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CHAPTER I.

INTRODUCTION

In 1973 the world was jolted by the Arab oil embargo. Since that
time the "Energy Crisis" has become a formidable problem that is being
attacked scientifically and analytically by scientists and technolo-
gists; practically, and sometimes emotionally, by environmentalists;
and cautiously by politicians. Nuclear reactor generated electricity
provides a viable alternative to oil as a basic source of energy.
However, energy is consumed in such vast quantities today that in the
absence of some technological break-through, nuclear fuels could also
be exhausted by the year 2000. Thus, nuclear fuel, in its infancy as
an energy source, is already viewed as a depleting resource.

One of the obvious results of the o0il embargo was that companies
that controlled their own energy supply were in a commanding position.
This result caused major energy companies, e.g., Exxon, and utilities,
e.g., Tennessee Valley Authority, to attempt to gain control of basic
nuclear fuels in order to assure their later availability when they
are needed.

This series of developments has created an unique management
problem. Assuming that an utility, in an effort to control the future
availability of nuclear fuel, buys a basic uranium ore source, tﬁeq,
recognizing that uranium ore must pass through several stages before

it is in useable form, at which stage and in what quantities should



it be stockpiled in order to realize a minimum cost over a specified
time horizon? Aspects of this problem which make it unique are
monotonically increasing demand for uranium fuel over the time horizonm,
monotonically increasing value of the uranium in relation to other
commodities over. the time horizon, a depleting resource, and the
possibility of reprocessing spent fuels to re-capture (re-cycle) the
unburned portion. .
The national energy outlook is not optimistic. Nuclear power
utilized to generate electrical energy can materially improve the
national energy outlook. Nuclear energy is\in its infancy, and
numerous articles have called for the application of scientific

management techniques to the nuclear fuel cycle[23’26’37’38’41’46’48’

60’63]. Although some progress has been made, concentrated. efforts
are still required. MASON[47] approximates the initial core of a
light water reactor to cost $31 million and the annual reload to cost
$14 million. MASON summarizes, ''Thus, very large sums of money are
involved in the inventory requirements and in the annual fuel costs
during the operation of large nuclear power plants. This in turn
produces large incentives for the development of techniques that will
lead to reductions in the cost . . ."[47]. GALON and SALMON[26]
also emphasize the need for improved methods, "Uncertainties that

are brought about by revision of long-term utility planning and by

forced outages also contribute to a continuing need for dynamic

optimization of nuclear unit operating and fuel cycle strategies"[26].




The need for minimizing costs is obvious and imperative. Since
there is no presently known production-to-inventory model to optimize
costs for the nuclear fuel cycle, the motivation is obvious, yet a
more dramatic motivator might well be KURSTEDT's evaluation, "In
short, we will not freeze in the dark due to inadequate technology,
rather due to the lack of good management decisions"[37].

The objective of this research is to develop a production-to-
inventory model that considers the aspects above and that can be
utilized by the utilities, or governmental agencies, in deciding at
what stage of the nuclear fuel cycle and in what quantities uranium
fuel can be stockpiled in order to incur a minimum production and
inventory cost over a defined time horizon.

The resultant model uses the calculus of variations to determine
the production trajectories for each stage of the nuclear fuel cycle
that meet the demand for energy while minimizing acquisition, -
production, and inventory holding costs. The solution demonstrates
that it is optimal to stockpile larger quantities of ore in the
explored resource (in uranium fields as is presently the case) and
of fabricated fuel assemblies and lesser quantities of enriched
uranium hexafluoride. All other stages essentially produce only
sufficient quantities to meet demand. Analysis of the sensitivity
of the model to variation in model parameters shows the greatest

effect results from varying the assumed production capacities.




CHAPTER II.

THE PROBLEM DESCRIPTION

A. National Energy Outlook
Numerous reports and papers[l’s’23’42’45’55’64] forecast the
growth of energy requirements in the United States. In testimony
before the U.S. Committee on Interior and Insular Affairs, Subcommittee
on Energy and the Environment, R. W. A. LeGasse of the Energy Research
and Development Administration (ERDA) gave a summary forecast of the
U.S. energy growth through year 2000[42]. This summary is shown in
Table 1. LeGasse's estimates are particularly meaningful because
they show three ranges of forecasts depending on different pricing
and conservation practices. The importance of this summary is that,
even for the low forecast, energy requirements are expected to increase
by 178 percent by year 2000.

Confronted with this forecasted energy growth requirement, ERDA
reportsll] that the "available energy'" picture is very bleak. In
particular:

Domestic crude oil production peaked in 1970 and has declined
by more than one million barrels per day since then. Production
is now at a nine-year low.

0il imports are about 37 percent of oil consumption and would
rise to more than 50 percent of consumption of 12 million barrels
per day by 1985 if no new actions are taken.

As a result of increasing import dependence, U.S. payments
to foreign producers for imported oil increased from less than
$3 billion in 1970 to about $27 billion in 1975 and will

increase by another $2 billion annually, largely because of
the OPEC price increases.




Table 1

ERDA Summary Forecast of Total U.S. Energy Growth

(Quadrillion Btu)[68]

Year
1973 1980 1985 2000
Low 75.6 86.1 96.0 135.0
Moderate 75.6 89.7 105.0 174.0

High 75.6 95.3 117.0 195.0




Natural gas production peaked in 1973, declined by 6 percent
in 1974 (the equivalent of over 230 million barrels of oil),
and dropped another 8.5 percent during the first half of 1975.

Electric utility financial problems and regulatory delays
have in part resulted in the cancellation or postponement of
about three-fourths of all planned nuclear plants and-about
one-third of all coal plants previously scheduled to come into
operation between now and 1985.

Some emerging technologies, such as synthetic fuels from
coal, shale oil, solar, and methods to use energy more
efficiently, have uncertain economics due to long lead times
and technological uncertainties, and considerable risk[1],

It is evident that present resources and technologies need to

[32] and that a concentrated effort needs

be utilized to the fullest
to be applied toward developing the energy of the future. The
sourées of energy today are oil, natural gas, coal, nuclear power,
hydropower, geothermal power, solar energy, and energy produced
from solid wastes[64]. 0f these options, the U.S. possesses the
resources in large quantities for only two: indigeneous coal and
uranium supplies[S]. To meet its interim demand and until the

energy of the future has been developed, the United States must rely

heavily upon its resources of coal and uranium.

B. Electrical Energy Outlook
Uranium and, to some extent, coal are primary sources of energy,
i.e., they are not in a form readily useable by the consumer. Indeed

an intermediate form of energy is generally necessary.

Electricity is a convenient form of energy for customers.
It is normally available continuously and automatically, and
the precise amount needed is instantly delivered so that the
user needs no inventory. Discounting conversion and line




losses, it is efficient and it causes the consumer no pollution

problems. For these reasons industry has turned increasingly

to electricity with a resulting growth rate during the last

decade of nearly 8 percent annually. Looking ahead, between

1970 and 1990, an annual growth rate of 6.4 percent is

forecast[64],

BRADEN and BROWN stated that the advantages of electricity as
an energy source are so great, so superior to other sources, that a
mark of an economically advanced nation is a high degree of production

. [10]
and consumption of electricity .

ERDA forecasts for electrical generating capacity growth follow
the same pattern as total energy growth. Table 2 depicts this fore-
cast.

The Atlantic Council of the United States estimates that the
percent of primary energy converted to electricity in the United
States will increase from the 1973 level of 23 percent to 50 to 60

percent by the year 2000[5].

C. Nuclear Power Generated Electrical Energy Outlook

Concurrent with this growth in electrification is the growth in
nuclear power generated electricity. ERDA forecasts for nuclear power
generated electricity are shown in Table 3. Recall Table 2 shows the

total electrical generating capacity growth.

[26]

Other projections are similar. GOLAN and SALMON project

that in the period from 1980 to 2000, the average annual energy
demand will increase from 3.2 x 103 to 10 x 103 gigawatts electric

(313 percent), and that the nuclear electrical portion will

increase from 150 to 1,400 gigawatts electric (933 percent). The

Bureau of Mines of the U.S. Department of Interior, projects that




Table 2

ERDA 1975 Electrical Generating Capacity Projections

(Gigawatts Electric)[68]

1975
Low ' 492
Moderate-Low 496
Moderate-High 500

High 505

1980

604

620

630

654

Year

1985

785

800

820

875

1990

980

1,040

1,075

1,180




Table 3

ERDA 1975 Nuclear Power Generated Capacity Projections

(Gigawatts Electric)[68]

Year
1975 1980 1985 1990
Low 38 70 160 285
Moderate-~Low 39 76 185 340
Moderate-High 41 70 205 345

High 43 92 245 470
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electrical generating capacity will increase from 474,573 megawatts
in 1974 to 1,887,000 megawatts in the year 2000 (398 percent), and
that the nuclear contribution will increase from 31,662 megawatts
in 1974 to 900,000 megawatts in 2000 (2,842 percent)[26]. A further
indication is given by the World List of Nuclear Power Plants which
lists 58 nuclear power plants operating in the United States as of
December 31, 1976, and projects 157 to be in operation by 1984[60].

Figure 1 depicts the ERDA forecast as a monotonically increasing
demand for electricity and the corresponding monotonically increasing
demand for nuclear power generation capacity. This graphic portrayal
strongly illustrates the increasing demands.

From these data, it is clear that nuclear powered electrical
generation will play an increasingly important role in meeting the
energy demands in the United States. Thus, the success of the nuclear
power industry in meeting the needs for electrical energy, and in turn,
the energy needs of the United States, will be determined in part by
the progress attained in understanding, completing, and operating

(5]

the nuclear fuel cycle Before elaborating on the forecasted demand
for nuclear fuels, a description of the nuclear fuel cycle is given

so that fuel requirements can be viewed from a proper perspective.

D. Nuclear Fuel Cycle
Uranium fuels used in the nuclear reactors are the product of
what is referred to as the "Nuclear Fuel Cycle". This "cycle" consists

of the process operations performed on the nuclear fuel from the time
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it is removed from the earth in the form of uranium ore until it is
returned to the earth in some form that is safe for permanent storage.
Generally, the cycle consists of mining ore from its location in the
earth, milling it to remove uranium oxide (U308) (commonly referred
to as yellowcake), converting this to uranium hexafluoride gas (UF6),
processing this gas through a mechanical separation process to generate
| a product that is enriched in the fissile U-235 isotope, converting
this enriched gas to uranium dioxide (UOZ) pellets, fabricating these
pellets into fuel assemblies, and inserting the assemblies into
reactors. The assemblies are subsequently removed from the reactors
and are stored as spent fuel. Finally, this spent fuel can be
reprocessed, thereby re-capturing useable fuel and generating
unuseable wastes which are stored in the earth in some acceptable
form. This view of the nuclear fuel cycle is depicted in Figure 2.

Thus, the nuclear fuel cycle is seen to consist of approximately
seven stages through which uranium ore passes. A more detailed
description of these stages is given in Appendix D.

Another view of the nuclear fuel cycle is shown in Figure 3,
which depicts the quantitative material-balance flows. This diagram
begins at the mill and reflects the materials required at each stage
to support a 1,000 megawatt electric reactor operating at 85 percent
load factor, and chemically reprocessing spent fuel to re-capture the
unburned fue1[7]. Likewise from this figure the '"demand" on the
nuclear fuel cycle is deduced. The typical reactor experiences a

burnup of 20,333 megawatt days per tonne of fuel. Assuming a standard
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fuel enrichment, the equivalent demand on each stage is defined per
single reactor. Then, taking the schedule for activation and operation
of nuclear reactors for generating electricity in the United States

n[60] and assuming

as shown in the "World List of Nuclear Reactors
each activation requires a full core of fuel, that each year one-third
of the core is replaced with fresh fuel, and that the initial core is
equivalent to three average reloads, the demand for reloads is computed
and is shown in Table 4. It is readily discernible from the data in
Table 4 that demand is an increasing function of time.

It is necessary at this point to digress and discuss "forward
cost". The uranium industry traditionally calls the cost to produce
U0 from uranium ore the "forward costs', even though the precise
form of U308 may not even be present in processed fuel. Forward costs
are the costs incurred in removing the overburden, mining and milling,
e.g., if ore is excessively deep much overburden must be removed thus
the forward costs increase, or if the assay is high, less ore is
mined to yield a given amount of U308 and forward costs are lower.
Forward costs do not include exploration costs, land acquisition costs,
profits, taxes, or interest on capital investment. Understanding
forward costs is imperative, for demands are usually represented in
short tons or metric tons of U308; and U308 availability is normally
projected on the basis of forward cost[AS]. The implication is that

high-grade ore laying on top of the ground has a low forward cost,

while low-grade ore deep in the ground has a high forward cost.

Therefore, the low-forward-cost ore is exhausted first. The result
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Table 4

Demand for Reloads for U.S. Nuclear Powered

Electrical Generators

Year Reloads
1960 - = = = = = = = = = = = = - - = 3
1961 — - = = = = = = = = = = - = = - 4
1962 = = = = = = = = = - - - - - - - 8
1963 - - = — = = = = = = = = - - = - 7
1964 — - = — = = = — = = = = - = - - 5
1965 = = = = = = = = = = = = = - - = 5
1966 - = = = = = = = = = - — = - - - 8
1967 — = = = = = - — = = = - - - - - 6
1968 = = = = = = = = = - - - - - -~ 12
1969 = = = = = = = = = = = = = = = = 17
1970 = =~ = = = = = - - m - - - - - - 23
1971 = = = = = = = - - - - - - - - - 27
1972 = = = = = = = - - - - - - - - - 43
1973 — = = = = = = = = - - - - - - - 48
1974 = = = = = = = = = 0 = - & - - - 70
1975 — — = = = = = = = - - - - - - - 67

1976 = = = = = = = = = = = = = = - - 86
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is that, as time passes, only the higher forward-cost ores remain.
Uranium is thus a depleting resource whose value (price to obtain)
increases with time.

LIEBERMAN[AS] shows a close relation between the amount of drilling
and uranium discovery. Further, he concludes that a time lag of
approximately one year between a surge in drilling and an increase
in discoveries exists. LIEBERMAN then uses historical data to arrive
at an equation defining the quantity of uranium at a given forward
cost that will be discovered and produced as a function of time. Let
Q(t) be the cumulative amount of uranium of a given forward cost
discovered and produced at time t, Q» be the total cumulative amount
of uranium available for discovery (must be determined from extra-
polation of the discovery rate curve), "a" and "b" be constants
determined by fitting a curve to the data, and t0 be the arbitrary
base point in time; then the equation for cumulative discoveries and

production is:

Qoo
-b (t-—to)
1l + ae

Q(t) =

Using the cumulative discovery data for ore with a forward cost
of $8 per pound, LIEBERMAN finds for a base year of 1948, a = 220,

b = 0.41/year that Q» = 534,000 short tons of U0g. Although the

curve fit is not conclusive, LIEBERMAN concludes that the quantity

of Q» is between 500,000 and 800,000 short tons of U3O Requiring

8"
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Q(1974) to be 270,000 short tons (a known amount) and knowing that
the amount of presently held reserves are approximately 273,000 short
tons of U308’

and future availability of uranium ore with the indicated forward cost

LIEBERMAN develops the overall picture of the history

of $8 per pound as shown in Figure 4.

Further application of this equation for ores with $8, $15, and
$30 per pound forward costs enables LIEBERMAN to develop the more
comprehensive picture shown in Figure 5. By interpolation of this
curve, it is seen that ores with these forward costs will be
exhausted by 1985, 1990, and 1993, respectively.

Although LTEBERMAN and others refer to an exhaustion date, actual
exhaustion of resources will not occur at a specified time, but rather
as HUBBERT states:

Resources won't be exhausted suddenly on a given day, but
usage will be such that exhaustion will resemble a bell shaped
curve with the tail of final exhaustion resulting in higher

prices.

Indeed, this is already the case in the U.S. for natural
gas and possibly for gasoline . . . 3

Increasing demand and a depleting resource result in high prices
for nuclear fuel. In fact, the 1976 prices for yellowcake are

L[25]

reported to be ten times the 1969 leve . The history of the

value of U308 to date is shown in Figure 6.
A logical question exists as to what part of the increased cost
may be attributable to increased demand and the depleting resource

concept and what part may be attributable to inflation. It is

impossible to make a distinction; however, an attempt is made to
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reflect the cost of fuel as a function of time and in terms of constant
1972 U.S. dollars. As shown in Figure 7, the constant dollar curve
clearly indicates a monotonically increasing cost of uranium fuel over
time. It is assumed that this increase without inflation must reflect
the increasing value of uranium as a result of the factors previously
mentioned.

An alternate, perhaps more desirable, means for showing the
increasing value of uranium fuel is to relate the cost to cumulative
demand[69]. From LIEBERMAN's equations predicting exhaustion of the
reserves, this approach has more intuitive appeal. Figure 8 shows
this increasing cost as a function of time.

Faced with this depleting resource, increasing demand, increasing
value of the fuel in relation to other commodities, and the general
outlook for energy in the world today, utilities are attempting to
gain control of the basic fuel source[74]. It is conceivable that
utilities may become even more deeply involved in vertical integration
of the entire nuclear fuel cycle in the future. Another alternative
for utilities is to form a collective or corporation and to participate
cooperatively in the fuel cycle. In fact, utilities are actively
considering ". . . a corporation (that) would be set up and would
buy fuel and lease it to utility companies. The entire fuel (cycle)

would be financed through the issuance of commercial paper"[48].

E. Statement of the Problem
In any case, a logical management decision must be made. If

uranium ore is obtained; then, faced with increasing demand, increasing
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procurement costs, and a multi-stage processing system, at what stage
and in what quantities could uranium fuel be stockpiled in order to
meet demand and incur a minimum cost over a defined horizon of time?

This is the question addressed here. What is required is a
multi-stage production-to-inventory model that permits cyclic flow.

The model should incorporate acquisition costs which increase as a
function of time, production costs, and inventory holding costs. It
.should permit accounting of fuel-stage conversion factors and losses.
It should allow for production lag time. It does not need to allow

for shortages. Finally, the model should develop stage-wise production
trajectoriés over a specified time horizon which minimize the total
cost.

The final result should be a macroscopic management tool that can
be used by utilities or government agencies in determining the produc-
tion levels to be used (developed) and inventory levels to be maintained
(stockpiled) for a valuable but depleting resource. ERDA predicts
that this depleting resource could provide as much as 60 percent of
our electrical energy needs by year 2000[68], yet LIEBERMAN[45]
predicts that the $30 forward cost ores will be exhausted by year

1994. Any tool that provides a better management capability is,

then, of considerable value.




CHAPTER III.

LITERATURE SEARCH

A. Production and Inventory Theory Research

Probably the earliest work directly related to the production-to-
inventory problems where a product is to be produced in given amounts
over each of T periods such that production and holding costs are
minimized, is that of MODIGLIANI and HOHNISZ]. Their single-stage
model permits increasing marginal costs of production and constant
holding cost per unit of product per unit of time and arrives at a
"fundamental solution" that has far-reaching application. This article
is a milestone in production-inventory theory but considers only the.
discrete case. MORIN[53] restates the problem in continuous functions
and utilizes the calculus of variations to arrive at a reasonably
simple result for linear and quadratic production costs. WALVEKAR,
SMITH, and DECICCO[75] expand. this result to include the concept

of shortages. ARROW and KARLIN[3’4]

simplify the results of MORIN by
analyzing problems where convexity properties can be assumed. Their
work also involves the calculus of variations, but the assumption of
convexity simplifies the form of the solufion.

