (1982), Dessein (2002), and Bester and Krähmer (2008)
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a project. This implies that rAi = rA and kAi = kA for all i.

Let w = (ws, wf ) be an incentive scheme contingent on success and failure of a selected project.

If the project succeeds, the principal pays the agent the wage ws. If the project fails, the principal

pays the agent the wage wf . Then the expected payoffs of the principal and agent, for given a state

of the world θ, are

UP (d, e, w) = e
(
rP − kP (θ − d)2 − ws

)
− (1− e)wf

and

UAi(d, e, w) = e
(
rA − kA(θ + bi − d)2 + ws

)
+ (1− e)wf −

1
2
e2.

Each agent’s outside option payoff, or reservation utility, is UAi = 0. We assume that the

agent has limited liability, i.e., the agent cannot be paid a negative wage in any case. This means

that ws ≥ 0 and wf ≥ 0.

Since the selection of a project is not contractible, the principal offers an agent a contract

which specifies the allocation of the authority to select a project and the wage schedule w. We

describe the allocation of authority by h ∈ {P,A}.3 If h = P , the principal keeps the right to select

a project d ∈ D and we call this case centralization. If h = A, she delegates the right to an agent

and we call this case delegation.

                                                                                   

       θ  is realized                            selects a project                Payoffs are realized               h

 

                               Principal offers                       Agent exerts effort                        

                            an agent a contract ( ,                                 )h w

 

 Figure 2.1: The Sequence of Events

The time structure of the model is summarized in Figure 2.1: First, a state of the world (θ)

is realized. Note that only the agents observe the realization of θ. Second, the principal offers an

agent (chosen from a set of agents) a contract (h,w) that specifies the allocation of authority and

the wage schedule. If the agent accepts the principal’s offer, according to the contract, the party

h who has the authority selects a project at the subsequent stage. If the agent does not accept

the offer the game ends and both the principal and agent get nothing. Next, the agent chooses his
3This notation is used in Bester and Krähmer (2008).
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effort e after observing the selected project by the party h. The effort exerted by the agent affects

the project’s probability of success and failure and the payoffs of the principal and the agent are

realized in the final stage.

2.4 Optimal contracts

2.4.1 Optimal contracts when information is symmetric

As a benchmark, we consider a symmetric information case where both the principal and agents

can observe the realization of θ, a state of the world. To find the optimal allocation of authority

and wage schedules in the view of the principal, we consider two scenarios: one case where the

principal keeps her authority to select a project and the other case where the principal delegates

her authority to an agent.

The optimal contract under centralizaton

We examine the case where the principal keeps her authority, that is, the principal offers a contract(
h = P,w = (ws, wf )

)
to agent i. For doing this, we work backwards. At first, we study the optimal

wage scheme (ws, wf ) which the principal offers to agent i and a project she chooses. Then, we

consider the principal’s problem of choosing the type of an agent.

After observing a state of the world θ, the principal solves the optimal contracting problem

under moral hazard:

max
{ws,wf ,d}

UP = e
(
rP − kP (θ − d)2 − ws

)
+ (1− e)(−wf ) (2.1)

subject to:

(a) The limited-liability constraint:

ws ≥ 0, wf ≥ 0;

(b) The participation constraint of the agent:

UAi = e
(
rA − kA(θ + bi − d)2 + ws

)
+ (1− e)wf −

1
2
e2 ≥ UAi ;

(c) The incentive-compatibility constraint, which stipulates that the effort level maximizes the

agent’s expected payoff given ws, wf , and d:

e = arg max
e∈[0,1]

UAi = e
(
rA − kA(θ + bi − d)2 + ws

)
+ (1− e)wf −

1
2
e2.
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The incentive-compatibility constraint (c) can be simplified to:

e = rA − kA(θ + bi − d)2 + ws − wf . (2.2)

Substituting (2.2) into (2.1) and solving the principal’s optimal contracting problem, we obtain

the following wage schedule and a project the principal chooses:

ws =
1
2

(
rP − rA +

kAkP (kP − kA)bi2

(kA + kP )2

)
, wf = 0 and d = θ +

kAbi
kA + kP

. (2.3)

Now we consider the principal’s problem of choosing an agent from a set of agents. Substituting

(2.2) and (2.3) into (2.1) and solving the principal’s maximization problem with respect to bi ∈ B,

we obtain the optimal type of agent, b∗i , the principal chooses. The following lemma summarizes

the optimal contract under centralization. All proofs are presented in the Appendix.

Lemma 2.1

(a) Under centralization, the principal offers the agent whose bias is b∗i = b (-b) the contract(
h = P,w = (w∗s , w

∗
f )
)

such that w∗s = 1
2

(
rP − rA + kAkP (kP−kA)b2

(kA+kP )2

)
and w∗f = 0. The

principal selects a project d∗ = θ + kAb
kA+kP

(d∗ = θ − kAb
kA+kP

) and the agent then exerts his

effort e∗ = 1
2

(
rP + rA − kAkP b

2

kA+kP

)
.

(b) The expected payoffs of the principal and the agent are U∗P = 1
4

(
rP + rA − kAkP b

2

kA+kP

)2 and

U∗Ai = 1
8

(
rP + rA − kAkP b

2

kA+kP

)2, respectively.

To complete the analysis of the optimal contract under centralization when information is

symmetric, we also consider the case where neither the principal nor the agents can observe the

realization of θ. In this case, the principal solves the optimal contracting problem under moral

hazard:

max
{ws,wf ,d}

UP =
∫ L

−L

{
e
(
rP − kP (θ − d)2 − ws

)
+ (1− e)(−wf )

}
dF (θ) (2.4)

subject to:

(a) The limited-liability constraint:

ws ≥ 0, wf ≥ 0;
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(b) The participation constraint of the agent:

UAi =
∫ L

−L

{
e
(
rA − kA(θ + bi − d)2 + ws

)
+ (1− e)wf −

1
2
e2

}
dF (θ) ≥ UAi ;

(c) The incentive-compatibility constraint, which stipulates that the effort level maximizes the

agent’s expected payoff given ws, wf , and d:

e = arg max
e∈[0,1]

UAi =
∫ L

−L

{
e
(
rA − kA(θ + bi − d)2 + ws

)
+ (1− e)wf −

1
2
e2

}
dF (θ).

The incentive-compatibility constraint (c) can be simplified to:

e = rA − kA
∫ L

−L
(θ + bi − d)2dF (θ) + ws − wf . (2.5)

Substituting (2.5) into (2.4) and solving the principal’s optimal contracting problem, we ob-

tain the following first-order conditions for the optimal incentive scheme and project the principal

chooses:

ws = 1
2

(
rP − rA + kA

∫ L
−L(θ + bi − d)2dF (θ)− kP

∫ L
−L(θ − d)2dF (θ)

)
,

wf = 0 and − kA
∫ L
−L(θ+bi−d)dF (θ)

kP
∫ L
−L(θ−d)dF (θ)

=
rA−kA

∫ L
−L(θ+bi−d)2dF (θ)+ws

rP−kP
∫ L
−L(θ−d)2dF (θ)−ws

.

 (2.6)

As one of many examples, we now assume that a state of the world θ is uniformly distributed

on [−L,L]. By using this assumption and solving the first-order conditions in (2.6) simultaneously,

we obtain the following incentive scheme and a project the principal chooses:

ws =
1
2

(
rP − rA +

kAkP (kP − kA)bi2

(kA + kP )2
− L2

3
(kP − kA)

)
, wf = 0 and d =

kAbi
kA + kP

. (2.7)

Now we consider the principal’s problem of choosing an agent from a set of agents. Substituting

(2.5) and (2.7) into (2.4) and solving the principal’s maximization problem with respect to bi ∈ B,

we obtain the optimal type of agent, b◦i , the principal chooses. The following lemma summarizes

the optimal contract under centralization. All proofs are presented in the Appendix.

Lemma 2.2

(a) If both the principal and agent are ignorant about the realization of θ, the principal, under

centralization, offers the agent whose bias is b◦i = b (-b) the contract
(
h = P,w = (w◦s , w

◦
f )
)
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such that w◦s = 1
2

(
rP − rA + kAkP (kP−kA)b2

(kA+kP )2
− L2

3 (kP − kA)
)

and w◦f = 0. The principal

selects a project d◦ = kAb
kA+kP

(d◦ = − kAb
kA+kP

) and the agent then exerts his effort e◦ =
1
2

(
rP + rA − kAkP b

2

kA+kP
− L2

3 (kP + kA)
)
.

(b) The expected payoffs of the principal and the agent are U◦P = 1
4

(
rP+rA− kAkP b

2

kA+kP
−L2

3 (kP+kA)
)2

and U◦Ai = 1
8

(
rP + rA − kAkP b

2

kA+kP
− L2

3 (kP + kA)
)2
, respectively.

The optimal contract under delegation

Now we examine the case where the principal delegates her authority to an agent, that is, the

principal offers a contract
(
h = A,w = (ws, wf )

)
to agent i. For doing this, we again work

backwards. At first, we study the optimal wage scheme (ws, wf ) which the principal offers to agent

i. Then, we consider the principal’s problem of what type of agent she chooses.

After observing a state of the world θ, the principal solves the optimal contracting problem

under moral hazard:

max
{ws,wf}

UP = e
(
rP − kP (θ − d)2 − ws

)
+ (1− e)(−wf ) (2.8)

subject to:

(a) The limited-liability constraint:

ws ≥ 0, wf ≥ 0;

(b) The participation constraint of the agent:

UAi = e
(
rA − kA(θ + bi − d)2 + ws

)
+ (1− e)wf −

1
2
e2 ≥ UAi ;

(c) The incentive-compatibility constraint, which stipulates that the project and the effort level

maximize the agent’s expected payoff given ws and wf :

d = arg max
d∈D

UAi = e
(
rA − kA(θ + bi − d)2 + ws

)
+ (1− e)wf −

1
2
e2

and

e = arg max
e∈[0,1]

UAi = e
(
rA − kA(θ + bi − d)2 + ws

)
+ (1− e)wf −

1
2
e2.
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The incentive-compatibility constraints (c) can be simplified to:

d = θ + bi and e = rA + ws − wf . (2.9)

Substituting (2.9) into (2.8) and solving the principal’s optimal contracting problem with

respect to ws and wf , we obtain the following incentive scheme the principal makes:

ws =
1
2
(
rP − rA − kP bi2

)
and wf = 0. (2.10)

Now we consider the principal’s problem of choosing an agent from a set of agents. Substituting

(2.9) and (2.10) into (2.8) and solving the principal’s maximization problem with respect to bi ∈ B,

we obtain the optimal type of agent, b∗∗i , the principal chooses. The following lemma summarizes

the optimal contract under delegation. All proofs are presented in the Appendix.

Lemma 2.3

(a) Under delegation, the principal offers the agent whose bias is b∗∗i = b (-b) the contract
(
h =

A,w = (w∗∗s , w
∗∗
f )
)

such that w∗∗s = 1
2

(
rP − rA − kP b2

)
and w∗∗f = 0. The agent selects a

project d∗∗ = θ + b (d∗∗ = θ − b) and then exerts his effort e∗∗ = 1
2

(
rP + rA − kP b2

)
.

(b) The expected payoffs of the principal and the agent are U∗∗P = 1
4

(
rP + rA − kP b

2
)2 and

U∗∗Ai = 1
8

(
rP + rA − kP b2

)2, respectively.

Lemma 2.3 says that the optimal incentive w∗∗s , effort level of the agent e∗∗, and the expected

payoffs of the principal and agent increase as b decreases. This is intuitively true, because, as

the agent’s bias becomes small, the private benefit of the principal in the case of project success

increases, and hence the principal pays the agent more to induce him to exert more effort in

implementing the project. This also implies that the principal differentiates the wages of agents

according to their types. Finally, note that the expected payoffs of the principal and agent, U∗∗P

and U∗∗Ai , have the same maximum values in the hypothetical case when b = 0, i.e., the preference

of the agent is perfectly aligned with the principal’s.

From Lemma 2.1 and Lemma 2.3, we obtain the following proposition that characterizes the

optimal allocation of authority in the view of the principal when information is completely sym-

metric.

Proposition 2.4 When information is symmetric, i.e. both the principal and agent can observe

the realization of θ, centralization is optimal and efficient. That is, delegation never happens under

symmetric information.

18



Proof. Let us compare the expected payoffs of the principal and agent under centralization with

those under delegation. Since kP > 0 and kA > 0, we can easily show that U∗P > U∗∗P . This means

that centralization is optimal for the principal. Trivially, we can show that U∗Ai > U∗∗Ai . Hence,

centralization is efficient for the principal and agent. Q.E.D.

2.4.2 Optimal contracts when information is asymmetric

Now we consider an asymmetric information case where agents can observe the realization of θ,

a state of the world, but the principal cannot. To find the optimal allocation of authority and

incentives in the view of the principal, we consider two scenarios: one case where the principal keeps

her authority to select a project and the other case where the principal delegates her authority to

an agent.

The optimal contract under centralizaton

We examine the case where the principal keeps her authority, that is, the principal offers a contract(
h = P,w = (ws, wf )

)
to agent i. For doing this, we work backwards. At first, we study the optimal

wage scheme (ws, wf ) which the principal offers to agent i and a project she chooses. Then, we

consider the principal’s problem of what type of agent she chooses. Since the principal cannot

observe the realized state of the world θ, the principal solves the following optimal contracting

problem under moral hazard:

max
{ws,wf ,d}

UP =
∫ L

−L

{
e
(
rP − kP (θ − d)2 − ws

)
+ (1− e)(−wf )

}
dF (θ) (2.11)

subject to:

(a) The limited-liability constraint:

ws ≥ 0, wf ≥ 0;

(b) The participation constraint of the agent:

UAi = e
(
rA − kA(θ + bi − d)2 + ws

)
+ (1− e)wf −

1
2
e2 ≥ UAi ;

(c) The incentive-compatibility constraint, which stipulates that the effort level maximizes the

agent’s expected payoff given ws, wf , and d:

e = arg max
e∈[0,1]

UAi = e
(
rA − kA(θ + bi − d)2 + ws

)
+ (1− e)wf −

1
2
e2.
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The incentive-compatibility constraint (c) can be simplified to:

e = rA − kA(θ + bi − d)2 + ws − wf . (2.12)

Substituting (2.12) into (2.11) and solving the principal’s optimal contracting problem, we

obtain the following first-order conditions for the optimal incentive scheme and project the principal

chooses:

ws = 1
2

(
rP − rA + kA

∫ L
−L(θ + bi − d)2dF (θ)− kP

∫ L
−L(θ − d)2dF (θ)

)
,

wf = 0 and
kP
∫ L
−L(θ−d)(rA−kA(θ+bi−d)2+ws)dF (θ)

kA
∫ L
−L(θ+bi−d)(rP−kP (θ−d)2−ws)dF (θ)

= −1.

 (2.13)

Assuming that a state of the world θ is uniformly distributed on [−L,L] and solving the first-

order conditions in (2.13) simultaneously, we obtain the following incentive scheme and project the

principal chooses:

ws = 1
2

(
rP − rA + kAkP (kP−kA)bi

2

(kA+kP )2
− 4kAkP bi∆(bi)

kA+kP
− (kP − kA)

(
∆(bi)2 + L2

3

))
, wf = 0

and d = kAbi
kA+kP

+ ∆(bi),

 (2.14)

where ∆(bi) ≡ A−(B+
√
A3+B2)2/3

(B+
√
A3+B2)1/3

, A = (kA + kP )2
(
L2
(
L(kA − kP )2 + 12kAkP

)
− 3
(
(rA + rP )(kA +

kP )− bi2kAkP
))

and B = 9biL2(3− L)kAkP (kA − kP )(kA + kP )3.

Now we consider the principal’s problem of choosing an agent from a set of agents. Substituting

(2.12) and (2.14) into (2.11) and solving the principal’s maximization problem with respect to

bi ∈ B, we obtain the optimal type of agent, b?i , the principal chooses. The following lemma

summarizes the optimal contract under centralization. All proofs are presented in the Appendix.

Lemma 2.5

(a) Under centralization, the principal offers the agent whose bias is b?i = b (-b) the contract(
h = P,w = (w?s , w

?
f )
)

such that

w?s =
1
2

(
rP − rA +

kAkP (kP − kA)b2

(kA + kP )2
− 4kAkP b∆(b)

kA + kP
− (kP − kA)

(
∆(b)2 +

L2

3
))

and w?f = 0.

The principal selects a project d? = kAb
kA+kP

+ ∆(b)(d? = − kAb
kA+kP

−∆(b)) and the agent then

exerts his effort e? = rA − kA(θ + b?i − d?)2 + w?s .
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(b) The expected payoffs of the principal and the agent are

U?P =
1

2L

∫ L

−L

(
rA − kA(θ + b?i − d?)2 + w?s

)(
rP − kP (θ − d?)2 − w?s

)
dθ

and

U?Ai =
1

4L

∫ L

−L

(
rA − kA(θ + b?i − d?)2 + w?s

)2
dθ, respectively.

The optimal contract under delegation

We examine the case where the principal delegates her authority to an agent, that is, the principal

offers a contract
(
h = A,w = (ws, wf )

)
to agent i. For doing this, we work backwards. At first, we

study the optimal wage scheme (ws, wf ) which the principal offers to agent i. Then, we consider

the principal’s problem of what type of agent she chooses. Since the principal cannot observe the

realized state of the world θ, the principal solves the following optimal contracting problem under

moral hazard:

max
{ws,wf}

UP =
∫ L

−L

{
e
(
rP − kP (θ − d)2 − ws

)
+ (1− e)(−wf )

}
dF (θ) (2.15)

subject to:

(a) The limited-liability constraint:

ws ≥ 0, wf ≥ 0;

(b) The participation constraint of the agent:

UAi = e
(
rA − kA(θ + bi − d)2 + ws

)
+ (1− e)wf −

1
2
e2 ≥ UAi ;

(c) The incentive-compatibility constraints, which stipulates that the project and the effort

level maximize the agent’s expected payoff given ws and wf :

d = arg max
d∈D

UAi = e
(
rA − kA(θ + bi − d)2 + ws

)
+ (1− e)wf −

1
2
e2

and

e = arg max
e∈[0,1]

UAi = e
(
rA − kA(θ + bi − d)2 + ws

)
+ (1− e)wf −

1
2
e2.

The analysis of this principal’s optimal contracting problem can be done by the same way as in

case of delegation under symmetric information. Consequently, we obtain Lemma 2.6 which shows

the same results as those in Lemma 2.3.
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Lemma 2.6

(a) Under delegation, the principal offers the agent whose bias is b??i = b (-b) the contract
(
h =

A,w = (w??s , w
??
f )
)

such that w??s = 1
2

(
rP − rA − kP b2

)
and w??f = 0. The agent selects a

project d?? = θ + b (d?? = θ − b) and then exerts his effort e?? = 1
2

(
rP + rA − kP b2

)
.

