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HALRBOUND STATES OF A ONEDHVZENSIONAL DIRAC SYSTEM:
TELE EFFECT ON THE TITCH\rIARSH—WEYL M(«\)—FUNCTlON AND TE

SCATTERING MATRIX

bv

Dominic Pharaoh Clemence

(ABSTRACT)

We study the eü'ect of the so-called half—hound states on the Titchmarsh·Weyl M(«\)·

function and the S-matrix for a one djrnensional Dirac system. For short range potentials

with iinite tlrst (absolute) moments, we gave an M( A) characterization of half bound states
and, as a corollary, we deduce the behavior of the spectral function near the spectral gap

endpoints. Further, we establish conünuity of the S-matrix in momentnm space and prove

the Levinson theorem as a corollary to this analysis. We also obtain explicit asymptotics

of the Smatrix for power-law potentials.

Included is also an appendix establishing an eigenfunction expansion and the validity
of the S-matrix. M
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CHAPTER I

INTRODUCTION

In this paper we consider the Dirac system

1/=lC(A)+ P(=)]v„ (M)

0 A+cp(2)with
C(A) = and P(2) = ( , on the real line,

—A -1- c 0 -s;(2) -p(1:)
i. e. , for 2 E (-oo, oo), where A is a complex spectral parameter, c is constant, p, vl and

ug are real valued functions of 2. A solution of (1.1) is a 2 x 1 vector

Va, A) =
1n(=„ A)

·v¤(=„ A)

A familiar Dirac system is the problem in relativistic quantum mechanics described by

p(z) = k/1:,v1(2) = v;(2) = u(2),•ay, on 0 < 2 < oo,I=constant. This of course is the

radial wave eqnation for a particle of mass cmoving in a field of potential V(2) ([2], [41], for

example). Note that to obtain the physicists’ usual notation ([2] for example), one needs to

make the transformations A —• -·E and c —> m. Other contents in which (1.1) is physically

relevant may be found in [1], [37], [38], and [47] for example.

With the two potentials U1 ;é vg, (1.1) has also found its place in the physics literature in

the context of the inverse scattering problem for Dirac particles ([6],[34]). Speciücally, the

two potentials (actually, U1 ·-vg and eq +21; ) result from the Gel’fand—I„evitan recoustruction

procedure and appear in the so·called "canonical form" of the Dirac equatiou ([6]), to which

all other equations of Dirac type may be reduced hy a unita.17 transformation.

System (1.1) induces a self··adjoint operator H, whose spectrum has been well studied
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([12]—[16],[40]—[43]). Actually the spectrurn of His studied by regarding Has H = Ha U

HE, where H.], and H- are, respectively, the self ~ adjoint operators induced by (1.1) on, say,

[U, oo) and (-oo, 0] ([15]). Nonetheless, the spectrum of H is red and, under our hypothesis,

continuously differentiable in the complement of [—c,c] and discrete in (—c, c), where it

consists of eigeuvalues of H. For the basic spectral theory of and eigenfunctions expansions

associated with (1.1), an excellent reference is [25] (see also [4]).

The endpoints, A = ic, of the spectral gap require special attention in studying the

spectrum of H. At these points, the Jost solutions (see Chapter Hl) can become linearly

dependent. When such behavior occurs, the point A = ic is said to be a half bound

state. These (half bound) states feature signihcantly in the study of the inverse problem

([28]). The purpose of the present paper is to study these states. In particular, we seek

to characterize them by, and study their effect on, some well known qnantities of spectral

interest.

The organisation of this dissertation is as follows. In this chapter, we introduce the

quantities we shall be working with, which are the Titchmarsh - Weyl M(A) — coefiicient,

the spectral function, the Dirac Lippmann·Schwinger solutions and the S - matrix, and

point out some of their properties. Then in Chapter II, we explain some notation and

give precise deänition of our operator H, its resolvent set and the various components of its

spectrum. We then introduce our assumptions on the potential function V and state our

main results. Chapter III consists of results preliminary to the proof of our main results.

There we study the w —~ 0 limit , i. e. , A —» zhc, of the so · called Jost solutions of (1.1).

We also deiine the Jost functions and study their asymptotics for small and large A. We

prove our main results in Chapters IV and V. Included is also an Appendix devoted to
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eignfunction expansions and the S · matrix.

1. The M(A)·coefHcient.

Associated with (1.1) is the so—called Titchmarsh·Weyl M(A) - coeflicient,which is a

matrix-valned function of A. Its importance is realized in the construction of solutions of

1/ = lC'(A)+ ¤°(=)]1v + U (1-2)

which are of square integerable, as well as in the investigation of the spectra of operatots

associated with (1.1). Although the study of the M(A) ——· coetiicient was first introduced

by Titchmarsh ([41]) for a particular case of (1.1) on 0 < 2 < oo, it has only been

recently that Hinton and Shaw ([10]-[14]) have developed a theory of M(A)fnnctions for

Hamiltonian systems — of which (1.1) is a special case. By comparison, there exists an

expansive m — coetlicient theory for the Schrödinger equation (see [7], [4]). Hinton

and Shaw’s theory is applicable in the limit-circle case as well, although we describe their

presentation of the M(A) theory only for the limit·point case.

We begn with a fundamental solution Y(2,A)of (1.1) determined by the initial value

A) ¢z(=„ A)
Y(0,A) = I for all A. Part1tion Y(z,A)as Y(.1:,A) =

l. Then the
9e(=„ A) ¢>z(=„A)

Titchma1sh·Weyl m · coefficients, m+(A)and m-(A), at 2 = +00 and 2 = -00, respectively,
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are defined to be

m+(A) = ——lim,.,+„ SA ;é 0

uns (1-3)

am 76 0.

The existence of these limits is established in [10]. Let ns mention here that m+(A) is just

a systems version of Weyl’s m-function for the Schrödinger equation on 0 5 2 < oo. Also,

a matrix version of m+(A) for ordinary aß order differential equations has been given by

NaimarkThe

following properties about mi(A)are well known ([10], [14]). It is also instrnctive

to compare these properties with those of the m —- coefticient for the Schrödinger equation

([4]). Let m+.(A)and m-(A)be defined by (1.3). Let *I•+(2,A) = 9(z, A) +

m+(A)¢(2, A) and *I..(2, A) = 9(2, A) + m-(Ä)«Z, A). Let A E {A GA ¢ 0}. Then

1) mi(A)are andytic, (9m+(A))(9A) > 0,(S‘m-(A)(9A) < 0,m&(A)

=2)m+(A)—m-(A) ¢ 0,and in fact 9(m+(A) — m-(A))S‘A > 0, and

3) ¤I+(2, A)
€

L°(0, oo)and 'I..(2, A) E L°(-oo,0).

We also make the following observations about mi(A) :

4) It is possible that one or both of mi, and m., extend continuously onto parts

of the real axis.

5) Q+(8,Ä)&11d ü..(3,Ä)&I€ the unique, up to constant multiples, L°(0,oo)and

L'(-oo,0), respectively, solutions of (1.1). Namely, m+(A)picks out a basis of

L2(0, oo)solntions to (1.1), and similarly for m-(A).
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The Green’s function for (1.2) is defined as

'¥+(¤=» ** m+(Ä))'1‘?1(¢Äl)„ ß > *„
G(z, 1; A) = (1.4)

‘F-(=„A)(m-(A) — m+(»‘~))°‘*P1(¢„A)„ «= < ¢„

where 9A 56 0. For f E L°(-00, oo),define the operator G(·, A, ·)by

G(r„ ¢; «\)f(#)d¢— (L5)
·=®

The following properties of the operator Q(·, A, ·)a.re established in {14] (cf {4],

Ch. 9).

6) For J E L°(·=oo, oo), SA ¢ 0, eqnation (1.2) is uniquely solved by y(:, A) = G(x,A;,f).

7) v(=.«\) = §(=„«\;f) E L"(—¤<>„¤¤);i¤ 1>¤r¤<=¤)¤·r Hull; 5; {UN -

The Gree¤’s fnnction G(z,t; A)may be written in a dißerent way as

Y(1:, A)M1Y°(t,A), 1: > t,
G(1:,t; A) =

Y(£,A)MgY•(f,X), 1: < t,

where

M1 2 (M- - m+)‘°‘ (vv-——and

M2 =
(m- ‘ m+)”1 (m- “ m+)“1m+ 1 ,
m-(m-

—m+)"‘
m-(m., —m+)'1m+

and we have suppressed the A · dependence.

The Titchmarsh·Weyl M(A) — coefiicient for (1.1) is then defined as

1\d(A) : ä-(llJ;(A) + Mg(A)). (1.6)
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The following observations are in order.

8) (6) above establishes (1.5) as the resolvent operator for problem (1.2) for GA 76 0.

9) By the uniqueness and square integrability of the solution given by (1.5) above, we

see that M(„\) picks out a basis of L2(—oo, oo)solutions to (1.2).

Next, we state the connection between the M(„\) ·— coeflicient and the spectrum of the

operator H. We mention here that the relationship M(«\) bears to the spectrum of H is the

same as that borne by m+(«\) to the operator induced by (1.1) on 0 S 2: < oo (compare [12]

and [13]).

Let p(H), P(H) C(H)and PC(H)denote respectively the resolvent set, point

spectram, continaous spectrnm, and p0i11t——eontinao¤s spectram of H. The following clas·

sification holds:

10) The point Äq E p(H)iH' M(»\)is analytic at A0. Then the reeolvent operator at such

points is given by (1.5).

11) The point A0 E P(H) ilf M(A) has a simple pole at A0.

12) The point A0 E C(H) iif M()«)is not analytic at A0 and l.im,.,0 vM()«„ + iv) = 0.

13) The point Ä9 E PC(H) if lim,..,0 vM(„\0 + iv) = S ¢ (land M(«\) — i(«\ — «\0)”lS_

is not analytic at A0.

Moreover, the spectrum of H is the support of a (matrix valued) measure dr(„\),

where ·r(«\) is a real matrix valued step function, nondecreasing and right continuous, with

jump discontinuities at the eigenvalues of H. ·r(«\)is called the spectral function for H and

is related to the M(A) function by the Titchmarsh·Kodaira formula ([13])

·r(„\1)·- ·r(«\;) =
gl lim

I/A1
GM(«\ + ie)dÄ, (1.7)

I c-•0 gl

ii
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at points of continuity A1, A; of 1'(A), A1 < Ag.

2. The Scattering Matrix.

The properties of quantum·mechanical systems are most conveniently described by the

scattering operator, or S - matnx, S, which is defined in the following manner ({33], {36]).

Deflne the wave operators

{li = 0i(H,H0) E • —

·

exp(itH)exp(-itHg),
-·~ Q

where the s — lim denotes the strong limit. H {li exist, the S · matrix is defined by S =

(O+)°fl- (here ¤• denotes the adjoint). The goal is then to find an expression for Sin

a representation where Hois diagonal. To this end, one solves a boundary value problem

for functions that are not square integrable — the Lippmann - Schwinger solutions — und

expresses the S - matrix in terms of these solutions ({33],{36]).