[77,78,79,80] makes a dramatic

ZANGWILL in a series of articles
breakthrough, expanding single stage dynamic lot size models into .
multi-product, multi-stage production and inventory models. He

ultimately includes non-decreasing demands, series flow, parallel

flow, production lags and backlogging; however, he never permits

26
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cyclic flow. Generally, ZANGWILL's model is based on a dynamic
programming algorithm that optimizes through "dominant sets".
Although his algorithm insures optimal solutions, it becomes
unwieldy when the number of periods are large, i.e., twelve or
more[78].

Multi-stage process problems are considered in depth by MITTEN
and NEMHAUSER[50’51’56’57]. Schematically, the stage-wise chemical
process appears similar to the nuclear fuel cycle. NEMHAUSER's
development includes series flow, parallel flow, and forward and
backward cycles; however, in the chemical processes there are no
production lags nor are there accumulations (inventories) of
materials, i.e., flow is direct. Also, the stage-wise decomposiﬁion
is made with respect to production stages, and time is not explicitly
modeled.

[9]

A further development of importance is BOWMAN's use of the
transportation method of linear programming to solve the production
scheduling problem. For linear costs and known deterministic demands,

BOWMAN is able to optimize the production and inventory costs over

T time periods for a single-stage single-product problem.

B. Production and Inventory Theory Applied to the Nuclear Fuel Cycle
The most intense efforts to apply production and inventory theory
to the nuclear fuel cycle are the recent articles by KURSTEDT and

NACHLAS[13’17’18’19’38’41’46’55]. Their first article jointly

. 13
authored with COCKRELL[ ] develops a static inventory model for
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maintaining emergency reserves of fabricated nuclear fuel assemblies.
Subsequently, KURSTEDT, NACHLAS, and LYONS expand this model to a non-
stationary dynamic inventory model with delivery lags, but it is still
applicable to emergency reserves of nuclear fuel assemblies[46].
KURSTEDT, NACHLAS, and MACEK[AO] examine the inventory problem
associated with spent nuclear fuel. DEPORTER, NACHLAS, and KURSTEDT[17]
present a production model to minimize costs associated with working
inventories in the fabrication plant. While these efforts are recent
and the only known work relating to production and inventory models
within the nuclear fuel cycle, they are all directed toward single
production stage inventories.

Recognizing that a total fuel cycle approach is necessary,
DEPORTER, NACHLAS, and KURSTEDT[18] model the material flows of the
complete nuclear fuel cycle. While the model is not solved for an
optimum, it is the first known attempt to link the entire cycle.
Based on this model, the authors then simulate the entire fuel cycle

1[19]

as a production and inventory mode . This simulation model
incorporates the concepts of multi-stage single product and cycled
production to inventories with production lags and lead times.
However, this model remains descriptive, since the excessively large
number of variables prevent optimization. There appear to be no
other attempts to apply production and inventory theory to the
nuclear fuel cycle.

Properties of the nuclear fuel cycle which cause all of the above

techniques to be inadequate are:




Multi-stage System
Cyclic (feedback) Flow
Accumulation of Inventories Between Processes

Time Dependence

least one of these properties is not represented or handled

by each of the techniques; however, combinations or modifications of

these techniques might permit examination of the nuclear fuel cycle.




CHAPTER 1IV.

DEVELOPMENT OF THE MODEL

The nuclear fuel cycle has been shown to be a multi-stage produc-
tion-to-inventory system with possible cyclic (feedback) flow. Since
this class of problems has not been solved before, a general model is
developed here. After the mathematical foundations ﬁre laid, the

general model is adapted to the nuclear fuel cycle.

In general the costs to be considered in a production-to—inventory

system are:

1. Costs of purchasing raw material.

2. Costs of production.

3. Costs of holding material in inventory.

The objective of the model is to determine the production rate
over time at each stage that minimizes the total of these costs. The
underlying assumption is that each of these costs is related to the
production rate. The model will be developed in the following three
stages:

1. Single-stage production~to-inventory model.

2. Multi?stage production~to-inventory model.

3. Multi-stage production-to-inventory model with cyclic

(feedback) flow.

A. Single-stage Production-to-Inventory Model

In the single-stage production-to-inventory systems, raw material

is purchased from an external source, rendered into a final product

30
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by one process, and is held in inventory awaiting an external demand.
This flow is described in Figure 9.

Assume that external demand is described as a continuous
function of time, r(t). Further, assume that a cumulative demand

function, R(t), is given by:

t
R(t) = f r(t)drt Iv.1
0
Now assume that the production rate for the process is described
as a continuous function of time, x(t). Further, assume that a
cumulative production function, X(t), is given by:
t
X(t) = [ x(1)dr V.2
0
The particular advantage of this formulation is that the rate of
change in the cumulative production function is the production rate,

or:

:—}-t— [X(£)] = X'(t) = x(t) V.3

The same is true for the demand functions:

g-g [R(t)] = R'(t) = r(t) V.4

Now the inventory at any time t, I(t), is equal to the initial

inventory plus the cumulative production minus the cumulative demand.
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Figure 9. Schematic Diagram of a Single-Stage
Production-to-Inventory System
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I(t) = I(0) + X(t) - R(t) IV.5

Shortages are not allowed; therefore, I(0) + X(t) > R(t),
0 <t <T, where T is the time horizon over which interest is
expressed.

Cleafly, the raw material purchasing costs can be written as a
function of the production rate, f[X'(t)]. For example, let the
cost per unit produced be k. Then the cost per unit of time at time

t is:

fIX'"(8)] = k - X"(v), IV.6

and the total purchasing cost over a time horizon, T, is:
T
[ fIX'(£)1dt V.7
0

Likewise, the production costs at any time t are written as a
function of the production rate, g[X'(t)]. For example, a frequently
used scheme in production models is to assume an optimal production

[12]. Any variation in this optimal

rate for a process (plant)
production rate results in costs per unit produced that are
proportional to the square of the increase (decrease). An example
is shown in Figure 10. Since this scheme is used here, it is
appropriate to digress at this point and elaborate on it.

The production facilities in the nuclear fuel cycle operate

generally as any manufacturing process. A given facility has some
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optimal level of operating capacity where the production cost per
unit produced is a minimum. Changes in the production rate to meet
anticipated demand are accomplished by (1) hiring or firing personnel;
(2) overtime or undertime; (3) adding a shift; or (4) adding plapt
capacity. Such actions incur costs that cause the cost per unit
produced to increase. Recognizing this relationship, the usual

h[12’52] is to approximate production costs as a quadratic

approac
function of the production rate. Assuming the optimal level of
production for a minimum unit cost to be 100% of capacity, the cost
function could have a relationship as shown in Figure 10.

This assumption is particularly appropriate to the nuclear fuel
cycle even where the facility is a government owned enrichment process.
In this case separative work is contracted at a specified cost per
separative work unit. Variations in this schedule incur penalties.

For example, decreasing the number of separative work units incur
cancellation charges. Increases are generally not allowed but when
they are made, they result in extra costs. In the general case,
changes to the number of separative work units are not made, and any
variations necessary are made by exercising the "tails options".

The end effect is the same.

The total production cost over a specified time horizon, T, is
given by:

T
[ sIXx'(t)ldt 1v.8
0

where g[X'(t)] will assume a quadratic form.
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The costs of holding units in inventory is a function of the
inventory on hand at time t and is defined as h[I(t)]. However,
I(t) = I(0) + X(t) -~ R(t); therefore, the total inventory holding

cost over a specified time horizon, T, is given by:

T T
[ h[I(e)] = n[I(0) + X(t) - R(t)]dt; V.9
0 0

I(0) + X(t) >R(t), 0<t<T

The model for the single stage is now complete. The total cost,
C, is given as the sum of the purchasing cost, the production cost,

and the holding cost.

T T -T

c=/[ f£[X'()ldt + [ g[X'(t)]dt + [ h[I(0) + X(t) IV.10
0 0 0
- R(t)]dt
T4

c=f {f[X"(t)] + g[X'(£)] + h[I(0) + X(t) - R(t)]}dt 1IV.11
0

Since shortages are not allowed, cumulative production must

equal or exceed cumulative demand, or:

I(0) +X(t) >R(t) 0<t<T V.12

As a boundary condition, the initial inventory plus the

cumulative production must equal the cumulative demand plus the
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ending inventory, or:

I(0) + X(T) = R(T) + I(T) Iv.13

Since X(t) and R(t) are cumulative functions, their initial
conditions can be specified. Let R(0) = 0 and X(0) = O.
Finally, it is desired to minimize the total cost; therefore,

the objective function for the single-stage model is defined as:

T
min € = [ {f[X'(t)] + g[X"(t)] + h[I(0) + X(t) IV.14
X(t) 0
- R(t)]l}dt
subject to: I(0) + X(t) > R(t) 0<t <T
I(0) + X(T) = R(T) + I(T)
R(0) = 0
X(0) =0

B. Multi-stage Production-to-Inventory Model

Now consider a multi-stage production-to-inventory system. Again
raw material is acquired from an external source and the finished
product is subject to an external demand; however, there are several
internal stages. Each internal stage acquires its '"raw material"
from the preceding inventory. Flow is represented in Figure 11.

Let each stage have the type of cost functions specified for
the single—-stage system. Further, for the momeht, let the cumulative
demand occurring on each ith inventory be Ri(t)' Then the cost equation

for each ith stage is:
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Figure 11. Schematic Diagram of a N-Stage Production-
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T.
¢, = fo {£,[X, " ()] + g [X,"(©)]+ h [T, (0) + X, (£) 1v.15

- Ri(t)]}dc

subject to: Ii(O) + Xi(t)

Iv

Ri(t); 0<t<T, i=1, ..., N

I

I,(0) + X, (T) = R (T) + I,(T) i=1, ...,_N

Ri(O) =0 i=1, ..., N
Xi(O) =0 i=1, ..., N
The total cost, TC, for the system is:
N N T
- = ' '
TC = E Cy = I / {£,[%," ()] + g [X,"(£)] 1V.16
i=1 i=1 O

+ hi[Ii(O) + Xi(t) - Ri(t)]}dt

v

subject to: Ii(O) + Xi(t) Ri(t); 0<t<T, i=1, ..., N

Ii(O) + Xi(T) Ri(T) + Ii(T) i=1l, ..., N

R;(0) = 0 i=1, ..., N

Xi(O) 0 i=1, ..., N

In the multi-stage system, each process draws material from the
previous inventory; therefore, the cumulative production rate in

process i+l is related to the cumulative demand on inventory i by:
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Xi+1(t) = Ri(t) i=1, ..., N-1 Iv.17

Note that raw material for process one is acquired from an
external source. Also, recall that the external demand, RN(t), is

known.

Define k; 441 38 the amount of ''raw material” in inventory i
b
required to produce one unit of product entering inventory i+l.

The relationship between production at stage i+l and demand at stage

i becomes:

(k ) Xy 4(0) = R(B) Iv.18

i, i+l
Now, suppose that the production process requires some amount of
time to convert raw materials to processed materials. 1In general,
assume that zi+l time units elapse from the time raw material is
withdrawn from inventory i until the processed product enters inventory
i+l. The relationship that exists between production at stage i+l and

demand at stage i becomes:

(ki,i+1) Xi+1(t+2i+1) = Ri(t) Iv.19

Making the appropriate substitutions, the objective function

for the multi-stage model is:
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N T
min TC = 121 fov{fi[xi'(t)] + g, [X,"(8)] 1V.20

+ hi[Ii(O) + Xi(t) - (k ) Xi+1(t+£i+l)]}dt

i,i+1

subject to: Ii(O) + Xi(t) > (ki,i+1) Xi+l(t+li+1)

0<t<T-2,, i1, ..., N1
1,€0) + Xy (T-2y9) = (ky 449) Xy M+ L,(D

i=1, ..., N-1

Xi(O) =0 i=1, ..., N

C. Multi—étage Production-to-Inventory Model with Cyclic Flow

Let the production-to-inventory system be expanded to include
cyclic (feedback) flow. Assume that stage N, in producing good
products, also produces defective products that can be recycled in
process N+l. Subsequently, the recycled products are placed in
inventory j. Numerous examples .exist in addition to the nuclear
fuel cycle. One example is steel forgings. The defective forgings
are melted down and reenter the system as raw steel ingots. The
flow for the general case is shown in Figure 12.

The cost functions remain as before except for stages j, N-1, N
and NM+1. For stage j the purchasing cost function and the production
cost function remain as before; however, the holding cost function
will now include the input production from stage N+1. The holding

cost function becomes:
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Figure 12, Schematic Diagram of a N-Stage Production-
to-Inventory System with Cyclic Flow
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hj[Ij(O) + Xj(t) + XN+1(t) - (kj,j+l) Xj+1(t+2j+l)] Iv.21

Changes in stage N result from now having two inventories, e.g.,
finished products [INl(t)] and scrap [INz(t)]. Let the fraction of
production resulting in finished parts be a (0 < a < 1) and the
fraction scrap be 1-a. The amount of raw material now necessary to
produce one uﬁit of finished product in inventory N is (kN_l,N)/a.
For stage N the purchasing cost function and the production cost

function remain as before. The holding cost functions become:

th[INl(O) + XN(t) s o - RN(t)] + th[INz(O) + (l—a)X.N(t) Iv.22

= (g 1) Fgag (EFyg))

The holding cost function for stage N-1 is revised to include
the increased demand resulting from some of the produced parts in
stage N being defective. The holding cost function for stage N-1

becomes:
hN—l[IN—l(O) + XN_l(t) - (kN_l’N)XN(t+2N)/a] Iv.23

Finally, stage N+1 has only a purchasing function and a
production function, since it produces to replinish inventory j.
The purchasing cost function and production cost function for stage

M1 are:
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Making the appropriate substitutions, the objective function for
the multi-stage production to inventory system with cyclic (feedback)

flow becomes:

T j-1
min TC = fo[(iil {£,[%," ()] + g,[X, ' ()] + h [1 (0) IV.25
+ X, (t) - (ki,i+1)Xi+1(t+Zi+l)]} + fj[Xj'(t)]

+ gy [Xj ()] + hj [Ij (0) + Xj () + X, (0)

N-2
(t+2j+1)]+ i=§+l {fi[xi ()]

- (k,

3,5+1°%;

41
+ g [X (O] + hy[T,00) + X, (8) = (o yyq)%y,, (642, 010
* e Dy O] F ey Xy 1T g [T, (O

+ Xyop (8) = gy IXg(ERa) /el + £0[X" ()

+ eyl (0] + by [Ty (0 + aX(0) - Ry(©)]

* iy, [y (O (QedXy = Goy gy Kppeg ()]
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subject to:
a. Boundary Conditions:

(1) Xi(O) =0 4i=1, ..., N1

(2) 1,000 + X, (T=2y0) = (ky 509)% (T + I,(T)

i=1, ..., N-1; 1 # j-1

(3) I;_3(0) + X ) (T-2,) + X, (T-2,) = (ky_y X (D)

b. Constraints:

@B Ii(O) + Xi(t) > (k )X

1,141 %541 (FHy4g)

0<t<T-2

< 1+1° i=1, ..., N-2; i # j

(2) L0 + X (8) + Ky (£ 2 (g gy 0K,y (40,4005

0<t=T- 2

(3) I_;(0) + X . (t) > (kN_l’N)XN(t+2N)/a

0<t<T- 2y

(4) INl(O) +ox (£) > Re(t) 0<t<T

(5) Ty (©) + A-odXy(e) 2 (o g My (4o

The model is now complete. 1Its purpose is to find optimal stage-
wise cumulative production trajectories over the horizon of interest

which will minimize acquisition, production, and inventory holding
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costs while insuring that demands are met. The objective function
assumes the form of minimizing an integral containing several unknown
functions all of which contain a single independent variable, time.

This class of problems is called functionals. The following chapter

develops the mathematical foundation for solving this class of problems.




CHAPTER V.

MATHEMATICAL FOUNDATION

In the previous chapter, an objective function is developed that
assumes the form of finding the minimum of the integral of several
unknown functions containing a single independent variable subject
to given constraints. The solution of such an objective function
falls properly into the calculus of variationms.

The mathematical foundation for the solution of this class of
problems is developed by considering first necessary and sufficient
conditions for minimizing integrals with a single unknown function,
then integrals with several unknown functions. Next, transversality
conditions are developed for functionals with unknown boundary
conditions. Finally, a method is demonstrated for solving

functionals subject to inequality constraints.

A. Necessary Conditions for an Extremum

1. Single Unknown Function

Let y(t) be an unknown function, y'(t) be its first derivative
with respect to the independent variable, and let t be the independent
variable. Further, let y(t) and y'(t) be abbreviated by y and y'
respectively. Assume the minimum is sought to the following
functional:

b
min I = [ F(y,y',t)dt V.1

a

47
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This is referred to as the '"simplest problem'" in the calculus
of variations. The necessary. condition for a relative minimum is

given by the Euler-Lagrange equation:

9F . _
(ayl) = 0 V-2

3F _d_
3y dt

The proof of this necessary condition is found in several

[27,28,62] and, therefore, is not repeated here.

texts
2. Several Unknown Functions
The previously identified objective function contains several
unknown functions; therefore, the Euler-Lagrange equation must be
expanded to meet this requirement. The necessary conditions for
extremizing a functional containing several unknown functions are

d[24]' Therefore, proof of these necessary conditions is

rarely foun
developed in Appendix B. The resulting equations to extremize the

functional:

b i
min J = f F(yl,yl',yz,yz', ey yn,yn',t)dt V.3
a

V.4




49

B. Sufficient Conditions for an Extremum
Sufficient conditions for an extremum for unconstrained functionals
are developed in Appendix B. These conditions are known as the

Legendre conditions and are repeated here. Let

_ 3%
E

F 1 [ -_— [] V.S
Vi oY 9y; 9y

Then, in order for the minimum of a functional to be obtained at the

extremal, it is necessary to satisfy the following chain of inequalities:

F ., _ .20 V.6
vy 'sYy

F * v F ' 1

>0
F L} )
YZ ,yl Fyzl’yzt
' sy +.. F L F ,
Yl ’yl Yl yn
. >0
F ' ' o e 0
y 'y F ] 1
n °’1 Yo oY,

Subsequent to the Legendre conditions, the strengthened Legendre

conditions, the Jacobi condition

[62]

, and the Weierstrass condition

states that it has been shown that

have been developed. PETROV
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these conditions are also necessary. In this regard, the Euler-
Lagrange equations establish necessary conditions locally while
the Jacobi condition and the Weierstrass condition establish
necessary conditions throughout a field. In any case, PETROV
points out that investigation of the latter two sufficiency
conditions is awkward and difficult and that wherever possible a
more practical approach should be taken. Specifically, he states
that if the minimum (maximum) of a functional in a given class of
functions exists and the extremal is unique, it may be asserted
without any analysis of the sufficient conditions, that the minimum
(maximum) is reached on the extremal.

The recent works of KROTOV[33’34’35’36]

make this approach all
the more appealing. KROTOV derived a test for determining the class
of admissible functions in which the extremal will be found. Once
it is known from the KROTOV test that the extremal falls in a "'given
class" there remains only the determination of uniqueness of the
extremal, i.e., does the solution of the Euler-Lagrange differential
equations yield an unique extremal.

KROTOV's works[33’34’35’36]

are summarized in Appendix E.