(b) The expected payoffs of the principal and the agent are U??P = 1
4

(
rP + rA − kP b

2
)2 and

U??Ai = 1
8

(
rP + rA − kP b2

)2, respectively.

From Lemma 2.5 and Lemma 2.6, we obtain the following proposition that characterizes the

optimal allocation of authority in the view of the principal when information is asymmetric.

Proposition 2.7 When information is asymmetric, there exists L̂, a critical value of L, so that

the principal delegates her authority to the agent as long as L ≥ L̂.

Proof. From Lemma 2.2 and 2.5, we can see that U?P is continuous and decreasing in L, and that

it converges to its maximum value U∗P as L goes to 0, because w?s → w∗s , d
? → d∗, and e? → e∗ as

L → 0. In addition, it holds that U∗P ≥ U?P ≥ U◦P where the equalities hold when L = 0. By the

way, since it always holds that U∗P > U??P , there exists L̂, a critical value of L, such that U?P ≤ U??P
for L ≥ L̂. Q.E.D.

By Proposition 2.4 and 2.7, we now conclude that the optimal allocation of authority depends

on the information structure. If information is symmetric between the principal and agent, the

principal keeps her authority to select a project: centralization is the optimal choice in the view of

the principal. If information is asymmetric, however, she delegates her authority to an agent, i.e.

delegation is the optimal choice. We also have the following proposition from these results.

Proposition 2.8 If information is asymmetric and the uncertainty the principal faces is large

enough (i.e. L ≥ L̂), there exists the agent’s incentive to transmit his private information truthfully

to the principal before principal’s offering a contract.

Proof. By Proposition 2.7 the principal delegates her authority to the agent if the uncertainty about

a state of the world she faces is large enough. When information is asymmetric, consequently, the

agent gets his expected payoff U??Ai , which is less than U∗Ai , the expected payoff he gets in the case
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of symmetric information. This implies that the agent is better off under centralization and sym-

metric information than under delegation and asymmetric information. Therefore, if information

is asymmetric, the agent has an incentive to transmit his information truthfully to the principal

and hence make her centralize a project selection. Q.E.D.

However, the information transmission from the agent to the principal does not work because

the agent’s commitment to tell the information truthfully is unenforceable: the principal would

interpret the true information incorrectly because she is also aware of the incentive for the agent

to lie, and the agent cannot remove this incentive within the confines of our model.

2.5 Information revelation by delegating to multiple agents

In the previous section we have studied the optimal contract between a principal and a single

agent. We have shown that under asymmetric information, delegation is the optimal choice of the

principal, while centralization is optimal under symmetric information. We also have found that

under asymmetric information, the agent has an incentive to transmit his private information to

the principal but this information transmission is impossible because of the agent’s commitment

problem or time inconsistency problem. Consequently, the impossibility of the information flow

from the agent to the principal results in the regime of delegation under asymmetric information.

Our next question is how the principal can extract the information from the agent. As one

answer for this question, in this section, we suggest the regime of delegation to multiple agents.

Namely, we consider the optimal contract in a setting where the principal delegates her authority

of selection a project to several agents.

We first suggest a simple mechanism design under delegation to multiple agents as a way of

extracting agents’ information. The principal offers agents a certain rule under which the agents

decide a project to be implemented. Specifically, we consider an average rule as a mechanism

through which a project is selected by the agents. That is, with the average rule, the project that

will be implemented is the arithmetic mean of projects which are proposed by all the agents. In

such a setting, we show that the principal can extract more information by delegating to multiple

agents with this simple mechanism (the average rule) than by delegating to a single agent.

Second, we consider a situation where a principal delegates her authority to multiple agents and

she does not offer any mechanism or any rule. We hypothetically adopt a bargaining procedure as
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a way of agents’ determining a project to be implemented. We find, interestingly and surprisingly,

that under this hypothetical setting, the principal can extract all the information by delegating to

multiple agents and not providing any kind of mechanism.

Finally, we suggest the division of labor between agents as a way of extracting information.

Under the regime of delegation with division of labor, a principal assigns a different task to each

agent. That is, the principal gives her authority to an agent and then have the other agent

implement a project chosen by the agent having the authority. We find that the principal can

extract all the information under this regime. In order to keep our analysis simple without changing

our focus, we consider the optimal contract when the principal offers a contract to two agents,

called agent 1 and agent 2.

2.5.1 Delegation to multiple agents with a mechanism design (Joint decision

making of agents)

In the previous section we see that the agent chooses his favorite project if a principal delegates her

authority of choosing a project to a single agent. Then what project will be chosen if the principal

delegates her authority to two agents? How can the principal extract the private information from

two agents? To answer these questions, we suggest an average rule as a mechanism design or

decision rule under which a project to be implemented is determined by agents. The average rule

prescribes that the principal should commit to implement the arithmetic mean of projects which

are proposed by the agents.
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Figure 2.2: The Sequence of Events

The time structure of the model is summarized in Figure 2.2. First, a state of the world θ is

realized and only the agents observe the realization of θ. Second, the principal offers two agents
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from a set of agents a contract (h = A,w, r) that specifies the allocation of authority (delegation),

the wage schedule, and a mechanism that specifies a rule under which a project to be implemented

is selected by the agents, where r denotes an average rule. If the agents accept the principal’s offer,

each agent proposes a project to the principal and a project to be implemented is chosen according

to the mechanism r at the subsequent stage. Note that, under the mechanism r, the final project is

the arithmetic mean of the projects the agents propose to the principal. If the agents do not accept

the offer, the game ends and both the principal and the agents get nothing. Next, the agents choose

their effort levels. Finally, the efforts exerted by the agents affect the probability of the project

success and the payoffs of the principal and agents are realized.

Optimal contracts

We follow the basic settings of Section 2.4 about a state of nature, a set of agents, the project space,

and so on other than the probability of succeeding a project. We now assume that p(e1, e2) =
1
2(e1 + e2) where ei is the effort level of agent i and ei ∈ [0, 1].

Since the principal cannot observe the realized state of the world θ, the principal solves the

following optimal contracting problem under moral hazard:

max
{ws,wf}

UP =
∫ L

−L

{
p(e1, e2)

(
rP − kP (θ − d)2 − 2ws

)
+ (1− p(e1, e2)) (−2wf )

}
dF (θ) (2.16)

subject to:

(a) The limited-liability constraint:

ws ≥ 0, wf ≥ 0;

(b) The participation constraint of each agent:

UAi = p(e1, e2)
(
rA − kA(θ + bi − d)2 + ws

)
+ (1− p(e1, e2))wf −

1
2
e2
i ≥ UAi ;

(c1) The incentive-compatibility constraint, which stipulates that the effort level of each agent

maximizes the agent’s expected payoff given ws, wf , d and the other agent’s effort:

ei = arg max
ei∈[0,1]

UAi ;

(c2) The incentive-compatibility constraint, which stipulates that a project each agent proposes

to the principal maximizes the agent’s expected payoff given ws, wf and the project the other agent

proposes:

di = arg max
di∈D

UAi .
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The incentive-compatibility constraint of each agent (c1) can be simplified to:

ei =
1
2
(
rA − kA(θ + bi − d)2 + ws − wf

)
. (2.17)

Substituting (2.17) into UAi and solving agent i’s maximization problem with respect to di

that is a project proposed by agent i, the incentive-compatibility constraint (c2) can be simplified

to:

d1 = 2B1 − d2 and d2 = 2B2 − d1, (2.18)

where B1 = θ + 1
3(2b1 + b2) + ε+ and B2 = θ + 1

3(b1 + 2b2) + ε−. The derivation of the result and

ε± are presented in the Appendix.

Now we consider the stage where each agent proposes a project to the principal. Employing

the concept of Nash equilibrium and solving the equations in (2.18), we find what projects the

agents propose in equilibrium. Lemma 2.9 shows the results. Without loss of generality, we assume

b1 ≥ b2. All proofs are presented in the Appendix.

Lemma 2.9

(a) If b1 = b2(= b), then the project combination the agents propose at (Nash) equilibrium is any

(d1, d2) such that d1+d2
2 = θ + b and d1, d2 ∈ D. Consequently, a project to be implemented

is θ + b.

(b) If b1 6= b2 or equivalently b1 > b2, then the projects the agents propose at equilibrium is either

(d1 = L+ b, d2 = 2B2−L− b), (d1 = L+ b, d2 = −L− b), or (d1 = 2B1 +L+ b, d2 = −L− b).

Consequently, a project to be implemented is either B2, 0 or B1.

From the outcomes in Lemma 2.9 we obtain the following proposition that characterizes the

optimal type of agents to whom the principal offers a contract for extracting information under the

average rule. All proofs are presented in the Appendix.

Proposition 2.10 The principal can extract more information from agents when she delegates her

authority to the agents biased in opposite directions and uses an average rule as a mechanism than

when she delegates to a single agent. Specifically, when the principal delegates her authority to the

agents with bias b and −b, i.e. b1 = b and b2 = −b, she obtains the maximum level of information

through the average rule.
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Finally, by using the result in Proposition 2.10 and solving the principal’s optimal contracting

problem in (2.16), we can get the optimal incentive scheme the principal offers to the agents. We

omit to find the optimal incentive scheme here because of its irrelevancy to our purpose and the

complexity of computation.

2.5.2 Delegation to multiple agents without any mechanism

In the previous section we have shown that the principal can extract some information by delegating

her authority to multiple agents and using a simple mechanism, called an average rule, as a decision

rule under which a project to be implemented is selected by agents. Then what happens if the

principal delegates the authority to multiple agents without giving them any mechanism or any

decision rule? Is delegating to multiple agents still beneficial to the principal in that case? To answer

to this question, we hypothetically adopt a bargaining procedure as a way of agents’ selecting a

project to be implemented. That is, we assume to design a bargaining procedure by which the

multiple agents make a decision on project selection.
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Figure 2.3: The Sequence of Events

The time structure of the model is summarized in Figure 2.3. First, a state of the world θ is

realized and only the agents observe the realization of θ. Second, the principal offers two agents

from a set of agents a contract (h = A,w) that specifies the allocation of authority (delegation) and

the wage schedule. If the agents accept the principal’s offer, according to the contract, the agents

select a project at the subsequent stage. Note that the decision on project choice is made in a

bargaining procedure between the agents. If the agents do not accept the offer, the game ends and

both the principal and the agents get nothing. Next, the agents choose their effort levels. Finally,

the effort exerted by the agents affect the probability of the project success and the payoffs of the

principal and agents are realized.
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Optimal contracts

To solve the principal’s optimal contracting problem, we work backwards. At first, we consider the

optimal wage scheme (ws, wf ) the principal offers to two agents given arbitrarily. And then, we

solve the principal’s problem of choosing the types of agents.

Since the principal cannot observe the realized state of the world θ, the principal solves the

following optimal contracting problem under moral hazard:

max
{ws,wf}

UP =
∫ L

−L

{
p(e1, e2)

(
rP − kP (θ − d)2 − 2ws

)
+ (1− p(e1, e2)) (−2wf )

}
dF (θ) (2.19)

subject to:

(a) The limited-liability constraint:

ws ≥ 0, wf ≥ 0;

(b) The participation constraint of each agent:

UAi = p(e1, e2)
(
rA − kA(θ + bi − d)2 + ws

)
+ (1− p(e1, e2))wf −

1
2
e2
i ≥ UAi ;

(c) The incentive-compatibility constraint, which stipulates that the effort level of each agent

maximizes the agent’s expected payoff given ws, wf , d and the other agent’s effort:

ei = arg max
ei∈[0,1]

UAi = p(e1, e2)
(
rA − kA(θ + bi − d)2 + ws

)
+ (1− p(e1, e2))wf −

1
2
e2
i ;

(d) The Nash bargaining solution requirement:

d = arg max
d∈D

(
UA1 − UA1

)α (
UA2 − UA2

)1−α
,

where α = 0.5, i.e., we assume that all the agents have equal bargaining power.

The incentive-compatibility constraint of each agent (c) can be simplified to:

ei =
1
2
(
rA − kA(θ + bi − d)2 + ws − wf

)
. (2.20)

Substituting (2.20) into UAi and solving the bargaining problem between agents, the Nash

bargaining solution requirement (d) can be simplified to:

d = θ +
1
2

(b1 + b2). (2.21)
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Note that the Nash bargaining solution in (2.21), d = θ + 1
2(b1 + b2), is (first-best) efficient

because the project maximizes the overall expected surplus UA1 +UA2 . The detail for the result is

presented in the Appendix.

Substituting (2.20) and (2.21) into (2.19) and solving the principal’s optimal contracting prob-

lem, we obtain the following incentive scheme:

ws =
1
4

(
rP − 2rA −

1
4
kP (b1 + b2)2 +

1
2
kA(b1 − b2)2

)
and wf = 0. (2.22)

Now we consider the principal’s problem of choosing the types of agents. Substituting (2.20),

(2.21), and (2.22) into (2.19) and solving the principal’s maximization problem with respect to

b1, b2 ∈ B, we obtain the optimal type of agents the principal chooses. The following lemma

summarizes the optimal contract under delegation to multiple agents. All proofs are presented in

the Appendix.

Lemma 2.11

(a) Under delegation to the agents biased in the same direction, the principal offers the agents

whose biases are (b, b) or (−b,−b) the contract
(
h = A,w = (w�s , w

�
f )
)

such that w�s =
1
4

(
rP − 2rA − kP b2

)
and w�f = 0. Then agents choose the project d� = θ + b (θ − b) and

they exert their effort e�i = 1
8

(
rP + 2rA − kP b2

)
. Consequently, the expected payoffs of the

principal and the agents are U�P = 1
16

(
rP + 2rA − kP b2

)2 and U�Ai = 3
128

(
rP + 2rA − kP b2

)2
,

respectively.

(b) Under delegation to the agents biased in the opposite direction, the principal offers the agents

whose biases are (b,−b) or (−b, b) the contract
(
h = A,w = (w•s , w

•
f )
)

such that w•s =
1
4

(
rP −2rA+2kAb2

)
and w•f = 0. Then agents choose the project d• = θ and they exert their

effort e•i = 1
8

(
rP + 2rA − 2kAb2

)
. Consequently, the expected payoffs of the principal and the

agents are U•P = 1
16

(
rP + 2rA − 2kAb2

)2 and U•Ai = 3
128

(
rP + 2rA − 2kAb2

)2
, respectively.

Lemma 2.11 says that under delegation to the agents biased in the same direction, the equi-

librium wage w�s , effort levels of agents e�i , and the expected payoffs of the principal and agents

increase as b decreases. This is intuitively true, because, as the agents’ bias becomes small, the

private benefit of the principal in the case of project success increases, and hence the principal

pays the agents more to motivate them to exert more effort in implementing the project. This

also implies that the principal differentiates the wages of agents according to their biases. On the
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other hand, under delegation to the agents biased in the opposite direction, the equilibrium wage

w•s increases as the size of agents’ biases, b, increases. This is also intuitively true. Note that under

delegation to the agents biased in the opposite direction, the selected project in the equilibrium

is d• = θ, that is, the principal indirectly extracts the information about a state of the world by

making the agents with different biases compete against each other. However, the principal has

to pay for the price of this informational benefit. In other words, delegating her authority to the

agents with different types weakens the agent’s incentives to expend their effort levels in imple-

menting a project. Therefore, the principal has to pay the agents more as the size of the agents’

biases increases in order to induce them to exert more effort in implementing the project.

By comparing the principal’s expected payoff in (a) with (b) of Lemma 2.11, we obtain the

following proposition.

Proposition 2.12 If kP ≥ 2kA, i.e. the principal cares about the project selection relatively much

compared to the agents, delegating her authority to the biased agents with opposite directions is the

optimal choice of the principal. Otherwise, i.e. kP < 2kA, delegating to the biased agents with same

directions is optimal for the principal.

Proof. Trivially true. Q.E.D.

2.5.3 Information revelation through division of labor

Finally, we consider another way of a principal’s addressing the informational asymmetry between

her and agents. We suggest the regime of division of labor as the solution. Under this regime, the

principal assigns a different task to each agent. The contract the principal offers to agents specifies

each agent’s task. In our model, an agent’s task is either selecting a project to be implemented or

implementing a selected project.

The time structure of the model is summarized in Figure 2.4. First, a state of the world θ is

realized and only the agents observe the realization of θ. Second, the principal offers two agents

from a set of agents a contract (h = Ai, w) that specifies the task of each agent and the wage

schedule. Without loss of generality, we assume that the principal offers a contract (h = A1, w),

that is, agent 1 has a task to select a project and agent 2 has a task to implement the project

chosen by agent 1. If the agents accept the principal’s offer, according to the contract, agent i

selects a project at the subsequent stage. If the agents do not accept the offer, the game ends and
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 Figure 2.4: The Sequence of Events

both the principal and the agents get nothing. Next, the other agent, or agent −i, chooses effort

level. Finally, the effort exerted by the agent affect the probability of the project success and the

payoffs of the principal and agents are realized.

Optimal contracts

To solve the principal’s optimal contracting problem, we work backwards. At first, we consider the

optimal wage scheme (ws, wf ) the principal offers to two agents. And then, we solve the principal’s

problem of choosing the types of agents.

Since the principal cannot observe the realized state of world θ, the principal solves the following

optimal contracting problem under moral hazard:

max
{ws,wf}

UP =
∫ L

−L

{
e
(
rP − kP (θ − d)2 − 2ws

)
+ (1− e) (−2wf )

}
dF (θ) (2.23)

subject to:

(a) The limited-liability constraint:

ws ≥ 0, wf ≥ 0;

(b) The participation constraint of each agent:

UA1 = e
(
rA − kA(θ + b1 − d)2 + ws

)
+ (1− e)wf ≥ UA1

and

UA2 = e
(
rA − kA(θ + b2 − d)2 + ws

)
+ (1− e)wf −

1
2
e2 ≥ UA1 ;
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(c1) Agent 1’s incentive-compatibility constraint, which stipulates that the project agent 1

selects maximizes his expected payoff given ws, wf , and the effort level of agent 2:

d = arg max
d∈D

UA1 ;

(c2) Agent 2’s incentive-compatibility constraint, which stipulates that the effort level of agent

2 maximizes his expected payoff given ws, wf , and d chosen by agent 1:

e = arg max
e∈[0,1]

UA2 .

