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Particle Sensing in Gas Turbine Inlets Using Optical Measurements and Machine Learning

Chi Young Moon

(Abstract)

Propulsion systems are exposed to a variety of foreign objects that can significantly damage or
impact their performance. These threats can range from severe dangers such as sandstorms and vol-
canic eruptions, which can induce engine failure in minutes, to condensation and moisture during
ground tests that can negatively impact the engine’s fuel efficiency. While numerous computational
and experimental studies have investigated the effects of particle ingestion on the component level,
an accurate in-situ measurement technique is needed for a systematic understanding of the effects
and real-time engine health monitoring.

Optical measurement techniques are attractive for this application due to their non-intrusive
nature. However, conventional optical particle measurement methods assume the particle to be
spherical, which introduces large errors for measuring particles with complex and irregular shapes,
such as sand, volcanic ash, and ice crystals. The light-particle interaction contains information on
the desired parameters, such as particle shape and size.

The research presented in this dissertation uses this idea for a novel particle sensor concept.
Scattering and extinction of light by particles are chosen as crucial features that can identify the
particle as its unique signature. Numerical tools are used to simulate the scattering and extinction
for particles the sensor is expected to encounter. Machine learning models are trained using the
data to use scattering and extinction as inputs and estimate the particle parameters. Different types
and applications of supervised machine learning models were investigated, including a layered
approach with numerous models and a generalized approach with a single neural network. The
particle sensor is first demonstrated using data found in the literature. This study confirmed the
importance of non-spherical particles in the library to guide the machine learning models. Further
demonstrations are made at a full engine and wind tunnel scale to measure injected condensation
and sand sprays, respectively. The mass flow rates of the ingested material were calculated using
the model outputs and validated.

(315 words)
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Particle Sensing in Gas Turbine Inlets Using Optical Measurements and Machine Learning

Chi Young Moon

(General Audience Abstract)

Foreign objects ingested into gas turbines can cause serious damage and degrade their perfor-
mance. Threats can range from sand, dust, and volcanic ash to condensation on ground and high-
altitude ice crystals. On the component level, experiments and simulations have been performed
to establish the performance decrease and risks to continued operations. However, there is a need
for a real-time and non-intrusive measurement technique for the ingested mass. While there are
established optical methods applicable for this use, these existing methods assume the particle
shape to be spherical. The light-particle interaction contains information on the desired parame-
ters, such as particle shape and size. Optical measurements of these interactions, such as scattering
and extinction, can serve as ”fingerprints” that can be used to estimate particle parameters.

A novel particle measurement technique utilizing supervised machine learning models is pre-
sented. The models are trained using a library containing numerically calculated scattering and
extinction data. Laser scattering and extinction measurements are used as inputs for the models.
This new technique is first demonstrated by sizing particles found in a particle scattering database
in the literature. The method’s versatility and ruggedness are then demonstrated by accurately esti-
mating the volume flow rate of a spray nozzle spraying water into a research engine. Additionally,
the mass flow of sand particles is measured using this technique in a high-speed wind tunnel, in a
similar environment to an engine inlet.
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1. Introduction
Propulsion systems are exposed to a variety of foreign objects that can significantly damage or

impact their performance. These threats can range from severe dangers such as sandstorms and vol-
canic eruptions, which can induce engine failure in minutes, to condensation and moisture during
ground tests that can negatively impact the engine’s fuel efficiency. While numerous computational
and experimental studies have investigated the effects of particle ingestion on the component level,
an accurate in-situ measurement technique is needed for a systematic understanding of the effects
and real-time engine health monitoring.

Optical measurement techniques are attractive for this application due to their non-intrusive
nature. However, conventional optical particle measurement methods assume the particle to be
spherical, which introduces large errors for measuring particles with complex and irregular shapes,
such as sand, volcanic ash, and ice crystals. The light-particle interaction contains information on
the desired parameters, such as particle shape and size.

The research presented in this dissertation uses this idea for a novel particle sensor concept.
Scattering and extinction of light by particles are chosen as crucial features that can identify the
particle as its unique signature. Numerical tools are used to simulate the scattering and extinction
for particles the sensor is expected to encounter. Machine learning models are trained using the
data to use scattering and extinction as inputs and estimate the particle parameters.

1.1 Structure and Contents

The dissertation consists of seven chapters, as described below:

Chapter 1 introduces the dissertation and lays out a general structure.

Chapter 2 provides a review of relevant literature regarding the problem of particle ingestion
in gas turbines, as well as conventional and state-of-the-art particle measurement techniques.

Chapter 3 is a research article published in Applied Optics (doi:10.1364/AO.385750). It con-
tains the first demonstration of the library-ML approach to particle sizing. A description and details
of the library-model concept, as well as results comparing the size estimation of particles found
from the Amsterdam and Grenada light scattering database are included.

Chapter 4 is a research article accepted for publication in Measurement Science and Tech-

nology. Based on an experiment performed at a research engine inlet, it demonstrates the sensor
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approach in a realistic environment for measuring inlet condensation. It also documents the first
time inlet condensation was measured without a prior calibration.

Chapter 5 is a research article to be submitted to Optics Express. It details an experiment
performed in a high-speed wind tunnel to measure the mass flow of the sand particles injected into
the flow. A generalized neural network approach replaces the layered models methods detailed in
Chapters 3 and 4.

Chapter 6 is a standalone chapter containing a detailed explanation of how the particle scat-
tering and extinction library is constructed, including the various particle parameters and the nu-
merical tools. It also includes a discussion of the library contents prepared for the solid particle
mass loading sensor, demonstrated in chapter 5.

Chapter 7 concludes the dissertation with a summary and an outlook for future work regarding
this sensor technology.

Chapter formatting may vary due to submission guidelines between different publications.

1.2 Attributions

Dr. K. Todd Lowe is the primary advisor and the committee chair. He provided supervision,
guidance, and manuscript edits throughout all work presented in this dissertation.

Dr. Gwi Bo Byun is a research scientist at the Advanced Propulsion and Power Lab. He pro-
vided extensive feedback and assisted in the experiments detailed in Chapters 4 and 5.

Aldo Gargiulo, Alka Panda and Caitlyn Edwards are fellow students who provided assistance
and editorial guidance for work presented in Chapters 3, 4, and 5, respectively.

Fred Smith, Vic Oechsle, and Loren Crook are engineers at Rolls-Royce who regularly pro-
vided important feedback throughout all work presented in this dissertation.

1.3 Achievements

The major achievements of this work are:

• Light scattering and extinction were chosen as crucial features that can serve as a ”finger-
print” to identifying particles for a sensor application. Non-spherical particles were modeled
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using spheroids as surrogate shapes, and appropriate numerical tools were identified and
used to generate the training data.

• Machine learning models that use particle scattering and extinction measurements as features
were developed for particle size, shape, and size distribution estimation. Different types and
applications of supervised machine learning models were investigated, including a layered
approach with numerous models and a generalized approach with a single neural network.

• Experiments were performed at full engine and wind tunnel scale to measure injected con-
densation and sand sprays, respectively. The scattering and extinction measurement rigs, as
well as the necessary modifications to introduce the material into the flow were designed and
implemented. The mass flow rates of the ingested material were calculated using the model
outputs and validated.

1.4 List of Publications

A list of publications produced by the author during his PhD work can be found below.

Peer-reviewed journal articles

• C. Y. Moon, A. Panda, G. Byun, and K. T. Lowe, “Non-intrusive optical measurements of
gas turbine engine inlet condensation using machine learning” (accepted to Measurement

Science and Technology)

• C. Y. Moon, A. Gargiulo, G. Byun, and K. T. Lowe, ”Non-spherical particle size estimation
using supervised machine learning,” Applied Optics. doi: 10.1364/AO.385750

Articles in conference proceedings

• C. Y. Moon, C. Edwards, A. Panda, G. Byun, and K. T. Lowe, ”Non-spherical particle size
and shape estimation using machine learning,” in 2020 IEEE Research and Applications of

Photonics in Defense Conference (RAPID). doi: 10.1109/RAPID49481.2020.9195671

• C. Y. Moon, G. B. Byun, K. T. Lowe, and C. F. Smith, ”Turbine Engine Ingested Parti-
cle Monitoring: A Novel Application of Quantum Cascade IR Laser Extinction,” in AIAA

Propulsion and Energy 2019 Forum. doi: 10.2514/6.2019-4339

• C. Y. Moon, D. Zhang, K. T. Lowe, and E. G. Paterson, ”Decomposition of Periodic Eddies
with Varying Energy in a Turbulent Flow Using a Directional Averaging Technique,” in 2018
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AIAA Aerospace Sciences Meeting. doi: 10.2514/6.2018-1765
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2. Literature Review
The propulsion systems on aircrafts face hostile operating environments. An important part of

these threats is foreign matter ingestion. The threats can range from solid particle ingestion, such as
sand, dust, volcanic ash, and hail, to aqueous types such as moisture, rain, and supercooled water.
In this chapter, the problem of particle ingestion is defined for different particle types. The particle
characteristics, such as size, shape, and material, are first defined, followed by their damage mech-
anisms. The chapter ends with a survey of conventional and state-of-the-art particle measurement
methods.

2.1 Solid Particles

2.1.1 Sand and Dust

Sand and dust form the majority of the solid particles that gas turbines are likely to encounter.
The method and cause for sand and dust ingestion vary from type of vehicle and operating location.
Major sources of desert sand are limited to few spots (the Sahara, Middle East, central Asia, and
Australia). However, sand from these areas can travel for thousands of miles, and drylands (a major
source for dust) cover nearly 40% of Earth’s surface and host more than 2 billion people [1, 2].
For brevity, sand and dust will be used interchangeably going forward. Commercial jets operate in
areas near deserts or frequented by sand storms, which can carry particles up to thousands of feet
in altitude [3, 4]. Helicopters are especially susceptible to ingesting sand and dust as they hover,
takeoff, or land [4, 5].

Dust can be roughly divided into three major categories based on the size. Clay-sized particles
are less than 4 µm in length. Silt-sized particles are approximately 4 to 63 µm in length, while
anything larger than that can be considered as grains [2]. The vast majority of dust composition
is quartz (silica or SiO2) and alumina (Al2O3) [2, 6]. Other components can include organic mat-
ter, sulphates, and salts [3, 6]. While their quantity by volume/mass is low, the presence of these
material can have a significant impact on the threat to gas turbines.

Since the size and material composition can vary from sample to sample, there are test dust
and contaminates set by standards. ISO 12103-1 establishes standard contaminates for automotive
filter testing. These samples, commonly known as Arizona road/test dust (ARD or ATD) and AC
test dust, originally came from dust collected behind tractors in Arizona. The ISO 12103-1 test
dust are divided into four samples by size: ultrafine (A1), fine (A2), medium (A3), and coarse (A4)
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Figure 2.1: The volume cumulative distribution for four test dust/sand samples. Data provided by
Powder Technology, Inc. [7].

[7]. A1 can be considered as the clay-sized particle, while A2 through A4 can be considered as
silt-sized. The main components of ARD are silica and aluminum oxide. For larger particles, Mil-
E-5007D/C, a US military spec for gas turbines, establishes a test sand standard using pure silica.
Commonly referred as C-spec sand, these grain-sized particles are much larger than any of the
ARD samples. Figure 2.1 shows the volume cumulative distribution comparisons between the four
ARD samples and C-spec. Figure 2.2 is a collage of scanning electron microscope (SEM) images
of A3 and C-spec sand. The difference in the particle size is demonstrated by the magnification
required to show the particles. These images also show some insight into the particle shape. Both
samples are clearly non-spherical. In Figure 2.2c, some specks attached to larger particles are also
observed.

The wide variety of sand described above affect gas turbines differently. Safety regulations
ground aircraft when conditions pose too high of a risk for flights. Grounding flights and minor
exposure to dust during flight have significant economical cost through downtime and increased
maintenance. However, in military or emergency uses, helicopters in particular are exposed to
heavy dust and sand conditions. From the first helicopter powered by a gas turbine introduced to the
U.S. military (UH-1 Huey), sand and dust particle ingestion has become a major concern for their
operations [5]. During the Vietnam War, approximately 60% of unscheduled engine maintenance
and removals were due to foreign object damage or sand ingestion [8]. After this experience, inlet
particle separators, which rely on momentum to remove larger particles from the intake, were
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a b c

d e f

Figure 2.2: Scanning electron microscope images of A3 and C-spec sand. (a-b-c): A3 test dust
under 100x, 1,000x, and 5,000x magnification, respectively. (d-e-f): C-spec sand under 50x, 100x,
and 500x magnification, respectively.

installed on helicopter engines. While the separators increased operation hours, they were still
limited to 50 250 hours during the first Gulf War [4, 8]. Their continued operations in the Middle-
East magnifies the problem of sand ingestion for helicopters. Not limited to military uses, the
air medical fleet in an Australian province was grounded for weeks in 2009 during a severe dust
storms, demonstrating a critical weakness in the system [9].

2.1.2 Volcanic Ash

Volcanic ash also presents a major threat to commercial airliner’s operations. While avoiding
eruptions is possible, most volcanoes are not monitored in real time, ash can rise rapidly (up to
600 ft/s), and easily reach cruising altitudes of aircraft (exceeding 150,000 ft) [10]. It can drift
for thousands of miles, affecting large areas where cancellations can cause significant economic
damage and social disruption [3, 11]. Hours can pass before eruptions are detected via satellite
images, while the physical evidences of ash encounters (odor of sulfur in the cabin, St. Elmo’s
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glow or electrostatic discharge on the body, and visible ash sighting) are not noticeable until well-
past the safety threshold for ash concentration. [3, 12].

Volcanic ash does not deviate significantly from the composition of sand and dust presented
above. The main element is still SiO2. Typically, volcanic ash will contain higher shares of sul-
phates and salts [6, 13]. For size, the range can vary from millimeters to micrometers, similar to
dust and sand. Databases of particle size, composition, and SEM images for many dust and vol-
canic ash examples are referenced [6, 14]. For in-flight volcanic ash encounters, the majority of
the coarse particles are quickly removed via gravitational settling [15, 16]. Both fluid dynamic
modeling and remote sensing show that while larger particles (63µm < D < 1000µm) settle on
the order of hours, while finer particles can linger in the atmosphere up to days [15].

The International Civil Aviation Organization’s current Ash Contingency Plan describes vol-
canic ash contamination levels using peak mass concentration: low (<2 mg/m3), medium (2-4
mg/m3), and high (<4 mg/m3) [17]. However, the peak concentration is not the only determining
factor for safe turbine operations. The exposure time is the other important factor, determining
how much volcanic ash is ingested in total [3]. For example, the current Rolls-Royce guidance
for its engines are set at a dosage of 14.4 g s/m3, which corresponds to one hour at the medium
contamination level of 4 mg/m3 or two hours at 2 mg/m3 [18, 3].

The difference from dust to volcanic ash is mainly the unpredictability of eruptions. Even as
eruptions are on-going, a shift in the weather or intensity in the eruption can lead to aircrafts being
caught at a high-risk location. Hence, while there are fewer eruptions than dust/sand storms, there
are more documented volcanic ash encounters that led to significant mechanical failures in the
gas turbine. From 1953 to 2009, 94 ash encounters were reported and confirmed, and 79 of those
incidents caused damage to the aircraft. Nine encounters involved complete failure in one or more
engines, requiring in-flight restarts. Severe damage such as engine failure can occur within minutes
of exposure time, with four such incidents occurring within 10 minutes [11].

One notable eruption is the Redoubt volcano in Alaska. The eruption with ash plumes up
to 22,000 ft occurred from December 1989 to June 1990. On December 15th, during one of its
most vigorous eruptions, KLM Flight 867 en route to Anchorage was notified of the eruption.
Even with the advance warning, the flight crew were not able to see the ash cloud and the aircraft
entered the plume. While attempting to climb out of the plumb, all four engines stalled within 2
minutes. The aircraft glided without power for nearly 4 minutes until 2 engines were restarted.
The other two engines were restarted after another 4 minutes and the aircraft successfully landed
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subsequently. During those 8 minutes, the aircraft went from 27,900 ft in altitude to 13,300 ft. The
ground elevation in this area ranged from 7,000 ft to 11,000 ft, demonstrating how perilous this
incident had been [19]. Lack of reliable real-time detection methods and the possibility of serious
damage within minutes make volcanic ash a significant threat to aircraft.

2.1.3 Damage Mechanisms

In this section, two major damage mechanisms of solid particle ingestion in gas turbines are
presented: erosion and deposition. Important factors for each mechanism, as well as the resulting
impact on the turbine are surveyed from the literature.

Erosion

Erosion is the physical removal of material due to particle collision. It can occur when sus-
pended solid particles flow into the engine and impact onto components. Cold section components,
such as the fan and compressor blades are more susceptible to erosion damage as they are the first
component ingested particles are likely to encounter.

Erosion on the fan and compressor blades are mainly determined by the particle size. The
particle size and the flow condition determines the particle’s Stokes number (St), which describes
how closely the particle will follow the flow path [20]. For smaller particles (St ≪ 1), the particles
will simply move with the flow and do not interact with the fan, and are directly ingested into the
core flow [15]. Particles with sufficient size (St ≥ 1) will have too much momentum and separate
from the flow path. These particles can collide with components, leading to erosion.

