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CHAPTER I.

INTRODUCTION

In 1973 the world was jolted by the Arab oil embargo. Since that

time the "Energy Crisis" has become a formidable problem that is being

attacked scientifically and analytically by scientists and technolo-

gists; practically, and sometimes emotionally, by environmentalists;

and cautiously by politicians. Nuclear reactor generated electricity

provides a viable alternative to oil as a basic source of energy.

However, energy is consumed in such vast quantities today that in the

absence of some technological break-through, nuclear fuels could also

be exhausted by the year 2000. Thus, nuclear fuel, in its infancy as

an energy source, is already viewed as a depleting resource.

One of the obvious results of the oil embargo was that companies

that controlled their own energy supply were in a commanding position.

This result caused major energy companies, e.g., Exxon, and utilities,

e.g., Tennessee Valley Authority, to attempt to gain control of basic

nuclear fuels in order to assure their later availability when they

are needed.

This series of developments has created an unique management

problem. Assuming that an utility, in an effort to control the future

availability of nuclear fuel, buys a basic uranium ore source, then,

recognizing that uranium ore must pass through several stages before

it is in useable form, at which stage and in what quantities should

A
l
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it be stockpiled in order to realize a minimum cost over a specified

time horizon? Aspects of this problem which make it unique are

monotonically increasing demand for uranium fuel over the time horizon,

monotonically increasing value of the uranium in relation to other

commodities over the time horizon, a depleting resource, and the

possibility of reprocessing spent fuels to re—capture (re-cycle) the

unburned portion. ph

The national energy outlook is not optimistic. Nuclear power

utilized to generate electrical energy can materially improve the

national energy outlook. Nuclear energy is\in its infancy, and

numerous articles have called for the application of scientific

management techniques to the nuclear fuel cycle[23’26’37’38’4l’46’48’

6O’63]. Although some progress has been made, concentrated efforts

are still required. MASON[47] approximates the initial core of a

light water reactor to cost $31 million and the annual reload to cost

$14 million. MASON summarizes, "Thus, very large sums of money are

involved in the inventory requirements and in the annual fuel costs

during the operation of large nuclear power plants. This in turn

produces large incentives for the development of techniques that will

lead to reductions in the cost . . ."[47]. GALON and SALMON[26]

also emphasize the need for improved methods, "Uncertainties that

are brought about by revision of long—term utility planning and by

forced outages also contribute to a continuing need for dynamic

optimization of nuclear unit operating and fuel cycle strategies"[26].
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The need for minimizing costs is obvious and imperative. Since

there is no presently known production—to-inventory model to optimize

costs for the nuclear fuel cycle, the motivation is obvious, yet a

more dramatic motivator might well be KURSTEDT's evaluation, "In

short, we will not freeze in the dark due to inadequate technology, n
rather due to the lack of good management decisions"[37].

The objective of this research is to develop a production—to—

inventory model that considers the aspects above and that can be

utilized by the utilities, or governmental agencies,in deciding at

what stage of the nuclear fuel cycle and in what quantities uranium

fuel can be stockpiled in order to incur a minimum production and

inventory cost over a defined time horizon.

The resultant model uses the calculus of Variations to determine

the production trajectories for each stage of the nuclear fuel cycle

that meet the demand for energy while minimizing acquisition,.

production,and inventory holding costs. The solution demonstrates

that it is optimal to stockpile larger quantities of ore in the

explored resource (in uranium fields as is presently the case) and

_ of fabricated fuel assemblies and lesser quantities of enriched

uranium hexafluoride. All other stages essentially produce only

sufficient quantities to meet demand. Analysis of the sensitivity

of the model to Variation in model parameters shows the greatest ·

effect results from varying the assumed production capacities.



CHAPTER II.

THE PROBLEM DESCRIPTION

A. National Energy Outlook

Numerous reports and papers[l’5’23’"2’45’55’64] forecast the

growth of energy requirements in the United States. In testimony

before the U.S. Comittee on Interior and Insular Affairs, Subcomittee

on Energy and the Environment, R. W. A. LeGasse of the Energy Research

and Development Administration (ERDA) gave a summary forecast of the

U.S. energy growth through year 2000["2]. This summary is shown in

Table l. LeGasse's estimates are particularly meaningful because

they show three ranges of forecasts depending on different pricing

and conservation practices. The importance of this summary is that,

even for the low forecast, energy requirements are expected to increase

by 178 percent by year 2000.

Confronted with this forecasted energy growth requirement, ERDA

reports[l] that the "available energy" picture is very bleak. In

particular:

Domestic crude oil production peaked in 1970 and has declined
by more than one million barrels per day since then. Production
is now at a nine—year low.

Oil imports are about 37 percent of oil consumption and would
rise to more than 50 percent of consumption of 12 million barrels
per day by 1985 if no new actions are taken. _

As a result of increasing import dependence, U.S. payments
to foreign producers for imported oil increased from less than
$3 billion in 1970 to about $27 billion in 1975 and will
increase by another $2 billion annually, largely because of
the OPEC price increases.

4 ~
i
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Table l

ERDA Summary Forecast of Total U.S. Energy Growth

(Quadrillion Btu)[68] '

Year
1973 1980 1985 2000

Low 75.6 86.1 96.0 135.0

Moderate 75.6 89.7 105.0 174.0

High 75.6 95.3 117.0 195.0
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Natural gas production peaked in 1973, declined by 6 percent
in 1974 (the equivalent of over 230 million barrels of oil),
and dropped another 8.5 percent during the first half of 1975.

Electric utility financial problems and regulatory delays
have in part resulted in the cancellation or postponement of
about three—fourths of all planned nuclear plants and·about
one—third of all coal plants previously scheduled to come into

A operation between now and 1985.

Some emerging technologies, such as synthetic fuels from
coal, shale oil, solar, and methods to use energy more
efficiently, have uncertain economics due to long lead times
and technological uncertainties, and considerable riskll].

”
It is evident that present resources and technologies need to

be utilized to the fullest[32] and that a concentrated effort needs

to be applied toward developing the energy of the future. The

sources of energy today are oil, natural gas, coal, nuclear power,

hydropower, geothermal power, solar energy, and energy produced

from solid wasteslöa]. Of these options, the U.S. possesses the

resources in large quantities for only two: indigeneous coal and

uranium supplies[5]. To meet its interim demand and until the

energy of the future has been developed, the United States must rely

heavily upon its resources of coal and uranium.

B. Electrical Energy Outlook _

Uranium and, to some extent, coal are primary sources of energy,

i.e., they are not in a form readily useable by the consumer. Indeed

an intermediate form of energy is generally necessary. -

Electricity is a·convenient form of energy for customers.
. It is normally available continuously and automatically, and

the precise amount needed is instantly delivered so that the
user needs no inventory. Discounting conversion and line
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losses, it is efficient and it causes the consumer no pollution
problems. For these reasons industry has turned increasingly
to electricity with a resulting growth rate during the last
decade of nearly 8 percent annually. Looking ahead, between
1970 and 1990, an annual growth rate of 6.4 percent is ‘
forecast[64].

BRADEN and BROWN stated that the advantages of electricity as

an energy source are so great, so superior to other sources, that a

mark of an economically advanced nation is a high degree of production
. [10]and consumption of electricity .

ERDA forecasts for electrical generating capacity growth follow

the same pattern as total energy growth. Table 2 depicts this fore-

cast.

The Atlantic Council of the United States estimates that the
G ‘

percent of primary energy converted to electricity in the United

States will increase from the 1973 level of·23 percent to 50 to 60
[5]percent by the year 2000 .

C. Nuclear Power Generated Electrical Energy Outlook

Concurrent with this growth in electrification is the growth in

nuclear power generated electricity. ERDA forecasts for nuclear power

generated electricity are shown in Table 3. Recall Table 2 shows the

total electrical generating capacitygrowth.Other

projections are similar. GOLAN and SALMON[26] project

that in the period from 1980 to 2000, the average annual energy ·

demand will increase from 3.2 x 103 to 10 x 103 gigawatts electric

(313 percent), and that the nuclear electrical portion will

increase from 150 to 1,400 gigawatts electric (933 percent). The

Bureau of Mines of the U.S. Department of Interior, projects that
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Table 2

ERDA 1975 Electrical Geuerating Capacity Projections

(Gigawatts E1ectric)[68]
U

·

u Year
4 1975 1980 1985 1990

Low
u

492 604 785 980

Moderate—Low 496 620 800 1,040

Moderate-High 500 630 820 1,075

High 505 654 875 1,180
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Table 3

ERDA 1975 Nuclear Power Generated Capacity Projections

(Gigawatts E1ectric)[68]

Year
1975 1980 1985‘ 1990

Low 38 70 160 285

Moderate—Low 39 76 185 340

Moderate—High 41 70 205 345

High 43 92 245 470
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electrical generating capacity will increase from 474,573 megawatts

in 1974 to 1,887,000 megawatts in the year 2000 (398 percent), and

that the nuclear contribution will increase from 31,662 megawatts
uin

1974 to 900,000 megawatts in 2000 (2,842 percent)[26]. A further

indication is given by the World List of Nuclear Power Plants which

lists 58 nuclear power plants operating in the United States as of

December 31, 1976, and projects 157 to be in operation by l984[60].

. Figure l depicts the ERDA forecast as a monotonically increasing

demand for electricity and the corresponding monotonically increasing

demand for nuclear power generation capacity. This graphic portrayal

strongly illustrates the increasing demands.

From these data,it is clear that nuclear powered electrical

generation will play an increasingly important role in meeting the

energy demands in the United States. Thus, the success of the nuclear

power industry in meeting the needs for electrical energy, and in turn,

the energy needs of the United States, will be determined in part by

the progress attained in understanding, completing, and operating

the nuclear fuel cycle[5]. Before elaborating on the forecasted demand

for nuclear fuels, a description of the nuclear fuel cycle is given

so that fuel requirements can be viewed from a proper perspective.

D. Nuclear Fuel Cycle _

Uranium fuels used in the nuclear reactors are the product of

what is referred to as the "Nuclear Fuel Cycle". This "cycle" consists

of the process operations performed on the nuclear fuel from the time
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it is removed from the earth in the form of uranium ore until it is

returned to the earth in some form that is safe for permanent storage.

Generally, the cycle consists of mining ore from its location in the

earth, milling it to remove uranium oxide (U308) (commonly referred

to as yellowcake), converting this to uranium hexafluoride gas (UF6),

processing this gas through a mechanical separation process to generate
ta

product that is enriched in the fissile U—235 isotope, converting

this enriched gas to uranium dioxide (UO2) pellets, fabricating these

pellets into fuel assemblies, and inserting the assemblies into

reactors. The assemblies are subsequently removed from the reactors

and are stored as spent fuel. Finally, this spent fuel can be

reprocessed, thereby re—capturing useable fuel and generating

unuseable wastes which are stored in the earth in some acceptable

form. This view of the nuclear fuel cycle is depicted in Figure 2.

Thus, the nuclear fuel cycle is seen to consist of approximately

seven stages through which uranium ore passes. A more detailed

description of these stages is given in Appendix D.
1

Another view of the nuclear fuel cycle is shown in Figure 3,

which depicts the quantitative material—balance flows. This diagram

begins at the mill and reflects the materials required at each stage

to support a 1,000 megawatt electric reactor operating at 85 percent

load factor, and chemically reprocessing spent fuel to re—capture the

unburned fuel[7]. Likewise from this figure the "demand" on the

nuclear fuel cycle is deduced. The typical reactor experiences a

burnup of 20,333 megawatt days per tonne of fuel. Assuming a standard
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1
fuel enrichment, the equivalent demand on each stage is defined per .

single reactor. Then, taking the schedule for activation and operation

* of nuclear reactors for generating electricity in the United States

as shown in the "World List of Nuclear Reactors"[6O] and assuming

each activation requires a full core of fuel, that each year one—third

of the core is replaced with fresh fuel, and that the initial core is

equivalent to three average reloads, the demand for reloads is computed

and is shown in Table 4. It is readily discernible from the data in

Table 4 that demand is an increasing function of time.

It is necessary at this point to digress and discuss "forward

cost". The uranium industry traditionally calls the cost to produce
u

U3O8 from uranium ore the "forward costs", even though the precise

form of U3O8 may not even be present in processed fuel. Forward costs

are the costs incurred in removing the overburden, mining and milling,

e.g., if ore is excessively deep much overburden must be removed thus

the forward costs increase, or if the assay is high, less ore is

mined to yield a given amount of U3O8 and forward costs are lower.
Forward costs do not include exploration costs, land acquisition costs,

profits, taxes, or interest on capital investment. Understanding

forward costs is imperative, for demands are usually represented in

short tons or metric tons of U3O8; and UBO8 availability is normally
projected on the basis of forward cost[45]. The implication is that

high—grade ore laying on top of the ground has a low forward cost, °

while low—grade ore deep in the ground has a high forward cost.

Therefore, the low—forward—cost ore is exhausted first. The result
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. Table 4

Demand for Reloads for U.S. Nuclear Powered

Electrical Generators

ggg; Reloads
1960 ——--———--——-———— 3

1961 -——--——-—--——--— 4

1962 ———————————————- 8

1963 —-——————————-——— 7

1964 ———--——-————--—— 5

1965 —--—-——————-———— 5

1966 -—-——————-—--——- 8

1967 --—--———-——————— 6

1968 --———-—-—————-—— 12

1969 -———--——--——-——— 17

1970 ———--—-———--—-—— 23

1971 —-—————-————---— 27

1972 -—-—--———-————-- 43

e 1973 ————-————-—-—-—— 48
1974 ——-——-———-———--— 70

1975 —————————————-—— 67 _

1976 --——-—----—————- 86
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is that, as time passes, only the higher forward-cost ores remain.

Uranium is thus a depleting resource whose value (price to obtain)

increases with time.

LIEBERMAN[45] shows a close relation between the amount of drilling

and uranium discovery. Further, he concludes that a time lag of

approximately one year between a surge in drilling and an increase

in discoveries exists. LIEBERMAN then uses historical data to arrive

at an equation defining the quantity of uranium at a given forward

cost that will be discovered and produced as a function of time. Let

Q(t) be the cumulative amount of uranium of a given forward cost

discovered and produced at time t, Qw be the total cumulative amount

of uranium available for discovery (must be determined from extra-

polation of the discovery rate curve), "a" and "b" be constants

determined by fitting a curve to the data, and to be the arbitrary

base point in time; then the equation for cumulative discoveries and

production is:

o
Q(t)1

+ ae

Using the cumulative discovery data for ore with a forward cost

of $8 per pound, LIEBERMAN finds for a base year of 1948, a = 220,_

b = 0.41/year that Qw = 534,000 short tons of U308. Although the

curve fit is not conclusive, LIEBERMAN concludes that the quantity

of Qw is between 500,000 and 800,000 short tons of U308. Requiring
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Q(l974) to be 270,000 short tons (a known amount) and knowing that

the amount of presently held reserves are approximately 273,000 short

tons of U308, LIEBERMAN develops the overall picture of the history

and future availability of uranium ore with the indicated forward cost

of $8 per pound as shown in Figure 4. h
Further application of this equation for ores with $8, $15, and

$30 per pound forward costs enables LIEBERMAN to develop the more

comprehensive picture shown in Figure 5. By interpolation of this

curve, it is seen that ores with these forward costs will be
h

exhausted by 1985, 1990, and 1993, respectively.

Although LIEBERMAN and others refer to an exhaustion date, actual

exhaustion of resources will not occur at a specified time, but rather

as HUBBERT states:

Resources won't be exhausted suddenly on a given day, but
usage will be such that exhaustion will resemble a bell shaped
curve with the tail of final exhaustion resulting in higher
prices.

Indeed, this is already the case in the U.S. for natural
gas and possibly for gasoline . . .[32].

Increasing demand and a depleting resource result in high prices

for nuclear fuel. In fact, the 1976 prices for yellowcake are

reported to be ten times the 1969 level[25]. The history of the

value of U3O8 to date is shown in Figure 6.
A logical question exists as to what part of the increased cost

may be attributable to increased demand and the depleting resource

concept and what part may be attributable to inflation. It is

impossible to make a distinction; however, an attempt is made to
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reflect the cost of fuel as a function of time and in terms of constant

1972 U.S. dollars. As shown in Figure 7, the constant dollar curve

clearly indicates a monotonically increasing cost of uranium fuel over

time. It is assumed that this increase without inflation must reflect

the increasing value of uranium as a result of the factors previously

mentioned.

An alternate, perhaps more desirable, means for showing the

increasing value of uranium fuel is to relate the cost to cumulative

demand[69]. From LIEBERMAN's equations predicting exhaustion of the

reserves, this approach has more intuitive appeal. Figure 8 shows

this increasing cost as a function of time.

h Faced with this depleting resource, increasing demand, increasing

value of the fuel in relation to other commodities, and the general

outlook for energy in the world today, utilities are attempting to

gain control of the basic fuel source[74]. It is conceivable that

utilities may become even more deeply involved in vertical integration

of the entire nuclear fuel cycle in the future. Another alternative

for utilities is to form a collective or corporation and to participate

cooperatively in the fuel cycle. In fact, utilities are actively

considering ". . . a corporation (that) would be set up and would

buy fuel and lease it to utility companies. The entire fuel (cycle)

would be financed through the issuance of commercial paper"[48].
I

E. Statement of the Problem

In any case, a logical management decision must be made. If

uranium ore is obtained; then, faced with increasing demand, increasing

II
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procurement costs, and a multi—stage processing system, at what stage

and in what quantities could uranium fuel be stockpiled in order to

meet demand and incur a minimum cost over a defined horizon of time?

This is the question addressed here. What is required is a

multi-stage production-to-inventory model that permits cyclic flow.

The model should incorporate acquisition costs which increase as a

function of time, production costs, and inventory holding costs. It

~shou1d permit accounting of fuel-stage conversion factors and losses.

It should allow for production lag time. It does not need to allow

for shortages. Finally, the model should develop stage—wise production

trajectories over a specified time horizon which minimize the total

cost.

The final result should be a macroscopic management tool that can

be used by utilities or government agencies in determining the produc-

tion levels to be used (developed) and inventory levels to be maintained

(stockpiled) for a valuable but depleting resource. ERDA predicts

that this depleting resource could provide as much as 60 percent of

our electrical energy needs by year 2000[68], yet LIEBERMAN[45]

predicts that the $30 forward cost ores will be exhausted by year

1994. Any tool that provides a better management capability is,

then, of considerable value.
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CHAPTER III.

LITERATURE SEARCH

A. Production and Inventory Theory Research

Probably the earliest work directly related to the production—to—
· inventory problems where a product is to be produced in given amounts ‘

over each of T periods such that production and holding costs are

minimized, is that of MODIGLIANI and HOHN[52]. Their single—stage

model permits increasing marginal costs of production and constant

holding cost per unit of product per unit of time and arrives at a

"fundamental solution" that has far-reaching application. This article

is a milestone in production-inventory theory but considers only the„

discrete case. MORIN[53] restates the problem in continuous functions

and utilizes the calculus of variations to arrive at a reasonably

simple result for linear and quadratic production costs. WALVEKAR,

SMITH, and DECICC0[75] expand· this result to include the concept

of shortages. ARROW and KARLIN[3’4] simplify the results of MORIN by

analyzing problems where convexity properties can be assumed. Their

work also involves the calculus of variations, but the assumption of

convexity simplifies the form of the solution.

ZANGWILL in a series of articles[77’78’79’8O] makes a dramatic

breakthrough, expanding single stage dynamic lot size models into .

multi-product, multi—stage production and inventory models. He

ultimately includes non—decreasing demands, series flow, parallel

flow, production lags and backlogging; however, he never permits

26
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cyclic flow. Generally, ZANGWILL°s model is based on a dynamic

programming algorithm that optimizes through "dominant sets".