The incentive-compatibility constraint of agent 2 (c2) can be simplified to:

e = rA − kA(θ + b2 − d)2 + ws − wf . (2.24)

Substituting (2.24) into UA1 and solving the maximization problem of agent 2 with respect to

d, the incentive-compatibility constraint of agent 1 (c1) can be simplified to:

d = θ +
1
2

(b1 + b2). (2.25)

Substituting (2.24) and (2.25) into (2.23) and solving the principal’s optimal contracting prob-

lem, we obtain the following incentive scheme:

ws =
1
4

(
rP − 2rA −

1
4
kP (b1 + b2)2 +

1
2
kA(b1 − b2)2

)
and wf = 0. (2.26)

Now we consider the principal’s problem of choosing the types of agents. Substituting (2.24),

(2.25), and (2.26) into (2.23) and solving the principal’s maximization problem with respect to

b1, b2 ∈ B, we obtain the optimal type of agents the principal chooses. The following lemma

summarizes the optimal contract under the regime of division of labor. All proofs are presented in

the Appendix.

Lemma 2.13

(a) If the principal offers a contract to the agents biased in the same direction, the principal offers

the agents whose biases are (b, b) or (−b,−b) the contract
(
h = A1, w = (w�s , w

�
f )
)

such that

w�s = 1
4

(
rP − 2rA − kP b2

)
and w�f = 0. Then agent 1 chooses the project d� = θ + b (θ − b)

and agent 2 exerts effort e� = 1
4

(
rP + 2rA − kP b2

)
. Consequently, the expected payoffs of the

principal and the agents are U�P = 1
8

(
rP + 2rA − kP b2

)2, U�A1
= 1

16

(
rP + 2rA − kP b2

)2, and

U�A2
= 1

32

(
rP + 2rA − kP b2

)2
, respectively.
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(b) If the principal offers a contract to the agents biased in the opposite direction, the principal

offers the agents whose biases are (b,−b) or (−b, b) the contract
(
h = A1, w = (w•s , w

•
f )
)

such

that w•s = 1
4

(
rP − 2rA + 2kAb2

)
and w•f = 0. Then agent 1 chooses the project d• = θ and

agent 2 exerts effort e• = 1
4

(
rP + 2rA − 2kAb2

)
. Consequently, the expected payoffs of the

principal and the agents are U•P = 1
8

(
rP + 2rA − 2kAb2

)2, U•A1
= 1

16

(
rP + 2rA − 2kAb2

)2, and

U•A2
= 1

32

(
rP + 2rA − 2kAb2

)2
, respectively.

By comparing the principal’s expected payoff in (a) with (b) of Lemma 2.13, we obtain the

following proposition.

Proposition 2.14 If kP ≥ 2kA, i.e. the principal cares about the project selection relatively much

compared to the agents, making a contract with the agents biased in the opposite directions is the

optimal choice of the principal. Otherwise, i.e. kP < 2kA, making a contract with the agents biased

in the same directions is optimal for the principal.

Proof. Trivially true. Q.E.D.

2.6 Further Research

In Section 2.4 we have implicitly assumed that communication between the principal and agents is

impossible under centralization. That is, if a principal decides to retain her authority, she selects a

project which maximizes her expected payoff conditional on her prior information (belief) about a

state of the world without interacting with an agent. However, we can also think of the case where

communication between the principal and agent is feasible under centralization. If communication

between the principal and agents is feasible, the principal then may change her belief upon a state

of the world by communicating with the agents. This kind of communication is often referred to as

cheap talk, which was first analyzed by Crawford and Sobel (1982). In Crawford and Sobel (1982),

a well-informed sender (the agent) may reveal some of his information by sending a signal to a

receiver (the principal), who then takes an action (chooses a project) which affects the payoffs of

both. Following the communication structure in Crawford and Sobel (1982), we can consider the

optimal contract under centralization with communication.

The time structure of the model is summarized in Figure 2.5: First, a state of the world (θ) is

realized. Note that only the agent observes the realization of θ. Second, the principal offers an agent
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Figure 2.5: The Sequence of Events

from a set of agents a contract (h = P,w) that specifies the allocation of authority (centralization)

and the wage schedule. If the agent accepts the principal’s offer, he sends a signal n to the principal.

After receiving the agent’s signal, the principal selects a project at the subsequent stage. If the

agent does not accept the offer the game ends and both the principal and agent get nothing. Next,

the agent chooses his effort e after observing the selected project by the principal. The effort

exerted by the agent affects the project’s probability of success and failure and the payoffs of the

principal and the agent are realized in the final stage.

The solution concept for the stage where the agent sends a message and the principal chooses

a project is the Perfect Bayesian Nash equilibrium. Formally, an equilibrium consists of a family of

signaling rules for the agent, denoted q(n|θ), and action rule for the principal, denoted d(n). Then

the principal solves the following optimal contracting problem under moral hazard:

max
{ws,wf}

UP =
∫ L

−L

{
e
(
rP − kP (θ − d(n))2 − ws

)
+ (1− e)(−wf )

}
dF (θ) (2.27)

subject to:

(a) The limited-liability constraint:

ws ≥ 0, wf ≥ 0;

(b) The participation constraint of the agent:

UAi = e
(
rA − kA(θ + bi − d)2 + ws

)
+ (1− e)wf −

1
2
e2 ≥ UAi ;

(c) The incentive-compatibility constraint, which stipulates that the effort level maximizes the

agent’s expected payoff given ws, wf , and d:

e = arg max
e∈[0,1]

UAi = e
(
rA − kA(θ + bi − d)2 + ws

)
+ (1− e)wf −

1
2
e2;
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(d) The Perfect Bayesian Nash equilibrium requirements:

• for each θ ∈ [−L,L],
∫
N q(n|θ)dn = 1, where the Borel set N is the set of feasible signals,

and if n∗ is in the support of q(·|θ), then n∗ solves

max
n∈N

UAi = e
(
rA − kA(θ + bi − d(n))2 + ws

)
+ (1− e)wf −

1
2
e2; and

• for each n, d(n) solves

max
d
UP =

∫ L

−L

{
e
(
rP − kP (θ − d)2 − ws

)
+ (1− e)(−wf )

}
p(θ|n)dθ,

where p(θ|n) = q(n|θ)f(θ)/
∫ L
−L q(n|t)f(t)dt.

One of the key issues we can consider in this model is about the quality of communication,

i.e., the informativeness of the signals the agent sends in equilibrium, because the optimal decision

of the principal about whether to delegate or not depends on the quality of the information the

agent sends under centralization with communication. Intuitively, the more informative signal of

the agent will make the principal more likely keep her authority.

In the communication game of Crawford and Sobel (1982), all equilibria are characterized by

a partition of [−L,L], where the agent introduces noise into his signal by only specifying to which

partition element the realized state of world belongs. By using the result of Crawford and Sobel

(1982), Dessein (2002) showed that a principal prefers to delegate the authority to an informed

agent rather than to communicate with the agent as long as the bias of the agent is not too large

relative to the principal’s uncertainty about a state of the world. However, the communication

game in our model is slightly different from those in Crawford and Sobel (1982) and Dessein

(2002). They consider the strategic communication between the uninformed principal and the

informed agent from the perspective of information, while, in our model, we have to consider the

communication not only from the perspective of information and but also from the perspective of

effort incentives the agent faces. Therefore, the equilibria in our model should be different from

those in Crawford and Sobel (1982) and Dessein (2002) - especially in the informativeness of the

agent’s signal. According to the informativeness of the signal, centralization with communication

could be the optimal choice of the principal rather than delegation. We leave this for the future

work.
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2.7 Conclusion

To find the optimal choice of an organization between delegation and centralization in the views

of both information and effort incentives, we have studied the optimal allocation of authority in

a principal-agent setting where the uninformed principal provides the informed agent(s) with the

incentives to exert a non-observable effort on a project. We first have studied the optimal contract

between a principal and a single agent that specifies which party has the right to select a project

and a wage scheme that is contingent on the outcome of the project. Thereafter, we have extended

our basic model to the cases where the principal delegates her authority over project selection to

multiple agents to answer for the question of how the principal can make the agents reveal their

information.

Our main findings are as follows: 1) The optimal allocation of authority depends on the infor-

mation structure. That is, if the information is asymmetric, the consideration of effort incentives

and the information asymmetries between the principal and the agent makes the principal more

likely to delegate her authority over project to the agent. However, if the information is symmet-

ric, centralization is an optimal choice of the principal. 2) If the information is asymmetric, there

exists the agent’s incentive to reveal his information to the principal truthfully before making a con-

tract but the information transmission between them is impossible due to the agent’s commitment

problem (time-inconsistency problem). 3) The principal can indirectly address the informational

asymmetry problem by delegating her authority to the agents biased in opposite directions. 4) Del-

egating the authority to the agents entirely may be better for the principal than trying to design

a mechanism for the purpose of the information revelation by the agents. 5) Under delegation, the

regime of division of labor can be used as a way of addressing the information asymmetry.
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Appendix

Proof of equations in (2.3) and Lemma 2.1. From (2.2) we know that ∂e
∂wf

< 0 and ∂UP
∂wf

< 0.

Then, by the limited-liability constraint wf ≥ 0, we obtain wf = 0. Substituting (2.2) and wf = 0

into (2.1), the principal’s optimal contracting problem is written as follows:

max
{ws,d}

UP =
(
rA − kA(θ + bi − d)2 + ws

) (
rP − kP (θ − d)2 − ws

)
.

Solving the first-order conditions of maximizing UP , i.e. ∂UP
∂ws

= 0 and ∂UP
∂d = 0, we have

ws = 1
2

(
rP − rA + kAkP (kP−kA)bi

2

(kA+kP )2

)
and d = θ + kAbi

kA+kP
. The second-order condition is satisfied,

that is, the Hessian of UP at this solution is negative definite.

Substituting (2.3) into (2.1), we get the following principal’s problem in choosing the type of

agent:

max
b∈B

UP =
1
4

(
rP + rA −

kAkP b
2
i

kA + kP

)2

.

Solving this maximization problem, we obtain b∗i = b or −b. By substituting b∗i into (2.2),

(2.3), UP , and UAi , we get the results in Lemma 2.1.

Proof of equations in (2.6) and (2.7) and Lemma 2.2. From (2.5) we know that ∂e
∂wf

< 0

and ∂UP
∂wf

< 0. Then, by the limited-liability constraint wf ≥ 0, we obtain wf = 0. Substituting

(2.5) and wf = 0 into (2.4), the principal’s optimal contracting problem is written as follows:

max
{ws,d}

UP =
(
rA − kA

∫ L

−L
(θ + bi − d)2dF (θ) + ws

)(
rP − kP

∫ L

−L
(θ − d)2dF (θ)− ws

)
.

The first-order conditions of maximizing UP , i.e. ∂UP
∂ws

= 0 and ∂UP
∂d = 0, are as follows:

ws =
1
2

(
rP − rA + kA

∫ L

−L
(θ + bi − d)2dF (θ)− kP

∫ L

−L
(θ − d)2dF (θ)

)
and

−kA
∫ L
−L(θ + bi − d)dF (θ)

kP
∫ L
−L(θ − d)dF (θ)

=
rA − kA

∫ L
−L(θ + bi − d)2dF (θ) + ws

rP − kP
∫ L
−L(θ − d)2dF (θ)− ws

.

The second-order condition is satisfied, that is, the Hessian of UP at the solution satisfying the

first-order conditions is negative definite.

By substituting the former first-order condition (ws) into the latter, we get the following

optimal condition for the project selection:

kA

∫ L

−L
(θ + bi − d)dF (θ) + kP

∫ L

−L
(θ − d)dF (θ) = 0.
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Now we assume that θ is uniformly distributed on [−L,L]. With this assumption, solving the

above equation, we have d = kAbi
kA+kP

. Substituting d into ws of the first-order condition, we obtain

ws = 1
2

(
rP − rA + kAkP (kP−kA)b2i

(kA+kP )2
− L2

3 (kP − kA)
)

.

Substituting (2.7) into (2.4), we get the following principal’s problem in choosing the type of

agent:

max
b∈B

UP =
1
4

(
rP + rA −

kAkP b
2
i

kA + kP
− L2

3
(kA + kP )

)2

.

Solving this maximization problem, we obtain b◦i = b or −b. By substituting b◦i into (2.5),

(2.7), UP , and UAi , we get the results in Lemma 2.2.

Proof of equations in (2.10) and Lemma 2.3. From (2.9) we know that ∂e
∂wf

< 0 and ∂UP
∂wf

< 0.

Then, by the limited-liability constraint wf ≥ 0, we obtain wf = 0. Substituting (2.9) and wf = 0

into (2.8), the principal’s optimal contracting problem is written as follows:

max
ws

UP = (rA + ws)(rP − kP b2i − ws).

Solving the first-order conditions of maximizing UP , i.e. ∂UP
∂ws

= 0, we have ws = 1
2(rP−rAkP b2i ).

The second-order condition at this solution is satisfied.

Substituting (2.10) into (2.8), we get the following principal’s problem in choosing the type of

agent:

max
b∈B

UP =
1
4

(rP + rA − kP b2i )2.

Solving this maximization problem, we obtain b∗∗i = b or −b. By substituting b∗∗i into (2.9),

(2.10), UP , and UAi , we get the results in Lemma 2.3.

Proof of equations in (2.13) and (2.14) and Lemma 2.5. From (2.12) we know that ∂e
∂wf

< 0

and ∂UP
∂wf

< 0. Then, by the limited-liability constraint wf ≥ 0, we obtain wf = 0. Substituting

(2.12) and wf = 0 into (2.11), the principal’s optimal contracting problem is written as follows:

max
{ws,d}

UP =
∫ L

−L

(
rA − kA(θ + bi − d)2 + ws

) (
rP − kP (θ − d)2 − ws

)
dF (θ).

The first-order conditions of maximizing UP , i.e. ∂UP
∂ws

= 0 and ∂UP
∂d = 0, are as follows:

ws =
1
2

(
rP − rA + kA

∫ L

−L
(θ + bi − d)2dF (θ)− kP

∫ L

−L
(θ − d)2dF (θ)

)
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and

−kA
kP

=

∫ L
−L(θ − d)

(
rA − kA(θ + bi − d)2 + ws

)
dF (θ)∫ L

−L(θ + bi − d) (rP − kP (θ − d)2 − ws) dF (θ)
.

The second-order condition is satisfied, that is, the Hessian of UP at the solution satisfying the

first-order conditions is negative definite.
By substituting the former first-order condition (ws) into the latter, we get the following

optimal condition for the project selection:

−
kA

kP
=

∫ L
−L(θ − d)

{
rP + rA − 2kA(θ + bi − d)2 + kA

∫ L
−L(θ + bi − d)2dF (θ)− kP

∫ L
−L(θ − d)2dF (θ)

}
dF (θ)∫ L

−L(θ + bi − d)
{
rP + rA − 2kP (θ − d)2 − kA

∫ L
−L(θ + bi − d)2dF (θ) + kP

∫ L
−L(θ − d)2dF (θ)

}
dF (θ)

.

Now we assume that θ is uniformly distributed on [−L,L]. With this assumption, solving the

above equation, we have d = kAbi
kA+kP

+ ∆(bi). Substituting d into ws of the first-order condition, we

obtain ws in (2.14).

Substituting (2.14) into (2.11) and solving the principal’s problem in choosing the type of

agent, we obtain b?i = b or −b. By substituting b?i into (2.12), (2.14), UP , and UAi , we get the

results in Lemma 2.5.

Proof of equations in (2.18), Lemma 2.9, and Proposition 2.10. Substituting the incentive-

compatibility constraints of agents in (2.17) into UAi and differentiating UAi with respect to di, we

obtain the following first-order condition for maximizing the expected payoff of agent i:

1
4
kA(PiQi + P−iQi + PiQ−i) = 0

where Pi = θ+bi− d1+d2
2 and Qi = rA−kA

(
θ + bi − d1+d2

2

)2
+ws−wf . The second-order condition

is −1
8kA

{
3(rA + ws − wf )− kA

(
3θ + 2bi + b−i − 3

2(d1 + d2)
)2} and this is negative because we

assume that rA is sufficiently large. From the first-order condition for each agent, we have the

incentive-compatibility constraints of the agents in (2.18), where ε+ and ε− are defined as follows:

ε± =
1

6kA

 6 21/3kA(rA + ws − wf )

(
√
k3

A
(k3

A
(b1 − b2)6 − 108(rA + ws − wf )3)± k3

A
(b1 − b2)3)1/3

+ 2
2/3

(
√
k3

A
(k3

A
(b1 − b2)6 − 108(rA + ws − wf )3)± k3A(b1 − b2)

3
)
1/3

 .

By examining the first-order conditions of the agents, it is shown that B1 = B2 = θ + b if

b1 = b2 = b and θ + b2 < B2 < θ + b1+b2
2 < B1 < θ + b1 if b1 > b2. Note that B1 and B2 depend

on θ and that the set of strategy of each agent, di, is assumed to be between −(L+ b) and L+ b.

Using these facts and solving simultaneously the two equations in (2.18), that are virtually the

best responses of the agents, we obtain the results in Lemma 2.9. That is, if b1 = b2 = b, the
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best response of an agent corresponds with the one of the other and hence any (d1, d2) satisfying
d1+d2

2 = θ+b is an equilibrium. If b1 6= b2, then we obtain the following projects the agents propose

in equilibrium:
(d1, d2) = (L+ b, 2B2 − L− b)⇒ d = B2 if B1 > B2 > 0,

(d1, d2) = (L+ b,−L− b)⇒ d = 0 if B1 ≥ 0 and B2 ≤ 0,

(d1, d2) = (2B1 + L+ b,−L− b)⇒ d = B1 if 0 > B1 > B2.

Considering the results in Lemma 2.9, we now solve the principal’s problem of choosing the

types of agents. If the principal chooses the same type of agents, i.e. b1 = b2 = b, the project

selected through the average rule is θ+b, which is no more than a project selected under delegation

to a single agent with bias b. Therefore, choosing the same type of agents does not help the

principal to extract some information from agents. Eliminating this case of choosing the same type

of agents, we have the following three possible cases according to the types of the agents chosen by

the principal:

1. b1 > b2 > 0 (The agents biased in same direction)

2. 0 > b1 > b2 (The agents biased in same direction)

3. b1 > 0 and b2 < 0 (The agents biased in opposite directions)

For each case, by using the results in Lemma 2.9 and the fact that θ + b2 < B2 < θ + b1+b2
2 <

B1 < θ + b1 if b1 > b2, we find the following projects (d1, d2) the agents propose and a project (d)

selected through the average rule in equilibrium:

1. b1 > b2 > 0
(d1, d2) = (L+ b, 2B2 − L− b)⇒ d = B2 ≺ θ + b2 if B1 > B2 > 0,

(d1, d2) = (L+ b,−L− b)⇒ d = 0 ≺ θ + b2 if B1 ≥ 0 and B2 ≤ 0,

(d1, d2) = (2B1 + L+ b,−L− b)⇒ d = B1 ≺ θ + b2 if 0 > B1 > B2.