Recall that the extremals sought represent cumulative production
functions. The production rates are assumed to be continuous; there-
fore the cumulative production function should be continuous and

smooth. From Appendix E, the admissible class of functionals must

be of the "first kind" and the KROTOV test must have the following

solutions (see E.14 and E.15):
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lim F(x,y,y"') ;ﬁ-++w V.7
y "o y
w1

lim F(x,y,y") ;T'*‘“ V.8

y'-)—co

To summarize, the following steps will be taken to insure that

the minimizing extremal is found:

1. The Legendre cgnditions will be applied to insure a local
minimum.

2. The KROTOV test in V.7 and V.8 will be applied to assure
that the extremal is in the given class of piecewise smooth
functions.

3. The solution to the Euler-Lagrange differential equation

will be examined to insure uniqueness.

C. Transversality Conditions

A most important result is now developed. This result is the
key to solving the cyclic (feedback) production to inventory problems.

In the problem statement, all end points can be specified with
the exception of the point where the feedback rejoins the mainstream
flow. Demand here is unknown. Once this demand is known, all end
points are known. What is required is a relaxation of the end point
condition.

Consider equation B.1l4 (Appendix B) which is repeated here:
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oF oF 3F
§I=0-=f [ayl T nz+...+,()yn n V.9
d 3F d 3F d 3F
1de (ayl') 2 dt (ayz') AL T (ayn')]dt
9F 9F 3F b
+ [— —n, + ... + 7 n_]
ayl 1 8y2 2 Byn n

In the further development of this relationship, it is assumed
- that ni(a) = ni(b) = 0. The end points are known and fixed. Now
assume the end points are unknown, i.e., ni(a), ni(b) # 0. The first
variation must be equal to zero; therefore since ni(t) is arbitrary,

the conclusion is that

) . 0 i=1, ..., n for t=a,b. V.10

Byi'

The remainder of the development of necessary and sufficient
conditions is as shown in Appendix B. These results are as shown

[62]

in PETROV and are known as transversality conditioms.

D. Extremizing Inequality Constrained Functionals

The last development in the mathematical foundation is a little
known proof for extremizing functionals subject to inequality
constraints.

Assume the extremum is sought for the following functional:
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b
1=/ F(y,y',t)dt V.11
a
subject to
y(t) > g(t). V.12

The equality y = g(t) defines the boundary of the admissible
domain within which the function achieving the extremum may be found.
In other words, the extremum must lie in a closed region consisting
of the domain and its boundary. The Euler-Lagrange equation
developed in Appendix B has no such restriction. 1In fact, it
assumes freedom of variation. Obviously, if the extremal lies on
the boundary of the domain, it has no freedom of variation in one
direction.

Introduce another function, z(t), such that
z = y-g V.13

From equation V.13 it follows that 2zz' = y'-g', and that

y' = 2zz'+g'. The functional in equation V.11 becomes:

b
I=[ Flz24g,222'+g",tldt V.14
a

No restrictions have been imposed on the new function z(t), and
the value z=0 merely corresponds to the domain boundary. Using the
objective with the new variable, z, the extremal is sought in the

usual manner.
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The Euler-Lagrange equation for the functional in z must now

be satisfied:

oF d 3F | _
9z dt (az') =0
Now,

BTy e ey a ey ) T @D
and
e e 3 o,
Therefore,
Gl = & [ay (22)] = 22 §f, +2z-(
Finally,
-2—5-";[ ]‘22%'2 b By')]

From equation V.19 above:

oF d oF _
ZZ[ay - az'(5§T)] =0

The conclusion is either:

L

oy dt( ) =

V.15

V.16

V.17

V.18

V.20

V.21
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which is the Euler-Lagrange equation for the objective functional,

or:

V.22

which means the solution is on the boundary of the closed region,

i.e., on the constraint.
functional is achieved on
of the admissible domain.
several extremal segments
To find the complete

passage from the extremal

In other words, the extremum of the
either the extremal or on the boundary
Also, it may be a curve comprised of
and the boundary segments.

solution, the condition at the point of

to the boundary must be found.

Assume that the passage from the extremal to the boundary occurs

at one point, tl.

t

At this point, y(t) = g(t).

F(y,y'st)at + |

Now,

b
F(g,g',t)dt

t

V.23

Consider first the portion of the composite curve which is the

extremal:

Since ty is not known, y(tl)

is similar to the problem with no fixed end point.

F(y,y',t)dt.

V.24

is not known. Hence, this problem

(The difference

is that here ty is not known).
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Consider first the general case where both end points are not
fixed. Let the variation in y(t) be y(t) + eh(t) and be as shown in
Figure 13.

The increment in the functional as y passes to y+ech is written

as:

t1+6tl

AL = I(y+eh) - I(y) = [ F(y+eh,y'+eh',t)dt V.25

to+6t0

t
- f F(Y9y"t)dt
= f [F(y+eh,y"'+eh',t) - F(y,y',t)]dt V.26

t1+6tl

+ f F(y+eh,y'+eh',t)dt

- f F(y+ch,y'+eh',t)dt

The first term in V.26 is reduced in identical steps as equation

B.5 is reduced to B.10. The result is:

t
1
f [F(y+eh,y"+eh',t) - F(y,y',t)]1dt V.27
to .
t
1
- 9F 9F ..
- ft [5, b + 557 h'lde

0
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y
A
$y1
y(t)+eh(t)
/ y(t)
"1
0 t
T, to+st, Ty t,+8%,

Figure 13. Functional with Variable Endpoints’
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Using a linear approximation for infinitesimal variations, the

second and third terms of equation V.26 become:

t,+5t

10 .
f F(y+ch,y'+eh',t)dt . F Sty V.28
ty ty
't0+6t0 )
: f F(y+ch,y'+eh',t)dt ~ F Gto V.29
t t
0 0

The second member of equation V.27 is integrated by parts

identically to equations B.10 to B.1l4, and the result becomes:

t1 1
_ 3F _d_ OF dF
§I = [t 5y ~ df Gynhdx t3orhl +F & Sty V.30
0 : to
- F| st
. 0
0

Looking at Figure 13 it is seen that to the accuracy of higher

order infinitesimals, h(to) and h(tl) can be approximated by:

-~ - v . -~ - '
h(to) - 6y0 y Gto, h(tl) -~ 6y1 y 6t1 V.31

Substituting V.31 into V.30:
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1
9F d oF ot
61 = [ alT: oy (8y,-y'8t)) V.32
t0 t
1
oF _ ! _
3y . (Sy0 y Gto) + F . St . ,GtO
0 1 0
t
F _d_ 5F
§I = ft 5y~ dat ay <~ 1hde + 5y 8y, V.33
0 t
3F 3F
+ (F~y' == St, - ==+ Sy
dy tl 1 2y to 0
F
- (F-y' %;T) Gto
%

In summary, equation V.33 expresses the variation of the
functional as the variation of y(t) within the original range of
integration and variation outside the end points as a result of
varying the end points. For the extremal, the integral part of V.33

must vanish leaving:

_ oF 1 OF
6T = 3o+ ) Sy + (F=y' 5o ) st V.34
1 1
3F , 9F
ayl N 6 (F-y ay t. (Sto
0 0
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Now, suppose that the two end points slide along two curves

y = m(t) and y = n(t). To the accuracy of higher order infinitesimals,

Gyo = m'(t)GtO; 6y1 = n'(t)Gt1 V.35

At the extremum 6§I=0 and the substitution of V.35 into V.33

becomes
- _ oF ' o1 OF
sI 0 3;7 . n th + (F-y 5;7) . 6tl V.36
1 1
oF ' , OF
- —— + - A,
3y" . m Gto (F-y 3y . 6t0
0 0
= = 9F_ _, v OF
I 0 [ay' n'+F ay'] th V.37
t
1
_ (OF_ ain v OF
[By' m'+F ay'] . Gto
0

Since 6t0 and th are arbitrary and independent increments, it

follows that:

[(m'-y") %1;—'+ F] =0 V.38

[(n'-y") %&F—.+ F] =0 V.39
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Returning now to equation V.23, it is seen that the left end
point is fixed (equation V.38 does not apply) and that the right
end point is not fixed (equation V.38 does apply). Combining these
results:
§I, = [(g'-y") L+ + F]| ot V.40
1 oy 1 :
t
1
Consider now the second integral in equation V.22. Since this
functional lies on the boundary, the only variation possible at tl

is 6t1; therefore,

b b
81, = [ F(g,g',t)dt - [ F(g,g',t)dt V.41

t1—6t1 t1

or

612 [F(g’g',t)] ("5'51) . V.42

t

1

Since the extremum is assumed on the composite curve, 61 = 611 +

612 = 0, the result is:

I =0 = 611 + 612 = [F(g,g',t)] (—th) V.43

t

1

r oy OF
+ G-y T+ Fl| oty
Y
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Because 6t. is arbitrary and because at tl, y=8, V.43 reduces

1

'to:

oF
~-F(y,g',t) + (g'-y") 3y"

+F =0 V.4t
&

V.45

|
o

4y 3F

Fly,y'st) - Fly,g',t) = O'-8'") 3y
t

1

The difference of F(y,y',t) - F(y,g',t) is transformed using

the Lagrange theorem of the mean:
f(a) - £(b) = (a-b)f(c), where a < ¢ < b.
Adapting V.45 accordingly results in:

2

ay" [F(.a'50)] V.46

F(Y,Y',t) - F(Y,g',t) = (Y"‘g')

where y' < q' < g'.

Equating right hand sides of V.45 and V.46:

('-8") gor [Fy'»0]| = ') v [FG.a",01] V.47
t t
1 1
or
' ' _jL; t - _jL; ] =
(Y -8 )[3y' {F(}’9q ’t)} ay' {F(Y,y st)}] 0 V.48
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It follows immediately that y'(t) = g'(t) because q is some
intermediate value between y and g and as such has no restriction
on q'. Therefore, in the general caée the term in brackets in
equation V.48 is not equal to zero. The conclusion is that at tl’
the slope of tangent to y (the extremal) is equal to the slope of
the tangent to g (the constraint). This important deduction enables
all pieces of extremals and boundary curves of which the composite
extremal exists to be found. Finally, since g(t) is known, the
intersections of all extremal pieces with the boundary can be found
by solving a set of simultaneous equations numerically. Thus, all
constants of integration can be found.

Recognition of the implications of this result, the transversality
conditions, and KROTOV's works provides fhe key to solving the multi-
stage production-to-inventory system with cyclic flow. This result
demonstrates that the derivative of the extremal with respect to time
at the point of passage to the constraint is equal to the derivative
of the constraint with respect to time at the point of passage. Since
the extremal intersects the constraint at the point of passage, the
two curves share a common point. Two curves sharing a common point
and having equal slopes at that point form a composite curve that is
smooth about that point. KROTOV's test assures smoothness otherwise.
Finally, the remaining obstacle is that the boundary condition at the
point the recycle reenters the mainstream is not known. Application
of the transversality conditions removes this obstacle. There remains

only a discussion of the sufficiency conditions for functionals
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constrained by inequalities.

E. Sufficient Conditions for Inequality Constrained Functionals

As previously stated the solution go inequality constrained
functionals is generally a composite curve consisting of extremals
and constraints. Sufficiency conditions for extremals are developed
in section V.B. There remains only the question of what can be said
about the portion(s) of the curve coincident with the domain boundary.

Because the curve is on the domain boundary, variation is only
possible in one direction. Assume that a variation 8y is appended
to the curve where y(t) is equal to g(t). 1In order to avoid violationm -
of the inequality, 8y > 0. The variation in the functional at this
point is:

"2 oF d4 ,oF

6L = f B_g - dc (a—gT)]Gydx V.49
*1

If y(t) is a minimum, then:
sI > 0 V.50
However, no basis exists for deducing, as before, that:

— (= =0 V.51

It is only asserted that:
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oF d 3F
_5.g - d_t' (_Tag ) > 0. V.52

The final conclusion is that in order for y(x) to yield the
minimum for the portions of the curve coincident with the domain
boundary, it is necessary that the inequality in V.52 apply.

The mathematical development is now complete. Attention is now

directed toward solving the specific problem.




CHAPTER VI.

SPECIFICS OF THE PROBLEM AND THE SOLUTION

To proceed with the solution to the specific problem, the nuclear
fuel cycle is formulated as a multi-stage production-to-inventory
system with cyclic (feedback) flow. The external demand for energy
is translated into a continuous time-dependent equation representing
the demand for fabricated fuel reloads. Cost equations are then
developed for production, inventory holding, and acquisition costs.
Representative model parameter values are then tabulated. At this
point, the general form of the solution is found. From the general
form, the specific solution is generated by applying Boundary condi-
tions, transversality conditions, and the technique for solving
inequality constrained functionals. Sufficiency conditions are then
applied to insure the solution is a minimum. Finally, the results

are discussed.

A. Formulation of the Nuclear Fuel Cycle as a Multi-stage Cyclic
Production-to-Inventory System

The basis of the model formulation is a conceptualization of the
nuclear fuel cycle that is consistent with a production and inventory
perspective. This view of the nuclear fuel cycle is constructed by
treating each of the stages of the cycle as a production facility and
by associating with each such facility an inventory of output. 1In
addition, exploration for uranium ore reserves is treated as a
production stage with an associated inventory corresponding to the

reserves located. Thus, each stage of the fuel cycle is represented

66
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as a basic building block of the type first used by ZANGWILL[7?J'7

and shown in Figure 14.

Under this concept of the stages, the nuclear fuel cycle and
its material flows can be represented in the form illustrated in
Figure 15. It should be noted that each stage can be expanded into
several parallel plants and that the stages of enrichment and
irradiation in the reactor can be represented as several stages each
of which corresponds to a separate product enrichment. In addition,
aggregation of several parallel facilities or several enrichments into
a single representative stage is also reasonable and this approach is
used here.

As is indicated in Figure 15, the output materials from a given
stage become the input materials for another stage. However, a model
using this representation of the cycle will be "driven" by the demand
for energy from the reactor. Thus, this conceptual representation of
the fuel cycle should permit the analysis of the implications of
customer demand for energy upon the production operations throughout
the fuel cycle. It will also permit the analysis of strategies for
using vertical integration of the cycle to stockpile fuel materials.

One further adaptation.is necessary for the nuclear fuel cycle.
Reprocessed UF6’ in general, has a different percent of U-235 enrich-
ment than natural feed UF6. Different enrichment levels require
different SWU, and, therefore the enrichment stage has different
production and cost characteristics. Because of this, an additional

stage, enrichment of reprocessed UF6, is introduced. The nuclear
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Stage

Production Product
Facility Inventory

Figure 14. Basic Stage Composition(78)
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fuel cycle production-to-inventory system, as adapted, is shown in

Figure 16.

B. Development of the Nuclear Fuel Demand Equations
The purpose here is to develop a macroscopic management tool.

Recent works[39’40’41]

attempting similar purposes tend to standardize
assumptions as to reactor size, U-235 enrichment percentages, discharge
enrichment assays, etc. These same assumptions are used here té

permit comparison of results.:.. _

It is assumed that a typical reactor is in a one thousand
megawatt electric generating plant. An average fuel enrichment of
three percent U-235 is inserted into the reactor and the discharge
assay of the spent fuel removed is .86 percent U-235. A full core
load is inserted when the reactor comes on line, and each year one-
third of the core is replaced with fresh fuel (a reload). Based on
this scenario, the annual demand for fuel relocads can be approximated
by assessing one reload for each reactor on line the previous year
plus three reloads for each reactor that comes on line that year.

The "World List of Nuclear Power Plants"[60]

gives the history of
the operation of all nuclear power plants in the United States. It
also projects all nuclear power plants scheduled to come on line
through year 2000. Because approximately eight years are presently
required to construct and license such a plant, the schedule for the

[54]

next eight years is realistic. MORRISON's polynomial forecasting

technique described in Appendix C uses the history and schedule to
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predict nuclear reload demand through year 1994. The results of this
analysis are depicted in Table 5. It should be noted that the fore-
cast is based on cumulative reloads demanded. For ease of computation,
this cumulative figure is adjusted to a base year of 1976.

A measure of the foreqast error is obtained using the procedure
in Appendix C. To estimate the variance of the error, the forecasted
results are compared to ten years of known data. The comparison is
shown in Table 6.

The estimate of the variance of the error is given by:

. 2
82 _Zz (difference) _ 29,621 _ 3,291.2 VI.1
n-1 9
The estimate of the variance of the error of the forecast for
the tén-year—ahead forecast is determined from equation C.46:
o2 w@aoyw(0)® = s2 w(1oyw(10)T = 3,291.2 [22.883,512; o1

8582

= 182,779

This corresponds to three standard deviations of 1,283 reloads.

A measure of the association of the forecasted demand to the
forecast year is given by the index of determination, RZ. For the
data shown in Table 6, the total sum of the squares of the deviations
is 105,081,273. The sum of the squares due to regression is 102,568,282.

Thus, RZ = .976.

For the model developed, a continuous demand function is assumed.

[61]

To find the nominal trajectory for the forecast, OSTLE's quadratic
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Table 5
Ten-Year Forecast of Reactor Reloads Based on

Presently Scheduled Reactors

Reactor Cumulative Equivalent Cumulative Adjusted to
Year Start-up Reactors Reloads Rqd. Reloads Base Year (1976)
1960 1 1 3 3

61 1 2 4 7
62 2 4 8 15
63 1 5 7 22
64 0 5 5 27
65 0 5 5 32
66 1 6 8 40
67 0 6 6 46
68 2 8 12 58
69 3 11 17 75
70 4 15 23 98
71 4 19 27 125
72 8 27 43 168
73 7 34 48 216
74 12 46 70 286
75 8 54 70 356
76 5 59 69 425 0
77 [10]* [69] [89] [514] [89]
78 [5] [74] [84] [598] [173]
79 [9] [83] [101] [699] [274]
80 [10] [93] [113] [812] [387]
81 [17] [110] [144] [956] [531]
82 [14] [124] [152] [1108] [683]
83 [17] [141] [175] [1283] [851]
84 [17] [157] [192] [1475] [1050]
85 (1661)** (1235)
86 (1870) (1445)
87 (2096) (1671)
88 (2336) (1911)
89 (2590) (2165)
90 (2858) (2433)
91 (3141) (2715)
92 (3439) (3014)
93 (3749) (3324)
94 (4077) (3652)

*Brackets represent expected reloads based on actual schedule of
reactors to come on line from 1977-1984.

**Parenthesis represent expected reloads based on forecasting
techniques.
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Table 6

Error of the Forecast for Reloads

Year Actual Forecast Difference (Difference)2
1975 356 334 22 484
1976 425 400 25 625
1977 514 473 . 41 1681
1978 598 552 46 2116
1979 699 648 51 2601
1980 812 872 =60 3600
1981 956 972 -16 256
1982 1108 1069 56 3136
1983 1283 1164 119 14161
1984 1475 1444 31 961
z (difference)2 = 29621
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regression technique is applied. The nominal trajectory for the
cumulative reloads required by the reactors as a function of time

is given by:
7.306 t2 + 71.606 t VI.3

Again t=0 corresponds to a base year of 1976.

Each year one-third of the core is replaced with a reload. The
discharged spent fuel resides in "cooling off" storage for six months.
It is as if the reactor were producing spent fuel reloads with a
production lag time of 1 1/2 years. It is necessary to express this
"cumulative production rate'" as a function of time. Table 7 shows
the discharge of spent reloads developed in the same manner as the
demand for reloads. For this case the estimate of the variance in
the error of the forecast is 6,327. This corresponds to three standard
deviations of 1,778 reloads. Here the index of determination, Rz, is
equal to .967.