Although his algorithm insures optimal solutions, it becomes

unwieldy when the number of periods are large, i.e., twelve or

more[78].

Multi—stage process problems are considered in depth by MITTEN

and NEMHAUSER[50’5l’56’57]. Schematically, the stage—wise chemical

process appears similar to the nuclear fuel cycle. NEMHAUSER's

development includes series flow, parallel flow, and forward and

backward cycles; however, in the chemical processes there are no

production lags nor are there accumulations (inventories) of

materials, i.e., flow is direct. Also, the stage—wise decomposition

is made with respect to production stages, and time is not explicitly

modeled.

A further development of importance is BOWMAN's[9 1 use of the

transportation method of linear programming to solve the production

scheduling problem. For linear costs and known deterministic demands,

BOWMAN is able to optimize the production and inventory costs over

T time periods for a single—stage single—product problem.

B. Production and Inventory Theory Applied to the Nuclear Fuel Cycle

The most intense efforts to apply production and inventory theory

to the nuclear fuel cycle are the recent articles by KURSTEDT and
I

Their first artide jointly
authßred with COCKRELL[l3] develops a static inventory model for
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maintaining emergency reserves of fabricated nuclear fuel assemblies.

Subsequently, KURSTEDT, NACHLAS, and LYONS expand this model to a non-

stationary dynamic inventory model with delivery lags, but it is still

applicable to emergency reserves of nuclear fuel assemblies[46].

KURSTEDT, NACHLAS, and MACEK[4O] examine the inventory problem

associated with spent nuclear fuel. DEPORTER, NACHLAS, and KURSTEDT[l7]

present a production model to minimize costs associated with working

inventories in the fabrication plant. While these efforts are recent

and the only known work relating to production and inventory models

within the nuclear fuel cycle, they are all directed toward single

production stage inventories.

Recognizing that a total fuel cycle approach is necessary,

DEPORTER, NACHLAS, and KURSTEDT[l8] model the material flows of the

complete nuclear fuel cycle. While the model is not solved for an
A

optimum, it is the first known attempt to link the entire cycle.

Based on this model, the authors then simulate the entire fuel cycle

as a production and inventory model[l9]. This simulation model

incorporates the concepts of multi—stage single product and cycled

production to inventories with production lags and lead times. V

However, this model remains descriptive, since the excessively large

number of variables prevent optimization. There appear to be no

other attempts to apply production and inventory theory to the
l

'
nuclear fuel cycle.

Properties of the nuclear fuel cycle which cause all of the above

techniques to be inadequate are:
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l. Multi—stage System
U

2. Cyclic (feedback) Flow

3. Accumulation of Inventories Between Processes

4. Time Dependence

At least one of these properties is not represented or handled

by each of the techniques; however, combinations or modifications of

these techniques might permit examination of the nuclear fuel cycle.



CHAPTER IV.

DEVELOPMENT OF THE MODEL

The nuclear fuel cycle has been shown to be a multi—stage produc-

tion-to—inventory system.with possible cyclic (feedback) flow. Since

this class of problems has not been solved before, a general model is

developed here. After the mathematical foundations are laid, the

general model is adapted to the nuclear fuel cycle.

In general the costs to be considered in a production-to—inventory

system are:

. l. Costs of purchasing raw material.
·

2. Costs of production.

3. Costs of holding material in inventory.

The objective of the model is to determine the production rate

over time at each stage that minimizes the total of these costs. The
”

underlying assumption is that each of these costs is related to the

production rate. The model will be developed in the following three

stages:

l. Single-stage production—to-inventory model.

2. Multi-stage production-to—inventory model.

3. Multi-stage production-to—inventory model with cyclic

A (feedback) flow. _
A. Single-stage Production—to-Inventory Model

In the single—stage production-to-inventory systems, raw material

is purchased from an external source, rendered into a final product .

_ ·
_

30
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by one process, and is held in inventory awaiting an external demand.

This flow is described in Figure 9.

Assume that external demand is described as a continuous

function of time, r(t). Further, assume that a cumulative demand

function, R(t), is given by: ‘

t
R(t) = f r(1)dr IV.l

0

Now assume that the production rate for the process is described

as a continuous function of time, x(t). Further, assume that a

cumulative production function, X(t), is given by:

t
X(t) = [ x(1)dr IV.2

O

The particular advantage of this formulation is that the rate of

change in the cumulative production function is the production rate,

or:

'

__
: X (t) : x(t) IV.3

The same is true for the demand functions:

'
1·E; [R(t)] : R (t) = r(t) IV.4

Now the inventory at any time t, I(t), is equal to the initial

inventory plus the cumulative production minus the cumulative demand.
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I(t) = I(O) + X(t) — R(t) IV.5

Shortages are not allowed; therefore, I(O) + X(t) 2 R(t),

0 5 t 5 T, where T is the time horizon over which interest is
expressed.

Clearly, the raw material purchasing costs can be written as a

function of the production rate, f[X'(t)]. For example, let the

cost per unit produced be k. Then the cost per unit of time at time

t is:

· f[X'(t)] = k · X'(t), IV.6

and the total purchasing cost over a time horizon, T, is:

T
[ f[X'(t)]dt IV.7 .0

Likewise, the production costs at any time t are written as a

function of the production rate, g[X'(t)]. For example, a frequently

used scheme in production models is to assume an optimal production

rate for a process (plant)[l2]. Any variation in this optimal

production rate results in costs per unit produced that are

proportional to the square of the increase (decrease). An example

is shown in Figure 10. Since this scheme is used here, it is
U

appropriate to digress at this point and elaborate on it.

The production facilities in the nuclear fuel cycle operate

generally as any manufacturing process. A given facility has some

N
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optimal level of operating capacity where the production cost per

unit produced is a minimum. Changes in the production rate to meet

anticipated demand are accomplished by (1) hiring or firing personnelg

(2) overtime or undertime; (3) adding a shift; or (4) adding plant

p capacity. Such actions incur costs that cause the cost per unit

produced to increase. Recognizing this relationship, the usual

approach[12’52] is to approximate production costs as a quadratic

function of the production rate. Assuming the optimal level of

production for a minimum unit cost to be 100% of capacity, the cost

function could have a relationship as shown in Figure 10.

This assumption is particularly appropriate to the nuclear fuel

cycle even where the facility is a government owned enrichment process.

In this case separative work is contracted at a specified cost per

separative work unit. Variations in this schedule incur penalties.

For example, decreasing the number of separative work units incur

cancellation charges. Increases are generally not allowed but when

- they are made, they result in extra costs. In the general case,

changes to the number of separative work units are not made, and any

Variations necessary are made by exercising the_"tails options".

The end effect is the same.

The total production cost over a specified time horizon, T, is

given by: °

T
j' g[X'(t)]dt IV.8

0

where g[X'(t)] will assume a quadratic form.
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The costs of holding units in inventory is a function of the

inventory on hand at time t and is defined as h[I(t)]. However,

I(t) = I(O) + X(t) — R(t); therefore, the total inventory holding

cost over a specified time horizon, T, is given by:

.T T .
[ h[I(t)] = [ h[I(0) + X(t) — R(t)]dt; IV.9

0 0

I(0) + X(t) Z R(t), 0 j t j T

The model for the single stage is now complete. The total cost,

C, is given as the sum of the purchasing cost, the production cost,

and the holding cost.

T T ·T
C = [ f[X'(t)]dt + [ g[X'(t)]dt + [ h[I(O) + X(t) IV.1O

0 0 0

— R(t)]dt

T.
C = [ {f[X'(t)] + g[X'(t)] + h[I(O) + X(t) — R(t)]}dt IV.ll

O

Since shortages are not allowed, cumulative production must

equal or exceed cumulative demand, or:

1(0) + X(t) Z R(t) 0 j t j T IV.l2

As a boundary condition, the initial inventory plus the

cumulative production must equal the cumulative demand plus the



ending inventory, or:

1(0) + x(T) = 11(T) + 1(T) E 1V.13

Since X(t) and R(t) are cumulative functions, their initial

conditions can be specified. Let R(0) = O and X(0) = O.

Finally, it is desired to minimize the total cost; therefore,

the objective function for the single-stage model is defined as:

T.
min C = {f[X'(t)] + g[X'(t)] + h[I(0) + X(t) IV.l4
X(1;) 0

- R(1;)]}d1;

subject co: I(0) + X(c) g R(1;) 0 g c j T

1(0) + X(T) = R(T) + 1(T)
R(0) = O
X(0) = O

B. Multi-stage Production—to—Inventory Model

Now consider a multi-stage production—to-inventory system. Again

raw material is acquired from an external source and the finished

product is subject to an external demand; however, there are several

internal stages. Each internal stage acquires its "raw material"

from the preceding inventory. Flow is represented in Figure ll.

Let each stage have the type of cost functions specified for

the single—stage system. Further, for the moment, let the cumulative

demand occurring on each ith inventory be Ri(t). Then the cost equation

for each ith stage is:
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T.
=

• •
Ci fo {fi[Xi (t)] + gi[Xi (t)]+ hi[Ii(O) + xi(c) IV.l5

— Ri(c)]}dc

subject to: Ii(O) + Xi(t) 2 Ri(t); O 5 t 5 T, i=l, ..., N

Ii(O} + Xi(T) = Ri(T) + Ii(T) i=l, ..., N

Ri(0) = 0 1=1, ..., N

The total cost, TC, for the system is:

N N T_
rc = 2 ci = 2 f {fi[xi'(:)] + gi[Xi'(t)] IV.l6

i=l i=l O

+ hi[Ii(0) + xi(:) - Ri(t>]}dc

Subject to: Ii(O) + Xi(t) i Ri-(t); O 5 t 5 T, i=l, ..., N

Ii(0) + xi(r) = Ri(T) + Ii(T) 1=1, ..., N

Ri(O) = O i=l, ..., N

Xi(O) = O i=l, ..., N

In the multi-stage system, each process draws material from the

previous inventory; therefore, the cumulative production rate in

process i+l is related to the cumulative demand on inventory i by:
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X++l(t) = Ri(t) 1=l, ..., N—l IV.l7

Note that raw material for process one is acquired from an

external source. Also, recall that the external demand, RN(t), is

known.

Define ki i+l as the amount of "raw material" in inventory i
9

required to produce one unit of product entering inventory i+l.

The relationship between production at stage i+l and demand at stage

i becomes:

Now, suppose that the production process requires some amount of

time to convert raw materials to processed materials. In general,

assume that 2++1 time units elapse from the time raw material is
withdrawn from inventory i until the processed product enters inventory

i+l. The relationship that exists between production at stage i+l and

_ demand at stage i becomes:

(ki,++l) Xi+l(t+2i+l)·= Ri(t) IV.l9

Making the appropriate substitutions, the objective function _

for the multi—stage model is:
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N T_
min rc = 2 [ {f [x '(«;)] + g [x.'(c)] IV.20i i i 1i=l 0

subject to:0

j t E T - 21+1, i=l, ..., N—l

i=l, ..., N—l

Xi(O) = O i=l, ..., N

C. Multi—stage Production—to—Inventory Model with Cyclic Flow

Let the production—to—inventory system be expanded to include

cyclic (feedback) flow. Assume that stage N, in producing good

products, also produces defective products that can be recycled in

process N+l. Subsequently, the recycled products are placed in

inventory j. Numerous examples exist in addition to the nuclear

fuel cycle. One example is steel forgings. The defective forgings

are melted down and reenter the system as raw steel ingots. The

flow for the general case is shown in Figure 12.

_The cost functions remain as before except for stages j, N—1, N

and N+l. For stage j the purchasing cost function and the production

cost function remain as before; however, the holding cost function

will now include the input production from stage N+l. The holding

cost function becomes:
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Changes in stage N result from now having two inventories, e.g.,

finished products [IN (t)] and scrap [IN (t)]. Let the fraction of
l 2 .

production resulting in finished parts be a (0 E ¤ j l) and the

fraction scrap be 1-a. The amount of raw material now necessary to

produce one unit of finished product in inventory N is (kN_l N)/a.
S

For stage N the purchasing cost function and the production cost

function remain as before. The holding cost functions become:

hN [IN (O) + XN(t) • a - RN(t)] + hN [IN (O) + (l—¤)XN(t) IV.22
l l 2 2

' (kN,N+l) X’N+l (t+”Q'N+l)]

The holding cost function for stage N—l is revised to include

the increased demand resulting from some of the produced parts in

stage N being defective. The holding cost function for stage N—l

becomes:

IV.23Finally,stage N+l has only a purchasing function and a

production function, since it produces to replinish inventory j. .

The purchasing cost function and production cost function for stage

N+l are:
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fN+l[xN+l'(1;)]+ g[xN+l'(1;)]. IV.24

Making the appropriate substitutions, the obj ective function for

the multi——stage production to inventory system with cyclic (feedback) _

flow becomes:

T j—l_ U

mm TC = fo [(1; {£i[Xi (1:)] + gi[Xi (c)] + hi[Ii(0) IV.25

+ X10:) — (ki i+l)Xi+l(t+2i+l)]} + fj[Xj '0:)]

+ gj[Xj '0:)] + hjllj (0) + Xj (t) + XNH0:)

.N-2 _
i

- (kj ,j+l)Xj+1(1;+,Q,j+l)]+ 1:;+1
{fi[Xi' (1;)]

+ gi[Xi'0:)] + hi[Ii(0) + X10:) — (ki,i+l)Xi+l(t+ßi+l)]}

N)XN+

gN[XN'0:)] + hN [IN (0) + ¤¤XN0:) — RN0:)] u
l l

+ "N2[IN2(°) + ‘l‘°‘”‘N ‘ ("N,N+1”‘N+1‘°+“N+1>]
+ fN+l[XN+l'0:)] + gN+l[XN_,_l'(t)])]du
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subject to:

a. Boundary Conditions:

(1) Xi(0) = 0 1=1, ..., N+1

(2)

i=1, ..., N—1; i # j—1

3 I. O + X. T-2. + T—2. = k. . X.() J_l() J_l( J) XN+l(J)b.

Constraints:

(1)O

j t j T — 2++1; i=1, ..., N—2; i # j

(2) Ij(0) + Xj (1:) + XN+l(r:) 3 (kj,j+l)Xj+l(t+2j+l);

0 j r g T — 2j+l

3 I 0 + +2( ) N_l( ) XN_l(t)3(

0 j t j T — 2N

(4) IN (0) + ¤XN(u) 3 RN(c) 0 g u g T
]_ „

(5) IN2(0) + (l—¤)XN(t)3The

model is now complete. Its purpose is to find optimal stage-

wise cumulative production trajectories over the horizon of interest

which will minimize acquisition, production, and inventory holding
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costs while insuring that demands are met. The objective function

assumes the form of minimizing an integral containing several unknown

functions all of which contain a single independent variable, time.

This class of problems is called functionals. The following chapter

develops the mathematicalrfoundation for solving this class of problems.
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CHAPTER V.

MATHEMATICAL FOUNDATION

In the previous chapter, an objective function is developed that A
assumes the form of finding the minimum of the integral of several

unknown functions containing a single independent variable subject

to given constraints. The solution of such an objective function

falls properly into the calculus of variations.

The mathematical foundation for the solution of this class of

problems is developed by considering first necessary and sufficient

conditions for minimizing integrals with a single unknown function,

then integrals with several unknown functions. Next, transversality

conditions are developed for functionals with unknown boundary

conditions. Finally, a method is demonstrated for solving

Ifunctionals subject to inequality constraints.

A. Necessary Conditions for an Extremum

1. Single Unknown Function

Let y(t) be an unknown function, y'(t) be its first derivative

with respect to the independent variable, and let t be the independent

variable. Further, let y(t) and y'(t) be abbreviated by y and y'

respectively. Assume the minimum is sought to the following

functional:
n

b
min I = I F(y,y',t)dt V.l

a

47
U
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. This is referred to as the "simplest problem" in the calculus

of Variations. The necessary condition for a relative minimum is

given by the Euler—Lagrange equation:

SF d SF _
By dt (ay,) — O V.2

The proof of this necessary condition is found in several
texts[27’28’62] and, therefore, is not repeated here.

2. Several Unknown Functions

The previously identified objective function contains several

unknown functions; therefore, the Euler—Lagrange equation must be

expanded to meet this requirement. The necessary conditions for

extremizing a functional containing several unknown functions are

rarely found[24]. Therefore, proof of these necessary conditions is

developed in Appendix B. The resulting equations to extremize the

functional:

b .min J = fa F(yl.yl'„y2„y2'„ -··„ yH.yn'.t)dt V-3

are:

SF d SF «·-—·—·(—t·)„=O V.4Syl dt Syl

SF d SF l
-*-—*-(-*r)=0öyz dt öyz

F
SF d SF--‘—‘- 6*-79 = O-Syn dt Syn
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B. Sufficient Conditions for an Extremum

Sufficient conditions for an extremum for unconstrained functionals
are developed in Appendix B. These conditions are known as the

Legendre conditions and are repeated here. Let

- ·3 FF • • = $—*T‘g*# V-5Yi »Yj Yi Yj

Then, in order for the minimum of a functional to be obtained at the

extremal, it is necessary to satisfy the following chain of inequalities:

F , , > 0 V.6
Y]- Qyl

_

F Fyl'.yl' yl'.y2'
g O

F I I Fy2 Syl
g

y2I,y2I

F ... F Fyl'.yl' vl' yn'

Z g_ 0
F

' '

••|
y ay F v v¤ l yu .yn

Subsequent to the Legendre conditions, the strengthened Legendre

conditions, the Jacobi condition , and the Weierstrass condition

have been developed. PETROV[62] states that it has been shown that
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these conditions are also necessary. In this regard, the Euler-

. Lagrange equations establish necessary conditions locally while

the Jacobi condition and the Weierstrass condition establish

necessary conditions throughout a field. In any case, PETROV

points out that investigation of the latter two sufficiency

conditions is awkward and difficult and that wherever possible a

more practical approach should be taken. Specifically, he states

that if the minimum (maximum) of a functional in a given class of

functions exists and the extremal is unique, it may be asserted

without any analysis of the sufficient conditions, that the minimum

(maximum) is reached on the extremal. _

The recent works of KR0TOV[33’34’35’36] make this approach all

the more appealing. KROTOV derived a test for determining the class

of admissible functions in which the extremal will be found. Once

it is known from the KROTOV test that the extremal falls in a "given

class" there remains only the determination of uniqueness of the

extremal, i.e., does the solution of the Euler-Lagrange differential

equations yield an unique extremal.

KROTOV's works[33’34’35’36] are summarized in Appendix E.

Recall that the extremals sought represent cumulative production

functions. The production rates are assumed to be continuous; there-

fore the cumulative production function should be continuous and
l

smooth. From Appendix E, the admissible class of functionals must

be of the "first kind" and the KROTOV test must have the following

solutions (see E.l4 and E.l5):



Sllim V.7
y'++·=· Y

lim F(x,y’y') l#·+—® V.8Y

To sumarize, the following steps will be taken to insure that

the minimizing extremal is found:

l. The Legendre c§¤d1:1¤nS will be applied to insure a local

minimum. n

2. The KROTOV test in V.7 and V.8 will be applied to assure

that the extremal is in the given class of piecewise smooth

functions. —

~ 3. The solution to the Euler-Lagrange differential equation

will be examined to insure uniqueness.

C. Transversality Conditions

A most important result is now developed. This result is the

key to solving the cyclic (feedback) production to inventory problems.