2. 0 > b1 > b2
(d1, d2) = (L+ b, 2B2 − L− b)⇒ d = B2 ≺ θ + b1 if B1 > B2 > 0,

(d1, d2) = (L+ b,−L− b)⇒ d = 0 ≺ θ + b1 if B1 ≥ 0 and B2 ≤ 0,

(d1, d2) = (2B1 + L+ b,−L− b)⇒ d = B1 ≺ θ + b1 if 0 > B1 > B2.
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3. b1 > 0 and b2 < 0
(d1, d2) = (L+ b, 2B2 − L− b)⇒ d = B2 � θ + b1, θ + b2 if B1 > B2 > 0,

(d1, d2) = (L+ b,−L− b)⇒ d = 0 � θ + b1, θ + b2 if B1 ≥ 0 and B2 ≤ 0,

(d1, d2) = (2B1 + L+ b,−L− b)⇒ d = B1 � θ + b1, θ + b2 if 0 > B1 > B2,

where ≺ and � represents the principal’s preference over projects.

As we can see the results above, the project to be selected through the average rule for the

case 1 and 2 is always dominated to the project θ + b1 or θ + b2. This implies that delegation to a

single agent is more beneficial to the principal rather than delegation to multiple agents biased in

the same direction. That is, for the principal to exploit the informational benefit under delegation

to multiple agents with the average rule, she has to delegate her authority to the agents biased in

the opposite directions. Note that the project selected in case 3 is preferred to the projects θ + b1

and θ + b2. To extract the maximum level of information, furthermore, the principal delegates

her authority to the agents who are biased in the opposite directions and each of whom has the

smallest bias, i.e. b1 = b and b2 = −b, because the distance between B1 and B2 increases with the

distance between b1 and b2. Then, according to the realization of θ, a project to be selected under

delegation to multiple agents with the average rule is as follows:
(d1, d2) = (L+ b, 2B2 − L− b)⇒ d = B2 if θ ∈ [1

3b+ ε⊕, L],

(d1, d2) = (L+ b,−L− b)⇒ d = 0 if θ ∈ (−1
3b+ ε	,

1
3b+ ε⊕),

(d1, d2) = (2B1 + L+ b,−L− b)⇒ d = B1 if θ ∈ [−L,−1
3b+ ε	],

where ε⊕(	) is the value of ε+(ε−) when b1 = b and b2 = −b.

Proof of equations in (2.21) and (2.22) and Lemma 2.11. Substituting (2.20) into UAi , we

have UAi = 1
8

(
rA−kA(θ+bi−d)2+ws−wf

)(
3(rA+ws−wf )−kA(θ+bi−d)2−2kA(θ+b−i−d)2

)
+wf .

Then, the Nash bargaining solution requirement is written as follows:

d = arg max
d∈D

(
1
8
A1(A1 + 2A2) + wf

)1/2(1
8
A2(A2 + 2A1) + wf

)1/2

where Ai = rA − kA(θ + bi − d)2 + ws − wf . From the first-order condition for maximizing the

product of agents’ surplus, we obtain d = θ+ 1
2(b1 +b2). The second-order condition at this solution

is satisfied. We can also show that d = θ + 1
2(b1 + b2) maximizes the overall surplus of the agents,

UA1 + UA2 , because their expected payoffs are symmetric.
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From (2.20) we know that ∂e
∂wf

< 0 and ∂UP
∂wf

< 0. Then, by the limited-liability constraint

wf ≥ 0, we obtain wf = 0. Substituting (2.20), (2.21), and wf = 0 into (2.19), the principal’s

optimal contracting problem is written as follows:

max
ws

UP =
1
2

(
rA −

1
4
kA(b1 − b2)2 + ws

)(
rP −

1
4
kP (b1 + b2)2 − 2ws

)
.

Solving the first-order conditions of maximizing UP , i.e. ∂UP
∂ws

= 0, we have

ws = 1
4

(
rP − 2rA − 1

4kP (b1 + b2)2 + 1
2kA(b1 − b2)2

)
. The second-order condition is satisfied.

Substituting (2.20), (2.21), and (2.22) into (2.19), we get the following principal’s problem in

choosing the type of agent:

max
b1,b2∈B

UP =
1
16

(
2rA + rP −

1
2
kA(b1 − b2)2 − 1

4
kP (b1 + b2)2

)2

.

Solving this maximization problem, we obtain the following optimal type of agents:

1. the same types of agents: (b1, b2) = (b, b) or (−b,−b)

2. the different types of agents: (b1, b2) = (b,−b) or (−b, b).

By substituting (b1, b2) in each case into (2.20), (2.21), (2.22), UP , and UAi , we get the results

in Lemma 2.11.

Proof of equations in (2.25) and (2.26) and Lemma 2.13. Substituting (2.24) into UA1 ,

we have UA1 =
(
rA − kA(θ + b2 − d)2 + ws − wf

) (
rA − kA(θ + b1 − d)2 + ws − wf

)
+ wf . From

the first-order condition for maximizing UA1 in terms of d, we obtain d = θ + 1
2(b1 + b2). The

second-order condition at d = θ + 1
2(b1 + b2) is strictly negative and so satisfied.

Substituting d = θ+ 1
2(b1 +b2) into (2.24), we have e = rA− 1

4kA(b2−b1)2 +ws−wf . We know

that ∂e
∂wf

< 0 and ∂UP
∂wf

< 0. Then, by the limited-liability constraint wf ≥ 0, we obtain wf = 0.

Substituting (2.24), (2.25), and wf = 0 into (2.23), the principal’s optimal contracting problem is

written as follows:

max
ws

UP =
(
rA −

1
4
kA(b1 − b2)2 + ws

)(
rP −

1
4
kP (b1 + b2)2 − 2ws

)
.

Solving the first-order conditions of maximizing UP with respect to ws, i.e. ∂UP
∂ws

= 0, we have

ws = 1
4

(
rP − 2rA − 1

4kP (b1 + b2)2 + 1
2kA(b1 − b2)2

)
. The second-order condition is satisfied.
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Substituting (2.24), (2.25), and (2.26) into (2.23), we get the following principal’s problem in

choosing the type of agent:

max
b1,b2∈B

UP =
1
8

(
2rA + rP −

1
2
kA(b1 − b2)2 − 1

4
kP (b1 + b2)2

)2

.

Solving this maximization problem, we obtain the following optimal type of agents:

1. the same types of agents: (b1, b2) = (b, b) or (−b,−b)

2. the different types of agents: (b1, b2) = (b,−b) or (−b, b).

By substituting (b1, b2) in each case into (2.24), (2.25), (2.26), UP , and UAi , we get the results

in Lemma 2.13.
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Chapter 3

Weakest-link Contests with

Group-specific Public Good Prizes

“PART OF THE BEAUTY and mystery of basketball rests in the variety of its team

requirements. Championships are not won unless a team has forged a high degree of

unity, attainable only through the selflessness of each of its players. Statistics don’t

always measure teamwork; holding the person you’re guarding scoreless doesn’t show

up in your stats. But when you’re “taking care of business,” you’re working to produce

a championship team, and “We won” comes to mean more and lasts longer than the

ephemeral “I scored.” Solidarity becomes an essential part of your professionalism.

The society we live in glorifies individualism, what Ross Perot used to champion

with the expression “eagles don’t flock.” Basketball teaches a different lesson: that

untrammeled individualism destroys the chance for achieving victory. Players must

have sufficient self-knowledge to take the long view-to see that what any one player can

do alone will never equal what a team can do together.” (Bradley, Bill (1998), p. 43)

3.1 Introduction

In most of the public goods literature, it has been assumed that the socially available amount

of a public good is the simple sum of the separate amounts produced by the individuals in the

community. Departing from this traditional assumption, Hirshleifer (1983) suggested different

possible ways, which are called social composition functions, of combining individual contributions
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into a socially available amount of a public good. One of the social composition functions he

concentrated is the weakest-link function. The weakest-link function describes various ‘linear’

situations where each member in a society successively has a kind of veto power over the total

achievement of the society. As an example of a weakest-link public good, Hirshleifer (1983) imagined

a low-lying island, Anarchia, where individuals with an extreme aversion to collective action live

along the coast line. Each individual builds his own dike, and then the overall protection of the

island depends on the lowest dike in the island because once any dike was breached the whole island

would be flooded. A similar example is the protection of a military.

In most of the contest literature, it is also assumed that a group’s probability of winning the

prize depends on the aggregate effort level of its members. Following this assumption, Katz et al.

(1990), Ursprung (1990), Baik (1993), Riaz et al. (1995), Dijkstra (1998), Baik et al. (2001), and

Baik (2008) study contests with group-specific public good prizes. Among them, Baik (1993) and

(2008) are closely related to this chapter. Baik (1993) and (2008) consider the contests where the

individual players in each group choose their effort levels noncooperatively to win their public-good

prize, and show that in the equilibrium, only the highest-valuation player in each group expend

positive effort and the rest in the group free ride on the player.

In this chapter we incorporate the weakest-link rule of Hirshleifer (1983) into contests with

group-specific public good prizes. Specifically, we consider a contest where the individual players

in each group choose their effort levels noncooperatively to win their public-good prize and each

group’s probability of winning the prize depends on the minimum effort levels of the other groups as

well as its own, not the aggregate effort levels of the groups. In other words, we use the weakest-link

technology in computing the socially available effort level of each group in the contest; we assume

that each player in a group is responsible for one link of a chain.

Many examples of teamwork involve the contests with the weakest-link technology. For exam-

ple, consider a contest between several research teams, where each research team consists of some

experts in different fields and the expert’s input from each field is indispensable to the research.

Then the success of one research team may depends on the weakest performer in the team. Also,

the contests in team sports which require an organizational team play, such as basketball, baseball,

and a team race, are other examples of the contests with the weakest-link technology.

In our model of the contests with the weakest-link rule, we show the following. First, contrary

to the results in Baik (1993, 2008), the lowest-valuation players in each group play decisive roles
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in determining the Nash equilibria of the game and no free riding problem exists in equilibrium.

Second, similar to the results analyzed in Hirshleifer (1983), there exist incentives for the high-

valuation players in each group to subsidize the low-valuation players in their group. Finally, we

find the equilibrium subsidy rates of the groups in the contest.

The chapter proceeds as follows. In Section 3.2, we develop the general model, and find the

Nash equilibria of the game in Section 3.3. Section 3.4 presents and analyzes a simple model where

the players in the contest are budget-constrained. In Section 3.5, we develop and analyze a simple

model in which the players in each group subsidizes others in their group, and we discuss about

further research in 3.6. Finally, Section 3.6 presents conclusions.

3.2 The model

We follow the basic settings of Baik (2008) to develop the general model in this chapter. Consider a

contest in which n groups compete to win a prize, where n > 1. Group i consists of mi risk-neutral

players who expend effort to win the prize, where mi ≥ 1. The prize is a public good within each

group−thus, it is called a group-specific public good prize. The individual player’s valuations for

the prize may differ. Let vik represent the valuation for the prize of player k in group i. Each

player’s valuation for the prize is positive and publicly known.

Assumption 3.1 Without loss of generality, we assume that vi1 ≥ vi2 ≥ · · · ≥ vimi > 0.

Let xik represent the effort level expended by player k in group i, and let Xi represent the

minimum effort level expended by the players in group i, so that Xi = min {xi1, xi2, . . . , ximi}.

Each player’s effort is irreversible−each player cannot recover his effort expended whether or not

his group wins the prize. Effort levels are nonnegative, and are measured in units commensurate

with the prize. Let pi denote the probability that group i wins the prize. We assume that each

group’s probability of winning depends on the other groups’ minimum effort levels as well as its

own. (the weakest-link contest success function) Specifically, we assume that the contest success

function for group i is

pi = pi(X1, . . . , Xn),

where 0 ≤ pi ≤ 1, the function pi has the properties specified in Assumption 3.2 below, and∑n
j=1 pj = 1.
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Assumption 3.2 We assume that ∂pi/∂Xi ≥ 0, ∂2pi/∂X
2
i ≤ 0, ∂pi/∂Xj ≤ 0, and ∂2pi/∂X

2
j ≥ 0.

We further assume that ∂pi/∂Xi > 0 and ∂2pi/∂X
2
i < 0 when Xj > 0 for some j, and ∂pi/∂Xj < 0

and ∂2pi/∂X
2
j > 0 when Xi > 0.

Assumption 3.2 says that, given the rival groups’ minimum effort levels, each group’s probabil-

ity of winning is increasing in its minimum effort level at a decreasing rate. It also says that each

group’s probability of winning is decreasing in a rival group’s minimum effort level at a decreasing

rate, given that the minimum effort levels of the rest remain constant. Under Assumption 3.2, the

group expending the largest minimum effort level does not win the prize with certainty−that is,

it may lose the prize−when there are at least two groups which expend positive minimum effort

levels.

Let πik represent the expected payoff for player k in group i. Then the payoff function for

player k in group i is

πik = vikpi(X1, . . . , Xn)− xik.

We assume that all the players in the contest choose their effort levels independently and

simultaneously. Finally, we assume that all of the above is common knowledge among the players,

and employ Nash equilibrium as the solution concept.

3.3 The Nash equilibria of the game

Let xbik denote the best response of player k in group i when he can make the other players in his

group expend any effort level he wants, given effort levels of the players in the other groups. In

other words, xbik is the effort level which maximizes his expected payoff

πbik = vikpi(X1, . . . , Xi−1, xik, Xi+1, . . . , Xn)− xik

subject to the nonnegativity constraint, xik ≥ 0. Thus, xbik satisfies the first-order condition for

maximizing πbik:

vik
∂pi
∂xik

= 1.

Note that under Assumption 3.1 and 3.2, it holds that xbi1(X−i) ≥ xbi2(X−i) ≥ · · · ≥ xbimi(X−i)

for all X−i ≥ (0, . . . , 0), where X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn). Now let xBik denote the best
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response of player k in group i, given effort levels of all the other players in the contest. By

definition, it is the effort level which maximizes his expected payoff, πik, subject to xik ≥ 0. By

considering the characteristics of the minimum function, i.e. min {xi1, . . . , ximi}, and using the

definition of xbik, we obtain the best responses of players in group i:

xBi1(x−i1, X−i) = min
{
x−i1, x

b
i1(X−i)

}
,

xBi2(x−i2, X−i) = min
{
x−i2, x

b
i2(X−i)

}
,

...

xBimi(x−imi , X−i) = min
{
x−imi , x

b
imi(X−i)

}
,

where x−ik = (xi1, xi2, . . . , xik−1, xik+1, . . . , ximi). From the best responses of the players, we can

see that the players in each group match their effort levels in equilibrium. Lemma 3.3 summarize

this result.

Lemma 3.3 Given effort levels of the players in the other groups, X−i, the best responses of the

players in group i are the following vectors of effort levels:

(xi1, . . . , ximi) such that xi1 = · · · = ximi and 0 ≤ Xi ≤ xbimi(X−i).

Lemma 3.3 implies that, given effort levels of the other groups, the players in a group expend

the same effort level, that is, they match their effort levels. It also says that the matched effort

level of a group can be any value between 0 and the best response of the player whose valuation is

the lowest in that group.

Now we are ready to obtain the pure-strategy Nash equilibria of the game. Using the result in

Lemma 3.3, we obtain Proposition 3.4.

Proposition 3.4

(a) There exist multiple pure-strategy Nash equilibria in the game.

(b) To obtain the Nash equilibria of the game, one only needs to consider a reduced n-player game

where the lowest-valuation players in each group compete against each other to win the prize.

(c) There exists an unique coalition-proof Nash equilibrium of the game at which the players in any

group do not have an incentive to coordinate and deviate from the equilibrium. The following
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strategy profile constitutes the coalition-proof Nash equilibrium: (xN11, . . . , x
N
1m1

, . . . , xNn1, . . . , x
N
nmn) =

(xN1 , . . . , x
N
1 , . . . , x

N
n , . . . , x

N
n ), where xNi is the equilibrium effort level of the lowest-valuation

player in group i when the original game is reduced to the n-player game consisting of the

lowest-valuation players in each group.

Proof. By considering Lemma 3.3 and the definition of Nash equilibrium, (1) and (2) are obvious.

We know that, given effort levels of the players in the other groups (X−i), the largest matched effort

level of group i, or xbimi(X−i), dominates the others matched effort levels belonging to [0, xbimi(X−i))

in a sense that it results in the highest expected payoffs of the players in group i. In other words,

if the players in each group can cooperate with each other in choosing their effort levels, the best

response of the players in group i shrinks from [0, xbimi(X−i)] to xbimi(X−i). Consequently, the

original (
∑n

j=1mj)-player game is reduced to the n-player game where n players, each of whom is

the lowest-valuation player in a group, compete to win the prize, and the reduced n-player game

has an unique Nash equilibrium in our model. Q.E.D.

Proposition 3.4 implies that the Nash equilibrium of the game is determined by the interaction

of players with the lowest valuation in each group. That is, the lowest-valuation players in each

group play decisive roles in determining the Nash equilibria of the contest. Also, it says that, unlike

the result of Baik (2008), i.e. only the highest-valuation players expend positive effort and the rest

free ride on them, there is no free riding problem in our model.

3.3.1 An example

As an example we consider a simple contest where there are two groups, group 1 and group 2,

and each group consists of two players. We also assume that all the players in the contest do not

have any budget constraint, or equivalently, each player has sufficiently large wealth. Keeping all

the notations and assumptions in Section 3.2, xik represents the effort level expended by player

k in group i and Xi represents the minimum effort level expended by players in group i, i.e.

Xi = min {xi1, xi2}. As a specific form of the contest success function for group i, we use the

simplest logit-form contest success function that is extensively used in the literature on the theory

of contests. Specifically, the contest success function for group i is defined as follows:

pi(X1, X2) =


Xi∑2
j=1Xj

= min{xi1,xi2}∑2
j=1min{xj1,xj2}

if X1 +X2 > 0

1/2 if X1 +X2 = 0.
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This specifies that group i’s probability of winning the prize is equal to its minimum effort

level divided by the sum of the minimum effort levels of the groups in the contest if the sum of the

minimum effort levels is positive, and it is equal to 1/2 if the sum of the minimum effort levels is

zero. Then the payoff function for player k in group i is

πik = vik
Xi

X1 +X2
− xik.

To obtain the pure-strategy Nash equilibria of the game, we first consider the best responses

of player k in group i, given effort levels of all the other players in the contest. First, let xbik denote

the best response of player k in group i when the other player’s effort level in group i is equal to

that of player k in group i, given effort levels of the players in the other group. That is, xbik is the

effort level which maximizes his expected payoff

πbik = vik
xik

xik +X−i
− xik

subject to the nonnegativity constraint, xik ≥ 0, where X−i = min {xj1, xj2} for j 6= i. Thus, xbik

satisfies the first-order condition for maximizing πbik:

(xik +X−i)2 = X−ivik.