We have included an appendix, where we derive the H0-spectral representation of

Sstarting from the deünition S = ({l+)°(L.

Below we brietly describe the S · matrix in terms of the Dirac Lippmann·Schwinger

solutions. Our exposition here follows closely that of ([32]) for the Schrödinger equation.

We begin by replacing (1.1) by the following matrix equation:
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1I(z,w) = 1P0(z,w) + ffm dtW(w)e"("'lV(t)1l•(t,w)+
( )1.8

jf 4ewT(w1e-··1·—=1v(e)e(¢, re),

eine e-aus
where e = [11111, ~r1=1],~1„(r,rr1 = ,

äenvzih

-1 < 1 er 1
rr=+„/1*-e1,|1|>e,w(rr)=1· " ,ere1v(r1=—-

UH z
.

1 iéäg n(=1 ¤1(=1
We shall call (1.8) the Dirac Lippmann·Schwinger equation. The exietence of its unique

solution ia established in the Appendix (see also [19] and [36]).

With the definition (H $1) of the operator Q = [Q1,Q;]T anticipated, we dehne the

following quantitiesz

1l = 1 + 113:., «1=<erc·1<‘><=11 + 111er<·2<*><=1>1e····,
Re = -1 13*;,, «1=<o1<e<*>1¤1 - 1—?oe<=r<*>1¤11:·e··*„

and (1-9l

1} = 1 — §fÄ’°.„ ä¢(Q1(‘1l°l(¢) — %?Q:(‘P‘°l(11))1="‘„

Q Rr = 113;, d1wr<—1<*1<11 + 1¥<2r<1¤<“1c1111e···‘.

The quantities T},T},R;,R,are seen to be the transmisaion and reüection coeflicients for

incidence from the left and right, respectively, from the following asymptotic behavior of

the components of 1] :
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1

@1*1 = (1.10)

1 . 1 11
. .e"’

+ R;e"'" + o(1) an z —» —oo.

XL}? *2%

I
Tßc"" +o(1) aus-• -oo,

*2%
im = (1.11)

1 „ 1
e'"" + . R,e'" + o(1) as 2: -·• ·I-oo.

*1%Let

A
Yi —— 1 R1 p

R4 T, — 1

Then we see that we can write

,4 2 dt•Pß(t,w)V(t)1I(t,w), (1.12)
2sw -22

where * denotes complex conjngate transpose. Using (1.10)-—(1.11) to evalnate the Wron-

skian determimant,
W[*}(‘),

'§(°)],we ind that

W (1) <¤ 2 2E. -2ii.rw A11 Haan- Hcrzz,

9



whence we conclude T} = T, = T. The scattering matrix Sis deüned hy

TR,S
= I + A == , where Iisthe identity matrix. (1.13)

R; T 1

Now since W[!(‘), im] pt 0, then we may express the solution ¤I(s, -··w)of(1.8) as a matrix-

0 1
multiple of *I(z,w). Let us write •!(z, —w) = ¤Q!(z,w)M(w), and let B = , . Then

1 0

Wrouskian evaluatious reveal that M(w) = BS(-w).Noting that for w E R, *§(1:,—w) =

'§(a, w), we arrive at, by (1.12) and (1.13)

¤P(:,w) = i(..·:,w)BS(w). (1.14)

Equation (1.14) and the relations (1.10)—(1.11) result in the fact that S is unitary, i. e. ,

5S° = S°$ = I. In terms of the elements of S, we may, for future reference, express the

unitary condition as (cf. [32])

]R,]°=[R,]*=1—]r]°, (1.16)

R;R, RyR1· T2

lR¤|’ lR«l’ lT]’

8. Eigenfunction Expansious.

Our "formal scattering theory” expoaition would not be complete without establishing

an eigenfuncüon expandon. We proceed much as done in [23] and Consider üret the
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nnpertnrbed Hamiltonian H0.Let w E Rand denne Ä = +x/wä + c§.Then the (generalizeul)

eigenfnnctions

1
s0(z, w) =

e"’,

IC
Yi-?

(1.17)

1 .vo(w„ w) = , ¢""„
3.:1:;
IC

satisfy

Ho¤«(=„w) = »\¤e(=„w)„

H¤¤o(=,w) =
—·‘«vo(=„ w),

i. e. lg is a (generalizecl) eigenfnnction for positive „\,whereas vois a (generalisecl) eigen-

fnnction for negative 1\.Tl1e eigenfunctions (1.17) also satisfy the (formal) orthogonality

relations

< a0(z, w'), ¤°(z,w) >= 2:1%% =< 110(:, w'),v0(z, ur) >, (9
)11.18

< ¤0(z,
wi),

s0(:, w) >=< ¤0(z, rs'), s0(z:, w) >= 0.

Now, for any f E (L2(R))2 define Ä = (_f+,f„)T by

}+(w) = $2-; l. i.m. fn d1:(¤0(z, w))°f(:)r(w),
(1 19)

f-(w) = 71; H- vw- fg d=(=¤•(··=„w))°f(=)r(w)„

where r(w)

=Thenfor any Borel set B C (—oo, —c] U [e,oo), the spectral projection P0(B)for Bis

gven by

(Po(B)f)(==)= äl-i-ww dw ¤o(=„wlf+(w)v(w)+_L dw ¤¤(=„w).(-(w)¢(w)l„
+ -

11



where Bf = {w E R | :b\(w) E B}.I.n particular, we have the eigenfnnction expansion

(1-20)

The mapping f
•-•
f is ”easily" shown to define a unitary transformation of (L2(R))2 onto

itself, i. e. ,

Ld=[|f1(=)l’ + lf¤(=)l°l = Ldw llf+(w)l° + lf-(¤>)l°l (1-21)

and R4m“= (L2(§2))2.Moreover, one finds that if f E D(.H0),then

_ 1 0
(H0f)“(w) = „\Af(w), where A = E E . (1.22)

0 —-E1

Similar results for the operator H = Hg + V, V subject to Assnmption (2.1) are true (see

Appendix). In this case the (generalized) eigenfunctions are given by

s(.r,w) = ¤0(:,w)+ ffm d¢W+(w)e"(‘“‘lV(t)¤(t)+
(1 23)

1;* w$(w)¢·*·<=·‘>v<=>·<¤.wi,

v(::, m) = 1m(z:, 1:2)+ ffm dtW..(w)e"l’“'lV(t)v(t)+
(1 24)

ff wZ‘(w)e—··(=—·)v(:)„(¢, wi,

where ¤q(.2,w)and v0(z,w)are the same as above and

1 *1 1 xl 1
W+(w) = E °° Ü „W-(w) == E1 +° -

1 -55-;

-1Theeigenfunctions u and usatisfyz

H¤(=„¤>) = »\¤(=„ w),

Hv(:, uv) : -„\v(:,w).

12



The eigenfunction n(z,w)given by (1.23) is just the solution *§(‘l(z,w)of (1.8) if w g

0, while it is the solution Ül°l(z,w)of(1.S) if w S 0. If we write ¤l(1l(::, zu) = '§E(1)(z, A), A =

+x/1774:5, then we see that 0(z,w) = !(1l(z:,—-A)for w 2 0,an<l likewise v(z:,w) =

'§1°)(.z:,—A),for w S 0.In particular, for w 6 R,s(z,w)deünes, by way of (1.12), the S -

matrix for A > c, whereaa v(.¤,w)deünes the S · matrix for A < —-c; that is to say, with

A 6 82,we have

AU)and

similarly for A(-A).Using the relations (1.10) and (1.11), adapted to n(z:,w)and

0(z,w),(1.15),(1.16) and the relation

W[=(¤» wlgdll l§§f= (1- — 1T)[<1=[(u(=„ w)'¤(==„ w)l„ (1-25)

where Hy = A,y,Hz = A,1,it is only a matter of computation to verify the following

orthogonality relations (which have to be interpreted ln the sense of distributions);

< ¤(s,w'), rz(.•:,w) >= §%600 - w') =< 0(.··:,w'), 0(1=, w) >,
(1.26)

>= 0.

Next for any f 6 (L’(82))2,detine f# = (ff,jf)T by:

If(w) = $,1- Mm- I, d=(¤(=„¤¤))°f(=)v(w)„

fa dz(v(z,w))'j(:)r(w).

With B, Bi as before, we have (see Appendix)

(P(B)j)(r) = l.i.m. [Äh dw ¤(:,w)ff(r0)·r(w) + La
dw v(z, w)j?(w)r(w)]

where Hence we obtain the eigenfunction expansion (cf. [44], Thm 17.C.2)

(P(H•s)f)(=) = 1- i- m- IL dw #'(w)[¤($„ w)ff(w) + ¤(·‘¤„ w)fi°°(w)l„ (1-28)

13



where HM deuotes the absolutely coutiuuoua subspace of H.
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Chapter II

NOTATION AND STATEMENT OF RESULTS

1. Notation and Definitions.

The equation we consider is the Dirac system

v' = [CU) + P(=)]y

{or 23 E (-oo, oo),where C(Ä) and P(a:)are the matrices

0 Ä + e p(:) e1(2)
CU) = „P(¤) = „

-Ä + c 0 -ug(z) -p(z)

Ä is a complex spectral parameter and eis a constant. We shall also write V(:r) 2 -.7 P(z),where ,
0 -1 1 0.72) ,.AlsoletR2 .
1 0 0 -1 l

For Ä E S 2 {Ä { SÄ 2 0}, we set w 2 (Ä2 -· c2)l',taking uw to be the principal branch of

fon S\(-oo, -c), and define it so as to be continuons on (-oo, -c).

We will denote by E(:, Ä) the Iundamental matrix {or the free problem, i. e. ,

cos wa: sin wa:
E(z, Ä) 2 .

-5-; ein wa: cos war

II y(:, Ä) 2 [y;(z, Ä), yg(z:, Ä)]Tis a solution of (1.1), we denne an operator Q by

Q(¤(==„ «\)) = [Q1(v(=„ Al). Qz(r(==. «\)))]T E P(=lv(=„ Ä)-

When no confusion ie possible, we shall write Q(:) or Q for Q(y(z, ,\)) and Q°(z)or Q° for

Q(y(a:, e)).For any quanüty qconsidered, the symbole
q’, qT and qwill denote, respectively,

15



the complex conjugate trauspose,the transpose and the complex conjugate of q. We shall

denote by y(2, A) and z(2, A) the Jost solutions of(l.1) which, for GA > 0, decay exponeu—

tially as 2 —» +oo and as 2 —» —oo,respectively. Also, we write W[y,z] for the Wronsliian

determiuant of yand z.

lf M is a matrix, we use the notation GM to mean the quantity §;(M — M°). Also,

if M = (m„),then by the modulus l · lol Mwe shdl mean the sum of the moduli of

m„. Often, we will also write K for unspecified (not necessarily equal) positive constants.

