High Dimensional Homotopy Curve Tracking
on a Shared Memory Multiprocessor

By D.C.S. Allison, K. M. Irani, C. J. Ribbens
and L. T. Watson

TR 91-5

High Dimensional Homotopy Curve Tracking on a
Shared Memory Multiprocessor

D. C. §. Allison, K. M. Irani, C. J. Ribbens and L. T. Watson

Department of Computer Science
Virginia Polytechnic Institute & State University
Blacksburg, VA 24061-0106

E-mail address: ltw@vtopus.cs.vi.edu

Key words: nonlinear equations, homotopy algorithm, curve tracking, shared memory multipro-
cessar, globally convergent.

Abstract.

Results are reported for a series of experiments involving numerical curve tracking on a shared
memory parallel computer. Several algorithms exist for finding zeros or fixed points of nonlinear
systems of equations that are globally convergent for almost all starting points, i.e., with probability
one. The essence of all such algorithms is the construction of an appropriate homotopy map and
then the tracking of some smooth curve in the zero set of this homotopy map. HOMPACK is
a mathematical software package implementing globally convergent homotopy algorithms with
three different techniques for tracking a homotopy zero curve, and has separate routines for dense
and sparse Jacobian matrices. The HOMPACK algorithms for sparse Jacobian matrices use a
preconditioned conjugate gradient algorithm for the computation of the kernel of the homotopy
Jacobian matrix, a required linear algebra step for homotopy curve tracking. A parallel version of
HOMPACK is implemented on a shared memory parallel computer with various levels and degrees
of parallelism (e.g., linear algebra, function and Jacobian matrix evaluation), and a detailed study
is presented for each of these levels with respect to the speedup in execution time obtained with
the parallelism, the time spent implementing the parallel code and the extra memory allocated by
the parallel algorithm.

1. Introduction.

Homotopies are a traditional part of topology, and only recently have begun to be used for
practical numerical computation. The (globally convergent probability-one) homotopies consid-
ered here are sometimes called “artificial-parameter generic homotopies”, in contrast to natural-
parameter homotopies, where the homotopy variable is a physically meaningful parameter. In the
latter case, which is frequently of interest, the resulting homotopy zero curves must be dealt with as
they are, bifurcations, ill-conditioning, and all. The homotopy zero curves for artificial-parameter
generic homotopies obey strict smoothness conditions, which generally will not hold if the ho-
motopy parameter represents a physically meaningful quantity, but they can always be obtained
via certain generic constructions using an artificial (1.e., nonphysical) homotopy parameter. Not
just any random perturbation will suffice to create a globally convergent probability-one (generic)
homotopy, e.g., the perturbation implied by discretization is generally not sufficient to produce a
probability-one homotopy map.

If the objective is to solve a “parameter-free” system of equations, F(z) = 0, then extra atien-
tion can be devoted to comstructing the homotopy, and the curve-tracking algorithm can be limited

1

to a well-behaved class of curves. The goal of using these globally convergent probability-one ho-
motopies is to solve fixed-point and zero-finding problems with homotopies whose zero curves do
not have bifurcations and other singular and {l-conditioned behavior. The mathematical soft-
ware package HOMPACK used here for comparative purposes is designed for globally convergent
probability-one homotopies.

The theory and algorithms for functions F(z) with small dense Jacobian matrices DF(z) are
well developed [1]-[4], which is not the case for large sparse DF(z), the topic of this paper. Solving
large sparse nonlinear systems of equations via homotopy methods involves sparse rectangular linear
systems of equations and iterative methods for the solution of such sparse systems. Preconditioning
techniques are used to make the iterative methods more efficient.

Section 2 summarizes the mathematics behind the homotopy algorithm. Section 3 discusses
iterative methods for solving invertible linear systems and some of the linear algebra details of
homotopy curve tracking. Section 4 describes the numerical experiments which were carried out
and Section 5 discusses the results of the various parallel implementations.

2. Homotopy algorithm.
Lei E™ denote n-dimensional real Euclidean space, and let F : E® — E™ be a C? (twice
continuously differentiable) function. The fundamental problem is to solve the nonlinear system

of equations
F(z) = 0.

The modern homotopy approach to solving the nonlinear system is to construct a C? map p :
E™ % 10,1) x E® — E", such that p and pa(A,) = p(a, A, z) have the properties

1) the Jacobian matrix Dp has full rank on pH0),

2) pa(0,z) = 0 has a unique solution W e E™,

3) pa(l,2) = F(z),

4) p7*(0) is bounded.

Then the supporting theory [5], [16], [17] says that for almost all @ € E™ there is a zero curve
v of pa{}, 2), along which the Jacobian matrix Dpa(), z) has full rank, emanating from (0, W) and
reaching a zero ¥ of F at A = 1. Furthermore, 7 has finite arc length if DF(Z) is nonsingular. The
homotopy algorithm consists of following the zero curve of p, emanating from (0, W) until a zero
% of F(z) is reached (at A = 1). This homotopy algorithm has two important distinctions from
classical continuation: (1) the homotopy parameter A is not required to increase monotonically
along -, so turning points are permissible, and (2) the use of the random parameter vector ¢ which
guarantees the absence of bifurcations and singularities along y with probability one.

