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CHAPTER 12

 

Introduction to 
aeroelasticity

 

12.1 The Collar diagram of aeroelastic forces

 

The following paragraphs are excerpted from 

 

Aeroelasticity

 

 by R. L. Bisplinghoff, H. Ashley, and R. L. Halfman 
(1996).

 

Aeroelasticity is defined as a science which studies the mutual interaction between aero-
dynamic forces and elastic forces, and the influence of this interaction on airplane design. 
Aeroelastic problems would not exist if the airplane structure were perfectly rigid. Modern air-
plane structures are very flexible, and this flexibility is fundamentally responsible for the vari-
ous types of aeroelastic phenomena. Structural flexibility itself may not be objectionable; 
however, aeroelastic phenomena arise when structural deformations induce additional aerody-
namic forces. Such interactions may become smaller and smaller until a condition of stable 
equilibrium is reached, or they may tend to diverge and destroy the structure.

The term aeroelasticity, however, is not completely descriptive, since many important 
aeroelastic phenomena involve inertial forces as well as aerodynamic and elastic forces. We 
shall apply a definition in which the term aeroelasticity includes phenomena involving interac-
tions among inertial, aerodynamic, and elastic forces, and other phenomena involving interac-
tions between aerodynamic and elastic forces. The former will be referred to as 

 

dynamic

 

 and 
the latter as 

 

static

 

 aeroelastic phenomena.

Collar has ingeniously classified problems in aeroelasticity by means of a triangle of 
forces. Referring to Fig. 1-1 [figure. 12.1 below], the three types of forces, aerodynamic. elas-
tic, and inertial are represented by the symbols 

 

A

 

, 

 

E

 

, and 

 

I

 

, respectively, are placed at the ver-
tices of a triangle. Each aeroelastic phenomenon can be located on the diagram according to 
its relation to the three vertices. For example, dynamic aeroelastic phenomena such as flutter 

 

F

 

, lie within the triangle, since they involve all three types of forces and must be bonded to all 
three vertices. Static aeroelastic phenomena such as wing divergence, 

 

D

 

, lie outside the trian-
gle on the upper left side, since they involve only aerodynamic and elastic forces. Although it is 
difficult to define precise limits on the field of aeroelasticity, the classes of problems connected 
by solid lines to the vertices in Fig. 1-1 are usually accepted as the principal ones. Of course, 
other borderline fields of mechanical vibrations, 

 

V

 

, and rigid-body aerodynamic stability, 

 

DS

 

, 
are connected to the vertices by dotted lines. It is very likely that in certain cases the dynamic 
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stability problem is influenced by airplane flexibility and it would therefore be moved within the 
triangle to correspond with 

 

DSA

 

, where it would be regarded as a dynamic aeroelastic prob-
lem.

It would be convenient to state concise definitions of each aeroelastic phenomenon which 
appears on the diagram in Fig. 1-1.

 

Flutter, F

 

. A dynamic instability occurring in an aircraft in flight at a speed called the flutter 
speed, where the elasticity of the structure plays an essential part in the instability.

 

Buffeting, B. 

 

Transient vibrations of aircraft structural components due to aerodynamic 
impulses produced by the wake behind wings, nacelles, fuselage pods, or other components 
of the airplane.

 

Dynamic response, Z

 

. Transient response of aircraft structural components produced by 
rapidly applied loads due to gusts, landing, gun reactions, abrupt control motions, moving 
shock waves, or other dynamic loads.

 

Aeroelastic effects on stability, DSA & SSA

 

. Influence of elastic deformations of the struc-
ture on dynamic and static airplane stability.

 

Load distribution, L

 

. Influence of elastic deformations of the structure on the distribution of 
aerodynamic pressures over the structure.

 

Divergence, D. 

 

A static instability of a lifting surface of an aircraft in flight, at a speed called 
the divergence speed, where the elasticity of lifting surface plays an essential role in the insta-
bility.

