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ABSTRACT 

The accurate measurement of total temperature in engine diagnostics is a challenging task which 
is subject to several sources of error. Conduction error is predominant among these sources since 
total temperature sensors are embedded into a cooled strut for measurement. This study seeks to 
understand the effect of conduction error on total temperature probe performance from an 
analytical and experimental standpoint and to provide an effective calibration procedure. The 
review of historical low-order models, as well as results from a developed thermal resistance 
model, indicates that conduction error is driven by dimensionless parameters, including the Biot, 
Nusselt, and Reynolds Numbers, as well as a non-dimensional temperature characterizing the 
flow/strut temperature difference. A conduction error calibration procedure for total temperature 
probes is experimentally tested in this study. Data were acquired for nominal flow total 
temperatures ranging from 550 °F to 850 °F with the probe Reynolds number varying from 2,000 
to 12,000 for varying conduction conditions with axial temperature gradients up to 1150 °F per 
inch. A physics-based statistical model successfully expressed total temperature probe 
performance as a function of dimensionless conduction driver and probe Reynolds number. This 
statistical model serves as a “calibration surface” for a particular total temperature probe. Due to 
the scaling of the problem, this calibration is experimentally obtained in moderate temperature 
regimes, then implemented in higher temperature regimes. The calibration yields an overall 
uncertainty in total temperature measurement to be ±4% of the total temperature for flow 
conditions typical in engine diagnostics, with extreme uncertainties in input conditions. 
Conduction error is successfully shown to be independent of any temperature regime and driven 
by dimensionless parameters. 
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1 INTRODUCTION 

Accurate measurement of flow total temperature in many hot flows of practical interest, including 
jet engines, is a critical task. In jet engine industry, it is important for efficiency assessment and 
blade design. Maximizing the combustion temperature is critical for the thermal efficiency and 
thrust per rate of airflow through the core engine.1 In general, this combustion temperature is 
bounded by blade durability. Blades are manufactured hollow to create internal cooling channels. 
These internal cooling channels are tapped into on the blade surface in order to provide a layer of 
cooling air on the blade surface. Thus, there exists a large temperature gradient between the 
freestream flow and the blade surface.  

Measurement of the total temperature in particularly harsh regions of an engine requires specially 
designed thermometry. Sensors composed of a thermocouple and stagnation tube assembly have 
been a successful standard for total temperature measurement, as seen in Figure 1.1. The sensor 
and its support structure must consist of material appropriate for exposure to this temperature 
regime. Just as blades are subjected to cooling in the hot section, the support structure must be 
cooled to prevent structural failure. The total temperature sensors are generally embedded in a 
cooled rake. Thus, the total temperature sensors are in direct thermal contact with the cooled 
support structure, subjecting the sensor to a large temperature gradient from sensing location to 
the thermal contact with the cooled support structure. The sensor being in direct thermal contact 
with the cooled support structure directly impacts its performance via error due to heat conduction 
away from the sensing location. The results presented in this study seek to understand and quantify 
the effect that conduction between total temperature sensor and its immediate support structure 
has on sensor performance.  

1.1 GENERAL RELATIONSHIPS GOVERNING THERMOCOUPLE PERFORMANCE 

A thermocouple reading is significantly dependent on the temperature at its measurement 
junction.2 This measurement results from a heat balance between several sources; heat transfer by 
conduction within the thermocouple, heat transfer by radiation to or from the thermocouple, heat 
transfer through the boundary layer via convection, and conversion of flow kinetic energy to 
thermal energy within the boundary layer. Each of these heat transfer mechanisms contributes to 
the measurement error which is manifested as a deviation from the flow total temperature. These 
heat transfer mechanisms are calculated and combined into a total error equation, which has been 
well documented in previous works.2-6 The measurement errors due to this heat transfer balance 
are traditionally termed as velocity error, conduction error, and radiation error. Heat transfer via 
convection occurs when the gas is moving, thus convective error is termed velocity error. There is 
additional error, termed transient error, associated with measurement of transient temperatures due 
to the thermal capacity of the thermocouple.  

The heat transfer balance that results in the indicated thermocouple temperature is shown in Figure 
1.1. The oncoming free stream flow is ingested by the stagnation tube and flows across the 
thermocouple and out of the exit vent. Heat convects from the fluid to the thermocouple at the 
leading edge stagnation point and across the streamwise length of the thermocouple which is in 
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contact with the moving fluid. This heat transfer mechanism is indicated by qconv. Heat radiates 
from the thermocouple to its surroundings, i.e. primarily the stagnation tube and objects upstream 
of the thermocouple junction and is represented as qrad. If there exists a large temperature 
difference between the base of the sensor assembly and the free stream total temperature, heat will 
conduct away from the thermocouple junction. The conductive heat transfer mechanism is 
indicated as qcond. It is critical to realize that the temperature indicated by a thermocouple is simply 
a heat transfer balance between convective, conductive, and radiative heat mechanisms. 

 

Figure 1.1: Generalized schematic for a shielded total temperature probe geometry and sources 
of heat transfer. 

There are several approaches to accurately measuring the flow total temperature that include: (1) 
measurement using a simple bare wire thermocouple and correcting its reading based on known 
environmental effects, (2) using a sonic velocity aspirated probe that has a constant correction 
factor, or (3) designing a probe that minimizes error from all sources and does not require a 
correction factor.2 These approaches all depend on understanding thermocouple performance 
related to the environment it is exposed to; it is the task of the designer to create an environment 
that is favorable for total temperature measurement within an acceptable accuracy. Historical and 
modern designs of total temperature probes favor the third approach. These so called “direct 
reading” probes are easier to use and do not require as rigorous a correction process or precise 
knowledge of operating environment.2 Direct reading probes require careful design such that all 
sources of error are minimized; this generally requires elaborate probe geometries which are not 
always practical to use. Due to spatial limitations in engine testing, design of direct reading probes 
are more of an academic exercise than a practical solution. 

1.1.1 Overall Recovery Factor  

For the purpose of this study, the overall thermocouple performance will be defined by the ratio 
of the temperature measured by the thermocouple and the flow total temperature. This relation is 
shown in Equation (1.1), where R is the overall recovery factor, Tj is the thermocouple measured 
temperature, and Tt is the flow total temperature.  
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t

j

T

T
R = 	 (1.1) 

This overall recovery factor serves as a measure of how well the total temperature probe under test 
recovers the total thermal energy of the flow. Recall the previous discussion of Figure 1.1 that 
indicated that the measured thermocouple temperature is the result from a heat transfer balance 
between convection, conduction, and radiation. Of these three heat transfer mechanisms, 
convection is key in how heat is transferred from the moving fluid to the thermocouple junction. 
A moving fluid has a total energy that is made up of thermal energy and kinetic energy. From a 
purely aerodynamic standpoint, it is important to determine the baseline probe performance. The 
effect of conduction, fluid velocity, and radiation on probe performance will then be explored after 
the baseline aerodynamic study has been performed. 

1.1.2 Aerodynamic Recovery Factor 

The aerodynamic recovery factor is a measure of how well a probe recovers the kinetic energy of 
fluid flow as thermal energy. A moving fluid has a higher temperature when brought to rest due to 
the kinetic energy associated with its motion by the first law of thermodynamics. This thermal and 
kinetic energy of the flow is conserved and combined to give a measure of the total energy, of the 
moving fluid, termed the total temperature. Therefore the relationship between total temperature 
and static temperature is simply proportional to the kinetic energy of the flow. The kinetic energy 
of the flow scales on the square of fluid bulk velocity and requires knowledge of the specific heat 
of the fluid. Thus the temperature equivalent of the flow kinetic energy is Tt-Ts, where cp is the 
specific heat of the fluid. 
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The temperature measurement Tj at the thermocouple junction is indicated to be some temperature 

between the static and total temperature, i.e. tjs TTT << . The temperature equivalent of kinetic 

energy recovered by the thermocouple is taken to be Tj-Ts. How well the thermocouple recovers 
the total kinetic energy of the flow is indicated by the aerodynamic recovery factor α, given in 
Equation (1.3). This definition is simply the ratio of kinetic energy recovered by the thermocouple 
versus the total kinetic energy contained in the moving flow. 
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sj

TT
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−

−
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Aerodynamic recovery factors for thermocouples parallel and normal to the flow direction are 
reported in the literature to have the following values.2,7-9 The aerodynamic recovery factor for 
bare wire thermocouples parallel to the flow direction is given in Equation (1.4) and for orientation 
normal to the flow direction in Equation (1.5). These values can be used to estimate the measured 
thermocouple temperature and are strictly functions of thermocouple geometry. 

 09.086.0 ±=α 	 (1.4) 
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 07.068.0 ±=α 	 (1.5) 

Using the isentropic relation between static temperature and total temperature shown in Equation 
(1.6), Equation (1.3) can be reduced to the relationship in Equation (1.7). This result, for a perfect 
gas, indicates the temperature at the thermocouple junction directly as a function of total 
temperature, Mach number of the external flow over the thermocouple M, and the aerodynamic 
recovery factor α. 
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1.1.3 Velocity Error 

Velocity error is the manifestation of measurement error due to incomplete conversion of kinetic 
energy to thermal energy in the boundary layer. This concept was discussed in the previous section 
and is reliant on the aerodynamic recovery factor α. Measurement error is any measured deviation 
Tt-Tj between the flow total temperature and the thermocouple temperature. Error due to velocity, 
EV, is simply a rearrangement of Equation (1.7).  

 ( )[ ]
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γ
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The aerodynamic recovery factor α can be used in conjunction with the overall recovery factor R 
to perform a correction factor correction ∆, discussed in detail by Glawe, Simmons, and 
Stickney.8,9 This correction factor ∆ is defined in Equation (1.9) and is related to the aerodynamic 
recovery factor and ratio of static to total temperature. This correction factor is subsequently added 
to the overall recovery factor definition in Equation (1.1) to give the flow total temperature. This 
result, combined with the correction definition in Equation (1.9) produces the Mach corrected 

recovery factor R  in Equation (1.10). 
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This recovery factor correction is used to correct for error due to Mach number effects, i.e. velocity.  

1.1.4 Conduction Error 

Conduction error is the focus of this study, but it has historically received the least in-depth 
discussion of all error sources. Conduction error is the measurement error due to heat loss via 
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conduction from the thermocouple junction along its length. Measurement error is any measured 
deviation Tt-Tj between the flow total temperature and the thermocouple temperature. The 
historical functional form for conduction error is derived by assuming the thermocouple to be a 
thin rod subjected to one-dimensional steady heat conduction. This derivation can be found in 
detail in Eckert and Drake (1959) and Özişik (1977).10,11 The solution reduces to the form 
expressed in Equation (1.11).2 The conduction error is expressed as a function of total temperature, 
base temperature Tb, the geometry of the thermocouple, and the convective heat transfer hc at the 
thermocouple junction. The base temperature is the temperature at the base of the thermocouple 
junction. The thermocouple geometry is contained in the variables L, d, and ks which represent the 
thermocouple immersion length from its base, the thermocouple wire diameter, and the thermal 
conductivity of the solid, respectfully. 

 


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=−=
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bt
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dk

h
L

TT
TTE

4
cosh

	 (1.11) 

Equation (1.11) shows that conduction error is driven by the temperature difference between the 
total flow temperature and the base temperature of the thermocouple; this quantity will be 
normalized on the total temperature to produce a dimensionless conduction driver parameter. This 
temperature difference can be very large for thermocouples in contact with a cooled structural 
support. It can be observed that as this temperature difference increases, the conduction error 
increases for a constant convective heat transfer rate. Furthermore, the conduction error decreases 
as the argument of the hyperbolic cosine function increases either by increasing the immersion 
length L or the convective heat transfer hc, for a thermocouple of set diameter and thermal 
conductivity. The coefficient of convective heat transfer scales with Reynolds number, i.e. 
pressure and flow velocity for constant total temperature, thus knowledge of hc based on the 
operating regime is an effective parameter for probe design. The probe designer can also choose 
material of low thermal conductivity and a small wire size within reason, considering durability 
requirements.2  

1.1.5 Radiation Error  

Radiation error is the measurement error due to heat transfer via radiation to or from the 
thermocouple and its surroundings. Thermal radiation is the radiative energy emitted by bodies 
due to their own temperature. Measurement error is still manifested as any measured deviation Tt-
Tj between the flow total temperature and the thermocouple temperature. When observing 
combined radiation and convection heat transfer to a thermocouple, Equation (1.12) is used to 
calculate measurement error due to radiation. The radiation error becomes predominant at very 
high temperatures. The error is a function of the form factor KR, which characterizes the effects of 
geometry and orientation of surfaces and the resulting radiation heat transfer between them. The 
emissivity ε of the thermocouple material is challenging to estimate as it is both a function of 
temperature and material oxidation.11 The area available for radiation is indicated by AR and the 
area available for heat convection is Ac; these two areas are generally equal and can be eliminated 
from the radiation error calculation. The Stefan-Boltzmann constant is represented by σ.  
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Radiation corrections for thermocouples have been extensively studied.12-16 Estimation of surface 
emissivity for various materials has been documented in literature.17-20 The effect of material 
oxidation on emissivity for platinum thermocouples was studied by Glawe and Shepard.21 
Oxidation and general exposure to high temperature exhaust streams significantly increases the 
thermocouple emissivity. Clean, unused probes become more of a “black body” with increasing 
emissivity, where “black body” is defined to be a perfect emitter and perfect absorber of thermal 
radiation. 

Since the areas available for convection and radiation are equivalent, and the form factor can be 
taken to be unity if the probe enclosure is large compared to the thermocouple wire diameter, 
radiation error is primarily driven by material emissivity, surrounding wall temperature, and the 
convective heat transfer. Using material with low emissivity and controlling the wall temperature 
is the most effective way of limiting radiation error. Probe design to increase wall temperature 
closest to the thermocouple generally uses multiple concentric shields around the 
thermocouple.4,13,22 The theory behind this design is that each successive shield acquires heat via 
radiation from the previous shield thus each successive shield is at a higher temperature than the 
previous shield. The innermost shield temperature, i.e. Tw, is ultimately increased which in turn 
reduces measurement error due to radiation. Simply adding radiation shields is not always 
practical, especially if the flow velocity is low.2   

1.1.6 Transient Error  

Transient error arises due to the thermal capacity of the thermocouple material. When the flow 
temperature is changed, the thermocouple measurement will lag behind the changing flow 
temperature. Simple analysis of a thermocouple as a one-lump system with convection boundaries 
can be performed to obtain the transient response. Under the assumption that the thermal 
conductivity of the thermocouple junction is much greater than the convective heat transfer at the 
junction, the spatial variation of temperature can be ignored for the purpose of analyzing the 
junction temperature as simply a function of time.11 The energy equation results in a balance 
between heat flow into the thermocouple junction via convection over its surface area A and the 
rate of increase of the internal energy of the junction, mathematically defined in Equation (1.13). 