The zero curve v of the homotopy map pa(A,z) can be tracked by many different tech-
niques. The mathematical software package HOMPACK [18] provides three different algorithmic
approaches to tracking v: 1) an ODE-based algorithm, 2) a predictor-corrector algorithm whose
iterates follow a trajectory normal to v (a “normal flow” algorithm); 3) a simple Newton algorithm
on an augmented system (an “augmented Jacobian matrix” method). The parallel experiments
reported here were based on the normal flow codes in HOMPACK, so the normal flow algorithm
will be sketched here-see [18] for a complete description.

Let z = (A, #) be the current point on 7, and let 29 be a prediction for the next point on
obtained by extrapolation of some sort. The norma! flow iteration is

2640 =20 Do) pac®), k=012,

2

where [Dpar_ is the Moore-Penrose pseudo-inverse. The iterates z¥) converge to a point z* on
~ along a trajectory normal to 7, hence the name «pormal flow”. There are of course important
details concerning the computation of 20 znd what to do if the iteration fails to converge, but
this is the essence of the algorithm.

3. Linear algebra routines.

In the course of homotopy curve tracking, we need to solve nonsquare linear systems of equa-
tions for the normal flow iteration calculations. These nonsquare systems are converted to equiv-
alent square linear systems of the form

B
=7 ATED

where the n x n matrix B is bordered by the vectors f and ¢ to form a larger system of dimension
(n+ 1) x (n+1). Inthe present context B = Dypa(X,) is symmetric and sparse, but 4 is not
necessarily symmetric.

Iterative methods, rather than direct methods, are generally used for solving these linear sys-
tems. (If B has only a couple nonpositive eigenvalues, direct methods may be a viable alternative.)
These methods compute a sequence of approximate solutions {y;} which converge to the exact
solution y by some algorithm of the form

Yit1 — F’i(y(), Ylses ey yi)a

where yo is an arbitrary initial guess and F; may be linear or nonlinear. Iterative methods require
the coefficient matrix A in the algorithm, generally only to compute matrix-vector products. Since
matrix-vector computations are quite inexpensive for sparse problems, iterative methods have low
computational cost per iteration. Iterative methods are also attractive because they have low
storage requirements, due to the fact that at each iteration, only a small number of vectors of
length N = 2+ 1 need to be computed and stored to calculate the next iterate 941, and A itself
can be generated or stored compactly.

Iterative methods such as the successive over-relaxation (SOR) algorithm [15] and the alter-
nating direction implicit (ADI) algorithm [19] require the estimation of scalar parameters, which
is a drawback. However, the conjugate gradient procedure [11] is an efficient algorithm for solving
symmetric positive definite systems which requires no such estimates.

For conjugate gradient methods the rate of convergence depends on the symmetry, inertia,
spectrum, and condition aumber of the coefficient matrix. There are efficient conjugate gradient
algorithms for solving linear systems with symmetric positive definite coefficient madtrices [7], [12],
whereas no comparable theory exists for general systems with nonsymmetric or indefinite A. A
recent study [13] advocates the use of Craig’s method (a variant of the conjugate gradient algorithm)
with preconditioning.

Let @ bea N XN nonsingular matrix. The solution to Az = b can also be obtained by solving
the system:

Az =(Q Az =Q ="

The use of such an auxiliary matrix is known as preconditioning. The goal of preconditioning i
to decrease the computational effort required to solve linear sysiems of equations by increasing
the rate of convergence of an iterative method. For preconditioning to be effective, the faster
convergence must outweigh the costs of applying the preconditioning, so that the total cost of

3

solving the linear system is lower. The preconditioned coefficient matrix A is usually not explicitly
computed or stored. The main reason for this is that although A is sparse, A may not be. The
extra work of preconditioning, then, occurs in the preconditioned matrix-vector products involving
Q~'. The main storage cost for preconditioning is usually for Q, which typically is stored so that
one extra array is required to handle the preconditioning operation.

Oune iterative method known to converge for general nonsymmetric problems is the conjugate
gradient method applied to the normal equations. Given any nonsingular matrix A, the system of
linear equations Ay = b can be solved by considering the linear system (normal equations)

AtAy = A,

or the similar system
AAtz=b, y = Az

Gince the coefficient matrix for the latter system is both symmetric and positive definite, the system
can be solved by the conjugate gradient algorithm. Once a solution vector z is obtained, the vector
y from the original system can be computed as ¥ = Atz. The drawback of this technique is that,
while the coefficient matrix is symmetric and positive definite, the convergence rate depends on
cond{AAY} = (cond(A))? rather than cond(A); see [8] for a precise statement.

An implementation of the conjugate gradient algorithm in which y is computed directly, with-
out reference to z, any approximations of z, or AA? is due to Craig [6] and is described in 9]
and [10]. (Of course, the convergence rate still depends on cond(AAT) = (cond(A))? in general.)
Craig’s preconditioned algorithm is:

choose yo, @;
set ro = b — Ayo;
set 7o = @ 'ro;
set po = A'Q 7403
for i = 0 step 1 until convergence do
begin

a; = —-—'—(ﬂ’ﬂ);

(pi»Pi)

Yirl = Yi T 2P0

Fip1 = 7o — 6iQ 7T AP

b = (Fiila'?li+1);

(75, 74)

Pir1 = A'QT i + bipi;

end

Here (z,y) denotes the inner product of ¢ and y. For this algorithm, a minimum of 5(n -+ 1)
storage locations is required (in addition to that for A). The vectors ¥, 7, and p all require their
own locations; @ ~¢F can share with Ap;)~1Ap can share with AtQ)~tF. The computational cost
per iteration of this algorithm is:

(a) two preconditioning solves;

(b) two matrix-vector products;

{c) 5(n + 1) multiplications (two inner products and three scalings).