A computational study by Vogel et al. investigated two-phase particle-laden flows into a high-
bypass gas turbine engine [15]. While the engine geometry was simplified and spherical particles
were assumed to have perfect elastic collisions, the simulations confirmed the particle size de-
pendency for fan collisions. In addition, the collisions and the flow past the fan acts as a particle
separator, leading to a maximum of 30% reduction in mass concentration for larger (> 100 µm)
particles in the core flow [15].

The impact of erosion on individual components has also been studied extensively through
experiments and simulations. In all components, erosion changes the geometry of the affected part.
For airfoils on fans, compressors, and turbine stages, erosion changes the airfoil profile, reduces the
chord length, introduces surface roughness, and increases the tip clearance [5, 6, 21, 22, 23, 24, 25,
26, 27]. The increased tip clearance can lead to surges and even engine failure [26]. Changes in the
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airfoil geometry deviates the component performance from design. For compressor blades, erosion
typically sharpens the trailing edge and blunts the leading edge [23]. In a full-scale experiment
performed by Kline et al., sand was injected into a General Electric T64 turboshaft engine to test
erosion-resistant compressor fan blade coating [26]. Surging and engine failure occurred after 5.5
hours (or 35 kilograms of ingested sand). Erosion on the compressor blades without the coating
was found to have been responsible for all of the engine performance losses [26].

The amount of erosion and its impact on components are determined by both the particle and
body characteristics. As previously mentioned, particle size is the most important factor in whether
it will collide with the components. The impact angle and velocity, as well as the particle size and
shape are significant factors that affect the amount of material that is removed from the component
[22, 28, 29, 30]. Volcanic ash is an example of the shape dependency; it is typically more abrasive
due to the sharper angular shapes [15, 31, 32].

Deposition

Deposition is the melting of material onto components. As the particles pass through the gas
turbine, they can reach their melting temperature and become molten. The molten materials can
then deposit onto surfaces and cool into solids. The high temperatures required for deposition to
occur limit it to the hot sections of the gas turbine: the combustion chamber and turbines.

There are many delivery mechanisms for molten particles to attach to surfaces. For larger par-
ticles (St > 1), just as the erosion section described, its momentum can overcome the flow and
make contact with surfaces [33]. For smaller particles (St ≪ 1), there are few explanations for
particle deposits on the surface. Turbulent eddies in the flow can bring particles onto surfaces. For
extremely small particles, Brownian diffusion or the random-walk process can delivery molten par-
ticles to the surface. In addition, if there is a temperature gradient between the flow and the surface,
the random collision on the particle from the gas will take place more often than the face towards
the surface, leading to a net force towards the surface. This process is called thermophoresis. A
detailed explanation of these processes can be found in the cited references [34, 35, 36, 37].

Molten materials can block cooling channels and fuel nozzles. They can also attach to turbine
blades, affecting the geometry as well as removing thermal protective coatings, sulfidation, and
hot corrosion [4, 6]. The damage done to components via deposition is dependent on the amount
of deposited material and particle composition. One area of focused research is based on calcium-
magnesium-alumino-silicate (CMAS) attacks on turbine blade coating [3, 4, 38]. These elements
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are found in sand, dirt, and volcanic ash.

The impact angle, blade geometry, and operating conditions are pivotal for understanding if
deposition will occur, and if so, how much buildup will occur [4, 6]. Boulanger et al. performed a
series of deposition experiments of Arizona Road Dust on Hastelloy-X, a nickel alloy analogous
to turbine blade material. These experiments covered a range of impingement angles and ambient
temperatures [39, 40]. Quantifying the particle deposits on the samples, an empirical relationship
between the ambient temperature and the impingement angle was found [40]. Kim et al. con-
structed a deposition rig using combustors and guide vanes from gas turbines. Injecting volcanic
ash samples, a range of turbine inlet temperatures were tested for deposition [41]. In addition to
confirming the temperature dependency, this experiment revealed that an initial onset of deposition
can accelerate further material accumulation [41].

2.2 Icing and Condensation

Threats from ingested particles are not limited to solids. In this section, brief overviews of
two different mechanisms are presented: aircraft icing during flight and condensation ingestion on
ground testing.

2.2.1 Icing

Icing occurs when aircraft fly in clouds with conditions sufficient for the droplets to freeze
on impact to the body [42, 43]. Accumulation rate is dependent on two factors: the rate at which
water intercepts the body in question and the rate at which the impinging water will freeze. The
collection or catch efficiency, which describes the rate the water droplets will intercept the body, is
dependent on both the body itself (shape, size, angle), as well as the cloud characteristics: droplet
diameter and the liquid water content. The freezing rate can be defined as a heat transfer problem,
dependent on ambient conditions and temperature of the body in question.

Dependent on all those variables, three different freezing mechanisms are used to describe
icing problems. Rime ice forms when the supercooled droplets freeze on impact. Low ambient
temperature, flow speed, and liquid water content are required for rime ice to form. When any
of those quantities increase, glaze ice can form, where the droplets run along the surface before
freezing. Glaze ice is smoother and more transparent than rime ice. Beak ice forms when high
temperature and velocity are involved. As the higher temperature keeps the ice from fully freezing,
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this slush gathers in the suction side of the airfoil, forming a beak shape [42, 44]. While most fixed
wing aircraft will encounter rime and glaze ice, all three forms of ice can exist simultaneously on
helicopter rotor blades [45].

Icing can affect almost every component on aircrafts. Accretion on airfoils and control surfaces
is a large and active area of research [42, 43, 46, 47, 48, 49, 50]. Within gas turbines, however, in-
lets, fans, and compressors are the main components affected by ice accretion [51, 52, 53]. The
effect of ice accretion on fan and compressor blades are similar to deposition effects. The geom-
etry change induces deviation in lift and drag from design parameters [44]. However, the risk of
permanent component damage is lower as opposed to hot deposition.

2.2.2 Condensation and Moisture

1. Ambient Conditions
• Speci�c humidity

• Ambient temperature

2. Flow Acceleration

• Lowers �� and ��
• Condensation occurs

3. Phase change from 

vapor to liquid
• Releases latent heat of

condensation
• Raises ��

4. Increased fan work
• Increased fuel �ow

• Increased TSFC

Figure 2.3: A diagram describing the steps of inlet condensation and its effect on fan performance.

Condensation and moisture ingestion can occur while on the ground. These situations include
taxing and ground tests during engine development. Figure 2.3 shows the condensation formation
process. The important factors for inlet condensation formation are: the ambient (specific humidity
and temperature) and inlet flow conditions (geometry and Mach number). Flow’s static pressure
and temperature decreases as it accelerates through the engine inlet. If sufficient conditions are
met, the static pressure of the water vapor mixed within the air decreases to the saturation line,
where water can exist as liquid and vapor in equilibrium. A portion of the water vapor must then
condense to maintain this equilibrium, forming liquid water as condensation.

While ingesting liquid water has no destructive effects like sand or dust, the condensation for-
mation process affects the flow to change the turbine performance. As water condenses into liquid,
the released latent heat of condensation raises the total temperature of the flow. With higher total
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temperature, more work by the fan is required to produce the same pressure ratio. The additional
work leads to higher fuel consumption and thrust specific fuel consumption (TSFC), as much as
2%. [54]. In addition, the ingested water can form a thin layer on surfaces, including fan and com-
pressor blades, deviating from the designed performance [55]. During gas turbine development,
conditions indicating condensation effects on performance prohibits testing and valuable time and
resources are lost [56]. Limited empirical corrections for performance variations are available, but
an accurate measurement of the ingested liquid mass is needed to develop relationships between
engine performance and condensation. Droplet volume and number density are required for this
purpose. Some earlier research efforts revealed droplet size distributions ranging from 1 to 30 µm

[56].

2.3 Particle Measurement Techniques

As explained in the preceding sections, particle size, shape, and composition are the important
characteristics needed for accurately assessing the effect of ingested particles on gas turbine com-
ponents. In this section, some established particle measurement techniques, as well as a survey of
the state of the art techniques from the literature are presented.

2.3.1 Established Methods

Laser Diagnostics

The vast majority of the commercially available particle analyzers assume that the particle
is spherical and its material composition is known a priori. Optical approaches using lasers as
coherent light sources are the most ubiquitous. Assuming a spherical particle, light scattering and
extinction as well as interferometry is used for particle size methods. Laser scattering methods,
also sometimes known as laser diffraction, Mie scattering, and dynamic light scattering, use the
scattered pattern of light from particle-laser interaction [57, 58, 59, 60]. In most devices, multiple
views are used, particularly in the forward scattering region (shallow scattering angles), where the
scattering intensity is sensitive to particle size. For this method, a prior knowledge of the particle
material is required as the scattering pattern is also a function of the refractive index.

Another established optical technique is interferometry. Phase Doppler particle analyzers probe
a small volume illuminated by crossing laser beams [61]. As particles pass through this volume,
the scattered light reaches detectors. The particle size is proportional to the phase shift between the
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signals. Aerodynamic drag is also proportional to the particle size. By measuring the time of flight
through a known distance, the drag correlations for spherical particles can be used to determine the
particle size [62].

These methods all have the benefit of accessibility through off-the-shelf devices. These devices
are relatively simple to operate, with additional training available through their vendors. However,
they are limited to spherical particles, and the particles must be sampled from the interested region.

Direct Imaging

Direct imaging is an established method for determining the statistical shape and size of non-
spherical particles [63, 64, 65]. Using a number of lasers or LEDs as a light source, an image of
particles (or sometimes the particle shadow) passing through the measurement plane is acquired.
Image analysis builds a statistical database of particle size and shape characteristics.

���� ��� ���

�
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 . ��	

Figure 2.4: Commonly used parameters to define non-spherical particle size.

Figure 2.4 shows three commonly used parameters to define non-spherical particle size. If the
shape on the left is representative of the imaged particle, xmin corresponds to the minimum length
and is sometimes referred as the particle width. Measurements based on xmin correspond most
closely to results acquired by physically sieving the particles. Feret maximum diameter, indicated
as xFe,max, describes the maximum length. The circle shown in the right side of Figure 2.4 has the
equivalent area to the imaged particle. The diameter of this circle is the particle’s equivalent area
diameter.

For quantifying particle shape, the most commonly used metric is the aspect ratio. Confus-
ingly, its definition can vary from source to source. The definition used most often is:

AR =
xmin

xFe,max

(2.1)
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An aspect ratio of 1 indicates that the projected image of the particle is a regular polygon, such as
a circle or a square. The circularity or roundness is defined as:

Circularity =
4πA

P 2
(2.2)

where A is the area and P is the perimeter determined by the particle outline. Circularity of 1
describes a perfect circle. It is an especially useful metric for determining if the particle image
contains jagged or sharp edges.

These direct imaging devices allow more accurate measurements non-spherical particle size
and shape. However, for most devices, the particles must be sampled from the region of interest to
be measured. Horiba’s EyeCon2 is a real-time imaging device that can be placed to view a particle
flow [65]. While the real-time image processing capabilities are impressive, the particle size range
is limited from 50 µm to 5 mm, and the flow speed limit is 10 m/s, making it unsuitable for
turbine inlet particle monitoring.

2.3.2 Advanced Techniques

Spectroscopy

Spectroscopy is the most reliable method for identifying material composition. Reflectance
spectroscopy can be performed from images from the ground, aircrafts, and satellites for remote
sensing of sand and dust [66, 67]. A more appropriate application of spectroscopy for inlet sensing
involves breaking down the particles using directed energy. Laser-induced breakdown spectroscopy
(LIBS) uses focused laser pulses to breakdown the material into plasma [68]. The spectral emission
of the plasma is then captured with a spectrometer and matched to known signatures. Advance-
ments in miniaturization allowed for a LIBS instrument called ChemCam to be a part of the Mars
rover Curiosity [69, 70]. ChemCam utilizes a pulse infrared laser and records the plasma signatures
ranging from near-UV to near-infrared wavelength range.

A spectrometer probe designed for monitoring gas turbine inlet particles discharges plasma
to breakdown passing materials for spectroscopy measurements [71]. The bench level experiments
demonstrating this concept validated its ability to determine the CMAS components of sand in a
dynamic flow. In addition, a correlation between the particle size and the plasma discharge field
was established, showing the ability to quantifying particle size in the future.
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Interferometry

Interferometric imaging is another advanced particle measurement technique for size and
shape. This category includes methods such as digital holography (DH), interferometric particle
imaging, and Fourier interferometric imaging. DH is based on the interference between a refer-
ence wave and the light scattered by a particle [72, 73, 74]. The particle is not directly imaged,
but reconstructed numerically using the recorded waves. It has been successfully used to measure
particle size, and position and shape in 3D.

Interferometric out-of-focus imaging has been used successfully for ice crystals, sparsely pop-
ulated sprays, supercooled water, and coal particles [75, 76, 77, 78, 79]. The operating principle is
that the 2D Fourier transform of the out-of-focus image or interferogram is the 2D autocorrelation
of particle shape, with a scaling factor. Dual-beam version of this technique has shown to improve
its shape and size estimations [76]. However, at the present, even with multiple view points, it is
impossible to discern viewing fields with multiple (more than 2) overlapping particles.

Machine Learning

Machine learning refers to statistical methods that can model complex systems, recognize and
learn patterns, and much more. It encompasses sub-fields such as supervised and unsupervised
models, artificial neural networks, and deep learning models. Therefore, there is not an exclusive
way it can be applied for the purpose of particle analysis. One of the more straight forward method
is to approximate complex functions for solving the inverse problem. Talebi-Moghaddam et al.
measured the scattering profile of flame soot particles using a wide-angle light scattering (WALS)
apparatus [80]. WALS utilizes an ellipsoidal mirror to get a wide angular range snapshot using a
single camera [81, 82]. An artificial neural network trained on simulated aggregate data using the
multi-sphere T-matrix method was used to estimate the soot morphological parameters. Numerous
other examples of using multi-angle scattering features for particle sizing can be found in the
literature, even though many are still confined to spherical particles [83, 84, 85, 86, 87].

Another strength in applied machine learning is image analysis. Convolution neural networks
(CNN) are typically fully-connected multilayer neural networks that are mostly commonly used for
object recognition, motion analysis, and image generation or restoration [88]. Utilizing its strength
in image recognition, Li et al. used a two-channel-output CNN for identifying and segmenting
images of bubbles in flow fields acquired using shadowgraphy [89]. Even the models were trained
using synthetic bubble images generated another neural network [90]. Remarkable improvements,
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especially for overlapped or obscured bubbles, were noticed for bubble size and shape estimation
compared to conventional shadowgraph image processing procedures. Similar methods were used
to segment particles in multi-phase flows and estimate the particle size distribution [91]. Image
recognition neural networks have also been adapted for classifying features from hyperspectral
images [92].

2.4 Concluding Remarks

In this chapter, the problem of particle ingestion was defined for the wide range of particles a
gas turbine might face. The non-spherical and complex shape, a broad size range, as well as nu-
merous particle types and materials make accurate measurements of ingested particles very chal-
lenging. In addition, the preference for a real-time and non-intrusive measurement makes many of
the established and state-of-the-art techniques unfeasible as sensor technology candidates. There
currently is a need for such technique that can accurately estimate the ingested mass using particle
shape, size, and number density.
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The inverse scattering problem of non-spherical particle size estimation is solved using a series of super-
vised machine learning models trained on a library of light scattering data. By establishing a large library
with spheres and spheroids as fundamental shapes, and through optimization of model hyperparameters,
the trained models are able to accurately estimate a precise equivalent volume sphere radius of particles
from an external database and simulations, with root mean square errors of 2.6% and 1.9% for the external
and simulated particles, respectively. It was found that classification via a k-nearest neighbor model and
refinement via a trained ensemble regression model performed best for equivalent volume measurements.
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1. INTRODUCTION

Particle sizing is an important problem with a long history, due
to its broad utility ranging from atmospheric to biomedical sci-
ences. While many approaches are available, methods utilizing
the light scattering and extinction from particles are popular, due
to its non-intrusive nature and relative ease in implementation.
The so-called inverse problem of measuring light scattering and
extinction and retrieving particle has been a research topic for
decades [1–6].

With this history, some topics, such as sizing a dispersion
of spherical particles, are mature enough to be commercialized.
However, as most particles in practice are not spherical, these
assumptions place limitations on the use and validity of these
techniques. Non-spherical particle sizing is an active research
area, with many early efforts focused on analytically solving the
inverse problem [7–10].

Machine learning (or statistical learning) allows modeling of
complex systems without necessarily having an analytic solution
to the problem [11]. This approach is useful when there might
not be a fundamental physical relation for modeling purposes
[12–14], or the physical model is very complex, such as non-
spherical particle size retrieval. Since the direct problem of
calculating scattering parameters of known particles is much
easier than solving the inverse, a large data set of scattering
parameters can be generated and used for training machine
learning models. Scattering observations of unknown particles
can then be entered as the input for the trained models, and its
output would be an estimation of the parameters based on the
training data.