Using the first-order condition for maximizing πbik, we obtain the following xbik:

xbik(X−i) =
√
X−ivik −X−i.

Note that under Assumption 3.1, it holds that xbi1(X−i) ≥ xbi2(X−i) for all X−i ≥ 0. Now let

xBik denote the best response of player k in group i, given effort levels of all the other players in the

contest. By definition, it is the effort level which maximizes his expected payoff, πik, subject to

xik ≥ 0. By considering the characteristics of the minimum function, i.e. min {xi1, xi2}, and using

the definition of xbik, we obtain the best responses of players in group i, xBik:

xBi1(xi2, X−i) = min
{
xi2, x

b
i1(X−i)

}
=

 xi2 for xi2 ≤ xbi1(X−i)

xbi1(X−i) for xi2 > xbi1(X−i)

and

xBi2(xi1, X−i) = min
{
xi1, x

b
i2(X−i)

}
=

 xi1 for xi1 ≤ xbi2(X−i)

xbi2(X−i) for xi1 > xbi2(X−i).

We are ready to obtain the pure-strategy Nash equilibria of the game. From the best responses

of the players, we can see that the players in each group match their effort levels in equilibrium.
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More specifically, given effort levels of the players in the other group, i.e. X−i, the best responses

of the players in group i are the following vectors of effort levels:

(xi1, xi2) such that xi1 = xi2 and 0 ≤ Xi ≤ xbi2(X−i).

 

Figure 3.1: The best response of players in group i, given X−i

The shadowed area Si in Figure 3.1 represents the best responses of players in group i, given

effort levels of the players in the other group, X−i. Then, we know that the pure-strategy Nash

equilibria of the game are consist of the vectors of effort levels which belong to the overlapped area

from S1 and S2, i.e. S1 ∩S2. Figure 3.2 shows the pure-strategy Nash equilibria of the game. Note

that, although we consider the Nash equilibria of the game in 2-dimensional space, the 2-tuple

vectors in Figure 3.1 and 3.2 intrinsically denote 4-tuple vectors of effort levels of all the players in

the contest.

At a Nash equilibrium, each player does not have any incentive to change his effort level, given

all the other players’ effort levels. We can see that every vector of effort levels, (x∗1, x
∗
1, x
∗
2, x
∗
2), which

is belonging to the shadowed area in Figure 3.2, constitutes a Nash equilibrium of the game. How-

ever, we focus on the Nash equilibrium at N , (v2
12v22/(v12 + v22)2, v2

12v22/(v12 + v22)2, v12v
2
22/(v12 +

v22)2, v12v
2
22/(v12 + v22)2), which is defined at the intersection of two curves, xb12 and xb22. The

reason why we focus on the Nash equilibrium at N is that, at any equilibrium within the shadowed

area other than the equilibrium at N , the players in at least a group have incentives to cooperate

with each other and hence increase their effort levels, given the effort levels of the players in the

other group. Namely, given the effort levels of the players in the other group, xbi2(X−i) results
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Figure 3.2: The pure-strategy Nash equilibria of the game

in the maximum expected payoffs of the players in group i. In conclusion, there exist multiple

pure-strategy Nash equilibria of the game in a sense that each individual player in the contest

has no incentive to change his effort level in the equilibria. But there is only one coalition-proof

Nash equilibrium at which neither each player nor group has any incentive to deviate from the

equilibrium, and the coalition-proof Nash equilibrium is determined at the intersection of the two

curves, xb12 and xb22.

3.4 Budget-constrained players

We have shown in Section 3.3 that, in each group, the lowest-valuation players play decisive roles in

determining the equilibrium effort levels of the players in the contest. In this section, we consider

a model in which the players in the contest are budget-constrained.

We consider a simple model which is the same as in Section 3.3, the contest between two groups

with two players, with the exception that the players are budget constrained. Let bik represent the

budget of player k in group i. Each player’s budget is positive and publicly known. In this game,

then, player k in group i maximizes his payoff given his budget constraint:

max
0≤xik≤bik

πik = vikpi(X1, X2)− xik.

For the simplicity of our analysis without losing our focus on budget-constrained players, we
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assume that the players in each group are identical. More specifically, we assume that v11 = v12 =

v1, v21 = v22 = v2, b11 = b12 = b1, and b21 = b22 = b2.

To obtain the best responses of players with budget constraint, we first consider the best

responses of the players without budget constraint. Using the results in Section 3.3, we get the

following best responses of the players without budget constraint, xBik:

xB11(X2) = xB12(X2) =
√
X2v1 −X2

and

xB21(X1) = xB22(X1) =
√
X1v2 −X1.

As you can see, the best response of players in group i, xBik(X−i), has its maximum value vi/4

at X−i = vi/4. If b1 ≥ v1/4 and b2 ≥ v2/4 hold, the Nash equilibrium of the game with budget-

constrained players is exactly the same as the equilibrium of the game with players without budget

constraint. Hence, we assume b1 < v1/4 and b2 < v2/4 from now on to focus on the game with

budget-constrained players. We then obtain the following best responses of the budget-constrained

players in each group:

xB1k(X2) =


√
X2v1 −X2 for 0 ≤ X2 ≤

v1−2b1−
√
v1(v1−4b1)

2

b1 for v1−2b1−
√
v1(v1−4b1)

2 < X2 ≤
v1−2b1+

√
v1(v1−4b1)

2
√
X2v1 −X2 for v1−2b1+

√
v1(v1−4b1)

2 < X2

and

xB2k(X1) =


√
X1v2 −X1 for 0 ≤ X1 ≤

v2−2b2−
√
v2(v2−4b2)

2

b2 for v2−2b2−
√
v2(v2−4b2)

2 < X2 ≤
v2−2b2+

√
v2(v2−4b2)

2
√
X1v2 −X1 for v2−2b2+

√
v2(v2−4b2)

2 < X1.

Now we are ready to find the Nash equilibrium of the contest with budget-constrained players.

Note that, though there exists multiple Nash equilibria of the game, we are focusing on the coalition-

proof Nash equilibrium. We obtain the following coalition-proof Nash equilibrium of the game by

using the best responses of the budget-constrained players obtained above:

• Case 1. If v21v2
(v1+v2)2

≤ b1 < v1
4 and v1v22

(v1+v2)2
≤ b2 < v2

4 , we get the following Nash equilibrium:

(xN11, x
N
12, x

N
21, x

N
22) = (x∗1, x

∗
1, x
∗
2, x
∗
2),where x∗1 =

v2
1v2

(v1 + v2)2
and x∗2 =

v1v
2
2

(v1 + v2)2
.
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• Case 2. If v21v2
(v1+v2)2

≤ b1 < v1
4 and b2 <

v1v22
(v1+v2)2

, we get the following Nash equilibrium:

(xN11, x
N
12, x

N
21, x

N
22) = (x∗1, x

∗
1, x
∗
2, x
∗
2),where x∗1 =

√
b2v1 − b2 and x∗2 = b2.

• Case 3. If b1 <
v21v2

(v1+v2)2
and v1v22

(v1+v2)2
≤ b2 < v2

4 , we get the following Nash equilibrium:

(xN11, x
N
12, x

N
21, x

N
22) = (x∗1, x

∗
1, x
∗
2, x
∗
2),where x∗1 = b1 and x∗2 =

√
b1v2 − b1.

• Case 4. If b1 <
v21v2

(v1+v2)2
and b2 <

v1v22
(v1+v2)2

, we get the following Nash equilibrium:

(xN11, x
N
12, x

N
21, x

N
22) = (x∗1, x

∗
1, x
∗
2, x
∗
2)

where


x∗1 = b1 and x∗2 =

√
b1v2 − b1 for 0 < b1 ≤

v2−2b2−
√
v2(v2−4b2)

2

x∗1 = b1 and x∗2 = b2 for v2−2b2−
√
v2(v2−4b2)

2 < b1 ≤
√
b2v1 − b2

x∗1 =
√
b2v1 − b2 and x∗2 = b2 for

√
b2v1 − b2 < b1 <

v21v2
(v1+v2)2

.

3.5 Subsidizing in the contest

We have shown that, in Section 3.3, the lowest-valuation players in each group plays decisive roles

in determining the Nash equilibrium of the weakest-link contest, that is, the (coalition-proof) Nash

equilibrium of the game is determined at the intersection of the best responses of the lowest-

valuation players in each group.

Then the next natural question we can have is about whether the high-valuation players in each

group have incentives to behave strategically in favor of themselves, e.g. subsidizing or transferring

resources to others, in order to influence on the decision of the lowest-valuation player in the group.

In this section, we examine the strategic behavior of high-valuation players in each group.

3.5.1 The high-valuation player’s incentive to subsidize the lowest-valuation

player

For the simplicity of our analysis, we again consider the example in Section 3.3, where each group

consists of two players without budget constraints having different valuation on the prize. To find

whether there exists the incentive of the high-valuation player in one group to subsidize the low-

valuation player in his group, we consider the following game. In the first stage, the high-valuation

player in group i offers to subsidize the effort level of the low-valuation player in the group at

the rate s. In the second stage, knowing the subsidy rate s, all the players in the contest expend
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their effort levels simultaneously and independently. Finally, the winning group is chosen, and the

payoffs of the players are realized. Before analyzing this, we summarize the equilibrium outcomes

of the contest without subsidizing the other player analyzed in Section 3.3. Lemma 3.5 shows the

results.

Lemma 3.5

(a) In the equilibrium of the game, the players in group 1 expend x∗1 = v2
12v22/(v12 + v22)2, and

the players in group 2 expend x∗2 = v12v
2
22/(v12 + v22)2. Accordingly, group 1’s probability of

winning the prize is p∗1 = v12/(v12 +v22), and group 2’s winning probability is p∗2 = v22/(v12 +

v22).

(b) The expected payoff for player 1 in group 1 is π∗11 = v12(v11v12 + v11v22 − v12v22)/(v12 + v2
22),

that for player 2 in group 1 is π∗12 = (v12)3/(v12 + v22)2, that for player 1 in group 2 is

π∗21 = v22(v21v12 + v21v22 − v12v22)/(v12 + v22)2, and that for player 2 in group 2 is π∗22 =

(v22)3/(v12 + v22)2.

Now we consider the game where the high-valuation player in one of groups subsidize the low-

valuation in that group. Without loss of generality, we assume that the high-valuation player in

group 1, player 1, subsidizes the low-valuation player in the group, player 2. We solve this game

backwards. Observing s chosen by player 1 in group 1 in the first stage, in the second state, each

player in the contest chooses his effort level which maximizes his expected payoff. The payoff of

each player in the contest is as follows, given the subsidy rate s:

π11 = v11p1(X1, X2)− x11 − sx12,

π12 = v12p1(X1, X2)− (1− s)x12,

and

π21 = v21p2(X1, X2)− x21,

π22 = v22p2(X1, X2)− x22.

Let xbik denote the best response of player k in group i when he can make the other players

in his group expend any effort level he wants, given effort levels of the players in the other group.
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Using the first-order condition for maximizing the expected payoffs, we obtain the following best

responses of the players in a group, given the other players’ effort levels in the other group:

xb11(X2) =
√

(1 + s)−1v11X2 −X2,

xb12(X2) =
√

(1− s)−1v12X2 −X2,

and

xb21(X1) =
√
v21X1 −X1,

xb22(X1) =
√
v22X1 −X1.

Assumption 3.6 We assume that there exists the upper bound of s, i.e. 0 < s ≤ (v11−v12)/(v11 +

v12).

Note that under Assumption 3.6, it holds that xb11(X2) ≥ xb12(X2) for all X2 ≥ 0. From

Assumption 3.6 and Lemma 3.3, we obtain the best responses of the players in a group, given effort

levels of the players in the other group:

(x11, x12) such that x11 = x12 and 0 ≤ X1 ≤ xb12(X2)

and

(x21, x22) such that x21 = x22 and 0 ≤ X2 ≤ xb22(X1).

By using these results and (c) in Proposition 3.4, we obtain the effort levels of players, each

group’s winning probability, and expected payoffs of players in the second stage, given the subsidy

rate, s. Lemma 3.7 summarizes these results.

Lemma 3.7

(a) In the second stage of the game, given the subsidy rate s, each player in group 1 expends

x1(s) = v2
12v22/(v12+(1−s)v22)2, and each player in group 2 expends x2(s) = (1−s)v12v

2
22/(v12+

(1− s)v22)2. Accordingly, group 1’s probability of winning the prize is p1(s) = v12/(v12 + (1−

s)v22), and group 2’s winning probability is p2(s) = (1− s)v22/(v12 + (1− s)v22).

(b) The expected payoff for player 1 in group 1 is π11(s) = v12(v11v12 + (1 − s)v11v22 − (1 +

s)v12v22)/(v12 + (1− s)v2
22), that for player 2 in group 1 is π12(s) = (v12)3/(v12 + (1− s)v22)2,

that for player 1 in group 2 is π21(s) = (1− s)v22(v21v12 + (1− s)v21v22− v12v22)/(v12 + (1−

s)v22)2, and that for player 2 in group 2 is π22(s) = (1− s)2(v22)3/(v12 + (1− s)v22)2.
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Before we analyze the problem of player 1 in group 1, in the first stage, in choosing the optimal

subsidy rate s which maximizes his payoff, we consider two extreme cases, s = 0 and s = 1. If

s = 0 holds, of course, we get the same results in Lemma 3.5. If s = 1 holds, we obtain x∗1 = v22,

x∗2 = 0, p∗1 = 1, p∗2 = 0, π∗11 = v11 − 2v22, π∗21 = v12, π∗21 = 0, and π∗22 = 0.

Now we consider the first stage in which player 1 in group 1 chooses the optimal subsidy rate,

s∗. Having perfect foresight about x1(s) and x2(s), in the first stage, player 1 in group 1 chooses s

which maximizes

π11(s) = v11(x1(s)/(x1(s) + x2(s)))− (1 + s)x1(s).

From the first-order condition for maximizing π11(s), we obtain the following equilibrium

subsidy rate, s∗:

s∗ = (v12v11 − v2
12 + v11v22 − 3v12v22)/v22(v11 + v12).

Substituting s∗ into the results in Lemma 3.7, we obtain Lemma 3.8 summarizing the equilib-

rium outcomes of the game.

Lemma 3.8

(a) In the equilibrium of the game, in the first stage, player 1 in group 1 chooses s∗ = (v12v11 −

v2
12 + v11v22 − 3v12v22)/v22(v11 + v12). Then, in the second stage, each player in group 1

expends xs1 = v22(v11 +v12)2/4(v12 +2v22)2, and each player in group 2 expends xs2 = v22(v11 +

v12)(4v22 + v12 − v11)/4(v12 + 2v22)2. Accordingly, group 1’s probability of winning the prize

is ps1 = (v11 + v12)/2(v12 + 2v22), and group 2’s winning probability is ps2 = (4v22 + v12 −

v11)/2(v12 + 2v22).

(b) The expected payoff for player 1 in group 1 is πs11 = (v11 + v12)2/4(v12 + 2v22), that for

player 2 in group 1 is πs12 = v12(v11 + v2
12)/4(v12 + 2v22)2, that for player 1 in group 2 is

πs21 = (4v22 +v12−v11)(2v21v12 +4v21v22−v22v11−v22v12)/4(v12 +2v22)2, and that for player

2 in group 2 is πs22 = v22(4v22 + v12 − v11)2/4(v12 + 2v22)2.

By comparing the expected payoff of player 1 in group 1 in Lemma 3.8, πs11, with the one in

Lemma 3.5, π∗11, we obtain the following Proposition 3.9.

Proposition 3.9 The high-valuation player in each group has an incentive to subsidize the low-

valuation player’s effort level in his group.
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3.5.2 The equilibrium subsidies of high-valuation players in the contest

In the previous subsection, we have shown that there exists the high-valuation player’s incentive

to subsidize the low-valuation player in each group. Then, in this section, we examine the case

where the high-valuation player in each group subsidizes the low-valuation player in that group.

Formally, we consider the following game. In the first stage, the high-valuation player in each group

offers to subsidize the low-valuation player’s effort level in his group at the rate, si. In the second

stage, observing the subsidy rates s1 and s2, all the players in the contest expend their effort levels

simultaneously and independently. Finally, the winning group is chosen, and the payoffs of the

players are realized.

To solve this two-stage game, we work backwards. Given s1 and s2 chosen in the first stage, in

the second stage, each player exerts his effort level which maximizes his expected payoff. Let xbik

denote the best response of player k in group i when he can make the other players in his group

expend any effort level he wants, given effort levels of the players in the other group. Using the

first-order condition for maximizing the expected payoffs, we obtain the following best responses

of the players in a group, given the other players’ effort levels in the other group:

xb11(X2) =
√

(1 + s1)−1v11X2 −X2,

xb12(X2) =
√

(1− s1)−1v12X2 −X2,

and

xb21(X1) =
√

(1 + s2)−1v21X1 −X1,

xb22(X1) =
√

(1− s2)−1v22X1 −X1.

Assumption 3.10 We assume that there exists the upper bound of si, i.e. 0 < si ≤ (vi1 −

vi2)/(vi1 + vi2) for i = 1, 2.

Note that under Assumption 3.10, it holds that xbi1(X−i) ≥ xbi2(X−i) for all X−i ≥ 0. From

Assumption 3.10 and Lemma 3.3, we obtain the best responses of the players in a group, given

effort levels of the players in the other group:

(x11, x12) such that x11 = x12 and 0 ≤ X1 ≤ xb12(X2)

and

(x21, x22) such that x21 = x22 and 0 ≤ X2 ≤ xb22(X1).
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By using these results and (c) in Proposition 3.4, we obtain the effort levels of players, each

group’s winning probability, and expected payoffs of players in the second stage, given the subsidy

rate, s1 and s2. Lemma 3.11 summarizes these results.

Lemma 3.11

(a) In the second stage of the game, given the subsidy rates s1 and s2, each player in group 1

expends x1(s1, s2) = (1 − s2)v2
12v22/((1 − s2)v12 + (1 − s1)v22)2, and each player in group

2 expends x2(s1, s2) = (1 − s1)v12v
2
22/((1 − s2)v12 + (1 − s1)v22)2. Accordingly, group 1’s

probability of winning the prize is p1(s1, s2) = (1 − s2)v12/((1 − s2)v12 + (1 − s1)v22), and

group 2’s winning probability is p2(s1, s2) = (1− s1)v22/((1− s2)v12 + (1− s1)v22).

(b) The expected payoff for player 1 in group 1 is π11(s1, s2) = (1 − s2)v12((1 − s2)v11v12 +

(1 − s1)v11v22 − (1 + s1)v12v22)/((1 − s2)v12 + (1 − s1)v22)2, that for player 2 in group 1

is π12(s1, s2) = (1 − s2)2(v12)3/((1 − s2)v12 + (1 − s1)v22)2, that for player 1 in group 2 is

π21(s1, s2) = (1−s1)v22((1−s2)v21v12+(1−s1)v21v22−(1+s2)v12v22)/((1−s2)v12+(1−s1)v22)2,

and that for player 2 in group 2 is π22(s1, s2) = (1− s1)2(v22)3/((1− s2)v12 + (1− s1)v22)2.