Let ns now proceed to cast our problem in operator-theoretic language. Let (L2(3E))’

denote the Hilbert space of all (2 x 1) square integrable vector functions j = [j1,j;]T , that

is to say fwith ||f|]"< oo,where the inner product < · , · > and norm are given by

< fm >= *Llf(=)]°¤(=)d¢ Md llfll°=< f, f >-

We shall write L2(R)or simply L2 for (L2(!R))°. The Dirac operator induced by (1.1) is

defined on L2(92)) by

H(s) = Ju' + (Re + V)v = D(H) -+ (L°(R)>°

and

D(H) = {y E L°(R) | y is looally absolutely continuous on 5l,.H(y) E L2(¥Z))}.

Then (1.1) is eqnivalent to Ily = Ay. We also deuote the unpertnrbed Hamiltonian by

Hn,i. e. , Hg = E —V.

The following definitions are standard: If for some complex number A,(H --
A)"‘

:

L2(ä) ·—+ L°(E)exists and is bounded, we call R,\(H) = (H ·—- AD"! llt resolvent operator

corresponding to A.’I.‘he set p(H)of all such points is ca.lled the resolvent set of H. The
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spectmm a(H)o{ H is the set of all complex numbers not contained in p(H). The set of

isolated points of ¢r(H)is the point spectmm of H, denoted by P(H).The set of all limit

points of the spectrum of His called the essential spectrum of H,denoted by E(H ). The

subset PC(H) C E(H)\((E(H) fl P(H))of embedded eigenvalues, those A {or which (1.1)

has a nontrivial solution y E D(H), is called the point oontinuous spectrum. The set C(H) =

E(H )\PC(H)is the continuous spectrumof H.

Central to our study is the notion of a half·bound state, which we shall often abbreviate

@5. These states, under our hypotheses, can occur only at A = ic, and are defined to be

those A0 such that A0 ¢ P(H)but the Jost solutions (Chapter HI) are linearly dependent.

2. Assumptions and Main Results.

In this section we introcluce our assumptious on the potential Vand present explicit

statements of our main results. Our änst theorem„ and the corollary, deals with the

Titchmarsh-Weyl M(A) — coetlicient.

Assumption (2.1): We asssme that the potential V is (eomponentwise) real valued,

Lebesgae meassrable and satisfies the integrability condition

fl lV(¤)I (1+ l==I)<1= < ¤¤·

Under this assumption, (1.1) is in the limit point case at both :..·· = —oo and 1: = +oo, and

hence H is selléadjoint on D(H) ([17],(25],[44]). Mozeover, the spectrum of H consists of

a. iinite point spectrnm P(H) C (~—-e,c)and a continuously diferentiable continuous spec—·
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tmm C(H) = 32\(—c, c)([11],[l4], [l5],[25]). The assumption also allows us to prove the

existence and unitarity of the scattering matrix, hence the existence of the wave operators

associated with H (see Appenclix).

Theorem (2.2):Suppo•e V satisfies Auumption (2.1). Let M(A) denote the

Titchmarsh- Weyl matrix m · coeßicient for (1.1). Then the point A = Ag is a half-

bound state if and only if there exists a nonzero matrix S(Ag) such that

·l.i11})ulM(Ag + iu) = S(Ag), where Ag = ie.

The nonzero, complex — valaed matricea S(c) = (.1,,) and S(-—e) = (Q) are given hy

m = ¤$ßl(2<=i‘*„·l)'l-
812 = ‘21

= ¤6ß3(2<=¢v?)'l,
li; = at1ßt1("°2ci”lä1)_ä.»

*13 =
*5;],

= 'äatißil + ¢!t1ßf1)("2d7i1)¤l—¤

wig = ¤€°.;ß{;(—2<=i*!€;)“ä°„

where 7; = il; (cx + and 7-; = --2% (ß + , with oz = lim,-,-G, y;(x,c) and

ß = lim,-,„ y(x, —c), and the other comtants are defined in the proof of Lemma (3.9).

Corollary (2.3): Let ·r(A)denote the spectml function for H.Let A, S(Ag),7; and 7-;be

as in Theorem (2.2). Then

Bgiglc 0 if Ag isnota HBS

and

d A1
- . .

p}if1;o(A — Ag)§%l = -=%(2A0)'l$'(Ag) ef Ag is a HBS,.

18



where |A|l A0 indicatea A —> ho with [A|>jA0[ (A E 92),and 5'(A0) =

Remarks:

1) Theorem (2.2) is a further reiinement to the four part classification of the spectrum

of Hgiven by (10)—(13) of Chapter I. In particular, if Aois a HBS, then we retain the

characterization ((12) of [1]) of Agas an element of C(H)and obtain further asyrnptotic

behavior about M(A)at A0.

2) Hinton, Klaus and Shaw ([17]) recently obtained an analogous asymptotic condi-

tion for equatiou (1.1) on 0 g 1: < oo.Their result is that our conclusion holds if M(A)is

replaced by m+(A), with an appropriate scalar S,an aualogy which is not completely unex-

pected considering the similarity of the four part resolvent-spectrum classification of H and

F+(l12l)-

Our next result addresses the behavior of the scattering matrix (or S-matrix), particu-

larly as A -• eand as A -» —c, and the corollary relates this behavior to the bound states

of H.

Theorem (2.4): Suppore that Auumption(2.1) hold:. Let S(·) be the scattering matrix

in the position representation. Then 5'(A) is oontinuous for A E !2\(—c,c). In particular,

the behavior of 5(A) at ic is the followomg. Let y and y' denote y{z,c) and g(::,-c},

repectively. Let 7 = W[y(x,e),z(z,c)],7... = W[y·(z, -c),z(z, —c)] and let a and ,6 be as

in Theorem (2.2). Then
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i{A=cis nota@5,

A—• e,

11mi..„R«(·‘~l = 1: 11m,-.„R,(·\) = -1,
andif A = cisa%S,

1 — az 201

ij A =—cis nota%S,

T(A) = 2%% + o(w) as A -» —e,

1i¤¤,x..,-„ R10) = 1, lim:--«R«(¤\) = -1,

andif A = —c iso @5,

lim S(A) =
25 ß2 -1

.A-,•—e ,1* + 1 1 _ ßg Zß
Corollary (2.5) (Levinson’s Theorem): Let T(A) denote the transmission coeffieient for

the system (1.1) and write T(A) =[T(A)| ezp§(A), A 6 R. Let N be the number of eigen-

values of the operator H. Then N is finite and the following formula holds :

Nr sf both of A= icareHBS's,

“
= (N + §)1 if emctly one of i c is an HBS,

(N +1)1 if neither one of A = ic is a HBS.

Remarks:

1) Theorem (2.4) is the analog of results recently established by Klaus ([22]) and Newton

([31]) {or the Schrödinger operator.
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2) Corollary (2.5) is not a new result. It is the analog of the theorem of Levinson ([24])

which, for the Schrödinger operator, relates, for each partial wave, the scattering phase shiits

at zero energy to the number of bound states. The iirst such result for the Dirac operator

was obtained by Barthélérny ([2]) for the physical problem. More recently, versions of the

theorem were gven {or charged Dirac particles moving in a background monopole tield

([9],[26],[27],[29],[·15]) under various hypotheses, all of which are more restrictive than ours.

Ma and Ni ([27]) seems to be the only correct paper which takes half - bonnd states into

account, and also points out an error in Hinton, Klaus and Shaw ([17]) also recently

proved a version of the theorem for (1.1) on 0 S 2 < oo, under hypotheses similar to ours.
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Chapter III

PRELHVIINARY RESULTS

1. The Jost solutions and existence of their limits.

As a special case of section 3 and 4 of [2}, one obtains the Jost solutions, y(z, A), z(z, A), {or

(1.1), which are defined by their asymptotic behavior

li v( Ä
_ 1

III H z( Ä
,_II

-|I
FFF T-T-?

These solutions are analytic for SA > (land continuous for SA g 0(see below {or A = ie ),

and are constructed by iterating the Volterra eqnations

l _ oo
y(::, A) = e""

—/ E(z: — I, A)P(t)y(t, A)dt (3.1)
· I

and

1 _ 3

s(z, A) =
e“'" +'/f

E(z· ·— I, A)P(I)z(t, A)dt, (3.2)
-· ·-¤¤ri

where E(z,A)is defined in II §1.

We observe that although Barthélémy ([2}) makes the assumption that

fl
|V(z)| (1+ |z|°)dz < oo,

it is not used in establishing the existence and analyticity of the Jost solutions. Assumption

(2.1) suflices to establish their analyticity properties.

Having the Jost solutions at our disposal {or SA g 0, A gt ic, the next natural step is

to ask, what happens at A = ic? We study this question in the next series of lemmas.
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We begin by considering solutions of the equation

H y 2 Ic y, (3.3)

i. e. the solutions of (2.1) at «\ = c. We have

Lemma (3.1) (ci. [31] Lemma (2.1)): Under Assumption (2.1), (3.3) has unique solutions

y(1:),z(.e), whida satin/y the boundorg conditions

_ 1
,1¤_g„¤_„z1(=) = , .

0
(3.4)

1

.§e.:<=> = 1 ·
0

Let 7 E W[g, z],the Wronskian determinant of y(:)and z(.·:). The solutions y(z)and z(2:)

have the following behavior

-27c: + o(z)
v(#) = „¢ —· —<><>.

-1 + @(1) i

27ez + o(z)
z(z:) = , s -• oo.

1 + ¤(1)

ßrgogz Under assumption (2.1), the Volterra integral equations

1
y(z) =

— fm
E(z — t, c)P(t)y(t) dt, (3.5)

0 3

1 s
E(z: — t,c)P(t)z(t) dt, (3.6)

0

can be solved by iteration. That äves uniqueness and continuity of yand z.
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Let us consider the solution z(2).The argnments for y(2)follow, mutatis mutandis, in

the same vein. Eqnation (3.6) yields

l«==(=)|S 1+ {Co #(1+ •= I= — tl) |P(¢)Hz(¢)I„

so if 2 S 0, then

|z(2)| S1+ 2i; dt(1 + 2e [tl) ]P(t)Mz(t)|.

So Gronwal1’s Lemma and Assumption (2.1) imply that for 2 S 0,

[z(2)| S K, K E R1'. (3.7)

Using (3.7), we ünd that for 2 2 0,

E/low
E(z — t,c)P(t)z(¢)dt! g 2];;, dt(1 + 2c 1: -—— xi) |P(t)l 4z(¢)|

S Ill: dt(1 + 2c lll) ]P(t)) |z(t)| +2JÄi dt(1 + 2::2) §P(t)| @z(t)[

S K-+·K(1+2c2)SK(1+2e2),

where we have used K {or undetermined positive constants. Hence

)z(:))5 1 + K(1+ 24::) + 2/: dem + 21:.:) ]P(t)Hz(t)|

S K(1+ 262)+ 2(1+ 2c:)/I dt |P(t)§ |z(t)},

so that

S K+ 2Ä:dt(1+ 2ct)

|P(¢)|Appealingonce again to Gronwall’s Lemma, we ind that

S K for 2 2 0. (3.8)
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Therefore, we have, combining (3.8) and (3.7)

K, 2: S 0,
i=(=)| S (39)

K(1+ 26:), : 2 0.