Using the data in Table 7, the quadratic regression yields the

following expression for the reloads discharged as a function of time:

4.292 t2 + 73.86 ¢t VI.4

C. Development of the Cost Equations
1. Production Cost Equations

The form of the production cost equations is discussed in Chapter

ITI. Specifically, an optimal level of production is assumed, and

any variation of the actual production rate from this optimal
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Table 7

Ten-Year Forecast of Reactor Discharge of Equivalent Reloads

Cumulative Reloads

Cumulative

Adjusted to

- Year Reactors On Line Discharged Reloads Discharged Base Year (1976)

1960
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

oo nn &SN =

oL undsNDHO

85
112
146
192
246

[305]
[374]
[448]
[531]
[624]
[734]
[858]
[999]
(1127)**
(1276)
(1435)
(1603)
(1782)
(1971)
(2169)
(2376)
(2612)
(2966)

0

[59]
[128]
[202]
[285]
[378]
[488]
[612]
[753]
(881)
(1030)
(1187)
(1357)
(1536)
(1725)
(1923)
(2130)
(2366)
(2719)

*Brackets represent expected reloads discharged based on actual
schedule of reactors to come on line.
**Parenthesis represent expected reloads discharged based on

forecasting technique.
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production rate results in costs that are proportional to the square
of the increase (decrease).

Let Li be the optimal production rate for stage i. Let Pi be
the production cost per unit at level Li' Let Bi be the constant
of proportionality for the incremental increase in cost per unit for
the square of the difference in the actual production and the optimal

level of production. The production cost function for anytime t is:
2
gi[Xi'(t)] = BiPi[Xi'(t) - Li] + Pixi'(t) VI.5

Expanding on the right:

IZ - 1 4 2
Bipixi (t) (ZBiPiLi + Pi)Xi (t) + BiPiLi VI.6
Make the following substitutions:
a. a; = BiPi VI.7
b. bi = 2BiPiLi + Pi
= 2
c. ¢y BiPiLi
and the production cost function becomes:
' = 12 - '
gi[xi ()] a X, (t) bixi (t) + cy VI.8

To establish production costs, the Bi is first determined. For
example, assume that an increase/decrease in production at stage i
of twenty percent results in an increase of ten percent in production

costs, or:

2

a. BﬁHUJZLfL .lPél VI.9

4]

2.
b. By = L

[%)]
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Table 8 shows the assumed optimal prdduction rates, Li’ from
which the Bi are determined. Of the production rates shown, all
except for enrichment, are from references shown. Enrichment
capacities must be computed from a total capacity of 27.6 million
SWU annually[71]. From the Fuel Management Module-3[7], one kilogram
of UF6 enriched to 3% from natural feed (.711%) with tails of .25%
requires 5.965 kilograms of feed and 3.811 SWU. For one kilogram
of UF6 enriched to 3% from reprocessed UF6 (.86%) with tails of .25%
requires 4.508 kilograms of feed and 2.857 SWU.

Because each stage converts the uranium fuel to a different form,
a material conversion factor is necessary to balance the material .
flow. The factors are developed in Appendix D and are shown in
Table 9. Applying these factors to a fuel reload that has been spent,
reprocessed, and reenriched to its original level of enrichment yields

the following results:

1. Reload
.0000566 Reloads/kg UF

a. = 17,668 kg UF VI.10

6 6

17,668 kg UF
4.508 kg UF /kg Enriched UF

b. = 3,919 kg Enriched UF

6 6

3,919 kg Enriched UF6
€. 41,354 kg Enriched UF /Reload -

.095 Reloads

From these computations it is concluded that not more than ten
percent of the enrichment process capability should be applied to

enriching reprocessed UF6' From the SWU conversion factors just
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Table 8

Optimal Production Levels

[40,71,72]

Stage Identifier Optimal Production Level (Units/Year)
stage
Exploration : L, A 29,542,863 tons ore/year
Mining L2 11,920,804 tons ore/year
Milling Ly 20,909,090 kg U308/year
Conversion L, 14,780,000 kg UF6/year
Enrichment (Natural Feed) L5 6,517,974 kg UF6 (3.0%) /year
Fabrication Le 146.075 reloads/year
Reactor L7 1.000 reloads/year
Reprocessing L8 2,218,487 kg UF6/year
Enrichment (Reprocessed) L 966,048 kg UF, (3.0%)/year
9 6
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Table 9

Material Flow Conversion Factors

Stage

Exploration

Mining

Milling

Conversion

Enrichment (Natural Feed)
Fabrication

Reactor

Reprocessing

Enrichment (Reprocessed)

*k,
i

b
produce one unit in inventory j.

Identifier* Conversion Factor
kO,l 1
kl,2 1
k2’3 .588
k3,4 .8054
k4,5 5.965
k5,6 41,354
ke,7 1
k7,8 . 0000566
k8,5 4.508

i is the number of units in inventory i required to

See Appendix D.
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given, the optimal production level for enrichment of natural

uranium feed is:
.9 x 27,600,000 SWU/3.811 = 6,517,974 kg UF6 (3%) VIi.11

The optimal production level for enrichment of reprocessed UF6

is:

.1 x 27,600,000 SWU/2.857 = 966,048 kg UF6 (3%) VI.12

Next, the individual unit production costs per unit produced,
Pi’ are required. Generally, production costs are proprietary and,

[69]. Table 10 lists production costs assumed

therefore, not available
by ERDA as of 1976. The only exception is the reprocessing cost, P8'
ERDA assuﬁes $280 per kilogram UF6. Other estimates are as low as
$90[69]. This variance results from a lack of information (the last
reprocessing occurred in 1972). The low figure will be used initially,
and the sensitivity analysis will investigate the sensitivity of the
model to this cost parameter.

From Tables 8 and 10 and from equations VI.7, the values of a;s
bi’ and c; are now determined and are enumerated in Table 11.

To complete the production data, production lag times are assumed
to be those shown in Table 12.

2. Inventory Holding Cost Equations

[30]

Inventory holding (carrying) costs are difficult to approximate .

However, nuclear fuels, particularly after the milling stage, are
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Table 10

Stage Production Costs

[69,71]

Production Cost ($/Unit)

Stage Identifier
Exploration P1
Mining P2
Milling P3
Conversion P4
Enrichment (Natural Feed) P5
Fabrication P6
Reactor P7
Reprocessing P8

Enrichment (Reprocessed) P9

$1.30/ton ore
$20/ton ore

$4.00/kg U308
$4.40/kg UF6

$381.10/kg Enr. UF6 (3.0%)

$2,826,000 reload

$90/kg UF

$285.70/kg Enr. UF6 (3.0%)
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Table 12

Production Lag Times

Stage

1-Exploration

2-Mining

3-Milling

4~Conversion

5-Enrichment (Natural Feed)
6-Fabrication

7-Reactor

8-Reprocessing

9-Enrichment (Reprocessed)

[65]

Identifier Lag Time (Years)

%, 1

22 1/6
£3 1/4
24 1/4
L 1/4
L 1/4
2, 11/2
2 1/4

L 1/4
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highly intensified energy sources. As such, they comprise a very
expensive commodity costing at some points several hundred dollars

per kilogram. As stated by HADLEY[BO]

,» there are costs associated
with insurance, tax, lights, heat, warehouse rent, security, etc.;
however, opportunity costs, breakage, pilferage, interest, etc.,

are proportional to the investment. In the case of nuclear fuels the
investment aspect dominates[8’22].

Figure 7 shows an estimate of the increase in the value of uranium
in terms of constant 1972 dollars. The slope of this curve appears
nearly linear over the interval of interest. Let Mi be the value of
one unit in inventory i at the base year (1976). Then the value of

each unit of product in inventory i can be estimated over the interval

of interest by:

M, (1 + qt) VI.13

where Miq is the slope of the line.

The amount in inventory i at any time t is given by the initial
inventory plus cumulative production minus cumulative demand, Ii(O) +
Xi(t) - Ri(t)' Assume a time value of money factor for the holding
cost to be d. Then the holding cost for inventory i at time t is

given by:

hi(t) = dMi(l + qt)[Ii(O) + Xi(t) - Ri(t)] VI.14




86

To quantify this relationship, values for d, q, Ii(o), and Mi
are required. Consider first the initial inventories, Ii(O).

Production lags require either initial inventories or shortages.
The purpose of this development is to demonstrate where fuels should
be stockpiled; therefore, shortages are not allowed. Also, all
processes are presently operating, except reprocessing. Therefore,
working inventories are on hand. Except where actual initial
inventories are estimated, they are computed to be the amount
necessary for production in each production lag time. ERDA[72]
has estimated the tons of ore in the explored reserve. The reloads
of spent fuel are estimated by taking the cumulative number of
reloads discharged from Table 7 as of 1976 and subtracting the amount
reprocessed. Assume a reload of spent fuel requires 30 tonnes. The
reprocessing plant at West Valley reprocessed 244 tons of spent fuel
in its operation[71]. That is approximately eight reloads. From
' Table 7 the cumulative spent fuel reloads as of 1976 is 246.
Consequently, the initial inventory of spent fuel reloads is
assumed td be 238. 1Initial inventory values are shown in Table 13.

Final inventories are assumed to be zero at all stages where
the model does not require otherwise. An example of where this
might occur is in recycled material. The model may show that it is

not economical to reprocess, in which case an ending inventory of

spent fuel reloads can accumulate. Otherwise, assume that Ii(T) =0

for all i.
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Table 13

Initial Inventory on Hand[60’72]

Stage Identifier Units on Hand
Exploration Il(O) 100 x 106 tons ore
Mining 12(0) 5,444,900
Milling 13(0) 9,254,000
Conversion 14(0) 11,483,000
Enrichment (Natural Feed) 15(0) 2,051,000
Fabrication 16(0) 0
Reactor 17(0) 238
Reprocessing 18(0) 643,400

Enrichment (Reprocessed) 19(0) 0
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The time value of money factor, d, is assumed to be .14[47].

The marginal increase in the value of uranium, q, is found by
interpolation of the curve in Figure 7. 1Its value is .05.

The initial value of each unit in inventory, Mi’ is computed from
the base value of U308' Conversion factors and unit production costs
are used to compute the remaining values. Table 14 enumerates the
values of Mi’

There is one exception to the holding cost function developed.
Spent fuel reloads not reprocessed are assumed to be encapsulated
and stored. This represents a penalty for not reprocessing. Assume
that this penalty is a constant cost per reload, S. Then the holding

cost function for the spent fuel (stage 7) is:

hy(£) = S[I;(0) + X;(t) = ky gXg(t+g)] VI.15

The penalty for encapsulating and storing spent fuel is placed
[69]

at $90 per kilogram The value for S is, then, assumed to be
$2,700,000.

3. Acquisition Cost Equations

The acquisition cost is assumed to be the purchase of rights
to the ore located by exploration. In this respect it is a function
of the production (exploration) rate and, implicitly, of time. Let
M0 represent the cost to purchase one ton of ore located in the base

year. Applying the same cost function as VI.13, the acquisition cost

function becomes:
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Table 14

Present Value of Inventories

Stage

External Source
Exploration

Mining

Milling

Conversion

Enrichment (Natural Feed)
Fabrication

Reactor

Reprocessing

Enrichment (Reprocessed)

Identifier Value ($/Unit)
Mb $7.00/ton ore
My $9.00/ton ore
M, $29.00/ton ore
M3 $54.87/kg U308
M4 $78.08/kg UF6
MS 846.85/kg UF6 (3.0%)
M6 $37,846,519/reload
M, $609,164/reload
Mg 124.47/kg UF6
M5 846.85/kg UF6 (3.0%)
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f(t) = Mo(l + qt)Xl'(t) V1.16

The value for q has already been defined, and MO is shown in

Table 14.
Finally, the time horizon of interest is taken to be 18 years

(1977-1994). This corresponds to the forecast period previously

developed.

D. Solution Equations in General Form

Making substitutions of the appropriate equation forms into the
general objective function (IV.25) and collecting the equations for
acquisition cost, production costs, and holding costs, the objgctive
function becomes:

T 9
: = ' 2 _ '
min TC = jo ([1+qe]MX, " (£) + iil {a;X '"(t) - bX,"(t) VI.17

4
+c,}+ I {dMi(1+qt)[Ii(0) + Xi(t) -k

T 1,1i+1

. xi+l(t+2 )1} + dM5(1+qt)[IS(O) + Xs(t) + X9(t)

i+l

- k5,6X6(t+26)] + dM, (1+qt) [T (0) + X (t) - R ()]

+ S[I7(O) + X7(t) -k (t+28)] + dM8(l+qt)[18(0)

7,8%8

+ X8(t) -k . X9(t+29)])dt

8,9
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subject to:
a. Boundary conditions VI1.18

1) Xi =0 i=1, ..., 9

(2) 1,000 + Xy (T-2y ) = &y 449 X5 (D

i=1, ..., 7; i # 5
(3) I5(0) + Xy (T-L) + Xg(T-2¢) = ky ¢ X (D)
(4) 16(0) + X6(T) = R6(T)

(5) Tg(0) + Xg(T-29) = kg 5 X (T)

b. Constraints
(1) 1,00 + X; () 2 ky ypq Kypq (H54)

0t T2, 1=1, ..., 7; 1#5

(2) 15(0) + X (t) + Xg(t) > k5,6 X6(t+26)
0<t< T2

(3) T4(0) + Xg(t)

tv

k8,5 Xg(t+eg) 0 <t < T-24

Re(t) 0<t<T

v

4) 16(0) + X6(t)

Applying the Euler-Lagrange equation for a functional dependent

on many functions (V.4) results in the following system of differential

equations:
9F d oF _ . :
a 3X, (t) T dt [axi'(t)] =0 1i=1, ..., 9 VI.19
dM. (1+qt) - gqM
b. X "(t) = 1 0
1 2a

1
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+ - M

o e - d(1+qt) (M, kl’z 1)
* 2 2a2

. L) =,d(1+qt)(,M3-k2,3M2)
: 3 2a
3

. X = d(1+qt)(M4—k3,4M3)
: 4 2a4

£ X - d(1+qt)(M5—k4’5M4)
‘ 5 2a5

ey = d(1+qt)(M6—k5’6M5)
& 2¢ 2a

6
h. X7(t) = a known function

d(1+qt)(M8-k7,8S)
2a

i. x8"(t) = .

d(1+qt)(M5—k8’5M8)
2a

j- Xg"(r) =
? 9

The forms of VI.19 b-j are such that they may be immediately
integrated. The twofold integration will result in two constants of
integration. Recalling boundary condition VI.18 a(l); Xi = 0,

i=1, ..., 9; it is readily seen that the second constant of

integration is zero. The general solutions are as follows:
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dqM dM. —-qM
_ 1.3 1170 .2 :
a. Xl(t) = ——12a1 t” + ———431 t° + clt VI.20
da@-ky g Myp) 3 4Ok g M p)
b. X,(t) = t” + t“ + c.t
i 12ai 4ai i
i=2,3,4,5,6.
dgqM dM_-k., .S
B 8 3 8 7,8” .2
c. X8(t) = 17a t” + _—_7E;_L—_ t° + c8t
8 8
dqM -k, M.) dM_-k, M)
_ 5 8,58 .3 5 8,58 2
d. Xg(t) 1239 t” + 4a9 t° + cgt

and, again, X7(t) is a known function.

E. Derivation of the Specific Solution

| Note that the general solution equations in VI.20 are independent
of each other except for their relation through the constraint
inequalities. Each general equation becomes specific by the
application of boundary conditions or transversality conditionms.

The result is an extremal for each stage representing the optimal
cumulative production function for that stage if no constraints are
given. This extremal is then compared with the constraints. If all
constraints are inactive, the extremal is the extremizing cumulative
production function. If the constraints are active then the
extremizing cumulative production function is a composite curve
consisting of the extremal and the constraint. The results in

Chapter V.D are applied to determine the points of passage from the

extremal to the constraint and vice versa.




94

Because each stage.exacts a demand on its preceding stage,
it is necessary to begin the solution at the point where external
demand is known and work backwards through the stages. However, the .
cyclic (feedback) flow extremizing cumulative production functions
must be determined before the extremizing cumulative production
function at the mainstream reentry point is determined. For the
nuclear fuel cycle, the stagewise extremizing cumulative production
functions should be found in the order of fabrication, enrichment of
reprocessed UF6, reprocessing, enrichment of natural feed, conversion,
milling, mining and, finally, exploration and acquisition.

Following this technique, it is necessary to begin with the
following given conditions:

1. The cumulative demand function for nuclear fuel reloads,

R6(t), is given by VI.3:
Rg(t) = 7.306 t2 + 71.606 ¢ VI.21

2. The cumulative production function for the reactor, X7(t),

is given by VI.4:

X, (t) = 4.292 t2 + 73.86 ¢ VI.22

1. Fabrication
Begin by finding the extremal for the fabrication stage because

demand on this stage is known. The first step is to find the constant

of integration.
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Using VI.20b and substituting the values for the model parameters

shown in Tables 11, 13, and 14:

dqgM.~k. M.) dM, -k, M.)
a. X, (t) = 6 5,65 t3 + 6 5,65 tz + c. .t VI.23
6 12a ba 6
6 6
_ -14 x .05 (37,847,000-41,354 x 846.85) _3
b. X (t) 12 x 483,660 t

.14 (37,847,000-41,354 x 846.85) 2
+ 4 x 483,660 to +ocgt

c. X6(t) = .0034088 t3 + .20453 t2 + cet

To solve for the constant of integration,-cé, apply boundary

condition VI.18 a(6):
a. 16(0) + X6(18) = R6(18) VI.24

b. .0034088(18)° + .20453(18)% + cg(18)

= 7.306(18)2 + 71.606(18)

c. ¢g = 198.33

The extremal for the cumulative production function for fabrication

is:

X (t) = .0034088 t + .20453 t2 + 198.33 t VI.25
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Next, it is determined if the extremizing function is the
extremal or a composite function consisting of the extremal and
the domain boundary. This is accomplished by comparing the extremal

to the constraint VI.18 b(4):

a. I.(0) + X (t) > Re(t) O0<t<18 VI.26

3

b. .0034088 t> + .20453 t2 + 198.33 t

>7.306 t2 + 71.606 t 0 < t < 18

By inspection the extremal is equal to or greater than the
constraint throughout the interval. The optimal cumulative production
function for fabrication is given by VI.25.

The solution can proceed no further along the mainstream because
the recycle flow reenters the inventory before fabrication. The
feedback flow must now be found.

2. Enrichment of Reprocessed U'F6

At the point where the recycle reenters the mainstream, the
boundary conditions are not known. The extremizing function for
the cumulative production of enriching the reprocessed UF6 must then
meet two necessary conditions:

a. The original Euler-Lagrange condition given by VI.19a and,

b. Transversality conditions as stated in V.7.