While initial concepts utilizing neural networks for particle

size estimation have been proposed in the past, many are limited
by requiring a wide (if not the full) angular range for scattering
observations, and by being limited in shape (spherical) and
size [15–20]. As the full scattering profile is rarely available for
remote sensing, these applications lack practicality.

A machine learning-based non-spherical particle sizing
method using intensity data at three distinct angular positions as
features is presented. A pre-established database of light scatter-
ing data is used to train a series of supervised machine learning
classifier and regression models. The trained models are able to
solve the inverse scattering problem using five features based
on only three distinct observations. This novel technique is then
demonstrated by estimating the equivalent volume sphere ra-
dius of particles found in an external scattering database, as well
as simulated non-spherical particles.

2. METHODS

A schematic of the overall process is shown in Fig. 1. Particle
scattering data is first generated using numerical tools then
organized into a library. Layers of classification and regression
models are trained using the scattering library for particle size
estimation. Scattering features from the target particles are used
as inputs to the trained models, which then estimates the particle
size. Details of each step described are presented in the following
sections.

A. The Light Scattering Library
A library containing scattering profiles for particles in the range
of interest (chosen by the user) is generated and used as the
training data for the supervised machine learning models. The
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Fig. 1. Overall process scattering library population, machine
learning model training, and particle size estimation.

entries in the database vary in a wide range of parameters: shape,
size, and material properties (represented by its refractive in-
dex). While the overall library is proposed to include several
fundamental shapes, such as spheres, spheroids, cubes, and
prisms, the current work will focus on the generation and usage
of spherical and spheroidal particles. The method for generating
the scattering profiles vary depending upon the shape and size
of the particle. The non-dimensional size parameter,

x =
2πr

λ
(1)

where λ is the wavelength of incident light and r is the charac-
teristics length of the particle is used to determine what regime
particle scattering (and method used to generate its profile) takes
place. For spherical particles, the characteristics length is simply
the particle radius. For non-spherical particles, equivalent vol-
ume sphere radius, or its effective radius is used to calculate its
size parameter.

Geometric optics approximation is considered to be sufficient
at capturing the scattering phenomena when the particle is much
larger than the wavelength of the incident light (x ≥ 10) [21–
23]. Developed by Macke et al., a FORTRAN based geometric
optics code suite was used to populate the large spherical and
spheroidal entries in the library [23]. Originally developed for
atmospheric research purposes, this code package introduces
a number of rays as the incident plane wave, which are traced
through the input particle geometry using Snell’s law and Fres-
nel’s equations. A number of internal reflections are allowed
before the escaping rays are sampled in angular bins for quantify-
ing the particle scattering. This program also features averaging
out random orientations for non-spherical particles.

For smaller particles (x ≈ 1), exact methods are available,
depending on particle shape. Mie theory is used for determining
scattering by spheres [22], while the T-matrix method is used
for spheroids [24]. Both Mie theory and the T-matrix method

can extend beyond the shapes mentioned above and would be
useful for extending the library in the future. While the methods
provide exact solutions for their respective shapes, a limit for
numerical convergence is imposed by the particle size. MatScat,
a MATLAB program developed by Schäfer [25, 26] was used to
populate the smaller spherical entries in the library. For smaller
spheroids, SMARTIES, a MATLAB program by Somerville et al.
[24] was used for generating particle scattering parameters for
the library. A threshold of x ≈ 40 was used for the transition
point between the small particles (using Mie theory and the T-
matrix method) and the large particles (using geometric optics).
Combining the entries for both shapes, the library contains the
following representative features of light scattering: scattering
intensity, phase function for different polarization of incident
light, differential scattering cross section, extinction coefficient,
and extinction cross-section. While only the scattering intensity
is currently used as the training feature, further development of
the method by including some of the other features is expected
to improve this technique.

Using all three codes discussed above, the light scattering
library was generated for ranges of varying particle parameters:
refractive index, aspect ratio, and size parameter. Table 1 shows
the ranges of particle parameters for the scattering library. 50
entries linearly spaced were used to fill out the radius range.
All calculations were performed with the incident light’s wave-
length fixed at 532 nm. Aspect ratios of 0.5, 1, 1.5, 2 and 3 were
used to cover the range of shapes, with spheres and spheroids as
listed below. For refractive index, entries with values of 1.3, 1.4,
1.5, 1.6, and 1.7 were generated. With these variations, a total of
1,250 entries were generated to form the light scattering library.
However, only entries with refractive index n = 1.5 were used
since the vast majority of the test particles had refractive indices
in this range and to reduce the model training computational
time.

Table 1. Ranges of Parameters for the Light Scattering Li-
brary

Parameter Range

Equivalent volume sphere radius (r) 1 µm - 25 µm

Size parameter (x) 6 - 300

Aspect ratio (AR) 0.5 - 3

Refractive index (n) 1.3 - 1.7

B. Machine Learning Surrogate Models
The library contains data sets linking a particle’s scattering pat-
terns to its predefined characteristics, e.g. particle type, shape,
and size. A particle’s size can be estimated if the scattering ob-
servation matches with an entry within the library. However,
this is only possible if that measured scattering profile is specifi-
cally contained and labeled within the library. It is not feasible
to extend the library to match all scattering profiles one might
encounter, since particles in actuality have infinitely complex
shapes (and therefore infinitely complex scattering profiles), and
it is impossible to know what type of particles may be encoun-
tered a priori. To address this dilemma, a surrogate model is
used to predict the outcome.

Using the scattering library, such surrogate models can be
established to link measured scattering profiles to specific parti-
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cles. One way of utilizing labeled data to infer an appropriate
surrogate model, which not only fits that data set but also pre-
dicts and labels newly observed unlabeled data, is supervised
machine learning [11, 27]. Supervised machine learning rep-
resents the task of inferring a model or a function that maps
an input to an output based on labeled example input-output
pairs, often referred to as training data. The obtained model can
then be used to map unforeseen test observations as input to the
desired output. The scattering library acts as a labeled training
data set to train a surrogate model using supervised machine
learning, which characterizes newly observed particles based on
their measured light scattering profiles.

Input scattering features

Classification 

ML Model

Estimated size group

Regression ML 

models for each 

size group 

Estimated particle size

Fig. 2. The classification and regression layers for particle size
estimation.

In the present approach, both classification and regression
models are used for sizing particles. Classification methods
have qualitative outcome variables, as opposed to regression
methods, which have quantitative outcome variables [11, 28].
The classification models are first trained on groups of similarly
sized particle data, which determine what group (and therefore
the particle’s size range) the input particle belongs to. This clas-
sification process is also used to filter down the library data to
particles only in the size range estimated. The remaining fil-
tered data is used to train a regression model, which precisely
estimates the size of the input particle. Originally, a single clas-
sification layer was used to classify particles. However, the
training accuracy decreased as the library increased in size and
complexity, which inspired the current approach with classifi-
cation and regression layers, where the training data reduces
based on the previous step’s output.

In the scattering library, the non-dimensional size parameter
ranges from 5 to 300, as shown by Table 1. The 50 linearly spaced
entries were divided up to various numbers of size groups or
N for their impact on the estimation. From 2 groups (where the
library is divided into smaller and larger halves), to 25 groups
(where each group consists of two size parameters) were used
to train the various classifier models.

The scattering profiles as a function of the scattering angle
form the basis for the machine learning model inputs. Three
intensity values on the scattering profile (at 5, 10, and 30 degrees)
were used to form distinct inputs. These forward scatter angles

have been shown to be highly sensitive to particle size, while
the side scatter at 30 degrees, which shows a relatively low sen-
sitivity to size, is used to normalize these intensities [21]. The
scattering angle used for the input feature is important to the
model’s ability to accurately sort or estimate particles by size,
as this sensitivity is what allows the machine learning models
to create feature maps that are more distinguishable as the size
parameter changes. The first two features were the intensity
ratios from the forward points (5 and 10 degrees) to the intensity
at 30 degrees. The intensity ratios as the input feature allows
for a simpler practical application. Any discrepency between
equipment, such as the incident laser intensity, detector/camera
properties from test to test is negated by using a ratio of intensi-
ties. The three additional features were the absolute difference
in intensity from a reference particle. This means that the differ-
ence in intensity at each angle were calculated independently for
the training data (a scattering profile from the library database)
as well as the inputs for estimation using an experimental scat-
tering profile of the same particle, a spherical water droplet with
a refractive index of m = 1.3 and size of r = 1.1 µm [29].

Table 2. Input/Training Features for the Machine Learning
Models.

Name Formulation

Intensity Ratio 1 IR1 = I(θ1=5◦)
I(θ3=30◦)

Intensity Ratio 2 IR2 = I(θ2=10◦)
I(θ3=30◦)

Absolute Intensity Shift 1 AIS1 = |I(θ1 = 5◦)− Ire f (θ1 = 5◦)|
Absolute Intensity Shift 2 AIS2 = |I(θ2 = 10◦)− Ire f (θ2 = 10◦)|
Absolute Intensity Shift 3 AIS3 = |I(θ3 = 30◦)− Ire f (θ3 = 30◦)|

Both the classification and regression models were trained
and optimized based on cross-validation accuracy. Optimization
of model parameters or hyperparameters, are performed to tune
the models for optimal performance facing random inputs out-
side of the training data. Cross-validation is a statistical method
to estimate model performance by training a model on only a
subset of the data and using the remainder as test inputs [11, 28].
Since the training data contain the labeled outputs, the correct
outputs for the withheld data used as test inputs are known,
thus the model can be assessed on its performance. K-fold cross-
validation is a common method for cross-validating statistical
learning models. The training data are divided into k number of
subsets or folds. (k− 1) folds are used to train the data, while
the kth fold is used as the test/validation data.

For hyperparameter optimization, a Bayesian optimization
process using MATLAB was performed to iterate on model train-
ing for the cross-validation results using k = 10, a commonly
recognized value that balances error in both bias and variance
[11, 27, 28]. Cross-validation on classification models results in
in a model accuracy score, or how well the model classified the
kth test data. Similarly, cross-validation on regression models is
scored by the root mean square (RMS) error, from the difference
between the test data to the model output. The optimization
algorithm trains a model, estimates performance using cross-
validation, and iterates to tune its hyper-parameters to achieve
maximum accuracy or minimum RMS error, for classification
and regression models, respectively. Models for each variation
listed in this section went through 100 iterations for this opti-
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Fig. 3. Classification and regression model training and opti-
mization procedure.

Four different methods each were used for both the classifica-
tion and regression model building. Decision trees (DT), linear
support vector machines (SVM), k-nearest neighbor (KNN), and
ensemble methods were used for classification. Ensemble meth-
ods use a large number of weaker models, such as decision tress
to boost its performance. For regression models, DT, SVM, en-
semble methods, as well as linear regression were used. The
detail workings of each method will not be given in this work,
but can be found in the cited references [11, 27, 28].

An external scattering database of ash, sand, and miner-
als was used to test the trained models. The Amsterdam and
Grenada (A&G) Light Scattering Database [30] contains experi-
mental scattering matrices of a wide range of irregular particles,
from various origins and composition. In addition, scanning
electron microscope (SEM) images of the particles, equivalent
volume sphere radius, approximate size distribution, refractive
index, and composition are available as reference. The equiva-
lent volume sphere radius, wavelength of light used, as well as
the resulting size parameter for the particles tested are listed in
Table 3. The listed particle size is acquired from Fritsch Anal-
ysette A22 and Malvern Instruments Mastersizer 2000 particle
sizers. These devices use Fraunhofer diffraction or Mie theory to
estimate a size distribution using a spherical assumption. While
these particles are highly irregular in shape (as visible through
the microscope images), testing the wide range of particles in
this database is valuable as a step in validating the presented
method, as it provides data from real particle samples. The test
particles are divided into 3 categories: volcanic ash, cosmic dust
analogs, and miscellaneous. Volcanic ash particles are named af-
ter the volcanoes producing them, while the cosmic dust analogs
are mostly volcanic ash processed to match dust samples from
the Lunar (JSC-1A) and the Martian (JSC0, JSC200) surfaces
[31, 32]. The reference water droplet, used to calculate the ab-
solute difference in intensity at the three observation points for
the test input, is also listed in Table 3. In practical applications,
the user may use calibrated materials such as polystyrene la-
tex spheres as the reference particle. While the wavelengths
used in these experiments do not match to the value used to
generate the library entries, since the size parameter takes both

diameter and wavelength into account, the estimation can be
done by classifying and regressing for the size parameter, then
converting to the particle size using its incident wavelength. The
estimation shown in the results section will be converted from
the size parameter output to its corresponding radius, using Eq.
1. The baseline model was trained with the complete library (all
aspect ratios, m = 1.5), and additional test cases were run with
a segmented library as the training set, investigating the impact
of the library size and the complexity of the shapes included.

Table 3. Test Particles from the A&G Light Scattering
Database. The reference water droplet used to calculate the
absolute intensity shifts is indicated by an asterisk.

Name Effective Wavelength Size

Radius (µm) (nm) Parameter

Volcanic Ash

Eyjafjallajökull[33] 7.8 647 75.8

St. Helens[34] 4.1 633 40.7

Lokon[35] 7.1 442 100.9

Pinatubo[35, 36] 3.0 442 42.7

Puyuhue[33] 8.6 647 83.5

Spurr[34] 14.4 633 142.9

Cosmic Dust Analogs

JSC0[31] 15.9 488 204.1

JSC-1A[32] 29.5 647 286.5

JSC200[31] 28.1 647 272.9

Miscellaneous

Fly Ash[37] 3.7 442 51.9

Basalt[31] 6.9 647 67.0

Calcite[31, 38] 3.3 448 46.3

Loess[35] 3.9 442 55.4

Quartz[35] 2.3 442 32.7

Sahara Sand[35] 8.2 442 116.6

Water Droplet*[29] 1.1 442 15.6

For further validation, particle scattering of differing size,
shape, and distribution was simulated and used as inputs for
the trained models. Three spheroids as monodisperse particles
were simulated for testing are shown in Fig. 4. The size and
shape of the spheroids were chosen to cover a wide range of
possible particles and to ensure that the simulated particles do
not match with any other entry in the scattering library. The
geometric parameters of the simulated spheroids can be found
in Table 4.

A polydisperse distribution of particles was also simulated
for additional validation. A log-normal size distribution was
used to generate and simulate the particle light scattering. The
log-normal distribution is defined in Eq. 2 and is defined by two
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Fig. 4. Particles used for validation of monodisperse spheroid
sizing, corresponding to the parameters in Table 4.

Table 4. Simulated particle parameters for mono and polydis-
perse validation tests.

Monodisperse

Particle # Aspect Ratio Refractive Index
Equivalent Volume

Sphere Radius (µm)

1 1.3 1.5 3.1

2 0.7 1.5 12.3

3 2.5 1.5 20.7

Polydisperse

µ σ re f f (µm)

0.1 1.0 13.5

parameters, µ and σ.

n(r) =
1

rσ
√

2π
exp

(
− (ln x− µ)2

2σ2

)
(2)

An effective radius of the distribution is defined in Eq. 3.

re f f =

∫ ∞
0 r3n(r)dr∫ ∞
0 r2n(r)dr

(3)

This effective radius is similarly how the A&G database char-
acterized its measured size distribution. The parameters used
to generate the simulated distribution, as well as its effective
radius, are listed in Table 4. Using the listed values of µ and σ,
the resulting number and volume density distribution functions
are shown in Fig. 5.

3. RESULTS

The cross-validation accuracy and errors from the classification
and regression models are presented to demonstrate the process
of narrowing down the number of size groups used to divide up
the library, as well as the choice of classification and regression
models. The particle size estimation results from models trained
with the full library using the Amsterdam and Grenada database,
as well as several simulated particles is intended to provide a
clear demonstration of the method’s capabilities. In addition,
the impact of the scattering library size and complexity used to
train the models on the method accuracy is shown.

Fig. 5. The number and volume density distribution functions
for the simulated particle distribution.

A. Hyperparameter Optimization
The optimized models from the process detailed in the previ-
ous section were assessed for both their final cross-validation
accuracy and performance when sizing the A&G particles. Fig-
ure 6 shows the cross-validation error (or 1−Accuracy) for the
variations in the number of size groups (N) used to divide the
library data set used to train them as well as the four classifi-
cation models: ensemble (ENS), linear support vector machine
(LSVM), k-nearest neighbor (KNN), and decision tress (DT). As
expected, fewer groups used to divide up the library results in
better cross-validation performance. With N = 2, the classifier
models are only tasked with determining whether the input
particle belongs in the smaller or larger halves of the data set.
As N increases, the classification task is more difficult by having
fewer data points in each group for training and smaller size
range that makes up each interval.

For the regression model training cross-validation, as the
library is divided into N number of groups, each size group has
its own regression model and accompanying cross-validation
RMS error. As the number of size groups used to divide up
the library for training varies, the cross-validation errors of the
models across the size groups can be averaged as an indication
of regression model performance. This mean cross-validation
error εN is defined as:

εN =
1
N

i=N

∑
i=1

εi (4)

where εi is the cross-validation RMS error from the regression
model at each size group and N is the number of size groups
used to divide the library. When looking at the mean cross-
validation error as shown on Fig. 7, as fewer groups are used
to divide up the library, the cross-validation error is increased.
With increased number of groups (and therefore smaller size
groups), Fig. 7 shows that the regression models have a lower
cross-validation error, showing an opposite behavior from the
classification models.