In the problem statement, all end points can be specified with

the exception of the point where the feedback rejoins the mainstream

flow. Demand here is unknown. Once this demand is known, all end
points are known. What is required is a relaxation of the end point

condition. v
Consider equation B.l4 (Appendix B) which is repeated here:
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öl = O =
fb [gg-n + EE-n + + ä!;—n · V 9a Byl 1 Byz 2 Byn n

d BF d BF d BFnl dt (By ') — H2 dt (By nn dt (By ')]dt
l 2 n

BF BF BF
b

Byl l By2 2 Byn n 8

In the further development of this relationship, it is assumed

-that ni(a) = ni(b) = O. The end points are known and fixed. Now

assume the end points are unknown, i.e., ni(a), ni(b) # 0. The first

variation must be equal to zero; therefore since ni(t) is arbitrary,

the conclusion is that

O i=l, ..., n for t=a,b. V.lOByi

The remainder of the development of necessary and sufficient

conditions is as shown in Appendix B. These results are as shown

in PETR0V[62] and are known as transversality conditions.

D. Extremizing Inequality Constrained Functionals

The last development in the mathematical foundation is a little

known proof for extremizing functionals subject to inequality
•

constraints.

Assume the extremum is sought for the following functional:
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b
I = f F(y,y',t)dt V.ll

a

subject to

y(t) g g(c). V.12

The equality y = g(t) defines the boundary of the admissible

domain within which the function achieving the extremum may be found.

In other words, the extremum must lie in a closed region consisting

of the domain and its boundary. The Euler—Lagrange equation

developed in Appendix B has no such restriction. In fact, it

assumes freedom of variation. Obviously, if the extremal lies on

the boundary of the domain, it has no freedom of variation in one

direction.

Introduce another function, z(t), such that

22 = y—g V.l3

From equation V.l3 it follows that 2zz' = y'—g', and that

y' = 2z2'+g'. The functional in equation V,11 becomes:

b 2I = [ F[z +g,2zz'+g',t]dt V.l4
a

No restrictions have been imposed on the new function z(t), and

the value z=O merely corresponds to the domain boundary. Using the

objective with the new variable, z, the extremal is sought in the

usual manner.
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The Euler-Lagrange equation for the functional in z must now

be satisfied:

BF d BF _
Bz

_
dt (B2') — 0 V°15

Now,
”

§.E=.§'.äz ...8F .1.Z'=§ ....8F ·az By az + By, az ay (2z) + ay, (2z ) V.l6

and
BF _ BF BZ' = BF

Therefore, ·

d BF _ g__ BF = BF g__ BFdt [az,] — dt [ay, (2z)] 2z' ay, + 2z dt (ay,). V.l8

Finally,

BF d BF _ BF__ d__ BFBz aa [az·] ‘ ZZ ay ZZ [aa ‘—ay·>] "·Z9

From equation V.l9 above: »
BF d BF _2Z[ay — — O V.20

The conclusion is_either:

£_.€L AL ..ay dt (ay,) O V.2l
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which is the Euler—Lagrange equation for the objective functional,

or:

z=0 V.22

which means the solution is on the boundary of the closed region,

i.e., on the constraint. In other words, the extremum of the

functional is achieved on either the extremal or on the boundary

of the admissible domain. Also, it may be a curve comprised of

several extremal segments and the boundary segments.

To find the complete solution, the condition at the point of

passage from the extremal to the boundary must be found.

Assume that the passage from the extremal to the boundary occurs

at one point, tl. At this point,y(t) = g(t). Now,
_

tl b
I = f F(y,y',t)dt + f F(g,g',t)dt V.23

a tl

Consider first the portion of the composite curve which is the

extremal:

tl
Il = f F(y,y',t)dt. V.24

a

Since tl is not known, y(tl) is not known. Hence, this problem

is similar to the problem with no fixed end point. (The difference

is that here tl is not known).
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Consider first the general case where both end points are not

fixed. Let the Variation in y(t) be y(t) + eh(t) and be as shown in
Figure 13.

The increment in the functional as y passes to y+eh is written

as:tl+6tl
AI = I(y+6h) — I(y) = I F(y+eh,y'+eh',t)dt V.2S:0+6tO

tl
— I F<y.y'.t>dt

tl
= I [F(y+eh,y'+eh',t) — F(y,y',t)]dt V.26t„ O

tI+6tl
+ I F(y+eh,y'+6h',t)dttl

t0+6t0
— I F(y+eh,y'+eh',t)dt

**0

The first term in V.26 is reduced in identical steps as equation

B.5 is reduced to B.l0. The result is: V
tl

I [F(y+eh,y'+eh',t) — F(y,y',t)]dt V.27c .0
=ftl

[E!-h+§—h']dt
*BY

öy'**0
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Y
Y Y

SY1y<1>+=h<1>

*¤ *¤+<$*¤ *1 1*6 1

Figure 13. Functional with Variable Endpointsf
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Using a linear approximation for infinitesimal Variations, the

second and third terms of equation V.26 become:

tl+6tl ~f F(y+eh,y'+eh',t)dt „ F ötl V.281 tl ~ tl

~. f F(y+ch,y'+6h',t)dt - F öto V.29
t —tZQ O

The second member of equation V.27 is integrated by parts

identically to equations B.10 to B.14, and the result becomes:

61=jtl[—‘?§—i—(äI'l—)h6x+ä”—htl+F 61; V30
t By dt Sy' By' tl 1 °

0 — to

‘ — Flt öto
0

Looking at Figure 13 it is seen that to the accuracy of higher

order infinitesimals, h(t0) and h(tl) can be approximated by:

~ _ I , ~ __ Ih(t0) „ öyo y 6tO, h(tl) „ öyl y ötl V.3l

Substituting V.3l into V.30:
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tl ap 6 BF av
=

l_ _ ___ ____ l_ _ YGI ft [ay dt (ay,)]hdt + By, (Gyl y Gtl) V.32
0 cl

— E- (6y —y'6c ) + F Gt - F 61;By' t O O t l t _ O
0 l O

tl BF 6 BF BFGI = — F};';‘)]hdC + Gyl V.33
t tO 1

GF BF

1 O

BF— (F—y' Gto

In summary, equation V.33 expresses the Variation of the

functional as the Variation of y(t) within the original range of

integration and Variation outside the end points as a result of

Varying the end points. For the extremal, the integral part of V.33

must Vanish leaving:

- QL _ 1 QLGI 3y,|t Gyl + (F y 8y,)|t Gtl V.34
1 1

BF BFgyvllt 6}*0 Gto
O O
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Now, suppose that the two end points slide along two curves

y = m(t) and y = n(t). To the accuracy of higher order infinitesimals,

öyo = m°(t}Öt0; Öyl = n'(t)Ötl V.3S

At the extremum 6I=0 and the substitution of V.35 into V:33

becomes

= = EE. _ • ALÖI O 8y,It n'öi;l+ (F y 3},,),1: ötl V.36
l l

BF BF— m°ötO + (F—y' Öto
t t0 0

='

=_'

'

*~ölO [ay, n +F y ötl V.37
l

— -— +F- ——— Ö[8y« m y to
0

Since öto and ötl are arbitrary and independent increments, it

follows that:

F], = 0 v.38to

F[(¤'·—y') ä-;+ F]| = 0 V.39tl
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Returning now to equation V.23, it is seen that the left end

point is fixed (eduation V.38 does not apply) and that the right

end point is not fixed (equation V.38 does apply). Combining these

results:

61 = [(g'— ') EE-+ F] 6t V 401 V ay' 1 't1

Consider now the second integral in equation V.22. Since this

functional lies on the boundary, the only Variation possible at tl

is 6tl; therefore,

b b
612 = I F(g,g',t)dt — I F(g,g',t)dt V.4ltl-6tl tl

OI°

612 = [F(g,g',t)]| (-6tl) _ V.42tl

Since the extremum is assumed on the composite curve, 61 = 611 +

612 = O, the result is:

61 = O = 61 + 61 = [F(g,g',t)] (-6t ) V.431 2 t l
°

BF+ [(8°··Y°) g*r+F]l ÖtlY tl
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Because ötl is arbitrary and because at tl, y=g, V.43 reduces

=to:

k
1 1 1 BF --F(Y„8 ,1:) + (8 —Y ) gw + F - 0 V·4¢»Y 1;

g 1
l

SFF(Y,Y',t) - F(Ysg'>t) = (Y'”g') Q7l = 0 V'45
t1

The difference of F(y,y',t) — F(y,g',t) is transformed using

the Lagrange theorem of the mean:

f(a) — f(b) = (a—b)f(c), where a < c < b.

Adapting V.45 accordingly results in:

8F(Y,Y'„t) — F(Y,8',t> = (Y'—') gg [F(Y,q'„t)] V-46

where y' < q' < g'.

Equating right hand sides of V.45 and V.46:

1 1 3 1 - 1 1 3 1(Y -8 ) gg? [F(Y,Y „t)] — (Y -8 ) gg [F(Y,q ,t)] V.47
tl tl

or ·

1 1 3 ° 1 3 ' 1(Y -8 )[gg {F(Y»q „t>} - g {F(Y„Y .1:)}] = 0 V.48
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It follows immediately that y'(t) = g'(t) because q is some

intermediate value between y and g and as such has no restriction

on q'. Therefore, in the general case the term in brackets in

equation V.48 is not equal to zero. The conclusion is that at tl,

the slope of tangent to y (the extremal) is equal to the slope of

the tangent to g (the constraint). This important deduction enables

all pieces of extremals and boundary curves of which the composite

extremal exists to be found. Finally, since g(t) is known, the

intersections of all extremal pieces with the boundary can be found

by solving a set of simultaneous equations numerically. Thus, all

constants of integration can be found. _

Recognition of the implications of this result, the transversality

conditions, and KROTOV's works provides the key to solving the multi-

stage production—to—inventory system with cyclic flow. This result

demonstrates that the derivative of the extremal with respect to time

at the point of passage to the constraint is equal to the derivative

of the constraint with respect to time at the point of passage. Since

the extremal intersects the constraint at the point of passage, the

two curves share a common point. Two curves sharing a common point _

and having equal slopes at that point form a composite curve that is

smooth about that point. KROTOV's test assures smoothness otherwise.

Finally, the remaining obstacle is that the boundary condition at the

point the recycle reenters the mainstream is not known. Application

of the transversality conditions removes this obstacle. There remains

only a discussion of the sufficiency conditions for functionals
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constrained by inequalities.

E. Sufficient Conditions for Inequality Constrained Functionals

As previously stated the solution to inequality constrained

functionals is generally a composite curve consisting of extremals

and constraints. Sufficiency conditions for extremals are developed

in section V.B. There remains only the question of what can be said

about the portion(s) of the curve coincident with the domain boundary.

Because the curve is on the domain boundary, Variation is only

possible in one direction. Assue that a Variation öy is appended

to the curve where y(t) is equal to g(t). In order to avoid violation~

of the inequality, öy > 0. The Variation in the functional at this

point is:

X2
- §§_ _<l_ BF A

x1

If y(t) is a minimum, then:

51 3 0 V.50

2 However, no basis exists for deducing, as before, that:

SF d SF _ ·
ag — dt (ag,) — 0 V.5l

It is only asserted that:
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BF d BF- dt O. V.52

The final conclusion is that in order for y(x) to yield the

minimum for the portions of_the curve coincident with the domain

boundary, ·it is necessary that the inequality in V.52 apply.

The mathematical development is now complete. Attention is now

directed toward solving the specific problem.
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CHAPTER VI.

SPECIFICS OF THE PROBLEM AND THE SOLUTION

To proceed with the solution to the specific problem, the nuclear

fuel cycle is formulated as a multi—stage production—to-inventory

system with cyclic (feedback) flow. The external demand for energy

is translated into a continuous time—dependent equation representing

the demand for fabricated fuel reloads. Cost equations are then

developed for production, inventory holding, and acquisition costs.

Representative model parameter values are then tabulated. At this

point, the general form of the solution is found. From the general

form, the specific solution is generated by applying boundary condi-

tions, transversality conditions, and the technique for solving

inequality constrained functionals. Sufficiency conditions are then

applied to insure the solution is a minimum. Finally, the results

are discussed.

A. Formulation of the Nuclear Fuel Cycle as a Multi-stage Cyclic ’

. Production-to—Inventory System

_ The basis of the model formulation is a conceptualization of the

nuclear fuel cycle that is consistent with a production and inventory

perspective. This view of the nuclear fuel cycle is constructed by

treating each of the stages of the cycle as a production facility and

by associating with each such facility an inventory of output. In

addition, exploration for uranium ore reserves is treated as a

production stage with an associated inventory corresponding to the

. reserves located. Thus, each stage of the fuel cycle is represented
Z

66
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as a basic building block of the type first used by ZANGWILL[7§}·r

and shown in Figure 14.

Under this concept of the stages, the nuclear fuel cycle and

its material flows can be represented in the form illustrated in

· Figure 15. It should be noted that each stage can be expanded into

several parallel plants and that the stages of enrichment and
u

irradiation in the reactor can be represented as several stages each

of which corresponds to a separate product enrichment. In addition,

aggregation of several parallel facilities or several enrichments into

a single representative stage is also reasonable,and this approach is

used here. „

As is indicated in Figure 15, the output materials from a given

stage become the input materials for another stage. However, a model

using this representation of the cycle will be "driven" by the demand

for energy from the reactor. Thus,this conceptual representation of

the fuel cycle should permit the analysis of the implications of

customer demand for energy upon the production operations throughout

the fuel cycle. lt will also permit the analysis of strategies for

using vertical integration of the cycle to stockpile fuel materials.

One further adaptation is necessary for the nuclear fuel cycle.

Reprocessed UF6, in general, has a different percent of U—235 enrich-

ment than natural feed UF6. Different enrichment levels require ·

different SWU, and, therefore the enrichment stage has different

production and cost characteristics. Because of this, an additional

stage, enrichment of reprocessed UF6, is introduced. The nuclear
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Stage

Production Product
Facility Inventory

Figure 14. Basic Stage Composition(78)
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Figure 15. Nuclear Fuel Cycle as set of _
Production Stages
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fuel cycle production-to-inventory system, as adapted, is shown in

Figure 16.

B. Development of the Nuclear Fuel Demand Equations

The purpose here is to develop a macroscopic management tool.
‘ Recent works[39’40’4l] attempting similar purposes tend to standardize

assumptions as to reactor size, U—235 enrichment percentages, discharge

enrichment assays, etc. These same assumptions are used here to

permit comparison of results.;„;„_.

It is assumed that a typical reactor is in a one thousand

megawatt electric generating plant. An average fuel enrichment of

three percent U-235 is inserted into the reactor and the discharge

assay of the spent fuel removed is .86 percent U-235. A full core

load is inserted when the reactor comes on line, and each year one-

third of the core is replaced with fresh fuel (a reload). Based on

this scenario, the annual demand for fuel reloads can be approximated _

by assessing one reload for each reactor on line the previous year

plus three reloads for each reactor that comes on line that year.

The "World List of Nuclear Power Plants"[6O] gives the history of

the operation of all nuclear power plants in the United States. It

also projects all nuclear power plants scheduled to come on line

through year 2000. Because approximately eight years are presently_

required to construct and license such a plant, the schedule for the

next eight years is realistic. MORRISON's[54] polynomial forecasting

technique described in Appendix C uses the history and schedule to
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predict nuclear reload demand through year 1994. The results of this

analysis are depicted in Table 5. It should be noted that the fore-

cast is based on cumulative reloads demanded. For ease of c0mputation,’

this cumulative figure is adjusted to a base year of 1976.

A measure of the forecast error is obtained using the procedure

_ in Appendix C. To estimate the variance of the error, the forecasted

results are compared to ten years of known.data. The comparison is

shown in Table 6.

The estimate of the variance of the error is given by:

2 _ Z (difference)2 _ 29 621 _S — — ··—‘L—·—9 — 3,291.2 VI.1

The estimate of the variance of the error of the forecast for

the ten—year—ahead forecast is determined from equation C.46:

62 W(l0)W(10)T : 62 W(1O)W(1O)T = 3,291.2 V1.2
858

= 182,779

This corresponds to three standard deviations of 1,283 reloads.

A measure of the association of the forecasted demand to the
1

forecast year is given by the index of determination, R2. For the

data shown in Table 6, the total sum of the squares of the deviations

is 105,081,273. The sum of the squares due to regression is l02,568,282.

11666, R2 = .976.
For the model developed, a continuous demand function is assumed.

To find the nominal trajectory for the forecast, OSTLE's[6l] quadratic



73

Table 5

Ten-Year Forecast of Reactor Reloads Based on

Presently Scheduled Reactors

Reactor Cumulative Equivalent Cumulative Adjusted to
Year Start—up Reactors Reloads Rgd. Reloads Base Year (1976)

1960 1 1 3 3
61 1 2 4 7
62 2 4 8 15
63 1 5 7 22
64 0 5 5 27
65 0 5 5 32
66 1 6 8 40
67 0 6 6 46
68 2 8 12 58
69 3 11 17 75
70 4 15 23 98
71 4 19 27 125
72 8 27 43 168
73 7 34 48 216
74 12 46 70 286
75 8 54 70 356
76 5 59 69 425 0
77 [10]* [69] [89] [514] [89]
78 [5] [74] [84] [598] [173]
79 [9] [83] [101] [699] [274]
80 [10] [93] [113] [812] [387]
81 [17] [110] [144] [956] [531]
82 [14] [124] [152] [1108] [683]
83 [17] [141] [175] [1283] [851]
84 [17] [157] [192] [1475] [1050]
85 (1661)** (1235)
86 _ (1870) (1445)
87 (2096) (1671)
88 (2336) (1911)
89 (2590) (2165)
90 (2858) (2433)
91 (3141) (2715) _
92 (3439) (3014)93 (3749) (3324)
94 (4077) (3652)

*Brackets represent expected reloads based on actual schedule of
reactors to come on line from 1977-1984.

**Parenthesis represent expected reloads based on forecasting
techniques.
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Table 6

Error of the Forecast for Reloads

Year Actual Forecast Difference (Difference)2

1975 356 334 22 484

1976 425 400 25 625

1977 514 473 . 41 1681

1978 598 552 46 2116

1979 699 648 51 2601

1980 812 872 ,-60 3600

_ 1981 956 972 -16 256
1982 1108 1069 _ 56 3136

1983 1283 1164 119 14161

1984 1475 1444 31 961

E (differeuce)2 = 29621
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regression technique is applied. The nominal trajectory for the

cumulative reloads required by the reactors as a function of time

is given by:

7.306 tz + 71.606 t VI.3

· Again t=0 corresponds to a base year of 1976.
4

Each year one—third of the core is replaced with a reload. The

discharged spent fuel resides in "cooling off" storage for six months.

It is as if the reactor were producing spent fuel reloads with a

production lag time of 1 l/2 years. It is necessary to express this

"cumulative production rate" as a function of time. Table 7 shows

the discharge of spent reloads developed in the same manner as the

demand for reloads. For this case the estimate of the variance in

the error of the forecast is 6,327. This corresponds to three standard

deviations of 1,778 reloads. Here the index of determination, R2, is

equal to .967.

Using the data in Table 7, the quadratic regression yields the

following expression for the reloads discharged as a function of time:

4.292 t2 + 73.86 t Vl.4

C. Development of the Cost Equations

l. Production Cost Equations e

The form of the production cost equations is discussed in Chapter

III. Specifically, an optimal level of production is assumed, and

any variation of the actual production rate from this optimal
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Table 7

Ten—Year Forecast of Reactor Discharge of Equivalent Reloads

Cumulative Reloads Cumulative Adjusted to
» Year Reactors On Line Discharged Reloads Discharged Base Year (1976)

1960 1 O0°
61 2 1 l
62 4 2 3
63 5 4 7
64 5 5 12
65 5 5 17
66 6 5 22
67 6 6 28
68 8 6 34
69 11 8 40
70 15 ll 51
71 19 15 66
72 27 _ 19 85
73 34 27 112
74 46 34 146
75 54 46 192
76 59 54 246 0
77 [69]* [59] [305] [59]
78 [74] [69] [374] [128]

~ 79 [83] [74] [448] [202]
80 [93] [83] [531] [285]
81 [110] [93] [624] [378]
82 [124] [110] [734] [488]
83 [141] [124] [858] [612]
84 [157] [141] [999] [753]
85 (1127)** (881)
86 (1276) (1030)
87 (1435) (1187)
88 (1603) (1357)
89 (1782) (1536)
90 (1971) (1725)
91 (2169) (1923)
92 (2376) (2130)
93 (2612) (2366)
94 (2966) (2719)

‘

*Brackets represent expected reloads discharged based on actual
schedule of reactors to come on line.