Now we consider the first stage in which player 1 in group 1 and player 1 in group 2 choose

the optimal subsidy rates, s∗1 and s∗2. Having perfect foresight about x1(s1, s2) and x2(s1, s2), in

the first stage, player 1 in group 1 chooses s1, given the subsidy rate s2, which maximizes

π11(s1, s2) = v11(x1(s1, s2)/(x1(s1, s2) + x2(s1, s2)))− (1 + s1)x1(s1, s2).

From the first-order condition for maximizing π11(s1, s2), we obtain the following subsidy rate

of player 1 in group 1, s1(s2):

s1(s2) =
v11(v12 + v22)− v12(v12 + 3v22)

v22(v11 + v12)
− v12(v11 − v12)s2

v22(v11 + v12)
.

Similarly, we obtain the following subsidy rate of player 1 in group 2, s2(s1):

s2(s1) =
v21(v12 + v22)− v22(v22 + 3v12)

v12(v21 + v22)
− v22(v21 − v22)s1

v12(v21 + v22)
.

Now we are ready to find the equilibrium subsidy rates of the high-valuation players in each

group. By solving the two equations, s1(s2) and s2(s1), simultaneously, we find the equilibrium

subsidy rates of the players in the contest.
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Proposition 3.12 In the equilibrium of the game, in the first stage, the high-valuation player in

each group chooses the following equilibrium subsidy rate:

s∗1 =
v11v22 + (2v11 − 2v22 − v21)v12 − 2v2

12

v11v22 + v12v21

and

s∗2 =
v12v21 + (2v21 − 2v12 − v11)v22 − 2v2

22

v11v22 + v12v21
.

3.6 Further Research

In the previous section, we have shown that the high-valuation player in each group has an incentive

to subsidize the low-valuation player in his group and have found the subsidy rates the high-

valuation player offers to the low-valuation player in his group at Nash equilibrium. However,

subsidizing the other player’s effort may be impossible in our reality because, for instance, each

agent in a group may have a different kind of role that requires different kind of ability or position.

Even though subsidizing the effort of the other player is possible, it is very hard to be implemented

when the effort of the players is non-observable. For these reasons, we can think an alternative

way for the high-valuation player in a group to motivate the other player in his group; a contingent

payment scheme. That is, to motivate the low-valuation player, the high-valuation player offers an

outcome-contingent bonus to the low-valuation player in his group.

Specifically, we can construct the following game. In the first stage, the high-valuation player

in group 1 offers an outcome-contingent bonus, b, which will be given to the low-valuation player

in his group in case of his group’s winning the contest. If that group loses the contest, the high-

valuation player does not give anything to the low-valuation player. In the second stage, observing

the bonus b, all the players in the contest expend their effort simultaneously and independently.

Finally, the winning group is chosen and the payoffs of the players are realized. Analyzing this

game and comparing the results under being incentivized with those under being subsidized should

be interesting works.

In the current version, we considered a simple contest model in which two groups consisting of

two players compete to win the prize. It should be interesting to extend the model to a more general

case where several group consisting of several players with different valuations on the prize compete

with one another to win the prize. Furthermore, it will be also interesting to study endogenous

formation of groups in the weakest-link contests by allowing the players in the contest to move from
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one group to others before expending their effort levels. Finally, we can consider another type of

contest, “Best-Shot contests with group-specific public good prizes”, where each group’s winning

probability depends on the maximum effort level expended by the players in the group. We leave

all these works for our future research.

3.7 Conclusion

We have examined the equilibrium effort levels of individual players and groups in a contest in

which n groups compete to win a group-specific public good prize, the individual players choose

their effort levels simultaneously and independently, and each group’s probability of winning the

prize follows a weakest-link rule or weakest-link contest success function. In the general model, we

first showed that the lowest-valuation players in each group play decisive roles in determining the

Nash equilibrium of the contest. There are multiple pure-strategy Nash equilibria of the game but

there exists an unique coalition-proof Nash equilibrium where neither an individual player nor group

has any incentive to deviate from the equilibrium. No free riding problem exists in the equilibrium.

We then studied the equilibrium effort levels of individual players and groups in the model where

the players in the contest are budget-constrained. We also found that high-valuation players in each

group have an incentive to subsidize low-valuation players in their group because subsidizing the

lowest-valuation player in their group increases their payoffs in equilibrium. Finally, we examined

the equilibrium subsidy rates of the groups in a model where first high-valuation players in each

group decide how much to subsidize low-valuation players in their group and then the individual

players in the contest choose their effort levels simultaneously and independently.
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Chapter 4

Endogenous Decisions of the Agents

in the Software Industry Between

Open Source and Proprietary Projects

4.1 Introduction

Open source software projects have been successful despite the skeptical prediction of their future

in the early days of the open source phenomenon. Linux, Apache, and MySQL are the examples of

the successful open source software. The remarkable success of the open source software projects

cannot be achieved without the tremendous efforts made by self-motivated individual programmers

who are willing to spend hours for this non-paying effort. It is startling to observe the voluntary

contributions of the highly motivated developers in the open source software projects. In his “Open

Letter to Hobbyists” written in 1976, Bill Gates expressed his skepticism about the success of the

hobbyist community. He mentioned the unfairness of gaining the benefits of software developers’

resources without paying anything. He wrote: “Who can afford to do professional work for nothing?

What hobbyist can put 3-man years into programming, finding all bugs, documenting his product

and distributing for free?” (Gates 1976).

The open source software phenomenon in general, has been drawing broad attention of aca-

demic researchers as well as industry practitioners. In particular, academic researchers from various

fields such as management, psychology, and economics, have attempted to reveal the motivations of
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the individual developers to participate in open source software projects, which do not customarily

offer monetary compensation. Examining the motivations of the individual programmers for open

source project participation has been a popular theme among researchers (Fitzgerald and Feller

(2001)). In the early days of open source software research, Ghosh (1998) identifies enjoyment and

creativity as main motives for the open source project participation while Raymond (1999) argues

that reputation gives them an incentive to participate in open source projects. Other motivations

for open source project participation include the developers’ own desire to solve the problem they

cope with (Franke and von Hippel (2003)), and career concerns such as potential good job offers in

the future (Hann et al. (2006)).

Under a widely accepted theme in the literature, the various motivations for open source project

participation have been grouped under two broad categories: intrinsic and extrinsic (Lakhani and

Wolf (2003), Rossi (2004), Roberts et al. (2006), Shah (2006)). Ryan and Deci (2000) define

intrinsic motivation as the doing of an activity for its inherent satisfactions rather than for some

separable consequence. Workers with intrinsic motivation pursue goals because they enjoy more

benefits from doing the task per se, than the reward for any service they offer. Economists call

such workers motivated agents (Besley and Chatak (2005)). Examples of this include police officers

being motivated to promoting justice, fire fighters being motivated to saving lives, and soldiers

being motivated to defending their country. In the context of open source software, intrinsic

motivations can be the enjoyment of programming, satisfaction and accomplishment as a member

of the community, altruism, generalized reciprocity, and a gift-giving attitude (Rossi (2004)). On the

other hand, extrinsic motivation refers to motivation that stems from factors outside an individual.

Rewards like reputation and monetary compensation are the examples of the extrinsic motivation.

In the context of the open source software, peer recognition or potential job offers may motivate

the open source software developers extrinsically.

Prior studies in the stream of research on the open source project participants’ motivation

examine the problem from a behavioral perspective grounded on survey data. Learner and Tirole

(2002) argue that a programmer participates in a project only if she derives a net benefit. They also

argue that existing economic theory can explain the motivation for open source project participa-

tion as long as a programmer’s benefits and costs are articulated in her utility function. However,

very little research in the economic literature attempts to explain the motivation of the open source

software developers with an economic model based on utility theory. Inspired by economists’ view
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championing versatility of economic theory, we aim to bridge the gap between economic litera-

ture and behavioral science on the motivation for open source project participation, by examining

the programmers’ choice between open source and proprietary software projects using a stylized

economic model.

Existing literature focuses on identifying the motivations for open source project participation.

An important yet unanswered question is how intrinsic and extrinsic motivations affect a software

programmer’s decision on which project to participate in: open source or proprietary. As suggested

by Lerner and Tirole (2002), we attempt to model the factors of the benefit and the cost in

a programmer’s utility function, and logically explain the programmer’s choice of the software

project. Our model captures two dimensions of a programmer’s type: intrinsic motivation and

ability. We assume no correlation between these two dimensions, implying that being a motivated

agent does not mean that she is a highly capable programmer. We also consider two extrinsic

motivations for software project participation: a future job offer to open source developers, and

monetary compensation to proprietary project participants. With this setting, we aim to answer the

three major questions: First, how does the interplay among these three factors: intrinsic motivation,

extrinsic motivation, and ability affect software programmers’ choice between an open source project

and a proprietary software project. Second, how does the ability to observe programmers’ type affect

a proprietary software vendor’s strategy? Third, under what conditions, can each programmer’s

choice between an open source project and a proprietary project be an equilibrium outcome?

We find that motivations, both intrinsic and extrinsic, and the ability level positively affect the

programmers’ effort level in the open source project. In the commercial project, we find evidence

that the publicity of information changes neither the contract offered by the commercial company,

nor the effort level of the programmers. Our result indicates that the open source project is an

effective compensation mechanism. Our equilibrium analysis shows that any combination of the

programmers’ decisions can occur as an equilibrium outcome. We show that there exists a pooling

equilibrium where all the programmers choose either the open source or the commercial project.

We also find the equilibria at which the programmers are sorted by their ability levels and the

levels of intrinsic motivations. Our finding implies that an open source project is more likely to

have skillful and motivated programmers than a commercial project.

We aim to contribute to the literature of information systems and economics in the following

ways. First, we provide rationale for open source project participation grounded on an economic
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theory, and show that it is not a startling phenomenon as in a way it might look in its early

days. Second, we model the ability dimension of software programmers along with the motivation

factor, both intrinsic and extrinsic, and examine the impact of the interplay between these two

dimensions of a programmer type on her choice of the software project. Third, we provide software

programmers with guidelines which can help them make the right decision given their costs and

benefits. Finally, our results can give managerial implications to proprietary software companies

who want to recruit capable programmers in order to increase the likelihood of the success of their

projects.

The rest of the article is organized as follows. Section 4.2 reviews the literature. We present

the model in Section 4.3. In Section 4.4, we analyze the subgames that appears after the first

stage of the game, i.e., the optimal efforts of programmers in each project and the optimal contract

offered by a commercial company, given the decisions of the programmers made at the first stage.

In Section 4.5, we study the programmers’ project choices at the first stage of the game. Finally,

Section 4.6 concludes by discussing the contributions and the limitations of our model.

4.2 Related Literature

our work is grounded on two research streams of economic literature: intrinsic motivation of eco-

nomic agents and economics of open source software. We share the topic with the aforementioned

behavioral studies that identify different motivations for contributing to open source projects, but

we analyze it from an economic perspective. In this section, we survey the economic literature.

The literature on intrinsic motivation of economic agents is growing in economics. Besley and

Ghatak (2005) study the behavior of motivated agents who have different intrinsic benefits according

to the mission of the organization for which they work. They emphasize the importance of matching

the mission of the organization and the agents for the efficiency of the organization. Benabou and

Tirole (2003) examine the relationship between the two motives of an agent, extrinsic and intrinsic

motivation, in a setting where an informed principal selects a policy (extrinsic incentives) which

reveals information about the agent’s ability or his task (intrinsic incentives) the agent does not

know. They show that the extrinsic incentives have negative effects in the long run. Benabou and

Tirole (2006) further consider the three components of an agent’s motivation: altruistic motivation,

material self-interest, and self-image concerns.

Examining open source software markets with economic tools is becoming a popular venue
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among researchers in the domain of information systems. Raghunathan et al. (2005) uses a stylized

economic model and finds evidence that open source software quality is not necessarily lower than

commercial software quality. Casadesus-Masanell and Ghemawat (2006) analyze a dynamic mixed

duopoly in which a proprietary software vendor interacts with an open source software vendor which

offers free software when the demand-side learning effects are present. Kim et al. (2006) examine

the ways to make money from open source software, and analyze the optimal pricing strategies

under a dual-licensing scheme or a service support model. Economides and Katsamakas (2006)

analyze the optimal two-sided pricing strategy of a platform firm and compare industry structures

based on a proprietary platform inspired by the real-world operating systems competition. August

et al. (2007) examine the economic viability of the open source software business model grounded

on an analytical model. They identify the market conditions under which the open source model

is successful.

4.3 The Model

There are two types of projects in the software industry: open source software projects and com-

mercial software projects. Both types of projects are run by a group of economic agents, or a group

of software programmers.

Programmers differ with respect to two key dimensions: abilities and intrinsic motivation.

Each programmer either has a high ability or a low ability in terms of a skill-set required for a

certain task, and is either highly motivated or poorly motivated in terms of intrinsic motivation.

Let us denote A = {aH , aL} as a set of ability parameters where aH and aL represent high ability

and low ability, respectively. Let us denote Θ = {θH , θL} as a set of motivation parameter where

θH and θL represent high motivation and low motivation, respectively. Then there are four types

of programmers in the industry: programmers with high ability and high intrinsic motivation

(HH ≡ (aH , θH)), with high ability and low intrinsic motivation (HL ≡ (aH , θL)), with low ability

and high intrinsic motivation (LH ≡ (aL, θH)), and with low ability and low intrinsic motivation

(LL ≡ (aL, θL) ). The number of each type of programmer is normalized to unity. The commercial

software company cannot observe these types of the programmers while the information about the

programmer types is common knowledge among programmers in the industry.

Whether a project succeeds or fails depends on the total effort of the programmers who are

participating in the project. Let us denote ei as the effort of a programmer whose type is i where
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i ∈ {HH,HL,LH,LL}. If programmer i exerts his effort, she incurs cost ci(ei) = aie
2
i

2 , where ai > 0

is her ability parameter and measures the degree of disutility in exerting his effort . Hence the ability

parameter of programmers with high ability (i = HH or HL) is less than the one of programmers

with low ability (i = LH or LL). That is, we have aHH = aHL = aH < aL = aLH = aLL. Let

us denote OS and CS as a set of programmers who are participating in an open source software

project and in a commercial software project, respectively. Then the probability that the open

source software project will succeed is P (
∑

j∈OS ej). Similarly, the commercial software project

succeeds with probability P (
∑

j∈CS ej).

If the open source project succeeds, the programmers participating in the project receive two

benefits: intrinsic benefit and extrinsic benefit. Programmer i in the open source project gets her

motivation parameter θi as the intrinsic benefit. The motivation parameter of the highly motivated

programmers (i = HH or LH) is greater than the one of the poorly motivated programmers

(i = HL or LL). That is, we have θHH = θLH = θH > θHL = θLL = θL. Programmer i in the open

source project also obtains the extrinsic benefit in case of the success of the project. Outsiders can

see the contribution of each programmer working on the open source project simply because the

project is open to the public. Thus, a programmer whose contribution toward the success of the

project is relatively large will have a high likelihood of getting a good reputation, and consequently

getting a good job offer in the future. Hence, programmer i in the open source project receives

the monetary values of a future job offer,V , with some probability which increases with her effort

level relative to the total effort level of the programmers in the project. This future job offer gives

the participants of an open source project an extrinsic motivation. Note that both benefits are

attainable only when the open source project succeeds. If the project fails, the programmers get

nothing. Then the utility of programmer i from working in the open source project is given by

Ui = P (
∑
j∈OS

ej)

(
θi +

ei∑
j∈OS ej

V

)
− aie

2
i

2
, (4.1)

where P (·) is a function with properties P ′(·) > 0 and P ′′(·) ≤ 0.

The programmers participating in the commercial project receive monetary gain according to

a contract made with the commercial software company. Since the effort levels of programmers

are non-contractible (or non-observable), the commercial company offers an incentive scheme that

is contingent on success or failure of the project in order to induce the programmers’ effort. Let

w = (ws, wf ) be a contract made by the commercial company and the programmers. If the project
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succeeds, the commercial company pays each programmer the wage ws. In the case of failure, the

commercial company pays each programmer the wage wf . Then the utility of programmer i from

working in the commercial project is given by

Ui = P (
∑
j∈CS

ej)ws +

1− P (
∑
j∈CS

ej)

wf −
aie

2
i

2
. (4.2)

Let π be the revenue the commercial project makes when the project succeeds. If the project fails

the revenue is 0. Then the utility of the commercial company is given by

UCS = P (
∑
j∈CS

ej)(π −#ws) + (1− P (
∑
j∈CS

ej))(−#wf ), (4.3)

where # is the number of programmers working on the commercial project.

We formally construct the following game: At first, all the programmers in the industry make

choices of either participating in an open source project or participating in a commercial project

simultaneously and independently. Then, in the open source project, the programmers exert their

effort to make the project successful. In the commercial project, the commercial company offers

a contract w = (ws, wf ) to the programmers and then each programmer in the project accepts or

rejects the offer. If she rejects the offer, she leaves the industry and gets nothing. Conversely, the

programmers accepting the offer exert their effort to make the project successful. Finally, both

projects succeed or fail and the payoffs of all the programmers and the commercial company are

realized.

4.4 Programmers’ Optimal Levels of Effort

4.4.1 Open Source Project

In this section, we examine the optimal levels of effort that the participants of the open source

project exert, and the corresponding utility levels. We investigate how different types of program-

mers make their decisions on the effort level, i.e., how intrinsic motivation (θi), extrinsic motivation

(V ), and ability (ai) affect how much effort a programmer is willing to make in the open source

project (e∗i ). Recall from equation (4.1) that the utility of a programmer of type i from working

in the open source project is given by Ui = P (
∑

j∈OS ej)
(
θi + ei∑

j∈OS ej
V
)
− aie

2
i

2 where P (·) is a

function with properties P ′(·) > 0 and P ′′(·) ≤ 0. For simplicity we assume that the probability of
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success is the sum of the participants’ efforts, i.e., P (
∑

j∈OS ej) =
∑

j∈OS ej where ei ∈ [0, 0.25].

Then the utility becomes

Ui =
∑
j∈OS

ej

(
θi +

ei∑
j∈OS ej

V

)
− aie

2
i

2
. (4.4)

An analysis to solve for the optimal level of effort that programmer i exerts leads to Proposition

4.1.

Proposition 4.1 An open source project participant’s optimal level of effort is e∗i = θi+V
ai

. As the

programmer has higher intrinsic (θ ↑) and extrinsic motivations (V ↑), and higher ability (ai ↓),

she makes more efforts (e∗i ↑) and enjoys higher utility (U∗i ↑).