For determining an optimal N, a balanced approached was
used for considering both the classification and regression mod-
els, as well as the fact that the classification algorithm must first
place the input data in the correct interval for the regression
model to estimate the particle size well. By looking at the over-
all performance of the model for sizing the particles from the
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Fig. 6. Cross-validation error for the optimized classification
models for various numbers of size groups and classification
methods: ensemble (ENS), linear support vector machine
(LSVM), k-nearest neighbor (KNN), and decision trees (DT).

A&G database, a combination of using KNN classifier, ensemble
regression model, and N = 10 size groups produced the mini-
mum RMS relative error. Correspondingly, the KNN classifier
and ensemble regression model is shown to have the best cross-
validation performance against the other methods. While the
cross-validation performance supports the actual performance
of the model, it did not correlate for variations in the number of
groups used.
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Fig. 7. Mean cross-validation RMS error for the optimized
regression models for various numbers of size groups and
regression methods: linear regression (LR), decision trees (DT),
linear support vector machine (LSVM), and ensemble (ENS).

B. Classification and Regression Results
A combination of KNN classifier, ensemble regression model,
and N = 10 was found to have the minimum relative RMS
error of 2.6% when sizing the A&G particles. The resulting

Fig. 8. Particle size range and radius estimation using machine
learning models. The interval represents the estimated range
by the classification model, while the solid dot represents the
precise estimation from the regression model.

classification intervals, precise estimation from the regression
models, as well as the reference value from the A&G database
are listed in Table 5. For the KNN classifier’s hyperparameters,
the number of neighbors (k) was optimized to 12, the distance
metric to Mahalanobis, with an inverse distance weight applied.
For the regression models for each size group, while the specific
hyperparameters varied, a common factor seen throughout was
the boosting algorithm, which was optimized to be LSBoost.

The classification model performed excellently, failing to
place the inputs in the correct interval only twice (for quartz
and fly ash). In both cases, the classification models overesti-
mated the size range, but the regression model for the fly ash
particle attempted to compensate by estimating the lower limit
of the size group. A visual representation of the model’s perfor-
mance is shown in Fig. 8. The estimation results do not show a
bias in accuracy with regards to particle size.

C. Simulated Particles
The same optimal combination of group number, classifica-
tion/regression models was evaluated for the simulated par-
ticles. These simulated particles capture the full effect of the
non-spherical shapes, as the A&G particles did. However, the
reference radius used for establishing the method’s effectiveness
were measured particle sizers that use the spherical assumption.
Testing the presented method using simulated particles allows
comparison to the true particle size and demonstrate the abiliity
to size non-spherical particles. For the monodisperse particle
estimation, the true as well as the estimated radius for each par-
ticle is listed in Table 6. The classification model first correctly
placed the inputs in the correct size groups, and the regression
model converged to values that led to excellent agreement be-
tween the estimated and true particle size. The relative errors
across the three particles had a RMS value of 1.9%.

For the simulated distribution of particles, the classification
model once again placed the input into the correct size group.
The regression model then converged to a size estimation close
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Table 5. Estimated particle size range and radius as well as
the reference radius for the tested A&G particles.

Name Classification Regression Reference

Range (µm) Estimation (µm) Radius (µm)

Volcanic Ash

Eyjafjallajökull 6.6-9.6 7.1 7.8

St. Helens 3.5-6.4 4.6 4.1

Lokon 6.6-8.7 7.9 7.1

Pinatubo 2.4-4.5 3.2 3.0

Puyuhue 6.6-9.6 7.5 8.6

Spurr 12.4-15.4 13.9 14.4

Cosmic Dust Analogs

JSC0 14.1-16.4 15.7 15.9

JSC-1A 27.9-30.9 29.5 29.5

JSC200 27.9-30.9 29 28.1

Miscellaneous

Fly Ash 4.5-6.6 4.5 3.7

Basalt 6.6-9.6 6.9 6.9

Calcite 2.5-4.6 3.5 3.3

Loess 2.4-4.5 3.5 3.9

Quartz 2.4-4.5 2.7 2.3

Sahara Sand 6.6-8.7 8 8.2

Water Droplet* 0.35-2.4 1.2 1.1

Table 6. The estimation results from the simulated particles.

Monodisperse

Particle # Classification Regression Reference

Range (µm) Estimation (µm) Radius (µm)

1 2.9-5.4 3.1 3.1

2 10.4-12.9 12.4 12.3

3 20.4-22.9 21.1 20.7

Polydisperse

Classification Regression Reference

Range (µm) Estimation (µm) Radius (µm)

12.4-15.6 13.1 13.5

to the true value, with a relative error of 3.0%.

D. Impact of Library Size and Complexity

With the baseline model’s performance established, the results
from test cases using a limited subset of the library for model
training are shown in Fig. 9. The number of size groups used

as well as the classification and regression methods were kept
constant from the baseline case using the sphere and spheroid
library, whose results were shown in the previous section. With
the data set segregated by the particle shape (the aspect ratio),
the libraries used to train the models vary in shape (from spheres
to spheroids) and in size (e.g., more entries are in the spheroid
case than the spheres only). Figure 9 shows that as the training
library gets larger and more complex in shape, the relative RMS
error for particle size estimation decreases. This is consistent
with expected behavior, as the test particles are highly irregu-
lar in shape [30]. The models are trained with larger data set
containing more particle shapes, demonstrating the benefits of
generating a large library.

Current limitations on this method are based on the particles
present in the library for model training. The A&G database
contains relatively small particles (tested in the present work)
and very large particles with characteristic lengths greater than
1 mm. Validation demonstrated by the simulated particle tests
are also limited to the size range present in the scattering library.
As discussed in this section, expanding the library with a wider
size range and more complex shapes is hypothesized to both
expand the accuracy and capabilities of this method.

Fig. 9. Effect of different shapes in the scattering library on the
relative RMS error on particle radius estimation.

4. CONCLUSION

A new method for estimating non-spherical particle size was de-
tailed and demonstrated. Trained on a pre-established database
of particle light scattering, the supervised machine learning
models first classify the approximate size range, then estimate
a precise radius using classifier and regression models, respec-
tively. Testing this method using an external collection of particle
scattering profiles, the trained models were able to accurately
estimate the particle radius, with relative RMS error low as 2.6%
across 16 different particle samples varying in size, shape and
composition.

This accuracy is significant as the tested particles are irregular
in shape and surface, but the machine learning models accu-
rately size them only using a library consisting only of spheres
and spheroids. Multiple factors are believed to have contributed
to this performance. One is that for most sand and volcanic ash
particles, while their surfaces are highly irregular, their aspect
ratio values are within our library’s scope (<2) [39, 40]. The
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library for non-spherical entries as well as the test particles from
the A&G database are generated and measured as randomly
oriented particles. In addition, spheroids have been found to be
acceptable as modeling shapes for volcanic ash [33]. For particles
such as ice crystals, whose structures are even more irregular
than sand or ash and not represented in the library adequately,
additional work would be required for finding a good repre-
sentative shape and incorporating them into the library and the
models.

The current implementation of the method is limited by the
parameter ranges in the scattering library. However, the method
could be applied for a wider size range and additional shapes as
opposed to some of others referenced in the introduction. For
larger particles, as long as new library entries covering that size
range are added, new models can be trained to accommodate
this capability. A similar approach could be taken for classify-
ing shapes. For example, if this technique were to be applied
to remote sensing of ice crystals, some library entries with ba-
sic crystalline shapes could be added. Based on the presented
results, an increase in estimation accuracy would be expected.

As this is the first implementation of this method, numer-
ous improvements are envisioned. Since particles in practice
are composed of a distribution, not a single size, the ability to
estimate the mean radius is just the first step. The next step in
the method’s development would be to retrieve another param-
eter that can define the size distribution, such as the effective
variance.

The current structure of separate classification and regression
layers could be envisioned as a single neural network, with
one or several hidden layers that can perform as the size group
classifier or individual regression models. This would be a
worthwhile investigation in the future as it could reduce the
complexity and training time necessary to train and implement
multiple layers and models.

The angular locations as well as the number of scattering
features used as the input feature warrant further investigation
in future work. While the current angles used for features were
determined empirically based upon known size sensitivity in
the forward scattering region, further optimization based on the
input scattering angles should be considered. In addition, the
intensity difference as inputs require a common particle to serve
as the reference. Testing the A&G particles, a water droplet with
a well-known shape, refractive index, and size was available.
However, as this technique advances, input features only based
on normalization would eliminate the need for such calibration.
Combined with the number and location of the intensity inputs,
such optimization is imagined for future endeavours.
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3.5 Appendix A: Size Group Optimization

During the training process, one of the factors used for the optimization of the number of
size groups was the cross-validation errors of the classification and regression models, shown in
Figures 6 and 7. As a clarification, the cross-validation RMS errors shown in Figure 7 are based
on an assumption that the testing input belongs in that size group, meaning that the classification
model has accurately sorted the input in the previous layer.
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Abstract. We demonstrate a novel application of supervised machine learning
(ML) models to quantify the size, shape, number density, and distribution
parameters of a water spray introduced at a gas turbine inlet. Only a limited set of
laser scattering and extinction observations, acquired by pairs of photodetectors
and cameras, are required for an accurate output. A phase Doppler particle
analyzer (PDPA) as well as a conventional extinction inversion method are used
to validate the particle size estimation, with the ML method converging closely
to both. By measuring a water spray, where a spherical particle shape can be
assumed, these size estimate validations were allowed to be made, which would
have been difficult for a non-spherical particle measurement. By combining all
the estimated parameters, the liquid volume fraction (LVF) as well as the liquid
flow rate is estimated and compared to a traceable ultrasonic flowmeter. To our
knowledge, this is the first in situ condensation load measurement made at a gas
turbine inlet without a prior calibration. The ML approach is able to accurately
estimate the liquid flow rate, with the majority of the estimates lying within
the uncertainty bounds of the flowmeter and a root-mean-square difference of 0.8
L/hr or 7.4 %. Estimating the liquid flow rate using all the particle parameters
demonstrates the method’s robustness and readiness for accurately measuring
even non-spherical particles. The low number of required optical observations also
makes this technique attractive for more generalized inlet particle measurements
including sand, dust, and volcanic ash, in addition to condensation.
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1. Introduction

Particle ingestion is a critical issue for turbine engine
operations. Whether it is ice or volcanic ash during
flight, sand at airports near deserts, or excessive
moisture and condensation during ground testing,
particle ingestion can cause damage and impact the
engine’s performance [1, 2, 3, 4]. Water ingestion is
of particular interest for ground testing, due to its
effect on engine performance. Condensation can occur
naturally at the inlet and cause as much as a 2%
increase in specific fuel consumption (SFC) [3].

Figure 1 shows the condensation formation process
and how it affects the fan performance. The important
factors in determining if and how much condensation
will form in the inlet is determined by the ambient
(specific humidity and temperature of the air), and
flow (inlet geometry and Mach number) conditions.
As the flow accelerates, the static pressure (Ps) and
temperature (Ts) of air decreases. The static pressure
and temperature of the water vapors mixed within
the air also decreases, with pressure decrease affected
by the specific humidity. If sufficient conditions are
met, the static temperature will drop to the saturation
line, where water can exist as liquid and vapor in
equilibrium. At this condition, a portion of the water
vapor must condense to maintain this equilibrium,
forming liquid water as condensation.

As liquid water forms through condensation, its
latent heat of condensation is released, raising the total
temperature (Tt). The increased total temperature is
what leads to the performance decreased at the fan.
With the increased total temperature of the flow, more
work is needed to produce the same fan pressure ratio,
which leads to higher fuel consumption and higher
thrust specific fuel consumption (TSFC).

In addition, the water droplets can form a thin
film on the airfoil surface, deviating its performance
parameters from design [3, 5]. Valuable testing time
is lost when the relative humidity and temperature
readings indicate that the condensation effects are over
the acceptable limit [6, 3].

While limited empirical corrections are available,
an accurate measurement of the ingested mass is
needed to develop reliable relationships between engine
performance and condensation [6, 3]. Quantities that
need to be reliably measured for this purpose are
droplet volume and number density. Earlier efforts
on inlet condensation study revealed droplet size
distributions ranging from 1 to 30 µm [6].

Optical methods are attractive for this application
as they can be non-intrusive. In particular, Mie
extinction is a viable technique for this purpose, as
the setup can be relatively simple and only limited
optical access is needed [7]. Conventional extinction
methods rely on the spherical assumption, which can

be made safely for condensation measurements but
not for typical solid particle ingestion. While laser
extinction for particle sizing has a long development
history, a common limitation has been the wavelength
of laser used. When using multiple lasers with
different wavelengths, they have been limited to a
narrow spectral band, typically from near-UV to near-
IR. The narrow spectral width introduces ambiguities
and limits the ability to size larger particles. These
limits would prevent measurements of condensation
with the upper limit of 30 µm in diameter [8, 9,
10]. The theoretical benefit of extending the spectral
width was studied along with a novel way to utilize
multi-wavelength laser extinction [7, 11]. Potter et
al. [3] measured the liquid water content (LWC) of
condensation entering in a subsonic suction tunnel as
a mock inlet using a CO2 laser emitting at 10.6 µm.
However, using a single wavelength extinction, this
method required an external measurement of LWC to
calibrate the measurements. Replacing CO2 lasers, the
proliferation of quantum cascade (QC) lasers led to
affordable and off-the-shelf lasers that can emit in the
mid to far infrared [12].

The extended spectral width allows for the
following two things. First is an application of
an existing wavelength-multiplexed laser extinction
(WMLE) method using the extended capabilities
provided by the QC laser [7, 11, 13]. More importantly,
a machine learning (ML) approach for particle
characterization is achieved using multi-wavelength
extinction as one of its features. Previous efforts
demonstrated the concept of ML models and a vast
library of relevant particle data for model training and
validation [14].

We present an application of supervised machine
learning models for inlet particle measurements, using
a water spray as a stand-in for condensation. The
introduction of laser extinction as a feature allows for a
calibration-free measurement of ingested mass flow of
condensation in a gas turbine inlet. In addition, while
the previous models only solved for an equivalent mean
diameter for non-spherical particles, the presented
method expands on them by introducing additional
model layers that estimate for particle shape (via
aspect ratio) and particle distribution width. While
droplet shapes could safely be assumed as spherical,
the presented method does not rely on such an
assumption, and we demonstrate its ability to estimate
the particle shape for showing the robustness of the
method and to prepare for future applications for
solid non-spherical particles that inlets are likely to
encounter, such as dust and sand.

Machine learning is a statistical tool that uses
data to fit functions that can model complex systems
[15]. Our previous efforts used a pre-established
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Figure 1. A diagram describing the steps of inlet condensation and its effect on fan performance.

library of particle scattering data to accurately
size non-spherical particles found in the literature
[14]. The features used previously were scattering
intensity ratios at different scattering angles and an
intensity shift relative to a known reference, requiring
a calibration. In the presented method, multi-
wavelength extinction replaces that intensity shift
while keeping the scattering intensity ratio as features.
The current developments are a major step forward
for robust, precision measurements in harsh industrial
applications, in our case gas turbine engine inlets,
of particle ingestion rates without the need for prior
calibration.

This paper is structured as the following. Section
2 describes the overall methods, including the library
used as the training data, model setup, experimental
method to acquire the input data, uncertainty
quantification, and the validation methods. Section
3 describes the acquired data from the experiment,
model outputs including estimated particle shape, size,
and distribution, as well as their comparison to the
validation data, followed by an overall conclusion in
section 4.

2. Methods

An overview of the method is shown on Figure 2. A
scattering and extinction library based on particles
of interest is generated using numerical tools. This
library is then used to train a series of supervised
machine learning models designed to estimate the
particle shape, distribution width, and Sauter mean
diameter based on established inputs. The inputs,
the intensity and extinction ratios, are acquired in
measurements of a water spray introduced to a test
engine inlet at Virginia Tech. The intensity ratio
is measured by two cameras capturing the scattering
intensity from the droplets using a scanning laser sheet.
The extinction ratio at two different wavelengths is

measured by two photodetectors, using the intensity
with and without the water spray in the flow. The
inputs are then put through the layers of the machine
learning models to determine the particle parameters.
In the following subsections, each step presented on the
overview is described in detail.

2.1. Particle Scattering and Extinction Library

The library is used to train the models that evaluate
the inputs. For accurate models, the entry parameters
in the library must encompass the range of expected
particles the sensor is likely to see. The main varying
parameters for the library are the particle shape,
distribution width, and Sauter mean diameter. The
current iteration of the library uses ellipsoids and
spheres as shapes. The input measurements from the
experiment were measured in a long straight optical
section. Therefore, no significant acceleration and
droplet deformation are expected, and spherical entries
are sufficient for modeling the droplets. However,
oblate and prolate ellipsoid entries were included in the
dataset and training to verify that the models could
estimate the shape as spheres, a way to demonstrate
the method’s robustness and for future applications on
solid non-spherical particles, such as sand and ash.