 

[ ]
dt

tdT
VctTTAh

j

pjtc

)(
)( ρ=− 	 (1.13) 

Equation (1.13) can be rearranged to the form shown in Equation (1.14). The volume to surface 
area ratio for a thin rod reduces to be d/4. The time constant for thermocouple junction response 
is indicated by the variable τ. The time constant is dependent on the material properties and 
geometry: the density ρ, specific heat cp, and wire diameter d are critical in defining the thermal 
capacity of the thermocouple. The convective heat transfer coefficient hc indicates how much heat 
addition is occurring at the thermocouple junction.  
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dt

dT
tTtTE

j

jtT τ=−= )()( 	
c

p

h

dc

4
,

ρ
τ =  

(1.14) 

The mathematical formulation expressed in Equation (1.14) is that which describes a first order 
instrument.23 When exposed to an instantaneous change in temperature, i.e. a step function, the 
junction temperature changes at a rate dependent on its time constant. The time constant is defined 
to be the time taken for the junction temperature to reach 63.2% of the final total temperature value 
in this case. The solution to Equation (1.14) is shown in Equation (1.15), where Tj,i is the initial 
junction temperature. Note that when t = τ, Tj(τ) achieves 63.2% of the temperature from its initial 
junction temperature and Tt. 

 
t

t

tijj TeTTtT +−= − τ)()( , 	 (1.15) 

Reducing transient error is achieved by reducing the characteristic time constant of the 
thermocouple. This is done by either decreasing the density, specific heat, or diameter of the 
thermocouple wire, or maximizing the convective heat transfer to the thermocouple. Further 
governing equations of time response and temperature lag for general bodies subjected to heating 
or cooling are given in detail by Goodwin.24 Experimental techniques for determining 
thermocouple time response are well studied.25-28 Alternative methods, namely dynamic 
compensation, are available to improve thermocouple temperature lag.29  

1.2 REVIEW OF HISTORICAL TOTAL TEMPERATURE PROBE DESIGNS 

The evolution of total temperature probe design has been well documented.2,38 The goal of 
designing total temperature probes is to develop a flow environment around the thermocouple that 
produces a measurement with acceptable accuracy.2 The previously discussed analytical models 
for thermocouple sources of error serve as an effective design guideline for total temperature 
probes. The overall error is mainly a function of the convective heat transfer and the recovery 
factor of the thermocouple junction.2 Producing an environment favorable for convective heat 
transfer, while maintaining an acceptable velocity error, tends to decrease both the radiation and 
conduction error for a given conduction driver.  

It is necessary to design total temperature probes with a shield around the sensing junction in order 
to produce a favorable environment around the thermocouple junction. The surrounding shield 
serves as a stagnation tube to bring the flow to a near stagnation condition. The earliest documented 
shielded total temperature probe design was created by Franz for temperature measurement in a 
supercharger.30 This probe featured a stagnation shield; a thermometer was used for temperature 
measurement and was placed at the shield inlet where the stagnation point was formed. The 
thermometer was built into a streamlined body of low thermal conductivity material such that the 
measurement was not affected by heat conduction. This probe had significant measurement 
challenges for very turbulent flow where cross-flow around the shield body impacted the 
stagnation point location.  

Franz’s first design featured no through flow. He went on to improve this “free stagnation 
principle” by modifying the shield geometry to allow internal flow through the probe along the 
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measurement device. This second total temperature probe designed by Franz still featured an inlet 
diffuser but switched to a through flow configuration using a thermocouple as the sensing device. 
Vents were added to the back portion of the shield behind the thermocouple junction. The addition 
of vents allowed flow through the sensor, greatly improving the measurement performance. The 
temperature sensing location was located entirely within the shield, thus negating the effects of 
turbulence. The shield design conditions the flow around the temperature sensing junction. Hottel 
proved that the Franz probe proved to be extremely sensitive to yaw angle due to instability 
associated with the inlet diffuser.7 The instability associated with flow through the inlet diffuser 
was eliminated by simply changing the shield to be of a straight tube geometry.7 The simple 
straight tube geometry is shown in Figure 1.2. However, this design featuring a shield with through 
flow crudely set the framework for future total temperature development. The internal velocity 
through the probe can be selected using vent area to inlet area ratios for one-dimensional isentropic 
compressible flow.31 Subsequent straight tube designs using thermocouples with through flow can 
be considered a standard configuration in total temperature measurement.32-35 The design 
procedure is not rigorous and corrections are required for a suitable design. 

 

Figure 1.2: Conventional, straight tube total temperature probe design. 

Other designs that did not feature a straight tube design with through flow were investigated.36-38 
Probes featuring alternative designs may be required where spatial restrictions inhibit any 
conventional straight tube geometries. These designs typically have a straight geometry along the 
thermocouple axis where the thermocouple junction is exposed to the stagnated flow at the end of 
the shield. Spade tip designs feature a straight tube with a section removed; radial shield material 
is removed such that the junction is exposed and the shield wall is directly behind the junction. 
This design produces a stagnant condition on the thermocouple junction. This spade tip design was 
studied by Beede and Droms37, and variations of this spade tip design are discussed in Moffatt and 
Markowski36. A schematic for a spade tip design is showed in Figure 1.3. Warren compiles results 
for numerous probe designs and subsequently develops a probe featuring a conventional, straight 
tube design.38  
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Figure 1.3: Schematic of spade tip total temperature probe design.  

An extensive review of the literature reveals the design of probes to limit conduction error. 
Qualitative observations of conduction error were first made by Hottel and Kalitinsky in 1945 
when the Franz style probe was tested with varying thermocouple junction locations. The 
performance of the probe significantly increased as the distance between the thermocouple 
junction and the wall was increased; it is believed that this observation indicates the conduction 
conditions changing.2 Moffatt and Markowski introduced the analytical model using the 
hyperbolic cosine for conduction error in 1948, shown in Equation (1.11).36 The experimental 
determination of thermocouple time constants and subsequent corrections were first documented 
by Scadron and Warshawsky in 1952. The method used for calculating conduction error consisted 
of a theoretical calculation involving combined convective, conductive, and radiative heat transfer 
from a single wire to calculate a time constant which then lead to a theoretical formulation for 
steady state conduction and radiation error.3 This is the first extensively documented source that 
provides an in depth analytical method for conduction error calculation. Wormser27 performed 
work similar to Scadron and Warshawsky by experimentally determining thermocouple time 
constants and subsequent analytical conduction and radiation corrections. Previous literature 
shows conduction error corrections of simply using heat transfer models to estimate correction 
factors.15,21,25-29.  

It is worth noting here the efforts of Rhodes et al.39 and their numerical modeling of total 
temperature sensors. This model assumed the sensor to be axially symmetric thus allowing the 
sensor to be easily discretized into axial cells. The temperature of each cell was obtained from the 
iterative solution of the time dependent energy equation integrated over each cell. The solution of 
the energy equation encompasses the convective, conductive, and radiative energy transfer 
between all cells in the domain. The work of Rhodes et al. provides a method for higher fidelity 
analysis. Similar work was performed by Zeisberger.34 An even more in depth modeling technique 
for total temperature sensors was conducted by Schneider.43 Complete fluid simulations involving 
conjugate heat transfer in ANSYS Fluent were performed to determine the temperature distribution 
within the total temperature sensor.  
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The current study is important because it experimentally investigates conduction error of cooled 
total temperature probes and provides a procedure for calibration of this error source. Both 
analytical and experimental results of total temperature sensor performance under varying 
conditions are explored, with special interest in characterization of conduction error. The literature 
yields no earlier experimental determination of sensor performance strictly as a function of 
conduction error, but rather earlier work emphasizes the design procedure to produce probes that 
minimize conduction error. This study provides guidelines for the calibration of conduction error 
and proves conduction error to be governed by dimensionless parameters. Due to this fact, 
conduction error calibration can be performed in any temperature regime and can be universally 
used. 

The problem at hand and the theory behind thermocouple performance for gas temperature 
measurement has been discussed. Chapter 2 features the modeling of total temperature probe 
performance, using both historical methods and a higher fidelity thermal resistance model. The 
current experimental setup, acquisition procedure, and post processing are discussed in Chapter 3 
and basic uncertainties are estimated. Chapters 4 and 5 consist of experimental results and related 
discussion.  
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2 LOW-ORDER MODELS 

Numerous low-order models have been used to predict sensor performance under various 
conditions. Low-order models serve a valuable role in quickly predicting qualitative behavior in 
sensor performance, as opposed to full-scale simulations which take an excessive amount of time 
to perform. These models are physics-based solutions for simplified sensor geometries, often using 
empirical correlations from historical experimental data. The effect of dimensionless conduction 
driver, Reynolds number, total temperature, sensor material, and other parameters are easily 
studied.  

2.1 MOFFAT CONDUCTION ERROR MODEL 

Equation (1.11) introduced in section 1.1.4 can be directly used to study the effect of a non-
dimensional conduction error on sensor performance. Moffat2 includes a procedure for estimating 
sensor error for bare-wire, unshielded thermocouples.  

The calculation of the convective heat transfer coefficient depends on the sensor internal Reynolds 
number.  For the following discussion, the Nusselt number needs to be defined. The Nusselt 
number is defined as the ratio of convective heat transfer to the thermal conductivity of the flow 
and is calculated in accordance with Equation (2.1). The Reynolds number used is defined in 
Equation (2.2) and uses freestream flow properties evaluated at the flow total temperature.  For an 
orientation with the thermocouple axis aligned with the flow direction, the Nusselt number scales 
with the 0.674 power of Reynolds number, indicated by Equation (2.3). This correlation is the 
result of numerous experimental data sets for bare wire thermocouples.2 The diameter of the 
thermocouple wire is used as the characteristic length scale for the Nusselt and Reynolds number. 

 

flow

wirec

k

dh
Nu = 	 (2.1) 

 

µ

ρ wireUd
=Re 	 (2.2) 

 674.0Re085.0 ⋅=Nu 	 (2.3) 

The coefficient of convective heat transfer can now be estimated using Equations (2.1) through 
(2.3) yielding the following result.  

 
674.0Re085.0

wire

flow

c
d

k
h = 	 (2.4) 

This result for the coefficient of convective heat transfer is now substituted into Equation (1.11). 
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Equation (2.5) can be rearranged into a more suitable form. The squared dwire term can be removed 
from the radical to produce a dimensionless L/dwire. The numerator of the right hand side will be 
moved to the left hand side to produce a dimensionless conduction error term Ec as follows: 
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(2.6) 

Equation (2.5) can also be rearranged to predict sensor performance as function of dimensionless 
conduction driver. Rather than normalizing both sides of the equation by the numerator, 
normalization is made on the flow total temperature Tt.  
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(2.7) 

Equation (2.7) directly expresses the sensor performance R as a function of dimensionless 
conduction error (Tt-Tb)/Tt and Reynolds number. The dimensionless conduction driver term is 
defined to be Θ in Equation (2.8). 

 

t

b

t

bt
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=Θ 1 	 (2.8) 

Observing the two forms of Moffat’s model shows that a sensor’s conduction error is clearly reliant 
on Θ, L/dwire, Reynolds number, and the kflow/ksolid. The parameter that requires additional 
investigation is the kflow/ksolid parameter. Discussion of this parameter cannot be successfully 
performed without introduction of the Biot number. The Biot number relates the relative 
magnitudes of the convective heat transfer coefficient and the internal conductance of the solid. It 
is very similar to the Nusselt number, though the thermal conductivity is of the solid. The Biot 
number is expressed in Equation (2.9). 

 

solid

c

k

Lh
Bi = 	 (2.9) 
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The characteristic length L in the Biot number calculation is taken to be the ratio of the volume to 
surface area for a three-dimensional solid; the ratio of area to perimeter is used for a two-
dimensional solid. The characteristic length L turns out to be d/4 for a cylindrical rod. The 
relationship between Biot number and thermal conductivity of the solid has been established, along 
with the earlier relationship between Nusselt number and thermal conductivity of the flow. Solving 
Equations (2.1) and (2.9) for the respective thermal conductivities yields the relationship shown in 
Equation (2.10) between the ratio of the thermal conductivities, with the Biot and Nusselt numbers. 

 

Nu

Bi

Bidh

Nudh

k

k

wirec

wirec

solid

flow 4

4
== 	 (2.10) 

Substituting the Nusselt-Reynolds relationship in Equation (2.3) into Equation (2.10) will express 
the Biot number as a function of the thermal conductivity ratio and Reynolds number. 
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Combining this result into Equation (2.5) will show that the hyperbolic cosine argument is nothing 
more than the Biot number decomposed into the thermal conductivities of the problem and the 
Reynolds number. Equation (2.5) can subsequently be rewritten purely as a function the sensor 
L/d ratio and the Biot number: 
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Equation (2.12) indicates that the error due to conduction along the length of a thermocouple is 
inherently a Biot number problem, with dependence on the sensor geometry parameter L/dwire.  

2.2 THERMAL RESISTANCE MODEL 

A thermal resistance model was created using an electrical circuit analogy commonly used for 
steady state heat transfer solutions.11 This analogy directly relates the rate of heat flow, Q , through 

a material to the current, I , present in an electrical circuit. The resistance of the electrical circuit 
is directly analogous to the material resistance to a temperature gradient. Along with the circuit 
resistance, the electric potential is what drives the steady state solution; the temperature difference 
serves as the driver for the steady state solution of the thermal resistance model. These 
relationships are easier to grasp by observing the governing equations. Ohm’s law is shown in 
Equation (2.13) and serves as the fundamental equation relating current, I , across a conductor with 
resistance R , experiencing an electric potential V. Fourier’s law of heat conduction is shown in 

Equation (2.14) and serves as the fundamental equation relating heat transfer between two points 
in a material subjected to a temperature gradient to the material’s thermal conductivity, k, through 
some area A.  
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Equation (2.14) can be manipulated and put into a form that allows the electric-thermal analogy to 
be easily viewed. The temperature gradient between two points in a material can be estimated 
using the temperature difference between the points of interest and the length between them. This 
result can then be substituted into Equation (2.14). The distance between the two points of interest, 
∆x, can instead be represented as L. This substitution is done for clarity. This result can be 
algebraically manipulated to have the same form as Equation (2.13) and is expressed in Equation 
(2.15). 
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Fourier’s law cast in the form shown in Equation (2.15) can now be directly compared to the form 
of Ohm’s law in Equation (2.13). It is easily inspected that the equivalent thermal resistance 
between two points is represented by the denominator in Equation (2.15), consistent with the 
resistance in the electrical circuit.  

The thermal resistance model consists of a discretized domain of the thermocouple and stagnation 
tube assembly. The stagnation tube will hereby be referred to as the Kiel head. The domain was 
discretized into a two node system. The physical system is showed in Figure 2.1 and the 
axisymmetric discretization is shown with numbered nodes in Figure 2.2.  

 

Figure 2.1: Diagram of total temperature probe assembly. 
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Figure 2.2: Domain discretization of thermal resistance model.  

The primary values of interest in this model are the nodal temperatures, namely the temperature of 
the thermocouple junction represented at node 1. A system of equations is built using Equation 
(2.14) across each resistance, summing the heat transfer at the central nodes, and applying 
boundary conditions at the edge nodes 1, 2, 5, and 6. The heat transfer values are summed at the 
central nodes the same way that current is summed at the nodes of an electrical circuit using 
Kirchoff’s law. The temperature of the base is specified at nodes 5 and 6, while the sources of 
convective heat transfer are lumped at nodes 1 and 2. The governing equation for convective heat 
transfer is referred to as Newton’s Law of Cooling and is shown in Equation (2.16). The coefficient 
of convective heat transfer between a fluid and adjacent surface is h. This equation is applied at 
nodes 1 and 2.  