Proof. See the Appendix.

Proposition 4.1 implies that in an open source project, a programmer with higher motivations,

and higher ability makes more efforts and thus enjoys higher utility. This result is intuitive in the

sense that both the motivation factors and the ability factors positively affect a programmer’s effort

level. Our findings share the view with the existing literature in that the open source project is an

efficient way to incentivize the programmer with high intrinsic motivation which is not appreciated

in the commercial project.

4.4.2 Commercial Project

Under Complete Information

In this section, we examine the commercial project where programmers exert their efforts for

extrinsic benefit, i.e. monetary incentives, offered by the commercial software company. We first

study the optimal contract, i.e. incentive scheme, of the commercial company with complete

information, meaning that programmers’ type in terms of ability is publicly known. The commercial

company designs an incentive scheme w = (ws, wf ) that is contingent on success and failure of the

commercial software project in order to induce the programmers’ efforts. Recall from equation (4.2)

that programmer i enjoys utility Ui = P (
∑

j∈CS ej)ws + (1 − P (
∑

j∈CS ej))wf −
aie

2
i

2 . Consistent

with the open source case, we assume that the probability of success is the sum of the participants’

efforts, i.e., P (
∑

j∈CS ej) =
∑

j∈CS ej where ei ∈ [0, 0.25]. Given the contract w = (ws, wf ), the

optimal level of effort programmer i exerts is ei = ws−wf
ai

which can be easily obtained by solving

the first-order condition.
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We now consider the commercial company’s optimal contract. The commercial company gets

profit π if the project succeeds while it gets nothing otherwise. Then the utility of the commercial

company is given by UCS =
∑

j∈CS ej(π−#ws)+(1−
∑

j∈CS ej)(−#wf ), where # is the number of

programmers working on the commercial project. The maximization problem that the commercial

company faces is formulated as follows:

max
{ws,wf}

UCS =
∑
j∈CS

ej(π −#ws) + (1−
∑
j∈CS

ej)(−#wf ) (4.5)

subject to ws, wf ≥ 0 (LLC)

Ui∈CS ≥ 0 (PC)

ei = arg max
ei

Ui for i ∈ CS (ICC)

Solving for the above maximization problem leads to the commercial company’s optimal con-

tract and programmer i’s optimal effort level as follows1:

w∗ = (w∗s , w
∗
f ) = (

π

2#
, 0) and e∗i =

π

2#ai
.

Hence, programmer i in the commercial project gets the following utility:

U∗i∈CS =
∑
j∈CS

e∗jw
∗
s −

ai(e∗i )
2

2
=

π2

4#2

∑
j∈CS

1
aj
− 1

2ai

 =
π2

4#2

∑
j 6=i

1
aj

+
1

2ai

 . (4.6)

Under Incomplete Information

In the real-world software industry, a programmer’s ability is often not clearly observable to the

prospective employers. This incomplete information can explain a variety of efforts that the employ-

ers make to have better prior knowledge about the job seekers’ skill levels such as internships. We

model the information asymmetry between the commercial company and the programmers about

the programmers’ ability levels. We investigate how incomplete information affects the commercial

company’s decision on the optimal contract, and the programmers’ effort levels. Assume that the

commercial company knows the probability distribution of the programmers’ ability. Denote a

cumulative distribution of the programmer’s ability level by F (a) with a ∈ {aH , aL}. Then the

commercial company’s optimal contracting problem under moral hazard becomes the following:

max
{ws,wf}

E[UCS ] =
∫ ∑

j∈CS
ej(π −#ws) + (1−

∑
j∈CS

ej)(−#wf )

 dF (a) (4.7)

1The proof is available in the Appendix.
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subject to ws, wf ≥ 0 (LLC)

Ui∈CS ≥ 0 (PC)

ei = arg max
ei

Ui for i ∈ CS (ICC)

A further analysis seeking the optimal solutions to the above maximization problem yields Propo-

sition 4.2.

Proposition 4.2 A commercial software company offers the same contract to the participating

programmers under incomplete information about the programmers’ ability levels as the contract

under complete information. The optimal level of effort a programmer makes does not change with

the publicity of information.

Proof. See the Appendix.

In an open source software project, there is no hiring process. Rather, programmers self-select

projects. Since programmers are the ones who know the exact level of their skill sets, the open source

software market is under complete information. On the other hand, a commercial software company

goes through a hiring process, and the key factor is the skill levels of the potential employees. In

the real world, employers are often misinformed about the ability levels of the candidates despite

their attempts to correctly evaluate the qualifications such as interviews. Interestingly, our findings

show that, even in the commercial project, information about the ability level affects neither the

optimal contract provided by the company, nor the effort levels made by the programmers. The

optimal contract under complete information maximizes the profit for the commercial company

even in the presence of information asymmetry.

4.4.3 Open Source vs. Commercial as a Compensation Mechanism

Whether an agent who puts forth more efforts always gets a higher payoff under a certain mechanism

is an interesting question to both the employer and the prospective employees. This question is

particularly interesting to the software industry where the probability of success of a project heavily

depends on the efforts that the participating programmers make. In this section, we examine the

effectiveness of both types of software projects as compensations mechanisms for the programmers’

efforts. We have found that a programmer with higher ability always makes more of an effort in

a software project regardless of whether it’s open source or commercial. By examining the payoffs
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for the programmers, we aim to answer the following questions: Will a programmer with higher

ability get higher compensation? We identify the conditions under which a certain type of software

project is effective as a compensation mechanism for the programmers’ efforts.

Recall from the proof of Proposition 4.1 that programmer i in the open source project enjoys

her utility U∗i∈OS = θi
∑

j∈OS

(
θj+V
aj

)
− (θi+V )(θi−V )

2ai
. The utility of a programmer of each type is

as follows:

U∗HH∈OS = θH
∑
j∈OS

(
θj + V

aj

)
− (θH + V )(θH − V )

2aH
,

U∗LH∈OS = θH
∑
j∈OS

(
θj + V

aj

)
− (θH + V )(θH − V )

2aL
,

U∗HL∈OS = θL
∑
j∈OS

(
θj + V

aj

)
− (θL + V )(θL − V )

2aH
,

U∗LL∈OS = θL
∑
j∈OS

(
θj + V

aj

)
− (θL + V )(θL − V )

2aL
.

It is straightforward that U∗HH∈OS ≥ U∗LH∈OS when V ≥ θH , and that U∗HL∈OS ≥ U∗LL∈OS

when V ≥ θL. Note from (4.6) that programmer i in the commercial project gets her utility

U∗i∈CS = π2

4#2

(∑
j∈CS

1
aj
− 1

2ai

)
. Thus, a programmer of each type enjoys the following utility:

U∗HH∈CS = U∗HL∈CS =
π2

4#2

∑
j∈CS

1
aj
− 1

2aH

 ,

U∗LH∈CS = U∗LL∈CS =
π2

4#2

∑
j∈CS

1
aj
− 1

2aL

 .

Since aH < aL, we have U∗HH∈CS = U∗HL∈CS < U∗LH∈CS = U∗LL∈CS . Proposition 4.3 summa-

rizes the outcomes of our analysis.

Proposition 4.3 When the extrinsic benefit is larger than the intrinsic benefit (V > θi), a pro-

grammer with higher ability, who thus makes more of an effort, gets a higher payoff in the open

source project. In the commercial project, a programmer with higher ability is not compensated for

his efforts.

Proposition 4.3 implies that the open source project is an effective compensation mechanism

which pays more for programmers with higher ability who make more contributions to the project as

long as the benefit of getting recognized in the open source project is sufficiently large. On the other
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hand, the commercial project does not compensate for the efforts made by skillful programmers in

a fair way. Programmers with higher ability enjoy less utility than the others in spite of the more

valuable input they make. Our findings may explain one of the programmers’ incentives to join

the open source project instead of the commercial project. Particularly, skillful programmers may

choose an open source project over a commercial one when they realize sufficient benefit of being

a prominent participant in the open source project, for example, a future job offer while being an

outstanding programmer in a commercial project does not bring much benefit to themselves.

4.5 Programmers’ Choice of Project Types

In the previous section, we have examined the optimal effort levels of the programmers participating

in each project and the optimal contract of the commercial company, given the programmers’ choices

between participating in an open source project and participating in a commercial project. Now,

we consider each programmer’s decision problem of which project she will participate in.

According to each programmer’s choice between the open source and the commercial project

made at the first stage of the game, there appear 16 subgames. Table 1 shows what type of

programmer participates into which project for each subgame:

Insert Table 1 Here

From the results obtained in Section 4.4, we can compute all the programmers’ utilities which

will be derived in each subgame. Remind that U∗i∈OS = θi
∑

j∈OS

(
θj+V
aj
− (θi+V )(θi−V )

2ai

)
and

U∗i∈CS = π2

4#2

(∑
j∈CS

1
aj
− 1

2ai

)
. To make our analysis simple without losing our focus, we as-

sume that θL is normalized to 0, and denote θH as θ. We define aH as aL
k where k > 1, and denote

aL as a. With these notations we compute all the programmers’ utilities in each subgame. Table

2 summarizes the utilities of the programmers in each subgame.

Insert Table 2 Here

Now we are ready to see the endogenous decision of the programmers about their choice

of the software project. We examine how each type of programmer makes her choice between

the open source project and the commercial project in the first stage of the game. That is, we

analyze the conditions under which each subgame becomes an equilibrium outcome. In order to

specify the equilibrium conditions under which a certain subgame is an equilibrium outcome, we
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have to find some conditions under which each programmer in that subgame does not have any

incentive to deviate from a project she is currently participating to the other project, given the

other programmers’ choices between the open source project and the commercial project. Solving

simultaneously these non-deviation conditions of the programmers in that subgame, we obtain the

equilibrium condition under which that subgame will appear as an equilibrium. Executing this

procedure for all the subgames, we find the equilibrium conditions for each subgame. The following

propositions summarize our findings.

Proposition 4.4 All the subgames possibly appear as one of the equilibrium outcomes. That is, for

each subgame, there exist equilibrium conditions under which that subgame becomes an equilibrium

outcome.

Proof. See the Appendix.

Interestingly, we have found that for each subgame, there exist equilibrium conditions for

the subgame to be an equilibrium outcome, and that there exist multiple equilibria under some

equilibrium conditions. Which subgame (possibly subgames) will appear in equilibrium depends

on the parameters in our model, V , π, k, and θ. It is generally believed that the open source

software project is tempting to only the programmers with high intrinsic motivations. In other

words, the perception about such programmers with high intrinsic motivation is that they may never

participate in the commercial software project. Our result indicates that any case is possible, which

may encourage the commercial software company which is interested in recruiting programmers with

high ability as well as high intrinsic motivation. We further examine the equilibrium conditions.

Proposition 4.5 (Pooling Equilibria)

(a) If V ≥ π
2 , all the programmers in the industry participate in the open source project at

equilibrium.

(b) If V +θ ≤ π
8

√
3k+4
k , all the programmers in the industry participate in the commercial project

at equilibrium.

Proof. See Table 3 at the appendix.

Proposition 4.5 shows the pooling equilibria at which all the programmers make the same

decision regardless of their own types. The findings in Proposition 4.5 are intuitively true. If the
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future benefit coming from getting famous in the open source project (V ) is large enough, all the

programmers in the industry participate in the open source project. On the contrary, if the sum of

the extrinsic benefit and the intrinsic benefit is sufficiently small, there is no incentive for anyone to

go to the open source project and hence all the programmers participate in the commercial project.

This result implies that an open source software project can be successful only if it provides the

prospective participants with sufficient benefits, which can be either intrinsic or extrinsic or both.

Proposition 4.6 (Equilibria at which the programmers are sorted out by abilities)

(a) There possibly exist two equilibria at which the programmers are sorted out according to their

abilities. At one of the equilibria, subgame 6 appears, i.e., the high-ability programmers

(HH,HL) participate in the open source project and the low-ability programmers (LH,LL)

participate in the commercial project. At the other equilibrium, there appears subgame 11,

which is inversely symmetric to subgame 6.

(b) If the equilibrium conditions for subgame 11 to be an equilibrium outcome are satisfied, then

those for subgame 6 to be an equilibrium outcome are always satisfied. That is, if subgame 11

is an equilibrium outcome, subgame 6 is also. However, the converse is not true.

Proof. By comparing the equilibrium conditions for subgame 6 with those for subgame 11 shown

in Table 3, we can see that the equilibrium conditions for subgame 11 is a sufficient condition of

the equilibrium conditions for subgame 6.

Proposition 4.6 shows the equilibria at which the programmers in the industry are separated

according to their abilities and the relation between the equilibrium conditions for those equilib-

ria. Interestingly, the equilibrium conditions under which the highly-abled programmers go to the

commercial project are a subset of those under which the lowly-abled programmers go to the com-

mercial project. This implies that the case where the highly-abled programmers participate in the

commercial project and the lowly-abled programmers participate in the open source project cannot

be a unique equilibrium. In other words, if the case where all the highly-abled programmers par-

ticipate in the commercial project is an equilibrium, the opposite case where they work in the open

source project is an equilibrium as well. Our finding supports the argument that an open source

project is more likely to have knowledgeable and skillful programmers than a commercial project,

which makes the commercial company be concerned about recruiting highly-abled programmers.
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Proposition 4.7 (Equilibria at which the programmers are sorted out by intrinsic motivations)

(a) (i) There possibly exist two equilibria at which the programmers are sorted out according to

their intrinsic motivations. At one of the equilibria, subgame 7 appears, i.e., the highly moti-

vated programmers (HH,LH) participate in the open source project and the poorly motivated

programmers (HL,LL) participate in the commercial project. At the other equilibrium, there

appears subgame 10 that is inversely symmetric to subgame 7.

(b) (ii) If the equilibrium conditions for subgam 10 to be an equilibrium outcome are satisfied, then

those for subgame 7 to be an equilibrium outcome are always satisfied. That is, if subgame 10

is an equilibrium outcome, subgame 7 is also. However, the converse is not true.

Proof. By comparing the equilibrium conditions for subgame 7 with those for subgame 10 shown

in Table 3, we can see that the equilibrium conditions for subgame 10 is a sufficient condition of

the equilibrium conditions for subgame 7.

Proposition 4.7 show the equilibria at which the programmers are separated according to their

intrinsic motivations, and the relation between the equilibrium conditions for those equilibria. The

proposition says, interestingly, that the strange-looking case where the poorly-motivated program-

mers participate in the open source project and the highly-motivated programmers participate in

the commercial project can be an equilibrium outcome. However, this case can be an equilibrium

only when there is no big difference in the ability parameters between the programmers (k) and

the future benefit derived from participating in the open source project (V ) is sufficiently small.

That is, this case requires very restricted equilibrium conditions. Besides, similar to the results

in Proposition 4.6, the equilibrium conditions for this case is a subset of those for the case where

the highly-motivated programmers go to the open source project and the poorly-motivated ones

in the commercial project. This implies that the case where the poorly-motivated programmers

participate in the open source project and the highly-motivated programmers in the commercial

project cannot be a unique equilibrium.

We have also found the relationships between the equilibrium conditions for subgame 8 and 7,

and between the equilibrium conditions for subgame 9 and 6 as follows. The equilibrium conditions

for subgame 8 (subgame 9) to be an equilibrium outcome is a subset of those for subgame 7

(subgame 6). This implies that the case where the programmers are not sorted out by either

abilities or intrinsic motivations cannot be a unique equilibrium in our model. From this finding,
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Proposition 4.6, and Proposition 4.7, we conclude that the equilibrium conditions for subgame 6 are

a necessary condition of the equilibrium conditions for subgame 9 and 11, and that the equilibrium

conditions for subgame 7 are a necessary condition of the equilibrium conditions for subgame 8 and

10. This implies that subgame 6 and 7 have the most comprehensive equilibrium conditions, i.e.,

the most unrestricted equilibrium conditions, among subgames 6, 7, 8, 9, 10, and 11.

Proposition 4.8 (Equilibria at which the programmers are biased toward the open source project)

(a) There possibly exist four equilibria at which only one programmer participates in the commer-

cial project and the others participate in the open source. At these equilibria, subgame 2, 3,

4, and 5 appear.

(b) If the equilibrium conditions for either subgam 3 or 4 or 5 to be an equilibrium outcome are

satisfied, then those for subgame 2 to be an equilibrium outcome are always satisfied. That is,

if at least one of subgames 3, 4, and 5 is an equilibrium, subgame 2 is also.

Proof. By scrutinizing the equilibrium conditions for subgames 2, 3, 4, and 5, we can see that

the equilibrium conditions for subgame 2 is a necessary condition of the equilibrium conditions for

subgames 3, 4, and 5. Additionally, we can also see that the equilibrium condition for subgame 4

is a necessary condition of the equilibrium conditions for subgame 5.

Proposition 4.8 shows the equilibria at which only one type of the programmers in the in-

dustry participates in the commercial project and the others in the open source project, and the

relation between the equilibrium conditions for those equilibria. Interestingly, the equilibrium con-

ditions for subgame 2 where only the lowly-abled-and-poorly-motivated programmer goes to the

commercial project is a necessary condition of the equilibrium conditions for subgames 3, 4, and

5. This means that subgame 2 has the most comprehensive equilibrium conditions, i.e., the most

unrestricted equilibrium conditions, among subgames 2, 3, 4, and 5. Specifically, if k > 3
2 and

V <
(

6(k + 1) +
√

3(12k2 + 26k + 13)
)
θ, subgames 3, 4, and 5 never appear in equilibrium.

Proposition 4.9 (Equilibria at which the programmers are biased toward the commercial project)

(a) There possibly exist four equilibria at which only one programmer participates in the open

source project and the others participate in the commercial project. At these equilibria, sub-

games 12, 13, 14, and 15 appear.
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(b) If the equilibrium conditions for subgam 15 to be an equilibrium outcome are satisfied, then

those for subgame 13 to be an equilibrium outcome are always satisfied. That is, if subgame

15 is an equilibrium outcome, subgame 13 is also.

Proof. By comparing the equilibrium conditions for subgame 13 with those for subgame 15 shown

in Table 3, we can see that the equilibrium conditions for subgame 15 is a sufficient condition of

the equilibrium conditions for subgame 13.

Finally, Proposition 4.9 shows the equilibria at which only one of the programmers in the

industry participates in the open source project and the others in the commercial project, and the

relation between the equilibrium conditions for those equilibria. We have found that the equilibrium

conditions for subgame 15 are a subset of those for subgame 13. This implies that the case where

only the lowly-abled-and-poorly-motivated programmer participates in the open source project

cannot be a unique equilibrium. We have also found that if k > 7+
√

561
24 or V < 36k2+51k+22

−36k2+21k+32
θ,

subgame 14 and 15 never appear in equilibrium.