Table 1. Range of parameters included in the library.

Parameter Values
D32 (µm) 0.1 - 50

σ 1.2 - 1.8
Aspect Ratio 0.5 - 2.0

Table 1 shows the parameter ranges used to
populate the library. While numerical tools were
used to initially generate monodisperse scattering and
extinction data, a log-normal distribution was used
to integrate them to represent a polydisperse cloud
of particles of different mean size (D32), distribution
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Figure 2. A diagram of the overall methods presented, from library population to estimating particle Sauter mean diameter (D32),
distribution width (σ), aspect ratio (AR), number density (Cn), and liquid volume fraction (LV F ).

width (σ), and shape (aspect ratio). A log-normal
distribution is defined as:

f(D) =
1√

2πD lnσ
exp [− 1

2 ln (σ)
2 (ln (D)− ln (D))2](1)

WhereD is the mean diameter and σ is the distribution
width. The Sauter mean diameter (SMD), D32, is a
useful metric that describes the diameter of a sphere
with an equivalent surface area to volume ratio as the
particle. It is defined as:

D32 =

∫∞
0
f(D)D3dD∫∞

0
f(D)D2dD

(2)

SMD is also twice the value as the effective radius
reff , typically used in meteorology for describing cloud
droplet distributions. This metric represents the mean
radius for scattering [16]. The mean diameter D is
related to the SMD by:

ln (D) = ln (D32)− 5

2
(ln (σ))2 (3)

σ is the geometric standard deviation for the
distribution, which describes the following among other
things: 95% of all particles in the distribution lie in the
range from D/2σ to D2σ [17]. σ value of 1 describes a
monodisperse distribution.

The aspect ratio (AR) is used for describing the
particle shape. For spheres where AR = 1, the
log-normal distribution described above can be used
to represent particle distributions using the sphere
diameter. However, for non-spherical prolate and
oblate spheroids, an equivalent surface area sphere
radius (and diameter) is used for calculating the
distribution parameters [18].

For the parameters described in this section, the
number of points used to fill out the range determines
the number of data points within the library. A full-
factorial combination of five hundred, six, and seven
entries was used to fill out the Sauter mean diameter

(D32), the standard deviation (σ), and the aspect ratio
(AR), respectively. This brings the entire library to
500× 6× 7 = 21,000 unique points.

The calculated quantities for each data points are
the scattering intensity profiles (S1 and S2) and the
extinction efficiency (Qext). Three different numerical
tools were used to calculate these quantities: MatScat
[19], SMARTIES [20], and a geometric optics ray-
tracing tool developed by Macke et. al [18]. MatScat
uses Mie theory for spheres, while SMARTIES uses the
T-matrix method for spheroids. These two methods
provide exact solutions for their respective shapes but
are limited by the particle size that can be computed
for a given incident wavelength. The size parameter
is a non-dimensional number that describes the ratio
between the characteristic length of the particle and
the incident wavelength. For a spherical particle, it is
defined as:

x =
2πr

λ
(4)

Where r is the particle radius and λ is the incident
wavelength. For non-spherical particles, r is once
again the equivalent surface-area-sphere radius. As x
increases, the exact solution methods, especially the
T-matrix method, face convergence issues. For larger
particles (and therefore x values), the geometric optics
approximation is used to calculate for the scattering
parameters, which is accomplished by the Macke ray-
tracing code suite. The ray-tracing code was used
when SMARTIES failed to converge. While varying
slightly for different aspect ratios, the switching point
was x ≈ 50. Macke et al. verified the ray-tracing code’s
ability to accurately calculate the scattering profiles for
particles in this size parameter range [18]. For the ratio
of extinction, a simple validation test was performed
using only spheres, since exact solutions for spheres can
converge for large particles given enough processing
time. Between the exact solutions and combined
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case of SMARTIES and ray-tracing, a peak error of
6% in ratio of extinction occurred only for the very
small particles (D32 ≤ 1 µm), providing confidence
that the ray-tracing approximation is sufficient for
populating the particle library. The ray-tracing tool
also features averaging random orientations for non-
spherical particles.

In accordance with the experimental setup, the
scattering intensity profiles are calculated using an
incident wavelength of 488 nm. For the extinction
efficiencies, 532 nm and 10,330 nm are used as the
incident wavelength.

2.2. Machine Learning Models

The entries in the scattering and extinction library are
used to train and validate the machine learning models.
Machine or statistical learning models use the library
data to fit functions that relate the particle’s scattering
and extinction patterns to its characteristics. The
application of supervised machine learning models for
estimating non-spherical particle characteristics was
demonstrated previously by the authors [14]. Many of
the basic details regarding the method can be found in
this prior publication. The current work expands on
the previous efforts by introducing new features and
additional model layers for shape and size distribution
estimation.

The first input, the scattering intensity ratio Rint,
is carried over from the previous iteration. It is a ratio
of scattered light intensity between forward scattering
(near 2 degrees) and side scattering (near 40 degrees)
angles. The forward scattering region is generally
sensitive to particle size, while the side scatter is used
to normalize the forward scattering intensity. This
negates any need for calibration between different laser
intensities and camera properties.

The second input is the extinction ratio between
two wavelengths. Two lasers at different wavelengths
(532 nm and 10330 nm) are introduced to the particle
flow, and its incident and transmitted intensities are
recorded. For a single wavelength, the measured
extinction τ is expressed as:

τi = − ln
It
I0

(5)

Where τi is the measured extinction at a given
wavelength λi, It and I0 are the transmitted and
incident laser intensities, respectively. The extinction
ratio can be formed as the following:

Rext,ij =
τi
τj

=
Qext(λi, D32)

Qext(λj , D32)
(6)

From the library perspective, the extinction ratio
(measured) is equal to the ratio of the mean extinction
efficiencies Qext (calculated) at the same wavelengths.

The addition of the extinction ratio as a feature
eliminates the need for the prior calibration feature
from the method’s previous iteration.

Figure 3 shows the difference in input features
based on the particle parameters. The feature response
to the aspect ratio is shown on Figure 3a. As the aspect
ratio deviates from 1, the features trend in the same
direction, with the AR = 0.5 case being noticeably
different. As the distribution width increases on
Figure 3b, the scattering intensity ratio smooths out
the feature behavior as expected. Figure 3c shows
that as the particle size increases, the extinction ratio
converges to a value of one, due to the fact that Qext

converges to a value of two. The smallest particles in
the library still have a finite size (D32 = 0.1 µm). The
extinction efficiency terms used to calculate the ratio
of extinction converge to 0 as particle size approaches
0, but reviewing the library data showed that the
difference in the two wavelengths leads to the brief
increase in the extinction ratio for extremely small
particles, visible in Figure 3c.

The models in different layers shown in Figure
2 are set and trained for their own objectives. The
aspect ratio and the size group layers use classification
models, while the distribution width and the precise
size estimation uses regression models. Classification
models have distinct and pre-allocated outcome
variables, while regression models have quantitative
outcome variables [21]. While there are many different
models for both classification and regression, based
on our previous work, an approach comprising the k-
nearest neighbor (KNN) method for classification and
the ensemble boosted tree method for regression is used
[14].

The data used to train the models in different
layers are filtered based on the previous step. For
example, while the model for determining the aspect
ratio is trained using the entire library, the models for
distribution width and size group are trained using only
the library entries with corresponding aspect ratio.
The regression models are trained using only library
data for the corresponding shape and the size group.

The models are trained using the library data,
and their hyperparameters are optimized through
cross-validation. The training data are randomly
shuffled into training and validation sets. Models
are scored post-training using the validation set, then
the process is repeated to converge on maximum
training accuracy. For classification models, the
training accuracy is simply its accuracy score on
correctly identifying the validation sets. For regression
models, the training iteration minimizes the error on
validation set estimation. The optimization objectives
were monitored for convergence with one thousand
iterations as the maximum iteration limit. While
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Figure 3. The feature space showing the ranges in the library. (a) Profiles showing different aspect ratios. Only entries with
σ = 1.4 are shown for clarity. (b) Profiles representing different distribution widths. Only entries with AR = 1.5 are shown for
clarity. (c) Profiles representing different Sauter mean diameter. The aspect ratio and distribution width are limited to 2.0 and 1.6,
respectively.

no convergence criteria were set to stop the training
process before the maximum iteration limit, the
training process for all models reached the maximum
performance parameters before 200 iterations. These
model parameters with best performances were then
used with the experimental inputs.

2.3. Experimental Setup and Input Features

An experiment was performed on a test engine at
Virginia Tech to demonstrate the ability to measure
mass flow rate of water ingestion in an engine inlet
using this novel technique. A test section with optical
access for the laser beams was attached between
the bell mouth inlet and the fan on a Pratt &
Whitney Canada JT15D research engine. Figure 4
shows the experiment schematic for the extinction
ratio input, as well as the photos of the implemented
setup. An atomizing nozzle upstream of the bell
mouth was used to produce the water spray. The
JD Ultrasonics Sonicom 086H nozzle was mounted
0.53 m (equivalent to the test section diameter) ahead
of the bell mouth. The spray nozzle was supplied
with pressurized water and air for its operation.
The air and water pressure were fixed at 483 kPa
and 103 kPa, respectively. The pressurized water

flow from the pressure pot was connected to an
Atrato Ultrasonic Flowmeter Model 720V20SD/A.
This National Physical Laboratory (NPL) traceable
flowmeter recorded the flow rate while the spray was
on. This recorded flow rate was then used to verify the
estimated flow rate.

Figure 4a shows the experiment layout with the
location of the extinction lasers and the detector unit.
The two laser beams at different wavelengths are
combined into a single beam. As shown in figure 4b,
the 532 nm beam (visible green) emitted by a Genesis
MX laser is simply reflected using a silver mirror.
A Thorlabs model MLQ MIR quantum cascade laser
emits at 10330 nm (infrared), which is then reflected by
a N-BK7 window. N-BK7 is optically clear substrate
that allows the 532 nm beam through but reflects the
infrared beam to combine them. A box constructed
from black acrylic panels covered the lasers to protect
them from water and dust during engine operations.

Optical access to the test section is provided by
BaF2 windows on both sides. This material was
chosen as it allows the transmission of both visible
and infrared beams. After going through the flow,
the combined beam enters the detector unit and is
split according to the wavelength, then introduced to
a spectral filter and a lens to focus the beam onto
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Figure 4. (a) Overall layout of the engine experiment and the location of the extinction lasers and detectors. (b) A top view of
the lasers and detectors, as well as the beam paths of each laser. (c) Photos of the experimental setup, including the location of the
spray nozzle.

the detector surface. For the 532 nm beam, a 532
nm laser line filter and an achromat lens were used.
For the 10330 nm beam, a Germanium longpass filter
and a ZnSe plano-convex lens were used. A Thorlabs
PDA100A amplified photodetector was used to record
the 532 nm laser intensity, while a Newport 919P-
003-10 thermopile sensor was used for the 10330 nm
laser. A detailed schematic of the extinction laser and
detector units are shown in figure 4b. The intensities
were recorded on a data acquisition computer in the
engine control room.

In addition to the extinction setup, an imaging
system for recording the scattering intensities and
visualizing the spray pattern at the measurement plane
was implemented using a laser sheet. Figure 5 shows
the General Scanning Inc. scanning mirror used to
create the laser sheet, based on a 488 nm laser emitted
by a Genesis MX laser. Any interference between the
extinction and scattering measurements was prevented
using spectral bandpass filters on both detectors and
cameras. The extinction and scattering measurement
planes were 19 inches downstream from the bell mouth
inlet.

Two Thorlabs DCC3240M CMOS cameras were
used to capture the images. These cameras were
placed in locations that would provide the angular
location described in the previous section. The forward

Figure 5. (a) A schematic of the scattering setup. (b) A photo
of the scattering setup beneath the test engine. (c) A photo
showing the laser sheet for scattering measurements, enhanced
using a smoke generator.

scattering camera used a 90 degree mirror to capture
the image. Images with a checkerboard plate in the
imaging plane were used to spatially calibrate the
cameras. The spray images taken were then warped
to real-world aspect ratios.
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Three different engine conditions were tested: idle,
60%, and 65% corrected fan speed (CFS). At each
engine condition, three spray and two clean runs were
recorded for 5 minutes. The mean intensities recorded
at spray and clean runs were used for the transmitted
(It) and incident (I0) intensity terms in equation (5),
respectively. Images taken during the clean runs were
used for background subtraction.

2.4. Flow Rate Estimation

The extinction and scattering data captured by the
setup described in the previous section is used as inputs
to the trained machine learning models. The outputs
from those models are then used to estimate the liquid
volume fraction (LVF). The liquid water content is
defined as:

LV F = VdropletCn (7)

where Vdroplet is the volume of the particle in m3, and
Cn is the number density in number of particle per
unit volume. The particle volume is determined based
on the shape and size outputs from the models. The
number density is determined using the model outputs
in Beer’s law for extinction:

τi = − ln
It
I0

=
π

4
CnL

∫ ∞

0

Qext(x,m)f(D)D2dD (8)

where L is the beam path length in m. The πD2/4
term comes from the projected area of a sphere, making
this the spherical form of Beer’s law. Since the
estimated SMD is based on the equivalent area sphere
diameter, there is no need to recalculate the area based
on the estimated particle shape. With the measured
extinction τi, set path length L, and the estimated size
distribution f and shape, the number density term Cn

is found using the measured extinction at 532 nm.
While LVF is typically used for engine perfor-

mance and condensation correlation, for verification
purposes, we use the liquid flow rate to compare against
the flowmeter. The flow rate is:

V̇liquid = (LV F )V̇engine (9)

where V̇engine is the engine’s air flow rate, measured
from a previous test with identical engine conditions.

2.5. Uncertainty Analysis

The uncertainty in the liquid flow rate estimate is de-
termined using the model sensitivity on outputs using
simulated inputs and the experimental uncertainty on
acquiring the inputs. By considering the two inputs
(extinction and intensity ratios) for the LVF estima-
tion:

δLV F =

√
(δRext)2

(
∂V̇liquid

∂Rext

)2
+ (δRint)2

(
∂V̇liquid

∂Rint

)2
(10)

The partial derivative terms representing the output
sensitivity based on the input is found using simulated
inputs into the model.

The uncertainties in the LVF estimate as well as
the engine flow rate measurement are considered for
the uncertainty in the liquid flow rate estimation:

δV̇liquid

V̇liquid
=

√
(
δLV F

LV F
)2 + (

δV̇engine

V̇engine
)2 (11)

The engine flow rate uncertainty δV̇engine/V̇engine was
estimated to be 5% based on previous measurements.

2.6. Validation Methods

As mentioned in the experimental setup, a NPL
traceable flowmeter is used to compare the V̇liquid
estimation. The uncertainty of the flowmeter is rated
to 1% of the full measurement range, approximately
±1 L/hr. In addition, a TSI phase Doppler particle
analyzer (PDPA) is used to independently measure the
droplet size.

Since the droplets can be safely assumed spher-
ical, a conventional wavelength-multiplexed laser ex-
tinction (WMLE) method for retrieving droplet size,
distribution, and number density is also used to fur-
ther validate this new ML approach [7, 11, 13]. The
conventional method assumes the particles to be spher-
ical and a log-normal distribution function. It fits the
measured extinction ratio (same as the input feature
used in the ML approach) to the size distribution pa-
rameters (the Sauter mean diameter and the distribu-
tion width), then uses Eq. 8 to estimate the number
density. The WMLE method’s uncertainty propagates
from the estimated distribution width, as the method
assumes a range of possible distribution width values
that leads to the SMD and Cn estimations. A 5% un-
certainty in the engine flow rate is used for the liquid
flow rate estimation using the WMLE method as well.

3. Results and Discussion

The inputs acquired during the experiment (the
extinction signals and the scattering images) are
first presented. The model outputs from particle
shape, size, and distribution parameters are then
presented and compared against the PDPA and the
conventional extinction (WMLE) method. In addition,
combining all the estimated parameters, a comparison
of measured liquid flow rate between the ML, WMLE,
and the flowmeter is presented. For engine condition
idle run 1, an error in camera settings led to unusable
images to form an input feature. Therefore, in
the following results sections, only 2 runs at engine
condition idle are shown.
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Table 2. Estimated aspect ratio from the shape classifier model
using the experimental inputs.

Engine Condition Run AR

Idle
1 1.5
2 1.5

60% CFS
1 1.0
2 1.0
3 1.0

65% CFS
1 1.0
2 1.3
3 1.0

3.1. Experimental Inputs

Figure 6 shows the normalized mean images from the
side-scatter camera during engine condition 65% CFS.
The image has been warped to real-world aspect ratios,
and converted to real world spatial coordinates using
the camera calibration data. Some image artifacts are
visible from the background subtraction as the dark
speckles in the image. The faint ring in the center is a
reflection from the fan nose cone.

These images were taken to capture the scatter-
ing intensities to be used as inputs to the ML models.
However, these images serve as an excellent visualiza-
tion of the spray pattern and relative concentration as
well as. A small patch of the images from both the
forward- and side-scatter cameras that corresponds to
the same physical space was used to form the intensity
ratio input.