 

Control effectiveness, C

 

. Influence of elastic deformations of the structure on the controlla-
bility of an airplane.

 

Control system reversal, R.

 

 A condition occurring in flight, at a speed called the control 

F B Z DSA

A

E I

V

DS

R

D

C

L

SSA

Fig. 12.1 The aeroelastic triangle of forces.
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Divergence analysis of a rigid wing segment

 

reversal speed, at which the intended effects of displacing a given component of the control 
system are completely nullified by elastic deformations of the structure.

 

Mechanical vibrations, V.

 

 A related field.

 

Dynamic stability, DS

 

. A related field.

 

12.2 Divergence analysis of a rigid wing segment

 

A model to illustrate the phenomenon of wing divergence consists of a uniform, rigid wing segment hinged to a 
fixed support in a wind tunnel as is shown in figure. 12.2. The hinge line is located at the 

 

elastic axis

 

 (E.A.) of the 
wing. The elastic axis coincides with the locus of shear centers of the wing sections.

Recall that the 

 

shear center

 

 of the cross section of a bar (wing) is a reference point in the cross section 
where the lateral deflections due to bending are de-coupled from the twist due to torsion (i.e., a shear force acting 
at the elastic axis results in bending deflections and no twist, and a torque acting at the elastic axis causes twist 
but no lateral deflection of the elastic axis due to bending).

The rigid wing segment is restrained against rotation, or twist, about the E.A. by a linear elastic rotational 
spring of stiffness . This rotational spring is analogous the torsional stiffness per unit span, or , of a 
wing.

We assume two-dimensional, incompressible aerodynamics is applicable. Let  denote the airspeed,  the 

angle of attack relative to the zero lift angle,  the lift,  the pitching moment, and let  denote the weight 

of the wing segment acting at the center of gravity (C.G.). The lift and pitching moment act at the aerodynamic 
center (A.C.), which is the point about which the pitching moment is independent of the angle of attack. Usually 
the A.C. is close to the quarter chord. We neglect the drag force  relative to the lift since .

The angle of attack is written as

 ,

 

(12.1)

 

where  is the initial wing incidence, or the angle of attack if there are no aerodynamic and gravity loads, and 
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Fig. 12.2 Rigid wing segment 
model for divergence analysis
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 is the rotation angle due to elastic deformations of the spring. Assume small angles such that , 

, and . The lift is given by

,

 

(12.2)

 

where  is the dynamic pressure,  is the wing planform area, and  is the lift coefficient. Let  denote the 

density of air,  the chord length, and  the wing span. The dynamic pressure, planform area, and lift coefficient 
are given by

.

 

(12.3)

 

In the above equation  is the lift curve slope, which is assumed constant between stall points.

The pitching moment is given by

,

 

(12.4)

 

where  is the pitching moment coefficient about the A.C., and is independent of .

Moment equilibrium about the E.A. gives

,

 

(12.5)

 

where  is the distance from the E. A. to the A. C., assuming the E.A. is behind the A.C.

Substituting for the elastic twist, lift, and pitching moment from eqs. (12.1) to (12.4), the moment equation 
becomes

.

 

(12.6)

 

Rearrange eq. (12.6) to

.

 

(12.7)

 

Now divide eq. (12.7) by  to get

.

 

(12.8)

 

Let

.

 

(12.9)

 

Hence, equation (12.8) for the equilibrium value of the angle of attack reduces to
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. (12.10)

A plot of  versus the angle of attack obtained from eq. (12.10) is shown in figure. 12.3.

From eq. (12.10) we see that  as  for . That is, the angle of attack grows without 

bound as . Of course, this excessive twist is a theoretical result. In reality the wing will stall or twist off 

due to a strength failure. Hence, the divergence dynamic pressure is defined as

, (12.11)

and the divergence speed is

. (12.12)

Divergence corresponds to static instability. At  we get excessive rotation in twist of the wing.