Now, we see that we may write

®

7 = Wivßl =/ d#Q¤(¤(*)) =
fz dt Q¤(v(¥))„

-$ -®

and therefore
I11<1> = f J1 o1<1<¢>> = 1 — [” deonzm).

—$ 3

Taking account of (3.9) thus impllies that

z;(z) = 7 + 0(1),as 2: -• 00.

From (3.3), we have that z;(:) = 2cz;(z)+Q;(z(z)). And so, from the behavior of z;(:) and

(3.9), we conclnde that z1(:) = 2::7: + o(:),as : -• 00. Also, since Q;(z) E L‘(-oo, 00),we

see that

zg(:)=o(l), aus- -00.

Using (3.9), we also änd that, for : < 0,

3 1 3
sf d*(|¢i|Q:(=(*)))) < ¤¤„

··X
—®

so that

:/z
dt Qg(z(t)) ——+ 0, an : -> -00.

—®

This fact and the repnesentation

3 2z1(=) = 1 + 2w ‘/im dt Qz(=(¢)) + im d*(Q1(z(¢)) — 2¢¢O¤(¤(¢)))
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therefore yield

z1(2)= 1+ 0(1),2 ·-• -00.

This completes the proof of the lemma. l

A parallel situation obtains at A = ·-c. There, we consider solutions of

Hy=—cIy. (3.3)'

We denote the solutions by ]l—(17)&11d z’(2). These satisfy the Volterra equations

0 ¤ äv°(¤=)= -/ E(=-¢„—<=)P(¢>v‘°(t)d¢„
1 Z

O z
z"(2) = 4- E(1: ·— t, —e)P(t)z'(t)dt.

1 ·-X

We put W[v‘°„¤’°] = 7- = Fw d¢Q1(y°l¢))d¢ = Fw ¢*Q1(=°(¢))—

In much the same way as in Lemma (3.1), we are able to prove

Lemma (3.2):Under assumption (1.2), (3.3)' has unique contiuuous solutions y°‘(2)

and z’(z) which satisfy the boundary conditions

0
zlgigg if (rl = „

7 1

. 0 l
lim1

The solutions y" and
2“

have the following behaviors

-7- + <>( 1)
y“°(2) = , as x —-» —oo,

-2c·y-2 4- 0(2)

26



and

7-.- + @(1)
z"(z:) = , as x —» oo.

2c7-z + o(z)

On account of (3.1) and (3.2), we see that the only possible halifbonnd states can occur

at A = :hc.And, by Lemma (3.1), A = eis a half·bonnd if and only il 7 = 0,and similarly

for A = ·—c.

Let ns now turn to the continuity of the Jost solutions at A == ic. In particular, Lemma

(3.5) tells ns how y(z, A) approaches y(z) = y(z,c) as A -=—-> c, with similar behavior {or

z(z, A) and corresponding statement as A —> —-c. First we have

Lemma (3.3): Let a(z) = 1 — [(sin 2:)/::]e"' und y(z) be the solution in Lemma {3.1).

Let

h(::,A)I

Then

Kv(w). = 2 0.
!l¤(¤„ A)! S

1: o,
where v(w) is bounded, independent of: and r/(ur) = o(1) as A —• c.

Prüf One observes that |oz(z:)| S K[|zl/(1+ |s|)]. Then, using the bounds established

in Lemma (3.1) it is easy to show that for z 2 0,

ut __
!h(=.A)! S K/idw !P(¢)! (1-;;) (1 + ¢) = ¤(w)„

which is easily shown to approach zero, as w —• 0, by dominated convergence.

For 1: < 0, the inequalities

°
2w|z|2 H 2wl:¤|3 p °°«I(t)dÜl S s(t)dt S , 811Cl 3(Üdw S 1/(ID),
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where s(t) = a(w(t — z))E(:: — t„ A)Q,(t), are easily proven. This completes the proof

of the lemma. I

Similar arguments (see [31]) also establish the following result.

Lemma (8.4): Let h(1:,A) be the function defined in Lemma (3.3) and let

g(z, A) = h(s, A)-
fw

E(: ——· t, A)e"(‘“'lP(t)g(z, t)dt.
3

Then this Volterra equation has a unique solution g(:, A) which satisßes the same inequal—

ities given for h(z:, A) in Lemma (3.3}.

The next result tells us how y·(:,z)(z(z,A)) approaches y(z) (z(a:)) as A -• c.

Lemma (8.5): Suppose Assumption (2.1} holds and let y(z, A), z(z, A) and y(z=),z(.··:) be

the solutions established above.

Then

¢°°"‘v(#„ A) = v(#) + m(#„ A)

and

#""#(¤„ A) = #(#) + m(#„ A),

where

Kwü #2%Im(#„ A)! S
K z <0,

and

Kz/(z) z S 0,
|s¤(#„ A)! S

K[u(w)+;°§l#$](1 +:1,, s>o,
where 1/(va) is as in Lemma(3.3).
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Proof: For y(z, A), we multiply (3.1) hy
e’“'"

and subtract (3.5) from the result. This

shows that g(z, A) == y(:, A)e'"" - y(1:) satisfies the Volterra eqnation of Lemma (3.4).

The argument for z(::, A) followa similariyj

2. The Jost functions and their asymptotics.

For A E S E {A|8A 2 0, A ¢ ic}, the variation of parameters formnla gives for (2.1)

y(z,A) = E(:, A)y(0, A) +
fz

E(z — t, A)P(t)y(¢)dt. (3.10)
n

Let 6 > 0 and set S, = {A { A E S,|A— c}2 6,|A +c|2 6}. Writing z(z:,A) = e‘"y(z, A)

results in the equation

s(z, A) = E(z, A)z(0, A) +
Ä):

e"("‘)E(z - t, A)P(t)z(t)d¢.

Then an application of the Gronwsll inequality leads to

|s(z,A)|g K, where K = K(€,y(Ü,Ä)),

and hence

|y(s,A)|g Ke",·r=E}w,AES,,0gz<oo. (3.11)

Lemma. (3.6): Let Sw > 0 and define

. .. w °° Q « .6 ·¤ .6* (2..12)
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and

3 (¤1)= (-Fu -1) (0
A)-/0

¢···' -1)) q( (1))a¢ (am)
'

“‘
6(1+c)*

” ” -„ 6(„x+¢)‘
” ‘ ‘

Then
i(A+¢)

ggg,
¢"'1r(=.«‘~)

= A10) 2°1ä

and
r(A+c)

Ißrgw
¢”""v(=„ Ä) = B10) ' ~

al 12

In particular; A,(A) and B,(A) are analytic on SA > 0, are bounded on 5, and each has

a continuous extension to (-oo, -0) U (c, 00).

Eroof: The integral representation of A,(A) and B,(A) yield the analyticity (cf. (17]).

The bound (3.11) (and straightforward compntation) yields the (2
-

oo) limit and shows

that A,(A) has a continnous extension to (-00, -c)U(c, oo). Boundedness of A,(A) is clear

{rom the relationship between y(z, A) and A,(A). Corresponding statements for B,(A) are

established similarly, with the ineqnality ]y(2, A)|_§ Ke‘“",1·
= Sw, A E 5,,

-00 < 2 g 0 replacing (3.1).I V

The integral representanon of A,(A) shows that it is real valned on (-c, c). We therefore

obtain an analytic continnation by deäning A,(A) on SA < 0 by A,(A) = A,(T). Similarly

we obtain an analytic continuation, into SA < 0, for B,(A).

Lemma (3.7): Let A E (-00, -e) U (c, 00). Then

g_(A+¢)
i

y(.1:, A) = Re e'""A,(A) 1
•

+ o(1), as 2 -» +00
1 1
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and

y(z·,A) = Re [e‘"B,(A)( Ü
[[4- o(1), as :2 —» —-00.

1

Using (3.11), we can write

y(z, A) = E(z, A)y(0, A) +
Aw

E(z — t, A)Q(y(t))dt + o(1) (2: -> oo)

and the lirst equality is established.

The second eqnality is proven similarly using the corresponding bound {or y(:, A)

as z
-•

--00. I

We observe that Lemma (3.2) shows that A,(A) (respectively, B,(A)) determines the

asymptotic phase of y(s, A) as 1: -• +00 (respectively,z -• -00). In particular, let ÖA(A) =

arg A,(A) and §B(A) = argB,(A), then we have

y;(:, A) =[A,(A) [ cos(wz — IA(A)) + 0(1) as 1: —• +00,

and

y;(z, A) =|B,(A) [ cos(w: — §A(A)) + o(1)as z -• —¤¤„

with similar asymptotic eqnalities holding for y1(.•:, A) also.

Featured in the definition of the M(A )-coeiiicient were two solutions 9(:,A) and

¢(z, A).

Recall that these are defined by the initial conditions

0(0,A)= l,¢(0,A)= .
0 1[ “ [ [ ° [

These solutions, which are detined and continnons for all x E (-00, oo) and andytic for all

complex numbers
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A will play a key role in our development.

A proof of part (i) of the next lemma can be found in [17] ([17], Lemma (2.1)). The

proof presented here is very similar.

Lemma (8.8): Lei A E S and let 0 = (01 + 02)/2. Then an A -+ oo, we have

(i) A;(A) -> -iexp (—i![¤0(t)dt)
0

(ii) A;(A) ——» exp
(dfn

0(t)dt)
0

(iii) B;(A) —- —£ exp(-i/0 0(t)dt)
-®

(iv) B¢(A) —» -exp(-if v(t)dt)
·®

{ggf: We only prove (iii) here. The other conclnsions are established similarly. Consider,

ürst A E R. First we eetablish that as |A|-» oo, we have

cos(wz + fg 0(t)dt) + o(l) 1
0(z, A) ¤= V . (3.14)

-sin(wz + f; 0(t)dt) + o(1)

Set

L JL.
"')0. (3.15)

2 1 1
TG °?•T

Then

. iv 0 w 0 A+ c 0
· -

,... ..1. .. ...1. 31“·· _ +"=·+1+.e“1„.0
-•w

where

0 p -1 1 1 1
Pß = , M1 = and M3 =

l
.

p 0 -1 1 -1 -1
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Now we have that for | Ä| snfäciently large, say [Ä |> Ä0,

w jie 1Ä + c 4c
1»\+•=_11S1?1imd1

wTherefore,we see that for |Ä 1> Ä0 the z—eqnation reads

im 0 1 U1 U2 1 1
Z'= +P0+ UQMQ Z.