There are several approaches to solving Ay = b, but the one we have chosen splits A into the
sum of a symmetric matrix M and a low rank correction L. This method also takes advantage
of the fact that the leading principal submatrix B is symmetric and can use conjugate gradient
algorithms requiring a symmetric coellicient matrix. See [17] for further details.

The preconditioning technique used in conjunction with this algorithm is based on the factor-
ization of Q into the product LU where I is a lower triangular matrix and U is an upper triangular
matrix. The heuristic used to insure that the preconditioning is inexpensive to implement is to
force the factors to be sparse by allowing nonzeros only within a specified set of locations.

Let Z be a set of indices contained in {(i,7) | 1 £ 4,7 N, i # j}, typically where A is
known to be zero. The incomplete LU factorization is given by @ = LU, where L and U are lower
triangular and unit upper triangular matrices, respectively, that satisty

{L.;j =Ui;=0, (i,j)€Z,
Qi = Aij, (4,7) ¢ Z.

The incomplete LU factorization algorithm is:

for i = 1 step 1 until N do
for j = 1 step 1 until ¥ do
if ((4,7) ¢ Z) then
begin

min{s,j}-1

855 = Aij - E LisUsss
=1

if (4 > j) then L= 34 else U;; = 85/ Lis;

end

It can happen that L;; is zero in this algorithm. In this case L;; is set to a small positive number,
go that ¢ ?é A
4. Numerical experiments.

To understand the levels and degrees of parallelism, we first describe briefly the sequential
HOMPACK code used as the basis for the parallel implementation. First, we need to compute the
function values and the Jacobian matrix for the coefficient matrix A. Then to track the homotopy
curve, we need to solve nonsquare linear systems of equations for the tangent vector and the normal
flow iteration calculations. Subroutines named PCGDS and PCGNS are called to solve these rect-
angular systems by first converting them to equivalent linear square systems. The combination of
PCGDS and PCGNS involves the solution of four symmetric linear systems which can be solved in
parallel because they have no data dependence between them. It is to these symmetric linear sys-
tems that Craig’s preconditioned method is applied to obtain the solution. Since a preconditioned
method is used, the preconditioning matrix @ needs to be computed also. Before calls to PCGDS
and PCGNS, a subroutine is invoked to compute the incomplete LU preconditioner. Note that
there is only one preconditioning matrix to be computed since both nonsqtiare systems have the
same coefficient matrix A with different right hand sides. With this background, we now describe
the levels of parallelism. The parallel programming was carried out on a Sequent Symmetry S81
with ten processors using the system call m_fork and the compiler directive DOACROSS.

5

The results are reported for three test problems-a shallow arch problem, a shallow dome
problem, and a turning point problem, all described below and in more detail in [13].

Shallow arch. The equations of equilibrium of the arch are obtained from the principle of the
stationary value of the total potential energy, according to which, of all the kinematically admissible
displacement fields, the one that makes the total potential energy of a structure stationary also
satisfies its equations of equilibrium. The total potential energy 7 of a structure is given by the
sum of its strain energy and the potential of external loads.

A shallow arch is discretized by an assemblage of straight p-¢ frame elements. A frame element
is a structural component that is initially straight and undergoes axial, bending, and torsional
deformation resulting from finite displacements and rotations of its ends (nodes) p and ¢q. The
displacements of the end ¢ relative to the end p are

dv | =T | Yo-Y -10 1+ [T]p Vi—Vp 3
dw Zy— 2y 0 Wy — W,

where I is the initial rigid body length, and U;, Vi, W; (i = p or ¢) denote the global displacements
of the nodes. The matrix [T], can be shown to be [T, = [T1() Dy $:2)] [T1(8sp» By 0.p)] with

Cyls €ySz —$y
[Tl(o:x, Oy az)] = | —Cz8;+ S2SyCz CzCz + Sz8ySz S2Cy |
S8, F Cp8yCy —8zlz+ CxSySz Caly

¢; = cosey and &; = sinay for i = z, ¥, and z. Angles ¢, ¢y, and ¢, are the initial orientation
angles and angles 0.y, 0y, and 8., are the rigid body rotations of the end p. In the equation for
[T),, Euler angle transformations are implied with the order of the rotations being a., ¢y, and as.

Similarly, with the restriction of small relative rotations within the element, the rotations .,
1y, ¥, of the end g relative to the end p are

'l/J:r qu - Bmp
'ﬁbv = [T]p qu - HW
'ﬁbz qu - gzp

With the relative generalized displacements (6w, 8v,5w) and (%, ¥y, ¥;) known, the usual
deformation patterns of the reference axis of the beam element in the corotational coordinate
system are assumed to be

o=, 0= (382 — 26%) (60— ztta) + (€ = €
=t ()= 236 - 20+ va) = (€~ €Ny,

where £ = ¢/L and y, and z, are the coordinates of the shear center of the cross section of the
beam. The strain at any point (y,z) on the cross-section of the frame element can be shown to be

€ = ‘% -7 [%(1 — 26Y(8v - z5%pz) + 2(3€ — 1)¢z]

[- 26w) — 236 - 1

6

with = y/L and (= # /L. In these equations it is implicitly assumed that the lateral displace-
ments and twists are referenced to a longitudinal axis through the shear center, while the axial
displacements and rotations are referenced to the centroidal axis.