12.2.1 Responses of the rigid wing segment and the imperfect column

The response plots of the rigid wing segment model of article 12.2 and the geometrically imperfect column in 
article 11.4 on page 336 are repeated in figure. 12.4. Comparing the two response plots reveals that these phe-
nomena are the same. Both the column buckling and the wing divergence are static instabilities. The critical load 

 for the column and the divergence dynamic pressure  of the rigid wing segment model are determined 

from a static analysis of the slightly deflected structure. 
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12.2.2 Divergence experiments

Experiments to measure the divergence dynamic pressure of an elastic wing confront the issue of damaging the 
wing and its supporting structure if the dynamic pressure is near or at its critical value. A nondestructive method 
to measure the critical dynamic pressure is accomplished by plotting the data on a Southwell plot, which was 
developed for elastic column buckling in article 11.4.1 on page 338. The Southwell plotting coordinates are 
determined from eq. (12.10) by formulating the change in the angle of attack , where 

. After some algebraic manipulations, the change in the angle of attack is written as

, (12.13)

where

. (12.14)

Equation (12.13) is rearranged as follows: (1), Multiply each side by , and write

.

(2) Divide by the dynamic pressure and write the final result as

. (12.15)

On the Southwell plot  is the ordinate and  is the abscissa. Thus, eq. (12.15) is a straight line on 
the plot as shown in figure. 12.5. The important aspect of the Southwell plot from the experimental viewpoint is 
that the slope of the graph is the reciprocal of the divergence dynamic pressure. As the dynamic pressure is 
increased from magnitudes less than the divergence dynamic pressure, the changes in angle of attack  

become large, and the data of  versus  tends to plot as a straight line. The experimental divergence 

0

P Pcr⁄

1.0

v L 2⁄( )

Pcr π2EI
L2
------=

a1

q qD⁄

0

1

α0 Wd( ) K⁄–
α

qD
K

S
∂CL

∂α
---------- 
  e

----------------------=

Fig. 12.4 Response plots of the geometrically imperfect column and the rigid wing 
segment model.

∆α

∆α α α0 Wd( ) K⁄–( )–=

∆α
C0 q qD⁄( )

1 q qD⁄–
------------------------=

C0 α0 Wd( ) K⁄– c
e
-- 
  CMAC

∂CL

∂α
--------- 
 
---------------+=

1 q qD⁄–

∆α ∆α q qD⁄( )– C0 q qD⁄( )=

∆α
q

-------
∆α C0+( )

qD

-------------------------=

∆α( ) q⁄ ∆α

∆α

∆α( ) q⁄ ∆α



Aerospace Structures 367

Straight, uniform, unswept, high aspect ratio, cantilever wing in steady incompressible flow

dynamic pressure is determined from the slope of this fitted straight line. The actual value of  is not significant 

with respect to the determination of the experimental divergence dynamic pressure.

12.3 Straight, uniform, unswept, high aspect ratio, cantilever wing in 
steady incompressible flow

Let  denote the total wing incidence, and let  denote the fixed incidence at the wing root. The fixed 

incidence could be a function of  for a variable in built-in twist, but we will consider it constant along the span. 
So

, (12.16)

∆α

∆α
q

-------

C0–

C0 qD⁄

0

qD

1

Exp. data

Fig. 12.5 Southwell plot.
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where  is the twist angle of the wing due to elastic deformation. Neglect airfoil weight, since we saw for the 

rigid wing segment that this factor played no role in the divergence dynamic pressure.

From eq. (3.61) on page 43 the differential equation in torsion is

, (12.17)

where  denotes the external torque per unit span. In this case the external torque per unit span is due to the 

aerodynamic loads acting on the wing.