 ThAQ ∆= 	 (2.16) 

There are eight unknowns in this system; the heat transfer value between each node, and the four 
nodal temperatures. This system of equations is shown in Equation (2.17) and is solved by 
performing a matrix inversion in Matlab. This inversion gives an analytical expression for the 
junction temperature in terms of the material thermal resistance, convective coefficients, flow total 
temperature, and base temperature of the material.  
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The thermal resistance model implements physics previously discussed in Moffat’s model, namely 
the calculation of the convective heat transfer coefficient as a function of the sensor’s internal 
Reynolds number. The Reynolds number used in the calculation of the Nusselt number is for the 
internal flow through the sensor. Moffat presents a rule of thumb to estimate the internal velocity 
through a sensor from the freestream velocity. The internal velocity through the sensor, and thus 
over the thermocouple junction, can be taken to be 1/8th of the freestream velocity for a 
conventional vent-to-inlet area ratio of approximately 20%. This 1/8th rule stems from the area-
Mach relation for isentropic flow. For calculation simplicity, this scaling factor was instead used 
to scale the Reynolds number of the external flow by 1/8th to be the internal Reynolds number. 
Once the Reynolds number is calculated using this method, the Nusselt number is calculated. The 
convective heat transfer coefficient is then calculated from the Nusselt number. 

In summary, the thermal resistance model assumes ideal gas behavior and uses a correlation 
between a scaled external Reynolds number and Nusselt number to estimate the convective heat 
transfer that the sensor is subject to. The steady state conduction solution is calculated using an 
electrical circuit analogy where the sensor material has thermal resistance analogous to a resistor 
in an electrical circuit. The sensor and the Kiel head are composed of the same material. Fidelity 
is added to the model with flow conductivity and material properties changing as a function of 
temperature. Further fidelity is added with the inclusion of an equivalent conductivity factor for 
the sensing thermocouple. The internal thermoelements, thermocouple sheath, and thermoelement 
potting material are lumped together into a single thermal conductivity. The thermal resistance 
model requires inputs for total temperature, Mach or Reynolds number, and conduction driver. 
Remaining input are used for specifying sensor geometry details. The model outputs the recovery 
factor of the sensor.  

2.3 PARAMETRIC STUDIES USING LOW-ORDER MODELS 

Important parameters for sensor performance were introduced and discussed earlier in the 
introduction. The previously described Moffat model and the thermal resistance model are used to 
predict the impact of Reynolds number, conduction driver, and thermocouple L/d on sensor 
performance. The impact of the Biot number will first be presented. 

2.3.1 Impact of Biot Number and Sensor L/d 

Moffat’s model in the form of Equation (2.12) can be arranged to give the dimensionless 
conduction error strictly as a function of L/d and Biot number by dividing both sides by (Tt-Tb). 
Recall that the Biot number is effectively the ratio of the convective heat transfer rate to how 
quickly a body conducts heat. The parameter is necessary for determining the balance between 
convective and conductive heat transfer. The indicated temperature of the sensor is a heat transfer 
balance between all error sources; convective errors scale with flow velocity and conductive errors 
scale with the temperature gradient through the material of the sensor. How well a solid resists 
temperature change due to heat loss through conduction versus how well heat is transferred from 
the flow to the solid completely driver sensor performance. It should be clear to the reader that 
maximizing heat transfer to the sensor from the flow via convection and reducing conduction heat 
transfer from the measurement junction across the length of the sensor is most desired for optimum 
sensor performance. This is easiest said as maximizing convective heat transfer to the sensor and 
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minimizing the thermal conductivity of the sensor for a given driver temperature difference. This 
statement implies that keeping the Biot number as high as possible is desired. Due to the fact that 
the thermal conductivity of air is magnitudes lower than thermal conductivities of solids, the Biot 
number will be extremely small, generally on the order of 10-5 to 10-2. The effect that this range of 
Biot numbers has on dimensionless conduction error is shown in Figure 2.3. Increasing the Biot 
number has the effect of increased convective heat transfer which ultimately decreases the 
conduction error of the sensor. The importance of the observation cannot be overstated; conduction 
error decreases as the Biot number increases. The error strongly scales with the convective heat 
transfer rate. Another observation to be made in Figure 2.3 is the effect of the sensor L/d ratio. It 
is easily seen that maximizing this parameter also decreases conduction error; this phenomena will 
be later discussed. 

 

Figure 2.3: Effect of Biot number on dimensionless conduction error using Moffat’s model 

2.3.2 Impact of Reynolds Number 

Both Moffat’s model and the thermal resistance model use a Nusselt number to Reynolds number 
correlation. This correlation is explicitly for unshielded thermocouples aligned with the flow 
direction. It is evident from this correlation that the convective heat transfer coefficient, hc, scales 
with the 0.674 power of Reynolds number. Therefore the Reynolds number is ultimately impacting 
the heat convection, which in turn directly impacts the sensor performance. The heat convection 
boundary conditions are introduced into the thermal resistance model at the thermocouple junction 
and the Kiel head. The heat convection between the freestream flow and the Kiel head, as well as 
the heat convection between the thermocouple junction and the internal flow through the sensor 
directly impact the sensor performance.  
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Study of the impact of Reynolds number was also performed with the thermal resistance model 
using a total temperature of 550 °F and a moderate conduction driver value of 0.3. The L/d was 
set to 18 and the ratio kflow/ksheath was set to 0.00225, which is representative of an Inconel sheathed 
thermocouple. Recall that sensor performance is expressed as the recovery factor; a recovery factor 
of 1.0 indicates that the sensor perfectly measures the total temperature of the flow. Figure 2.4 
illustrates the effect of Reynolds number on the sensor’s performance for this particular set of 
inputs. The prediction from Moffat’s model is also included. The legend clearly shows the red 
curve to be Moffats; the TRM stands for thermal resistance model. Given the previous discussion 
of Reynolds number and heat convection, it is seen that the effect of convection clearly impacts 
the sensor performance. At low Reynolds number, i.e. low convection, the effect of conduction 
error is dominant and decreases the indicated sensor measurement.  

The thermal resistance model is not capable of explicitly separating conduction error effects from 
Reynolds number effects, but allows easy comparison between the two effects. At low Reynolds 
numbers where the convective heat transfer is low, the conductive heat transfer dominates the 
sensor performance. At high Reynolds numbers where the convective heat transfer is higher, the 
effect of the conduction error is not nearly as noticeable, with the sensor performance still 
increasing, however at a slower rate. In summary, it is expected that the Reynolds number plays a 
crucial role in reducing the effect of conduction error. This is due to the increased convective heat 
transfer that occurs at higher Reynolds number.  

 

Figure 2.4: Predicted effect of Reynolds number on sensor performance, L/d = 18, kflow/ksheath = 
0.00225.  

2.3.3 Impact of Conduction Driver 

It is necessary to use the thermal resistance model to preliminarily and easily study the effect of 
conduction error on sensor performance. Recall the fundamental statement that a sensor is subject 
to conduction error when a temperature gradient along the sensing element is present. The 
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temperature gradient is imparted into the sensing element from the direct thermal contact between 
the sensing element and its immediate base support. The magnitude of the temperature difference 
between the base support and the measuring junction of the sensing element is technically what 
drives the conduction error of the sensor. It is important to normalize the magnitude of this 
temperature difference by the total temperature such that the relative strength of the conduction 
driver can be determined. For example, a temperature difference of 500 °F between the base 
support and the measuring junction with a total temperature of 800 °F is going to be a much 
stronger conduction driver than if the total temperature was instead 2000 °F.  

Figure 2.5 shows the effect of various conduction drivers, Θ, for a single total temperature over a 
range of Reynolds numbers using the thermal resistance model. Curves from Moffat’s model are 
included. The total temperature was set to be 550 °F. It goes without saying that the sensor 
performance decreases as the conduction driver increases. The temperature gradient increases as 
the conduction driver increases thus reducing the indicated junction temperature of the sensor. For 
the case of Θ = 0.1, the effect on sensor performance is small at just about a 2% difference in 
measure of the total temperature between the highest and lowest Reynolds numbers. The sensor 
performance is further impaired as Θ increases. For the case of Θ = 0.5, the difference is increased 
to 8% of the total temperature. This is an expected result. As the conduction driver increases, the 
sensor performance is negatively affected. What follows is discussion of the regime where 
conduction error dominates sensor performance.  

Inspection of Figure 2.5 indicates a recovery roll-off at low Reynolds numbers. Recall the previous 
discussion of the effect of Reynolds number in section 2.3.2. This discussion is strengthened by 
inclusion of weaker and stronger conduction drivers than the Θ = 0.3 that was presented in section 
2.3.2. Note that the convective heat transfer rate stays constant for a particular Reynolds number.   

 

Figure 2.5: Effect of conduction driver on sensor performance, L/d = 18, kflow/ksheath = 0.00225, 
Tt = 550 °F. 
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2.3.3.1 The Effect of Sensor L/d on Performance via Conduction Error Minimization   

From literature, the standard practice in total temperature probe design is to maximize the distance 
between the base support and the sensing junction. This distance is then normalized on the diameter 
of the sensor to provide a dimensionless parameter that is a measure of sensor L/d. It is desired to 
maximize the sensor L/d in order to reduce the measurement error due to conduction. Increasing 
the length between the base support and the sensing junction directly decreases the strength of the 
temperature gradient. The temperature gradient is decreased due to two primary factors that arise 
from increasing a sensor’s L/d: decreasing the conduction driver raises the measured temperature 
thus decreasing the magnitude of the temperature difference across the sensing element. This 
coupled with the increased distance between base and junction further decreases the strength of 
the temperature gradient. Reducing the temperature difference and increasing the distance 
effectively decreases conduction error since the temperature gradient is mathematically defined as 
a temperature difference between two points divided by the distance between the two points. 

Moffat’s model shown in Equation (2.6) is first used to determine the effect that the sensor L/d has 
on the dimensionless conduction error (Tt-Tj)/(Tt-Tb). The result of increasing a sensor’s L/d ratio 
is seen in Figure 2.6. The conduction error decreases as the L/d ratio is increased. The conduction 
error also approaches zero as the Reynolds number approaches infinity due to the increase in 
convective heat transfer. The value of kflow/ksheath is kept constant at 0.00225. 

 

Figure 2.6: Effect of sensor L/d on sensor performance using Moffat’s model 

Figure 2.6 shows the same characteristic as Figure 2.3, but is cast in the form of Reynolds number. 
Recall that Biot number is assumed related to Reynolds number by Equation (2.11). Given that the 
data presented has a thermal conductivity ratio of 0.00225, The Reynolds number range shown in 
Figure 2.6 is equivalent to a Biot number range of 0.001065 to .02374 in Figure 2.3. These two 
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figures are not mutually exclusive, but rather present the performance trend in terms of a 
conventional, easily understood Reynolds number versus the less familiar Biot number. The 
problem at hand is primarily a Biot number problem, but the Biot number relies on the Reynolds 
number for convective heat transfer. 

The thermal resistance model was also used to study the impact of the sensor L/d on performance 
for a fixed length thermocouple and a 0.055 in. inlet diameter, 0.5 in. length Kiel head at Mach 0.7 
with Θ = 0.3 and Tt = 1000 °F. These input conditions used a static pressure of 90 kPa, resulting 
in a Reynolds number of 6200; note that the characteristic length scale used is the inlet diameter. 
Platinum was used as the material for both the Kiel head and thermocouple in this example. The 
L/d was varied from 15 to 50. The sensing junction kept a constant distance from the inlet to the 
Kiel head. The length of the thermocouple was prescribed as a constant and the diameter was 
adjusted as L/d was adjusted. The thermocouple diameter was decreased as the L/d was increased 
since these parameters have an inverse relationship.  

Figure 2.7 contains the results for this L/d study. Given that all inputs except sensor L/d were held 
constant, it is evident that sensor performance is improved when the L/d is increased. For the 
simulated scenario, about 90% of the total temperature is recovered at L/d = 50 versus just 80% of 
total temperature recovery at L/d = 15. This performance increase is acquired through the reduction 
of conduction error.  

 

Figure 2.7: Effect of sensor L/d on sensor performance using thermal resistance model, Θ = 0.3 

It is important to note that simply increasing a sensor’s L/d is not always a viable solution. Sensor 
durability is greatly impacted when the length gets too long or the diameter gets too small. 
Increasing the length too far raises the risk of the sensing element drooping and not staying aligned 
with the flow. Even worse, the sensing element has an increased risk of drooping too far and 
touching the internal Kiel head surface. High temperature total temperature probes are typically 
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used in extreme conditions where sensor contamination occurs due to chemical effects of hot 
gases.4 In general, decreasing sensor diameter adversely affects the useful service life of the 
sensor. The sensor durability must be taken into account for the design of a satisfactory sensor 
design. 

2.3.3.2 Effect of Sensor Material on Conduction Error 

Moffat’s model shown in Equation (2.7) is used to determine the effect of sensor material on sensor 
performance. The primary effect that the sensor material has on performance is its thermal 
conductivity. Fourier’s law of heat conduction, shown in Equation (2.14) indicates that the thermal 
conductivity, k, directly affects the heat transfer through the sensor. The material of the sensor is 
directly used for the value of ksolid. Three materials with greatly varying thermal conductivities 
were explored. Copper, platinum, and Inconel were the materials of choice, with thermal 
conductivities of 400 W/m/K, 72 W/m/K, and 18 W/m/K, respectfully. These materials resulted in 
kflow/ksheath values of 0.0001245, 0.0007, and 0.00225, respectfully. 

The thermal resistance model used the same input conditions that was used for the L/d study in 
section 2.3.3.1. The only parameter that was changed was the thermal conductivity of the sensor. 
Recall that the thermocouple sheath and the Kiel head are taken as composed of the same material. 
The results of changing the material thermal conductivity are illustrated in Figure 2.8. Decreasing 
the thermal conductivity of the sensor increases the sensor performance by further attenuating the 
heat transfer due to conduction. Increasing the thermal conductivity increases the conductive heat 
transfer from the base support to the sensor which decreases the indicated junction temperature. 
This observation that low thermal conductivity improves sensor performance agrees with past 
studies. 2,6,37  

 

Figure 2.8: Effect of sensor material on performance 
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2.3.4 Comparison between the Moffat Model and Thermal Resistance Model 

From a quantitative standpoint of the sensor performance studies presented in sections 2.3.2 and 
2.3.3, the results between Moffat’s model and the thermal resistance model are distinctly different. 
From a qualitative standpoint, both models predicted all of the same trends in sensor performance. 
The differences stem from the fact that Moffat’s model assume a single, standalone thermocouple 
with a bare-wire junction. The thermal resistance model is modeling a stagnation tube and sheathed 
thermocouple assembly using the same physics that Moffat’s model uses. This difference in 
problem geometry is what is driving the often large quantitative differences between Moffat’s 
model and the thermal resistance model. 

2.3.5 Limitations of the Thermal Resistance Model 

Since this model features heat transfer completely due to conduction, with convection boundary 
conditions applied at the sensor inlet, the sensor performance most heavily rely on the temperature 
difference between the sensor base and the flow total temperature. If there is no temperature 
gradient within the sensor, i.e. no conduction error, the sensor is predicted to have perfect 
performance with a unity recovery factor. Of course, this is not physically correct as there are also 
errors due to velocity and radiation in a real sensor. This model specifically explores the effect of 
conduction on the sensor performance, thus the sensor performance converges to a perfect 
recovery as the conduction error is driven to zero. Though a conduction error must be present in 
the sensor for the model to be useful, the study of conduction error is isolated in this model without 
regard to errors due to velocity and radiation effects.  

Another limitation of the model is its dependence on the problem geometry. As certain geometries 
get particularly small and approach zero, the thermocouple wire diameter for example, the 
numerical calculations performed for segment resistances approach infinity thus pushing the heat 
transfer through the sensor to zero. Additionally, the calculations for the convective heat transfer 
coefficient will approach infinity as the wire diameter approaches zero. For the purpose of 
effectively using this model to predict sensor performance, sensor geometry should be 
appropriately sized to ensure that erroneous predictions are not made due to numeric singularities.  