O -iw
2• 2• Ä Ä

Next deüne n(:) = iwz + if; v(t)dt and set

e-•(s)
0

§(z) = 1 1 z(z). (3.16)
Ü €¤(=)

Straightforward computation shows that

*1 = 1(P2 · ¤1)¢'2°*2 +P¢”2'*2
+ O v2(*1 +

e”°“*2)+

O
‘

¤1(¢""'? -· 9 )„(I) 2 1
(3.17)

*1 = "1(¤2 — ¤1)!“z°*1 +P!'°°*1 — O v2(*2 + !“°"*1)+

0 (g) M2, — ·z1,€=·).

1
Noting that z(0) = Riß)- , and letting

‘

·i· — i — 1 s- 1 2
" ' 2(Ä + ey ' '

we then obtain from (3.17) the following :

5 -i/"(„ -,,,,1-2-5 -i/"(„ .1.,, )..*iÄK.+/’° é-¤5 ..1202 2202 OP! 2

+-eszli„1°2(1+c)
1 „

'
1 1 11, ’

2(1+e)
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+O(l)/’,,(,,—¤··;; ..:5 )-O(i)/’ iiiA01 21·i

-12--202 1 ow11

= - - 1 ·
1+·e2'-¤ -/ —+ 1* @1-)/ —··——

(A)11 1111 1+1 11+ A 11 +11
¤<A+·=> +

1 ' ° —° " — (1)/'Ü
A

001Theseexpressions result in

I‘-i(==)l S Kfä |P(*)lI‘i'(*)| d*+ aphlfJ(¤2— ¤1X¢°" +¢“1°")1

+0(11)The

411* and
5’1‘

terms on the nght hand side of (3.18) are cleariy o(§·) es |)1|—• oo. We

want to show that the same is true for the
2"‘

and 3" terms on the right hand side of

(3.18).

Consider the term f§°p(t)e"(1)dt. Let 6 > 0 and choose R = R(6) so that

f§° |p(t)| dt < 6. Then

8 . 1 R1MPU
p(1)s'£"'**"4¢@ S

fx)
|p(e)1 / p(:)e'£"‘*"4¢ego" 0 R 1. 0 1

and hence, hy the B.iemann·Lebesgne Lemma, we get

J

lim supi! p(t)e2°(‘)dt)) :0.
"°°° zgol 0 1
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The argument for the other terms is similar.

Thus

.. 1 ¤ ..l‘?(=)| S ¤(j\·)+KA IP(¢)l l‘?(¢)| GR

and Gronwa.ll’s Lemma once again yields ]i(::)§ S 0(§). Therefone, we obtain

"" x (nie)
'F¤(=) = mm; + @(1*)-

Taking into account (3.15) and (3.16), the asymptotics (3.19) establish (3.14).

From (3.13), we have

For |A|> A0, (3.14) now implies that

0
B0(A) = -i 1- / e°""(i(pcosu — m sinp) — (vg cosp — pain p)]dt + o(1) (3.20)

•X

where ,u = p(t) E w(t) + fg v(0)da.

However

ffm e"'p(t)(icoe;s(t) + sinp(t))dt =
{film e"‘;¤(t)e”'*‘(‘) dt

= ajfm e····*p(¢)¢—···*e"Ä '(')" dt -• 0,

as |A ß—• oo, by the Riemann- Lebesgne Lemma. Another application of the Riemann-

Lebesgne Lemma prodnces, as |A f—• oo

0 , 0e'“""(m
cosp(t) + im sin ,u(t))d't =

—i [1 — exp (-4/ s(t)dtN ,
··® -·%

and the proof of (iii) is complete (‘by(3.20)) for A 6 R. Since B;(A) is bonnded for A 6 S,

and has a limit aa |A|—• oo on e, an application of the Phragmén-Lindelöff theorem ([8],

p.237) completes the proof of (iii). I
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The next Lemma linke the asymptotic behavior of the functions A•(A), A,(A), B;(A),

B;(A) as A
-

ic, with behavior of the solutions 0(2,A) and 4$(.z,A) at A = ic. The

proof given here is modelled after the methods of reference [1

Lemma (3.9): Suppose Assumption (2.1) holds. Then there am constants aß, aß, ßß, ßß, afß,

at0,ßf0,ßt0 E R and aß,at,ß[,ßß,af_1,at1,ßibßfl E iR such that the following

asymptotic relations hold: as A ·—• c

aß 4- dl) if 6;(2,c) is snbosnded as 2 -• 00,
#*00) =

aßw + dw) ij 91(2,c) is boanded as 2 -• 00,

aß + dl) if 91(2,c) is anbmmded as 2 -• 00,
A60) =

afro 4- dw) if 6;(2, c) is bosndecl as 2 -• 00,

ßß + dl) if 91(2,c) is snboimded as 2 -• -00,
Bs0) = E

ßfw 4- dw) ij 94_(2,c) is bosnded as 2 ·-• -00,

ßß + dl) ij 9;(2,c) is snbosnded as 2 -» -00,
E60) =

ß{w+o(w) if 91(2,c) is boanded as2—• -00,

and as A -» -0

[U + C)
(A)

atl + dl) ij 9g(2, -c) is snbounded as 2 -> 00,

aiow 4- dw) if 9;(2, -c) is öounded as 2 —• 00,

(U + C)A (A)
atl + dl) ij 0g(2, -c) is anbosnded as 2 -• 00,

Ö
dw) ij 6·;(2, -c) is boanded as 2 -·» 00,

;(,\ + c)B
(A)

ßil + 0(1) if 6z(¢,—c) is snbosnded as 17 -• -00,
‘ „ g

w
ßfßw 4- dw) if 0g(2, -c) is bounded as 2 -• -00,
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0(1) if 9g(2, -6) is unbmmded as 2 -• -00,
w

ßggw + dw) if 0;(2, -6) is bormded as 2 -» -00.

Momooery the following pain are norwcmishing

<¤t.¤ä>.<¤t. ¤:>.<ß:.ß:>.<ß:.ßt>.<¤t. ¤t>.<¤:.ßt>.

und

_Qr_·ogL· We only include a proof for A; as A -• 6 here, noting that the other cases are

similar. First, the following statements are easy to prove ([17});

{M2, 6) is la-osnded os 2 ·-~ co = aß E ff Q;(9(t,6))dt = 0,

@(2,6) is bosoded as 2 ·-• co 4: ag E 1 + ff Q;(¢~(t,6))dt = 0,

9;(2, 6) is bosuded as 2 -• -00 ¢=:» B3 E ffm Qg(9(t,c)) dt = 0,

@(2,6) is bosnded as 2 -> -00 :> ßg E -1+ fgw Qg(¢¤(t,c))dt = 0 (3.21)

6g(2, -6) is bosnded as 2 -» co <=> cn:1 E -26i(l + f§° Q1(9(t, -6)) dt) = 0,

@(2, -6) is bosnded as 2 -• oo ¢= 0::1 § -26i f§° Q;_(¢(t, -6)) dt ä 0,

Bg(2, -6) is bosnded os 2 -• -00 5:1 E -26i[1- ffm Q;(9(t, -6)) dt) = 0,

@(2, -6) is bosnded os 2
-

-0o <==> 5:1 E 26i ffm Q1(¢·(t, -c))dt = 0.

We note that iI0;(2, 6) = O(1), then 9g(2, 6) = o(1), 2 ·- :*.:00 and otherwise 91(2, 6) =

O(2) and 92(2, 6) = O(1), 2 —• ico with the same comments holding for ¢(:,6). Also,

il 9g(2,-6) = O(1), then 01(2,-6) = dl), 2 -• ico and otherwise 9g(2,-6) = O(2)

and 91(2,-6) = O(1), 2 -» ico with the same holding also for $(2, -6). Thns relations

(3.21) deline ccnstants which characterize boundedness of solutions 6(2, A) and ¢(2,A)

at A = ic as 2 -• ico. Also, since the solutions 0(2, :}:6) and ¢(1:.:i:c) cannot be
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simultaneonsly bonnded as 1: —=» ico, the lest statement of the Lemma follows once the

remaiuing constants ue established. Consider A*(„\) for the moment. If ag ;é 0, then we

can write

A40)- aß = fJ° (3 22)
+ f§°(¢"" — 1)Q¤(¢(*„¤))d*-

Using argnments such as used in the proof of Lemma (4.1), below, we can show that

the integrals in (3.22) are o(1) as »\ -• c. If ag = 0, then we write

A40) —· ig JT d¢[(Q1(¢·(¢„¢)) ·-· 2¢¢Q2(¢(¢„·=))l =

1: d1 1:* 13-23)
1§°(¢""-—1-··€w1)Q¤(¢(¢„¢))d¢+ f§°d¢(1 · ¢"')ä%Qi(¢·(¢.¤))-

Argumente as those in Lemma (4.1) again show that the right side of (3.23) is c(w) as

„\ —-• c.

Letting

¢ - 1 °°er, = gg ja (Q1(¢(!„•=))- 2<=¢Q2(¢(¢„¤)))d¢„

the Lemma is eetablished for A‘(«\). The other constants are defined to be

5; C) dts

¤{ = 5-E;(1 + j§°(O1(9) -·— 2·=¢Q¤(9))(¢„¢)d¢)„

ßf = 5%,11 —· fÄ°.„(O1.(9) — 2¢¢02(9))(*„ ¢)d¢)„

aß, = 1 + f$”°(Qz(¢) — 2dQ1.(¢>))(¢„ ¢)ö¢.

ßfo = 1 — f3¤e(Q:(¢) ·— 2¤¢Q1(¢))(¢„<=)d1„

aß, = f;’°(Qz(¢•) -—- 2¤¢Q1(¢))(¢„¢)ä¢»

and

°
,ßfo = —L”(Qa(9) - 2¤*Q1(9))(¢„ <=)<1¢- I
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Chapter IV

THE TITCHMARSHNVEYL M(A)- COEFFICENT

AND SPECTRAL MATRIX

ln this section we prove Theorem (2.2) and Corolluy (2.3). Assumption (2.1) holds

throughout this section.

Recall the dehniticn (1.6) of M(«\),

*7*+) *7*-*7*+

where mi = m.i(«\)denote the Titchmarah·Weyl m(„\)-coeflicients at ico.