The first necessary condition results in VI.20d, or:
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£ (e - dQ(MS—k8,SM8) t3 . d(MS—kS,SMS) t2 e
a. 4g 12a ha 9

.14 x .05 (846.85-4.508 x 124.47) t3

b. X9(t) = 3
12 x 7,393.5 x 10
+ .14 (846.85-4.508 x }24.47) tz + cgt
4 x 7,393.5 x 10
3 2 i
c. X9(t) = 22.544 t~ + 1352.7 t° + cqt
The second necessary condition results in:
oF
a. oo~ =0
3%y () t=T
b. 2a, X,'(t) - b =0
279 =18
X,'(18) = >y 14,571 _ 1,970,800
¢ 4 2a 6 7Y

9 7,393.5 x 10

From VI.27c and VI.28c

a. Xg(t) = 22.544 £3 +1,352.7 ¢2 + cgt

b. Xy'(t) = 67.632 t? + 2,705.4 t + ¢

VI.27

VI.28

VI.29

c. Xg'(18) = 67.632(18)2% + 2,705.4(18) + cg = 1,970,800

d. ¢g = 1,900,200
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The conclusion 1s that the extremal for enrichment of reprocessed

UF6 is:

2

Xé(t) = 22.544 t3 + 1,352.7 t~ + 1,900,200 t VI.30

3. Reprocessing

The enrichment of reprocessed UF6 production function sets the
demand for reprocessed UF6. To continue with the solution, proceed
back down the cyclic flow to reprocessing of UF6.

From VI.20c and substitutions from Tables 11, 13, and 1l4:

dgqM dM, -k, .S
_ 3 8 7,8° 2
a. X8(t) = 1238 t” + —~——488 t° + c8t VI.31
b Xg(e) = .14 x .05 x 124L27 .3
12 x 1,014 x 10
+ .14 x 124.47-.0000566 x 2,700,000 t2 et

4 x 1,014 x 1076 8

c. Xg(t) = 71.605 £3 - 33,381 t2 + cgt

To find the constant of integration, apply boundary condition

VI.18 a(5):

IS(O) + XS(T—Zg) = k8,5 Xg(T) VI.32
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First, 18(0) must be found. Recall that initial inventories,

where not known, are equal to production lag time requirements.

a. 18(0) = k8,5 X9(£9) VI.33

b. Ig(0)

1.3 1.2
4.508 [22.544 () + 1,352.7 ()

+ 1,900,20044%9]

c. 18(0) = 2,141,900

Now, from VI.32:
1,3 1,2
a. 2,141,900 + 71.605(18 - ZO - 33,381(18 —-Z)
1, _ 3 2
+ c8(18 - Z) = 4.508 [22.544(18)~ + 1,352.7(18)

+ 1,900,200(18)1]

b. = 9,278,500

c
8
Thus, the extremal for reprocessing is:

3

X8(t) = 71.605 t~ - 33,381 t2 + 9,278,500 t VI.35

Next, the extremal must be checked against the constraint

VI.18 b(3):




100

a. Ig(0) + Xg(t) > kg’5 X9(t+2,9) 0<t< T-g VI.36

b. 2,141,900 + 71.605 t3 - 33,381 t2 + 9,278,500 t

13 1.2
> 4.508 [22.544(t + Z) + 1,352.7(t +-Z)

+ 1,900,200(t + %)]

c. 71.605 t3 - 33,381 t2 + 9,278,500 t + 2,141,900

{ 101.63 t3 + 6,174.2 t2 + 8,569,200 t + 2,141,200

The constraint is active throughout the interval. However, it
is beneficial to note that the cumulative production extremal for
reprocessing is also constrained by the cumulative production function

for the reactor, X7(t). This function is known and is given by VI.4:
X, (t) = 4.292 t% + 73.86 t VI.37

Apply constraint VI.18 b(1l) to VI.35:

a. 1I,(0) + X,(t) > k7,8 Xg(t+2g) 0 < t < T-2g VI.38

: 3
b. 238 + 4.292 t2 + 73.86 t > .0000566 [71.605(t +-%)

2
-33,381(t + %) + 9,278,500(t + %9

3 1.8863 t?

c. 4.292 t2 +73.86 t + 238 } .004053 t

+ 524.22 t + 131.17
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The constraint is active in the interval. The extremizing function
will, then, be a composite curve consisting of the extremal and the
constraint. To find the point of passage from the extremal to the
constraint the results of V.45 must be applied. At the point of
passage the tangent to the extremal must equal the tangent to the
constraint. Also, the two curves must be equal at the point. These
two equations are necessary to solve for two unknowns: the point
of passage and the constant of integration, cge

The two equations in two unknowns (t,c8)'are:

a. %E [L,(0) + X, (1)] = g—; [k, g Xg(tHiy)] VI.39
b. 17(0) + X7(t) = k7,8 X8(t+28)

Since interest is in X8(t), translate above equations by —28

and solve:

d 1,2 1,2 _ d .
a. g [238+4.292(c - 3) + 73.86(t - 3)° = g [.0000566 VI.40

(71.605 t> - 33,381 t2 + c)]

2
b. 2384+4.292(t — %) + 73.86(t - 71;) = .0000566

3

[71.605 t> - 33,381 t2 + cgt]
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Solving these two equations simultaneously results in:
a. t = 5.982 VI.41

b. = 2,565,400

€6

The extremizing function is the extremal over the interval

0 <t £ 5.982 and the constraint over the interval 5.982 < t < 18.

Thus,
a. Xg(t) = 71.605 3 - 33,381 t? + 2,565,400 t VI.42
0 <t < 5.982
_ 1,2 1
b. X8(t) = [238+4.292(t - 29 + 73.86(t - 20]/.0000566

= 75.830 t2 + 1,267,000 t + 3,874,000

5.982 < t < 18

4. Enrichment of Reprocessed UF6 Recomputed
Attention is now redirected to Xg(t). Recall that X8(t) must
be checked against the constraint indicated in VI.36a; however,

X8(t) now has a different form. Reapply the constraint:

Ig(0) + Xg(t) 2 k (t+£9) 0 <t < 18- VI.43

8,5 X9 9

Using VI.36c and checking the interval 0 < t < 5.982 first:
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2,141,900+71.605 t3 - 33,381 t2 + 2,565,400 t VI.44

3 2

i 101.63 t~ + 6,174.2 t~ + 8,569,200 t + 2,141,900

The constraint is active throughout the interval 0 < t < 5.982.

Now check the interval 5.982 <t< 18 --%
75,830 t2 + 1,267,000 t + 3,874,000 VI.45

> 101.63 t3 + 6,174.2 t2 + 8,569,200 t + 2,141,900

5.982 < t < 18 -

This constraint also is active everywhere in the interval. The
conclusion is that throughout the interval 0 < t < 18, Xg(t) is

constrained by X8(t). Thus:
Xg(t) = [X8(t—29) + 18(0)]/k8,5 VI.46

Since the X8(t) solution is known over 0 < t < 5.982, Xg(t) is

constrained over that interval plus lag time, or 0 < t < 6.232.

1,3 1,2
a. Xg(t) = [71.605(t - Z) - 33,381(t - ?) VI.47
+ 2,565,400(t - %) + 643,4371/4.508

0<t<5.982+ 2,
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b. Xg(t) = 15.884 £3 - 7,416.8 t2 + 572,780 t
0<t<6.232
c. Ig(0) = 643,400

Also, Xg(t) has the remainder of the interval adjusted by the

lag time, or:

a. X9(t) [Xs(t"lg)]/ks,s VI.48

2
b. Xg(t) = 75,830(t - ) + 1,267,000(t - 3)

+ 3,874,000]/4.508

16,821 t2 + 272,690 t + 790,150

c. Xg(t)

6.232 <

A
(a4
IA
&

5. Enrichment of Natural Feed UF6

Attention is now returned to the mainstream flow at the enrichment

process. From VI.20b and substitutions from Tables 11, 13, and 14:

da@yk, M) 3 40k, M),

a. XS(t) =

17a, t + ba £+ et VI.49




105

.14 x .05 (846.85-5.965 x 78.08) 3
12 x 1,461.7 x 1076

b. xs(t) =

.14 (848.85-5.965 x 78.08) t2 + oot

+
4 x1,461.7 x 10 ° 3

3

c. XS(t) = 152.09 t~ + 9,125.4 t2 + c.t

5

To solve for the constant of integration apply boundary condition

VI.18 a(3):

IS(O) + XS(T-£6) + X9(T—26) = k5,6 X6(T) Iv.50

First, determine the initial inventory for the enrichment process,

IS(O)'

a. IS(O) = k5,6 X6(26) Iv.51

3 2
b. 1,(0) = 41,354[.0034088(%) + .zoassc%)

+ 198.33@%)]

c. 15(0) = 2,051,000

Substituting into VI.50:




106

3 2
a. 2,051,000+152.09(18 - %9 + 9,125.4(18 7-%) VI.52
1 1.2 1
+ c. (18 - ) + 16,821(18 - ) + 272,690(18 - )
5 4 4 A
+ 790,150 = 41,354[.0034088(18) + .20453(18)2

+ 198.33(18)]

b. = 7,621,300

c
5
The extremal for enrichment is:

3 2

xs(t) = 152.09.t~ + 9,125.4 t° + 7,621,300 t VI.53

This extremal must now be compared to the constraint VI.18 b(2):

a. IS(O) + X (t) + X9(t) > k5,6 X6(t+£6) VI.54

0<ts 182,

b. 2,051,000+152.09 t3 + 9,125.4 t2 + 7,621,300 t

+ 15.884 t° - 7,416.8 t2 + 572,780 t

1.3 1.2
> 41,354[.0034088(t +.7) + .20453(t + )

+198.33(t + ] 0< t < 6.232




107

c. 2,051,000 + 167.974 t3 + 1,708.6 tz + 8,215,100 t

3

§ 140.97 > + 8,563.8 t2 + 8,206,000 t + 2,051,000

0<t< 6.232

The constraint is active in the interval. Attention is turned

to the second interval 6.232 < t < 18 f'%

a. 2,051,000+152.09 t3 + 9,125.4 t2 + 7,621,300 t ~ VI.55

2 3

+ 16,821 t~ + 272,690 t + 790,150 > 140.97 t

+ 8,563.8 t2 + 8,206,000 t + 2,051,000

6.232§t§18-%

b. 2,051,000+152.09 t> + 25,946 t> + 7,894,000 t
+ 790,150 § 140.97 t° + 8,563.8 t>
+ 8,206,000 t + 2,051,000

The constraint is active in this interval also. Thus, the
extremizing function must be a composite curve consisting of the
extremal and the constraint. Again the results of V.45 are applied.
Using the forms of the equations in VI.55.b and following the stepé

taken in VI.39 and VI.40:
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a. 2,051,000+152.09 t3 + 25,946 t2 + cgt + 272,690 t VI.56

+ 790,150 = 140.97 t3 + 8,563.8 t2 + 8,206,000

+ 2,051,000

2

b. 456.28 t2 + 51,893 t + c, + 272,690 = 422.91 t

5

+ 17,128 t + 8,206,000

Solving VI.56a and b simultaneously for t and c¢. results in:

5
a. t=6.713 VI.57
b. cg = 7,698,400
The result is:
Xo(t) = 152.09 t° + 9,125.4 t° + 7,698,400 t VI.58

0<tc<6.713

The new expression is reapplied against constraint VI.18 b(2) as
in VI.54a, b, and c:

a. 2,051,000+152.09 t3 + 9,125.4 t2 + 7,698,400 t VI.59

3

+ 15.884 t3 - 7,416.8 t2 + 572,780 t > 140.97 t°

+ 8,563.8 t2 + 8,206,000 t + 2,051,000

0<t<6.713
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This time the constraint is not active. Attention is turned
to the interval 6.713 < t < 18 - %u Over this interval XS(t) is

the difference in the constraint equation and X9(t), or:

a. X (t) = 140.97 t° + 8,563.8 t% + 8,206,000 t  VI.60

+ 2,051,000-16,821 t2 - 272,300 t - 790,150

3

b. X (t) = 140.97 t° - 8,257.2 t2 + 7,933,700 t

+1,260,850 6.713 <t < 18 - ¢

6. Conversion
Attention is now turned to the conversion process. From VI.20b

and Tables 11, 13, and 14:

dqM,-k, ,M,) dM, -k, M)
4 3,43 3 43,437 2
a. Xé(t) 12a4 t™ + 484 t + c4t VI.61

.14 x .05 (78.08-.8054 x 54.87) t3

b. X, (t) = —
4 12 x 7.442 x 100

+ .14 (78.08-.8054 x 54.87) t2 + et

b x 7.442 x 1070 4

3

c. X, (t) = 2,656.3 t> + 159,375 t” + ¢t

To solve for the constant of integration apply boundary condiiion

VI.18 a(2):

14(0) + XA(T—QS) = k XS(T) VI.62

4,5
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First find the initial inventory, 14(0):
a. 14(0> = k4,5 Xs(ls) VI.63

1.3 1.2
b. TI,(0) = 5.965[152.09() + 9,125.4(3)

+ 7,698,0006%)]

c. 14(0) = 11,483,000

Now, from VI.62:
1,3 1,2
a. 11,483,000+2,656.3(18 - Z) + 159,375(18 - Z) VI. 64

+ e, (18 - %9 = 5.965[140.97(18)°> - 8,257.2(18)2
+ 7,933,700(18) + 1,260,850]
b. c, = 43,479,000

The extremal for conversion is:

X, (t) = 2,656.3 £3 + 159,375 €2 + 43,479,000 t VI.65

This extremal must be checked against the constraint in VI.20 b(1):

a. I,(0) + X, (t) > k, o X(tH,) 0<t<6.713-.25  VI.66

4,5




111

b. 11,483,000+2,656.3 t3 + 159,375 t2 + 43,479,000 t

1,3 1,2
> 5.965[152.09(t + ) + 9,125.4(t + )

+7,698,400(t + )] 0 < t < 6.463

c. 11,483,000+2,656.3't3 + 159,375 t2 + 43,479,000 t

3 2

1 907.22 £ + 55,114 t“ + 45,948,000 t

+ 11,483,000 0 < t < 6.463

The constraint is active over the interval 0 < t < 6.463. Now,

check the constraint over the interval 6.463 <t <18 —'%.

a. 11,483,000+2,656.3 t> + 159,375 t2 + 43,479,000 t  VI.67
1,3 1,2
> 5.965[140.97(t + ) - 8,257.3(t + 3)
+ 7,933,700(t + %) +1,260,850] 6.463 < t < 17.75

3

rt

b. 11,483,000+2,656.3 t> + 159,375 t2 + 43,479,000

1 840.80 t3 - 48,624 t2 + 47,300,000 t + 19,349,000

6.463 < t < 17.75

The constraint is active throughout the interval 6.463 < t < 17.75.
Since the constraining equations are active throught the total interval
0 < t < 18, the cumulative production function for conversion is given
by:

X, (t) = 907.22 t> + 55,114 t° + 45,948,000 t VI.68

0<t<17.75
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The initial inventory is as shown before:

I4(0) = 11,483,000 VI.69

7. Milling

Attention is now turned to milling. From VI.20b and Tables 11,

13, and 14:
dq(M,-k, .M,) dM.~k. .M.)
a. X,(t) = 3 72,3727 3, 32,3727 2, . .70
3 12a ia 3
3 3
b. Xg(t) = .14 x .05 (54.87-.5886x 29.00) 3

12 x 4.783 x 10

.14 (54.87-.588 x 29.00) t2 + et

+
4 x 4.783 x 10°° 3

3

c. Xy(t) = 4,612.3 £ + 276,740 t2 + et

3

To solve for the constant of integration, apply boundary condition

VI.18a(2):

13(0) + X3(18—24) = k3’4 X4(18) VI.71

First, the initial inventory must be found.

a. 13(0) = k3,4 X4(24) VI.72

13 1.2
b. I,(0) = .8054[907.22(7) + 55,114(3)

+ 45,948,000(%)
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c. 13(0) = 9,254,400

From VI.71:
1,3 1,2
a. 9,254,400+4,612.3(18 - Z) + 276,740(18 - Z) VI.73
1, _ 3 2
+ c3(18 - Z) = .8054[907.22(18)~ + 55,114(18)
+ 45,948,000(18)]
b. cq = 31,691,000
The extremal for milling is:

X, (t) = 4,612.3 £3 + 276,740 £2 + 31,691,000 t VI.74

The extremal must be checked against the constraint VI.18b(1l):
a. 13(0) + X5(t) 2 k2,3 X4(t+24) VI.75

b.  9,254,400+4,612.3 t° + 276,740 t2 + 31,691,000 t

1.3 1.2
> .8054[907.22(t + 7) + 55,114(t + 3)

+ 45,948,000(t +) 0 <t <18 -1

c. 9,254,400+4,612.3 t3 + 276,740 t2 + 31,691,000 t

1 730.7 3 + 44,390 t2 + 37,029,000 t + 9,254,400

0<t<17.75
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The constraint is active throught the interval. The conclusion
is that the extremizing cumulative production function for mining is

the constraining equation, or:

Xy (t) = 730.7 3 + 44,390 t2 + 37,029,000 t VI.76

8. Mining

Attention is now turned to mining. From VI.20b and Tables 11, 13,

and 14:
dq (M ) d(M,-k, ,M.)
_ 2" 1 2 1 3 2 71,271 2
a. X2(t) = 123 t” + 4a2 t° + c,t VI.77
b. Xz(t) _ 14 x .05 (29-1 x69) t3 + .14 (29-1 x 9)6 t2 + c2t

12 x 41.94 x 10 4 x 41.94 x 10

c. X,(t) = 278.18 t3 + 16,691 t2 + et

To find the constant of integration, apply boundary condition

VI.18a(2):
12(0) + X2(T—£3) = k2 3 3(T) VI.78
First, the initial inventory must be determined:
VI.79

a. 12(0) = 2 3 3(2 )

1.3 1.2 1
b. 1,(0) = .588[730.7G)" + 44,390() + 37,029,000(0)]

c. IZ(O) = 5,444,900
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Substitute into VI.78:
1,3 1,2
a. 5,444,900+278.18(18 - Z) + 16,691(18 - Z) VI.80
1

+c,(18 - P = .588[730.7(18)° + 44,390(18) 2

+ 37,029,000(18)1]
b. cy = 22,007,000

The extremal for mining is:

Xz(t) = 278.18 t3 + 16,691 t2 + 22,007,000 t VI.81

This extremal must now be checked against the constraint VI.20b(1l):

a. I,(0) + X,(t) > k Xy(t+2,) 0 <t < 182 VI.82

2,3 3
b. 5,444,900+278.18 t> + 16,691 t2 + 22,007,000 t
1.3 1.2
> .588[730.7(t + ) + 44,390(t + 3

+ 37,029,000(t + %0]

c. 5,444,900+278.18 t3 + 16,691 t2 + 22,007,000 t

1 429.65 t> + 26,105 t + 21,786,000 t + 5,444,900 -

The constraint is active throughout the interval 0 <t < 17.75.