2.3.6 Moffat’s Model Functional Form and Thermal Resistance Model Results 

Moffat’s model stems from the historical functional form for conduction error, which is from a 
heat transfer solution in the form of the fin equation.2,6 This equation was presented earlier in 
Equation (1.11). It is necessary to determine how effective the historical functional form of 
conduction error explains the results from the thermal resistance model.  

The historical functional form can be recast into purely a function of conduction driver and 
Reynolds number the same way that Moffat’s model was reduced to Equation (2.7). Modifications 
will be made to this equation to put it into a suitable form to perform a statistical fit of the thermal 
resistance model results. The entire argument of the hyperbolic cosine that is associated with 
sensor geometry and sensor material can be absorbed into some constant coefficient c2 times 

Re0.337. This c2 constant is theoretically equivalent to 2 �
��0.085


��
�

������. An additional constant, 

c1, is added to the numerator to scale the overall model. The closer c1 is to one, the more effective 
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this functional form is at describing sensor performance as a function of Reynolds number and 
driver. The c1 constant is theoretically equivalent to 1. Equation (2.18) is the functional form that 
is used to express the sensor performance, R, in terms of the conduction driver, Θ and Reynolds 
number Re. 
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c

c
R
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The surface described by Equation (2.18) was applied to numerical data obtained using the thermal 
resistance model. The primary measure of merit are the statistics associated with the surface fit. 
The Matlab built in function “fittype” was used to define the surface fit functional form. The 
conduction driver values, Reynolds numbers, and Mach corrected recovery factors were passed as 
a set of 3-dimensional vectors. The surface fit coefficients were thus obtained for each sensor.  

Results were obtained for a conventional total temperature sensor with an L/d of 18 with an Inconel 
sheathed thermocouple and an Inconel stagnation tube. The stagnation tube had a 0.08 in. outer 
diameter and 0.0595 in. inlet diameter, with the bleed holes located 0.193 in. from the stagnation 
tube inlet. The total temperature was set to 1000 °F and the conduction driver was varied from 0 
to 0.5 with the Mach number ranging from 0.1 to 0.8. The Reynolds number was subsequently 
calculated from these inputs.  

.Table 1 lists the surface fit coefficients and a few statistical parameters expressing the goodness 
of fit that the historical functional form of conduction error has when applied to the thermal 
resistance model results. 95% confidence intervals are included with each fit coefficient. The root-
mean-square (RMS) error represents the square root of the sum of the squares of the deviation 
between the predicted sensor performance by the thermal resistance model and the surface fit. The 
RMS error can be taken to be a measure of how accurately the surface fit represents the data from 
the thermal resistance model. This parameter is showing that sensor performance estimated from 
the surface fit is generally within 0.17% of the flow total temperature that was predicted by the 
thermal resistance model. The L∞ norm is the largest deviation between the data set from the 
thermal resistance model and the surface fit. This indicates that the maximum deviation between 
sensor performance estimated from the surface fit is 0.43% of the flow total temperature that was 
predicted by the thermal resistance model. The final statistical parameter of interest in determining 
the effectiveness of using the historical form for conduction error as the functional form for a 
surface fit is the coefficient of determination, indicated in the table as R-sq. The coefficient 
determination is a measure for how well the data set is represented by a statistical model. In this 
case, the statistical model presented in Equation (2.18) explains 99.79% of the variance in sensor 
performance. Given the statistical parameters shown in .Table 1, the historical functional form for 
conduction error serves as an effective statistical model for the sensor performance results 
calculated by the thermal resistance model.  

Recall the theoretical value of c1 to be one and the theoretical value for c2 to be 2 �
��0.085


��
�

������. 

The actual value for c1 is 37.3% lower than the theoretical value of one. Scaling of the correction 
factor ϴ/cosh(c2Re0.337), indicates that the total temperature sensor geometry and material that the 
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low-order model uses is not as sensitive to conduction error as the analytical solution for 
conduction error suggests for an exposed thermocouple. The actual value for c2 is 79.5% lower 
than the theoretical value of 0.554. The L/d value used by the model is approximately 18, while 
the kflow/ksheath value is equal to 0.00279 at 1000 °F. The difference between the theoretical and 
actual values for the fit coefficients stems from the fact that the heat transfer solution that yields 
the functional form in Equation (2.18) is for an unshielded thermocouple. Additionally, the large 
difference between theoretical and actual values for c2 may be explained by the assumed boundary 
conditions in the formulation of the heat transfer solution for an exposed thermocouple. Recall that 
this formulation assumed the convective heat transfer at the tip of the thermocouple junction to be 
negligible when compared to the convective heat transfer over the entire thermocouple. The low-
order model, as well as the sensors experimentally tested, contain a shield that serves the purpose 
of stagnating the flow around the thermocouple junction.  

.Table 1: Summary of surface fit result using functional form expressed in Equation (2.18) 

RMS Error R-sq L∞ Norm Fit constant c1 Fit constant c2 

0.0017 0.9979 0.0043 0.6264 +/- 0.0026 0.1142 +/- 0.0015 

 

2.4 THERMAL RESISTANCE MODEL VERIFICATION  

Sensor performance predictions were obtained for the geometry of sensor 2 over a range of 
conduction drivers, Reynolds numbers, and total temperatures. It is necessary to find an 
appropriate form to represent the data such that the physics of the problem are effectively captured. 
Previous discussion indicates that sensor performance is primarily a function of both Reynolds 
number and conduction driver.   

2.4.1 Reynolds Number and Conduction Driver 

The effect of total temperature has not been discussed yet. Results should be independent of total 
temperature since both sensor performance and conduction driver is normalized by total 
temperature. This statement must be proven; the thermal resistance model was ran using total 
temperatures ranging between 550 °F and 1000 °F across a range of Reynolds numbers. The 
conduction driver Θ maintained a constant value of 0.3 for this study.  

The independence of sensor performance from total temperature value is shown in Figure 2.9. Low 
order sensor performance predictions can be distinctly estimated in terms of just Reynolds number 
and conduction driver; the value of the total temperature does not matter. There is one small caveat 
to this statement that makes the solution not completely independent of the total temperature. The 
total temperature of the flow is used to calculate material thermal conductivity as well as flow 
parameters such as viscosity, the specific heat ratio, and density. The effect that the flow total 
temperature has on the sensor performance due to these property calculations can be taken to be 
negligible; these effects are dwarfed compared to Reynolds number and conduction effects.  
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Figure 2.9 serves as a verification of the thermal resistance model. The results presented in this 
figure show that when the sensor geometry is constant, sensor performance, i.e. recovery factor, 
depends on just two parameters: the dimensionless conduction driver Θ and the Reynolds number. 
This is the same form that is presented in the heat transfer solution for a standalone thermocouple 
in Equation (2.7). This verification proves the validity of the thermal resistance model predictions 
for total temperature sensor performance. The results from this slightly higher fidelity model reach 
the same conclusion as the historic characterization of conduction error. 

 

Figure 2.9: Independence of total temperature on low order data collapse for platinum sensors, Θ 
= 0.3 
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3 EXPERIMENTAL SETUP AND INSTRUMENTATION 

This section is devoted to a discussion of the experimental setup, instruments used, sensors tested, 
and data acquisition procedure. An experimental rig was developed that allowed variation of 
sensor conduction driver. All experiments were performed using the Virginia Tech Hot Jet facility. 
After setting this experimental framework, the post processing procedure is discussed in detail. 
Significant amount of post processing was required to convert the raw data into its final values.  

3.1 TOTAL TEMPERATURE SENSORS 
Total temperature sensors tested all used 0.032 in. diameter sheathed, ungrounded thermocouples 
as the sensing element. Duro-Sense Corporation supplied 12 in. long Type K thermocouples with 
miniature connectors. Miniature connectors were required because stripped leads were much too 
small and sensitive to work with. The Type K thermocouples have an Inconel sheath and Chromel-
Alumel wire. Chromel is a 90% nickel, 10% chromium alloy that serves as the positive leg of the 
thermocouple. Alumel is a 95% nickel, 2% manganese, 2% aluminum, and 1% silicon alloy that 
serves as the negative leg of the thermocouple. 

A thermocouple reading is most dependent on the temperature at its junction. The flow most be 
brought to a stagnation in order to effectively measure the total temperature. To do this, stagnation 
tubes, also known as Kiel heads, were constructed to fit around the thermocouple. A conventional 
design was used for the Kiel head manufacturing. The Kiel head features a 0.080 in. outer diameter, 
0.06 in. inner diameter, and a 45° inlet chamfer. The inlet chamfer creates a favorable pressure 
gradient when bringing the free   stream flow to a stagnation condition. The vent area was set to 
be 20% of the inlet area. The vents consisted of four holes 90° radially spaced at a distance 0.18 
in. from the Kiel head inlet. The vents were set to be this close from the leading edge to avoid any 
potential venting jets interfering with the flow around the mounting strut. The Kiel heads were 
constructed out of 303 stainless steel and have an overall length of 0.58 in. A drawing of the 
designed Kiel head is shown in Figure 3.1. 

 

Figure 3.1: Sensor 1 Kiel head design, dimensions in inches 
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Sensors manufactured by Cleveland Electric Laboratories were additionally tested. These are 
designated as “sensor 2”. The geometry and features of this professionally manufactured sensor is 
proprietary. These sensors use a Type B thermocouple to perform temperature measurements. 
Type B thermocouples consist of two platinum-rhodium legs. The positive leg is a platinum-30% 
rhodium alloy, and the negative leg is a platinum-6% rhodium alloy. The thermocouple sheath is 
also composed of platinum-30% rhodium. It is important to state that sensor 2 features large 
regions of thermal contact between the thermocouple and the Kiel head, which greatly affected 
how heat is transferred via conduction.  

There are numerous differences between these two total temperature sensors. The internal Kiel 
head geometry is significantly different between sensor 1 and sensor 2. Sensor 1 features no 
thermal contact between the Kiel head and the thermocouple. The Kiel head and thermocouple 
only share thermal contact with the strut that they are embedded into. Sensor 2 features direct 
thermal contact between the Kiel head and thermocouple at the base of the sensor. Furthermore, 
sensor 1 is composed of a stainless steel Kiel head and an Inconel sheathed thermocouple, both 
with thermal conductivities around 18 W/m/K. Sensor 2 is composed of a platinum alloy Kiel head 
and platinum alloy sheathed thermocouple. The thermal conductivity of the platinum is about 72 
W/m/K. Table 2 lists the differences between each sensor. 

For the purposes of this study, sensor 1 served primarily as a sensor to test and validate the 
experimental setup and data acquisition procedure before obtaining calibrations for sensor 2. 
Measurements are significantly easier to obtain with the sensor 1 due to the higher sensitivity of 
Type K thermocouples. Type K thermocouple sensitivity, and all other thermocouple sensitivities, 
are function of temperature. The expected voltage signal level for a Type K thermocouple at 550 
°F is about 11.8 mV with a sensitivity of 22.7 µV/°F, while the signal level for a Type B 
thermocouple at this condition is about 0.4 mV with a sensitivity of just 1.67 µV/°F, referenced 
from 0 °C. The expected voltage signal level for a Type K thermocouple at 850 °F is about 18.5 
mV still with a sensitivity of 22.7 µV/°F, while the signal level for a Type B thermocouple at this 
condition is about 1 mV with an improved sensitivity of 2.8 µV/°F. Due to this drastic difference 
in signal levels, the Type B measurement is much more challenging than the Type K measurement. 
Thus sensor 1 was tested thoroughly for validation.  

Table 2: Physical Characteristics of Tested Total Temperature Sensors 

 Sensor 1 Sensor 2 

Kiel Head outer diameter (in.) 0.08  0.08 
Kiel Head inner diameter (in.) 0.06 0.065 

Kiel Head length (in.) 0.58 0.58 
Kiel Head material 303 Stainless steel Platinum 

Thermocouple diameter (in.) 0.032 0.032 
Thermocouple sheath material Inconel Platinum-Rhodium 

Thermocouple type “K” “B” 
Nominal sheath conductivity 18 W/m/K 72 W/m/K 
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3.2 VIRGINIA TECH HOT JET FACILITY 
The facility used in this study is the Virginia Tech Hot Jet. The facility operates using compressed 
air from an Ingersoll-Rand Type 4-HHE-4 4-stage reciprocating air compressor that pressurizes 
two reservoir tanks with a volume of 23 m3 up to 300 psi. The air from the compressor is passed 
through a dryer to remove moisture before being heated. The hot jet facility uses a Sylvania 192 
kW Flanged Inline Heater, Model 073153. The jet rig features several layers of screens and 
honeycomb to condition the flow. The jet contracts from a 4 in. duct at the plenum section to a 2 
in. nozzle exhausting to room ambient. The 2 in. nozzle features 6 equally radially spaced threaded 
holes that allow converging/diverging nozzles to be rapidly installed for supersonic studies. For 
the purposes of this study involving high subsonic speeds, only the 2in. converging nozzle is used.  
The subsonic, hot flow characteristics of this facility have not been previously studied. The jet 
facility is shown in Figure 3.2. 

 

 

Figure 3.2: (Top) Virginia Tech Hot Jet Facility. (Bottom left) Detailed facility schematic. 
(Bottom right) Nozzle contour, dimensions in inches. 

The total pressure of the flow is measured upstream in the jet plenum with a Pitot probe. The jet 
exhausts to ambient conditions where the static pressure is the local atmospheric pressure. This 
atmospheric pressure was consistently about 1 atm for all data acquired. The current study involves 
the experimentation of total temperature sensors over a range of temperatures and conduction 
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drivers. It is paramount to understand and characterize the heater operation and its accuracies. The 
Sylvania heater is capable of reaching temperatures up to 1200 °F at a mass flow rate of 0.25 
kg/s.40 This low mass flow rate corresponds to an exit Mach number of approximately 0.5, which 
is below the target Mach number range desired for this study. Furthermore, the 500 °F to 700 °F 
temperature range has been extensively used for supersonic jet research, thus the heater controller 
was optimized for temperature stability in this regime. Control of the facility total temperature 
using the Sylvania heater is simple. The desired temperature is input using an LED display on the 
heater control box. The temperature stability that the heater can achieve can be quantified by 
observing the standard deviation of the measured total temperature. The total temperature standard 
deviation for various total temperatures provided by the heater are shown in Figure 3.3. Assuming 
a normal distribution, the heater would be accurate to approximately +/- 4 °F across all set total 
temperatures with 95% confidence. 

 

Figure 3.3: Virginia Tech Hot Jet Facility total temperature standard deviation. 

For this test program the Mach number was varied from 0.15 to 0.8, and the total temperature was 
varied from 550 °F to 850 °F. Repeatability and sensor performance were highly dependent on the 
facility run time previous to acquisition, if the stainless steel facility was not adequately heated. 
Before data was taken, it was required for the facility to be run until the nozzle temperature 
achieved a steady state temperature. The heat capacity of the facility, namely the nozzle, was large 
and was seen to influence the performance of the sensor. This is explained by simply thinking 
about the heat transfer between the fluid and the facility. If there is heat transfer between the fluid 
and the facility, the total temperature of the flow would be changing from where it is measured in 
the plenum and the nozzle exit. Therefore, it is desired for there to be no heat transfer between the 
facility and the fluid. The day to day repeatability of sensor measurements vastly improved when 
this was realized and the facility was ran to a steady state nozzle temperature. The nozzle 
temperature was monitored with the same type of fiberglass thermocouple that the plenum probe 
uses. The thermocouple was wedged between the external nozzle surface and the nozzle insulation. 
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The nozzle temperature was monitored in real time and data was taken when the nozzle 
temperature reached a steady value. 