From the delinitions (1.13) of mi(«\)and Lemma (3.6), ii we write M(»\) = (m,j),then

we see that mm(A) 2

2andm1g(«\) = mg1(«\) 2 §[A;(„\)B¢(/\)+A¢(«\)B;(Ä)}F‘1(A), where we have defined F(„\) E

A¢(A)B•(·l) — A•(»\)B¢(«’^)-

The asymptotics of Lemma (3.9) give the following behavior (as »\ —> c) for the n¤mer—

atom, N(·), of mu(«\),m„(„\)and m¤(A),reepectively,

~<m„> = am + am
~<m„> = ¤sß; + om <*·*>

¤·¤d N(mu) = -—(¤3ß6 + ¤3ß3)+ 00)

Taking into account the last statement of Lemma (3.9), then Theorem (2.2) will follow

once we prove the following
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Lemma (4.1): Let 7 be as in Lemma (3.1). Then there exists a nonzero oonstant 71 such

that the following behavior obtains as A —> c :

7+o(1) ifA=ci:n0taHBS,

71w + dw) if A = c is a HBS,

Assume the result of Lemma (4.1), and let A = c + iv.Then, since w = (2ci)i + O(0)a.s

0 -• 0,if 7 ;é 0, the relations (4.1) imply that 0im,,(c + iv) -» Gas 0 —• 0,i,j = 1,2.H

7 = 0, then again (4.1) implies that, as 0 ·—> 0,vi’m,,(c + iv) ——• sg, + dl), where :11 =

agßhfl, sg; 112 = :11 we write S = (sn). This

completes the proof of Theorem (2.2) for A = c, taking account of Lemma-(3.9).

For A =
—·c, we similarly hnd a constant 7-1 snch that

1
7-+o(1) ifA=cisnotaHBS,

FU) = .
7..1w + dw) if A = c is aHBS,

as A -• —c. The matrix 5(—c) = (:;)is given by :11 = 61:1,9:17j}, :1; = ¤f__1ßt_1_‘1:%&!\(l

*12 = *21 = ·%(¤l.1ß!1 + ¤£1ßL1)"/.Il-

Theorem (2.2) tollows since A = ic are the only possible @5%.

Corollary (2.3) also easily follows from the relations (4.1), with a similar argument

for A = -c.First, for A > c, we can ([1Q) pass to the limit under the integral sign and

diäereutiate the Titchmarsh-Kodaira formnla (1.7). This dilferentiation yields =

-§9M(A). The corollary then follows from direct calculation using SM(A) = %(M(A) —·

M°(A)), and similarly for A = —c.
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ln order to estahlish Lemma(4.1), we will need to have some honnds on certain solution

ditferences. These are given in the form of the following

Lemma (4.2)(cf. [20],Lemma (2.2)): Let 2 2 Oand let y(2, A)be the solution of (2.1)

defined by the initial condition y(0, A) = (a,b)T,a,b arbitrary constants independent of A.

Suppose further that y0(2) E y(2, c) is bounded as 2 -• oo. Then the following bound holds:

|y(2 A)- yo(2)| < K
(lß)2

K = constant.
° " 1+ [w [ 2

’

We only establish this bonnd for 2 2 Ohere, but we note that a similar bonnd can be

obtained in similar fashion for 2 S 0.Namely one assnmes that y0(2) ä y(2,c)is bonnded

a.s 2 -• —oo and obtains the bound

I=¤=I )°Iu(=„»\) :m(==)l S K (1+ W:} —

Let us also ohserve that the same honnds also hold for ]y(2, A)- y(2, -c)|,if y(2, -·c)is

honnded, all with different K’s.

Proof: By Variation of parametern, we have

béfs sin w2 +acosw2 s
+/ Elv —·*„»\)Q(tr(¢))d*„ (4-2)

bC®U£····Gx—$E·lll1‘!.D3 0

2GbZ
‘l°

0
i

1
vo(¤) = 1 + / E'(= - ¢„¤)Q(v)(¢))d¢„ (M)

b 0

Erom (4.3), we have

tm(¢) = 2¤= (6 + I; Q2(vo(¢))ä*) + ¤ + ]ß'(Qi(zm(*)) — Q2(vo(¢)))ä¢„

v¤¤(=) = b + ff Q2(¤o(¢)) ät-
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Therefore, standard aeymptotic theory (eee M) tells ue that y0(1:)ie hounded ae s -—·+ ooif

and only if A = 0, where

A ä b +
‘/ia

Q2(vo(*))d*-

Let ue consider y(s, A) —- y0(s). Recall that )y(s, A) — y0(s)1=|y1(z„ A) -— ym(s)l +

|yg(s, A) —· y0g(s)| and note that

IO6 — Qll S lpl lv-·1ml» Will S IPIJ = 1«2·

(4.2) and (4.3) therefore give ne

ly(s, A)- y0(s)|=|b—‘l}¢ ein wa: + acoe ws —· 2bcs —— a + jf cos w(s — t)Q1 rr

+% fr: ein w(s - t)Qg - _j:(Q? —— 2e(z —· t)Q?)l + lbcoe ws r aä einws—b

+ f§(coe w(s - ¢)Qg —
Ih ein w(s —- t)Q;) —f; Qä

ir

= h(coe ws — 1)+ (coews —1)f§Q§ + coe ws f§(coeM-1)Q?+(ein

ws -1)f; ein MQ? + j: ein MQ? + fg cos w(s — t)(Q1 —Q?)+2cs

1) (b+jZ,'Q2) + &§einwzf0’(coewt—

img-%(coews ·= 1)]: ein wtQ? - (einwt — Q? Ä

sin(:-¢)(Q;—Q?)E+ |l>(coewz— 1)

·-@0;-heinws+(c¤ews -1)]; Q2 + cos ws _[;(coewt -— 1)Q? + (ein ws -1)]: ein wtQ? l

-1-ff ein wtQ? + ßcoe w(s — t)(Qg — Q?) — rheinwsf; Q? + fg einMQ?—rh

ein ws f;(coe wt - 1)Q?+ 1-h(coe ws —-1)]: einwtQ?-1-5::

IJ ¤i¤ w(= — 0(Q1 - Q3)
“

Since A = 0,b+f;Q? = —f:°Q?, and eo we obtain

)2¢*(;?*‘?a'”‘—1)(b+fJQ3)) H5)
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where we have used the fact that 1: S fand

I1- E-{I < z 6 S2. (4.6)z ' 1+ |z| '

Next, using the estimates that for some K E R

2
Isinz] S K ,|1 —cossI S K ,

the monotonicity of K ,the boundedness of y0(z),(4.5) and (4.6), we obtain from

(4.4),

_ Im:]S K (1+ 1111+1 + K 1+ 1111:1 0 lV(*)|lv(¢„«\) ww•(¢)l~

An application of the Gronwall Lemma and the monotonicity of therefore reveal that

www )“
lv(==„»\) 1w¤(=)IS K(1+1w1 - ¤

Proof of Lemma (4.1): Let y(z)aud z(z)be the solutions in Lemma (3.1) and let

1 0
9(z),¢(z)be solutions to (3.3) such that 0(0) = w 1 ,¢(0) = . Straightforward

0 1
computations yield, using (4.3),

v(=) = ¤$9(=) + ¤3¢(=)„
(4.7)

=(=) = ß$9(=) + ß8¢(=)-

Therefore, 7 E W[y,z] = 1::,58 —- aßßg. However, Lemma (3.9) yields FU) = (ag,5§ —

a§,8§)+o(1),and therefore F(«\) = 7 +o(1)if 7 ;é 0. Next, we exploit (4.7) to discover that

m(=) -> 2·=*(¤§ß{ — ¤3ßf)„ ¤ —> —¤<>„
z„<=> —» 2<=¢(ß8¤f — stat). = —-» w.
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Now ii 7 = 0, then there exists oz 96 Osuch that y(2) = az(2).

Since y1(2) ·—• 1 as 2 -·> oo, then we have 1 = cz · 2ci(a§ß? -· a.§;9§)and since z,(2) -• 1,as

2 -» —oo,1 = ä-·2ei(a:ß{ —agßf). Therefore, M7, E ;;—(¤+ är), then the last statement of

the Lemma is proved. Next, we estahlish that 71 = ·é(a+ §,·)indeed. From the asymptotics

given in Lemma (3.9), one can only conclude that

F(«\) = 7 + o(l), «\ —» c,where o(1) = 7,w + (other o(1) terms).

Let $(2, ,\) be a solution of (1.1) satisiying

$(0, Ä) = v1(0), $2(0, Ä) =—' w(0) ,

so that

¢¤(=„ »\) = m(®)9(=, X) + w(0)¢(=, Ä)- (4-8)

Next, simple calculatious show that

1)} (*9)

—A¢(Ä) {;%1n(®) + w(0) — mw) (Bs(Ä) + {rl';) + v2(@)(—ß4(Ä) — 1)}-

Using (4.8) and (3.12)—(3.13), we may rewcite (4.9) as

m(0)F(Ä) =

“B¢(Ä) {f.‘f7vi(0) + 1h(0) + f§°° ¢"" (Q2($) ·· Ä) 41*} (4*10)

—·As(Ä) { §;m(0) + va(0) — ff, ¢""' (Qa(($) + §;Q1($)) U, Ä)ä*}-

Using again the notation Q? = Q,($(2,c)) and Q, = Q,($(2, „\)), we have

°° ,„ iw _ giw ,„,(Q2 — Eis?) le '—1)d=
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+
J/cg (QD dg +

I/w[(Q2 „ Q0) __ _ Q0)]€¤¤t dt
0 2 1 0 2 C 1- 1 ‘

By Lemma (4.2) and the Dominated Convergence Theorem, we have that

°° 0 iw 0 am
/ 1(Qa -— <i* = ¤(w)„ aß Ä —· <=- (4-11)

0 + c

Since 1/via bonnded (7 = 0)aa z —• oo,f§° Qgdt < oo,and hy (4.3) we conchide that

°° 0 1**1 0jl Q; -· E70; dt = —¢02(¤)+ ¤(w) = —·v0(11) + ¤(¤¢)- (4-12)

With a = z}Jm(0) = y;(0)in eqnation (4.3), we also find that

N
0 _ äw wi __ _ _

(e 1)dt (4.13)

Similar considerationa reveal that as X —• c,

[bw F1" (Q3 + Xä-Q;) dt = y-;(0) 4- £(y1(0) + 01) + 0(cn), (4.14)

where we have put a = lim,.,-,„ y·;(z).

From Lemma (3.9), we have A¢(«\) = oz; + o(1) and B'¢()\) = ,5; +o(1),as A —• c, and

from (4.7) we have that ,8; = z;(0) = y;(0)/a and ag = y1(0). Therefore from (4.11) —

(4.14), we see that (4.10) reveals that

F(Ä)=·L-(a+—L)w+o(w) an-»c. ¤2ci er
’
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Chapter V

TIE SCATTERING MATRIX AND LEV1NSON’S THEOREM

Since we concern ourselves only with the continnous spectrum of H, our domain for

A in this chapter is (—=oo, —c] U [c, oo). To do this efectively, we let ui E R and denne A

in terms ol w, i. e. , we set- A = +s/wg + ca. We emphasize that w is our basic spectral

parameter by writing w {or the spectral argument throughout this section, for example,

where we wrote y(z, A) previously we now write y(:,w).