**Parenthesis represent expected reloads discharged based on
forecasting technique.
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production rate results in costs that are proportional to the square

of the increase (decrease).

Let Li be the optimal production rate for stage i. Let Pi be

the production cost per unit at level Li. Let Bi be the constant

of proportionality for the incremental increase in cost per unit for

the square of the difference in the actual production and the optimal

level of production. The production cost function for anytime t is:

gi[xi'(c)] = BiPi[Xi'(t) — Li]2 + PiXi'(t) VI.5

Expanding on the right:

B.P X '2(t) - (2B P L + P )X '(t) + B P L 2 VI.61 i i i i i i i i i i

Make the following substitutions:

a. ai = BiPi VI.7
b. bi = 2BiPiLi + Pi
C. C. = B.P.L.21 1 1 1

and the production cost function becomes:

I =
I2 _ Igi[xi (t)] aiXi (t) biXi (t) + ci VI.8

To establish production costs, the Bi is first determined. For

example, assume that an increase/decrease in production at stage i

of twenty percent results in an increase of ten percent in production

costs, or:

a. B.P.[1.2 L.—L ]2 = .1 P L VI 91 1 1 i i i °
_ 2.5b' B1" L.

l
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Table 8 shows the assumed optimal production rates, Li, from

which the Bi are determined. Of the production rates shown, all

except for enrichment, are from references shown. Enrichment

capacities must be computed from a total capacity of 27.6 million

SWU annually[7l]. From the Fuel Management Module-3[7], one kilogram

of UF6 enriched to 3% from natural feed (.711%) with tails of .25%

requires 5.965 kilograms of feed and 3.811 SWU. For one kilogram

of UF6 enriched to 3% from reprocessed UF6 (.86%) with tails of .25%

requires 4.508 kilograms of feed and 2.857 SWU.

Because each stage converts the uranium fuel to a different form,

a material conversion factor is necessary to balance the material. ·
flow. The factors are developed in Appendix D and are shown in

Table 9. Applying these factors to a fuel reload that has been spent,

reprocessed, and reenriched to its original level of enrichment yields

the following results:

a. 17,668 kg UF6
h V1.1O

17,668 kg UF6 _b. = 3,919 kg Entiched UF6

3,919 kg Enriched UF6c. . = .095 Re10adS

From these computations it is concluded that not more than ten

percent of the enrichment process capability should be applied to

enriching reprocessed UF6. From the SWU conversion factors just
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{
Table 8

Optimal Production Leve1s[4O’7l’72]

ätäge Identifier Optimal Production Level (Units/Year)

Exploration . L1
G

29,542,863 tons ore/year

Mining L2 11,920,804 tons ore/year

Milling L3 20,909,090 kg U3O8/year

Conversion L4 14,780,000 kg UF6/year

Enrichment (Natural Feed) L5 6,517,974 kg UF6 (3.0%)/year

Fabrication L6 146.075 reloads/year
Reactor L7 1.000 reloads/year

Reprocessing L8 2,218,487 kg UF6/year

Enrichment (Reprocessed) .L9 966,048 kg UF6 (3.0%)/Year
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Table 9

Material Flow Conversion Factors

Stage Identifier* Conversion Factor

E 1 k lxp oration 0,1
M' ' k l

Milling kz 3 .588
C i k .onvers on 3,4 8054
Enrichment (Natural Feed) ka 5 5.965

9

Fabrication k5 6 41,354
9

Reactor k6’7 1
Reprocessing

h
k7 8 .0000566

9

Enrichment (Reprocessed) k8 5 4.508
9

*ki j is the number of units in inventory i required to
9

produce one unit in inventory j. See Appendix D.
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given, the optimal production level for enrichment of naturaluranium feed is: ‘
.9 x 27,600,000 SWU/3.811 = 6,517,974 kg UF6 (3%) VI.11

The optimal production level for enrichment of reprocessed UF6

is: ,

.1 x 27,600,000 SWU/2.857 = 966,048 kg UF6 (3%) VI.12

Next, the individual unit production costs per unit produced,

Pi, are required. Generally, production costs are proprietary and,

therefore, not available[69]. Table 10 lists production costs assumed

by ERDA as of 1976. The only exception is the reprocessing cost, P8.

ERDA assumes $280 per kilogram UF6. Other estimates are as low as

$90[69]. This variance results from a lack of information (the last
reprocessing occurred in 1972). The low figure will be used initially,

and the sensitivity analysis will investigate the sensitivity of the

model to this cost parameter.

From Tables 8 and 10 and from equations VI.7, the values of ai, _
bi, and ci are now determined and are enumerated in Table ll.

To complete the production data, production lag times are assumed

to be those shown in Table 12. ·
2. Inventory Holding Cost Equations

Inventory holding (carrying) costs are difficult to approximate[30].

However, nuclear fuels, particularly after the milling stage, are
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Table 10

Stage Production Costs[69’7l]

Stage Identifier Production Cost ($/Unit)

Exploration Pl $1.30/ton ore

Mining P2 $20/ton ore _

Milling P3
e

$4.00/kg UBO8
Conversion P4 $4.40/kg UF6

Enrichment (Natural Feed) P5 $381.10/kg Enr. UF6 (3.0%)

Fabrication P6 $2,826,000 reload

Reactor " P7 —
Reprocessing P8 $90/kg UF6

Enrichment (Reprocessed) P9 $285.70/kg Enr. UF6 (3.0%)
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Table l2

Production Lag Times[65]

Stage
‘

Tdentifier Lag Time (Years)
I

l—Exploration R1 1
2—M1¤1¤g 22 1/6

3—Milling R3 l/4

4—Conversion R4 l/4
5—Enrichment (Natural Feed) -ß5 l/4
6—Fabrication R6 l/4
7-Reactor R7 l 1/2
8—Reprocessing R8 l/4

9—Enrichment (Reprocessed) R9 l/4
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highly intensified energy sources. As such, they comprise a very

expensive commodity costing at some points several hundred dollars

per kilogram. As stated by HADLEY[30], there are costs associated

with insurance, tax, lights, heat, warehouse rent, security, etc.;

however, opportunity costs, breakage, pilferage, interest, etc.,

are proportional to the investment. In the case of nuclear fuels the

investment aspect dominates[8’22],

Figure 7 shows an estimate of the increase in the value of uranium

in terms of constant 1972 dollars. The slope of this curve appears

nearly linear over the interval of interest. Let Mi be the value of
one unit in inventory i at the base year (1976). Then the value of

each unit of product in inventory i can be estimated over the interval

g of interest by: ·

l
Mi(l + qt) VI.l3

where Miq is the slope of the line.
1

The amount in inventory i at any time t is given by the initial

inventory plus cumulative production minus cumulative demand, Ii(0) +

Xi(t) — Ri(t). Assume a time value of money factor for the holding

cost to be d. Then the holding cost for inventory i at time t is

given by:

hi(t) = dMi(l + qt)[Ii(O) + Xi(t) — Ri(t)] VI.l4
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To quantify this relationship, values for d, q, Ii(Q), and Mi

are required. Consider first the initial inventories, Ii(O).

Production lags require either initial inventories or shortages.

The purpose of this development is to demonstrate where fuels should

be stockpiled; therefore, shortages are not allowed. Also, all

processes are presently operating, except reprocessing. Therefore,

working inventories are on hand. Except where actual initial

inventories are estimated, they are computed to be the amount

necessary for production in each production lag time. ERDA[72]

has estimated the tons of ore in the explored reserve. The reloads

of spent fuel are estimated by taking the cumulative number of

reloads discharged from Table 7 as of 1976 and subtracting the amount

reprocessed. Assume a reload of spent fuel requires 30 tonnes. The

reprocessing plant at West Valley reprocessed 244 tons of spent fuel

in its operation[7l]. That is approximately eight reloads. From

·Table 7 the cumulative spent fuel reloads as of 1976 is 246.

Consequently, the initial inventory of spent fuel reloads is

assumed to be 238. Initial inventory values are shown in Table 13.

Final inventories are assumed to be zero at all stages where

the model does not require otherwise. An example of where this

might occur is in recycled material. The model may show that it is

not economical to reprocess, in which case an ending inventory of
e

spent fuel reloads can accumulate. Otherwise, assume that Ii(T) = 0

for all i.
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Table 13

Initial Inventory on Hand[60’72]

‘ Stage Identifier Units on Hand

Exploration Il(0) 100 x 106 tons ore

Mining I2(0) 5,444,900

Milling I3(0) 9,254,000

Conversion I4(0) 11,483,000

Enrichment (Natural Feed) I5(0) 2,051,000

Fabrication I6(O) 0

Reactor I7(0) 238
I

Reprocessing I8(0) 643,400

Enrichment (ReProcessed) I9(0) 0
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The time value of money factor, d, is assumed to be .l4[47].

The marginal increase in the value of uranium, q, is found by

interpolation of the curve in Figure 7. Its value is .05.

The initial value of each unit in inventory, Mi, is computed from

the base value of U308. Conversion factors and unit production costs
are used to compute the remaining values. Table 14 enumerates the

values of Mi.
There is one exception to the holding cost function developed.

Spent fuel reloads not reprocessed are assumed to be encapsulated

and stored. This represents a penalty for not reprocessing. Assume

that this penalty is a constant cost per reload, S. Then the holding 4

cost function for the spent fuel (stage 7) is:

h7(t) = S[I7(0) + X7(t) — k7’8X8(t+ß8)] VI.l5

The penalty for encapsulating and storing spent fuel is placed

at $90 per kilogram[69]• The value for S is, then, assumed to be

$2,700,000.

3. Acquisition Cost Equations

The acquisition cost is assumed to be the purchase of rights

to the ore located by exploration. In this respect it is a function

of the production (exploration) rate and,implicit1y,of time. Let 4
MO represent the cost to purchase one ton of ore located in the base

year. Applying the same cost function as VI.l3, the acquisition cost

function becomes:
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Table lk

Present Value of Inventories

Stage Identifier Value ($/Unit)

External Source Mb $7.00/ton ore

Exploration M1 $9.00/ton ore

Mining M2 $29.00/ton ore

Milling M3 $5k.87/kg U308

Conversion M4 $78.08/kg UF6

Enrichment (Natural Feed) jM5 846.85/kg UF6 (3.0%)

Fabrication M6 $37,8k6,5l9/reload

Reactor M7 $609,16k/reload

Reprocessing M8 l2k.k7/kg UF6

Enrichment (Reprocessed) M5 8k6.85/kg UF6 (3.0%)
u
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f(t) = M0(1 + qt)X1'(t) VI.16

The value for q has already been defined, and Mb is shown in

Table 14.

· Finally, the time horizon of interest is taken to be 18 years

(1977-1994). This corresponds to the forecast period previously

developed.

D. Solution Equations in General Form

Making substitutions of the appropriate equation forms into the

general objective function (IV.25) and collecting the equations for

acquisition cost, production costs, and holding costs, the objective

function becomes:

T 9 2— _ v u _ •
min TC - I ([l+qt]M0Xl (t) + E {aiXi (t) biXi (t) VI.l7

-0 i=l

4 _
+ ci} +

iil
{dMi(1+qt)[Ii(0) + Xi(t) - ki,i+l

' Xi+l(t+£i+l)]} + dM5(l+qt)[I5(0) + X5(t) + X9(t)

- k5,6X6(t+£6)] + dM6(1+qt)[I6(0) + X6(t) — R6(t)] ‘

+ S[l7(0) + X7(t) - k7,8X8(t+£8)] + dM8(l+qt)[18(0) ·

+ X8(t) —
k8’9 · X9(t+£9)])dt
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subject to:

a. Boundary conditions VI.l8

(1) Xi = O i=l, ..., 9

(2)i=l,

..., 7; i # 5

(3) I5(O) + X5(T-26) + X9(T-R6) = k5,6 X6(T)

(4) I6(0) + X6(T) = R6(T)

2 (5)b.

Constraints
(1)0

j t i=l, ..., 7; i # 5

(2) I5(0) + X5(t) + X9(t) 2 k5,6 X6(t+£6)

0 j c g T-26 (
'

(3) I8(O) + X8(t) 2 kß,5 X9(t+£9) 0 j t j T-29
(4) I6(O) + X60;) 2 R60;) 0 g t 5_ T

Applying the Euler-Lagrange equation for a functional dependent

on many functions (V.4) results in the following system of differentialequations:
BF d BF _ ._ ·a. 8Xi(t) - dt [8Xi,(t)] 0 1-1, ..., 9 VI.l9

dMl(l+qt) - qMOb. X1 (ti) =
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d(l+qt)(M2—kl 2Ml) ·II=c.X2 (t) zaz

.d(l+qt)(M3-kz 3Mz)
V!=d.X3 (c) 283

d(1+qt)(M4—k3 AM3)
E

II = 3e. X4 (t) 2aA

d(L+qt)(M5—k4 SMA)f. X "(t) = ·————·————··——L————5 2aS
l

d(L+qt)(M6—k5 6MS)g·6

h. X7(t) E a known function

d(l+qt)(M8—k7 8s.)1. X "<c> = ————————=——8 2a8

d(l+qt)(M —k M )
j. 835 8

9

The forms of VI.l9 b—j are such that they may be immediately

integrated. The twofold integration will result in two constants of

integration. Recalling boundary condition VI.l8 a(l); Xi = O, _

i=l, ..., 9; it is readily seen that the second constant of

integration is zero. The general solutions are as follows:
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dqM dM —qM
1 3 1 O 2 ·, = —-——— + —-———— + .a X]-(ti} lza t ha t clt VI 20
1 1

dq(M1'k1-1 1M1—1) 3 d(M1“k1-1 iMi—1) 2b. X(t)=""'——·—·**—‘z—*—*—*t +————————*——————c +cti 12ai 4ai i

i=2,3,4,S,6.
·

dqM dM —k S_ 8 3 8 7 8 2c. X8(t) ————l2a 1; +————*——4a u + c8t
8 8

d M — M d M - MX. X X.X=——.—"‘5"858’ .3.-.-—X.—‘5"858’ .2...9 12a 4a 99 9
V and, again, X7(t) is a known function.

E. Derivation of the Specific Solution

Note that the general solution equations in VI.20 are independent

of each other except for their relation through the constraint

inequalities. Each general equation becomes specific by the

application of boundary conditions or transversality conditions.

The result is an extremal for each stage representing the optimal

cumulative production function for that stage if no constraints are

given. This extremal is then compared with the constraints. If all

constraints are inactive, the extremal is the extremizing cumulative

production function. If the constraints are active then the

extremizing cumulative production function is a composite curve ‘

consisting of the extremal and the constraint. The results in

Chapter V.D are applied to determine the points of passage from the

extremal to the constraint and vice versa.
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Because each stage exacts a demand on its preceding stage, J

it is necessary to begin the solution at the point where external

demand is known and work backwards through the stages. However, the.

cyclic (feedback) flow extremizing cumulative production functions

must be determined before the extremizing cumulative production

function at the mainstream reentry point is determined. For the

nuclear fuel cycle, the stagewise extremizing cumulative production

functions should be found in the order of fabrication, enrichment of

reprocessed UF6, reprocessing, enrichment of natural feed, conversion,

milling, mining and, finally, exploration and acquisition.

Following this technique, it is necessary to begin with the

_fo1lowing given conditions:

1. The cumulative demand function for nuclear fuel reloads,

R6(t), is given by VI.3:

.R6(t) = 7.306 tz + 71.606 t VI.21

2. The cumulative production function for the reactor, X7(t),
W

is given by VI.4:

X7(t) = 4.292 tz + 73.86 t V1_22

l. Fabrication '

Begin by finding the extremal for the fabrication stage because

demand on this stage is known. The first step is to find the constant

of integration.
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Using VI.20b and substituting the values for the model parameters

shown in Tables 11, 13, and 14: ’

dq(M —k M ) d(M —k M )a_ VL236 12a 4a 66 6

.14 x .05 (37 847 000-41 354 x 846.85) 3= 1....._.......L...x_.....3......._......5* X6(5) 12 X 483,660 5

.14 (37 847 000-41 354 x 846.85) 2_...._.J...;......4.............. _5 4 X 483,660 5 5 C65

3 2c. X6(t) = .0034088 t + .20453 t + cöt

To solve for the constant of integration, c6, apply boundary

condition VI.l8 a(6):

a. I6(0) + X6(18) = R6(18) VI.24

b. .O034088(18)3 + .20453(l8)2 + c6(18)

= 7.306(l8)2 + 7l.606(l8)

c. c6 = 198.33

The extremal for the cumulative production function for fabrication
is: ‘

;X6(t) = .0034088 t3 + .20453 t2 + 198.33 t VI.25
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Next, it is determined if the extremizing function is the

extremal or a composite function consisting of the extremal and

the domain boundary. This is accomplished by comparing the extremal

to the constraint VI.l8 b(4):

a. 0 g u g 18 VI.26

b. .0034088 t3 + .20453 t2 + 198.33 t

g 7.306 t2 + 71.606 1; 0 g c g 18

By inspection the extremal is equal to or greater than the

constraint throughout the interval. The optimal cumulative production

function for fabrication is given by VI.25.

The solution can proceed no further along the mainstream because

the recycle flow reenters the inventory before fabrication. The

feedback flow must now be found.

2. Enrichment of Reprocessed UF6
At the point where the recycle reenters the mainstream, the

boundary conditions are not known. The extremizing function for

the cumulative production of enriching the reprocessed UF6 must then

meet two necessary conditions:

a. The original Euler—Lagrange condition given by VI.l9a and,.

b. Transversality conditions as stated in V.7.

The first necessary condition results in VI.20d, or:
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dq(M —k M ) d(M —k M )a_ VL279 12a 4a 99 9

b. X9(t) = .14 x .05 (846.85—4.508 x6l24.47) t3
12 x 7,393.5 x 10

+ .14 (846.85—4.508 x 1ä4.47) tz + Cgt
4 x 7,393.5 x 10

c. X9(1;) — 22.544 1; + 1352.7 1; + c91;

The second necessary condition results in:

BF _ ”a. 8X9,(t)It=T — 0 VI.28

'
1 2b. 2a9 X9 (t)

b9lt=l8 0

b
c. X9'(18) = E§—·= ————léLäZl—j:g = 1,970,800

9 7,393.5 x 10

From VI.27c and VI.28c

a. X9(t) = 22.544 t3 + 1,352.7 tz + cgt VI.29

b. X9'(c) = 67.632 1:2 + 2,705.4 1; + cg ’

c. X9'(18) = 67.632(l8)2 + 2,705.4(18) + cg = 1,970,800

d. cg = 1,900,200
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The conclusion is that the extremal for enrichment of reprocessed

UF6 is:

X§(t) = 22.544 t3 + 1,352.7 tz + 1,900,200 t VI.3O

3. Reprocessing

The enrichment of reprocessed UF6 production function sets the

demand for reprocessed UF6. To continue with the solution, proceed

back down the cyclic flow to reprocessing of UF6.