3.3 EXPERIMENTAL RIG 
The experimental rig consists of all mechanical assemblies that are directly associated with testing 
sensor performance. A clam shell strut design was developed to house the sensor and a structure 
was built to rigidly hold this strut onto the hot jet facility. The strut features internal cooling 
channels that provide a means to impart a conduction error to the sensor.  

3.3.1 Inconel Strut 

A strut was chosen to be the method with which to rapidly test sensors under various conduction 
driver conditions. The strut features a clam shell design to allow easier instrumenting, seen in 
Figure 3.4. The strut has a span of 3 in. and a chord of 0.95 in. The leading edge contains bores 
for testing of three 0.032 in. diameter sensors for Kiel head sizes up to 0.08 in. diameter. Two 
spanwise grooves allow temperature sensor placement for base temperature measurement. The 
grooves are positioned to be close to the point of contact between the sensor and strut. The inner 
faces of each strut half was machined smooth so the faces were flush. The airfoil geometry has a 
maximum thickness to chord ratio of 27%. Each strut half has one 0.03 in. diameter and seven 
0.065 in. diameter holes that penetrate the entire span of the strut. These are the channels that the 
cooling fluid will flow through during operation. The strut was additively manufactured using 
direct metal laser sintering (DMLS) out of Inconel 718 by Turbocam Energy Solutions. Inconel 
was chosen primarily due to its thermal conductivity versus other material options and its 
affordability. It is desired to keep the strut isothermally cooler than the total temperature of the 
flow. The difference between the strut temperature and the flow total temperature set the 
conduction driver of the sensor. The thermal conductivity of the strut needs to be high enough such 
that cooling is effective while not being high enough where the convective heat load on the strut 
in the hot free stream heats the strut quicker than it is being cooled. To decrease the convective 
heat loading, a zirconia thermal barrier coating was applied to the strut. The thermal barrier coating 
was applied via air plasma spraying by Pratt and Whitney.  
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Figure 3.4: (Left) Inconel mounting strut. (Right) Instrumented strut installed in rig. 

The instrumented strut features placement for three sensors to test at once, placement for two 
internal sensors to measure the strut temperature, and eight cooling channels. It should be made 
clear that the sensor leads exit the strut out of the flow. A simple jig was created to bend sensors 
at a safe angle before placement into the strut. It was found that the tolerances on the strut 
manufacturing were not large enough to properly accommodate the sensors to be tested. A gap 
through the strut was formed when assembly began. This problem was solved by using a high 
temperature graphite gasket, GRAFOIL, and a high temperature paste, OMEGATHERM 201, to 
fill in the leading edge gap. This high temperature paste has a high coefficient of thermal 
conductivity and was subsequently used at all sensor contact points with the strut in hopes of 
minimizing the effect of thermal contact resistance. Resistance temperature detectors (RTD) were 
used to measure the base temperature of the strut. The spanwise groove on the inner strut surface 
was greased with the high temperature paste and the RTD was placed into the groove. Again, the 
high temperature paste served to reduce thermal contact resistance between the RTD and the strut 
but also served to hold the RTD in place during strut assembly. Once the instruments were set in 
place on the strut, the strut was clamped together and attached onto the nozzle mounting structure.   

3.3.2 Cooling Operation 

The cooling channels were extended with 1/16 in. diameter and 1/32 in. diameter stainless steel 
tubing. The tubing was inserted roughly 0.25 in. into the strut on both ends. The cooling tube-strut 
assembly was sealed using JB Weld; other compounds simply could not hold up to the cooling 
pressure. The free end of the tubes where the cooling fluid was passed through were connected to 
a 1/16 in. tube to 1/8 in. tube Swagelok union.  The cooling manifold was constructed from two 
aluminum manifolds from McMaster-Carr, part number 5469K165, with pipe fittings to conjoin 
the two manifolds. The outlets were fitted with 3/8 NPT 1/8 in. Swagelok tube fittings. Flexible 
nylon tubing with a 1/8 in. diameter was used to connect the cooling manifold to the cooling 
channel tubes. Both water and air were used to cool the strut. Very large conduction error was 
imposed when using water as a coolant, but simply using water as the sole coolant would not be 
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suitable for the testing matrix. Air cooling was needed to hit the low and intermediate conduction 
errors. Air was pulled from a line to the compressor and the cooling rate was easily adjustable with 
a needle-nose valve. Water was pulled from the sink and a pump was used to overcome the large 
pressure loss through the manifold and tubing. The cooling manifold assembly is displayed in 
Figure 3.5. The free end of the tubes where the cooling fluid was ejected drained into a bucket. 

 

Figure 3.5: Cooling manifold assembly 

3.3.3 Nozzle Mount Structure 

A simple rig to be used in conjunction with the hot jet facility was designed. The rig features a 
nozzle mounting structure comprised of a modified 4.5 in. shaft collar, 8 in. stainless steel struts 
and a circular cross-member that the instrumented strut is screwed onto. A nozzle mounted design 
was favorable because it ensured repeatable probe positioning that moved with any nozzle 
deflection due to thermal loads. The nozzle mounted structure can be easily rotated along the 
nozzle axis and also allows streamwise strut movement to test different distances from the nozzle 
exit plane. This nozzle mounted structure that the instrumented strut is placed in is shown in Figure 
3.6. 
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Figure 3.6: Nozzle mount structure assembly 

3.4 INSTRUMENTATION 

3.4.1 Data Acquisition Hardware 

A National Instruments (NI) PXIe-6358 was purchased for 16 channels of high speed, 
simultaneous voltage measurements. The PXIe-6358 was used in conjunction with an 8 slot 
National Instruments PXIe-1082 chassis with a PXIe-8133 embedded controller running Windows 
7. All data acquisition was acquired through this single PXIe-6358 card. The PXIe-6358 has a 16 
bit analog to digital converter, a minimum voltage range of +/- 1 Volt, and is capable of up to 1.5M 
samples/sec. The bit resolution for this card on the minimum voltage range is 30.5 µV.  

All measurements made were acquired as a raw voltage through this card. An external voltage 
calibration was performed to ensure the voltage accuracy of the card. An Agilent 34420A 
Nanovoltmeter served as the reference voltage measurement, and a 12 Volt battery served as the 
voltage source. Two Helipot 8106 ten turn potentiometers were used to create a voltage divider. 
One potentiometer served as a coarse and the other potentiometer served as a fine adjustment to 
serve as an effective voltage divider. This voltage divider method was used because there was 
difficulty synching the NI card with the reference voltage measured by the nanovoltmeter. If the 
NI card and the nanovoltmeter were perfectly synched, the stability of the voltage signal does not 
matter. However, since synching the instruments to have the exact acquisition time was not 
achieved, the voltage signal was instead made to be steady. The NI card voltage was then corrected 
linearly versus the nanovoltmeter reading, i.e. Voltage_Agilent = m*Voltage_NI + b. This 
calibration was applied during post-processing.  

It was earlier mentioned that the temperature of the strut was measured using resistance 
temperature detectors (RTD). The resistance across an RTD changes as a function of temperature. 
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RTD’s are not self-powered devices and thus require a current to be supplied across the excitation 
leads. RTD transmitters from Acromag were used to supply this constant current. Acromag ST131-
0600 transmitters were powered with +/- 15 Volts DC and were cited to produce a nominal constant 
current of 0.5 mA. The accuracy of the constant current source is the largest source of uncertainty 
in an RTD measurement. Due to this fact, the constant current value had to be measured under 
various loads. Precision foil resistors from Vishay were used to simulate the resistance of the RTD. 
Resistors of 100, 120, 200, 250, and 350 Ω were used to determine how the output current from 
the Acromag RTD transmitter behaved over various loads. The voltage drop across each resistor 
was measured and recorded using the Agilent 34420A Nanovoltmeter. With the voltage across the 
resistor and the resistance value of the resistor being known, Ohm’s law, V = IR, can be simply 
used to compute the current through the resistor.  This was performed for each transmitter. The 
output current value was defined as a function of measured voltage. Thus, when the voltage across 
the RTD is measured, the curve fit value for current versus voltage is used to determine what the 
actual value of the current is.  

Total pressure measurements were made in the jet plenum with a Scanivalve ZOC17/8Px-APC 
pressure transducer. This pressure transducer was referenced to ambient atmospheric conditions 
and had a maximum range of 50 psig. The transducer required 15 Volt DC power and output a 
voltage linearly proportional to the pressure. The transducer was calibrated with a standard 
deadweight pressure gauge tester. The atmospheric pressure was measured with a Conex Electro 
Systems JDB1 Digital Barometer that has a ±0.05 in. Hg accuracy. 

3.4.2 Temperature Devices 

The jet plenum total temperature probe uses a 30 AWG wire, fiberglass insulated, exposed junction 
Type K thermocouple. This thermocouple was manufactured by Omega Engineering, part number 
5TC-GG-K-30-36. The temperature reading from this plenum probe was taken to be the total 
temperature of the flow.  

It was common engineering knowledge that an output thermocouple signal is produced when a 
temperature difference exists in the thermocouple loop between the hot junction and the cold 
junction. All thermocouples were referenced to 0 °C. There were two important reasons for 
referencing all thermocouple signals to 0 °C: the National Institute of Standards and Technology 
(NIST) tables for thermocouple calibrations, which also reference thermocouple signals to 0 °C, 
could then be easily implemented and the thermocouple signal magnitude would be larger than 
having a cold junction at a higher temperature. Previous work has been done where the sensor 
under test had served as the cold junction for the plenum total temperature sensor and the signal 
difference was converted to a direct temperature difference between the two sensors. This method 
leads to thermocouple signals on the µV level as opposed to thermocouple signals on the mV level 
when the junction is kept at 0 °C. GE/Kaye K140-4 Ice Point References were purchased from 
Amphenol Thermometrics, Inc. These ice point references kept a cold well to 0 °C with guaranteed 
+/- 0.05 °C accuracy, though +/- 0.02 °C accuracy was typical. The cold junctions for all 
thermocouples used in this study were inserted into the cold well. The cold junctions for all 
thermocouples used were simply twisted-shielded thermocouple extension wire that was twisted 
into a bare-wire junction on one end. The other free end of the extension wire was appropriately 
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welded to the wire extending from the hot junction. The two positive wire legs carrying the 
differential thermocouple signal were then read by the PXIe-6358. A schematic of this 
thermocouple circuit is shown in Figure 3.7. 

 

Figure 3.7: Thermocouple wiring diagram 

The base temperature was measured using 4 wire RTD’s from Sensing Devices, Inc. These RTD’s 
are Platinum 100Ω thin film sensors with a nominal temperature coefficient of 0.00385 Ω/Ω/°C. 
The nominal resistance is 100 Ω +/-0.12% at 0 °C, known as Class B accuracy specified in the 
International IEC 60751 Standard. The RTD element is a thin film model TF100/2108. The 
manufacturer provided the calibration coefficients for each RTD that are used to determine its 
Callendar-van Dusen (CDV) equation. The Callendar-van Dusen equation describes the 
relationship between resistance and temperature for platinum RTD’s. Specifically how the base 
temperature is extracted from the RTD will be described in the post-processing segment of this 
report.   

3.5 DATA COLLECTION 
This section contains all information on how the data was acquired and processed. The hardware 
used for data acquisition, as well as acquisition procedure is discussed.  

3.5.1 Data Acquisition 

All data acquisition was performed using Labview software. A Virtual Instrument (VI) was written 
for acquisition of all instruments measured with the NI PXIe-6358 card. The user interface features 
real time gauges for an assortment of temperatures and conduction driver. This user interface is 
shown in Appendix C: Acquisition User Interface. These gauges allow the user to observe when a 
certain total temperature or conduction driver has been achieved. All variables except the total 
pressure are saved in the form of a raw voltage. The raw voltage associated with the total pressure 
is calibrated and converted to pressure for real time monitoring. The total pressure of the flow is 
subsequently written to the output file. The variables that are acquired and saved are the flow total 
temperature, the flow total pressure, the measured sensor temperature, the strut base temperatures, 
and the nozzle temperature. Data was acquired with a sample frequency of 10 kHz for 30 seconds.  
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3.5.2 Data Post-Processing 

All post-processing of the raw data was performed in Matlab. The Matlab post-processing script 
accepted an Excel input file containing raw voltages from temperature measurements and the total 
pressure value. This script converted the temperatures from raw voltage units to standard 
engineering units, such as degrees Fahrenheit or Celsius, using multiple subroutines. Multiple steps 
were required to convert the raw data to its final form. First, the voltage calibration was applied to 
the raw voltage to yield the true, calibrated voltage. Next a digital low-pass filter with a cutoff 
frequency of 4 kHz was applied to discard of high frequency noise caused by the heater operation. 
In addition to digital filtering, large outliers were replaced with the bin mean. The signal was split 
into 1000 point bins, and any points that were outside of +/- 3 standard deviations from the bin 
mean were replaced with the bin mean. This eliminated any spurious signals that were not removed 
during the digital filtering process. Once the raw voltage was calibrated and filtered, next it was 
passed through a separate subroutine to convert the voltage to a temperature depending on if the 
voltage read was from a thermocouple or an RTD.  

Thermocouple voltage to temperature conversions were performed using National Institute for 
Standards and Technology (NIST) curve fits from NIST tables for type K and B thermocouples. 
The curves relate measured thermocouple voltage to temperature using a 9th order polynomial. 
Over a specific temperature range, the maximum temperature error between a NIST certified 
thermocouple and the NIST curve fits is on the order of +/- 0.1 °F. The NIST curve fit used to 
obtain measured temperature for type K thermocouples is valid from 0 °C to 500 °C (32 °F to 932 
°F). The NIST curve fit used to obtain measured temperature for type B thermocouples is valid 
from 250 °C to 700 °C (482 °F to 1292 °F).  

RTD voltage to temperature conversions were performed using the Callendar-van Dusen (CVD) 
equation previously discussed. Recall that the voltage drop across the RTD is directly measured 
and also that the Acromag transmitter is used to provide constant current excitation. The current 
value that the transmitter is actually providing is a function of the resistive load that it is under, 
which is also a function of the voltage drop across the RTD using Ohm’s Law. The constant current 
value for the transmitter was calibrated using high precision foil resistors manufactured by Vishay. 
A polynomial fit was used to obtain the value of current as a function of measured voltage drop. 
Therefore, the voltage drop measured across the resistor is used to obtain the transmitter output 
current value. Since both the voltage drop across the RTD and the excitation current is known, the 
resistance of the RTD can be simply calculated using Ohm’s Law R = V/I. It is extremely important 
to minimize the uncertainty in the excitation current value. The excitation current value is 
approximately 0.5 mA. An error of just 0.02 mA will cause a significant difference in the 
calculated RTD resistance value, which in turn propagates through the CVD equation and 
ultimately yields an inaccurate base temperature measurement. Once the measured voltage drop 
was converted to RTD resistance, the CVD equation was used. The fundamental CVD equation is 
shown in Equation (3.1). In this equation, R is the measured RTD resistance, T is the RTD 
temperature in degrees Celsius, R0 is the resistance at 0 °C, and A and B are directly related to the 
RTD calibration.  