In reference to eq. (3.121) on page 60, St. Venant’s torsion theory relates the torque to the unit twist as

, (12.18)

where  is the torsional stiffness of the wing box. From eq. (3.161) page 70, the torsion constant for a single-
cell cross section is given by

, (12.19)

where  is the area enclosed by the cross-sectional contour,  is the arc-length along the contour, and  is the 

thickness of the contour. Substitute eq. (12.18) into (12.17) and use the fact that the wing is uniform along the 
span to get

. (12.20)

12.3.1 Aerodynamic strip theory

Strip theory assumes aerodynamic lift and moment at station  depends only on the angle of attack, or incidence, 

at , and is independent of the angle of attack at any other spanwise locations. Physically, this is reasonable for 
high aspect ratio wings.
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Fig. 12.7 Lift and pitching moment acting on the differential element of a wing.
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Straight, uniform, unswept, high aspect ratio, cantilever wing in steady incompressible flow

The differential lift and differential pitching moment acting at the A.C. on an typical element of the wing are 
shown in the figure. 12.7, where  is the local lift coefficient and  is the local moment coefficient about the 

A.C. Hence, the external torque acting on the differential element about the elastic axis is

, (12.21)

or

. (12.22)

According to strip theory

, (12.23)

where  is the lift curve slope. Substituting eq. (12.16) into (12.23), we get

. (12.24)

Hence,

. (12.25)

12.3.2 Differential equation of torsional divergence 

Now substitute eq. (12.25) into (12.20) and rearrange the terms to get

. (12.26)

Equation (12.26) is the governing, second order, ordinary differential equation for  with . The 

boundary conditions at  and  are to specify either  or , but not both. For a cantilever wing, 

which is clamped at the root and free at the tip, the boundary conditions are

. (12.27)

The general solution of the ordinary differential eq. (12.26) is the sum of a particular solution and a homog-
enous solution.

. (12.28)

By the method of undetermined coefficients the particular solution is

. (12.29)

The homogenous equation is

 , (12.30)
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and its solution is given by

, (12.31)

where

. (12.32)

Hence, the general solution for the wing twist is

. (12.33)

Substitute the general solution (12.33) into the boundary conditions (12.27) to determine constants  and :

. (12.34)

Solving eq. (12.34) for the constants, we get

. (12.35)

Substitute eq. (12.35) for A1 and A2 into eq. (12.33) to get the angle of twist for the cantilever wing as

. (12.36)

Hence from eqs. (12.16) and (12.36), the total wing incidence is

. (12.37)

Using the trigonometric identity for the cosine of the sum of two angles, this last result can be written as

. (12.38)

From eq. (12.38) we see that  if . Vanishing of the cosine function occurs when 

. The lowest root gives the critical divergence dynamic pressure as

. (12.39)

The value of  in eq. (12.39) is the wing’s torsional divergence dynamic pressure.
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Effect of wing sweep on divergence

The analogy between the divergence dynamic pressure for the rigid wing model and the elastic wing model 
is summarized in table 12.1.

12.4 Effect of wing sweep on divergence

Divergence of a slender straight wing that is approximately perpendicular to the airplane plane of symmetry is 
dependent on wing twist, referred to as torsional divergence, and bending is not a factor in the instability. For 
slender swept wings bending of the wing has an important and complicating affect on divergence and is referred 
to as bending-torsional divergence.

Let the angle  denote the wing sweep measured rela-

tive to the unswept wing with  for a swept-back wing, 

and  for a swept-forward wing. See figure. 12.8. When 

a swept-back wing ( ) bends, its angle of attack in the 
streamwise direction is reduced. Bending causes a nose-down 
twist in the streamwise direction. To understand this bending 
effect, consider an upward force applied to the reference axis. 
Points A and B deflect upward about the same amount. Point 

 has less upward deflection since it is closer to the wing 

root. Hence, streamwise segment  will have a smaller 
angle of attack due to bending and a negative increment in lift 
results. This negative lift increment due to bending is a stabi-
lizing influence, since it opposes the nose-up twist of segment 

. 

Consider a swept-forward wing with  as shown in figure. 12.9. Bending causes an increase in the angle 

of attack, or nose-up twist, for the streamwise segment . This increase in angle of attack due to bending is a 
destabilizing influence. Divergence essentially rules out swept-forward metallic wings. For wings made of com-
posite materials, it is possible to materially couple bending and torsion in such a way to have an acceptable diver-
gence speed for forward-swept wings (e.g., the X-29 demonstrator). 