From VI.20c and substitutions from Tables ll, 13, and 14:

dqM dM —k S_ 8 3 8 7,8 2a. t + c8t V1.3l8: 8

b. X8(t) = .14 x .05 x 124;g7 t3
12 x 1,014 x 10

+ .14 x l24.47—.0000566 x62,700,000 t2 + Cgt
4 x 1,014 x 10

_ 3 2c. X8(t) — 71.605 t — 33,381 t + c8t

To find the constant of integration, apply boundary condition

VI.l8 a(5):

I8(0) + X8(T—29) = kg,5 X9(T) VI.32
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First, I8(0) must be found. Recall that initial inventories,

where not known, are equal to production lag time requirements.

a. I8(0) = k8,5 X9(29) VI.33

13 12 ‘
b. I8(0) = 4.508 [22.544 (Z) + 1,352.7 (Z)

1+ 1,900,200.(Z)]

c. I8(0) = 2,141,900

Now, from VI.32:

a. 2,141,900 + 71.605(18 — Z) — 33,381(18 — Z)

1 3 2+ c8(l8 — Z) = 4.508 [22.544(18) + l,352.7(l8)

+ 1,900,200(l8)]

b. c8 = 9,278,500

I
Thus, the extremal for reprocessing is:

X8(t) = 71.605 t3 - 33,381 tz + 9,278,500 t VI.35

Next, the extremal must be checked against the constraint
U

VI.l8 b(3):
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a. I8(0) + X8(1:) g k8,5 X9(1;+29) 0 g c g 13-29 VI.36

b. 2,141,900 + 71.605 t3 — 33,381 tz + 9,278,500 t

1 3 1 2
1 4.508 [22.544(t + Z) + 1,352.7(t + Z)

+ 1,900,200(t + %Ö]

c. 71.605 t3 — 33,381 tz + 9,278,500 t + 2,141,900

1 101.63 t3 + 6,174.2 t2 + 8,569,200 t + 2,141,200

The constraint is active throughout the interval. However, it

is beneficial to note that the cumulative production extremal for

reprocessing is also constrained by the cumulative production function

for the reactor, X7(t). This function is known and is given by V1.4:

X7(t) = 4.292 t2 + 73.86 t VI.37

Apply constraint VI.l8 b(1) to VI.35:

a. I7(0) + X7(t) 1 k7,8 X8(t+28) O j t j T—28 VI.38

2
f

1 3
b. 238 + 4.292 1: + 73.86 1; E .0000566 [71.6050: + Z)

1 2 1 _—33,381(c + Z) + 9,278,500(t + Z)

2 3 2c. 4.292 t + 73.86 t + 238 1 .004053 t — 1.8863 t

+ 524.22 t + 131.17
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The constraint is active in the interval. The extremizing function

will, then, be a composite curve consisting of the extremal and the

constraint. To find the point of passage from the extremal to the

constraint the results of V.45 must be applied. At the point of

passage the tangent to the extremal must equal the tangent to the

constraint. Also, the two curves must be equal at the point. These

two equations are necessary to solve for two unknowns: the point

of passage and the constant of integration, c8.

The two equations in two unknowns (t,c8) are:

a Q-[I (0) + X (t)] =-é- [k X (t+ß
)]4

VI 39° dt 7 7 dt 7,8 8 8 °

b. 17(O) + X7(t) = k7,8 X8(t+£8)

Since interest is in X8(t), translate above equations by -28

and solve: ’

C1 12 12_d .a. EE-[238+4.292(t — Z) + 73.86(t — 4) - dt [.0000566 VI.40

3 2(71.605 t — 33,381 t + c6t)]

b 12 1_. 238+4.292(t — Z) + 73.86(t - Z) — .0000566

3 2
n

[71.605 t — 33,381 t + cöt]
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Solving these two equations simultaneously results in:

a. t = 5.982 VI.41

b. c6 = 2,565,400

The extremizing function is the extremal over the interval

O 5 t 5 5.982 and the constraint over the interval 5.982 5 t 5 18.

Thus,

a. X8(c) = 71.605 t3 - 33,381 t2 + 2,565,400 c VI.42

_ 0 g c g 5.982

12 1b. X8(t) = [238+4.292(t —
Z? + 73.86(t — Zü]/.0000566

= 75.830 tz + 1,267,000 t + 3,874,000

5.982 5 t 5 18

4. Enrichment of Reprocessed UF6 Recomputed

Attention is now redirected to X9(t). Recall that X8(t) must

be checked against the constraint indicated in VI.36a; however,

X8(t) now has a different form. Reapply the constraint:

I8(0) + X8(t) Q k8’5 X9(t+29) 0 5 t 5 18-29 V1.43

Using VI.36c and checking the interval 0 5 t 5 5.982 first:
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2,141,900+71.605 t3 - 33,381 tz + 2,565,400 t VI.44

i 101.63 t3 + 6,174.2 t2 + 8,569,200 t + 2,141,900

The constraint is active throughout the interval 0 S t S 5.982.

Now check the interval 5.982 S t S 18 —·%

75,830 tz + 1,267,000 t + 3,874,000 VI.45

j 101.63 t3 + 6,174.2 tz + 8,569,200 t + 2,141,900

15.982 S t S 18 —·Z

This constraint also is active everywhere in the interval. The

conclusion is that throughout the interval 0 S t S 18, X9(t) is

constrained by X8(t). Thus:

Since the X8(t) solution is known over 0 S t S 5.982, X9(t) is

constrained over that interval plus lag time, or 0 S t S 6.232.

13 12
a. X9(t) = [71.605(t — Z) - 33,381(t — Z) VI.47

+ 2,565,400(t — Z) + 643,437]/4.508

0ScS5.982+29
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~ b. X9(t) = 15.884 t3 — 7,416.8 t2 + 572,780 t

0 g c g 6.232

c. 18(0) = 643,400

Also, X9(t) has the remainder of the interval adjusted by the

lag time, or:

a. X9(t) = [-X8(t—29)]/k8,S VI.48

1 2 1b. X9(t) = 76,630(u - Z? + l,267,000(t — Z)

+ 3,874,000]/4.508

c. X9(t) = 16,821 tz + 272,690 t + 790,150

6.232 j t j 18

5. Enrichment of Natural Feed UF6
Attention is now returned to the mainstream flow at the enrichment

process. From VI.20b and substitutions from Tables 11, 13, and 14:

‘ 6 1265 465 t C5'; _'
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b. X5(t) = .14 x .05 (846.85—5.965 x678.08) t3
12 x 1,461.7 x 10

+ 14 (848 85 5 965 x_;8 08} t2 + cst
4 x 1,461.7 x 10

_ 3 26. X5(1;) — 152.09 1; + 9,125.4 c + 651;

To solve for the constant of integration apply boundary condition

VI.l8 a(3):

I5(0) + X5(T—£6) + X9(T—£6) = k5’6 X6(T) IV.50

First, determine the initial inventory for the enrichment·process,

I5(O).

a. I5(O) = k5’6 X6(26) IV.51

b. IS(0) = 41,354[.0034088(Z) + .20453(Z)

1+ l98.33(Z)]

c. I5(0) = 2,051,000

Substituting into VI.50:
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1 3 1 2
a. 2,051,000+l52.09(18 i Z) + 9,l25.4(l8 -·Z) VI.52

+ 6 (18 — l) + 16 621(16 - l>2 + 272 690(18 - 3)5 4 ’ 4 ’ 6 4

+ 790,150 = 41,354[.O034088(18) + .2O453(18)2
3

+ 198.33(18)]

b. cs = 7,621,300

The extremal for enrichment is:

X5(t) = 152.09 :3 + 9,125.4 :2 + 7,621,300 t VI.53

This extremal must now be compared to the constraint VI.18 b(2):

a. 15(0) + X5(:) + X9(:) g k5,6 X6(:+26) VI.54

0 j : j 18-26

b. 2,051,000+152.09 :3 + 9,125.4 :2 + 7,621,300 :

+ 15.884 :3 - 7,416.8 :2 + 572,780 t

> 1 3 1 2_ 41,354[.0034088(: +,2) + .20453(t +·Z)

+ 198.33(: 0 j : j 6.232
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c. 2,051,000 + 167.974 :3 + 1,708.6 :2 + 8,215,100 :

‘ Q 140.97 :3 + 8,563.8 :2 + 8,206,000 t + 2,051,000

0 ; : ; 6.232

The constraint is active in the interval. Attention is turned

_ to the second interval 6.232 j t j 18 é ä- ·

a. 2,051,000+152.09 t3 + 9,125.4 t2 + 7,621,300 t
‘

VI.55

+ 16,821 t2 + 272,690 t + 790,150 Q 140.97 :3

+ 8,563.8 :2 + 8,206,000 t + 2,051,000

16.232;:; 18-2;

l
b. 2,051,000+152.09 t3 + 25,946 tz + 7,894,000 t

+ 790,150 Q 140.97 t3 + 8,563.8 :2

+ 8,206,000 t + 2,051,000

· The constraint is active in this interval also. Thus, the

extremizing function must be a composite curve consisting of the

extremal and the constraint. Again the results of V.45 are applied.

Using the forms of the equations in VI.55.b and following the steps

taken in Vl.39 and VI.40:



108

a. 2,051,000+l52.09 t3 + 25,946 tz + c5t + 272,690 t VI.56

+ 790,150 = 140.97 t3 + 8,563.8 tz + 8,206,000

_ + 2,051,000

b. 456.28 tz + 51,893 t + e5 + 272,690 = 422.91 tz

+ 17,128 t + 8,206,000

Solving V1.56a and b simultaneously for t and c5 results in:

a. t = 6.713 VI.57

b. c5 = 7,698,400

The result is:

X5(t) = 152.09 t3 + 9,125.4 tz + 7,698,400 t p VI.58

0;:;; 6.713

The new expression is reapplied against constraint VI.18 b(2) as

in VI.54a, b, and c:

a. 2,051,000+152.09 t3 + 9,125.4 t2 + 7,698,400 t VI.59

3 2 3
n

+ 15.884 t — 7,416.8 t + 572,780 t i 140.97 t

+ 8,563.8 tz + 8,206,000 t + 2,051,000

Og cg6.713
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This time the constraint is not active. Attention is turned

to the interval 6.713°j t j 18 — äu Over this interval XS(t) is 4
the difference in the constraint equation and X9(t), or:

a. X5(:) = 140.97 :3 + 8,563.8 :2 + 8,206,000 : _ VI.60
3

+ 2,051,000—l6,821 tz — 272,300 t — 790,150

b. X5(t) = 140.97 t3 — 8,257.2 :2 + 7,933,700 t

+ 1,260,850 6.713 j t j 18 -·%

6. Conversion

Attention is now turned to the conversion process. From VI.20b

and Tables 11, 13, and 14:

dq(M —k M ) d(M -k M
)A

a. Xq:)4 12a 4a 44 4

b, _ 14 x 05 {78 08 8054-E 54 87) t3
12 x 7.442 x 10

+ .14 (78.08—„§Qj4 x_ä4.87) t2 + cht
4 x 7.442 x 10

¤· X4(t) = 2,656.3 :3 +.-159,375 :3 + :4:

To solve for the constant of integration apply boundary condition

VI.l8 a(2):

VI.62
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First find the initial inventory, I4(O):

a. VI.63
1 2 1 2b. I4(O) = 5.965[152.O9CZ) + 9,125.4CZ)

+ 7,698,000CZ)]

c. I4(0) = 11,483,000

Now, from VI.62:

1 3 1 2
a. l1,483,000+2,656.3(18 - Z) + 159,375(l8 — Z) VI.64

1 3 2+ c4(l8 — ZÖ = 5.965[l40.97(18) — 8,257.2(l8)

+ 7,933,700(18) + 1,260,850]

b. c4 = 43,479,000

The extremal for conversion is:

X4(t) = 2,656.3 t3 + 159,375 tz + 43,479,000 t VI.65

This extremal must be checked against the constraint in VI.20 b(l):

a. 0 j_ 1; j 6.713-.25 VI.66
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b. 11,483,000+2,656.3 t3 + 159,375 t2 + 43,479,000 t
1 1 3 1 2

Q 5.965[152.09(t +·Z) + 9,125.4(t +-Z)

+ 7,698,400(t + %)] 0 5 1; 5 6.463

c. 11,483,000+2,656.3 t3 + 159,375 tz + 43,479,000 t

1 907.22 t3 + 55,114 tz + 45,948,000 t

+ 11,483,000 0 5 t 5 6.463

The constraint is active over the interval 0 5 t 5 6.463. Now,
check the constraint over the interval 6.463 5 t 5 18 — äx

a. 11,483,000+2,656.3 t3 + 159,375 tz + 43,479,000 t VI.67

Q 5.965[140.97(t + Z) — 8,257.3(t + Z)

. + 7,933,700(t + ä) + 1,260,850] 6.463 5 t 5 17.75

b. 11,483,000+2,656.3 t3 + 159,375 tz + 43,479,000 t

1 840.80 t3 — 48,624 t2 + 47,300,000 t + 19,349,000

6.463 5 t 5 17.75

The constraint is active throughout the interval 6.463 5 t 5 17.75. ·
Since the constraining equations are active throught the total interval

0 5 t 5 18, the cumulative production function for conversion is given

by:

= 907.22 t3 + 55,114 tz + 45,948,000 t VI.68

0 5 1; 5 17.75
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The initial inventory is as shown before: 3

I4(0) = 11,483,000 VI.69

7. Milling

Attention is now turned to milling. From VI.20b and Tables 11,

13, and 14:

dq(M -k M ) d(M —k M )
3 12a3 4a3 3

b' X3<t) = .14 x .05 (54.87—.5886x 29.00) t3
12 x 4.783 x 10

+ .14 (54.87-.588 x 22.00) t2 + Cgt
4 x 4.783 x 10

_ 3 26;. X3(c) — 4,612.3 t + 276,740 1; + 6;31;

To solve for the constant of integration, apply boundary condition

VI.18a(2):

I3(0) + X3(18-ßé) = k3,4 X4(18) VI.71

First, the initial inventory must be found. _

a. I3(0) = k3’4 X4(24) VI.72

1 3 1 2 1b· I3(0) = ·8054[907-22(Z) + 55,114(Z) + 45,948,000(-Z)
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c. I3(0) = 9,254,400

From VI.71:

13 12
a. 9,254,400+4,612.3(18 — Z) + 276,740(18 - Z) VI.73

+ 1 _ 3 2c3(l8 — Z) — .8054[907.22(18) + 55,l14(18)

+ 45,948,000(18)]

b. c3 = 31,691,000

I The extremal for milling is:
X3(t) = 4,612.3 t3 + 276,740 tz + 31,691,000 t VI.74

The extremal must be checked against the constraint VI.18b(1):

a. VI.75

b. 9,254,400+4,612.3 t3 + 276,740 tz + 31,691,000 t

13 12
E .8054[907.22(t + Z) + 55,114(t + Z)

1 1+ 45,9l•8,000(c +2-) 0 g c j 18 -2

c. 9,254,400+4,612.3 t3 + 276,740 tz + 31,691,000 t '

i 730.7 t3 + 44,390 t2 + 37,029,000 t + 9,254,400

0jtj17.75
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The constraint is active throught the interval. The conclusion

is that the extremizing cumulative production function for mining is

the constraining equation, or:

X3(t) = 730.7 t3 + 44,390 tz + 37,029,000 t VI.76

8. Mining

Attention is now turned to mining. From VI.20b and Tables 11, 13,

and 14:

dq(M —k M ) d(M —k M )
a. X (t) t3 tz + c t VI.772 12a2 4aZ 2

b. X2(t) = .14 x .05 (29-1 x69) t3 + .14 (29-1 x 926 t2 + ezt
12 x 41.94 x 10 4 x 41.94 x 10

3 2c. X2(t) = 278.18 t + 16,691 t + c2t

To find the constant of integration, apply boundary condition

VI.18a(2):

_ I2(0) + X2(T—23) = k2’3 X3(T) VI.78

First, the initial inventory must be determined:

a. I2(O) = kz,3 X3(£3) V1.79
13 12 1b. I2(0) = .588[730.7(Z) + 44,390(Z) + 37,029,O00(Zj]

c. I2(0) = 5,444,900
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Substitute into V1.78: '

1 3 1 2
a. 5,444,900+278.18(18 — Z) + l6,69l(l8 — Z) VI.80

+ 1 3 2c2(18 - Z) = .588[730.7(18) + 44,390(18)

’
+ 37,029,000(18)]

b. cz = 22,007,000

The extremal for mining is:

X2(t) = 278.18 t3 + 16,691 t2 + 22,007,000 t VI.81

This extremal must now be checked against the constraint VI.20b(1):

a. I2(0) + X2(t) Z k2’3 X3(1;+23) 0 j t j 18-23 VI.82

b. 5,444,900+278.18 t3 + 16,691 tz + 22,007,000 t

1 3 1 2
Z .588[730.7(t + Z) + 44,390(t + Z)

1+ 37,029,000(t + 2)] .

c. 5,444,900+278.18 t3 + 16,691 t2 + 22,007,000 t

1 429.65 t3 + 26,105 tz + 21,786,000 t + 5,444,900·

The constraint is active throughout the interval 0 j t j 17.75.
The extremizing function for mining is the constraining equation, or:
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x2(:) = 429.65 :3 + 26,105 :2 + 21,786,000 : VL83

9. Acquisition and Exploration

Attention is now turned to acquisition and exploration. From

VI.20a and Tables 11, 12, and 14: ‘

dqM . dM -qM_ 1 3 1 0 2a. Xl(t) — Egg- t + -2;-— t + clt V1.84
1 1

b_ t3 + -14 x 9-.05 x67 tz + clt
12 x 1.1 x 10 4 x 1.1 x 10

3 2c. Xl(:) = 4,772.9 : + 206,820 : + clt

To find the constant of integration, apply boundary condition

VI.18a(2):

a. Il(O) + Xl(T—£2) = kl,2 X2(T) VI.85

1 3 1 2
b. 100,000,000+4,772.7(18 - E) + 206,820(18 - E)

1 _ 3 2+ cl(18 — E) — 1(429.65(18) + 26,105(18)

+ 21,786,000(l8)2

c. cl = 11,791,000

The extremal for exploration and acquisition is:
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Xl(:) = 4,772.7 :3 + 206,820 :2 + 11,791,000 t VI.86

This extremal must be checked against the constraint VI.20b(1):

a. Il(0) + Xl(:) g k1’2 X2(:+22) 0 j : j 18-22 VI.87

b. 100,000,000+4,772.7 :3 + 206,820 :2 + 11,791,000 :

1 3 1 2
g l[429.65(t + E) + 26,105(t + E-)

+ 21,786,000(: + %)]

c. 100,000,000+4,772.7 :3 + 206,820 :2 + 11,791,000 :

j 429.65 :3 + 26,427 :2 + 21,788,000 : + 3,631,000

The constraint is inactive throughout the interval O j t j 17.833.
The conclusion is that the extremizing function for exploration and

acquisition is given by:

Xl(:) = 4,772.7 :3 + 206,820 :2 + 11,791,000 : V1.88

0 j : j 17.833



118

F. Sufficient Conditions for an Extremum

To insure that the specific solution is an extremum and a minimum,

the steps outlined in Chapter V.B and E are taken. The Legendre

conditions are applied to insure a local minimum. The KROTOV test

is applied to insure that the specific solution falls in a class of

smooth curves only. The uniqueness of the solution is discussed.