38 
 

Englerth 2015 
 

 )1( 2
0 TBTARR ⋅+⋅+= 	 (3.1) 

The variables R0, A, and B in Equation (3.1) are different for each RTD. The resistance at 0 °C is 
nominally 100 Ω for the platinum thin film RTD’s used in this study. Other coefficients that 
compose an RTD’s calibration are its α and δ coefficients. The RTD temperature coefficient is α 
and a separate high temperature calibration coefficient is δ. These RTD calibration coefficients 
were provided by the manufacturer and are needed to determine the values of A and B in Equation 
(3.1). The variables A and B are mathematically determined in Equations (3.2) and (3.3). 
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Equation (3.1) gives RTD resistance as a function of temperature. For this study, the resistance of 
the RTD is measured and the temperature is unknown; therefore it is desired to know the RTD 
temperature as a function of resistance. This is done by simply solving Equation (3.1) for the 
temperature variable T. This is expressed below in Equation (3.4). 
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Combining Equations (3.2) and (3.3) to compute the values of A and B and Equation (3.1) yields 
the temperature measured by the RTD. This RTD measured temperature is taken to be the base 
temperature of the strut. 

Recall that data acquisition occurs at a sampling frequency of 10 kHz over 30 seconds. This 
provides a sufficiently long acquisition time to average and reduce the data. Data must be acquired 
over a long time to maximize the benefit of averaging. Data was always acquired at a perceived 
steady state condition. However, it is still necessary to average this data due to small fluctuations 
in the flow characteristics. The primary source of fluctuation came from the jet heater which 
stemmed from the jet PID controller that regulates the flow valve. This unsteady feature of the jet 
controller manifests itself as a flow total temperature that fluctuates by a few degrees. Averaging 
the time series data reduces the effect of this fluctuation. Once all raw voltages have been 
calibrated, filtered, and converted to their respective temperatures, the time series data is saved to 
a Matlab structure. A separate Matlab script was developed to take the time series data and 
determine sensor performance and specific flow characteristics, such as Mach and Reynolds 
number. The sensor recovery factor was calculated from averaging the appropriate temperatures 
as shown in Equation (3.5). The sensor Mach corrected recovery factor was performed in 
accordance with Equation (1.10). This Mach correction is used to eliminate velocity error such 
that conduction error is the only substantial error in the sensor measurement; radiation in this 
temperature regime was determined to be negligible by basic simulations, compared to convection 
and conduction. The dimensionless conduction driver was calculated from averaging the 
appropriate temperatures as shown in Equation (3.6). To summarize the averaging procedure, all 
variables acquired take the value of the mean of its respective time series. 



39 
 

Englerth 2015 
 

 

)(

)(

t

j

Tmean

Tmean
R = 	 (3.5) 

 

)(

)()(

t

bt

Tmean

TmeanTmean −
=Θ 	 (3.6) 

The following assumptions were made during data post-processing: the flow is behaving as an 
ideal gas, the flow is isentropic, and Sutherland’s law is valid for viscosity calculation. The flow 
characteristics were calculated with gas properties, such as viscosity, evaluated at the total 
temperature of the flow. The Mach number of the flow at the nozzle exit was calculated using the 
isentropic relation for total and static pressure. This important, fundamental relationship is 
expressed in Equation (3.7). The ratio of specific heats for air is represented as γ, the total pressure 
of the flow is represented by p0, the static pressure of the flow is represented by p, and the Mach 
number of the flow is represented as M. 
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The Reynolds number of the flow was calculated in accordance with its definition in Equation 
(3.8). This Reynolds number uses the freestream flow that the sensor is subjected to. The 
freestream density, ρ, is calculated in accordance with the ideal gas law at static pressure in Pascals 
and temperature in Kelvin at the nozzle exit. The gas constant, R, uses the constant value of 287 
J/kg/K. The density calculation performed is shown in Equation (3.9). The freestream velocity in 
m/s, U, is calculated from the Mach number and speed of sound, a, at the nozzle exit. The 
freestream velocity calculation performed is shown in Equation (3.10). The dynamic viscosity in 
kg/m/s, µ, is calculated using Sutherland’s law with the temperature evaluated at the total 
temperature in Kelvin of the flow. Evaluating the viscosity at this temperature resulted in a better 
data collapse. Sutherland’s law is expressed in Equation (3.11). 
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The only variable left undefined in the Reynolds number calculation is the length scale, L. The 
length scale that is used is the inlet diameter (ID) of the sensor under test. This ID Reynolds number 
uses the external flow around the sensor scaled on the inlet diameter of the sensor. It can be argued 
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that this may not be the proper Reynolds number to use for data analysis. However, it cannot be 
refuted that it is the most convenient Reynolds number definition to use. Experimental turbine rigs 
can easily obtain the Reynolds number of the external scale, in the previously described fashion, 
and simply scale it on the sensor ID. It is nearly impossible to measure the true Reynolds number 
that the miniature sensor experiences internally. This would require measuring the velocity past 
the sensor, which is not a trivial task.  

3.6 UNCERTAINTIES 

The total uncertainty for a system made up of multiple components is subject to the uncertainty of 
each individual component. The uncertainties of the individual components are generally known, 
or are easy to estimate. It is extremely important to quantify how the uncertainties of individual 
parameters combine into the overall uncertainty of the experimental result. The process for 
estimating system uncertainty will be briefly discussed here. Consider a system y that is a function 
of n independent variables, shown in Equation (3.12). 

 ),,,( 21 nxxxfy K= 	 (3.12) 

Taylor series expansion can be used with good approximation to estimate the corresponding 
change in y for small changes in xn.23 The change in y versus the change in xn is estimated in 
Equation (3.13). 
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The partial derivatives represent the sensitivity of y to changes in each independent variable. If the 
small changes in each independent variable are considered to be the uncertainty of each 
independent variable, the root-sum-square formula can be used to determine the uncertainty of y. 
This formulation is known as the propagation of errors and is shown in Equation (3.14).  
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 This formulation for system uncertainty will be applied to determine the uncertainty in recovery 
data. Recall the definition of overall recovery factor in Equation (1.1). Using Equation (3.14), the 
overall uncertainty in recovery factor is expressed in Equation (3.15). The partial derivatives are 
evaluated accordingly and substituted to yield the result in Equation (3.16). 

 22








 ∂
+













 ∂
= t

t

j

j

T
dT

R
T

dT

R
R δδδ 	 (3.15) 

 2

2

2
1











−+








= t

t

j

j

t

T
T

T
T

T
R δδδ 	 (3.16) 



41 
 

Englerth 2015 
 

The overall recovery uncertainty is clearly a function of the uncertainties of the total temperature 
probe under test and the plenum probe. The plenum probe uses a type K thermocouple with special 
limits of error wire; wire of this quality is taken to have an uncertainty of 1.98 °F or 0.4% above 
32 °F. The greater of these two values are used for the uncertainty in the total temperature 
measurement. The uncertainty associated with the sensor 2 was taken to be 0.87 °F; this 
temperature uncertainty was provided from the manufacturer. Evaluating experimental results 
using these estimated uncertainty values yields an uncertainty on the order of 0.0025 in the overall 
recovery factor for sensor 2. It is important to note that this value is simply the minimum 
uncertainty for a single point measurement. The uncertainty in overall recovery for a nominal total 
temperature of 850 °F and Θ = 0.6 is shown in Figure 3.8. 

 

Figure 3.8: Uncertainty in overall recovery factor R. 

The same procedure is performed to calculate the overall uncertainty for the Mach corrected 
recovery factor. Recall the definition of the Mach corrected recovery factor in Equation (1.10). 
The Mach corrected recovery factor is strictly a function of Mach number M, aerodynamic 
recovery factor α, and overall recovery factor R. The partial derivatives of Equation (1.10) with 
respect to these three independent variables are expressed in Equation (3.18) through Equation 
(3.20). 
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The uncertainty in overall recovery factor δR is calculated just as in Equation (3.16). Moffat reports 
the uncertainty in the aerodynamic recovery factor for a thermocouple aligned with the flow to be 
±0.09.2 The uncertainty in Mach number comes to the uncertainty in measured static and total 
pressure. Mach number is related to these pressures by Equation (3.7). Thus the uncertainty in 
Mach number is related to the uncertainty in static and total pressure by Equation (3.21). 
Differentiating Equation (3.7) with respect to the static pressure and total pressure yields Equations 
(3.22) and (3.23), respectively. 
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The uncertainty in static and total pressure measurement was taken to be the uncertainty of the 
instruments measuring them. The uncertainty for the total pressure measurement was taken to be 
±0.08% of the full scale transducer value of 50 psig, the quoted uncertainty value for the 
Scanivalve Zoc17 pressure transducer used. This yields an uncertainty of approximately 275 Pa 
for the total pressure measurement. The uncertainty in the static pressure was taken from the quoted 
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±0.05 in. Hg of the pressure reading for the digital barometer. This yields an uncertainty of 
approximately 340 Pa for the static pressure measurement. Combining Equations (3.17) through 
(3.21) gives an estimation of the overall uncertainty for the Mach corrected recovery results. The 
uncertainty in the aerodynamic recovery factor α contributes the largest amount of uncertainty to 
the Mach corrected recovery results. It is expected for the uncertainty in the Mach corrected 
recovery to be greater than the uncertainty for the uncorrected recovery, simply due to the fact that 
two more sources of uncertainty are introduced in the calculation. This behavior is shown in Figure 
3.9 and is explained upon inspection of Equation (3.19). This behavior scales with the square of 
Mach number because d R /dα scales with the square of Mach number. 

 

Figure 3.9: Uncertainty in Mach corrected recovery factor R  

A more expansive discussion of overall experimental uncertainty is found in Appendix A: 
Expanded Experimental Uncertainty and Model Sensitivity. 
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4 EXPERIMENTAL RESULTS 

Experimental results for both the sensors are presented in this section. The results for each sensor 
are presented separately due to the differences in respective sensor geometry and material. 
Observations that were made in section 2.3 expressing sensor performance as function of Reynolds 
number and conduction driver are expected to be valid for the experimental results.  

It is important to make note that the cooling rate was kept constant when acquiring a single set of 
data; the conduction driver was not necessarily constant with probe Reynolds number test 
conditions. Depending on whether air or water was used as the cooling fluid, the steadiness of the 
conduction driver was affected. Water was the most effective coolant and the variation of the 
conduction driver with Reynolds number was minimally affected. Water was used as the coolant 
fluid to impose high conduction drivers to the sensor. Air was used as the coolant fluid to impose 
very low to moderate conduction errors to the sensor. The heat capacity of water is about 4.2 
kJ/kg/K while the heat capacity of air is 1.005 kJ/kg/K at standard temperature and pressure; water 
has over quadruple the heat capacity of air thus making it an extremely effective coolant.  

Since the cooling rate was specified via a valve setting, the conduction driver varied with probe 
Reynolds number test conditions. This phenomena is shown in Figure 4.1. The heat transfer 
balance between conduction and convection changes as convection is increased, and the cooling 
rate is kept constant. Increased convective heat transfer over the strut and sensor generally resulted 
in a lower conduction driver. The large heat capacity of water effectively kept the conduction 
driver constant with Reynolds test number, but the variance of driver versus Reynolds is clearly 
seen when air is used as the coolant.  

+  

Figure 4.1: Effect of heat convection on sensor 2 conduction driver for water and air coolants. 

The figures following in this section all have the conduction driver averaged for a data set. The 
deviation between the average and actual driver value is negligible when water is used as the 
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coolant. When air is used as the coolant, the deviation between the average and actual driver value 
is significantly larger. These deviations from average driver used is shown in Figure 4.2. It is 
important for the reader to realize this during data presentation.  

 

Figure 4.2: Conduction driver deviation from mean driver for water and air coolant for sensor 2. 

Conduction drivers for sensor 2 less than 0.4 were all obtained using air as the coolant. For both 
sensors, conduction drivers greater than 0.4 were all obtained using water as the coolant. Air 
cooling was not performed for sensor 1.  

The effect of Reynolds number on sensor performance was determined to be a significant factor, 
referencing previous insight gained by using the thermal resistance model in section 2.3.2. The 
effect will be presented for both types of sensors. Sensor performance is Mach corrected in order 
to isolate the effect that conduction has on sensor performance. Sensor measurement error due to 
radiation is not accounted for. 

4.1 SENSOR 1 

The data set for sensor 1 consisted of 4 independent runs, repeated two or three times for a total of 
13 runs, over a range of total temperatures between 300 °F and 850 °F with Θ ranging between 
about 0.05 and 0.6. The range of the Reynolds number varied between 2000 and 15,000. 

4.1.1 Impact of Reynolds Number and Conduction driver 

The impact of the Reynolds number on sensor 1 performance is shown in Figure 4.3. The Mach 
corrected recovery is presented against Reynolds number for a driver of Θ = .55. As expected, 
sensor performance relies on the Reynolds number. The effect that the Reynolds number has on 
sensor 1 performance is not as strong as found for sensor 2 results to be shown below. This is 
primarily due to the dramatic difference in thermal conductivity between the sensors, with 
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secondary effects stemming from differences in sensor geometry and fabrication. About 3% of the 
flow total temperature is further recovered between the lowest Reynolds condition and the highest 
Reynolds condition. 

 

Figure 4.3: Dependence of sensor 1 performance on Reynolds number for Θ = 0.55. 

Sensor 1 was tested over a limited range of conduction conditions and total temperatures between 
300 °F and 850 °F. The conduction conditions were achieved using only water as the coolant. A 
portion of the Type K data set that includes the total range of conduction drivers tested is shown 
in Figure 4.4. The sensor performance is seen to increase as the conduction driver decreases.  

 

Figure 4.4: Dependence of sensor 1 performance on conduction driver as a function of Reynolds 
number, Tt ranging from 300 °F to 850 °F 
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4.1.2 Comparison of Results to Thermal Resistance Model Predictions and Simulations 

Results comparing experimental data with thermal resistance model predictions will be presented. 
A few select simulations were performed to predict sensor 1 performance using ANSYS Fluent. 
A multi-physics CFD model was developed in conjunction with this study to provide high fidelity 
sensor predictions.43 

The comparison of sensor 1 experimental data, its respective low-order and CFD predictions are 
shown in Figure 4.5. The low-order model significantly under predicts the sensor performance 
across the entire Reynolds number range. This is a shortcoming of the low-order model that was 
briefly discussed in section 2.3.5. Four CFD simulations were performed with Θ = 0.5 at total 
temperatures of 550 °F and 850 °F at the upper and lower bounds for Reynolds numbers. There is 
excellent agreement between the experimental data and the simulation results for Θ = 0.5 with 
total temperature of 550 °F at the high Reynolds test condition. The experimental facility was not 
able to achieve Reynolds numbers below 2000; simulations were performed with Reynolds 
numbers of about 1000 to 1500. It can be expected that further sensor performance roll-off would 
be achieved if the minimum achievable Reynolds number for the facility was able to match those 
of the simulation results.  

The ratios between experimental data and thermal resistance model predictions are shown in 
Figure 4.6. The indicated trend shows that the thermal resistance model under predicts sensor 
performance at low Reynolds numbers. Again, this is caused by the small convective heat transfer 
at low Reynolds number. As the convective heat transfer approaches zero, the thermal resistance 
model approaches the steady-state conduction solution where the thermocouple temperature is 
equal to the base temperature.  

 

Figure 4.5: Comparison of experimental results, TRM predictions, and CFD simulations for 
sensor 1 performance 
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Figure 4.6: Ratio between sensor 1 experimental data and thermal resistance model predictions. 