The total potential energy of such a discretized model of the arch can be expressed as

T = i U - tha
e=1

where U ¢ is the strain energy of the eth element, e = 1,..., M, ¢ is the vector of nodal displacement
degrees of freedom of the entire model and @ is the vector of externally applied loads. The strain
energy U¢ of the eth frame element is given by

e__E 2 _E L. 2
U—ijedu_Qjo]eedAd:c,

where ¢ is the strain of a point (z,y,7) of the beam, which was derived above. Substituting for €
and doing the integration gives

_E

12 1
7% = Up—q {Ae(éu)2 + :L—ZI,,, {(&;)2 + gLiif)z — L bv wz]

12 1
+ 77k {(611})2 + g Ley + Lebw %]},
=

where A, is the cross-sectional area, and I, and I, are the cross-sectional moments of inertia about
the y and 2z axes respectively. It is evident that the potential energy = of the model is a highly
nonlinear function of the nodal displacements. The equations of equilibrium of the model are
obtained by setting the variation 7 to zero, or equivalently by

vr=0.

(losed form analytical expressions for V7 can be obtained with some difficulty, but obtaining the
Jacobian matrix of Vx analytically seems out of the question. Hence the Jacobian matrix of the
equilibrium equations is obtained by finite difference approximations.

By symmetry only half the arch need be modelled, and the results here are for a full arch load
of 3000 1bs, which is just below the limit point.

Shallow dome. The shallow dome of Figure 1 is built up from space truss elements with three
global displacement degrees of freedom (w1, ug,u3) ab each of the two nodes. For an element of
original length I between its two nodes p and ¢, the change in length 6L is given by

3 1/2 3 1/2
6L = {Z (Zgi+ i — Tpi — um’)zi\ - {Z (zgi — ‘Ez’i)gl ’
=1 i=1

where Zij, Uij, ¢ = Py @ j=1,2,3 are the global coordinates and displacements of the two nodes.
This can be simplified to

3 ‘ . \2 1/2
M:L[Hz(z@%@&fugﬂﬂ 1
i=1

7

FiGURE 1. Triangulation for 21 degree of freedom shallow dome.

where A is the difference operator for the ¢ and p values. Accordingly, the axial strain in the e-th

element is
6L 3. [2(AziAw) | (Au)’ M
Joh gy (Hampw) B) -
ee_d_fﬁ{l—l— (77 + 7z)} 1.

=1

The strain energy of the e-th element in a purely linearly elastic response is given by

e_E eN2 __EAeLe e\?
vi= % [(@Pav = =5
1%

where E and A are the Young’s modulus and cross-sectional area, respectively, of the e-th element.
The total potential energy of the dome is then given by

e
W:ZUSE—UTQ,

e=1

where U/;, 3 = 1,...,6 are the six components gk, Upk, £ = 1,2, 3, and @ is the generalized force
vector. The equations of equilibrium of the model are then obtained by setting

m
Vr =Y BALVeE-Q=0.
e=1
Both the gradient of = as well as its Hessian can be evaluated explicitly without resorting to finite
differencing operations as in the case of the frame element used to model the shallow arch.

The effect of modelling the shallow dome with truss elements in concentric rings is that
changing the number of truss elements changes the model and its behavior. Thus the dome

problems with different degrees of freedom reported in the tables are qualitatively different, with
different buckling loads and bifurcation points. The results reported here are for shallow domes
with base radius 720 and sphere radius 3060, and a point load at the very top.

Artificial turning point problem. The turning point problem is derived from the system of

equations

P(x) = (Fy(%), F(x), - .., Fa(x)) =0

where
(@it it Tit1)
20 ’

Fi(x) = tan™! (sin[z;(i mod 100)]) i=1,...,n,
and 2o = Znp4q = 0. The zero curve 7 tracked from A = 0 to A = 1 corresponds to pg{z,A) =
(1 — .8)\)(z —) + .8A F(z), where a was chosen artificially to produce turning points in -y,

There are five different levels that we considered for the parallel implementation:

1. Function and Jacobian matrix computations. Unlike the other levels, the algorithms
for this level vary from problem to problem because different problems have different com-
putational structures for the function values and the Jacobian matrix. For the turning point
problem, the serial algorithm computes the function values and the Jacobian matrix entries
with FORTRAN DO loops. Hence, for the parallel implementation, the DOACROSS directive
was used to parallelize the loops and put locks on shared variables. The shallow arch problem
has very complex function evaluation computations and, in fact, about 70% of the overall exe-
cution time is due to these function evaluations. There are two possible ways of implementing
the parallelism at this level for this problem. One way of implementation is to analyze the
FORTRAN DO loops and use the DOACROSS directive to implement the parallelism. We
refer to this parallel implementation as M8 later in this section. The second way (algorithm
M1) is a higher level parallelism in which the columns of the J acobian matrix are computed
in parallel, with the function values still computed as in algorithm M8 above.