1. To apply the Legendre conditions as given in V.5, the

following partial derivatives must be found:

28 F . . 9 VI.89
i ' . .J 1,1 7é 7

Examination of the objective function in VI.l7 reveals that

no cross—products of functions exist. The result is:

82F . . . .O 1 J 1,J=l, ,.., 9 VI.9OJ J 1,1 aß 7

Further examination reveals that:

———éEE;——-= 2a i='• °=l 9 V1 913X.' 3X.' i
J’11

J 1 aß 7
The values of ai tabulated in Table ll are all positive and

greater than zero. The immediate conclusion is that the

resulting matrices formed for the Legendre conditions are
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diagonal matrices with all diagonal elements positive.

This insures that the chain of inequalities in V.5 are

satisfied.

2. For the KROTOV test, again refer to the objective function

in VI.l7. The objective function consists of individualw
terms consisting of Xi' and Xi. Forming the KROTOV test:

lim F(X.°,X ,t)·—l7 i=1, ..., 9 VI.92X ,+iw 1 i Xi
i i # 7

u it is seen that the ai Xi'2 term causes the limit to +1w,
as Xi' This result insures that the extremal portion

of the specific solution falls in the class of smooth functions.

3. The form of the differential equations in VI.l9 are such that
t the functions resulting from a twofold integration (with

application of boundary conditions and transversality

conditions) are unique.

Thus, the Legendre conditions insure that the specific solution

is at least a local minimum. The KROTOV test shows that the specific

solution occurs in a single class of smooth curves. Finally, the

_ form of the specific differential equations insure uniqueness. The

specific solution, then, is a global minimum. .

G. Discussion of Solution

The cumulative production functions for all stages are now

complete. To illustrate best the relationship, Figures 17 through
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24 compare the initial inventory plus the cumulative production

function to the cuulative demand function for each stage. Recall

that the cumulative production function at stage i+l establishes

the cumulative demand function on stage i according to the relation-

ships given in lV.l9. _

Examination of Figures 17-24 indicates that there are only two

significant accumulations of material: explored reserves and

fabricated reloads. Pertinent comments on each stage are:

1. From Figure 17, it is seen that an inventory of explored

reserves is carried throughout the interval of interest;

however, this inventory is gradually depleted. The most

probable reason for this depletion is that all inventories

are driven to zero by assumption in the problem statement.

2. Figures 18, 19, 20 and 24 show that production in mining,

milling, conversion, and reprocessing of UF6 is clearly

the amount necessary to meet demand only.

3. Figure 21 shows that production in enrichment of natural

uranium is essentially the amount necessary to meet demand;

however, a relatively small inventory of 157,900 kilograms

of enriched UF6 builds up by 1982 and is then depleted.

4. Figure 22 shows that a significant inventory of 567

fabricated reloads builds up and is then depleted.
n

5. Figure 23 shows that the initial inventory of 238 spent

fuel reloads is depleted by reprocessing by 1981, and all



I
121

107 Tonsof 0re . X200

V
/\

/\
150 V

/\

V
/\

V
100 ./\

V

/\V

V“—lnitia1 Inventory
50 \/ plus Cumulative

Production/\ .
ßv—Cumulative Demand

‘ /\

1976 78 80 82 84 86 88 90 92 94

Figure 1L Initial Inventory Plus Cumulative Production
versus Cumulative Demand for the Exploration
and Acquisition Stage
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Figure 19. Initial Inventory Plus Cumulative Production‘ versus Cumulative Demand for the Milling Stage
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Stage



r
125

6 .10 Kilograms
of Enriched UF6

160

120 ,X

'V
At

80

‘V

^
„

N'- Initial Inventory
40 1 plus Cumulative

Production
N'/\ /\- Cumulative Demand

V'
.^

1976 78 80 82 84 86 88 90 92 94

Figure 21. Initial Inventory Plus Cumulative Production
versus Cumulative Demand for the Enrichment
Stage
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Figure 22. Initial Inventory Flus Cumulative rroduction
versus Cumulative Demand for the Fabrication
Stage
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Figure 23. Initial Inventory Plus Cumulative Production
versus Cumulative Demand for the Reprocessing
Stage
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versus Cumulative Demand for the Enrichment
of Reprocessed UF6 Stage
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spent fuel reloads past that time are reprocessed as they

are reproduced.

Recall that the objective was to minimize total costs where the

costs considered were acquisition, production, and holding costs.

Further, recall that production costs included costs associated with

varying production rates from the rate considered optimal. Table is

compares the derived production rate with the assumed production rate

(see Table 8), and with available ERDA forecasts of what capacities

should exist by 1990. Recall that the production rate is merely the

first derivative of the cumulative production function with respect

to time. From Table 15, it is readily concluded (for assumptions as

given, specifically with reprocessing) that industry should concentrate

on expanding production capability in mining, milling, and conversion,

but not so in enrichment. Also, fabrication and reprocessing capacity

will not be as critical as originally thought.

The final element of the solution is the total cost. Equation

VI.l7 is the objective function to be minimized. All extremizing

functions have now been found and can be substituted into VI.l7.

Before substitution, some simplication can be made. Recall that in

many cases, production was only sufficient to meet demand, i.e.,

there was no inventory. Where inventories are zero, obviously holding

costs are zero and can be omitted. '

To simplify the computations further, a fundamental law of

calculus will be applied, i.e., the integral of the sum is equal to
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Table 15

Comparison of Production Rates and Capacities

Assumed Optimal ERDA Forecast
Production Derived Production Production

épagg Capacity (1977} Capacity (1990) Capacity

Exploration 29,542,863 tons/yr 2Q,388,QQO ,108,429,QQQ
Mining 11,920,804 tons/yr 22,770,000 95,673,000
Milliug 20,909,090 kg 0308/yr 38,702,000 54,546,000
Conversion 14,780,000 kg UF6/yr 43,025,000 —

Enrichment 7,242,194 kg UF6/yr 7,785,400 —
(Total)

Fabrication 146.075 reloads/yr 206.060 —

Reprocessing 2,218,487 kg UF6/yr 3,390,000 0
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the sum of the integrals. This permits the total cost to be computed

as the su of the stagewise costs.

1. Exploration and Acquisition

Extracting exploration and acquisition costs from VI.l7:

T- . .2 .TCl — fo {(1+qc)M0 X1 (c) + al X1 (t) — bl X1 (t) VI.93

+ cl + dM1(1+qc)[Il(0) + Xl(t) — kl’2 X2(t+22)]}dt

Xl(t) is given in VI.88. Xl'(t) is its first derivative with

respect to time. Values for al, bl, cl, q, d, MO, and M1 have been

given. The relationship inside the square brackets is developed in

VI.87a—c. Finally, all computations are developed for the period

of interest, 18 years. This requires production to be lag time

ahead of demand. For this stage, the period of interest becomes

T-22, or 18 — %« Making these substitutions, VI.93 becomes:17.833_ 2TCl = [ {(1+.05 t) x 7 (14,318 t + 413,640 t VI.940
+ 11,791,000 + 1.1 x

10—6
(14,318 tz + 413,640 t

+ 11,791,000 — 7.8 (14,318 62 + 413,640 c + 11.791.900)

+ 9.60 x 107 + .14 x 9 (1+.05 t)[(100,000,000+4,772.7 t3

+ 206,820 tz + 11,791,000 t) - (429.7 t3 + 26,105
tzl

+ 21,786,000 t]}dc . =
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Simplifying, integrating,and evaluating results in:

_ ~ 10TCl — $1.4161 x 10 VI.95

2. Mining

Extracting mining costs from VI.17:

T_ 2,_= I _ ITC2 _fO {az X2 (t) b2 X2 (t) + cz + dM2 VI.96

° (l+qt)[I2(0) + X2(t) — k2’3 X3(t+£3)]}dt

X2(t) is given by VI.82. X2'(t) is the first derivative of X2(t)

with respect to time. Values for az, bz, cz, q, d, and M2 have been

given. The relationship inside the square brackets is developed in

VI.8la—c, but for this stage is equal to zero. The period of interest

is 18 - äu Making these substitutions, VI.93 becomes:

17.75_ _6 2TC2 = I {41.94 x 10 (1,289 t + 52,210 t' VI.97
0

+ 21,786,000)2 — 120(l,289 t2 + 52,210 t

+ 21,786,000 + 59.6 x 107}dt

Simplifying, integrating, and evaluating results in:

_ 11TC2 — $3.2628 x 10 VI.98

3. Milling

Extracting milling costs from VI.l7:
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IT' :2 •
+TC3 - 0

{a3 X3 (t) — b3 X3 (t) c3 + dM3 VI.99

' (1+qt)[I3(0) + X3(t) - k3,4 X4(t+ß4)]}dt

X3(t) is given by VI.75. X3'(t) is the first derivative with

respect to time. Values for a3, b3, c3, q, d, and M3 have been given.

The relationship inside the square brackets is developed in VI.74a-c,

but for this stage is equal to zero. The period of interest is

18 — äx Making these substitutions, VI.96 becomes:

- l7.75_ _6 2TC3 = f {4.783 x 10 (2,192 t + 88,780 t„ VI.100
0

+ 37,029,000)2 - 24 (2,192 t2 + 88,780 t

+ 37,029,000) + 23 x l07}dt ·

Simplifying, integrating, and evaluating results in:

llTC3 = $1.090 x 10 VI.101

4. Conversion

Extracting conversion costs from VI.17:

- T- .2 .. TC4 — fo {al} X4 (t)- bl} X4 (t) + ca + dM4 VI_.102

. • (l+qt)[14(O) + x4(c) —
k4’5 X5(t+25)]}dt
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X4(t) is given by Vl.68. X4'(t) is the first derivative of

x4(c) with respect to time. Values for aa, bh, ca, q, d, and M4

have been given. The relationship in the square brackets is

developed in VI.65a—c and Vl.66a and b. Holding costs accrue over

the interval 0 E t j 6.463 but are zero over the interval

6.463 j t j 18. The period of interest is 18 - äx Making appro-

priate substitutions, VI.99 becomes:„

17.75_ _6 2 s
TC4 = f {7.442 x 10 (2,522 t + 110,228 t VI.lO3

0

+ 45,948,000)2 — 26.4(2,522 t2 + 110,228 t

+ 45,948,000) + 16.25 x 107]dt

Simplifying, integrating, and evaluating results in:

_ 11TC4 — $2.602 x 10 VI.l04

5. Enrichment and Natural Feed UF6 _
Extracting enrichment costs from V1.l7:

5 —
0 a5 X5 (t) — 5 X5 (t) c5 dM5 V1.105TC

fTI{ '2 b ' + +
I

· (1+qt)[I5(O) + X5(t) + X9(t) —
k5’6 X6(t+26)]}dt
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X5(t) is given by VI.57 and VI.59b. X5'(t) is the first

derivative of X5(t) with respect to time. Values for a5, b5, c5, q,

d, and M5 are given. The relationship inside the square brackets is

developed in V1.58 for the interval 0 j t E 6.713. Over the remainder
of the interval the relationship equals zero. The period of interest

is 18 — äx Making the appropriate substitutions, VI.102 becomes:

6.713 _6 2TCS = I {1,461.7 x 10 (456.27 t + 18,251 t VI.106
-

+ 7,698,000)2 - 2,286.6(456.27 t2 + 18,251 t
U

+ 7,698,000) + 620 x 107 + .14 x 846.85

• (1+.05 t)[(2,051,000+152.09 t3
+ 9,125.4 tz

+ 7,698,000 1: + 15.884 t3 — 7,416.8·t2 + 572,780 c)

3 2
- (140.97 t + 8,563.8 t + 8,206,000 t

17.75 _6 2
+ 2,051,000)]}dt + I {1,461.7 x 10 (422.91 t

6.713
— 16,514 t + 7,933,700)2 — 2,286.6(422.91 t2

- 16,514 6 + 7,922,700) + 620 X 107)}.-1:;

4
Simplifying, integrating, and evaluating results in:

12TCS = $1.3487 x 10 VI.l07

6. Fabrication

Extracting fabrication costs from VI.17:
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T' ·2 b · + + +TC6 — fo {a6 X6 (t) - 6 X6 (t) c6 dM6(l qt) VI.l08

‘ [I6(0) + X6(t) — R6(1:)]}dc

X6(t) is given by VI.25. X6'(t) is the first derivative of X6(t)

with respect to time. Values for a6, b6, c6, q, d, and M6 have been

given. The initial inventory, I6(O), is zero. R6(t) is known and ·

given by VI.2l. Making the appropriate substitutions, VI.lO5 becomes:

18- 2 2TC6 = [ {483,656(.01023 t + .40906 t + 198.33) VI.109
Q .

— 16,956 x 103 (.01023 tz + .40906 t + 198.33)

+ 103.2 x 107 + .14 x 37,846,519(1+.05 t)[(.0034088 t3

+ .20453 1:2 + 198.33 1:) — (7.306 :2 + 71.606 1:)]}:11;

Simplifying, integrating, and evaluating results in:

_ 11TC6 — $3.4172 x 10 VI.110

· 7. Reactor

Extracting the costs relating to storage of spent fuel reloads

from VI.l7:

.

TC7 = fo S[17(0) + X7(t) - k7’8 X8(c+£8)]dt VI.111
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X7(t) is the reactor cumulative production function for spent

fuel reloads and is given by VI.22. S and I7(0) are both known.

X8(t) is developed in Vla and b over the intervals 0 j t j 5.982 and

5.982 j t j 18 — äq however, the relationship inside the brackets

equals zero over the second interval. Making appropriate substitutions,

V1.l08 becomes:

5.982_ 2TC7 = [ {2,700,000[(238+4.292 t + 73.86 t) VI.ll2
0

— .00O0566(71.605 t3 — 33,381 tz + 2,565,400 t)]]dt

Simplifying, integrating, and evaluating results in:

TC7 = $1.5970 x 109 VI~ll3

8. Reprocessing

Extracting reprocessing costs from VI.l7:

T- 2
= I _ ITC8 fo {ag X8 (t) b8 X8 (t) + c8 + dM8(1+qt) VI.l14

' [18(0) + X8(t) - k8’9 X9(t+29)]}dt

X8(t) is given by VI.4l a and b. X8'(t) is the derivative of

these functions with respect to time. Values of a8, b8, c8, d, q, ·

and M8 have been given. The relationship inside the square brackets

is equal to zero throughout the interval of interest, which consists

of 0 j t j 5.982 and 5.982 j t j 18 — äx Making appropriate
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substitutions, VI.1l4 becomes:

5.982_ _6 2TC8 = f {1,014 x 10 (214.82 t — 66,762 t VI.l15
0

2,565,400)2 - 540(214.82 t2
- 66,762 t + 2,565,400)

7 17.75_ _6
+ 49.92 x 10 }dt + f {1,014 x 10 (151,660 t

5.982

+ 1,267,000)2 — 540(l51,660 t + 1,267,000) + 49.92 x 107}dt

Simplifying, integrating, and evaluating results in:

. 11TC8 = .$1.3424 x 10 VI.116

9. Enrichment of Reprocessed UF6

Extracting the enrichment of reprocessed UF6 costs from VI.17:

C9 —
0

ag X9. (t) - 9 X9 (t) cg dt VI.l171: [Tw ·2 b · + }

X9(t) is given in VI.46b and V1.47c. X9'(t) is the first

derivative of X9(t) with respect to time. Values of ag, bg, and cg

have been given. The intervals of interest are 0 5 t 5 6.232 and

6.232 5 t 5 18 — äu Making appropriate substitutions, VI.l14

becomes: I
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6.222_ _6 2
‘

TC9 = I {7,393 x 10 (47.652 t — 14,833.6 t VI.1l8
0

+ 572,820)2 — l,7l4.2(47.652 tz — 14,833.6 t

7 17.754 _6
+ 5572,820) + 69 x 10 }dt + f {7,393 x 10

6.232

(33,642 t + 272,690)2 - 1,714.2(33,642 t + 272,690)

7+ 69 X 10 }dt

Simplifying, integrating, and evaluating results in:

_ 10TC9 — $4.6376 x 10 VI.l19

Finally, the total cost is the sum of the stage costs.

9 12TC = Z TCi = $2.5823 x 10 VI-120‘
i=1

This total cost figure is of little significance here but will

be of more interest in the sensitivity analysis. Of more significance

are the conclusions that can be drawn by reviewing the results of the

model. The more important conclusions are:

_ A. Accumulation of inventories occurs at the exploration stage

and at the fabrication stage, but for apparently different

reasons:
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1. The inventory at exploration results from the increasing

value of the uranium ore on the one hand, but also

because there already exists a stockpile.

2. At the fabrication stage the cumulative demand function

is known and is a rapidly increasing function. As the

model was designed to associate a cost with changes to

the production rate, the results show that it is more

cost effective to stockpile material in the form of

reloads of fabricated fuel than to experience a rapidly

increasing production rate. Recall that variation from

the optimal production level results in costs proportional

to the square of the difference.

B. The derived production rates for mining, milling, and

conversion show dramatic increases are necessary. Enrich-

ment, fabrication and reprocessing should increase only

moderately.



CHAPTER VII.

SENSITIVITY ANALYSIS AND RECOMMENDATIONS FOR FURTHER RESEARCH

Three parameters are selected to test the model for sensitivity

to variation in model parameters. These parameters are:

1. The optimal production capacity for conversion, L4.

2. The cost to reprocess one kilogram of UF6, P8.

3. The constant of proportionality, Bi, to determine the

increase in production cost per unit as the square of the

difference in the assumed production capacity and the

derived production rate.

Subsequent to this analysis, recommendations for further research

are given.

A. Optimal Production Capacity for Conversion

The optimal production capacity for conversion is selected for

analysis because the derived production rate is shown to be

approximately three times the assumed production capacity. Recall

that production costs increase proportionally to the square of the

difference in the assumed production capacity and the derived

production rate. Intuitively, the total cost should decrease if

the assumed production capacity is increased. Assume that the

conversion production capacity is doubled. L2 is now equal to '

30,000,000 kilograms of UF6 per year. Solving in the same manner

as in Chapter VI yields a stage cost of $4.7569 x 1012 as compared

to an originally computed cost of $1.7770 x 1011, or a 31.7%

141
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reduction. Note that no consideration is given to the cost of

increasing mining production capacity. Further, the total fuel

cycle cost is $2.4998 x 1012 as compared to an originally computed

cost of $2.5823 x 1012, or a reduction of 9.4%.

B. Cost of Reprocessing

The cost to reprocess spent fuel into UF6 is selected for analysis

because little is known about the actual costs. As previously stated,

estimated costs range from $90 to $280 per kilogram UF6. The original

solution assumes the lower figure. Assume now that the cost to

reprocess spent fuel is $180 per kilogram of UF6. Recomputation of

the solution yields a stage cost of $1.7611 x 1011 as compared to an

original solution cost of $1.3424 x 1011, or an increase of 31.2% for

that stage. The total fuel cycle costs increase from $2.5823 x 1012

to $2.6242 x 1012, or 1.6%. This result is as expected; however, a

further increase might eliminate reprocessing because of economics.

C. The Constant of Proportionality in Production Costs

The constant of proportionality, Bi, is selected for analysis

because the originally assumed value is arbitrary. The actual cost

to vary production rates is proprietary to the company concerned.

The original assumption, a variation in production from the assumed

optimal production capacity of 20% increases production costs by
O

10%, is the result of conversations with persons who perform similar

studies[8’22’74].
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Assume now that a Variation in production from the assumed

optimal production capacity of 20% increases production costs by

20%. Deriving a new solution as done in Chapter VI, yields the

increasing costs shown in Table 16. Note that the nature of Bi is

such that as Bi increases, the production rate tends to be "straight-

lined", i.e., it costs more to Vary the derived production rate from

the assumed optimal capacity. This has the effect of dampening out

the creation of early inventories (stockpiles) and forces the

acquisition of materials to a later time when they are more

expensive.

A further observation is that the stage costs increase where

the derived production rate varies greatly from the assumed optimal

production capacity. This relationship is best seen by comparing

Tables 15 and 16. Note in Table 15 for stages where the derived

production rate is significantly different from the assumed optimal

production capacity (conversion) that in Table 16 the corresponding

increases in production costs are higher (88.7%).