From NASA Armstrong Fact Sheet: X-29 Advanced Technology Demonstrator Aircraft 
(Gibbs, 2015): The X-29’s thin supercritical wing was of composite construction. State-of-the-
art composites permit aeroelastic tailoring, which allows the wing some bending but limits 

Table 12.1 Expressions for divergence dynamic
 pressure of the rigid wing and of the elastic wing

Rigid, eq. (12.10) Elastic, eq. (12.39)
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twisting and eliminates structural divergence within the flight envelope (deformation of the 
wing or breaking off in flight).
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12.6 Practice exercises

1. An interesting historical account of wing torsional divergence is given by Gordon (2003); An excerpt fol-
lows.

During World War I Antony Fokker developed an advanced monoplane fighter – the Fokker 
D8 – with performance better than available or in immediate prospect on the Allied side. As 
soon as the D8 was flown in combat conditions it was found out that, when the aircraft was 
pulled out of a dive in a dog fight, the wings came off. Since many lives were lost – including 
those of some of the best and most experienced German fighter pilots – this was a matter of 
very grave concern to the Germans at the time, and is still instructive to study the cause of the 
trouble.

Read pages 260-271 in the book by Gordon and answer the following questions.

a) For a given engine power, why is a monoplane generally faster than a biplane?

b) What was the material of wing skin on the D8? Is it effective in resisting shear? 

c) What was the method of loading in the structural test of the wings of the D8? 

d) What was the ultimate load factor from the structural test?
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Fig. 12.9 Streamwise and chordwise 
segments of a swept-forward wing.
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Practice exercises

e) What was the first attempt to strengthen the rear wing spar? 

f) What was the best method to strengthen the rear wing spar? and why did it work?

g) What is aileron reversal?

h) What common geometric feature do a tube and the torsion box of the old-fashioned biplane have that 
makes them so effective in resisting torsion?

2. The uniform wing sketched in figure. 12.10 is fixed at both ends. Starting with the general solution eq. 
(12.33), derive the algebraic expression for

a. total incidence , and

b. divergence dynamic pressure .

3. Consider a rigid wing segment of weight W mounted on an elastic sting in a wind tunnel. The sting is mod-
eled as a uniform, elastic, cantilever beam with bending stiffness  and length . Neglect the weight 

of the sting. The model is mounted in such a way to have the angle of attack  when the beam is undeformed. 

Thus, the angle of attack , where  is the nose-up rotation of the wing resulting from the bending of 

the sting. Denote the lift and the pitching moment acting at the aerodynamic center (A.C.) as L and , respec-

tively.
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Assume

• steady, two-dimensional incompressible flow at airspeed  and density ,

• the lift curve slope  is constant between stall points,

• and that the angle of attack is small.

a. Use the second theorem of Castigliano to determine the rotation  of the cantilever beam due to end 

force  and moment  as shown in the sketch above. Consider bending only.

b. Determine the angle of attack  as a function of the dynamic pressure , , wing refer-

ence area S, flexural stiffness EI, chord length c, , pitching moment coefficient , distance d, 

and weight W.

c. Determine the divergence dynamic pressure, .

4. A uniform beam with a rectangular cross section rests on a knife edge at its left end, while the right end is 
clamped in rigid disk. This configuration is shown in figure. 12.12. The bending stiffness , the dis-

tance between the knife edge and the beam’s connection to the disk is L, and the radius of the disk is R. This disk 
rotates about a fixed smooth pin through its center under the action of applied moment Ma as shown. Determine 
the relation between the applied moment Ma and rotation angle θ of the disk under the assumption that the angle 
of rotation θ is small. In a wind tunnel test the disk is connected to a rigid airfoil, then this structural configura-
tion is used to provide the rotational spring of stiffness  depicted in figure. 12.2. 
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