Figure 7 shows a short time sample from the
extinction signals acquired during the experiment.
The recording was started with the engine running
at 60% CFS, then the water spray was started after
approximately 10 seconds. After an initial burst of
water passes through, the intensity profile shows the
spray passing through the beam, lowering the intensity
through absorption and scattering.

3.2. Particle Size and Shape Estimation

The outputs from the aspect ratio model are listed
in Table 2. For most runs, the estimated shape is
AR = 1 as expected. However, for engine condition
idle, both runs estimated AR = 1.5 while run 2 of
65% CFS estimated as AR = 1.3. While we do not
have a direct way for validating the shape estimation,
the droplets are expected to be spherical. There are
few possible explanations for the three discrepancies
in the aspect ratio estimation. First of which can be
gleamed by looking at Figure 3. In Figure 3a, where
the different profiles show the library entries for the
various aspect ratios, the profiles for AR = 1, 1.3, and
1.5 are quite close to each other in the estimated size
region of the droplets (using Figure 3c as a guide).

While small measurement errors would not lead to a
large deviation in size estimation, they can easily result
in the aspect ratio deviations shown in the results.
This also shows that if the sensor application is purely
limited to spherical particles, it may be better for the
training library to only consist of spherical particle
data to avoid such misleading results. As mentioned
in the model training subsection, the current training
scheme is vulnerable to overfitting and converging to a
local minimum. Overfitting combined with the random
variance in the measured inputs could also lead to the
aspect ratio deviations deviations and cascade down to
errors in the size and flow rate estimations as well..

For future applications using irregular solid parti-
cles, a standardized shape factor, such as aspect ratio
(Lmin/Lmax) will be utilized for rigorously validating
the technique’s ability to accurately estimate the par-
ticle shape.

Table 3. Sauter mean diameter estimations from the ML
and conventional extinction (WMLE) method, as well as the
independent estimation from the phase Doppler particle analyzer
(PDPA).

Engine Condition Run
D32 (µm)

ML WMLE

Idle
1 11.0 8.5
2 11.9 8.2

60% CFS
1 9.3 8.4
2 10.1 9.4
3 9.2 9.1

65% CFS
1 9.5 9.7
2 10.9 10.1
3 10.1 11.6

PDPA 12.0

Table 3 shows the estimated Sauter mean
diameter using the machine learning (ML) approach,
conventional extinction (WMLE) method, and a
commercial PDPA system. The ML and WMLE
methods have root-mean-squared differences of 1.96
µm and 2.82 µm (16.4 % and 23.2 %), respectively to
the PDPA estimate. The ML method is closer to the
PDPA measurement, while the WMLE approach seems
to estimate smaller droplets compared to the other
two methods. The engine setup did not allow in situ
PDPA measurements, rather the spray was sampled
by this instrument separately in a laboratory setting.
This could explain some of the deviation between the
methods in size estimation.

3.3. Flow Rate Estimation

Figure 8 shows the estimated liquid flow rate between
the ML and WMLE method, as well as the recorded
flow rate from the Atrato ultrasonic flowmeter. Only
two ML estimates lie outside the uncertainty range
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Figure 6. Normalized mean spray visualization images from the 65% CFS case. The outer rings represent the test section wall
location.

Figure 7. Normalized extinction signal from the 532 nm
laser. The water spray is switched on around t = 10 seconds
to demonstrate the measured extinction as the droplets pass
through the beam path.

of the flowmeter (60% CFS Runs 1 and 2), but
are still well within the overlapping uncertainties of
the measurement and validation. Between the ML
and WMLE methods, the RMS differences from the
flowmeter are 0.8 and 1.0 L/hr (7.4 % and 8.2 %),
respectively. As the flowmeter was installed in-
line to the water spray while the experiment was
performed and since the flow rate estimation uses all
the estimated parameters (size, shape, distribution
width), the comparison between the ML method and
the flowmeter can therefore help validate the method’s
ability to accurately estimate the droplet size, shape,
and particle volumetric flowrate.

4. Conclusions

In this work, we presented a particle characterization
method that uses light scattering and extinction as
input features to a set of supervised machine learning
models. The method’s ability to accurately estimate
the shape, size distribution, and number density of

an ingested water spray was demonstrated on a test
engine inlet. Using four observations (two extinction
at different wavelengths and two scattering at different
scattering angles) to form two input features, the
ML models estimated the liquid flow rate produced
by a spray nozzle to values within the uncertainty
range of a traceable flowmeter and with a RMS
difference of 0.8 L/hr (7.44%) through multiple engine
conditions. While care must be taken to avoid
draw conclusions when the estimation is within the
flow meter uncertainty, the droplet size and shape
estimations show that further analysis, especially into
the model training and performance evaluation, is
required to find the source of these deviations.

The limited number of required observations
makes this method attractive for particle remote
sensing. While a spherical assumption can be safely
made for condensation measurements (as shown by the
WMLE comparisons), engine inlets encounter many
particles that are non-spherical. This ML method does
not rely on such assumptions and can be applied for
non-spherical particles.

A solid particle demonstration using non-spherical
particles is currently being planned using different
samples of test sand and dust. As the scattering and
extinction library discussed above was established on
water, a new library based on the new materials is
being established for training.

In addition, the current approach of many layers
filled with a number of models increases in complexity
and computational training time as more shapes are
introduced and the size range increases. An artificial
neural network (ANN) would simplify that process,
using the same library as the training data but
fitting one function that can output all of the desired
quantities, instead of going through the layers and
layers of models. The training process described here
are prone to overfitting and converging to a local
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Figure 8. Flow rate estimations from the machine learning (ML) and conventional extinction (WMLE) method, as well as the
Atrato ultrasonic flowmeter.

minimum. By employing strategies such as early
stopping and training the same model multiple times
with random weights, these risks can be avoided.
As versatile as this method has already proven to
be, we anticipate that these improvements will allow
this machine learning approach to be an attractive
instrument for particle characterization, particularly in
gas turbine inlet settings.
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5. Neural-network-based instrument for particle de-
tection and characterization

The contents of this chapter have been prepared for submission as a research article to Optics

Express (C. Y. Moon, C. Edwards, G. Byun, and K. T. Lowe, ”Neural-network-based instrument
for particle detection and characterization”). It is in its corresponding submission format, provided
by The Optical Society.
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Abstract: We present a novel optical particle sensor technique using artificial neural networks.
This method relies on observations of light scattering and extinction by particles as input features
to a trained neural network, which provides relevant particle size and shape parameters for a mass
flow estimation. The models are trained on artificial data, generated for particles that the sensor
is likely to encounter. The feasibility of our method is demonstrated through an experimental
measurement of solid sand particles injected into a high speed wind tunnel. The results show
accurate estimations of the injected sand mass flow and particle size statistics, with a sand mass
flow root-mean-square error of 0.28 6/<8= or 4.1% from the monitored rate using a precision
scale. This measurement framework paves the way for sensor applications in harsh operating
environments with limited optical access.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Measurements of particle characteristics such as size and shape are important for a multitude of
applications. Aerosol measurements are key components in numerous areas from pharmaceutical
researcher into drug delivery and fuel spray atomization in combustion chambers [1, 2]. Remote
sensing of non-spherical particles such as sand and ash are critical for atmospheric research as
well as space planetary science [3, 4]. The presented research is focused on particle sensing at
aerospace propulsion system inlets, where foreign ingested objects can induce significant damage
to components [5]. Conventional particle measurement techniques are inadequate due to the
complex particle shapes and challenging operating conditions [6–8].

Optical techniques require little access compared to sampling and can be non-intrusive, making
them ideal for this application. However, most conventional optical methods for particle sizing
assume the particle shape to be spherical, which leads to significant errors for relating ingested
mass and effects on gas turbine components [9, 10].

We present a novel application of machine learning models for bridging this gap. Using optical
measurements of light scattering and extinction from particles as unique identifying signatures,
neural networks trained on synthetic data are used to estimate the particle shape and size statistics.
A generalized neural network replaces layers of supervised machine learning models used in our
previous efforts [11, 12]. This allows for faster training and much quicker parameter estimations,
bringing this technology one step closer to real-time monitoring capabilities.

An experiment to measure the particle size and mass flow of injected sand particles in a high
speed wind tunnel is conducted to demonstrate the sensor technology. This development is a major
advancement for a robust and accurate measurement of particles in challenging environments.
This paper is structured as the following. Section 2 describes the method in detail, including

the library generation, model training, and setup for the demonstrative experiment. Section
3 presents the results from the neural network training, experimental measurements, and the
following estimations from the model. Comparisons of the particle size and mass flow rate
estimations are also presented and discussed, with a brief discussion concluding the paper with a
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summary and future works.

2. Methods
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Fig. 1. A flowchart describing the overall process behind the particle sensor concept.

A diagram describing the overall scheme is shown in Figure 1. The synthetic training data
for the neural network are first generated using numerical tools, representing the particles the
optical sensor is likely to encounter. The particle scattering and extinction measured from the
particle-laden flow in the wind tunnel are passed to the trained model for particle size and shape
prediction. Those outputs are then used to estimate the injected sand mass flow rate. In the
following subsections, each step listed in Figure 1 is described in detail.

2.1. The Particle Scattering and Extinction Library

Neural networks must first be trained before measured inputs can be used. Particle scattering and
extinction data are generated artificially and used for training the models. The library must be
populated with data representing the particles that the sensor is expected to see, providing the
models with the numerical basis formulated by the governing physics.
The scattering and extinction library was previously used for an engine inlet condensation

sensor [12]. The numerical tools and the general structure of the library are similar, while the
particle parameters, such as the size range and the material refractive indices are changed to
accommodate for sand particles. A brief explanation of the library and its composition are
presented below, but a full description can be found in the cited source [12].

The highly-complex shapes of sand and dust particles necessitate the need for simpler shapes
to be used as surrogates. Numerous particle modeling studies have confirmed that spheres are
insufficient for modeling sand and dust particles [13, 14]. By fitting artificial scattering data
from ellipsoids into measured dust data, spheroids (ellipsoids with one less degree of freedom)
were found to perform very well for matching scattering intensities, but not for polarization
parameters [13, 15, 16]. Therefore, the unpolarized scattering profiles (|(2 |) and extinction
efficiencies (&4GC ) for both prolate and oblate spheroids are used to fill out the library.
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The incident wavelengths used to calculate those values were matched to the lasers used as
light sources in the experimental measurements. A visible wavelength at 488 nm was used for
the scattering measurements while 532 nm (visible) and 10330 nm (mid-infrared) were used for
the extinction efficiencies.

Wavelength (=<) = :

488 1.550 1.0e-8

532 1.547 1.0e-8

10330 2.398 3.5e-2

Table 1. CSPEC sand refractive indices for the three wavelengths used in the library.
The data is gathered from [17–20].

The particle material composition provides the refractive index. The complex index of
refraction < is defined as:

< = = + 8: (1)

where = is the real component describing the phase velocity of light through the material, and the
imaginary component : is the absorption coefficient. Table 1 shows the refractive indices for
the three wavelengths used in the numerical calculations. The values are based on the optical
properties of quartz found in the literature [17–20].
The calculated single particle scattering and extinction parameters are integrated using a

log-normal size distribution, expressed as:

=(�) = 1√
2c� lnf

exp [− 1
2 ln (f)2

(ln (�) − ln (�))2] (2)

where � is the mean diameter and f is the geometric standard deviation or the distribution width.
Since the typical size range for particles span several orders of magnitude, log-normal distributions
are commonly used to describe particle size distributions. One of the more commonly used
average is the Sauter mean diameter (SMD or �32). The mean diameter and the SMD are related
as:

ln (�̄) = ln (�32) − 5
2
(ln (f))2 (3)

The particle size distribution can then be described using only �32 and f.

Table 2. Range of parameters included in the library.

Parameter Values

�32 (`<) 1 - 1000

f 1.2 - 1.8

Aspect Ratio (AR) 0.4 - 2.5

Table 2 shows the parameter ranges included in the library. Using 2000, 4, and 6 entries to
discretize the ranges for �32, f, and �', respectively, leads to a total number of 48000 entries in
the library.
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The integrations of the scattering and extinction parameters are performed as:

&4GC (_8 , �32, f) =
∫ ∞

0 &4GC (�, <)=(�, f)�23�∫ ∞
0 =(�, f)�23�

(4)

|(2 | (�32, f, \) =
∫ ∞

0
|(2 | (�)=(�, f, \)3� (5)

The integrated quantities must then be formulated into the features that are measured by the
sensor. The extinction efficiency between the two wavelengths are used formulate the extinction
ratio:

'4GC,8 9 (�32, f) = g8
g9

=
&4GC (_8 , �32, f)
&4GC (_ 9 , �32, f)

(6)

where g and &4GC are the measured and calculated extinction, respectively. The subscripts 8 and
9 correspond to _8 = 10330 nm and _ 9 = 532 nm.
The two intensity ratios are formed using the scattering intensity |(2 | from the three angular

positions corresponding to the camera locations:

�1
�3
(�32, f) = |(

2 | (�32, f, \1)
|(2 | (�32, f, \3)

(7)

�2
�3
(�32, f) = |(

2 | (�32, f, \2)
|(2 | (�32, f, \3)

(8)

Corresponding to the three cameras used to measure the scattering intensity, the intensity from
the largest scattering angle is used to normalize the other two views. This bypasses any need for
calibration between incident laser power and camera settings.

2.2. Neural Network Model

Fig. 2. Feedforward network structure for particle size, shape and distribution width
estimation.

Feedforward neural networks are flexible tools that can be used for function approximations [21].
In this application, the neural network is used to approximate a function that takes in optical
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measurements as inputs and estimates the particle parameters. Figure 2 shows a diagram of the
neural network structure used for this purpose. This form consisting of an input layer, a single
hidden layer, and an output layer is a universal functional approximator as long as the function is
finite and there are enough neurons in the hidden layer [21, 22].
In a feedforward neural network, each neuron in a layer is connected to every neuron in the

subsequent layer. Each connection has an associated weight, indicating how valuable the previous
input is. All inputs from the previous layers are summed according to their weights and with
the neuron’s bias value. This sum is used to determine if the neuron will activate and pass an
output to the next layer. The weights and biases are adjusted during neural network training. The
number of weights and biases between two layers with # and " neurons are:

W#→" = # × " + " (9)

Therefore, for the network structure shown in Figure 2 with three neurons in the input and output
layers and # neurons in the hidden layer, the number of parameters to be optimized is expressed
as:

WC>C0; = (3 × # + #) + (# × 3 + 3) = 7# + 3 (10)

The training process is an optimization problem, where weights and biases are adjusted to
minimize the error, evaluated using the training data. The number of neurons in the hidden layer
affects how complex of a problem the neural network can approximate. However, increased
number of neurons also increases the training complexity and can lead to increased error if the
network is too large. In addition, the training process must be performed carefully to avoid
overfitting the model to the training data.
There are numerous training schemes with their own set of advantages and disadvantages

regarding training speed and accuracy. Bayesian regularization backpropagation was chosen
to train the neural networks for particle characteristic estimation [21–24]. A detailed basis for
Bayesian regularization can be found in the cited sources, but the main advantage of this method
is that during the optimization processes, the magnitude of the parameters (weights and biases) is
also minimized. If a connection or bias is unnecessary or detrimental for the model’s accuracy,
the value will converge to zero as the training scheme advances, effectively removing it from the
network.

One of the outputs from the training process is the effective parameter (W4 5 5 ), which indicates
how many of the weights and biases are actively used in the trained model. After the training has
concluded, if W4 5 5 ≈ WC>C0; , the hidden layer may not be large enough and must be expanded
until W4 5 5 < WC>C0; . The models are also trained multiple times to avoid any local minimums
that might trap the optimization algorithm. In each training run, the initial weights and biases
are randomized. The converged training errors and the effective parameters must be consistent
throughout the training runs.
During the training process, networks with 10, 100, and 150 neurons in the hidden layer

were trained three times each. The training scheme was considered to have converged when the
gradient of the training mean squared error (MSE) reached 10−6. The training MSE and W4 5 5

were monitored for each training run for consistency.

2.3. Experimental Setup

The optical mass loading sensor was tested in a wind tunnel seeded with CSPEC sand particles.
The Virginia Tech High Speed Wind Tunnel (HSWT) is a suction tunnel driven by a Hoffman
75103 centrifugal blower. With a 6 inch diameter circular cross-section, the HSWT can reach
up to " = 0.5. However, with a mesh filter installed to protect the blower from the large sand
particles, the flow was throttled to " = 0.37. Figure 3a shows the overall layout of HSWT for
the sand injection experiment.
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Fig. 3. (a) A schematic showing the wind tunnel layout, including the sand feeder
and the optical measurement section. (b) A detailed view of the optical measurement
section, with the extinction and scattering components labeled.

CSPEC sand gets its name from MIL-E-5007C specification, a US military specification
for aircraft gas turbines [25]. This sample was chosen for its wide size range and material
purity (99.9% crushed quartz), which allows for a more accurate refractive index to be used for
populating the library.