In section 1 of this chapter, we prove Theorem (2.4). Levinsoa’s Theorem is derived

in Section 2. In Section 3, we study the speciäc problem of power law potentials. We are

interested in deriving the leading correction behavior of the S-matrix, the leading order

being predicted by Theorem (2.4). The results are the content of Theorem (5.1).

1. Continuity of the S-matrix.

Recall that we have the existence of the solutions ol (1.1) which are defined by

v(=„ w) = vo(=„ w) - J? E(¤ -— ¢„ w)P(¢)u(¢)d¢„ (5-Ua

z(z, w) = z0(z:, 10)+ fix E(: — t, w)P(t)y(t)dt. (5.1)b

Let w > 0 and let

1 1 _
X+ =

cII3’ X- =‘du
—i•

ITE Fi-?

Now, the Jost solutions y*(z:, 10), z*(:, ru) are solutions with asymptotic behaviors

v+(= w) ~ X „
° + (5.2)

y"(:,w) ~ X-, as: —• +00
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and

z+(:.·:, rv) ~ X-,
(5.3)

z°‘(z,w) ~ X+, as z ·-—• 500.

In particular, y*(z,w) and z*(:, w) are deiined by (5,1)a and (5.1)b, respectively. From

(1.10), (1.11), (5.2), (5.3) and the comments about u(z, w) in Chapter I §3, we obtain that

+ 1 + 1
y (1:,w) = -,1-;•(z,w) and z (z,w) = i;u(::,·—w). (5.4)

For ur < 0 the same argument cardes over with v(.s, w), v(z:, —w) replaring u(z, w), u(z:, —w),

respectively, and all that follows holds true as well. Next, let us write

=*(=„w) = GU-}-(za w) + bv+(=„ w)
(5.5)

z‘(=„w) = ¢v‘(=„w) + 4¤+(z„w)-

It is a matter of computatiou, using (5.2), (5.3), (5.5), to get

4b

= -*** W[¤+„ za'],°"’
(6.6)

c = *;§ Wl¤‘°„¤*]„

4 = —*5%§· W[z”„v’l„

so that ab - cd = 1 since W[z+,z'] = W[y',y+] = ff,-{However for real zu, we see that

ff = F, and F = }T.So since here we do assume real u,then we simply write y,sfor

y+, z+, respectively. In particular, (5.6) reads

4 = *5;%* W[¤„ vl,

6 = - W[z,ü],“'
(ssy

¢ = *5,%,* W1?. vl.
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Now we write, using (5.5) and the fact that ad — bc = 1,

1/(=,w) = ¤?(·=,w) — ¤z(=, w),
(5.7)

z(z, w) = a§7(::, 117)+ by(z,w).

Then we have the following asymptotics holding:

y(z,w) ~ aX+ ·— cX, as -• -00,
(5.8)

y(z:,u1)~ 6X., + bX+ as -> +00,

by eqnatious (5.2). However, (5.3), (5.4) and the relations (1.10), (1.11), reveal that

asz—• +00,

1 R
(5.9)

z(z,w)~ TX., + -,1éX+ as: —> ·-oo.

Comparison of (5.8) and (5.9) ylelds therefore

- 1 ,. Er ., E1
a-T,h-,—ij—,andc-—, T. (5.10)

We turn once again to the functions

Ay(W) = (1;;,+.1) 1v(0,W) + I? ¢1*¢°°‘ (;‘(x"l;j, 1)) @(1/0, 11*)),

12..Wesee from (5.11) that for ua E R, we have

A,(w) = A,(-w), B,(i¤) = —B,(—w). (5.12)

Besides the solutions defined by (5.1), in particular y(::,u)and z(z,w)in this case, (1.1)

also has a pair of solutions 6(z, ua), ¢(z, w) defined for all w by

1 0
[901, W), 4>(0, w)] = 1 -

0 1
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By evalnating Wronskian determinants, one discovers that

v(¤. w) = A•9(¤.w) + A•<ß(=.w)„
(5.13)

z(:¤, w) = B*0(z,w) + B;¢(z:, w).

Combining (5.6), (5.10), (5.12), (5.13) and the fact that Wlü, ¢] = 1,we arrive at

1 A +
T = *E;?§(A0B¢ * A¢B•l,
R, A + c .. ..„

R; _ A + c
¥ - mw (FIA: E-A•)·

On account of Lemma (3.6), (5.14) shows that the S-matrixis continuous on R - {0},

i. e. for A Q (-00, —c) U (c, oo).

We now turn towards the behavior of the S-matrix at the spectral gap endpoints ic. Re-

call the following asymptotics proveu in Chapter HI: Let Tdenote either 6(z,c) or ¢(:, c).

aß + 0(1) if T is nnbouuded as 1: —+ oo,
A,-(w) = (5.15)a

aßw + o(1) if T is bonaded as z —• -00,

and

ßß + o(1) if 1* is nnbounded as z -» -00,
B,(w) = (5.16)a

ßßw + o(1) if T is bounded as z —• -00,

for some constants a{,ß}',i = 0, 1.

The corresponding situation at A = -c is
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a:Qw" + 0(u'l‘) if 1* unbounded as 2 —-» oo,
A,.(w) = (5.15)b

6211 + 00) if r bouncled as 2 ·—+ oo,

and

ßfoufl + o(w“‘) if —r unbounded as 2 —» -00,
B,-(w) = (5.16)b

5:.1+0(1) ifrboundedasz —»-·-oo.

Below, we consider the limit A —» c, the cue A —» —-c being similar. Recalling that A = c

is a half bonnd state provided 7 E W[y(2,c),z(2,c)] = 0, we note that, by (5.13), 7 =

agßg - 0319:. Since we may assume, without loss of generality (else choose another origin)

that both 0(2, c) and ¢(2, c) are nnbounded as 2 -• :too,(5.15)a, (5.16)a and (5.14) complete

the proof of Theorem (2.4) for 7 ¢ 0.

Next, assume that 7 = Oand let y(2,c) = az(2,c).By straightforward computation one

änds that a = 2ci(a„§ßf - aßßf), and, in particular, a = lim,...-„ y1(2, 6).

The asymptotic limit

AB;—AgB =J*—((!+l)‘lD+G(w) a•A—•c (5.17)‘ Ö 2c£ a
’

°

was established in Lemma (4.1). Similar considerations reveal that

B¢?Ü·B•Z;= L ¤— l1=¤+¤(w)„
"'

( °) (5.18)
EA;-EA‘= -2%; (a—;‘i*)w+0(w),asA—>c.

Reference to (5.17), (5.18) and (5.14) completes the proof of Theorem (2.4). I
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2. Levineorüs Theorem.

We recall that the eigenvalues of H are precisely the poles of the transmissiou coeflicient

T(w),ae can be seen from equations (5,7). Hence our proof of Corollary (2.5) consists of

etudying T(w).In Lemma (3.8) the following asmptotics were clerived, aa |A|-» oo :

A¢(A)-»
e·‘l3'°

·,

B‘(A) E. -,.4**-ll ',

A,(A) -» -6¢"!B°° ',

B,(A) -» ',

where o = —§·(v1 + rv;). Hence .4;.Bg — BMA; ~ 2ie-°f:=> °, and so, by (5.14), we conclude

that

T(w) ~
e‘Ü~ ', |A)——» oo.

Thun, dnce T(w)haa a limit as IA |—• oo,we can define argT(w)so as to be continnone

for arbitrarily large radii, i. e. , ae |A |-• oo.The following asymptotics table follows from

Theorem (2.4), and its analogne for A = -6 obtainable from (5.15)b, (5.16)b:
,2 2
,..,2j

22

at A =c +o()

2

ms at A = -,.4 , c + (519)

no @5atA=eno

ES at A = -c g wCo(w}where

we have need Cr cnstants gf In articnlar, A 2:i:c22annot be cluster points

of eigenvalnes, i. e. , we have finitely many eigenvalues in —c < A < c. Conaider now the

following contonr, symmetric with respect to the real axis. The upper half consists of
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eemicircles about icof radius 6,a semicircle about A = 0of radius Rand the line seg-

ments ]—R, -c —· 6] and [c + 6, R]. We assign a countercloclxwise oidentation to the contour,

Ö. For 6 small enough, we see that all the poles of T(»\)in (-c, c) are enclosed in Ö. Therefore

we can apply the argument principle. Further, by symmetry, the variation of arg T(„\)over

the upper half-plane is the same as that over the lower half—plane.

Now let Fi clenote the variation of arg T(w)around the semicircles about ic. From

(5.19), we obtain the following chart:

Sat A
cl

ms at A = -c 0 V (5-20)

, no HBS at A =cil

noHBat „\= —c ] «—

·—·x·LettingN denote the number of eigenvalues, we have:

21rN = Variation of arg T(w) over C = navi over C

=
I‘+

+ 2[<§(oo) ·—· §(c)] + 2[§(-oo) —— §(oo)] + [§(—c) — §(—oo)] + F-

= T+ + T- + 2l§(—¢) — ¥(¢)]„

where we write <}(:l:oo)for xl,\l1;lw§(Ä). Therefore, taking into account (5.20), Corollary (2.5)

is fully demonstrated. I

3. Asymptotics for P0vver·law Potentials.

In this section, we compute the leading order correction behavior for some speciüc

potentials. In particular, we prove
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Theorem (5.1): Let V(z:) be such that

p(=) ~ p+='°°‘„ ve(==) ~
¤§’=°’“"„

= -· +¤·¤„

r(=) ~
p-='°"‘„ ¤•(=) ~

vi='“"*„
z —> +¤<>,

where 0 < 6,6,,6; < 1,i = 1,2. Then the asymptotic: of ${1.:1) are am follows:

(a} 1,67 gt Uand 6; < 6;,then

R«(w) = -1- lZ§v¥w" + ¤(w")„

R;(w) = 1+ v§’b„w" + o(w‘*),

where b, é 2‘+‘ce°ä"‘(•(• +1))"I‘(1 — 6),aud if 6; = 6; then

T(w) = L,} +
—,}(v§’

+ 12; )b„w1+‘* + o(w‘+‘*),

R«(=¤) = -1 — (?=>§’b„ + ¤£*(b«, + FÄ))w" + ¤(w")„

R;(w) = 1 + (2:5*6,, + v;(b,, + E))w‘= + s(w‘=).

(b) If·y = Oand 6; < 6,then, with a as in the proof of Theorem (2.4),

T(¤¤) = $$7

= S-; + ((a’+Y1)a’Öl?z+(q“—\)|¤)w;; + O(w«;)
+ a + '

with similar formulae holding for 6; = 6;and for 6; > 6;.