4.2 SENSOR 2 

The effect of conduction driver on sensor performance was determined to be a significant factor, 
referencing previous insight gained by using the thermal resistance model in section 2.3.3. Sensor 
performance is still Mach corrected in order to isolate the effect that conduction has on sensor 
performance. The data set for sensor 2 consisted of 16 independent runs, repeated twice for a total 
of 32 runs, over a range of total temperatures between 550 °F and 850 °F with Θ ranging between 
about 0.05 and 0.6. The range of the Reynolds number varied between 2000 and 12,000. 

4.2.1 Impact of Reynolds Number and Conduction Driver 

The impact of the Reynolds number on the sensor 2 performance is shown in Figure 4.7. The Mach 
corrected recovery is presented against Reynolds number for a driver of Θ = .47 with a nominal 
total temperature of 550 °F. As expected, sensor performance heavily depends on the Reynolds 
number. More than 7% of the total temperature is recovered at high Reynolds conditions versus 
low Reynolds conditions. This is in agreement with thermal resistance model predictions. 

 

Figure 4.7: Dependence of sensor 2 performance on Reynolds number, Θ=0.47, Tt=550 °F 
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Sensor 2 was tested over a range of conduction conditions and total temperatures between 550 °F 
and 850 °F. The conduction conditions were achieved using air and water as coolants, as well as 
no cooling.  A portion of the complete data set that includes the total range of conduction drivers 
tested is shown in Figure 4.8. The sensor performance clearly increases as the conduction error 
decreases. The effect of not cooling the strut (Θ = 0.05) yielded the best sensor performance. The 
conduction driver was nonzero even though the cooling was off due to the internal cooling 
channels providing a path to absorb and diffuse part of the heat load. Introducing a very low rate 
of airflow to cool the strut clearly affected the sensor performance for Reynolds number below 
10,000. The effect of conduction on sensor performance is largest at lower Reynolds number due 
to decreased heat transfer by convection. This was a trend observed in the low-order model 
analysis.  

 

Figure 4.8: Dependence of sensor 2 performance on conduction driver as a function of Reynolds 
number, Tt ranging from 550 °F to 850 °F 

4.2.2 Comparison of Results to Thermal Resistance Model Predictions 

The comparison of experimental data for sensor 2 and its respective thermal resistance model 
predictions are shown in Figure 4.9. The thermal resistance model accurately predicts sensor 
performance when the conduction driver is low. It quickly loses accuracy when the conduction 
driver increases. The ratio between experimental data and thermal resistance model predictions is 
displayed in Figure 4.10. The characteristic is significantly different than the observed 
characteristic for sensor 1 in Figure 4.6. This difference is explained by the significantly different 
probe geometry; the thermal resistance model was modified to accommodate the geometry of 
sensor 2.  
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Figure 4.9: Comparison of experimental results and TRM predictions for sensor 2 performance 

 

Figure 4.10: Ratio between sensor 2 experimental data and thermal resistance model predictions. 

4.3 PHYSICAL MODEL CHARACTERIZATION 

Recall that the results from the thermal resistance model were clearly a function of Reynolds 
number and conduction driver and successfully collapsed on these two parameters using Equation 
(2.18) presented earlier in section 2.3.6. This model form is shown again in Equation (4.1) for 
clarity. 
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The validity of this functional form was shown to be viable when fitting to the results of the thermal 
resistance model. The experimental data will be fit to this statistical model to determine its validity.  

4.3.1 Sensor 1 Collapse using Moffat’s Functional Form 

The results for the data collapse using the historical functional form is expressed in Table 3. The 
RMS deviation between all Type K experimental data and the surface fit is 0.0085 which indicates 
that sensor performance estimated from the surface fit is generally within 0.85% of the 
experimental flow total temperature. The L∞ norm indicates that the maximum deviation between 
sensor performances estimated from the surface fit is 4.03% of the flow total temperature that was 
experimentally measured. The coefficient of determination, R-sq, shows that the statistical model 
using the historical functional form explains 58.45% of the variance in sensor performance. This 
is nowhere near as strong as the fit to the thermal resistance model, which had an R-sq of 0.9979. 
The decrease in the statistical model correlation is likely due to experimental uncertainty, 
differences between actual sensor geometry and geometry used in the low-order model, as well as 
thermal contact resistance. 

Inspection of Figure 4.11 indicates that the sensor performance at low conduction driver clearly is 
not behaving as expected. Sensor 1 performance decreases when the conduction driver decreases 
from about 0.3 to 0.05. This completely goes against previously discussed performance trends. It 
is necessary to determine how the Type K data set behaves when these uncooled data sets are 
removed. The data collapse results for sensor 1 with the uncooled data sets removed are expressed 
in Table 4. The surface fit and all resulting data set is shown in Figure 4.12. The deviation between 
experimental data and the surface fit is shown in Figure 4.13. It is observed that the greatest 
deviation generally occurs at low Reynolds number, due to the lower convective heat transfer. 

Recall the theoretical value of c1 to be one and the theoretical value for c2 to be 2 �
��0.085


��
�

������. 

The actual value for c1 is 72.66% lower than the theoretical value of one. Scaling of the correction 
factor ϴ/cosh(c2Re0.337), indicates sensor 1 is not as sensitive to conduction error as the analytical 
solution for conduction error suggests for an exposed thermocouple. The actual value for c2 is 
73.67% lower than the theoretical value of 0.473. The L/d value for sensor 1 is approximately 18, 
while the average kflow/ksheath value is equal to 0.0020. The deviation between theoretical and actual 
values for the fit coefficients agrees with the deviations that the low-order model fit coefficients 
had. Given that c1 is nearl 73% lower than the theoretical value of one, Sensor 1 results are even 
less sensitive to the conduction error relationship involving the conduction driver and Reynolds 
number than the low-order model results suggest. 

Removing the uncooled data sets greatly improved the data fit to the statistical model. The value 
of R-sq increasing to 0.9111 indicates that 91.11% of the variation in sensor performance due to 
Reynolds number and conduction driver is explained. The fit constants remained nearly the same; 
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the coefficients for 95% confidence changed substantially which further validates how the 
uncooled data sets were not in agreement with the remaining data.  

Table 3: Summary of sensor 1 surface fit result using model form expressed in Equation (4.1). 

RMS Error R-sq L∞ Norm Fit constant c1 Fit constant c2 

0.0085 0.5845 0.0403 0.2751 +/- 0.0849 0.1245 +/- 0.0188 

 

 

Figure 4.11: Unexplained uncooled sensor 1 performance trend. 

Table 4: Summary of Type K surface fit with cooling off data sets removed 

RMS Error R-sq L∞ Norm Fit constant c1 Fit constant c2 

0.0040 0.9111 0.0114 0.2734 +/- 0.0401 0.1245 +/- 0.0089 
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Figure 4.12: Surface fit for Type K data with cooling-off data sets removed 

 

Figure 4.13: Absolute deviation between sensor 1 experimental data and surface fit. 

4.3.2 Sensor 2 Data Collapse using Moffat’s Functional Form 

The results for the data collapse using the historical functional form is expressed in Table 5. The 
surface fit and all experimental data is shown in Figure 4.14. The RMS deviation between all 
sensor 2 experimental data and the surface fit is 0.01185 which indicates that sensor performance 
estimated from the surface fit is generally within 1.185% of the experimental flow total 
temperature. The L∞ norm indicates that the maximum deviation between sensor performances 
estimated from the surface fit is 2.98% of the flow total temperature that was experimentally 
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measured. The coefficient of determination, R-sq, shows that the statistical model using the 
historical functional form explains 86.57% of the variance in sensor performance. This is not as 
good an agreement of the statistical model fit with the data from sensor 1, seen previously in Table 
4. This difference is explained by the differences in sensor geometry. Sensor 1 has geometry most 
similar to the assumed geometry of the fin equation discussed earlier in the derivation of Equation 
(4.1). The deviation between experimental results and the surface fit is shown in Figure 4.15.  

Recall the theoretical value of c1 to be one and the theoretical value for c2 to be 2 �
��0.085


��
�

������. 

The actual value for c1 is just 6.19% lower than the theoretical value of one. Scaling of the 
correction factor ϴ/cosh(c2Re0.337), indicates sensor 1 is not as sensitive to conduction error as the 
analytical solution for conduction error suggests for an exposed thermocouple. The actual value 
for c2 is 27.1% lower than the theoretical average value of 0.206. The L/d value for sensor 2 is 
approximately 15.6, while the average kflow/ksheath value is equal to 0.00052. These fit coefficients 
for sensor 2 are in much better agreement with theoretical values. This agreement indicates that 
sensor 2 is more sensitive to conduction error described by the physical model fit. 

Table 5: Summary of sensor 2 surface fit result using model form expressed in Equation (4.1).  

RMS Error R-sq L∞ Norm Fit constant c1 Fit constant c2 

0.0118 0.8657 0.0298 0.9381 +/- 0.1867 0.1504 +/- 0.0126 

a

 

Figure 4.14: Surface fit of all sensor 2 data. 
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Figure 4.15: Absolute deviation between sensor 2 experimental data and surface fit. 

4.3.3 Collapse of both Sensors via Biot Number 

Recall that Moffat’s model can be recast expressing sensor performance as a function of 
conduction driver, L/d, and Biot number. This formulation is expressed in Equation (2.12) in 
section 2.1. Moffat’s model is derived assuming the heat transfer at the sensor tip is negligible 
compared to the heat transfer across the lateral surface of the sensor.11 Replacing this assumption 
with a more physically accurate one that includes heat convection at the tip yields the following 
statistical model in Equation (4.2).10 This model was successfully used by Warren for analytical 
conduction error correction.38 

 

( ) ( )BicBicBic

c
R

232

1

sinhcosh
1

⋅+

Θ
−= 	 (4.2) 

The fit constant c2 should tend to be proportional to the sensor L/d. An additional constant c3 was 
added to the hyperbolic sine term to capture the heat convection at the sensor tip that the Biot 
number might not capture, and other material properties are absorbed by this constant. Note that 
the Biot number is computed in accordance with Equation (2.9) in section 2.1. Thus this Biot 
number calculation uses Moffat’s Nusselt and Reynolds number correlation, effectively making 
the Biot number a function of Reynolds number. The statistics for collapsing data from both 
sensors are presented in Table 6. This statistical model explains 71% of the variation in sensor 
performance as a function of Biot number and conduction driver. This indicates a moderately 
strong correlation between sensor performance with Biot number and conduction driver.  

This statistical model of all sensor performance using Biot number and conduction driver should 
be taken to be a general rule for sensor performance. The geometry of both tested sensors were 
extremely different thus making the data collapse of both sensor challenging. Sensor 2 features 
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geometry that ultimately lead to an ambiguous definition of sensor L/d, while sensor 1 featured 
traditional geometry. 

Figure 4.16 shows all experimental data for both sensors strictly as a function of Biot number and 
conduction driver. Note that the cooling-off runs for sensor 1 are still removed. The same roll-off 
of sensor performance is seen at both high conduction drivers and low Biot numbers. This is 
directly related to the trends previously seen with the model using a Reynolds number parameter. 
It is important to note that the Biot number has been assumed to scale on the Reynolds number, 
thus the same model behavior is expected. The physics of the problem is governed by the Biot 
number, which in turn relies on the Reynolds number for convective heat transfer. Figure 4.17 
shows the deviation between the experimental data and the surface fit. The deviation is relatively 
constant for sensor 1 data, though it tends to increase as the conduction driver increases. This 
behavior is also seen in the deviation for sensor 2. The deviation for sensor 2 data is significantly 
higher than the deviation for the sensor 1 data. This is likely due to the geometry of sensor 2 not 
being appropriately captured by the model expressed in Equation (4.2). This form is representative 
of the geometry for sensor 1.  

Table 6: Summary of surface fit result using statistical model expressed in Equation (4.2) 

RMS Error R-sq L∞ Norm Fit constant c1 Fit constant c2 Fit constant c3 

0.0146 0.7122 0.0376 0.4310 +/- 0.0649 22.990 +/- 2.091 -19.078 +/- 2.052 

 

Figure 4.16: Surface fit for all Type B data and Type K data, uncooled Type K data removed 
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Figure 4.17: Absolute deviation between all experimental data and surface fit. 

4.4 RECOMMENDATIONS ON AN APPROPRIATE CALIBRATION PROCEDURE 

Experimental rigs in industry often do not know the value of the flow total temperature with low 
uncertainty. The experimental procedure and results presented sensor performance as a function 
of Reynolds number and conduction driver. The statistical model results in Table 4 and Table 5 
allow a procedure to extract a particular sensor’s calibration. The calibration of a sensor is 
governed by non-dimensional parameters, namely the Reynolds number and the conduction driver 
for the purpose of the data fit to the statistical model.  

The surface fit for experimental data for a particular sensor can be used to estimate the unknown 
flow total temperature from knowledge of the Reynolds number, base temperature, and junction 
temperature indicated by the sensor. Recall that the Reynolds number uses the external flow 
conditions but scaled on the inlet diameter to the sensor. An initial guess for the recovery factor is 
used to start the iterative procedure. The performance of the sensor is not sensitive to the initial 
performance guess. The initial recovery factor guess R0 is used to calculate a value for the total 
temperature from the junction temperature in Equation (4.3). 

 
0RTT jt = 	 (4.3) 

The Reynolds number is then adjusted to recalculate gas properties at the new total temperature 
and the conduction driver term, Θ = 1 – Tb/Tt is computed. The recovery factor is calculated using 
the model described in the surface fit. The total temperature is then extracted from the newly 
calculated recovery factor and is compared to the previously calculated total temperature value. 
This procedure is iterated until the difference between total temperature iterations is within some 
specified temperature tolerance. An example is presented in Appendix B: Example Calibration 
Procedure Calibration of total temperature sensors in a rig that accentuates conduction error is 
needed to understand how cooled sensor performance relies on conduction conditions. The sensor 
performance can then be expressed in terms of non-dimensional parameters that can be used 
universally.   
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5 CONCLUSIONS 

A fundamental study of conduction error on total temperature probes has been performed in this 
work and a calibration procedure has been proposed and is demonstrated in Appendix B: Example 
Calibration Procedure. A thermal resistance model was developed in order to predict the 
performance of total temperature sensors when exposed to large temperature differences between 
the flow and sensor base. This model was developed based on the results presented by Moffat.2 

The thermal resistance model was used to validate Moffat’s conclusions regarding the important 
parameters governing conduction error of thermocouples. The effect of the Reynolds number and 
dimensionless conduction driver was studied and determined to be critical parameters for total 
temperature probe performance.  The thermal resistance model proved conduction error calibration 
to be governed by dimensionless parameters, namely the conduction driver as well as the Nusselt, 
Biot, and Reynolds number. This result indicates that conduction error calibration can be 
performed in any flow regime and can be universally used, provided that velocity and radiation 
error are appropriately accounted for. This indicates that total temperature probes can be calibrated 
in experimental facilities where the operating conditions are well known. These calibrations can 
then be used to calculate the flow total temperature in facilities where the operating conditions 
may not be accurately known. The thermal resistance model successfully verified the conduction 
error model introduced by Moffat. 

An experiment to study conduction error of total temperature probes was designed and conducted 
in the Virginia Tech Hot Jet facility. The total temperature probes under test are embedded in a 
cooled strut in order to develop the driving conduction mechanism. Experimental data was 
obtained for two total temperature probes; one developed internally by Virginia Tech with 
conventional design and a proprietary second probe. Data was collected over total temperatures 
ranging from 550 °F to 850 °F with Mach number varying between 0.15 and 0.8 which resulted in 
probe Reynolds numbers between 2,000 and 12,000. Experimental data shows sensor performance 
strongly depending on both conduction driver and Reynolds number. This is in agreement with 
historical results and predictions from the thermal resistance model. The experimental data was 
collapsed on conduction driver and Reynolds number using an appropriate statistical model formed 
from a heat transfer solution. The statistical model captured most of the variation of sensor 
performance with respect to these two parameters and serves as the “calibration surface” for the 
probe.  