2. Low level linear algebra. At this level, the lower level functions and linear algebra are im-
plemented in parallel along with LINPACK functions and subroutines. These include copying,
scaling, vector norms, inner products and matrix vector products.

3. Computations with the preconditioner. There are two subroutines which are candidates
for parallelization at this level. The first one computes the incomplete LU preconditioner. The
second one computes Q' f by applying forward and backward substitution to solve Jx = f.
We have not shown the execution timings for this level in the tables because there was no

speedup over the serial execution time. A brief explanation of this is given later in Section 5.

4. The two linear solves within PCGDS and PCGNS in parallel. At this level, PCGDS
and PCCNS are executed serially one after the other. Within each, as explained earlier, two
linear systems of equations need to be solved and these are done in parallel since they are
independent of one another.

5. PCGDS and PCGNS done in parallel. This is one level higher parallelism than the
previous level. Here the subroutines PCGDS and PCGNS are executed in parallel. Note that
this means that the two solves within each are still executed serially.

Levels 2-5 described above can be imbedded within each other giving rise to varying degrees
of parallelism. For example, if we combine level 4 and level 5, then we are executing PCGDS and
PCGNS in parallel as well as the two linear solver algorithms within each of the subroutines in
parallel. So actually, all four linear solves are being executed in parallel. This gives a higher degree
of parallelism than simply implementing level 4 or 5 individually, For the experiments we wanted
to include all possible degrees of parallelism arising from the levels of parallelism, starting from
combining levels 2 and 3 and eventually implementing levels 2, 3, 4 and 5 together. Combiniﬁg
levels, in order to obtain the degrees of parallelism, involves implementing a DOACROSS /m_fork
within a DOACROSS/m fork. For example, combining levels 2 and 3 together involves imple-
menting a DOACROSS within a DOACROSS. Unfortunately, all these degrees of parallelism could
not be implemented because of the limitation of the Sequent parallel programming directives that
within a m_fork or a DOACROSS, we cannot insert another DOACROSS or m.fork. So, due to
these constraints, the experiments that could be performed included the following:

1) Levels 4 and 5 together, i.e., all four solves in parallel.

2) Levels 1, 4 and 5 together.

3) Levels 1 and 2 together.

Note that combining level 4 and level 5 involves implementing a m_fork within a m.fork which
cannot be done on the Sequent. However, we could get around this problem by using a different
strategy. Combining levels 4 and 5 actually means implementing the four solves in parallel as
mentioned above. So, since we could not insert a second m_fork at level 4 within the first m_fork
at level 5, we modified the code to implement a single m_fork which forks four processes, with cach
process assigned code for solving a single linear system. Also, note that we could have attempted
several different combinations when combining the parallel function and Jacobian computations
(level 1) with the linear solver parallelization (levels 2-5). We implemented two of the possible
combinations for our experiments, the ones we thought would give the most interesting results.

In the tables which summarize the numerical experiments the following acronyms are used to
describe the various levels of parallelism.

M1 — Function and Jacobian matrix evaluations in parallel, with the Jacobian matrix done
by columns.

M2 - Lower level linear algebra in parallel.

M3 - PCGDS and PCGNS in parallel.

M4 — Within PCGDS and PCGNS, the two linear solves in parallel.
M5 — Combining M3 and M4, all four }linear solves in parallel.

M6 - Combining M1 and M5.

M7 — Combining M1 and M2.

M8 — Function and Jacobian matrix evaluations in parallel (only for arch problem, refer to
Item 1 above.)

10

TABLE 1
Execution time in seconds for shallow arch problem with p processors.

p|n |Serial | M1 | M2 | M3 | M4 | M5 [M6 | M7 | M8

3129 440 86 | 435 432 433 425 69 321 133
847 5733 | 939 | 5590|5509 | 5558 | 5489 | 750 | 925{ 1210
4

47 | 5733 | 1496 | 5623 | 5509 | 5558 | 5480 | 1467 | 1495 | 1818

TABLE 2
Efficiency with p processors for shallow arch problem.

nf M1 | M2 | M3 | M4 | M5 | M6 | M7 | MS

29 10.640 [0.126 | 0.127 [0.127 [0.129 | 0.797 | 0.671 | 0.414
47 10.763 | 0.128 | 0.130 | 0.129 [0.131 | 0.955 | 0.775 | 0.592

47 (0.958 : 0.255 | 0.260 | 0.258 | 0.261 | 0.977 | 0.958 [0.788

B 0o oo k3

TABLE 3
Execution time in seconds for shallow dome problem with P Processors.

p| m |Serial i M1 (M2 |M3 [M4 [M5 | M6 | M7

21 18 16] 16| 12 13 9 T 14
126 95| 90| 66| 61| 62| 43| 41| 62
252 1857 180 125| 119 120| 83| 79| 120
925 | 403 | 394 | 263 | 255 255 175 | 163 | 254

10501 753 | 743 | 484 472 | 478 | 323 | 312 | 474

1050 | 753 | 763 | 542 | 477 | 478 | 323 | 331 | 532 |

=1 00 00 00 oo oo

5. Discussion and conclusions.

As can be observed from the tables, we have not included the timings for the second level, i.e.,
for the preconditioning computations in parallel. We performed the experiments for this level but
did not get any speedup with either four or eight processors. The coefficient matrix for all three test
problems is sparse, which means that there are only a few nonzero entries in each row or column
of the matrix. These matrices are stored in the packed skyline format. Hence, for all DO loop
computations involving the coefficient matrix, the number of computations to be performed per
iteration is quite small. This results in each processor not getting enough work to do to overcome
the overhead cost of executing a loop in parallel.