The extremizing function for mining is the constraining equation, or:
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3 4 26,105 t2 + 21,786,000 t VI.83

Xz(t) = 429.65 t
9. Acquisition and Exploration
Attention is now turned to acquisition and exploration. From

VI.20a and Tables 11, 12, and 14:

dgM . dM,—-qM
_ 1.3 1 0 2
a. Xl(t) = 17a + “aa. t” + c,t VI1.84
1 1
_ 14 x .05%x 9 3 14 x 9-.05x 7 2
b. Xl(t) = 3 t™ + 3 t° + clt

12 x 1.1 x 10 4x 1.1 x 10

3

c. Xl(t) = 4,772.9 t~ + 206,820 t2 + c,t

1

To find the constant of integration, apply boundary condition

VI.18a(2):

a. Il(O) + Xl(T—Zz) = kl,2 XZ(T) VI.85

3 2
b. 100,000,000+4,772.7(18 - %p + 206,820(18 - %p

+ e (18 - %) = 1(429.65(18)° + 26,105(18)2

+ 21,786,000(18)2

c. = 11,791,000

¢1

The extremal for exploration and acquisition is:
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3

X (6) = 4,772.7 7 + 206,820 £2 + 11,791,000 t VI.86

This extremal must be checked against the constraint VI.20b(1):

a. I,(0) +X(t) > k X,(t+2,) 0 <t < 18-%, VI.87

1,2

3

b. 100,000,000+4,772.7 t~ + 206,820 t2 + 11,791,000 t

1,3 1.2
> 1[429.65(t +¢) + 26,105(t + )

+ 21,786,000(t + —é—)]

3

c. 100,000,000+4,772.7 t~ + 206,820 t2 + 11,791,000 t

> 429.65 t3 + 26,427 t2 + 21,788,000 t + 3,631,000
The constraint is inactive throughout the interval 0 <t < 17.833.
The conclusion is that the extremizing function for exploration and

acquisition is given by:

Xl(t) = 4,772.7 t3 + 206,820 t2 + 11,791,000 t VI.88

0 <t <17.833
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F. Sufficient Conditions for an Extremum

To insure that the specific solution is an extremum and a minimum,
the steps outlined in Chapter V.B and E are taken. The Legendre
conditions are applied to insure a local minimum. The KROTOV test
is applied to insure that the specific solution falls in a class of
smooth curves only. The uniqueness of the solution is discussed.

1. To apply the Legendre conditions as given in V.5, the

following partial derivatives must be found:

i,5=1, ve.y 9 VI.89
i,j #7

ax,"' 8X.'

Examination of the objective function in VI.1l7 reveals that

no cross—products of functions exist. The result is:

=0 i#3j 4,5=1, ..., 9 VI.90
i,j 47

Further examination reveals that:

= 2ai i=j; i=1, ..., 9 VI.91
i#7
The values of a; tabulated in Table 11 are all positive and

greater than zero. The immediate conclusion is that the

resulting matrices formed for the Legendre conditions are
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diagonal matrices with all diagonal elements positive.
This insures that the chain of inequalities in V.5 are
satisfied.

2. For the KROTOV test, again refer to the objective function
in VI.17. The objective function consists of individual.

terms consisting of Xi' and X;. Forming the KROTOV test:

lim F(Xi',Xi,t) ilT i=1, ..., 9 VI.92
X. " >+oo i
i i#7

cr s 2 -
it is seen that the a Xi' term causes the limit to ->tw,

i
as Xi' +tW._ This result insures that the extremal portion
of the specific solution falls in the class of smooth functions.
3. The form of the differential equations in VI.19 are such that
the functions resulting from a twofold integration (with
application of boundary conditions and transversality
conditions) are unique.
Thus, the Legendre conditions insure that the specific solution
is at least a local minimum. The KROTOV test shows that the specific
solution occurs in a single class of smooth curves. Finally, the

form of the specific differential equations insure uniqueness. The

specific solution, then, is a global minimum.

G. Discussion of Solution
The cumulative production functions for all stages are now

complete. To illustrate best the relationship, Figures 17 through
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24 compafe the initial inventory plus the cumulative production
function to the cumulative demand function for each stage. Recall
that the cumulative production function at stage i+l establishes
the cumulative demand function on stage i according to the relation-
ships given in IV.19.

Examination of Figures 17-24 indicates that there are only two
significant accumulations of material: explored reserves and
fabricated reloads. Pertinent comments on each stage are:

1. From Figure 17, it is seen that an inventory of explored
reserves is carried throughout the interval of interest;
however, this inventory is gradually depleted. The most
probable reason for this depletion is that all inventories
are driven to zero by assumption in the problem statement.

2. Figures 18, 19, 20 and 24 show that production in mining,
milling, conversion, and reprocessing of UF6 is clearly
the amount necessary to meet demand only.

3. Figure 21 shows that production in enrichment of natural
uranium is essentially the amount necessary to meet demand;
however, a relatively small inventory of 157,900 kilograms
of enriched UF6 builds up by 1982 and is then depleted.

4. TFigure 22 shows that a significant inventory of 567
fabricated reloads builds up and is then depleted.

5. Figure 23 shows that the initial inventory of 238 spent

fuel reloads is depleted by reprocessing by 1981, and all
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spent fuel reloads past that time are reprocessed as they
are reproduced.

Recall that the objective was to minimize total costs where the
costs considered were acquisition, production, and holding costs.
Further, recall that production costs included costs associated with
varying production rates from the rate considered optimal. Table iS
compares the derived production rate with the assumed production rate
(see Table 8), and with available ERDA fofecasts of what capacities
should exist by 1990. Recall that the production rate is merely the
first derivative of the cumulative production function with respect
to time. From Table 15, it is readily concluded (for assumptions as
given, specifically with reprocessing) that industry should concentrate
on expanding production capability in mining, milling, and conversion,
but not so in enrichment. Also, fabrication and reprocessing capacity
will not be as critical as originally thought.

The final element of the solution is the total cost. Equation
VI.17 is the objective function to be minimized. All extremizing
functions have now been found and can be substituted into VI.17.
Before substitution, some simplication can be made. Recall that in
many cases, production was only sufficient to meet demand, i.e.,
there was no inventory. Where inventories are zero, obviously holding
costs are zero and can be omitted.

To simplify the computations further, a fundamental law of

calculus will be applied, i.e., the integral of the sum is equal to
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Table 15

Comparison of Production Rates and Capacities

Assumed Optimal ERDA Forecast
Production Derived Production Production
Stage Capacity (1977) Capacity (1990) Capacity

Exploration 29,542,863 tons/yr 20,388,000 -108,429,000
Mining 11,920,804 tons/yr 22,770,000 95,673,000
Milling 20,909,090 kg U308/yr 38,702,000 54,545,000
Conversion 14,780,000 kg UF6/yr 48,025,000 -
Enrichment 7,242,194 kg UF6/yr 7,785,400 -
(Total)
Fabrication 146.075 reloads/yr 206.060 -

Reprocessing 2,218,487 kg UF6/yr 3,390,000 0
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the sum of the integrals. This permits the total cost to be computed
as the sum of the stagewise costs.
1. Exploration and Acquisition

Extracting exploration and acquisition costs from VI.17:

T

- 2
= T ] -
¢y = fo {(+gEdMy X, ' () + a; X, "7(x) - by X;"(t) VI.93

Xl(t) is given in VI.S88. Xl'(t) is its first derivative with
respect to time. Values for as bl’ Cys 4 d, MO, and M1 have been
given. The relationship inside the square brackets is developed in
VI.87a-c. Finally, all computations are developed for the period
of interest, 18 years. This requires production to be lag time
ahead of demand. For this stage, the period of interest becomes
T—22, or 18 - %u Making these substitutions, VI.93 becomes:

17.833
TC, = fo {(1+.05 t) x 7 (14,318 t2 + 413,640 t VI.94

+ 11,791,000 + 1.1 x 1070 (14,318 2 + 413,640 t

+ 11,791,000 - 7.8 (14,318 t2 + 413,640 t + 11,791,000)

+ 9.60 x 107 + .14 x 9 (1+.05 t)[(100,000,000+4,772.7 t3

+ 206,820 t2 + 11,791,000 t) - (429.7 £ + 26,105 t2

+ 21,786,000 t]l}dt
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Simplifying, integrating, and evaluating results in:

TCl = $1.4161 x 1010

2. Mining

Extracting mining costs from VI.17:

T
= ’ 12 - '
TC, —‘fo {ay X,"7(t) = b, X,'(t) + ¢, + aM,

(1+qt)[12(0) + X2(t) - k2,3 X3(t+l3)]}dt

VI.95

VI.96

Xz(t) is given by VI.S82. Xz'(t) is the first derivative of Xz(t)

with respect to time. Values for a,s b2, Cys 9, d, and M2 have been

given. The relationship inside the square brackets is developed in

VI.8la-c, but for this stage is equal to zero. The period of interest

is 18 - %u Making these substitutions, VI.93 becomes:
17.75

IC, = f {41.94 x 1078 (1,289 e2 4+ 52,210 t
0

+ 21,786,000)2 - 120(1,289 t2 + 52,210 t

+ 21,786,000 + 59.6 x 107}dt

Simplifying, integrating, and evaluating results in:

TC2 = $3.2628 x 1011

3. Milling

Extracting milling costs from VI.17:

VI.97

VI.98
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T
= ' 2 '
= [ {ag X3'7(8) = by X' (8) + g + aM, VI.99

(l+qt)[13(0) + X3(t) - 3 4 4(t+24)]}dt

X3(t) is given by VI.75. X3'(t) is the first derivative with

respect to time. Values for ag, b3, Cgs 9 d, and M3 have been given.
The relationship inside the square brackets is developed in VI.74a-c,

but for this stage is equal to zero. The period of interest is

18 - %u Making these substitutions, VI.96 becomes:

: 17.75 6 )
TC, = [ {4.783 x 10 ° (2,192 t° + 88,780 t. VI.100

3 7%
+ 37,029,000)% - 24 (2,192 t2 + 88,780 t

+ 37,029,000) + 23 x 107}dt

Simplifying, integrating, and evaluating results in:

= $1.090 x 101 vI.101

4. Conversion

Extracting conversion costs from VI.17:

T
= f '{a X, '2(t) 4'(t) + ¢, + aM, VI.102

(l+qt)[14(0) + Xé(t) - 4 5 (t+l )]}dt
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X, (t) is given by VI.68. x4'(t) is the first derivative of
X4(t) with respect to time. Values for aa, b4, c4, q, d, and M4

have been given. The relationship in the square brackets is

developed in VI.65a-c and VI.66a and b. Holding costs accrue over

the interval O < t < 6.463 but are zero over the interval
6.463 < t < 18. The period of interest is 18 - %u Making appro-

priate substitutions, VI.99 becomes:

17.75

TC, = f {7.442 x 1078 (2,522 ¢2 + 110,228 ¢
0

+ 45,948,000)% - 26.4(2,522 t2 + 110,228 t

+ 45,948,000) + 16.25 x 107}dt

Simplifying, integrating, and evaluating results in:

TC, = $2.602 x 10%1

4

5. Enrichment and Natural Feed UF6

Extracting enrichment costs from VI.17:

T
= ’ 12 - '
TC, fo fag X'7(8) - bg X' (£) + g + aM,

. (l+qt)[15(0) + XS(t) + Xg(t) - k5,6 X6(t+£6)]}dt

VI.1l03

VI.104

VI.105
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Xs(t) is given by VI.57 and VI.59b. X5'(t) is the first
derivative of XS(t) with respect to time. Values for ags bS’ 5> 95
d, and M5 are given. The relationship inside the square brackets is
developed in VI.58 for the interval O < t < 6.713. Over the remainder

of the interval the relationship equals zero. The period of interest

is 18 - %u Making the appropriate substitutions, VI.102 becomes:
6.713 -6 2
TC = / {1,461.7 x 10~ (456.27 t° + 18,251 t VI.106
0 .

+ 7,698,000)% - 2,286.6(456.27 t> + 18,251 t

+ 7,698,000) + 620 x 10’ + .14 x 846.85

(1+.05 t)[(2,051,0004152.09 t> + 9,125.4 t

+ 7,698,000 t + 15.884 t° — 7,416.8.t> + 572,780 t)

(140.97 t> + 8,563.8 2 + 8,206,000 t

17.75 6 5
+ 2,051,000)]}dt + | {1,461.7 x 107> (422.91 t
6.713

16,514 t + 7,933,700)2 - 2,286.6(422.91 t2

- 16,514 t + 7,933,700) + 620 x 107)}dt
Simplifying, integrating, and evaluating results in:

TC5 = $1.3487 x 1012 VIi.1l07

6. Fabrication

Extracting fabrication costs from VI.17:
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T
TC, = fo'{a6 X6'2(t) - bg X' (£) + g + M, (IHat) VI.108
. [16(0) + x6(t) - R6(t)]}dt

X6(t) is given by VI.25. X6'(t) is the first derivative of X6(t)
with respect to time. Values for ags b6’ Cgo q, d, and M6 have been
given. The initial inventory, 16(0), is zero. R6(t) is known and

given by VI.21. Making the appropriate substitutions, VI.1l05 becomes:

18
TC, = [ {483,656(.01023 t? + .40906 t + 198.33)2 VI.109
0
- 16,956 x 10° (.01023 t2 + .40906 t + 198.33)

+ 103.2 x 107 + .14 x 37,846,519(1+.05 t)[(.0034088 t3

+ .20453 t2 + 198.33 t) - (7.306 t2 + 71.606 t)]}dt

Simplifying, integrating, and evaluating results in:

TC6 = $3.4172 x 1011 VI.110

7. Reactor
Extracting the costs relating to storage of spent fuel reloads

from VI.17:

T
TC, = fo S[I,(0) + X, (t) - k; g Xg(t+20)]dt VI.111
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X7(t) is the reactor cumulative production function for spent
fuel reloads and is given by VI.22. S and I7(0) are both known.
X8(t) is developed in VIa and b over the intervals 0 < t < 5.982 and
5.982 < t < 18 - %1 however, the relationship inside the brackets

equals zero over the second interval. Making appropriate substitutions,

VI.108 becomes:

5.982
TC, = [ {2,700,000[ (238+4.292 t> + 73.86 t) VI.112
0

N

3

- .0000566(71.605 t~ - 33,381 t° + 2,565,400 t)]}dt

Simplifying, integrating, and evaluating results in:
TC, = $1.5970 x 10° VI.113

8. Reprocessing

Extracting reprocessing costs from VI.17:
T 2
= ! - )
TCgq jo {a8 Xg (t) bg Xg () + cg + dM8(1+qt) VI.114

. [18(0) + X8(t) - ks,g Xg(t+29)]}dt

X8(t) is given by VI.41 a and b. xs'(t) is the derivative of
these functions with respect to time. Values of ag» b8’ cg» d, q,
and MS have been given. The relationship inside the square brackets
is equal to zero throughout the interval of interest, which consists

of 0 <t < 5.982 and 5.982 < t < 18 - %u Making appropriate
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substitutions, VI.1ll4 becomes:

5.982 6
TCq = / {1,014 x 10 ° (214.82 t
0

2 _ 66,762 t VI.115

2

2,565,400)2 - 540(214.82 t© - 66,762 t + 2,565,400)

17.75

+49.92 x 107}dt + [ {1,014 x 107% (151,660 ¢t

5.982

+ 1,267,000)2 - 540(151,660 t + 1,267,000) + 49.92 x 107}dt

Simplifying, integrating, and evaluating results in:

11

VI.116

TC, = :$1.3424 x 10

8

9. Enrichment of Reprocessed UF6

Extracting the enrichment of reprocessed UF6 costs from VI.17:

T
= ’ 1 2 - 1
TC, fo fag Xg'7(t) - by X" (t) + cgldt VI.117

Xg(t) is given in VI.46b and VI.47c. X9'(t) is the first
derivative of Xg(t) with respect to time. Values of ag, b9, and c9
have been given. The intervals of interest are 0 < t < 6.232 and
6.232 < £ < 18 - %u Making appropriate substitutions, VI.1l1l4

becomes:
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6.232 -6
TCq = f {7,393 x 10 ~ (47.652 t
0

2 14,833.6 t VI.118

2

+ 572,820)% - 1,714.2(47.652 t% - 14,833.6 t

; 17.75 _
+ 5572,820) + 69 x 10’ }dt + [ {7,393 x 10
6.232

6

(33,642 t + 272,690) - 1,714.2(33,642 t + 272,690)
+ 69 x 107}dt

Simplifying, integrating, and evaluating results in:
10
TC9 = $§4.6376 x 10 VI.119

Finally, the total cost is the sum of the stage costs.

2 12
I = I TC, = $2.5823 x 10 VI.120
i=1

This total cost figure is of little significance here but will
be’of more interest in the sensitivity analysis. Of more significance
are the conclusions that can be drawn by reviewing the results of the
model. The more important conclusions are:

A. Accumulation of inventories occurs at the exploration stage

and at the fabrication stage, but for apparently different

reasons:
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1. The inventory at exploration results from the increasing
value of the uranium ore on the one hand, but also
because there already ekists a stockpile.

2. At the fabrication stage the cumulative demand function
is known and is a rapidly increasing function. As the
model was designed to associate a cost with changes to
the production rate, the results show that it is more
cost effective to stockpile material in the form of
reloads of fabricated fuel than to experience a rapidly
increasing production rate. Recall that variation from
the optimal production level results in costs proportional
to the square of the difference.

B. The derived production rates for mining, milling, and
conversion show dramatic increases are necessary. Enrich-

ment, fabrication and reprocessing should increase only

moderately.




CHAPTER VII.

SENSITIVITY ANALYSIS AND RECOMMENDATIONS FOR FURTHER RESEARCH

Three parameters are selected to test the model for sensitivity

to variation in model parameters. These parameters are:

1. The optimal production capacity for conversion, L4.

2. The cost to reprocess one kilogram of UF6, P8.

3. The constant of proportionality, Bi, to determine the
increase in production cost per unit as the square of the
difference in the assumed production capacity and the
derived production rate.

Subsequent to this analysis, recommendations for further research

are given.

A. Optimal Production Capacity for Conversion

The optimal production capacity for conversion is selected for
analysis because the derived production rate is shown to be
approximately three times the assumed production capacity. Recall
that production costs increase proportionally to the square of the
difference in the assumed production capacity and the derived
production rate. Intuitively, the total cost should decrease if
the assumed production capacity is increased. Assume that the
conversion production capacity is doubled. L2 is now equal to
30,000,000 kilograms of UF6 per year. Solving in the same manner

as in Chapter VI yields a stage cost of $4.7569 x lO12 as compared

to an originally computed cost of $1.7770 x 1011, or a 31.7%
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reduction. Note that no consideration is given to the cost of
increasing mining production capacity. Further, the total fuel
cycle cost is $2.4998 x 1012 as compared to an originally computed

cost of $2.5823 x 1012, or a reduction of 9.4%.

B. Cost of Reprocessing

The cost to reprocess spent fuel into UF6 is selected for analysis
becausé little is known about the actual costs. As previously stated,
estimated costs range from $90 to $280 per kilogram UF6. The original
solution assumes the lower figure. Assume now that the cost to
reprocess spent fuel is $180 per kilogram of UF6' Recomputation of
the solution yields a stage cost of $1.7611 x 1011 as compared to an
original solution cost of $1.3424 x 1011, or an increase of 31.2% for

that stage. The total fuel cycle costs increase from $2.5823 x 1012

12

to $2.6242 x 107", or 1.6%. This result is as expected; however, a

further increase might eliminate reprocessing because of economics.

C. The Constant of Proportionality in Production Costs

The constant of proportionality, Bi’ is selected for analysis
because the originally assumed value is arbitrary. The actual cost
to vary production rates is proprietary to the company concerned.
The original assumption, a variation in production from the assumed

optimal production capacity of 207 increases production costs by

10%, is the result of conversations with persons who perform similar

[8,22,74]

studies
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Assume now that a variation in production from the assumed
optimal production capacity of 20% increases production costs by
20%. Deriving a new solution as done in Chapter VI, yields the
increasing costs shown in Table 16. Note that the nature of Bi is
such that as B; increases, the production rate tends to be "straight-
lined", i.e., it costs more to vary the derived production rate from
the assumed optimal capacity. This has the effect of dampening out
the creation of early inventories (stockpiles) and forces the
acquisition of materials to a later time when they are more
expensive.