The model fit of all experimental data is inherently physics based. The simple heat transfer solution 
presented by Moffat serves as an effective statistical model to represent total temperature probe 
performance. The high level of agreement between experimental data and the model fit verifies 
that the performance of total temperature probes is largely a function of Reynolds number and 
conduction driver. Additionally, the thermal resistance model predictions verified the model fit. 
Recall that the model fit can express total temperature probe performance as either a function of 
Reynolds number or Biot number. The governing physics of the problem simplifies to dependence 
on the conduction driver, sensor geometry, i.e. the L/d, and the Biot number. It is important to 
recognize that the problem at hand is inherently governed by Biot number, however, it is not 
practical to implement this parameter into a calibration procedure. Due to the difficulty in 
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experimentally measuring the convective heat transfer coefficient, and thus the Biot number, it is 
more practical to use the Reynolds number as a governing parameter for conduction error 
calibration. 

This study proves conduction error to be governed by dimensionless parameters, the conduction 
driver and Reynolds number in this case, thus indicating sensor performance to be constant for any 
constant combination of conduction driver and Reynolds number. This is a powerful result in the 
fact that if these two parameters are known, then the sensor performance can be estimated using 
the “calibration surface” result from the model fit. This particular recovery factor can be used 
independent of temperature regime, as long as radiation effects are kept small or corrected for.  

The effect of dimensionless conduction driver Θ on sensor performance has been studied using 
Moffat’s model and the thermal resistance model. Experimental data for both sensor types was 
obtained. All models and experimental data indicate that sensor performance is dependent on the 
conduction driver, most noticeably at lower Reynolds number where heat convection is lower. The 
only exception to this was for the uncooled case for sensor 1. It was expected for the recovery to 
increase rather than decrease. This behavior was successfully repeated between multiple days, 
however, this goes against the physics of the problem and is not currently understood.  

The conduction driver is the parameter that is used to describe how measurement error scales due 
to conduction. The measurement junction temperature is the result of a heat transfer balance via 
convection from the fluid and conduction from the junction. The second law of thermodynamics 
states that for an irreversible process, such as heat transfer via conduction, heat flows from a point 
of high temperature to low temperature. This is directly analogous to the flow of current from high 
electric potential to low electric potential, previously discussed in the thermal resistance model. 
As the base temperature decreases, more heat transfer will occur from the thermocouple junction, 
i.e. the hottest part of the thermocouple, to the base; the coldest part of the thermocouple. The 
thermocouple base is in direct thermal contact with the strut, which ultimately serves as a heat 
sink. This conduction effect balances with the convective heat transfer to yield a lower steady-
state thermocouple junction temperature.   

Significant differences exist between experimental data and low-order predictions. This stems 
from the previous discussion on the limitations of the thermal resistance model in section 2.3.5. 
When a temperature gradient does not exist between the base and thermocouple junction, the 
predicted recovery is 1.0. The experimental data contains errors due to random sources as well as 
error due to radiation that is assumed to be small. The radiation error was assumed to be small 
enough to ignore. The thermal resistance model does not include these sources of error. 
Furthermore, thermal contact resistance between the probe assembly and the cooled strut is an 
experimental unknown; the actual base temperature on the thermocouple is different than the base 
temperature of the strut. This leads to a lower conduction driver value that should be used as an 
input to the thermal resistance model. This variation in conduction driver is difficult to estimate 
due to thermal contact resistance. 

Experimental results for sensor 1 show a good comparison to the high fidelity CFD simulations 
performed by Schneider.43 The CFD results appear to collapse on conduction driver, as expected 
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and closely agree with the experimental data. All results shown indicate the same performance 
trend with Reynolds number. The thermal resistance model predictions follow the same 
characteristic with Reynolds number that the experimental and computation results have. There is 
a near constant offset between the thermal resistance predictions and experimental results of about 
5% of the total temperature. This indicates that the thermal resistance model effectively captures 
the Reynolds number dependence of sensor 1. The nearly constant offset can be considered a bias 
error due to the true base temperature at the exact point of contact between the thermocouple and 
cooled strut being unknown. 

Experimental results for sensor 2 show good agreement with the thermal resistance model at low 
conduction drivers. Sensor 2 data indicates that as the conduction driver increases, the deviation 
between experiment and prediction increases. The geometry of this sensor is significantly different 
than sensor 1 and the thermal resistance model was modified accordingly 

This study presents an experimental setup to calibrate for conduction error and suggests an iterative 
calibration procedure that may be used in any conditions to determine the flow total temperature. 
The sensitivity of the calibration procedure is dependent on the uncertainties of the input 
parameters, namely uncertainties in base temperature and sensor Reynolds number. The sensitivity 
of the calibration procedure for conditions typically found in engine diagnostics, combined with 
the inherent uncertainty in the instruments used, yields an accuracy on the order of ±4% of the 
flow total temperature with extremely conservative estimates of ±30% uncertainty in both base 
temperature and Reynolds number. 

5.1 FUTURE WORK 

Future work should include a set of experiments that use numerous sensors of identical geometry 
but of different thermal conductivity. This allows the Biot number to truly be isolated for study. 
The current work studies two sensors of different thermal conductivity but of radically different 
geometry. Additionally, sensors using exposed bare wire junctions should be studied; total 
temperature sensor literature discusses exposed thermocouple junctions, as does Moffat, though 
this study uses sheathed, ungrounded thermocouple junctions.  
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APPENDIX A: EXPANDED EXPERIMENTAL UNCERTAINTY 

AND MODEL SENSITIVITY 

EXPERIMENTAL REPEATABILITY 

The day-to-day repeatability of measurements is another measure of experimental uncertainty. The 
repeatability is taken to be the deviation from the mean of two data sets. This is performed for all 
data sets for sensor 2. The average of the deviations from mean between all respective sensor 2 
data sets will indicate the overall repeatability for sensor 2. Figure A.1 shows these deviations.  

 

Figure A.1: Deviation between same sensor 2 data sets 

Taking the average of all deviations shown in Figure A.1 yields a measure of the average 
repeatability across all Type B data sets. The average deviation for these data sets comes out to be 
0.0019. Thus the total uncertainty due to inherent instrument uncertainty and experimental 
repeatability is ±0.0044. This is a measure of how well any singular data point captures the true 
recovery factor for sensor 2. 

 22

ityrepeatabilinstr RRR δδδ += 	 (A.1) 

 

STATISTICAL MODEL SENSITIVITIES 

While the experimental conditions are well controlled in this study, other experimental rigs may 
not always know what the specific operating conditions are. Due to this, it is necessary to determine 
how sensitive the model is to large uncertainties in the driving parameters, i.e. conduction driver 
and Reynolds number. These uncertainties in rig conditions can be ultimately expressed as 
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uncertainty in sensor recovery factor. It is assumed that the primary uncertainties are in the base 
temperature measurement and the Reynolds number calculation. Again, the total temperature of 
the flow is an unknown that is iteratively solved for using the “calibration surface” that describes 
the performance of the sensor. 

Before the sensitivity is explored, the best achievable uncertainty of the statistical model must be 
discussed. Table 3 through Table 5 contain 95% confidence intervals for the calculated fit 
constants. These intervals indicate the uncertainty bounds for how well the calculated function fits 
the experimental data. These intervals conservatively contain the experimental uncertainty due to 
day to day repeatability of results. The uncertainty in sensor performance using the iterative 
calibration procedure is produced by perturbing the two fit constants, c1 and c2, by their respective 
confidence interval and observing the effect that is has on the calculated recovery factor. These 
combinations are shown in Table 7. The median value for recovery is obtained by not perturbing 
the fit constants at all, represented as R0 in the coefficient table. The resulting maximum and 
minimum recovery factors obtained from including the uncertainty due to the confidence intervals 
are used to characterize the overall uncertainty in the iteratively calculated recovery factor. Thus 
the upper bound on the uncertainty is calculated by taking the maximum recovery of R1 through 
R8 and subtracting the median recovery R0 from it. The lower bound recovery uncertainty is 
determined by subtracting the minimum recovery of R1 through R8 from the median recovery R0. 
The resulting uncertainty bound is not symmetric and is weighted towards the lower bound. This 
calculated uncertainty is strictly from the confidence intervals of the fit constants; the uncertainty 
in the calculated sensor performance cannot be less than these values. 

Table 7: Perturbation of calibration surface fit coefficients. 

C1 value C1 C1+ C1,95 C1- C1,95 C1+ C1,95 C1- C1,95 C1 C1 C1+ C1,95 C1- C1,95 
C2 value C2 C2+ C2,95 C2- C2,95 C2- C2,95 C2+ C2,95 C2+ C2,95 C2- C2,95 C2 C2 
Recovery R0 R1 R2 R3 R4 R5 R6 R7 R8 

 

Now that the baseline uncertainty associated with the statistical model has been discussed, it is 
appropriate to determine the effect of uncertainty in base temperature and Reynolds number on the 
calculated sensor performance. The statistical model is of the form shown again in Equation (A.2). 
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Using the propagation of errors, the uncertainty in this model due to base temperature and 
Reynolds number uncertainties is expressed in Equation (A.3) with the subsequent partial 
derivatives evaluated in Equations (A.4) and (A.5). 
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The effect of base temperature and Reynolds number uncertainty was studied using the preceding 
equations for flow conditions commonly encountered at the turbine inlet. The sensor was assumed 
to have a temperature reading of 2800 °F, base temperature of 1800 °F, and Reynolds number of 
4500. The uncertainty in base temperature and Reynolds number was varied from zero to 30% of 
their base value. The total uncertainty in calculated sensor performance is comprised of the 
uncertainty due to the statistical model confidence intervals and the uncertainty due to base 
temperature and Reynolds number. This is expressed in Equations (A.6) and (A.7) and 
subsequently plotted in Figure A.2 and Figure A.3. 

 [ ] 22

081, ):max( RRRRR uppertot δδ +−= 	 (A.6) 

 [ ] 22

810, ):min( RRRRR lowertot δδ +−= 	 (A.7) 

 

Figure A.2: Upper bound uncertainty for extrapolated sensor 2 performance 
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Figure A.3: Lower bound uncertainty for extrapolated sensor 2 performance 

The intercept in each of these figures indicates the uncertainty due to the confidence intervals of 
the fit coefficients and the inherent uncertainty of the instruments. Moving along the 0% base 
temperature uncertainty line indicates how sensitive the total uncertainty is to the uncertainty in 
Reynolds number. Subsequently moving along the vertical axis, where the uncertainty in Reynolds 
number is zero, indicates how sensitive the total uncertainty is to the uncertainty in base 
temperature. Simple inspection along these two lines indicate that the sensitivity to base 
temperature uncertainty has a greater effect than the uncertainty in Reynolds number. These results 
indicate that even for severe uncertainty in Reynolds number and base temperature, the uncertainty 
in the flow total temperature is within approximately ±4%. 
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APPENDIX B: EXAMPLE CALIBRATION PROCEDURE 

The iterative calibration procedure will be used to estimate the total temperature of the flow for 
sensor 2. The calibration surface found for sensor 2 is shown in Equation (B.1).  

 ( )
( )( )337.0Re0126.01504.0cosh

1867.09381.0
1

±

Θ±
−=R 	 (B.1) 

For this example, the uncertainty in base temperature Tb and in the probe Reynolds number ReID 
is assumed to be zero. The following inputs are required to be known for this calibration procedure: 
thermocouple junction temperature Tj, mount strut base temperature Tb, and freestream total and 
static pressures. The freestream pressures are used to calculate the Mach number, which in turn is 
used to calculate the Reynolds number in conjunction with the indicated thermocouple 
temperature. The calibration procedure is as follows:  

1. Use Tj to guess Tt with a conservative first guess for R. 
2. Compute the Reynolds number and conduction driver Θ using the calculated Tt. 
3. Evaluate Equation (B.1) using the newly computed Reynolds number and conduction 

driver to obtain the new recovery factor value. 
4. Compute the new Tt from the new R, i.e. Tt = Tj/R 
5. Compare the value for Tt to the previously calculated Tt value 

6. Iterate steps 2-5 until some stopping criteria is met, i.e. ε<−+ itit TT ,1,  

The following inputs will be used to compute the flow total temperature: Tj = 750 °F, Tb = 300 °F, 
ps = 100 kPa, pt = 139 kPa. This pressure ratio is for a freestream Mach of 0.7. The results from 
the calibration procedure are shown in Table 8: Results from iterative calibration procedure for 
sensor 2. For this particular set of inputs, the flow total temperature was determined to be 788.85 
(+15.3,-23.0) °F, resulting from a predicted recovery factor of 0.96887 (+0.0120,-0.0175). The 
Reynolds number was determined to be 8427 and the conduction driver to be 0.39. Figure B.1 
shows the calculated region in a subset of the sensor 2 experimental data. 

Table 8: Results from iterative calibration procedure for sensor 2: Tj = 750 °F. 

Iteration count 
Estimated 

Recovery 

Conduction 

driver 
Total temperature (°F) 

Reynolds 

number 

1 0.8 0.4155 840.04  6791.8 

2 
0.95088 

 (+0.030,-0.0004) 
0.4028 

812.48 
 (+24.1,-36.0) 

8249.6 

3 
0.96738 

(+0.0135,-0.016) 
0.3924 

790.77 
 (+16.0,-24.1) 

8412.5 

4 
0.96887 

 (+0.012,-0.0175) 
0.3915 

788.85 
 (+15.3,-23.0) 

8427.3 
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Figure B.1: Calculated recovery region from calibration procedure, Tj = 750 °F, Tb = 300 °F. 

The following inputs will be used to compute the flow total temperature: Tj = 900 °F, Tb = 600 °F, 
ps = 100 kPa, pt = 111.6 kPa. This pressure ratio is for a freestream Mach of 0.4. The results from 
the calibration procedure are shown in Table 9. For this particular set of inputs, the flow total 
temperature was determined to be 951.04 (+18.4,-26.0) °F, resulting from a predicted recovery 
factor of 0.96887 (+0.0120,-0.0175). The Reynolds number was determined to be 4462 and the 
conduction driver to be 0.25. Figure B.2 shows the calculated region in a subset of the sensor 2 
experimental data. 

Table 9: Results from iterative calibration procedure for sensor 2: Tj = 900 °F. 

Iteration count 
Estimated 

Recovery 

Conduction 

driver 
Total temperature (°F) 

Reynolds 

number 

1 0.8 0.2452 944.22  3626.6 

2 
0.93526 

(+0.0413,-0.0111) 
0.2711 

994.12  
(+33.7,-47.7) 

4314.8 

3 
0.95954 

(+0.0170,-0.0131) 
0.2521 

957.34 
 (+20.6,-29.1) 

4440.6 

4 
0.96326 

(+0.0133,-0.0168) 
0.2492 

951.85 
 (+18.7,-26.4) 

4460.0 

5 
0.96382 

(+0.0127,-0.0174) 
0.2488 

951.04 
 (+18.4,-26.0) 

4462.9 



69 
 

Englerth 2015 
 

 

Figure B.2: Calculated recovery region from calibration procedure, Tj = 900 °F, Tb = 600 °F 
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APPENDIX C: ACQUISITION USER INTERFACE 

 

 