Modifications were made to accommodate the mixed-phase flow within the tunnel. The sand
is delivered by an AccuRate 106M feeder, which uses a continuously rotating helix to push sand
into a feeding tube connected to the wind tunnel. The feeding tube into the tunnel was located 8
diameters downstream from the bellmouth inlet. The static pressure inside the tunnel provided
enough suction to keep the sand flowing through the feeding tube. The particle mass flow rate is
recorded by a scale (Ohause Ranger 7000 with 26 readability) monitoring the weight of the sand
feeder and hopper containing the CSPEC sand. During the experimental campaign, two different
conditions (50% and 100% feed rate) were tested. Each condition was repeated five times while
alternating for repeatability.
The optical measurements are made approximately 4 diameters downstream of the feeding

tube. Figure 3b shows a closer look at the optical measurement section. A clear quartz tube and
a 3D printed flange is used to provide optical access into the tunnel. Quartz was chosen over
materials such as acrylic for its scratch resistance.

Figure 4 shows a top-down view of the extinction setup, with the scattering equipment hidden
for clarity. A Gensis MX solid state laser and a ThorLabs MLQ MIR quantum cascade laser emit
at 532 nm and 10330 nm, respectively. A Ge window, which transmits light in the infrared region
but reflects in the visible wavelengths, is used to combine the two laser beams. BaF2 windows
provide optical access in and out of the wind tunnel. On the detector side, a Ge window is used
once again to split the two beams. A 532 nm laser line filter and an achromatic lens is used to
focus the visible laser onto the photodetector, a ThorLabs PDA100A. For the infrared laser, a Ge
longpass filter and a ZnSe plano-convex lens is used to direct the beam into a ThorLab PDAVJ10
infrared photodetector. The photodetectors record the reduction in intensity at 100 kHz as the
particles pass through the beam path.
Figure 5 shows a sample visible wavelength extinction dataset from the experiment. The

incident intensity is reduced by the particles passing through the beam path and detected using a
peak-detection algorithm. The incident and the reduced transmitted intensity are averaged and
then used to calculate the measured extinction g as:

g8 = − ln ( �C
�0
) (11)

where �C and �0 are the transmitted and incident intensities, respectively. The measured extinction
for each wavelength are used to form the ratio of extinction per Eq. 6.
The scattering measurement section is shown in Figure 6. A Genesis MX laser emits a
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Fig. 4. A top view of the extinction setup, with the lasers located on the left and the
detector components on the right. The green and red arrows indicate the paths for the
532 nm and 10330 nm laser beams, respectively.

Fig. 5. A sample of the recorded extinction signal from the 532 nm detector. The
detected minimums as the particles passing through the beam path are marked.

continuous beam at 488 nm. The beam is turned into a laser sheet through a General Scanning
Inc. scanning mirror and introduced into the test section via clear acrylic panels in the flange.
Three ThorLabs DCC3240M CMOS cameras located below the tunnel are used to acquire the
particle scattering from the laser sheet.
A checkerboard pattern is used to spatially calibrate the cameras relative to the laser sheet

plane. Images taken while the sand feeder is off are used as background for subtraction. A
synchronized series of 500 images are taken from each camera during a run. Figure 7 shows a
sample set of instantaneous images acquired during the experiment. The camera numbers at the
top of the figure correspond to the layout shown in Figure 6b.

Images are first background-subtracted then warped to real world coordinates using the camera
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Fig. 6. (a) The scattering setup showing the laser source and the scanning mirror used
to create the laser sheet. (b) A side view of the scattering setup showing the three
cameras located below the wind tunnel.

calibration data. The edges are then dilated to aid in the binarization process, which converts
the grayscale images are converted to binary for particle detection. The binary images are then
searched for particles that are visible from all three views, where their integrated intensity and
angular locations are recorded and averaged for each run.

2.4. Mass Flow Estimation

To estimate the mass flow rate of the injected sand, an average particle volume and the particle
count passing through the tunnel are used. The particle volume is calculated by converting the
Sauter mean diameter into a volume moment diameter �43:

�43 =

∫ ∞
0 =(�, f)�43�∫ ∞
0 =(�, f)�33�

(12)

where =(�) is the size distribution defined by the neural network output �32 and f. The average
particle volume +>;? is then calculated using �43.
For the number density term, the reduced intensities recorded by the extinction detectors are

used to count the particles passing through the beam path. Since the extinction beam path crosses
through the center-line of the wind tunnel duct, the number of particles per second detected by
the extinction lasers is scaled to the tunnel cross-sectional area using:

#?,C>C0; = #?,4GC
�3D2C

�140<
(13)

Where #?,4GC and #?,C>C0; are the extinction and total particle counts per second, and �3D2C and
�140< are the duct and extinction laser beam area. The mass flow is then estimated using:

¤<B0=3 = #?,C>C0;+>;?d? (14)

where d? is the sand particle density, which for quartz sand is 2600 kg/m3 and +>;? is the
particle volume [26].
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(a)

(b)

(c)

(d)

Fig. 7. A set of instantaneous scattering images captured by the three cameras. All
spatial coordinates are in << and the contrast has been adjusted to better highlight
the particles. (a) Background-subtracted scattering images. (b) The grayscale images
with the edges dilated for aiding edge detection. (c) Binarized images with gaps within
particles filled. (d) Detected particles that are common in all three views.

2.5. Validation Methods

The estimated mass flow rate is validated against the sand mass flow rate monitored by the
precision scale. For the particle size estimation, the sand sample were analyzed by three particle
size analyers: Sympatec HELOS, QICPIC, and Microtrac Camsizer X2 [27–29]. HELOS is a
particle analyzer based on laser diffraction that is representative of conventional optical methods
with spherical assumptions. QICPIC and Camsizer X2 use direct imaging to acquire the statistical
shape and size of non-spherical particles. Scanning electron microscope (SEM) images of the
CPEC sand were also acquired and analyzed for particle size. In addition, the vendor for the
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Fig. 8. SEM images of CSPEC sand at three different magnifications.

CSPEC sand (PTI) provided a size distribution measured using sieving.
The uncertainty in the mass flow estimation is affected by each of the terms in Eq. 14. However,

only the input features (extinction and scattering) are directly measured. Following the procedures
detailed in the previous work using this ML method, the uncertainty in the mass flow estimation
is determined using the sensitivity to model outputs using simulated inputs and measurement
(extinction and scattering) errors [12]. Additional error sources include the beam and duct area
terms used to scale the particle count measurement, as well as the CSPEC sand density.

3. Results and Discussion

The scattering and extinction inputs are used as inputs for the trained models. In this section,
the results of the model training procedures, the inputs measured from the experiments, and the
output estimates from the model are presented. In addition, comparisons for the particle size and
the sand mass flow rate estimations are made against the validation data.

3.1. Neural Network Training

Table 3. The results from the neural network training session for various numbers of
neurons in the hidden layer and multiple training runs.

N Training Run Training MSE WC>C0; W4 5 5

10

1 0.16

73

71

2 0.13 69

3 0.16 71

100

1 0.10

703

691

2 0.11 686

3 0.11 688

150

1 0.09

1053

936

2 0.08 932

3 0.08 894

Table 3 shows the training results for the various numbers of neurons in the hidden layer.
For each # , the model was trained three times with randomized initial weights. The training
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mean squared error (MSE) shows the how well the final model predicted the training data. For
# = 10 and 100, the effective parameter W4 5 5 is within 95% of WC>C0; , meaning that the hidden
layer is not large enough for this problem. Networks with # = 150, however, have W4 5 5 values
converged to less than 90% of WC>C , providing confidence that the hidden layers are sufficiently
complex to approximate the function described by the training data. The networks with # = 150
also show the lowest training error in Table 3. Therefore, for the particle parameter estimation,
the three networks with # = 150 are used and their outputs are averaged.

3.2. Experimental Inputs

Fig. 9. The number of particles detected by the extinction detectors.

Figure 9 shows the results from the experimental extinction measurements. As the particles
pass through the extinction laser beam paths, the attenuation from the incident intensity is
recorded as extinction. Each dip in intensity is counted as a particle and the total number of
detected particles is recorded. The particle count is divided by the length of time for each run (10
seconds) to get the #?,4GC term from Eq. 13. The particle count from each wavelength converge
for each run, giving confidence in the data analysis procedures. The attenuated intensity is used
to calculate the measured extinction and then the ratio of extinction according to Eq. 6.

3.3. Neural Network Output

Using the measured extinction and scattering intensity ratios, the outputs (�', f, and �32) from
the trained neural network model are shown on Figure 10. As the same sand sample is injected
throughout all the runs, these parameters are not expected to and do not vary for the different
feed rates.
Table 4 shows the �32 estimations from the various validation sources. Three groups are

discernible between the validation measurements. PTI vendor data via sieving and Microtrac -
Min (size distribution created using the minimum lengths) group together, while the equivalent
area measurements (QICPIC, Microtrac- Eq. Area, and SEM) estimates are similar. As the
minimum length affects the particle’s ability to pass through sieving filters, the agreement between
the PTI and minimum length data are expected. The laser diffraction method (HELOS) and
the Microtrac - Max (size distribution created using the maximum lenghts) make up the third
group. The neural network estimated values are between the minimum length and equivalent
area measurements, suggesting that the trained neural network response is more sensitive to
particle area and lengths, rather than volume. The particle size validation procedure shows
that the measurement technique has a large influence on the resulting estimation, and that the
traditional validation procedure against a "true" value is difficult for samples with such wide size
distributions.
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Fig. 10. The neural network outputs from each of the experimental runs.

Combining all three outputs from the neural network, the particle volume was calculated and
the resulting sand mass flow rate was estimated using Eq. 14. Figure 11 shows the comparison
between the estimated values (shown as ML) and the feed rate monitored using a precision scale.
As stated from the previous section, the experiment alternated between 100% and 50% feed rates
for each run. For both 50% and 100% feed rate runs, the machine learning approach slightly
overestimates the ¤<B0=3 , with a root-mean-squared (RMS) error of 0.28 L/min or 4.1%. The
estimated ¤<B0=3 accurately tracks the change in feed rate between the runs, confirming this
method’s versatility and repeatability.

A small but consistent overestimation across both feed rates implies a systemic, not a random
source of error. The main suspected sources of this error are the neural network training and
the mass flow estimation equation. The �32 entries in the library reach up to 1 mm, while the
highest value measured by the validation sources reaches up to 200 `<. The additional library
entries could be providing unnecessary data points that introduces biases in the neural network
output during the training process. In addition, during the mass flow estimation, the exposed area
of the extinction laser beams are used to scale the recorded particle count. This area is calculated
based on the laser specs and the wind tunnel geometry. If the sand flow does not span from one
side to the other due to boundary layers, this would affect the said scaling and the mass flow
estimation. However, the consistent particle parameter and accurate mass flow estimations give
credence to this machine learning approach to particle sensing.
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Table 4. �32 estimations from the validation measurements and the ML approach.

Source �32 (`<)

PTI 138

HELOS 191

QICPIC 162

Microtrac - Min 141

Microtrac - Eq. Area 165

Microtrac - Max 216

SEM 163

ML 142

Fig. 11. Sand mass flow rate estimation using the ML approach and monitored values
from the precision scale for validation.

4. Conclusion

A machine learning based particle characterization method was presented and demonstrated. The
presented method relies on optical observations of light scattering and extinction by particles as
input features to artificial neural networks. The models are trained on synthetic data, generated
for particles that the sensor is likely to encounter.
A measurement of quartz sand injected into a wind tunnel was made for demonstrative

purposes. The model provided consistent particle shape, size, and size distribution parameters
that accurately measured the ingested sand mass flow rate with a RMS error of 0.28 L/min (4.1%)
through five runs each at two different feed rate settings. This technique makes for an attractive
particle remote sensing option due to the limited number of required observations. While
many conventional particle measurement methods assume the particle shape to be spherical, the
presented method provides non-spherical particle data to the models as the training basis.
The framework for this method could easily be modified, from the optical features used as

inputs to the contents of the library for model training. Ice crystals and hail are major hazards
for gas turbine operations. Various numerical tools and databases containing optical properties
of ice crystals exist already, which could be adapted for this machine learning approach for
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measurement and detection [30,31]. Additional features could be investigated for their feasibility
as features. Optical modeling studies have revealed that quantities such as the depolarization
ratio and back-scattering intensities contain significant information on dust particle shape and
size. Improvements in the measurement technique could both simplify and add additional
identifying features. We anticipate that some of these changes could further improve the
presented measurement system.
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6. The Particle Scattering and Extinction Library

6.1 Introduction

The scattering and extinction library is used to train the machine learning models for parti-
cle parameter estimation. The scattering and extinction values of likely-encountered particles are
calculated and organized into a database for model training. This provides the numerical basis
formulated by the physics behind particle-light interaction.

While they may be used for different purposes, similar databases can be found in the literature.
The Amsterdam & Grenada Light Scattering database contains the measured phase functions of
dust, sand, and volcanic ash particles, as well as size distribution estimations using a laser diffrac-
tion particle sizer [1]. Another database for optical modeling of minerals was compiled by Meng
et al. [2]. This database contains the single scattering data for ellipsoids from ultravioet (UV) to
far-infrared (IR) wavelengths. The database is parameterized using 42 aspect ratios, 69 refractive
indices, and 471 size parameters. Users can use interpolation for values within this design space.
The single scattering data was calculated using an array of numerical tools, including discrete
dipole approximation, T-matrix method, and an geometric optics method.

The scattering and absorption properties of ice crystals are important for atmospheric science
research. Yang et al. has compiled multiple ice crystal scattering databases, for a very wide range
of sizes, wavelengths, and complex shapes [3, 4]. The non-spherical crystal shapes (such as aggre-
gates, hexagonal columns, droxtals, and more) are based on observations. The most recent version
of the database is focused from the near to far IR regions (3 to 100 µm) and particle lengths ranging
from 2 to 10,000 µm.

In this chapter, an overview of the particle parameters and numerical tools used to populate
the scattering and extinction library is presented. In addition, the contents of the library generated
for CSPEC sand measurements and related discussions follows.
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6.2 Methods

6.2.1 Library Parameters

Particle Size Distributions

One of the most important particle parameters for this application is size. However, particles
in-reality seldom exist as a single uniform size (monodisperse). Instead, the particle size has a range
and densities corresponding to the sizes. Distributions are commonly used to approximate the size
variety present in a cloud of particles. Density distributions can be constructed based on number,
length, area, and volume, though the length density is rarely used. A common nomenclature for
density distributions is to use qi with the subscript indicating the base: 0 for number, 1 for length,
2 for area, and 3 for volume. The diameter or radius is usually used for defining the discretized
size bins, and the diameter is used throughout this chapter for consistency. For non-spherical par-
ticles, the equivalent-volume-sphere diameter is used to define the size bins. For spherical particle
distributions, the following expression can be used to convert between the different bases:

qr(D) =
D(r−t)qt(D)∫︁∞

0
D(r−t)qt(D)dD

(6.1)

where qt and t indicate the density distribution and its corresponding subscript to be converted,
and qr and r describes converted the distribution and the corresponding subscript. For example, to
convert from a number density distribution q0 to a volume density distribution q3, Eq. 6.1 is used
with t = 0 and r = 3.

Statistical distributions are used to model particle density distributions. Some of the commonly
used distributions for describing particle number density distributions are normal, log-normal,
gamma, power-law, and Rosin-Rammler distributions. Only the log-normal distribution will be
detailed here, but the cited sources can be used as references for the other distributions [5, 6].

The log-normal distribution is commonly used because a typical cloud of particles has sizes
ranging several orders of magnitude. A log-normal number density distribution is expressed as:

q0(log-normal) =
1

lnσ
√
2πD

exp− lnD − ln D̄

2 lnσ2
(6.2)

where σ is the geometric standard deviation (or also known as the distribution width), and D̄ is
the mean diameter. 95% of all particles described by the distribution is between the size ranges of
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D̄/2σ to D̄2σ. When σ is 1, the distribution is monodisperse. Typical aerosol distributions have a
σ range from 1.5 to 2.0 [5]. A unique property of the log-normal distribution is that the converted
area and volume density distributions will have the same standard deviation.

There are various different ways to describe a particle size distribution using averages. One of
the more commonly used average is the Sauter mean diameter (SMD or D32). Sometimes referred
as the surface-volume mean diameter or twice the value of effective radius re (commonly used in
atmospheric sciences), the SMD is the diameter of a sphere with the same volume to surface area
ratio as the particle distribution. From the number density distribution, SMD can be calculated as:

D32 =

∫︁∞
0

D3q0dD∫︁∞
0

D2q0dD
(6.3)

The mean diameter and the SMD are related as:

ln (D̄) = ln (D32)−
5

2
(ln (σ))2 (6.4)

Figure 6.1: Number, area, and volume density distribution for a log-normal distribution with D32 =
30 µm, σ = 1.5.

Figure 6.1 shows the number, area, and volume density distributions using a log-normal distri-
bution with an arbitrarily shown SMD and σ. It is important to note that all three density distribu-
tions are describing the same group of particles. In the latest iteration of the library (as described
in Chapter 5), the particle size range from 1 µm to 1,000 µm is parameterized using 2000 entries
linearly distributed, and σ ranges from 1.2 to 1.8 using 4 linearly distributed entries. This means
that for a single shape in the library, there are 8,000 entries describing various the particle sizes
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and distribution widths.