D. Recommendation for Further Research

In summary, the model developed here solves the cyclic, multi-
u

stage production-to-inventory problem that, heretofore, had not been

solved. It has a diverse range of application, specifically in any_

process where products are recycled. Examples include processes

where defective products can be salvaged such as steel forgings.

Further, the model permits analysis of the relationships among the
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Table 16

Comparison of Fuel Cycle Cost Increases

Original I¤¤6éaséd B. 6......Stagg Solution Cost Solution Cost Increase
Exploration 1.416 X 1010 1.562 X 1010 10.3%
Mining 3.263 X 1011 3.952 x 1011 21.1%
Milling 1.090 x 1011 1.311 x 1011 20.2%

Conversion 2.602 x 1011 4.911 x 1011 88.7%

Enrichment 1.3487 x 1012 1.976 x 1012 46.5%

Fabrication 3.417 x 1011 4.327 x 1011 26.6%

Reprocessing 1.342 x 1011 1.689 x 1011 25.8%

Enrichment 61 4.638 X 1010 5.162 X 1010 11.3%Reprocessed UF6
Total Cycle 2.582 X 1012 3.629 X 1012 40.5%
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model parameters. In the absence of such a solution technique,

these relationships remain speculative.

In the nuclear fuel cycle the sensitivity analysis demonstrates

that the model is highly sensitive to changes in the assumed optimal

production capacities and to changes in the production cost constant

of proportionality, Bi. The model is less sensitive to the cost of

reprocessing of spent fuel. These results suggest that a thorough

investigation of assumed optimal production capacities is appropriate.

One direction of this investigation should focus on the model developed

here and should seek the actual production capacities that would yield

a minimum total cost over the interval of interest. The other direction

is improvement of the model. Recall that the optimal production

capacity was assumed to be constant over the interval. Allowing

this capacity to vary with time or to experience increases/decreases

at intervals is a much desired improvement.

Further research is also recommended to increase the model's

representation of the real—world system. Specifically, the model

assumes that all nuclear fuel is enriched in the U-235 isotope to

one standard percentage. The present model allows cyclic (feedback)

flow. A more realistic model would allow a variety of fuel enrich-

ments in a forward branching flow. The technique is similar to that

developed here. A further investigation with more realism is an ·

analysis of the original problem with a change in boundary conditions.

The assumption of exhausting all existing inventories provides a

better basis for economic comparison; however, a boundary condition
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establishing specific ending inventories is more realistic.

Thus, the development here can contribute greatly to the cost-

benefit analysis of the nuclear fuel cycle management. In doing so,

it not only can improve the management decision process, but it can

assist in improving the energy outlook of the United States.
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APPENDIX A.

DEFINITION OF NOTATION

ai coefficient in the quadratic production cost equation for

stage i

a percentage of non—defective products from a manufacturing

process

bi coefficient in the quadratic production cost equation for

stage i
i

Bi proportionality constant for the increase in production

cost versus the square of the difference in the optimal

production level and the actual production level for

stage i

ci coefficient in the quadratic production cost equation for

stage i

Ci total cost for stage i

d time value of money factor

6 small increment in a variable or a small Variation in a

functional
•

F abbreviation for F(y,y',t)

. 154
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F(y,y',t) functional dependent on the function y, the first

derivative of y with respect to t, and the independent

variable t

F second partial derivative of F with respect to yi andYi Yj n
with respect to yj

6 an arbitrary parameter

fi(t) acquisition cost function in time

gi(t) production cost function in time

hi(t) inventory holding cost function in time ·

Ii(t) number of units in inventory as a function of time

J general functional

ki j number of input products i required to produce one
9

product j

Zi production lag time in stage i

Li assumed optimal production capacity for stage i

Mi value of one unit of product in inventory i .

n(t) an arbitrary function in t

Pi cost to produce one unit of product in stage i
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J

q marginal increase per unit of uranium fuel

ri(t) demand rate as a function of time for stage i

Ri(t) cumulative demand as a function of time for stage i

S cost to encapsulate and store one reload of spent nuclear

fuel

t independent variable, time

T horizon of time of interest

TC total cost for fuel cycle

T substitute variable for t

xi(t) production rate as a function of time for stage i

xi(c) cumulative production as a function of time for stage i

Xi'(t) first derivative of the cumulative production function

~
for stage i; also, identical to xi(t)

y(t) general unknown function in a functional

y'(t) first derivative of y(t) with respect to t



APPENDIX B.

NECESSARY AND SUFFICIENT CONDITIONS FOR EXTREMALS OF

FUNCTIONALS DEPENDING ON SEVERAL UNKNOWN FUNCTIONS

Necessary and sufficient conditions are developed here for the

type of problem presented only. Other necessary and sufficient

conditions exist but will not be developed. ·

Assume that an unknown function, y(t), is sought that will

extremize the integral:
I

I = max (mia) f F[y(t),y'(t),t]dt B.l
a

Clearly the value of I is dependent on the form of y(t). Let

y(t) be specifically selected from a class of admissible functions

having the following properties:

1. The functions are defined and have continuous first and

second derivatives. U
2. The functions pass through the points [a,y(a)] and [b,y(b)].

Any particular function having these properties and extremizing

B.l is called an extremal. Let y(t) be an extremal. Consider some

other function from the class of admissible functions that is in the

near neighborhood of y(t). Call this function:

y(t) + 6n(1;) . B.2

Assume that n(t) is an arbitrary function such that n(a) = n(b)

= 0 and that 6 is an arbitrary parameter.

Now if y(t) is the extremal and held in its form, and if n(t) is

arbitrary, known, and fixed, then the value of I becomes a function of

157
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6, I(6). From this relationship it is seen that I(0) is the extremal,

that l(6) is a near neighborhood functional, and that they have the

following forms:

b
IG:) = I F[y(t> + 6¤(t)„y'<t) + 6¤'(t>,t]dt B-3

a . .

b
I(0) = I F[y(t),y'(t)„t]dt

a

Let the same line of reasoning apply to a functional dependent

on n unknown functions, and for brevity, establish the following

identities:

yi(t) E yi B.4

.€... : Vdt yi(t) - Vi

ni(t) E ni

..4.... : Vdt ni(t) — ni

I@) becomes:

.

I(6) = fa F[yl + 6nl,y2 + €H2, ..., yn +-6nn, B.5

yl' +·6nl',y2' + 6n2', ..., yn' +·6nn',t]dt
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The first Variation in I@:), öl, is defined as:

61 E lim B.6
6+0

I In order for a functional to be an extremal, it is necessary that

SI = 0.

_ I b
0 6n2, ..., B.7

6+0 6+0 a

yn + Enn,yl' + Enl',yz' + Enz', , YH + Enn',t>

u — F(yl,yz, ---, yn,yl',yz', -~-, VH' ,ü)]}dE

» The term inside the brackets expressed in a Taylor Series

expansion with respect to 6 and about 6 = 0 is:

F(yl + Enl,yz + Enz, ·--, yn + Enn,yl' + Enl',yz' B-8

+ €n2's ••·s yn' +€nu'»t) ' F(yl>y2s ·••» yns

yl',yz', -·-, yn',t) = [F(yl + Enl,yz;+ Enz, I

..., yn + 6nu,yl' + 6nl',y2' + 6n2', ...,
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yH' +6nH',t) — F(y1„y2. -·-„ yH.yl',y2'. ---„

8v ...........

···» YH

I _§___ •$01,1)] [Be (yl + 6nl)] H = 0 (6-0)

[F(y +6n ,y +6n „ -~-. y8(yl +6nl) 1 1 2 2 n

+ 6¤H.yl' + €0l'»Y2' + 6¤2'„yH' + 6¤H')]

[Ä- (y'+6n ')] ° (6-0)+...36 l l 6 = 0

+611 y+6n y2)(y +6n) l l’ 2 2’ ’ nn n

+ 6¤H.yl' +6¤l'„y2' + 6n2'„ ··-„ yH' + 6nH',6)]

3 8
n n

[F(yl + 6nl.y2 + 6n2. ·--„ YH + 6nH, yl' + 6¤H'

3
O

' (6-0) + O(6 2) and higher order terms.
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Taking the partials as shown, evaluating at 6 = O, and ignoring

higher order terms of 6 results in:

F(yl + 6nl,y2 + 6n2, ..., yn + 6nn,yl' + 6nl' B.9

y2, + Enz', ---, yn' + Enn')"- F(yl,yz, -··, yn,

y ' y ' ... y ') = 2——·[F(y y ... y1 ’ 2 ’ ’ n Syl l’ 2’ ’ n’

y ' y ' ... y ' t)]6n + §———·[F(y y ... yz]-929 9 H9 1 J-9 29 9 1.19

y ',y ' ... y ' t)]6n ' + ... + Ä--[F(y y ... y1 2
’ ’ n ’ l Syn 1’ 2’ ’ n’

y'y' y't)]En +ä——[F(y y y1929 9 1.19 I1 Syn! 1-9 29 '°°9 I19

yl',yz', ·~-, yn')]Enn' - ‘

Using the identities in B.4 and substituting back into B.7:

l SF
8+0 a 6 Syl 6nl 6nn B.lO

ÜF | -
+ .--3+, enn ]dc

n

Complete the division and take the limit. Recognizing the sum of

the integrals is equal to the integral of the sum, each integxal can be
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analyzed separately. To integrate each ith term, use integration by parts
on:

SF ,
ay ' E"1 . B.111 5

Let:

SFu =lT B.l2Syi

-51. .-FE".du —
dt (Sy.')dt

1

= Idv ni dt

v = ni

The integrated result is:

·—ä§— n b —
fb

n ·Q— ¢*äE—)dt i=1 n B 13ay.' 1 16: ay.' * "°* ‘
1 a a 1

Equation B.lO now becomes:

öl = O =
fb

[EE- n + ä§;—n + + EE;-n B 14a Syl l Syz 2 Syn n ·
d SF d SF d SF

1 2 n

-aF a BF b+ [———n +—F—n +...+—s———n ]löyl° 1 Sy2' 2 Syn' n a
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Since ni(a) = ni(b) = 0, i=l, ..., n, equation B.l4 becomes:

b b3F d BF BF d BFöI=0=f [—·—-—(——r)]ndt+j‘ [——-——(——r)]ndt
a öyl dt öyl 1 a öyz dt Byz 2

+ dt B15B °°° By dt By ' nn ‘ °a n n

Since the function n is any arbitrary function the only way that

each integral can equal zero is for each integrand to equal zero.

The result is the Euler—Lagrange equations:

“
BF d gp———— —-—— (--7) = O i=l, ..., n B.l6Byi dt Byi

These equations are the necessary conditions for an extremal to

exist for a functional dependent upon several unknown functions.

Now, assume that the necessary conditions are met and the extremal

exists. This implies that the first Variation of I with respect to 6

is equal to zero (öI=0).

In the Taylor series expansion (equation B.8) of the Variation in

F, higher order terms of·6 were ignored. Now, since the first varia-

tion is equal to zero, the magnitude of the second order terms of 6 is

important. Indeed examination of the second Variation determines .

whether the functional increases or decreases (when the first varia-

tion is equal to zero) and, therefore, establishes whether the extremal

is a maximizing or minimizing functional. _



164

Ignoring the first Variation terms and expanding the second
‘

Variation terms results in:

F(y1 + 6nl,y2 + 6n2, ..., yn + 6nn,yl' + 6nl',y2' B.l7

+ 6n2', ..., yn'~+ 6nn',t) =

E---- {ä——————— [F(y + 6n y + EU ... y + EH y '3(y +6n ) 8(y +6n 1 1° 2 2° ° n n° 1l 1 1 1

+ ml',y2' + mz', --·, yu' + mn',t)] [gg (:>'l+ml)]}lg=0'

8(yl+6nl) 8(yn+6nn) l l 2 2

··-, yn + mn,yl' + ml',y2' + mz', ---, yn' + mn',t)]

8 2 3
(8*0) "I"n

n

[F(yl + ml,y2 + m2, ---, yl' + ml',y2' + m2',

V ' + m ' t)] [3- (y ' + m ')]} ·<6—0>2’n n ’ 86 n n 6=O

+ O(63) and higher order terms in 6.
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Ignore the higher order terms in 6. Take the partial deriva—

tives as shown and evaluate at 6=O. Let the following abbreviated

form represent the partial derivatives:

8 8F———— 6--) E Fy.y.• ß.188 . .Y1 öyj 1 1

Now, equation B.l7 can be reduced to the matrix form below:

I I IFV1V1 FV1V2 "' Fylyn FV1V1 FV1V2 "‘ Fylyn “1

F F F ' F ' F '
V2

FV2V1 y2y2 "' y2yn y2yl V2V2 "' y2yn .
V

F I F I F I
nu

Fynyl Fyny2 °°° Fynyn ynyl yny2 °°° ynyn n ,
1

I I I I I I I I I IFV1 yl FV1 y2 "’ FV1 yn FV1 yl FV1 y2 "‘ FV1 yn “2

1 1
··.

1 1 1 1 1 .•· F 1 I 1Fyn yl Fyn y2 Fyn yn Fyn yl Fyn y2 yu yn nn

Investigation of this quadratic form reveals the following:

l. All products off the main diagonal have n as a multiplier.

Since n is an arbitrary function it can be selected as _

small as desired.

2. All products on the main diagonal for the first u rows and

1 h 2 ._ 2 . .CO umns aV€ ni , 1*1, ·~·, H- Hi 1S also arbitrary and
can be selected small.
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3. The products on the main diagonal from the n+l to 2n row and

column contain nilz, i=1, ..., n. Now, ni can be selected

small, but not necessarily ni'; therefore, to a first order

approximation, ni'2 dominates all other terms. Since ni' is

squared it will always be positive. The conclusion is that

Fyi'yi' determines whether a variation would increase or
decrease the value of the function. The result as shown in

· PETROV[62] is as followsl

U (a) In order for the minimum of a functional to be obtained,

at the extremal it is necessary to satisfy the chain of

inequalitiesz

Fyl'yl' 2 O; 2 0; ... ; B.2O

Fy2'yl' Fy2'y2'

Fy1'yl' ... Fyl'yn'

0
Fyn'yl' ... Fyn'yn'

U

(b) In order for the maximum of a functional to be obtained

at the extremal it is necessary for the above determi-·

nants to be negative definite.

These conditions are known as the Legendre conditions.
I



APPENDIX C.

POLYNOMIAL FORECASTING TECHNIQUE[54]

Let there be L+l observations taken at gqually spaced intervals

of time. Let the most recent observation be called yu and each of all
observations be identified as:

"'9 C']-

Assume that these observations are as shown in Figure 25. The

» purpose is to find an appropriate polynomial that in the least squares

sense estimates a best fitting curve through these points. Call the

abscissa of this polynomial "r" and define [P*(r)]n as the polynomial

of selected degree that best estimates the points of the n—element

observation vector in C.l. The "*" represents an estimate.

Consider the residual vector, E(n), as the difference between

the actual observation and the estimating curve. Then,—

- *yu [P (L)]n

l >'n_l — [P*(L—l)]n
E(n) = . C.2

Yn_L — [P*(0)]u

Then the sum of the residual squares is

L _ 2: Z _
*[P (r)]n} 0.3r—0

‘ 167
n
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. yn—1
*[P (r)1 I1

O •yyn—L+2 I1

yn—Lr

O 1 2 A L 2 L 1 u axis

time
(l”l•L)t nt aus

Figure 25. Relations of Observations to
rolynomial in "r"
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Consider now the discrete Legendre polynomial:

L
E p(x;i.L)p(x;j.L) = 0 i#j C-4

x=O

where p(x;i,L) stands for a polynomial in x, of degree i, and _

orthogonal over the range O 5 x 5 L. Now, let f(x,k) be any poly-

nomial in x of degree k. Clearly there exist constants Bi such that:

‘

i=O

It follows then that:

L
Z f(x.k)p(x;j,L) = 0 0 5 k < j 0.6

x=O

and that:

p<x;0,L) = l YC.7

Now, define a function g(x;j,L) such that

VJ8(X;j.L) E p(x;j„L) I 0.8

where:

V8<x;j.L> = 8<x;j„L> — g<x—l;j„L) 0.9
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Then, C.6 becomes:
L

L .
Z f(X,k) vJg<x;j„L> = 0 3 Z l C·l0

x=O

Suming by parts where uX_1 = f(x,k) and VX = Vj—lg(x;j,L):

3-1 L L
0 = f(x+l,k) • V g(x;j,L)I — E Vf(x+l,k) C.ll-1 x=O

'—1 .VL g<x;3„L>
Repeating the summation by parts:

3-1 . L 3-2 . LO = f(x+l,k) V g(x;3,L)
1

— Vf(x+Z) V g(x;J,L)
1

C.l2

3-1 3-1 . . L+ + (-1) [V f(X+J„k)g(X;J,L) 1

The iteration terminates here since by assumption Vjf(x,k) E 0.

From C.6 let j=l, then k=0, and:

Lf(x+l,0)g(x;l,L)|
1

= O C.l3

But since this must hold for any f, the conclusion is:

g(—l;l,L) = g(L;l,L) = O C.l4
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Repeating for j=2,3, ..., and recalling that C.l2 must apply for

any polynomial f(x,k) of degree j—l or less, the following set of

boundary conditions can be obtained:

. . j—l .V g(><;„J,L)IX=L C·l5

0

From C.8, Vjg(x;j,L) is specified as a jth degree polynomial;

therefore:

V2j+lg(x;j,L) = 0 C.l6

Using C.l6 and the boundary conditions in C.l5, g(x;j,L) can be

solved for:

I j j (j+V)_. _ . + C-17
x=0 (L+j)

where a(j,L) is arbitrary and will be set to:

L+'a(j,L) E <jJ> 6.16
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Substituting back into C.8 results in:

j j-|-V (V)
P(X;Z],L) = Z (·l)V({I,)( V ) ig; C-19

v=0 L

This equation, C.l9, is the discrete Legendre polynomial of

degree j for j j L.

As a convenience, define a term c(j,L) as:

. 2 L . 2[c(J„L)] = E [p(x;J,L)] C-20
x=0

Substituting p(x;j,L) from C.19 and solving yieldsz

. (1]+l). 2 L+]+l[c(j,L)] = (
)(j) C.2l

(2j+1)L

Recall that the polynomial developed was the discrete Legendre

polynomial. Now let Q(x;j) be a continuous polynomial valid over the

discrete points. Further, define the normalized discrete Legendte

polynomial of degree j in variable x as:

Q.(x) E C.22

Now, suppose that P*(r) in C.3 can be written as a linear

combination of this Legendre polynomialz

m
P* i

·
[ (f)]n jio (Bj)u Qj(r) C 23
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where the Bi are not yet specified. Substituting C.23 into C.3:

L m 2= Z — E . . C.24en j=0
(8J)n QJ (1*)]

Ben
To minimize Gn set 5E—·= O, j=0,l, ..., m. The resulting

3
equations are:

L m L n
E E (B.) Q.(k) Q.(k) = E y _ Q.(k) C.25k=O j=O J J 1 k;O n L+k 1

i=O,l, ..., m

Now, it can be shown that:

L
rio Qi(r) Qj(r) = öij C.26

where öij is the kronecker delta.
Using C.26 and reversing the order of summation in C.25 results

in:

L(Bj)n = kio Yn_L+k Qj (k) 3:0,1, ·•·• m C·27

Substituting C.27 into C.23 results in:

[ < m LÜ] = Z [Z Y Q (k)]Q (r) C 28I1 :]:0 k=0 n“L+k J J
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Thus, C.28 is the required expression for the polynomial that

best fits the data vector Yu in the sense of least squares. By

varying r the process can be estimated both in the past and in the

future based on observations to the present. For example, if r=L

we have an estimate of the present observation. If r=L+l an estimate

of the one—step prediction is obtained.