Tables 1-6 show the execution time and the parallel efficiency for the three test problems with
eight processors for all cases and four processors for the largest case. For the linear solver code
only, the most efficient algorithm was M5 amongst algorithms M2, M3, M4 and M5 for all three
test problems. This is what one would expect since M5 has the highest degree of parallelism, being
a combination of M3 and M4, Note also that the difference in timings for M3 and M4 is very small,
since there are only a few computations to be done within each of PCGDS and PCGNS before
executing the code for the two linear solves. If there were more code before the two linear solvers’
code within each of PCGDS and PCGNS, one would expect the timings for algorithm M3 to be
smaller than those for algorithm M4.

Regarding algorithms M1 and MS, note that we have included algorithm M8 only for the
shallow arch problem, because unlike the turning point and dome problems, there are two different

11

TABLE 4
Efficiency with p processors for shallow dome problem.

n | M1 | M2 | M3 | M4 | M5 | M6 | M7

21 {0.141 1 0.141 | 0.188 [0.173 | 0.250 | 0.321 | 0.161
126 1 0.132 | 0.180 | 0.195 [0.192 | 0.276 | 0.290 | 0.192
252 0.128 | 0.185 [0.194 | 0.193 | 0.279 | 0.293 | 0.193
525)0.128 [0.191 | 0.198 | 0.198 | 0.288 | 0.309 | 0.198

1050 | 0.127 | 0.194 1 0.199 | 0.197 | 0.291 { 0.302 { 0.199

1050 | 0.247 | 0.347 | 0.395 | 0.394 | 0.583 | 0.560 | 0.354

H= | GO GO 00 00 00| =3

TABLE 5
Execution time in seconds for turning point problem with P Processors.

p| n |Serial | MI1|M2 | M3 | M4 | M5 | M6 [M7

20 5 5/ 5 3 3 2 2 5
125 0| 46| 34| 28 29| 20| 15| 29
250 87| 79| 56 49| 501 34| 26| 48
500 168 (133|105 94| 97| 65(50 91

1000) 392|355 238219224 151 | 101 | 205

1000 | 392|364)265|219 (224|151 | 121 | 234

W[GO Co GO oo oo

TABLE 6
Efficiency with p processors for turning point problem.

n Mi | M2 | M3 | M4 | M5 | M6 | M7

20 /0.125 1 0.125 | 0.208 | 0.208 | 0.313 | 0.313 | 0.125
12510.136 | 0.183 | 0.223 { 0.216 | 0.313 [0.417 | 0.216
250 1 0.138 | 0.194 [0.222 | 0.218 | 0.320 | 0.418 | 0.227
500) 0.137 | 0.200 | 0.223 | 0.216 | 0.323 | 0.420 | 0.231

1000 | 0.138 | 0.206 | 0.224 { 0.219 | 0.325 | 0.485 | 0.239

1000 | 0.269 { 0.370 | 0.447 | 0.438 | 0.649 | 0.810 | 0.419

Ha | 00 GO 00 G0 o | R

ways of parallelizing the code for the function values and the Jacobian matrix evaluations. For
the shallow arch problem, M1 is better than M8 because M1 has a higher degree of parallelism
than M8. Another interesting point to observe is the efficiency we obtained with algorithm M1
for the shallow arch problem as compared to the turning point problem or the dome problem.
This is because about 83% of the serial execution time for the arch problem is spent computing
the function values and the Jacobian matrix whereas for the turning point or dome problems, the
same number is less than 2%. For the arch problem, each processor has a lot of work to do and is
not idle for long, and as the tables reflect, the parallel implementation is very efficient.

Overall, for all three test problems, Algorithm M6 is the best algorithm in terms of timings
and the speedup obtained by the parallel implementations. This is because M6 combines the most
efficient parallel algorithm for the function values and the Jacobian matrix evaluations with that
for the linear solver code. The tables also show the results for the same experiments with four pro-
cessors, only for the largest dimension n for each of the test problems. In terms of the most efficient
algorithm, the same discussion holds as for eight processors. Comparing the efficiencies obtained

12

TABLE 7
Actual and theoretical speedups for Algorithm MS.

n | Four processors | Eight processors

47 3.91/3.94 7.64/7.76

1050 2.28/2.71 2.41/3.79

1000 3.24/3.40 3.88/5.52

TABLE 8
Programming effori in man-hours.
Cost M1 (M2 |[M3|M4]M5 Mé M7 M8
Incremental [100,12,31 20| 20 22| 925 1 11120
Total 126,38,29 | 121,33,24

with four processors to those obtained with eight processors, some very interesting observations
can be made. First, for both the turning point and the dome problems, the efficiency obtained
with four processors is almost twice as good as that with eight processors. The same holds true
for the shallow arch problem, for algorithms M2, M3, M4 and M5, i.e., the linear solver parallel
algorithms. However, this is not true for algorithms M1, M6, M7 and M8, i.e., all the algorithms
involving the parallel function and Jacobian matrix evaluations for the shallow arch problem. The
reason for this can be attributed to the fact that about 83% of the total execution time is spent
executing the function and Jacobian matrix evaluation code. Hence the eight processors can be
kept busy most of the time.