A further observation is that the stage costs increase where
the derived production rate varies greatly from the assumed optimal
production capacity. This relationship is best seen by comparing
Tables 15 and 16. Note in Table 15 for stages where the derived
production rate is significantly different from the assumed optimal
production capacity (conversion) that in Table 16 the corresponding

increases in production costs are higher (88.7%).

D. Recommendation for Further Research

In summary, the model developed here solves the cyclic, multi-
stage production-to-inventory problem that, heretofore, had not been
solved. It has a diverse range of application, specifically in any
process where products are recycled. Examples include processes

where defective products can be salvaged such as steel forgings.

Further, the model permits analysis of the relationships among the
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Table 16

Comparison of Fuel Cycle Cost Increases

Increased Bi

Solution Cost

Percent
Increase

1.562 x 1010

3.952 x 101

1.311 x 10%%

4.911 x 10ll

1.976 x 102

4.327 x 1011

11

Original

Stage Solution Cost
Exploration 1.416 x 10lo
Mining 3.263 x 10%!
Milling 1.090 x 10
Conversion 2.602 x 1011
Enrichment 1.3487 x 1012
Fabrication 3.417 x 10*t
Reprocessing 1.342 x 10ll
Enrichment of 4.638 x 1010

Reprocessed UF6

Total Cycle 2.582 x 1012

.689

.162

.629

10
1010

lo12

10.3%

21.1%

20.27%

88.7%

46.5%

26.6%

25.8%

11.3%

40.5%
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model parameters. In the absence of such a solution technique,
these relationships remain speculative.

In the nuclear fuel cycle the sensitivity analysis demonstrates
that the model is . highly sensitive to changes in the assumed optimal
production capacities and to changes in the production cost constant
of proportionality, Bi' The model is less sensitive to the cost of
reprocessing of spent fuel. These results suggest that a thorough
investigation of assumed optimal production capacities is appropriate.
One direction of this investigation should focus on the model developed
here and should seek the actual production capacities that would yield
a minimum total cost over the interval of interest. The other direction
is improvement of the model. Recall that the optimal production
capacity was assumed to be constant over the interval. Allowing
this capacity to vary with time or to experience increases/decreases
at intervals is a much desired improvement.

Further research is also recommended to increase the model's
representation of the real-world system. Specifically, the model
assumes that all nuclear fuel is enriched in the U-235 isotope to
one standard percentage. The present model allows cyclic (feedback)
flow. A more realistic model would allow a variety of fuel enrich-
ments in a forward branching flow. The technique is similar to that
developed here. A further investigation with more realism is an
analysis of the original problem with a change in boundary conditions.
The assumption of exhausting all existing inventories provides a

better basis for economic comparison; however, a boundary condition
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establishing specific ending inventories is more realistic.

Thus, the development here can contribute greatly to the cost-
benefit analysis of the nuclear fuel cycle management. In doing so,
it not only can improve the management decision .process, but it can

assist in improving the energy outlook of the United States.
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APPENDIX A.

DEFINITION OF NOTATION

coefficient in the quadratic production cost equation for

stage i

percentage of non-defective products from a manufacturing

process

coefficient in the quadratic production cost equation for

stage i

proportionality constant for the increase in production
cost versus the square of the difference in the optimal
production level and the actual production level for

stage 1

coefficient in the quadratic production cost equation for

stage i
total cost for stage i
time value of money factor

small increment in a variable or a small variation in a

functional

abbreviation for F(y,y',t)




F(y,y',t)
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functional dependent on the function y, the first
derivative of y with respect to t, and the independent

variable t

second partial derivative of F with respect to vy and

with respect to Y5

an arbitrary parameter

acquisition cost function in time

production cost function in time

inventory holding cost function in time

number of units in inventory as a function of time
general functional

number of input products i required to produce one

product j

production lag time in stage i

assumed optimal production capacity for stage i
value of one unit of product in inventory i

an arbitrary function in t

cost to produce one unit of product in stage i
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q marginal increase per unit of granium fuel

ri(t) demand rate as a function of time for stage i

Ri(t) cumulative demand as a function of time for stage i

S cost to encapsulate and store one reload of spent nuclear
fuel

t independent variable, time

T horizon of time of interest

TC total cost for fuel cycle

T substitute variable for t

xi(t) production rate as a function of time for stage i

Xi(t) cumulative production as a function of time for stage i

Xi'(t) first derivative of the cumulative production function

for stage i; also, identical to xi(t)
y(t) general unknown function in a functional

y'(t) first derivative of y(t) with respect to t




APPENDIX B.
NECESSARY AND SUFFICIENT CONDITIONS FOR EXTREMALS OF

FUNCTIONALS DEPENDING ON SEVERAL UNKNOWN FUNCTIONS

Necessary and sufficient conditions are developed here for the
type of problem presented only. Other necessary and sufficient
conditions exist but will not be developed.

Assume that an unknown function, y(t), is sought that will
extremize the integral:

b

I = max (min) [ Fly(t),y'(t),t]dt B.1
a

Clearly the value of I is dependent on the form of y(t). Let
y(t) be specifically selected from a class of admissible functions
having the following properties:
1. The functions are defined and have continuous first aﬁd
second derivatives.
2. The functions pass through the points [a,y(a)] and [b,y(b)].
Any particular function having these properties and extremizing
B.1 is called an extremal. Let y(t) be an extremal. Consider some
other function from the class of admissible functions that is in thé
near neighborhood of y(t). Call this function:
y(t) = y(t) + en(t) . B.2
Assume that n(t) is an arbitrary function such that n(a) = n(b)
= 0 and that € is an arbitrar& parameter.
Now if y(t) is the extremal and held in its form, and if n(t) is

arbitrary, known, and fixed, then the value of I becomes a function of

157
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€, I(e). From this relationship it is seen that I(0) is the extremal,
that I(e) is a near neighborhood functional, and that they have the

following forms:

b
I€) = [ Fly(t) +en(t),y'(t) +en'(t),tldt B.3
a .
b
1(0) = [ Fly(t),y'(t),tldt
a

Let the same line of reasoning apply to a functional dependent

on n unknown functions, and for brevity, establish the following

identities:
y;(0) =y B.4
d = o
dt yi(t) =Yy
ni(t) =0y
da -
at (B =0y
I(¢) becomes:
b
I(e) = fa Fly, + enysy, +€n,, «oey y_ +en, B.5

L 1 ] 1 ] 1
v1 + eny 'y, + ENy's wees ¥ + en ,tldt
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The first variation in I(), 6I, is defined as:

§T = 1im LE€)-IC0) B.6

e->0 €

In order for a functional to be an extremal, it is necessary that

§I = 0.
b
1im 2€2LO _ g - 150 2 [ [F(y, +eny,y, +en,, oons BT
€ € 1 1°72 2
e-0 e->0 a
] ] 1 ] 1
y, T ey Feng Ly, teny,t, ey ten, »t)
—_ L 1 | :
F(y15Y9s coes ¥ 557"y s «oes ¥ '50)]1dE
The term inside the brackets expressed in a Taylor Series
expansion with respect to € and about € = 0 is:
B.8

] L 1
F(y1 ten,y, teny ey y o ten Ly, ten Ly,
+ enz', ey yn' + enn',t) - F(yl,yz, cees Yoo

' ' ' -
yl ’y2 > . Yn ’t) [F(yl + 81'1_1,}’2,4' enz,

cees Yo + enn,yl' + enl',yz' + enz', cees
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yn' +€Tln',t) - F(Yl,}’z, R yn’yl"yz" sy

3
+€nl) [F(y1 +en,y, +eny,

|
v, o0 2ot 507,

]

cees Yo + enn,yl.' + enl',yz' + enz', e Vo

+en D] [ (v, +endl| _ o " (€-0)
n o 1 1 € 0

3
TN [Flyy tenpsyy *enys oo vy

] T 1] 1] \] ]
+ten .yt tengtyy, tenyy Tten )]

i

= " e DI Lo " €-0) + ...

9
+ a(yn_*_enn) [F(yl + €nlsy2 + enza ) yn

+ enn,yl' + enl',yz' + enz', cees yn' + enn',t)]

d - (e- A
[¥ (Yn + enn)] e =0 (e-0) + a(yn'-lenn')

[F(yl + €nysY, + ENgs sees Y + €N _» yl' + enn'
9
+ y2' +€n2', ceey Yn' + Enn',t)] [¥ (Yn' +€nn')] e =0

(€-0) + 0(e 2) and higher order terms.
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Taking the partials as shown, evaluating at € = 0, and ignoring

higher order terms of € results in:

L ]
F(yl + €N;sY, + €Ny +ovs Yo + €n_»¥, + eny B.9

v tenyts cees y T ten )= F(y sYgs -ees Yos
y ' y ' PRy y ') = _a— [F(y y ) y

l ’ 2 ’ ’ n ayl l’ 2’ ] n,
Va'3¥,"s cees ¥ '5t)]en, + 2———'[F(y y cees ¥
1 H] 2 ] s n b 1 ayll l, 2) t] n’
Va's¥,"s ey ¥y "oB)]en.t + L+ é——-[F(y y ey ¥

l b 2 H] 9 n b l ayn l, 2, 1 n,
Y'Y, s eees ¥ NaE) N+ o [F(y,,y y

1 bl 2 bl > n 3 n aynl l’ 2’ LA n,

1] [ | 1
Yy s¥g s sees Vo )]enn .

Using the identities in B.4 and substituting back into B.7:

b
1 9F
0=1lim [ = [+— 5F , 3F .
es0 at Byl eny + ayl, eny + ... + 5;;-enn B.10
oF '
+.ayB, en ]dt

Complete the division and take the limit. Recognizing the sum of

the integrals is equal to the integral of the sum, each integral can be
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analyzed separately. To integrate each ith term, use integration by parts

on:
oF .
ay.' i . B.11
i
Let:
oF
u o= o B.12
Vi
-4 [ oF
du = dt (By.')dt
1
dv = n.'dt
1
v = ﬂi

The integrated result is:

b
JF b d_ , 3F .
ay.l ni - fa ni dt (ayig)dt 1"1, LI 2 n Bcl3

1 a

Equation B.1l0 now becomes:

B.14

) ]dt
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Since ni(a) = ni(b) = 0, i=1, ..., n, equation B.1l4 becomes:

oF oF d oF
§I1=0=[ [+—- ( )]ndt+j' v ~ 3 Go ) Indt
a Byl t 1 a 8y2 dt 3y2 2
b
o+ B4 )1 - B.15
9y
a n

Since the function n is any arbitrary function the only way that
each integral can equal zero is for each integrand to equal zero.

The result is the Euler-Lagrange equations:

g—f,—;-%(—é;":—.)=o i=1, ..., n B.16

These equations are the necessary conditions for an extremal to
exist for a functional dependent upon several unknown functions.

Now, assume that the necessary conditions are met and the extremal
exists. This implies that the first variation of I with respect to €
is equal to zero (8I=0).

In the Taylor series expansion (equation B.8) of the variation in
F, higher order terms ofle were ignored. Now, since the first varia-
tion is equal to zero, the magnitude of the second order terms of € is
important. Indeed examination of the second variation determines
whether the functional increases or decreases (when the first varia-
tion is equal to zero) and, therefore, establishes whether the extremal

is a maximizing or minimizing functional.
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Ignoring the first variation terms and expanding the second

variation terms results in:

F(y1 + €Ny, + ENys sees ¥ + enn,yl' + enl',yz' B.17

)

+ Enz', ceey yn' -+ enn',t) =

3

2 (y1+€n1) {9 (y1+sn1

]
[F(yl +eny, eny, wees y o Foen Ly

d
tenghy,t Fenyts wes y T Hen L8] 7 Gpten Y| o

3 - (0

2
(e-0)° + ... + 3(y1+sn1) {a(yn+€nn) [F(yl + eng,y, +oeny,

ceey }’n + Enn,yl' + €n1"y2' + EZTIZ', D) Yn' + Enn'st)]

3

a . J— 2 D ————ea]
[—a—e- (yn + enn)]} e=0 (e-0)" + oo + ..o + 3(yn'+81’ln')

1 \] ] L
[F(y1 + €NnysY, + enz, ey yl + enl ,y2 + enz s

eyt e 0] [ '+ en DI g - (e-0)”

+ 0(83) and higher order terms in e.
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Ignore the higher order terms in €. Take the partial deriva-
tives as shown and evaluate at €=0. Let the following abbreviated

form represent the partial derivatives:

9 oF . _
(ay. = Fy.y.. B.18

Byi i’j
Now, equation B.17 can be reduced to the matrix form below:
(nl,nz, ceey nn’nl"nz" ceey nn')

Fyyvy Fypy, -e- Byyyy Fygyy' Fygy,' o oees By tiomg

n
2
. 1 \J '
Fypyy F¥g¥p o Fypyp F¥pyy F¥o¥, -o FoYy .
: n
.- ' ' ... Fyy '
Fy vy Fyv vy, Fy vy, ¥y.y. FBvy, YoIn o
1

Fyl'yl Fyl'y2 ... Fyl'yn Fyl'yl' Fyl'yz' .. Fyl'yn N,

Fyn'yl Fyn'yz et Fyn'yn Fyn'yl' Fyn'y2' ot Fyn Yal | ™

Investigation of this quadratic form reveals the following:

1. All products off the main diagonal have n as a multiplier.
Since n is an arbitrary function it can be selected as
small as desired.

2. All products on the main diagonal for the first n rows and

2 2 . .
columns have n; o, i=l, ..., n. n,” is also arbitrary and

can be selected small.
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The products on the main diagonal from the ntl to 2n row and
column contain nibz, i=1, ..., n. Now, ni can be selected
small, but not necessarily ni'; therefore, to a first order
approximation, ni'2 dominates all other terms. Since ni' is
squared it will always be positive. The conclusion is that
Fyi'yi' determines whether a variation would increase or
decrease the value of the function. The result as shown in
PETROV[62] is as follows;

(a) In order for the minimum of a functional to be obtained’
at the extremal it is necessary to satisfy the chain of
inequalities:

Fyp'yy' By 'Yy
Fyl'yl' > 0; >0; ... B.20

Fyzlyl' Fy2 lyzl

Fyl‘yl' .o Fyl'yn'

- e oo
v
o

Fyn'yl' .es Fyn yn'

(b) In order for the maximum of a functional to be obtained
at the extremal it is necessary for the above determi--

nants to be negative definite.

These conditions are known as the Legendre conditions.




APPENDIX C.

POLYNOMIAL FORECASTING TECHNIQUE![9%!

Let there be L+l observations taken at equally spaced intervals
of time. Let the most recent observation be called Y, and each of all
observations be identified as:

Y =

n (yn—L’ Y141’ Yn-1+2° 2 Yn-1° yn) C.1

Assume that these observations are as shown in Figure 25. The
purpose is to find an appropriate polynomial that in the least squares
sense estimates a best fitting curve through these points. Call the
abscissa of this polynomial "r" and define [P*(r)]n as the polynomial
of selected degree that best estimates the points of the n-element
observation vector in C.1. The "*" represents an estimate.

Consider the residual vector, E(n), as the difference between

the actual observation and the estimating curve. Then, -

BEAR LI Y
yn_l - [P* (L_l) ]n
E(n) = . C.2

y__p - [P*O]1
| |

Then the sum of the residual squares is

L

= ' 2
RIS JOIN c.3
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y?_1
¥
(2 (r)l, —
Y
yn-me/gf n
yn--L
[ n-=L+1
/]
A , . r
0 1 2 i L+2 L1 [, axis
. . " 'time
(n-L)t nt %18

Figure 25. Relations of Observations to
rolynomial in "rx"
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Consider now the discrete Legendre polynomial:

L
I p(x;1,L)p(x;3,L) = 0 1i#] C.4
x=0
where p(x;i,L) stands for a polynomial in x, of degree i, and
orthogonal over the range 0 < x < L. Now, let f£(x,k) be any poly-
nomial in X of degree k. Clearly there exist constants Bi such that:
k

f(x,k) = I Bi p(x;1,L) c.5
i=0

It follows then that:

L
I f(xk)p(x;j,L) =0 0<k<j C.6
x=0
and that:
p(x;0,L) = 1 ~C.7

Now, define a function g(x;j,L) such that

p(x;j,L) ‘ c.8

1)

e (x;33,L)
where:

Vg(x;j,L) = g(x;3,L) - g(x-1;j,L) c.9
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Then, C.6 becomes:

L .
T £(x,k) Wg(xi,L) =0 §>1 C.10
x=0

Summing by parts where L f(x,k) and v, = VJ-lg(x;j,L):

. L L
0 = £(xt1,k) - v lg(x;3,L) L - I VEGHLK) c.11
- x=0

j-1 .
v g(x;j,L)

Repeating the summation by parts:

i L i L

0 = £(x+l,k) v lg(x;3,L) | " VEGRD) v 2g(x;j,L)| LRE:
-1, j-1 . . L
+ oo+ DIV f(X*J,k)g(x;J,L)l 1

The iteration terminates here since by assumption VJf(x,k) = 0.

From C.6 let j=1, then k=0, and:

L
f(x+1,0)g(x;1,L) 1 =0 Cc.13

But since this must hold for any f, the conclusion is:

g(-1;1,L) = g(L;1,L) = O C.14
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Repeating for j=2,3, ..., and recalling that C.12 must apply for
any polynomial f(x,k) of degree j-1 or less, the following set of

boundary conditions can be obtained:

. . j-1 .
g(x33,L) | ;= Vg(x;J,L)lx=L = oo = VW e(x5,3,0) x=1, C+15

= 038(x;33,L) vg(x;j,L)

X=_1 = LA

j-1 .
v g3, |, = 0

From C.8, VJg(x;j,L) is specified as a jth degree polynomial;

therefore:

v 3t (x5, = 0 C.16

Using C.16 and the boundary conditions in C.15, g(x;j,L) can be

solved for:

h| 3 G+v)
gGs3uL) = a3 (DY) S c.17
x=0 (L+i)

where a(j,L) is arbitrary and will be set to:

L+j

j ) c.18

a(i,L) = (
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Substituting back into C.8 results in:

h| i )
. JTv
pGsi,L) = I CDVDCY) s c.19
v=0 L
This equation, C.19, is the discrete Legendre polynomial of
degree j for j < L.
As a convenience, define a term c(j,L) as:
L

[eGG,L)12 = = [p(x33,L)12 c. 20
x=0

Substituting p(x;j,L) from C.19 and solving yields:

(L)
[e(3,L)]% = LA c.21

2i+pLd)

Recall that the polynomial developed was the discrete Legendre
polynomial. Now let Q(x3j) be a continuous polynomial valid over the
discrete points. Further, define the normalized discrete Legendre

polynomial of degree j in variable x as:

-1
Qj(X) = pj(X) C.22

%

Now, suppose that P*(r) in C.3 can be written as a linear

combination of this Legendre polynomial:

[P*(r)]n =
h|

™8

o (Bj)n Qj(r) C.23
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where the Bi are not yet specified. Substituting C.23 into C.3:

L

m
2
e = I [y .- T (B). Q ()] C.24
n =0 n-L+r 3=0 J'n 73
aen
To minimize e set BE—-= 0, j=0,1, ..., m. The resulting
h|
equations are:
L m L ,
z I (B.) .k Q. (k) = I ¥ _ Q. (k) C.25
k=0 j=0 J J 1 k=0 n-L+k “i
i=0,1, ..., m

Now, it can be shown that:

L

z Q(r) Qj(r) =4

14 C.26
=0 J

where Gij is the kronecker delta.