Assume that a second order polynomial is appropriate. From this

m;2. From C.l9:

p(s;0,L) = 1 C.29

p<S;1,L> = 1 —·ää

_ _ _ gs 6s(s—lQp(s,2,L) 1 L + L(L_l)
—

From C.2l

2[C<0.L>] = L+1 0.30

2 L+l L+2

2 _ (L+1) (L+2}(L+3)[C(2,L)] 5L(L_l)

Rearranging C.28: ·

L m
[P*(r)] = E [ E Q.(k) Q.(r)]y C.31n k=0 jzo J J n—L+k
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By definition in C.22

C·32J ¢j J

Making the appropriate substitutions in C.3l:

L m
[P*(r)] = Z [Z Q-(k) Q•(1‘)]Y _ C·33n k=O j=O 3 J n L+k

L= kgo [QO(k) QO(r) + Ql(k) Ql(r) + Q2(k) Q2(r)]yn__L+k

L 1 1 1 1= Z [Y pO(k) Y 1>O(r) + Y pl(k> Y 1>l(r)
k=0 0 O 1 1

1 1+ c p2(k)c22

There are L+1 "weights" multiplied times L+1 observations. Call

the kth weight, wk. Then:

_ 1 1 1wk — Y; 1>O(k) p0(r) + -5 pl(k) 1>l(r) + ——; p2(k) p2(r> C-34
c c cO 1 2

Now assume that a ten—period ahead forecast is desired based on
the eleven most recent observations. For this case, L=1O and R=L+l0=20.

Equation C.34 after substitution becomes:
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_ 1;_ 3xlO __2k _ 2x20 5xl0x9wk ’ ll + 11x12 [1 l0][l 10 ] + llxl2x13 (*35

_ 2k_ 6xk(k—l) _ 2x2O 6x20xl9[1 10+ 10.9 Hl 10 + 10.9 1C.35 reducesto:w
=-—+— [2718 — 2033k + 2l5k2] C.36k 858

Returning to C.33, substituting wk, and solving yields:

10
[P*(20)]u = 2 wk yn_lO+k C.37k—0

“— 1 2— E {ggg [2718 — 2033k + 215k ]y¤_lO+k}k—0

In similar fashion, predictions can be made for any successive

periods based on observations up to the present.

Before leaving this topic, it is desirable to have some knowledge

of the variances of the error of the forecast.
Call XH the nominal trajectory at time tn. Then the vector of

observations can be written as:

Y = T X + E C.38n n n n
Where Tn is the transformation matrix and En is the vector of

errors in the differences in the transformed nominal trajectory and
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the observed vector. Let the j—step prediction at time tn be called:

C.39

then equation 6.36 can be written as:

C.4O

Then, C.37 becomes

W(j)Yn = W(j)TnXn + W(j)En C.4l

Since the vector En originates a vector of random errors, the

estimate of the errors is given by

E*(n+j) = W(j)En C.42

Assume that ei for all i has:

1. mean of zero

2. finite variance

3. no autocorrelation.

Under these assumptions, C.42 also has zero mean. For this case,

the covariance matrix would be:
.

S * = W(k) R(n) W(k)T C.43n+j

where R(n) is the covariance matrix of Eu.
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A further frequent assumption is that observational errors have

zero mean and are uncorrelated with equal variances of residual errors,
02. Under this assumption: ·

_ 2R(n) — 0 I C.44

and finally:

Su+j* = 02IW(j) W(j)T . C.45

Variance of the error of the forecast is the upper left of the

resulting matrix, Or;

2 . . T¤ [WU) ‘ W<J) 1 - C-46



APPENDIX D

MATERIAL FLOW IN THE NUCLEAR FUEL CYCLE

In the following sections, each stage of the nuclear fuel cycle

is described. Following each description, the material flow conversion

factor for that stage is developed. These values are collected in ”

Table 9. ”

h Exploration
Although exploration is not considered a stage in the overview,

it can rightfully be considered such because the process of exploration

could be construed to be that process which converts an unexplored

resource into a reserve ore field.

In the United States,uranium ore is found principally in sedimentry

sandstone and mudstone deposits of the Colorado Plateau, the Wyoming

Basin and the Gulf Coastal Plains of Texas[45]. Exploration is

generally done by aerial and ground radiation surveys, radon gas

evolution measurements, and an extensive program of exploratory

drilling. Once deposits of uranium have been located, they are held

_ in reserve until they are mined.

Units of accountability are generally taken to be tons of ore.

In the exploration process, a ton of ore in the unexplored resource

is converted to a ton of ore in a reserve. The conversion factor,
.

kO,l, is then unity (1).

.
a

179
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. Mining

In the mining process uranium ore bearing stone is extracted from

the earth and delivered to a mill in similar fashion to copper ore

mining. Open pit mining accounts for about half of the ore produced

and is utilized when ore is located at depths of 400 feet or less.,

Underground mining is employed for greater depths or when excessive

blasting would be required. As of 1974, 29 open pit mines produced

4,549,336 tons annually while 193 underground mines produced 1,992,953

tons of ore annually. Of this ore, approximately 0.2 percent or four

pounds per ton of ore
isForaccountability, the mining process is assumed to take tons

of ore from the inventory of reserve ore fields and add tons of ore

to the inventory of mined ore. The conversion factor, kl,2, is unity
(1).

Milling

In the milling process, uranium ore is crushed and ground. It is

then leached with either sulphuric acid or sodium carbonate to extract

several uranium compounds. The most common is ammonium diuranate,

commonly called "yellowcake". As of 1976, approximately 20 mills with

a total annual production of 21,000 metric tonnes of U3O8 were operating

in the Western United States and principally very near the mines[72;.

It is assumed that the milling process takes tons of ore from the

mined ore inventory and adds kilograms of U3O8 to the inventory of U308.
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The average mined ore contains approximately 0.2 percent or four

pounds of U3O8 per ton of mined ore[66]. Assuming an efficiency of

.935 in separating the U3O8 from other materials yields approximately

3.74 pounds, 1.698 kilograms, of U3O8 per ton of ore. Then to produce

one kilogram of U3O8, .589 tous of ore are required. Therefore,

k2’3 = .589

Conversion

The U3O8 extracted from the ore is converted into urauium
hexafluoride, UF6, by either a wet or dry chemical solvent process.

Two comercial plants convert approximately 15,000 metric tonnes of

U3O8 to UF6 aunually[66].
The couversiou process takes kilograms of U3O8 from the milled

‘ ore inventory and adds kilograms of UF6 to the UF6 inventory. The

process is extremely efficient in separatiug the urauium. The

efficiency is generally assumed to be .99[66].

In one kilogram of UF6, there are approximately .6761 kilograms

of urauium. Applying the efficiency factor of .99 results in .6830

kilograms of urauium being required. The molecular weight of UBO8

is approximately 842. Thus, .8054 kilograms of U3O8 produces 1.0

kilograms of UF6. The couversiou factor, k3,4, is then .8054.

Enrichment

Of the urauium present in UF6, approximately 0.7 percent is the

isotope U-235 required for fission. This low percentage must be

enhanced to 2-4 percent for most commercial reactors. Isotopic
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enrichment is presently accomplished by the gaseous diffusion process.

Three gaseous diffusion plants owned by the United States Government

have a total capacity of 27.6 million separative work units[7l]. "A

separative work unit (SWU) is a measure of the effort expended to

'
separate a quantity of uranium of a given assay into two components;

one having a higher percentage of uranium 235 and one having a lower

percentage"[61].

The enrichment process takes kilograms of UF6 from the conversion

plant inventory and adds kilograms of enriched UF6 to its production

inventory. It also takes UF6 of a different enrichment from the
reprocessing plant and adds it to its production inventory.

The ratio of feed to product is given by the ratio of the percent

. of U-235 in the product stream minus the percent U—235 in the waste

· stream to the percent U—235 in the feed stream minus the percent in

the waste stream. For one kilogram of product of enrichment 3.0

percent, a natural feed of .7ll percent, and a waste Stream ef -25

percent gives the conversion factor, k4’5 = 5.965.
For reprocessed UF6 at an enrichment of .86 percent, the conversion

factor, k8’5 = 4.508. _

Fabrication—

The fabrication stage is a multi—stage process in itself in which

UF6 gas is reduced to uranium dioxide (U02) powder, the powder is formed

into pellets, the pellets are sintered to uniform density and inserted

into rods, and finally, the rods are assembled into fixed arrays known



183

as fuel assemblies. These assemblies then comprise the reactor reloads.

Ten commercial plants presently fabricate all assembly requirements

for commercial reactors[66].

The fabrication stage draws kilograms of enriched UF6 from the

enriched inventory and adds reloads of U02 to its production inventory.

One kilogram of enriched UF6 has .6761 kilograms of uranium. Assume

a loss of 1 percent. The resulting uranium is .6693 kilograms of

uranium. UO2 has a molecular weight of approximately 269.8. Then

the amount of UO2 formed per kilogram of UF6 is .7593 kilograms.

One reload is assumed to have 31.4 metric tonnes of UO2[40].
Since one kilogram of UF6 is required for .7593 kilograms of UO2, the

amount of UF6 required for one reload (conversion factor, k5,6) is
41,354.

Reactor

In the reactor,the U-235 isotope is fissioned releasing thermal

energy which in turn is used to generate electricity. The fissions

reduce the amount of U—235 and increase the amounts of fission products.

Fission products must ultimately be separated and safely stored.

Generally, the reactor has an initial core of fresh fuel, and

approximately one—third of this core is replaced each year. The

. discharged fuel, or spent fuel, is held for a period of time to cool

down, and then can be reprocessed[66].

In the reactor burnup process,assemb1ies are withdrawn from the

fabrication inventory and are added to the spent fuel inventory. The

conversion factor, k6,7, is unity (1).
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Reprocessing

The discharged fuel assemblies generally contain about one—third

of the U—235 isotope that was originally in the fuel plus some

plutonium and other marketable isotopes. Through reprocessing the
u

unused U—235, the plutonium saleable isotopes, and the U—238 are

separated from the unuseable fission products.

The U—235 and U—238 can be re—cycled as reactor reload fuel, the

plutonium is isolated and stored, and the fission products are reduced
tola safe form and stored permanently. There are no commercial

reprocessing plants in operation now; however, three are under

construction or alteration, and one did operate from l966—72[7l].

The reprocessing facilities take fuel assemblies from the spent

fuel inventory and adds kilograms of UF6 of enrichment .86 percent to

the enrichment facility. Each reload contains approximately 257.6[4O]

kilograms of U—235 upon discharge. At an average enrichment of .86

percent, this results in an uranium content of 26,403 kilograms of

uranium. Assume a loss in conversion of one percent. This leaves

26,139 kilograms of uranium. Each kilogram of uranium results in

1.479 kilograms of UF6. The conversion factor then for reloads of
UO2 to kilograms of UF6 is k7,8 = .0000566.



APPENDIX E

SUMMAEY OF THE w01u<s OF 1<E0T0v[33·3‘*=35·36]

A. Introduction

V. F. KROTOV is a Russian mathematician who published prolifically

in the years 1960 to 1964 in the area of calculus of variations and

optimal control theory. Of the twelve articles he published, only

four are translated into English. These four articles are follow—on

articles to his dissertation and other basic articles. Since they

are intended for dissemination in Russia where the basic material

resides, they merely refer to his theorems previously proven. This

appendix briefly summarizes the more important aspects of KROTOV's

work.

6 B. Classes of Functions
”

Five classes of functions must first be defined. Class one is

called smooth functions and are characterized by having continuous

first derivatives. An example of a smooth function is shown in

Figure 268- Class two is called a continuous function. An example

of a continuous function is shown in Figure 26b. Class three is called

discontinuous functions and examples are shown in Figures 26c and 26d-

The remaining two classes are narrower definitions. ·Class four is

called piecewise—smooth. For example, the function in Figure 26b is

smooth except for certain individual points; therefore it is piecewise-

smooth. Class five is piecewise—continuous. For example, the function

in Figure 26d is continuous except at individual points; therefore

185



I

i
186

a. Smooth Curve b. Continuous Curve

/ . ;._§ I
c. Discontinuous d. DiscontinuousCurve Curve

Figure 26„ ßxamples of Curves
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v it is called piecewise—continuous.

T KROTOV's work centers around determining into which class an

extremal falls. WEIERSTRASS[57] first identified this problem. The

"WEIERSTRASS Problem" demonstrates a piecewise—continuous solution

‘ where it had been thought that no solution existed. This is because

the solution had been sought in the class of piecewise-smooth

} functions.
[

C. KROTOV's Works

In the calculus of Variations, an extremal is sought to the

functional

b
l(u) = f F(x,y,y')dx E.l

a

where u is a line on the set U of lines whose properties will be

described later. Assume that the line u is piecewise—continuous and

has a vertical segment as shown in Figure 27.

This type of function is not Riemann integrable over the interval

[a,b] because y(x) is not single—valued over the interval; therefore

incline the vertical segment such that it makes an angle of 1/m with ·

the vertical. The changed extremal now appears as shown in Figure 28·

y(x) is now single—valued over the interval of interest. Define

the extremal in Figure 28 as um. Further, if m > 0, the inclination

is clockwise, and if m < 0, the inclination is counter—clockwise.

From this convention,the sign of m agrees with the sign yl — yi

where yl = yl(x0+) and yi = yl(x0_). Assume that the line um has a
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y(x)
I
I
I

II
l I
I II I I

I I
I I I X
a xo b

Figure 27. 1'iecewise—Smooth Function with a
_ Vertical Segment
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y(X)
I
I1/m |I“ I II I III I

' I‘ I I II I I II I I I
I I I I

II I I I I I
I- I I I I x
a x1 xo x2 b

Figure 28. Biecewise-Smooth Function with the
Vertical Segment lnclined
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discontinuity at xo. With the vertical segment inclined, as stated,

the functional J is now the sum of three functionals:

J = J1 + J2 + J3 E.2

or:

b X1 X2 ’b
J = f F(x,y,y')dx = f Fdx + I Fdx + I Fdx. E.3

a a xl x2

The breakpoints in the above integrals correspond to the points on the

abscissa in Figure 28.

Since the angle that the inclined segment makes with the vertical

is 1/m, it is clear that as m+®, the angle + 0; therefore:

lim J(um) = J(u) E.4
m->oo

but,

b
J(u) = [ F(x,y,y')dx. E.5

a

Recall that y' is the first derivative of the function y, and

therefore is the slope of the function throughout. If y is in the

class of curves under consideration and F(x,y,y') is a function

containing y and y', then if the quotient of F and y' is formed

letting y'+®, the anticipated results should be instructive. If,

as y'+@, the quotient also goes to k, then the function F must also

contain a y' that goes to ¤¤. If y' goes to ¤¤ at one of more points
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in the interval, then the slope of the function goes to X, or the

function is vertical at those points. However, if, as y'+X, F also

goes to X, then F must depend on higher order of magnitude relation-

ships of y'. This is the essence of KROTOV's test.

Now return to the example. Look at J2.

x2 "
J2 = ] F(x,y,y')dx. E.6X1

Multiply J2 by the following:

six
d——*§—— = l E.7sixdx

x dy x2 dx 2 dyJ2 = fx F<x„x.y')dx (T) = IX F(X.x,x') gl E-8
l dx l dx

X2- _1xs>iLxJ2-] FX , d E.9
X Y

1

With an appropriate change of variables on the integral limits

and with the application of the limit as y'+w, the result is a line_

integral from yl to y2 at the point xo, or:

X Y2 2 „
2 •- X FJ2 lim E.l0X1 x'—>·=¤ Y1 X
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The heart of KROTOV's work is the passage of this limit. Let u be a

line in the set U with the following properties:

1. The x and y coordinates of the points on the line u may

be given as continuous functions of some parameter t.

2. The function y(x) is continuous and singlejvalued everywhere

on [a,b] except on a finite set of points xi (i=l,2, ..., k),

where it may have discontinuities of the first kind (jumps).

j 3. The derivative of y(x) is continuous and bounded on the

intervalsy

4. y(x) satisfies the conditions y(a) = al and y(b) = bl.

5. There exists a simply—connected closed domain B of the XY

plane in which F(x,y,y') together with its partial

derivatives FX, Fy, Fy, is continuous from the right
(y' E z) with respect to all three arguments and all lines

of the set U lie in this domain.

6- Everywhere in Che domain B assumes the existence of the

limits

W(x,y,sign m) = lim·é·F(x,y,m). E.ll
m+¤

Define I(u) = lim I(um). Extending the past development to

include the possibiliiy that vertical segments may also exist at the

endpoints of the interval [a,b] and using W to represent the above

limit, the composite integral is written as:



193

§
k Y21 k-1 Xi+l X1

1(u) = 2 [ way + 2 [ + Fax + [ + Fax E.121=l yli i=l xi a

b yaz yb2
+ [ Fax +[ way +[ way.X + Y Yk al bl

In words, the above equation says that the functional is equal to the

sum of all the vertical segments, plus the sum of the continuous lines,

plus the vertical segment on the left side of the interval, plus the

vertical segment on the right side of the interval. If the limit

defined on W exists everywhere from the left and from the right,

then the above integral is Riemann integrable.

From this analysis, KROTOV concludes that the behavior of the

extremal is related to the function W(x,y). Recognizing that m here

is merely the slope of the inclined segment, a substitution of y'

for m results in:

• | 1W(X,Y) = lm F(X„Y.Y ) —T E-13
yv_>°°

_ Y

Now, the specific results of KROTOV's works can be sumarized.

By investigation of the limit in E.l3, KROTOV concludes: ‘

1. If the right or left limit of E.l3 do not exist, or

• I 1 X
llm F(X,y,y ) —; +l—¤¤ E.l4y'+a—«» Y
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and
lim E.15rv '—>—·=· Y

then the extremal will fall in the class of piecewise-

smooth functions.
2. If the right and left limits exist and are equal at a finite

nuber of points in the interval of interest, then the

extremal will have vertical segments at these points. The

extremal will fall in the class of piecewise—c0ntinuous

functions.
3. If the right and left limits exist and are equal everywhere

in the interval of interest, there may exist an infinite

quantity of minimal curves each of which may have any

quantity of points of discontinuity. —

4. If the right and left limits exist, but they are not equal

at individual points in the interval of interest, or they
l

are not equal everywhere in the interval of interest, then

the extremal may have vertical segments at the endpoints of

¥ the interval.
k
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OPTIMIZATION OF MATERIAL FLOW IN THE NUCLEAR FUEL CYCLE USING

A CYCLIC MULTI—STAGE PRODUCTION-TO—INVENTORY MODEL

by

Elden Leo DePorter

ABSTRACT

The nuclear fuel cycle is modelled as a cyclic, multi—stage

production—to—inventory system. The objective is to meet a known

deterministic demand for energy while minimizing acquisition,

production, and inventory holding costs for all stages of the fuel

cycle. The model allows for cyclic flow (feedback) of materials,

material flow conversion factors at each stage, production lag times

at each stage, and for escalating costs of uranium ore. It does not

allow shortages to occur in inventories. The model is optimized by

the application of the calculus of Variations and specifically

through recently developed theorems on the solution of functionals

constrained by inequalities. The solution is a set of optimal

cumulative production trajectories which define the stagewise

production rates. Analysis of these production rates reveals the

optimal nuclear fuel cycle costs and that inventories (stockpiles)

occur in uranium fields, enriched uranium hexafluoride, and
~

fabricated fuel assemblies. An analysis of the sensitivity of the

model to Variation in three important parameters is performed.