Amdahl’s law provides a useful way of comparing the actual speedup attained by a parallel im-
plementation to the maximum speedup that can be attained taking into consideration the fraction
of the total execution time that is spent on sequential code. Amdahl’s law states that if a program
consists of two parts, one that is inherently sequential and one that is fully parallelizable, and if
the inherently sequential part consumes a fraction f of the total computation, then the speedup is

limited by
1

S

where p is the number of processors used in the parallel implementation. Table 7 gives the speedup
that we obtained with our best parallel implementation (Algorithm M6) along with the maximum
theoretical speedup that can be obtained according to Amdahl’s law for all three test problems.
Note that the fraction f of the sequential part may not be very accurate and is a lower bound
on the exact serial execution fraction for the algorithms so that the numbers appearing in Table
7 for the theoretical speedup could be slightly lower than those shown in the table. As can be
observed from the table, for all three problems, with four processors, the actual speedup obtained
is quite close to the theoretical speedup. This explains why we got an overall poor speedup for the
dome and the turning point problems; for these problems, the fraction f of serial execution is high,
and so we cannot do any better, being limited by the theoretical speedup as the upper bound.
With eight processors, the actual speedup obtained is not close to the theoretical speedup because
the algorithm M6 is a combination of algorithms M1 and M5, and for the parallel implementation,
algorithm M5 uses only four processors always, even if it is given eight processors. Also as observed
from the table, there is only a slight increase in speedup from using eight processors as compared to

13

TABLE 9
Amount of extra memory allocated for each method.

ﬁ M1 |M2 M3 [M4 [M5 | M6 | M7 | M8
@H)vectors 50 3(11{ 11

four processors. The slight increase in speedup is present only because the M1 algorithm does make
use of eight processors. This explains why the timings for algorithm M5 (as well as M3 and M4)
are the same for eight processors and four processors, and why there is a significant gap between
the theoretical and the actual speedups for eight processors. Note that for the arch problem, the
scenario is completely different since unlike the turning point problem, very little time is spent in
the linear solver code.

Regarding the amount of extra memory allocated for each method, as observed from Table 9,
algorithms M3, M4, M5 and M§ require a few extra (n + 1)-vectors for the parallel implementation
[12]. The algorithms which don’t require any extra memory are at the lowest level of parallelization.
Algorithms M5 or M6, which require the maximum amount of extra memory, have a greater degree
of parallelization than the others, So, the conclusion to be drawn from this table is that the higher
the level or the degree of parallelism, the more memory the parallel implementation Tequires. As
already observed, in terms of efficiency, M6 is the best parallel implementation verifying that there
is, indeed, a tradeoff between memory and speedup. One generally has to pay for extra memory if
speedup is the final goal. However, the amount of extra memory required by the parallel algorithm
Is usually not very significant in relation to the speedup achieved by the parallel algorithm. For
example, algorithm M6, which has the best speedup, requires 11 extra (n + 1)-vectors for the
parallel algorithm implementation, which is Just a small fraction more than the overall memory
space required by the serial algorithm.

Another interesting issue related to parallel computing is the tradeoff between the speedup and
the amount of time spent on the implementation of the parallel algorithm. Table 8 gives the number
of man-hours spent for each of the parallel implementations, along with the cumulative man-hours
for algorithms M6 and M7, since each of them are combinations of other algorithms. Columns for
M1, M6 and M7 have three entries each since these algorithms involve computing function values
and Jacobian matrices in parallel, and for all three test problems, varying amounts of programming
effort were required. The three entries are for, respectively, the shallow arch problem, the dome
problem, and the turning point problem. For algorithm M1, comparing the speedup obtained with
the programming effort required for each of the test problems, it is seen that the arch problem,
which has the best speedup, also required the maximum number of man-hours to do the paralle]
implementation. In general, comparing the efficiencies with the programming effort required, one
can draw the conclusion that they are directly proportional to each other, i.e., the algorithms which
require more time and effort to be implemented in parallel usually have a higher efficiency than
those which require fewer man-hours for the parallel implementation. We have already concluded
that the higher the level/degree of the parallel implementation, the better the efficiency. Hence,
we can also conclude that the higher the degree desired of the parallel algorithm, the greater the
amount of time needed to implement it; as one moves up in degree or level, it becomes more and
more time consuming to parallelize the serial code.

Another question which arises in the same context is whether it was worthwhile spending many
hours for the parallel implementation considering the efficiency that was obtained. For example,
for the arch problem, we spent 120 hours implementing Algorithm M8 obtaining an efficiency of

14

0.788. It was probably not worth the time attempting the parallel imuplementation. Similarly for
the arch problem, implementing parallel algorithms M2, M3, M4 and M5 was not worth the effort
put in because the amount of time spent within the linear solver code is very small, around only
10%, and each of these algorithms attempts to parallelize sections of the linear solver code. In
general, it is not worth the effort to parallelize some part of the pbrogram if just a small fraction of
the total execution time is spent within that part of the program.