Using C.26 and reversing the order of summation in C.25 results

in:

L

(Bj)n = k-z-o yn_L+k Qj (k) j=0’l’ eeey I C’27

Substituting C.27 into C.23 results in:

m L
[P*(r)] = iZo LZ) Yo & (010 (x) c.28
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Thus, C.28 is the required expression for the polynomial that
best fits the data vector Yn in the sense of least squares. By
varying r the process can be estimated both in the past and in the
future based on observations to the present. For example, if r=L
we have an estimate of the present observation. If r=L+1 an estimate
of the one-step prediction is obtained.

Assume that a second order polynomial is appropriate. From this

m=2. From C.19:

p(s;0,L) =1 C.29

p(s;1,L) = 1 - 7=

p(s;2,L) = 1 - 98 4 8s(s=1)

L L(L-1)
From C.21
[c(0,1)1% = 1+1 o
[c,)1? = _(y%g;@
[0(2,1)1% = LEDEAR L)
Rearranging C.28:
L m
[P*(r)]n= I [z Qj (k) Qj (r)]yn_Hk c.31

k=0 3j=0
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By definition in C.22

= 1
Qj(S) = pj(S) C.32
J
Making the appropriate substitutions in C.31:

L m
L

= I [0 Qo) + 0, (0 Q) (@) + 0,0 @y, 4y
L 1 1 1 1

= I [F=pa(k) —p,(r) +=— p, (k) =— p, (¥)
k=0 c0 0 CO 0 Cl 1 ¢y 1

1 1
PR e, ()y L
2 2
There are L+l "weights'" multiplied times L+1 observations. Call

the kth weight, Wk. Then:

w, o= =2 p (k) p(r) + == p. (k) py(r) + L= p. (k) p.(r) C.34
k 20 0 2 71 1 2 72 2

€0 ¢ )

Now assume that a ten—-period ahead forecast is desired based on

the eleven most recent observations. For this case, L=10 and R=L+10=20.

Equation C.34 after substitution becomes:
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2x20 5x10x9

_ 1 . 3x10 2k _
Vi =11 T Taxz 2T 10l - 50 )t 1xizx1s C.35
[1- 6xk (k— 12][1 _ 2x20 + 6x20x19]
10 10.9 10 10.9
C.35 reduces to:
- 2
W, = 858 [2718 - 2033k + 215k“] C.36
Returning to C.33, substituting W and solving yields:
10
[P*(20)]n = o Y Yoo10+k C.37

2
kZ {858 [2718 - 2033k + 215k ]yn—10+k}

In similar fashion, predictions can be made for any successive
periods based on observations up to the present.

Before leaving this topic, it is desirable to have some knowledge
of the variances of the error of the forecast.

Call Xn the nominal trajectory at time tn. Then the vector of

observations can be written as:
Y =TX + E C.38
nn n

Where Tn is the transformation matrix and En is the vector of

errors in the differences in the transformed nominal trajectory and
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the observed vector. Let the j—step predic¢tion at time tn be called:

zn+j,n C.39

then equation C.36 can be written as:

Zn+j,n = [P*(n+-j)]n = W(j)Yn C.40

Then, C.37 becomes

WY = WEIT X+ WEE c.4l

Since the vector En originates a vector of random errors, the

estimate of the errors is given by
E*(ot]) = WE)E_ C. 42

Assume that e; for all i has:

1. mean of zero
2. finite variance

3. no autocorrelation.

Under these assumptions, C.42 also has zero mean. For this case,

the covariance matrix would be:

Spag™ = W(K) R W(k) " C.43

where R(n) is the covariance matrix of En.
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A further frequent assumption is that observational errors have

zero mean and are uncorrelated with equal variances of residual errors,

02. Under this assumption:

R(n) = o2I C.44
and finally:
S % = olTH() W)t . C.45

n+j

Variance of the error of the forecast is the upper left of the

resulting matrix, or:

2w - W@t . C.46




APPENDIX D

MATERIAL FLOW IN THE NUCLEAR FUEL CYCLE

In the following sections, each stage of the nuclear fuel cycle
is described. Following each description, the material flow conversion
factor for that stage is developed. These values are collected in

Table 9.

Exploration

Although exploration is not considered a stage in the overview,
it can rightfully be considered such because the process of exploration
could be construed to be that process which converts an unexplored
resource into a reserve ore field.

In the United States,uranium ore is found principally in sedimentry
sandstone and mudstone deposits of the Colorado Plateau, the Wyoming
Basin and the Gulf Coastal Plains of Texas[45]. Exploration is
generally done by aerial and ground radiation surveys, radon gas
evolution measurements, and an extensive program of exploratory
drilling. Once deposits of uranium have been located, they are held
in reserve until they are mined.

Units of accountability are generally taken to be tons of ore.

In the exploration process, a ton of ore in the unexplored resource

is converted to a ton of ore in a reserve. The conversion factor,

kO,l’ is then unity (1).
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Mining

In the mining process uranium ore bearing stone is extracted from
the earth and delivered to a mill in similar fashion to copper ore
mining. Open pit mining accounts for about half of the ore produced
and is utilized when ore is located at depths of 400 feet or less.
Underground mining is employed for greater depths or when excessive
blasting would be required. As of 1974, 29 open pit mines produced
4,549,336 tons annually while 193 underground mines produced 1,992,953
tons of ore annually. Of this ore, approximately 0.2 percent or four
pounds per ton of ore is U308[723.

For accountability, the mining process is assumed to take tons

of ore from the inventory of reserve ore fields and add tons of ore

to the inventory of mined ore. The conversion factor, kl 2 is unity
s’

1.

Milling
In the milling process, uranium ore is crushed and ground. It is
then leached with either sulphuric acid or sodium carbonate to extract
several uranium compounds. The most common is ammonium diuranate,
commonly called 'yellowcake". As of 1976, approximétely 20 mills with
a total annual production of 21,000 metric tonnes of U30

8

in the Western United States and principally very near the mines[72;.
It is assumed that the milling process takes tons of ore from the

mined ore inventory and adds kilograms of U308 to the inventory of U30

were operating
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The average mined ore contains approximately 0.2 percent or four

pounds of U 08 per ton of mined ore[66]. Assuming an efficiency of

3

.935 in separating the U308 from other materials yields approximately

3.74 pounds, 1.698 kilograms, of U 08 per ton of ore. Then to produce

3

one kilogram of U .589 tons of ore are required. Therefore,

378’

k2’3 = .589

Conversion

The U308 extracted from the ore is converted into uranium

hexafluoride, UF_, by either a wet or dry chemical solvent process.

6’
Two commercial plants convert approximately 15,000 metric tonnes of
U,0, to UF annually[66].

378 6

The conversion process takes kilograms of U308 from the milled
ore inventory and adds kilograms of UF6 to the UF6 inventory. The
process is extremely efficient in separating the uranium. The
efficiency is generally assumed to be .99[66]}

In one kilogram of UF6, there are approximately .6761 kilograms
of uranium. Applying the efficiency factor of .99 results in .6830
kilograms of uranium being required. The molecular weight of U308

is approximately 842. Thus, .8054 kilograms of U308 produces 1.0

kilograms of UF6' The conversion factor, k3 4’ is then .8054.
s

Enrichment

Of the uranium present in UF,_, approximately 0.7 percent is the

6’

isotope U-235 required for fission. This low percentage must be

enhanced to 2-4 percent for most commercial reactors. Isotopic
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enrichment is presently accomplished by the gaseous diffusion process.
Three gaseous diffusion plants owned by the United States Government
have a total capacity of 27.6 million separative work units[71]. A
separative work unit (SWU) is a measure of the éffort expended to
separate a quantity of uranium of a given assay into two components;
one having a higher percentage of uranium 235 and one having a lower
percentage"[61].

The enrichment process takes kilograms of UF6 from the conversion
plant inventory and adds kilograms of enriched UF6 to its production
inventory. It also takes UF6 of a different enrichment from the
reprocessing plant and adds it to its production inventory.

The ratio of feed to product is given by the ratio of the percent
of U-235 in the product stream minus the percent U-235 in the waste
stream to the percent U-235 in the feed stream minus the percent in
the waste stream. For one kilogram of product of enrichment 3.0
percent, a natural feed of .711 percent, and a waste stream of .25
percent gives the conversion factor, k4,5 = 5.965.

For reprocessed UF6 at an enrichment of .86 percent, the conversion

factor, k8,5 = 4.508.

Fabrication.

The fabrication stage is a multi-stage process in itself in which
UF6 gas is reduced to uranium dioxide (U02) powder, the powder is formed
into pellets, the pellets are sintered to uniform density and inserted

into rods, and finally, the rods are assembled into fixed arrays known
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as fuel assemblies. These assemblies then comprise the reactor reloads.
Ten commercial plants presently fabricate all assembly requirements
for commercial reactors[66].

The fabrication stage draws kilograms of enriched UF6 from the
enriched inventory and adds reloads of UO2 to its production inventory.
One kilogram of enriched UF6 has .6761 kilograms of uranium. Assume
a loss of 1 percent. The resulting uranium is .6693 kilograms of
uranium. UO2 has a molecular weight of approximately 269.8. Then

the amount of UO, formed per kilogram of UF6 is .7593 kilograms.

[40]

2

One reload is assumed to have 31.4 metric tonnes of UO2

Since one kilogram of UF, is required for .7593 kilograms of U02, the

6
amount of UF6 required for one reload (conversion factor, k5 6) is
b

41,354.

Reactor

In the reactor,the U-235 isotope is fissioned releasing thermal
energy which in turn is used to generate elec;ricity. The fissions
reduce the amount of U-235 and increase the amounts of fission products.
Fission products must ultimately be separated and safely stored.
Generally, the reactor has an initial core of fresh fuel, and
approximately one-third of this core is replaced each year. The
discharged fuel,.or spent fuel, is held for a period of time to coo%
down, and then can be reprocessed[66].

In the reactor burnup process,assemblies are withdrawn from the

fabrication inventory and are added to the spent fuel inventory. The

conversion factor, k6 75 is unity (1).
9
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Reprocessing

The discharged fuel assemblies generally contain about one-third
of the U-235 isotope that was originally in the fuel plus some
plutonium and other marketable isotopes. Through reprocessing the
unused U-235, the plutonium saleable isotopes, and the U-238 are
separated from the unuseable fission products.

The U-235 and U-238 can be re-cycled as reactor reload fuel, the
plutonium is isolated and stored, and the fission products are reduced
to a safe form and stored permanently. There are no commercial
reprocessing plants in operation now; however, three are under
construction or alteration, and one did operate from 1966—72[711.

The reprocessing facilities take fuel assemblies from the spent

fuel inventory and adds kilograms of UF, of enrichment .86 percent to

6
the enrichment facility. Each reload contains approximately 257.6[40]
kilograms of U-235 upon discharge. At an average enrichment of .86
percent, this results in an uranium content of 26,403 kilograms of
uranium. Assume a loss in conversion of one percent. This leaves
26,139 kilograms of uranium. Each kilogram of uranium results in

1.479 kilograms of UF6. The conversion factor then for reloads of

UO2 to kilograms of UF6 is k7,8 = .0000566.




APPENDIX E

SUMMARY OF THE WORKS OF KroTOV|33534,35,36]

A. Introduction

V. F. KROTOV is a Russian mathematician who published prolifically
in the years 1960 to 1964 in the area of calculus of variations and
optimal control theory. Of the twelve articles be published, only
four are translated into English. These four articles are follow-on
articles to his dissertation and other basic articles. Since they
are intended for dissemination in Russia where the basic material
resides, they merely refer to his theorems previously proven. This
appendix briefly summarizes the more important aspects of KROTOV's

work.

B. Classes of Functions

Five classes of functions must first be defined. Class one is
called smooth functions and are characterized by having continuous
first derivatives. An example of a smooth function is shown in
Figure 26a. (Class two is called a continuous function. An example
of a continuous function is shown in Figure 26b. Class three is called
discontinuous fgnctions and examples are shown in Figures 26c and 26d.
The remaining two classes are narrower definitions. -Class four is
called piecewise-smooth. For example, the function in Figure 26b is
smooth except for certain individual points; therefore it is piecewise-

smooth. Class five is piecewise-continuous. For example, the function

in Figure 26d is continuous except at individual points; therefore
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it is called piecewise—continuous.

KROTOV's work centers around determining into which class an
extremal falls. WEIERSTRASS[57] first identified this problem. The
"WEIERSTRASS Problem" demonstrates a piecewise-continuous solution
where it had been thought that no solution existed. This is because
the solution had been sought in the class of piecewise-smooth

functions.

C. KROTOV's Works
In the calculus of variations, an extremal is sought to the

functional

b
I(u) = [ F(x,y,y")dx E.1l

a
where u is a line on the set U of lines whose properties will be
described later. Assume that the line u is piecewise-continuous and
has a vertical segment as shown in Figure 27.

This type of function is not Riemann integrable over the interval
[a,b] because y(x) is not single-valued over the interval; therefore
incline the vertical segment such that it makes an angle of 1/m with
the vertical. The changed extremal now appears as shown in Figure 28.

y(x) is now single-valued over the interval of interest. Define
the extremal in Figure 28 as u”. Further, if m > 0, the inclinatioa
is clockwise, and if m < 0, the inclination is counter-clockwise.

From this convention, the sign of m agrees with the sign vy~ yl

where vy = yl(xo+) and ;i = yl(xo_). Assume that the line u" has a
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Figure 27. Piecewise-Smooth Function with a
Vertical Segment
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Figure 28.

Piecewise-smooth Function with the
Vertical segment lnclined
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discontinuity at Xqe With the vertical segment inclined, as stated,

the functional J is now the sum of three functionals:

J=3,+3,+J, E.2
or:
b *1 *2 b
J={ F(x,y,y"dx =) Fdx+ [ Fdx+ [ Fdx. E.3
a a Xl X2

The breakpoints in the above integrals correspond to the points on the
abscissa in Figure 28.
Since the angle that the inclined segment makes with the vertical

is 1/m, it is clear that as m>~, the angle + 0; therefore:

1lim J(um) = J(u) E.4
hiigasd
but,
b
J(u) = f F(x,y,y')dx. E.5
a

Recall that y' is the first derivative of the function y, and
therefore is the slope of the function throughout. If y is in the
class of curves under consideration and F(x,y,y') is a function
containing y and y', then if the quotient of F and y' is formed
letting y'»», the anticipated results should be instructive. 1If,

as y'»», the quotient also goes to k, then the function F must also

contain a y' that goes to . If y' goes to « at one of more points
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in the interval, then the slope of the function goes to «, or the
function is vertical at those points. However, if, as y'»~, F also
goes to «, then F must depend on higher order of magnitude relation-
ships of y'. This is the essence of KROTOV's test.

Now return to the example. Look at J2'

2
J, = f F(x,y,y")dx. E.6
1
Multiply J2 by the following:
dy
dx
=1 E.7
dy
dx
X dy X
2 dx 2 dy
= ! (R ] S = 1
JZ fx F(X,Y,Y )dx ( dy ) IX F(Xa}'9y ) .‘.11 E.8
1 dx 1 dx
X
2 '
3, =/ F(x,y,y")dy E.9
% y
1

With an appropriate change of variables on the integral limits

and with the application of the limit as y'»=, the result is a line

integral from vy to Y, at the point Xgs OF:
X y
2 2
. F '
Jy= [ Flx,y,y"dx = 1im [ E&¥.y7)d E.10

-
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The heart of KROTOV's work is the passage of this limit. Let u be a
line in the set U with the following properties:

1. The x and y coordinates of the points on the line u may
be given as continuous functions of some parameter t.

2. The function y(x) is continuous and singlejvalued everywhere
on [a,b] except on a finite set of points X, (i=1,2, ..., k),
where it may have discontinuities of the first kind (jumps).

3. The derivative of y(x) is continuous and bounded on the
intervals (a,xl), cees (xi’xi+l)’ ceey (xk,b).A

4. y(x) satisfies the conditions y(a) = ay and y(b) = bl'

5. There exists a simply-connected closed domain B of the XY
plane in which F(x,y,y') together with its partial
derivatives Fx’ Fy, Fy' is continuous from the right
(y' = z) with respect to all three arguments and all lines
of the set U lie in this domain.

6. Everywhere in the domain B assumes the existence of the
limits

W(x,y,sign m) = lim‘% F(x,y,m). E.11
m><°

Define I(u) = lim I(um). Extending the past development to
o
include the possibility that vertical segments may also exist at the

endpoints of the interval [a,b] and using W to represent the above

limit, the composite integral is written as:
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kY21 k-1 Fi+l 1
Iw)=: [ way+ & J , Fax+ / , Fax E.12
i=1 Y14 =1 Xy a
b Ya2 Ib2
+ f Fdx + f Wdy + f Wdy.
x, t y Yy
k al bl

In words, the above equation says that the functional is equal to the
sum of all the vertical segments, plus the sum of the continuous lines,
plus the vertical segment on the left side of the interval, plus the
vertical segment on the right side of the interval. If the limit
defined on W exists everywhere from the left and from the right,
then the above integral is Riemann integrable.

From this analysis, KROTOV concludes that the behavior of the
extremal is related to the function W(xX,y). Recognizing that m here
is merely the slope of the inclined segment, a substitution of y'

for m results in:

. 1
W(x,y) = lim F(x,y,y') =+ E.13

yloe

«

Now, the specific results of KROTOV's works can be summarized.
By investigation of the limit in E.13, KROTOV concludes:

1. If the right or left limit of E.13 do not exist, or

lim F(x,y,y") 1—. >+ E.14
y 't y




2.

3.

4.
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and

lim F(x,y,y") % - E.15

y'-—)—-—oo

then the extremal will fall in the class of piecewise~
smooth functions.

If the right and left limits exist and are equal at a finite
number of points in the interval of interest, then the
extremal will have vertical segments at these points. The
extremal will fall in the class of piecewise-continuous
functions.

If the right and left limits exist and are equal everywhere
in the interval of interest, there may exist an infinite
quantity of minimal curves each of which may have any
quantity of points of discontinuity.

If the right and left limits exist, but they are not equal
at individual points in the interval of interest, or they
are not equal everywhere in the interval of interest, then

the extremal may have vertical segments at the endpoints of

the interval.
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OPTIMIZATION OF MATERIAL FLOW IN THE NUCLEAR FUEL CYCLE USING

A CYCLIC MULTI-STAGE PRODUCTION-TO-INVENTORY MODEL

by

Elden Leo DePorter

ABSTRACT

The nuclear fuel cycle is modelled as a cyclic, multi-stage

production-to-inventory system. The objective is to meet a known
deterministic demand for energy while minimizing acquisition,
production, and inventory holding costs for all stages of tﬁe fuel
cycle. The model allows for cyclic flow (feedback) of materials,
material flow conversion factors at each stage, production lag times
at each stage, and for escalating costs of uranium ore. It does not
allow shortages to occur in inventories. The model is optimized by
the application of the calculus of variations and specifically
through recently developed theorems on the solution of functionals
constrained by inequalities. The solution is a set of optimal
cumulative production trajectories which define the stagewise
production rates. Analysis of these production rates reveals the
optimal nuclear fuel cycle costs and that inventories (stockpiles)
occur in uranium fields, enriched uranium hexafluoride, and
fabricated fuel assemblies. An analysis of the sensitivity of the

model to variation in three important parameters is performed.