The unpolarized scattering intensity |S2| and extinction efficiency Qext are first calculated for a
single particle of a particular size. The library entries must then be integrated using size distribution
functions to calculate the mean scattering and extinction parameters for that size distribution. The
extinction efficiency is integrated using:

Qext(λi, D, σ) =

∫︁∞
0

Qext(x,m)q0(D, σ)D2dD∫︁∞
0

q0(D, σ)D2dD
(6.5)

The scattering profile is integrated using:

|S2|(D, σ) =

∫︂ ∞

0

|S2|(D)q0(D, σ)dD (6.6)

The extinction ratio is found by taking the ratio of mean extinction efficiencies at two different
wavelengths:

Rext,ij =
τi
τj

=
Qext(λi, D, σ)

Qext(λj, D, σ)
(6.7)

The particle library for CSPEC sand is generated using incident wavelengths of 488 nm for
scattering and 532 nm and 10330 nm for extinction.

Particle Shape

The target particles for this sensor application, such as sand and volcanic ash, have very com-
plex and irregular shapes. It is impractical to measure, define, and calculate the scattering parame-
ters for those irregular shapes. Therefore, the particle shape must be modeled using surrogates.

While simpler shapes would make the simulation process easier, the chosen shape must be
complex enough to accurately model the particle-light interaction. Yang et al. conducted a study
using spheroids and spheres for atmospheric dust observations [7]. As expected, the effects of
nonsphericity was found to be significant for dust particles in the visible wavelength region.

Increasing the degree of freedom by one, spheroids are often used for dust modeling. Begin-
ning with the equation describing an general ellipsoid shown in Figure 6.2:

x2

a2
+

y2

b2
+

z2

c2
= 1 (6.8)
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Figure 6.2: An example of an oblate spheroid, a prolate spheroid, and an ellipsoid.

In addition to the overall size (using an equivalent area or volume sphere diameter), the aspect ratios
a/c and b/c describe the ellipsoid shape. A special case of ellipsoids, spheroids are ellipsoids with
one axis as a symmetric axis. Making the z axis as the symmetric axis, spheroids can be described
using:

x2 + y2

a2
+

z2

c2
= 1 (6.9)

The spheroid can then be defined with an overall size and one aspect ratio, AR = a/c. Prolate
spheroids have AR > 1 while oblate spheroids have AR < 1. The surface area of the spheroid is
given as:

(Oblate Spheroids) S = 2πa2 + π
c2

ϵ2
ln (

1 + ϵ

1− ϵ
), ϵ2 = 1− c2

a2

(Prolate Spheroids) S = 2πa2 + 2π
ac

ϵ
arcsin ϵ, ϵ2 = 1− a2

c2

(6.10)

As the particles flow past the laser beam, their orientations are expected to be random. There-
fore, the scattering and extinction parameters for non-spherical shapes are averaged for random
orientations. The projected area A for randomly oriented spheroids are simply A = S/4 [8].

To parameterize the aspect ratio, the shape parameter ξ proposed by Kahnert et al. is used
for an linearly-spaced AR distribution[9]. This is due to the fact that for prolate spheroids, lin-
early increasing a also increases AR linearly. However, for oblate spheroids, linearly increasing c
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decreases AR hyperbolically. Therefore, ξ allows for a linear shape parameter and is defined as:

ξ =
1

AR
− 1 (Oblate Spheroid)

ξ = 1− AR (Prolate Spheroid)

ξ = 0 (Sphere)

(6.11)

In the library created for CSPEC sand estimations, ξ ranges from -1.5 to 1.5 in six increments,
equating to aspect ratios of 0.4, 0.5, 0.67, 1.5, 2, and 2.5. Combined with the particle size and
distribution, the total number of entries in the CSPEC sand library is 48,000.

Numerous studies have been conducted to evaluate the effectiveness of spheroids and ellip-
soids as dust particle surrogates [2, 10, 11, 12, 13, 14, 15]. Scattering data from spheroids and
ellipsoids were fitted to measured dust quantities. Spheroids perform very well, except in one area:
the polarization ratio, which describes the scattering power between the two linear polarization di-
rection [14]. Due to this fact, the scattering parameters for the CSPEC sand library were calculated
for unpolarized light, and measurements were made using circularly polarized light.

Particle Refractive Index

Wavelength (µm) Real Imaginary
0.488 1.550 1e-8
0.532 1.547 1e-8
10.33 2.398 3.5e-2

Table 6.1: CSPEC sand refractive indices for the three wavelengths used in the library. The data is
gathered from [16, 17, 18, 19].

The particle’s material composition affects its interaction with light via the refractive index. It
is expressed as:

m = n+ ik (6.12)

where n is the real component describing how fast light travels through the material and k is the
absorption coefficient that describes how much light is absorbed by the material. The refractive
index is also dependent on the wavelength of the incident light. CSPEC sand is pure crushed
quartz. Table 6.1 contains the CSPEC refractive indices for the three wavelengths used to calculate
the scattering and extinction parameters in the library.
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6.2.2 Numerical Methods

Multiple numerical methods are necessary to cover the wide range of particle sizes. The size
parameter x is used to define the particle size relative to the incident wavelength:

x =
πD

λ
(6.13)

Where D is a characteristic length of the particle (usually the equivalent volume or area sphere di-
ameter) and λ is the wavelength. x determines which scattering regime the light-particle interaction
belongs to and the corresponding numerical tool.

Rayleigh scattering regime refers to when the particle is much smaller than the light wave-
length (x ≪ 1) [20, 21]. The scattered intensity is proportional to the fourth power of particle size
and inversely proportional to the sixth power of the wavelength. For particles with sizes similar
to the wavelength (x ≈ 1), the scattering regime is commonly referred as Mie scattering, with its
name derived from Mie theory or solution. Mie theory only describes the scattering by a sphere,
but Mie scattering regime includes all particle shapes and many other solution techniques. Geo-
metric optics scattering regime occurs as the particle gets larger (x ≫ 1). This scattering regime is
named after the geometric optics approximation. Instead of solving Maxwell’s equation for elec-
tromagnetic wave propagation, geometric optics uses rays to describe the propagation of light. In
the particle library, the typical size ranges of sand and dust particles means that only the Mie and
geometric optics regimes are considered. For sand particles modeled as spheroids, a T-matrix code
(SMARTIES) and a ray-tracing code by Macke et al. were used for small and large size parameters,
respectively [22, 23].

The T-matrix method allows for the scattering property calculations of any arbitrary shape
[24]. A detailed mathematical formulation of the T-matrix method are described in the cited refer-
ences [22, 24, 25, 26, 27, 28]. The main advantage of the T-matrix method is that a single calcula-
tion of the T-matrix for a given particle shape, size, and refractive index is valid for any orientation,
making the calculation of randomly oriented scattering parameters very efficient [24]. T-matrix re-
sults are also analytical or exact, meaning that no approximations are used, as opposed to the
ray-tracing method.

Detailed explanations for the ray-tracing method for the code suite are presented in the cited
references [29, 30]. A ray is introduced at a particle with a given shape, orientation, size, and
complex refractive index. At every intersection between the ray and the surface of the particle, the
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new ray direction is determined by the reflection-refraction equations, and portions of the ray’s
Stoke vector energy is absorbed according to the the absorption coefficient. This process is con-
tinued until the ray is scattered out or the energy reaches 10−6 of its initial value, then repeated
for a set number of rays. Since geometric optics assumption negates effects such as diffraction
and interference, the method presented by Macke et al. adds the effects of diffraction using its
far-field assumption. The diffraction terms are calculated using Fraunhofer diffraction equations
and the particle’s projected cross-sectional area [21]. The resulting phase function is the sum of
ray-tracing and diffraction terms.

During the library population process, SMARTIES is used the algorithm fails to achieve nu-
merical convergence. From that size parameter and larger, the ray-tracing code is then used for
calculations. Using the two different tools, the outputs must be standardized to be used together.
SMARTIES’s output is a normalized scattering matrix F , while the ray-tracing code uses the phase
function P . For converting SMARTIES’s output to an unpolarized scattering intensity |S2|:

|S2| = x2

2
F11 (6.14)

where x is the particle size parameter calculated using the equivalent volume sphere diameter. To
get the same quantity from the ray-tracing output:

|S2| = P11
πCsca

λ2
(6.15)

where Csca is the scattering cross-section and λ is the incident wavelength.

The switch between SMARTIES and the ray-tracing code occurred around x ≈ 50, depending
on the particle shape and the incident wavelength. Since ray-tracing involves the geometric optics
assumptions, the transition region between the ray-tracing code and SMARTIES was examined
for any errors associated with those assumptions. The scattering parameters in this region by the
ray-tracing code were closely examined against exact methods and found to be accurate [23]. The
extinction efficiency was tested independently.

Figure 6.3 shows the extinction efficiencies calculated for spheres using SMARTIES, ray-
tracing code, and MatScat, a Mie theory program [31]. Mie theory provides the exact solutions
for spherical particle scattering, and its output is used to confirm the analytical solution provided
by SMARTIES. The extinction efficiency shown in Figure 6.3 relates to single particles, not the
integrated quantity for a particle size distribution. It shows where the switch from SMARTIES to
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Figure 6.3: Extinction efficiencies calculated with three different numerical schemes for spheres of
various sizes and an incident wavelength of 532 nm.

ray-tracing, near D = 15, which corresponds to x ≈ 90 with λ = 532 nm.

Figure 6.4 shows the comparison of the integrated mean extinction ratios of spheres calculated
using only the exact solution provided by Mie theory against the combination of SMARTIES and
ray-tracing, as well as the relative error between them. The largest error occurs for size distributions
with small mean diameters, near D32 ≈ 2 µm, and the error then converges to around 1.5% as D32

increases.

6.3 Library Contents

In this section, the extinction ratio and scattering profiles calculated for the CSPEC sand li-
brary are presented. All the parameter ranges (particle size, distribution width, shape, incident
wavelength, and the corresponding refractive index) are as detailed in the previous section. The
resulting trends from varying the particle parameters are also discussed.
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Figure 6.4: Mean efficiency ratio profiles calculated using SMARTIES, ray-tracing, and MatScat.

6.3.1 Extinction Ratio

Figure 6.5 shows the calculated ratio of extinction R included in the CSPEC sand library. As
the Sauter mean diameter increases, all profiles converge to a value of 1. Geometric optics limit
states that limx→∞Qext = 2. The extinction ratio dependencies on particle shape and distribution
widths are also shown in Figure 6.5.

As the aspect ratio deviates from 1, the peak extinction ratio values near D32 ≈ 5 µm also
increase, with the AR = 0.4 case being the only exception. In addition, as the particle shape be-
comes more spherical, the different profiles for varying σ converge to R = 1 quicker. Throughout
all aspect ratios, increased size distribution σ increases R for D32 ≤ 10 µm and decreases for
D32 ≥ 10 µm. Increased σ also accelerates the convergence to R = 1 as the particle size increases.

6.3.2 Scattering Intensities

Figure 6.6 shows the shape and Sauter mean diameter behaviors for the scattering profiles. The
peak intensity in the forward scattering region increases exponentially as the Sauter mean diameter
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increases. The low intensity zones, sometimes called the Alexander’s dark band and the basis for
visible rainbows in the atmosphere, can also be seen for the spheroid particles modeled here [25].
The location and the depth of these bands vary from shape to shape, but not for difference sizes
(except in the Rayleigh scattering limit as x approaches 0). The band locations due to external
reflections, which explains the shape, but not size dependency.

Figure 6.7 shows the scattering profiles for a constant SMD and shape, but varying σ. The
low intensity band can still be observed here, between 90◦ and 110◦. This again shows the shape
dependency of the dark band location. The forward scattering region is insensitive to the distribu-
tion width, but variations due to the distribution width can be seen everywhere else.. This supports
the intensity ratio feature approach with two forward scattering intensities normalized by a side
scattering angle.

6.4 Conclusions

In this chapter, the particle characteristics that define the library, the numerical tools, and
the resulting scattering and extinction library are presented. Previous studies supported the use
of spheroids for modeling sand particles, as long as the unpolarized measurements are used. The
resulting extinction ratio and scattering profiles showed their size, shape, and size distribution
width dependencies. While only the CSPEC library was shown, the methods used to generate it
can be adapted to other particles, dependent on the requirements. Additional research into shape
modeling and the refractive index must be done if the new material significantly deviates from
properties of sand and dust.
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Figure 6.5: Extinction ratio between 10330 nm and 532 nm for the various aspect ratios and
distribution widths for CSPEC sand. The refractive indices for the respective wavelengths are listed
in Table 6.1.
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Figure 6.6: Scattering profiles from the CSPEC library for various aspect ratios and Sauter mean
diameters. The distribution width σ has been limited to 1.4 for clarity.
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Figure 6.7: Scattering profiles from the CSPEC library for D32 = 100 µm and AR = 1.5 with
various aspect ratios.
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7.1 Conclusions

This dissertation details a particle sensor technology utilizing machine learning models using
light scattering and extinction as features. An extensive literature review in chapter 2 establishes
the particle ingestion problem for gas turbines and existing particle measurement techniques. Key
limitation for current technologies are complex particle shape and challenging environmental fac-
tors in gas turbines.

The first manuscript in chapter 3 provides an early framework for the machine learning ap-
proach. Using only scattering as the input feature, sand and ash particles from the Amsterdam and
Grenada particle scattering database are accurately sized. It also features the first attempt at a lay-
ered models approach, where a number of supervised machine learning models are used to sort
the input into secondary layers of models, which then provide precise estimations. The importance
of having non-spherical particles in the library to guide the models during the training process is
highlighted in this article as well.

The second and third manuscripts are focused on the application of this sensor technology
in realistic inlet environments. The second manuscript in chapter 4 describes the measurement of
condensation in a research engine using this method. The liquid volume flow rate of a water spray
located upstream of the bellmouth inlet of a JT15D engine is accurately measured by the machine
learning models using light scattering and extinction as features. This marks the first time extinc-
tion was used as a feature, and to the author’s knowledge, also the first time inlet condensation was
measured without a prior calibration using any method.

The third manuscript in chapter 5 details an experiment performed in a high-speed wind tunnel
to measure the mass flow of the sand particles injected into the flow. A generalized neural network
approach replaces the layered models methods detailed in chapters 3 and 4.

The standalone chapter 6 contains a detailed explanation of how the particle scattering and
extinction library is constructed, including the various particle parameters and the numerical tools.
It also includes a discussion of the library contents prepared for the solid particle mass loading
sensor, demonstrated in chapter 5.
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7.2 Outlook

The presented research is an exciting combination of applied machine learning and conven-
tional optical measurement techniques. In addition to monitoring applications as a sensor, the capa-
bilities of this method can be used to augment other research efforts. In controlled experiments for
studying the effects of particle ingestion in engines, manufactured sample particles are typically
injected into the relevant flow in a similar manner to the experiments described in the previous
chapters. Simulations studying similar flows and conditions need initial or boundary conditions of
the injected particles as well. A measurement of the particle size distribution in a more realistic
situation using this technique could then provide more representative experimental and boundary
conditions for these efforts.

In particular, simulated studies can reveal valuable insights into particle trajectories and which
components would be vulnerable to particular size or shape of particles [1, 2, 3, 4]. This technology
could be an enabling technology for measurements not only for the initial particle conditions, but
for validations as well. As an example, a simulated study by Vogel et al. revealed that in turbofans,
the fan can act as a sort of a filter, removing some of the larger particles from the core flow [3]. The
ML measurement technique could be deployed on a simplified experimental rig for validating the
mass flow and size differences between the core and the bypass flows. The gas-particle phase flow
simulation scheme could then be used with more confidence in larger scales, where experiments
with damaging sand and costly equipment would not be feasible.

One of the advantages with this approach is that the supplied training data provides the under-
lying physics to the models. This means the library can be adjusted and varied as the requirements
for the sensor change. In addition, the feature framework can vary as well, changing the input
measurement techniques and/or the inputs themselves for future improvements. Summarizing the
different ways this method can improve in the future:

• Ice crystals and hail, one of the major hazards for gas turbine operations, has not yet been
measured using this concept. Multitudes of tools and databases already exist for optical
properties of ice crystals and representative shapes, which could be adapted for the machine
learning framework for ice detection and identification [5, 6].

• Volcanic ash also has not been directly measured by the author for validation. Further re-
search into optical modeling of volcanic ash using surrogate shapes would be necessary for
extending the method for those particles.
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• The measurement methods for light scattering intensities could be simplified using tech-
niques found in the literature. Hussain et al. and Oltmann et al. both present unique methods
to capture multi-angle light scattering using a single camera [7, 8]. Adaptation of similar
techniques could reduce the measurement complexity and improve the data acquisition pro-
cess.

• Further investigations into additional input features could prove valuable, with quantities
such as the depolarization ratio and back-scattering intensities. Optical modeling studies of
dust particles have revealed valuable observations for particle size and shape regarding those
additional features [9].
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