Special mention needs to be made of the shallow arch problem with regard to algorithms
involving the function values and Jacobian matrix evaluations, i.e., algorithms M1, M6, M7 and
MS8. As observed from the tables, all these algorithms required many more man-hours for the arch
problem than the other test problems. The arch problem could have taken a lot less programming
effort had it not been for the fact that the serial code for the function values and Jacobian matrix
evaluations was extremely difficult to parallelize. To a certain extent, the programming effort also
depends on how the serial code has been written and how easily the serial code can be modified for
the parallel implementation, and not simply on the amount of code to be implemented in parallel
or what degree/level of parallelism one is attempting for the implementation.

Most of the conclusions drawn above reaffirm existing parallel computing theory and are very
general. Regarding specific conclusions to be drawn for parallel HOMPACK, some levels are simply
not worth the time and effort required for the implementation, considering the speedup obtained.
Algorithm M2 (lower linear algebra in parallel) was not worth the effort. It took 20 man-hours
to obtain a maximum speedup of 1.65 using eight processors. Similarly, attempting to implement
computations relating to the preconditioner in parallel is not worthwhile since we get no speedup
at all. Regarding the other levels /degrees, the test problem used determines whether the level or
degree implementation is worth the effort put in. For the dome and turning point problems, the
implementation of the function values and the Jacobian matrices was not worth the effort wlhereas
the degrees/levels relating to the linear solver code did give a good speedup considering the effort
we put into the parallel implementation. For the arch problem it was exactly the opposite, although
it could be debated that spending 100 hours fo obtain a speedup of 6.1 with eight processors is
just not worth the effort. Regarding extra memory allocation for the parallel implementation, the
parallel algorithms required only just a few extra (n + 1)-vectors and hence memory is not an
important issue for parallel HOMPACK. Hence a general purpose parallel HOMPACK, applicable
to any problem, should implement the four linear solves in parallel. The parallelization of the
function and Jacobian matrix evaluation subrontines will depend on the problem being solved.

References.

(1] E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, Springer
Verlag, Berlin, 1990,

[2] D.C.S. Allison, A. Chakraborty, and L. T. Watson, Granularity issues for solving polyno-
mial systems via globally convergent algorithms on a Hypercube, Proc. Third Conference on
Hypercube Concurrent Computers and Applications, Pasadena, CA (1988) 1463-1472.

(3] 5.C. Billups, An augmented Jacobian matrix algorithm for tracking homotopy zero curves,
M.S. Thesis, Dept. of Computer Sci., VPI & SU, Blacksburg, VA, 1985.

[4] A. Chakraborty, D. C. . Allison, C. J. Ribbens, and L. T. Watson, Parallel orthogonal de-
compositions of rectangular matrices for curve tracking on a hypercube, Proc. Fourth Conf.
on Hypercube Concurrent Computers and Applications, J. Gustafson (ed.), ACM, Monterey,
CA, 1989.

15

[5] S. N. Chow, J. Mallet-Paret, and J. A. Yorke, Finding zeros of maps: Homotopy methods that
are constructive with probability one, Math. Comput. 32 (1978) 887-899.
[6] E. J. Craig, Iteration procedures for simultaneous equations, Ph.D. thesis, MIT, Cambridge,
1954,
[7] C. deSa, K. M. Irani, C. J. Ribbens, L. T. Watson, and H. F. Walker, Preconditioned iterative
methods for homotopy curve tracking, STAM J. Sci. Stat. Comput., to appear.
[8] H. C. Elman, Iterative methods for large, sparse, nonsymmetric systems of linear equations,
Ph.D. thesis, Computer Sci. Dept., Yale Univ., 1982,
[9] D. K. Fadeev and V. N - Yadeeva, Computational Methods of Linear Algebra, Freeman,
London, 1963.
[10] M. R. Hestenes, The conjugate gradient method for solving linear equations, Proc. Symp.
Appl. Math. 6 Numer. Anal., AMS, New York, 1956, pp. 83-102.
(11] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J.
Res. National Bureau of Standards 49 (1952) 409-435.
[12] K. M. Irani, Preconditioned sequential and parallel conjugate gradient algorithms for homo-
topy curve tracking, M.S, thesis, Dept. of Computer Sci., VPI & SU, Blacksburg, 1990,
[13] K. M. Irani, M. P. Kamat, C. J. Ribbens, H. F. Walker, and I.. T. Watson, Experiments with
conjugate gradient algorithms for homotopy curve tracking, SIAM J. Optim., to appear.
[14] W.C. Rheinboldt and J -V. Burkardt, Algorithm 596: A program for a locally parameterized
continuation process, ACM Trans. Math, Software 9 (1983) 236-241.
[15] R. S. Varga, Matrix iterative analysis, Prentice-Hall, New York, 1962,
[16] L.T. Watson, A globally convergent algorithm for computing fixed points of 2 maps, Appl.
Math. Comput. 5 (1979) 297-311.
[17] L..T. Watson, Numerical linear algebra aspects of globally convergent homotopy methods,

[18] L.T. Watson, S.C. Billups and A.P. Morgan, Algorithm 652: HOMPACK: A suite of codes for

globally convergent homotopy algorithms, ACM Trans. Math. Software 13 (1987) 281-310.
[19] D. M. Young, Iterative solution of large linear systems, Academic Press, New York, 1971.

16