4.6 Conclusion

Examining the motivations of the programmers who participate in the open source software projects

is an interesting and important question. The motivations of the open source developers have not

been fully explained by the utility theory of economics. We study the endogeneous decision of

the programmers between the open source and the commercial software projects from an economic

perspective grounded on the utility theory. We consider the types of the programmers in two

dimensions: intrinsic motivation and ability. Our model captures how extrinsic motivation as well

as the aforementioned two factors, intrinsic motivation and ability affect the programmers’ project

choices. We aim to provide the programmers and the commercial software company with the

guidelines for project participation and recruiting, respectively.

We find that the optimal level of effort made by the programmers in the open source project

increases with the levels of motivations and ability. Interestingly, our result shows that the opti-

mal contract by the commercial company and the programmers’ effort levels are the same under

complete and incomplete information. Our finding supports the argument that the open source

project is an effective compensation mechanism. We show that any subgame can be an equilibrium

outcome. We find the equilbria at which the programmers are sorted by their ability levels and
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the levels of intrinsic motivations. Our finding implies that an open source project is more likely

to have programmers with high ability and high intrinsic motivation than a commercial project.

Our main contribution is to bridge the gap between economic literature and behavioral science

on the motivation for open source project participation. We studied the decision problems of the

programmers in the software industry, whose types are different in terms of ability and intrinsic

motivation, with an economic model based on utility theory. By analyzing the behaviors of the

programmers grounded on an economic theory, we provided the rationale for open source project

participation more clearly. We also provided software programmers with guidelines which help

them make their decisions, and proprietary software companies with managerial implications of

recruiting and compensating programmers.

In our model we assumed that all the programmers in the industry simultaneously make

decisions on which project to participate in. However, in our real world, the decision of programmers

could depend on who are participating in each project. Hence the case where the programmers

choose one of projects sequentially is an interesting topic to study. We also assumed that there

is no correlation between each programmer’s ability and her intrinsic motivation. Relaxing this

assumption is also one of interesting topics. In the current model, the commercial company offers a

wage contract after all the programmers decide on which project to participate in. What happens if

the commercial company moves first, that is, it announces a wage contract before the programmers’

decisions? We leave all these questions for the future works.

79



Appendix A. Mathematical Proofs

Proof of Proposition 4.1.

Note that the first-order condition for maximizing Ui with respect to ei is as follows:

θi +
ei∑

j∈OS ej
V +

∑
j 6=i ej∑
j∈OS ej

V − aiei = 0.

The second order condition is then

2

∑
j 6=i ej

(
∑

j∈OS ej)2
V − 2

∑
j 6=i ej

(
∑

j∈OS ej)2
V − ai = −ai < 0.

From the first-order condition, e∗i = θi+V
ai

. It is trivial that e∗i increases with 1
ai

, θi, and V . At

equilibrium, programmer i enjoys the following utility:

U∗i∈OS =
∑
j∈OS

e∗j

(
θi +

e∗i∑
j∈OS e

∗
j

V

)
− ai(e∗i )

2

2

=
∑
j∈OS

(θj + V )
aj

(
θi +

a−1
i (θi + V )∑

j∈OS a
−1
j (θj + V )

V

)
− (θi + V )2

2ai

= θi
∑
j 6=i

(
θj + V

aj

)
+

(θi + V )2

2ai

= θi
∑
j∈OS

(
θj + V

aj

)
− (θi + V )(θi − V )

2ai
.

Note that ∂U∗i∈OS
∂θi

=
∑

j 6=i

(
θj+V
aj

)
+ θi+V

ai
> 0, ∂U∗i∈OS

∂V = θi
∑

j 6=i
1
aj

+ θi+V
ai

> 0, and ∂U∗i∈OS
∂ai

=

− (θi+V )2

2a2
i

< 0, which completes the proofs.

Proof of Optimal Contract and Effort Level under Complete Information.

Since ei = ws−wf
ai

and P (
∑

j∈CS ej) =
∑

j∈CS ej by assumption, the maximization problem that

the commercial company faces can be rearranged as

max
ws,wf≥0

UCS = (ws − wf )
∑
j∈CS

1
aj

(π −#ws) +

1− (ws − wf )
∑
j∈CS

1
aj

 (−#wf ).

It is straightforward that w∗f = 0. Thus, the optimal contracting problem can be simplified as

max
ws,wf≥0

UCS = ws(π −#ws)
∑
j∈CS

1
aj
.
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Note that the first- and second-order conditions are as follows:

F.O.C. : (π − 2#ws)
∑
j∈CS

1
aj

= 0,

S.O.C. : − 2#
∑
j∈CS

1
aj

< 0.

From the first-order condition, we obtain the commercial company’s optimal contract as

w∗ = (w∗s , w
∗
f ) =

(
π

2#
, 0
)
.

Then the optimal level of effort made by programmer i is e∗i = π
2#ai

. Recall from equation (4.2) that

programmer i’s utility in a commercial project under complete information is Ui = P (
∑

j∈CS ej)ws+(
1− P (

∑
j∈CS ej)

)
wf −

aie
2
i

2 . Substituting w∗s , w
∗
f , and e∗i into Ui, the utility of programmer i is

as follows:

U∗i∈CS =
∑
j∈CS

e∗jw
∗
s −

ai(e∗i )
2

2
=

π2

4#2

∑
j∈CS

1
aj
− 1

2ai

 .

Proof of Proposition 4.2.

Recall that we find the optimal contract and the optimal level of effort under complete informa-

tion as w∗ = (w∗s , w
∗
f ) =

(
π

2# , 0
)

and e∗i = π
2#ai

. Now, we examine the case under incomplete

information. From (4.6), the commercial company’s optimal contracting problem is

max
{ws,wf}

E[UCS ] =
∫ ∑

j∈CS
ej(π −#ws) + (1−

∑
j∈CS

ej)(−#wf )

 dF (a)

subject to ws, wf ≥ 0 (LLC)

Ui∈CS ≥ 0 (PC)

ei = arg max
ei

Ui for i ∈ CS (ICC)

From ICC, we obtain the optimal level of effort as ei = ws−wf
ai

. Thus, the maximization problem

can be simplified to

max
{ws,wf}

E[UCS ] =
∫ (ws − wf )(π −#ws)

∑
j∈CS

1
aj

+

1− (ws − wf )
∑
j∈CS

1
aj

 (−#wf )

 dF (a).
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Straightforwardly, w∗f = 0. Thus, the optimal contracting problem becomes

max
{ws,wf}

E[UCS ] = ws(π −#ws)
∫ ∑

j∈CS

1
aj
dF (a).

The first- and second-order conditions are as follows:

F.O.C. : (π − 2#ws) inf
∑
j∈CS

1
aj
dF (a) = 0,

S.O.C. : − 2# inf
∑
j∈CS

1
aj
dF (a) < 0.

We obtain the commercial company’s optimal contract and programmer i’s optimal effort level as

follows:

w∗ = (w∗s , w
∗
f ) =

(
π

2#
, 0
)

and e∗i =
π

2#ai
.

Proof of Proposition 4.4.

We examine non-deviation conditions of all the programmers under each subgame. At first, let

us consider the conditions for subgame 1 to be an equilibrium outcome. For subgame 1 to be an

equilibrium outcome, each programmer should not have any incentive to deviate from the open

source project to the commercial project, given the fact that the other programmers participate in

the open source project. Specifically, the following non-deviation conditions should be satisfied for

subgame 1 to become an equilibrium outcome:

• Non-deviation condition of a programmer of type HH;

U∗HH at subgame 1 ≥ U∗HH at subgame 5 ⇔ 2θ{(k+2)V+θ}+k(θ+V )2

2ka ≥ π2

8a ,

• Non-deviation condition of a programmer of type HL;

U∗HL at subgame 1 ≥ U∗HL at subgame 4 ⇔ V 2

2a ≥
π2

8a ,

• Non-deviation condition of a programmer of type LH;

U∗LH at subgame 1 ≥ U∗LH at subgame 3 ⇔ 2θ{(2k+1)V+kθ}+(θ+V )2

2ka ≥ π2

8ka ,

• Non-deviation condition of a programmer of type LL;

U∗LL at subgame 1 ≥ U∗LL at subgame 2 ⇔ V 2

2ka ≥
π2

8ka .
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Solving these four inequalities simultaneously, we obtain the equilibrium condition for subgame 1,

π ≤ 2V . That is, if π ≤ 2V then all the programmers in subgame 1 do not have any incentive to

change their decisions and hence subgame 1 is an equilibrium outcome.

For another example, let us consider the equilibrium conditions for subgame 6 to be an equilibrium

outcome. The following non-deviation conditions should be satisfied for subgame 6 to become an

equilibrium outcome:

• Non-deviation condition of a programmer of type HH;

U∗HH at subgame 6 ≥ U∗HH at subgame 13 ⇔ 2θV+(θ+V )2

2a ≥ (k+4)π2

72ka ,

• Non-deviation condition of a programmer of type HL;

U∗HL at subgame 6 ≥ U∗HL at subgame 12 ⇔ V 2

2a ≥
(k+4)π2

72ka ,

• Non-deviation condition of a programmer of type LH;

U∗LH at subgame 6 ≥ U∗LH at subgame 2 ⇔ 3π2

32ka ≥
2kθ(2V+θ)+(θ+V )2

2ka ,

• Non-deviation condition of a programmer of type LL;

U∗LL at subgame 6 ≥ U∗LL at subgame 3 ⇔ 3π2

32ka ≥
V 2

2ka .

Solving these four inequalities simultaneously, we obtain the following equilibrium conditions for

subgame 6:

π ∈

[
4

√
2kθ(2V + θ) + (θ + V )2

3
, 6

√
kV 2

k + 4

]
and

V ≥
4(k + 4)(2k + 1) + 2

√
k(k + 4)(2k + 1)(8k + 59)

23k − 16
θ.

By the exactly same way as in subgame 1 and 6, we find the equilibrium conditions for the other

subgames. The equilibrium conditions for each subgame are summarized at Table 3.
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Appendix B. Tables

Table 1. Types of the Programmers Participating into Each Project in Each subgame 

 Open source project Commercial project 

Subgame 1 , , ,HH HL LH LL  ∅  

Subgame 2            , ,HH HL LH               LL

Subgame 3            , ,HH HL LL              LH

Subgame 4            , ,HH LH LL              HL

Subgame 5           , ,HL LH LL             HH

Subgame 6           ,HH HL             ,LH LL

Subgame 7           ,HH LH             ,HL LL

Subgame 8           ,HH LL             ,HL LH

Subgame 9          ,HL LH             ,HH LL

Subgame 10          ,HL LL             ,HH LH

Subgame 11         ,LH LL             ,HH HL

Subgame 12            HH            , ,HL LH LL

Subgame 13          HL             , ,HH LH LL

Subgame 14        LH             , ,HH HL LL

Subgame 15       LL             , ,HH HL LH

Subgame 16 ∅             , , ,HH HL LH LL
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Table 2. The Utilities of the Programmers in Each Subgame 

 HH HL LH LL    

Subgame 

1 

2)Vθ +2 {( 2) } (
2

k V k
ka

θ θ+ + +  
2

2
V

a
 

22 {(2 1) } ( )
2

k V k V
ka

θ θ θ+ + + + 2

2
V
ka

 

Subgame 

2 

2)Vθ +2 {( 1) } (
2

k V k
ka

θ θ+ + +  
2

2
V

a
 

22 (2 ) ( )
2

k V V
ka

θ θ θ+ + +  
2

8ka
π  

Subgame 

3 

2)V+2 ( 1) (
2

k V k
ka

θ θ+ +  
2

2
V

a
 

2

8ka
π  

2

2
V
ka

 

Subgame 

4 

2)V2 (2 ) (
2

V k
ka

θ θ θ+ + +  
2

8a
π  

22 {( 1) } ( )
2

k V k V
ka

θ θ θ+ + + +  
2

2
V
ka

 

Subgame 

5 

2

8a
π  

22 (2 )
2

V kV
ka

θ θ+ + 22 ( 1) ( )
2

k V V
ka

θ θ+ + +  
2

2
V
ka

 

Subgame 

6 

22 ( )
2

V V
a

θ θ+ +  
2

2
V

a
 

23
32ka
π  

23
32ka
π  

Subgame 

7 

( ){(
2

V k
ka

2) }kVθ θ+ + +  
2( 2)

32
k

ka
π+  

( ){(2 1) }
2

V k V
ka

θ + θ+ +  
2(2 1)

32
k

ka
+ π  

Subgame 

8 

22 ( )
2

V k V
ka

θ θ+ +  
2( 2)

32
k

ka
π+  

2(2 1)
32
k

ka
π+  

2

2
V
ka

 

Subgame 

9 

2( 2)
32ka

k π+  
2

2
V

a
 

22 ( )
2

kV V
ka

θ θ+ +  
2(2 1)

32
k

ka
+ π  

Subgame 

10 

2( 2)
32

k
ka
π+  

2

2
V

a
 

2(2 1)
32
k

ka
π+  

2

2
V
ka

 

 1
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Subgame 

11 

23
32a
π  

23
32a
π  

22 ( )
2

V V
ka

θ θ+ +  
2

2
V
ka

 

Subgame 

12 

2( )
2

V
a

θ +  
2( 4)

72
k

ka
π+  

2(2 3)
72
k

ka
π+  

2(2 3)
72
k

ka
+ π  

Subgame 

13 

2( 4)
72

k
ka
π+  

2

2
V

a
 

2(2 3)
72
k

ka
π+  

2(2 3)
72
k

ka
+ π  

Subgame 

14 

2(3 2)
72
k

ka
π+  

2(3 2)
72
k

ka
π+  

2( )
2

V
ka

θ +  
2(4 1)

72
k

ka
+ π  

Subgame 

15 

2(3 2)
72
k

ka
π+  

2(3 2)
72
k

ka
π+  

2(4 1)
72
k

ka
π+  

2

2
V
ka

 

Subgame 

16 

2(3 4)
128
k

ka
π+  

2(3 4)
128
k

ka
π+  

2(4 3)
128
k

ka
π+  

2(4 3)
128
k

ka
+ π  
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Table 3. The Equilibrium Conditions for Each subgame 

 Equilibrium Conditions 

Subgame 1 2Vπ ≤  

Subgame 2 2 22 (2 ) ( )2 , min 4 , 4
2 3

kV k V VV
k

θ θ θπ
⎡ ⎤⎧ ⎫+ + +⎪ ⎪⎢ ⎥∈ ⎨ ⎬+⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

 

Subgame 3 2
2) , 4

3
VV

⎡ ⎤
+⎢ ⎥

⎢ ⎥⎣ ⎦
2 2 {(2 1) } (k V kπ θ θ θ≤ + + + , )26( 1) 3(13 26 12 )k k(V k θ≥ + + + +  

Subgame 4 2

2 , 4
2 1
VV
k

⎡ ⎤
⎢ ⎥

+⎢ ⎥⎣ ⎦
π ≤  , 3

2
k ≤  

Subgame 5 2 22 {( 2) } ( )2 ,
2 1

k V k V V
k k

θ θ θπ + + + +
∈ 4
⎡ ⎤
⎢ ⎥

+⎢ ⎥⎣ ⎦
, 

22( 1)(2 1) (2 1){4 (22 19 6 )}
(3 2 )

k k k k k k
V

k k
θ

+ + + + + + +
≥

−
,  3

2
k <  

Subgame 6 2 22 (2 ) ( )4 ,6
3 4

k V V kV
k

θ θ θπ
⎡ ⎤+ + +

∈⎢ ⎥
+⎢ ⎥⎣ ⎦

 , 
4( 4)(2 1) 2 ( 4)(2 1)(8 59)

23 16
k k k k k k

k
V θ

+ + + + + +
≥

−
 

Subgame 7 2 ( ){( 2) }4 ,6
2 3 2

kV V k kV
k k

θ θπ
⎡ ⎤+ + +

∈⎢ ⎥
+ +⎢ ⎥⎣ ⎦

, 2V θ<  or 

2 ( ){(2 1) }4 ,6
2 2 3

kV V k V
k k

θ θπ
⎡ ⎤+ + +

∈⎢ ⎥
+ +⎢ ⎥⎣ ⎦

, 2V θ≥ , 3 ( 65 1)
16

k ≤ −  or 

2 ( ){(2 1) }4 ,6
2 2 3

kV V k V
k k

θ θπ
⎡ ⎤+ + +

∈⎢ ⎥
+ +⎢ ⎥⎣ ⎦

, 
2

2

9( 1)( 2) 3 ( 2)(12 50 25 )
2 ,

8 3 18
k k k k k k

V
k k

θ
⎡ ⎤+ + + + + +

∈⎢ ⎥
+ −⎢ ⎥⎣ ⎦

 

, 3 ( 65 1)
16

k > −  

 3
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Subgame 8 2 22 {( 1) } ( )4 ,
2 1 2

k V k V V
k k

θ θ θπ + + + +
∈

+ +
6

3

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 , 

2 2

2

8( 1)(2 3) 2 (2 3){45 4 (33 33 8 )} ( 2) ( 2)(5 4 2)
,

10 3 2( 1)
k k k k k k k k k k k

V
k k

θ θ
⎤
⎥
⎥⎦

⎡ + + + + + + + + + + − +
∈⎢

− −⎢⎣
 

or 

2 2

4 ,6
2 2 3

kV V
k k

π
⎡ ⎤

∈ ⎢ ⎥
+ +⎢ ⎥⎣ ⎦

, 
2

2

( 2) ( 2)(5 4 2)
2( 1)

k k k k k
k

V θ
+ + + − +

≥
−

, 3 ( 65 1)
16

k ≤ −  

Subgame 9 2 22 {( 1) } ( )4 ,6
2 3 2

k V k V kV
k k

θ θ θπ
⎡ ⎤+ + + +

∈⎢ ⎥
+ +⎢ ⎥⎣ ⎦

, 

2 2

2

4(2 7 6 ) 2 (3 2){8 (45 84 64)} ( 1)(3 2) ( 1)(3 2)(3 7)
,

(10 3 ) 2( 1)
k k k k k k k k k k k k

V
k k k

θ θ
⎤
⎥
⎥⎦

⎡ + + + + + + + + + + + + +
∈⎢

− −⎢⎣
 

,  or 1.27423k <

2 22 {( 1) } ( ) 2 ( )4 ,6
2 2

k V k V kV V
k k

θ θ θ θ θπ + + + + + +
∈

+ + 3

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

2 2

2 2

( 1)(3 2) ( 1)(3 2)(3 7) 7 5 6 144 ( 2)(15 76 132)
max ,

2( 1) 8 3 18
k k k k k k k k k k k k

V
k k k

θ θ
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⎬
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Subgame 
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k V k V V
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θ θπ
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Subgame 

11 
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3 4

V k V
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V V kV
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2
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Subgame 
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