Qroof: Our proof uses the method used to prove the corresponding theorem for the

Schrödinger equation on the line (Theorem (3.1), [21]). Our integrsls are those for

Ag,A•,Bg amd B;,a.nd so we deal only with the solutions 9(:,w)s„nd ¢(z,w).
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We gve details here only for Ahpointing out the relevant lnforrnation {or the other

functions without proof. Recall,

.4
(1.0):1+/co

e""(Qg — -2201144.L to Ä + c

We rewrite this an

A+<=¤> = [1+ 1i;’° Qll + f§°<¢"' — 11%+
1B°°¢""(Q¤ - Q‘l)+ q{;;f§°¢"'C?°1Ü + qr—'.‘§:·;}Ü5”°¤"'(Q1 -· Ol) (521)

= cx; + I;(w) + Ig(w) + I;(w) + I,(w)

where agls the same as in (5.l5)a and I,(w),i = 1,···,4are the remalnlng integrals, in

the order they appear. Consider I;(w). Without loss of generallty, we assume that both

9(2,6) and «3,C)&!E unbounded as 2 —» ä:oo,ao that

262 1
9(:,6)~

(
ag, ¢(2,6)~ Ä ag as 2 —• oo,

1 1 t

(5.22)

262 ( , 262
9(2,4:)~ ßg, ¢(2,6) ~ ßg as 2 —» —oo.

1 1

Thun we have that aa 2 -·• 00,-Qg = wm +p¢; ~ 6z§(26v;2“°1°‘° + p+
2'2”")

=

GI-a + o(2‘“°), where a = 260:11;,Q = l + 6;. Then

—· ¢"‘)¢"' — [uU — •="")(Ql(¢) + ¤¢“°)~

Let 6 > Oaud choo•e R = R(6)s0 that [—}Q3(t)f° + 1|< 6 for all t > R. Letting •
= wt

we see that

ä _ ä

[ (1 (1 4..
0 0
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Also,
12

le/Q (1 — ¢""l(Q$(tl + ¤¢'°)d¢l= O(w)

and
® _ ®

|/Q (1- e"")(Q‘§(t) + at°°)dt]S w°°“‘6/i |1-— e"| f°d•
= o(w""),

6

so that

I1(w) = c1w°°“l [(1 — e")s'°" ds + 0(w°'1), A -» 6. (5.23)

It is clear that we have

I3(w) = O(w)ss A —» 6. (5.24)

Next, from the equation for ¢(:, w)and ¢(.·¤,6) we have, writing
¢‘

for ¢(:, 6),

¢1°“¢’i=2“(%;1;§’1)(1+f;Qg)+A1('P)v (525)
ea —¢§ = (¤¤•¤¤= -—1)(1+fJ Q3) + A¤(w),

where A;(w) and Ag(w)denote the remaining terms of dn — and og — ¢>§, respectively (see

(4.4)). Looking at the term sin ws j§°(coswt —- 1)Q§ of A;(w), we observe the following.

Let 1; = 6;, rg = min {211,1},and let 0 E (1*1,15).Let I(w) = &j—€sinwzf(;’°(cuwt —

1)Qg. By estirnates such as lsin w:|S Cliff;} S C we dednce that

ä

|I(w)|S 06*61+*/* fg :'/°Q3 5 06*61+*/°, (5.26)

since t'/2Qg E L‘(0, 00).111 turn, the contribution of I(w)to, say I;(w),is then such that

ä

dt e"‘vgI(w)¥ S Cw', (5.27)
o

with a similar contribution to I4(w).
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The next result will allow us to estimate the terms involving (Q; —— Q?)in the decompo-

sition (5.25), and hence their contribution to l;~(w)a.nd I;(w).

Lemma (5.2) (cf [22], Lemma (2.1)(i)): Let z g 0 and let y(.z:, w) be the solution of (2.1)

mtisfying y(0, w) = (a, ß)T, a,ß arbitmry constonts. Then, if7 ¢ 0, y(z, w) — y0(z) [S

2ce .
Notice that theme is an 2: in the bound of Lemma (5.2) which would be absent if we assumed

7 = 0(see Lemma (4.2)).

Proof: In the decomposition (4.4), 7 ¢ Oimplies that the term

__ Ä + c sin tn:
’

0)Jo) ..2„( ew 263 1) (MA Q,
2has instead of the hound C ,

we
’

|J(z)|S C: . (5.28)

Therefore, we obtain

Ms Q)- (e)]< ce [—-&·]2+C[—2—]/'P(t)]g(t ts)- (Q] dt (529)
°

yu " ll + ws l + wa: ( 0 ° W
°

°

whence Gronwal1’s Lemma completes the proof of Lemma (5.2).l

Now consider the term J(w) = fg cos(: —· t)(Q1 —Qg) of A1(w). With das in (5.26) and

(5.27), we estimate this term by Lemma (5.2) and the fact that [Q, ——- QMS

(l1>l+ lol) Iv(=„¤>)-vo(=)l„ to be

[Ä: coe w(.: — t)(Q1 ··— Q2)[ S (5.30)

and, in turn, we find its contribution to I;(w)to he

® .[jf dte""‘ogJ(w)[ S Cw'. (5.3l)
Q .
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As all the integrala in A1,(w)and Ag(w)can be estimated in the same way as were

I(w)and .I(w) we therefore deduce that the contributions of A1(·u1)and Ag(w)to the inte-

grals Ig(w)and I;(w)are o(w" ). Therefore, returning to (5.21) we have, by (5.25),

!e(w) = - J? d¢¢"" lv2(¢·1 — ¢§) +1¤(¢z — ¢§)l

= - jf dt
e"‘

[vg —1)2a:ct + p(coswt-—1)ag} + o(w") (5-32)

= 2<=‘$*—=”¥w" JS°°·=‘¤¢" (1 ·· (Ä + dä)
•“‘“"

+ ¤(=¤‘*’„ Ä —• c,

where the last equality is obtained in the same rnanner as was (5.23). Similarly, we iind

that

I;(u) = O(wl+") as Ä ·—> c. (5.33)

Cornbining (5.23), (5.32), (5.24) and (5.33) hence results in, as A -—» c(noting that O(w1“l"l) =

¤(w"))

Ag(w) = ag(1 +
v§“b„ w‘*)

+ o(w‘°), (5.34)a (

where bu is deüned in the statement of the theorem. Similar considerations for Ag, B; and

B, lead to

A;(w) = ag(1+ ¤;‘6,,w·= ) + o(w‘2),

Bg(w) = ,5§(1+ v;b;,w‘=) + o(w‘*), (5.34)b

Taking into account the eqnations (5.14), the relations (5.34) complete the demonstration

of Theorem (5.1)(a).

Remarks: Note the sinrilarity to the correeponding asymptotica for the Schrödinger eqna·

tion ([22]). It is interesting to note that the leading correction behavior for the Dirac case
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is completely determined by ug at A 2 c. The leading behavior is completely determined by

vl at A = —c,i. e. , if we consider A 2 -x/wi de ci.

For 7 2 0, we use the identity (with $(2, w)given by (4.8)),

u1(A•B; — A;B•) = —B;(w) (··—ü'-;m(()) + wem) + f§° ¢"" (Gew) — ä';#G1w)) (¢)d*l

-A.<«»> {,e;n<¤1+ rem) —1;**to
conclude that (5.34)a,b produce the correct result, as in (5.17). The corresponding

relations used to evaluate R, and R; are, respectively,

1rl(@)(ETB• — ETB;)

= —Be hänwi + ¤e<@)+ 1;°«-=····“ (Gew) (5-55)

—EZ11*.,.and

vl(°)(A;BT — AÜT)

= —PI lgezmoe + mm) + J? ¢··‘ (erw) — äc2l<«z>>)) (5-55)

ri;. ¢‘·*
(crm

—-Theresulting asymptotics are, as w -• 0(A —» c)

Eis, - Kia, = [fg + g¤;6,,w*= + a¤§'lZw‘* + o(w·=)],

ÄÖH; ·· éügmwhwh +

GUQTÖHcmd

tmp) = 5;, + E,%,—,s;:6,,w·= + R;gÜ,¤;6,,w*= + ¤(w·=).

Theorem (5.1)(‘b) now follows by simply iuserting equatious (5.37) into (5.14).I
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APPENDIX

In this section, we prove two theorems which link the Dirac Lippmann - Schwinger

solutions, and hence the Smatrix, to the scattering operator. Theorem 1 is an expansion

theorem by means of the Dirac Lippmann— Schwinger solutions. Theorem 2 establishes the

Smatrix as a w·space kernel in the spectral representation of H0, and hence the equivalence

of the S-operator and the $·matrix in that representation. These results are well known

for the Schrödinger eqnation ([19}, [36], [39}). But there seems to be no such results in the

literature for Dirac systems, and hence the inclusion of this appendix.

Theorem 1: Suppose assumption (2.1) holds. Let H be the operator induced by (1.1) and

let Hg = H — V. Let w E Rand write A = -«l¤-x/11:5+ e§.Then

(a) There exist unique solutions 'l(1l(·,A) = •§(·,A)and '§(2l(~, A) = *§(·, -A)of the Eroc

Lippmann - Sehwinger equation (1.,8). We denote these solutions by u(·, w)and v(·, w)

respectively.

(b) If f E L’(R), then

f§Ü(w) 1 _ f d=<¤(==„w)1°f(¢>r(w)
f#(w) = = 75:. hm ,

1fiitw) fd~=(¤(=„w))°f(=)r(w)

where r(w) = ,/%,e.z.·ists.

(c) If] E D(H),then

1 0
(Hf)#(w) = AAf#(w), where A = .

0 :1
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(d) Ran# = L°(R) and for any Borel set B C (@-00,c] U [e, oo)and f E L2(R),

JL
|ff(w)|° dw+

/2
|ff(w)|° dw ={{P(B)f{|‘°, (Parseval equality)

+ ¤

where Bi = {w E R} i A(w) E B}.

Also, if g E L°(R),then

< },g >= ‘/;(}#(w))°g#(w)dw . (generalized Parseval equality)

e PB} z =
1 lim f dwa(ww}#(w)rw)+f dwv:w}?w1·w)l,(}(())();7; 1;+ ,), ( B_ (,)()(,

(f) For ang } E L“(R)we have

(ü"’!)#(w) = j(w),

where } wan defined in (1.19).

Theorem 2: Let ot and S be the wave operator: and scattering operator, respectively,

deßned in Chapter 1 §(p. 7). Let the S-matrix as defined by (1.13) be written in the form

SU) Q T(i»)) B7(*»\)
S(w) = , where 5(;t«\) =

{ .
Q $(—»\) BMM) T(i»\)

Let f, g E S the Schwartz clan of L°,be auch that } and @ have compact support in

{w|«\(w) E R\(—·c, Then

< f, (8 — U} >= £¤U(»\))°($(w) - K)ä(·’~) dw,

where = (}+(w)f+(·-w)}.(w)}.(—w))7‘ (sirnilarly for @(:0)) and I denotes the iden-

tity operator.

Let ue begn by specifyiug that our basic epectral variable ia taken to be w. In particular,

we consider w E R and define A = Vw! + ci, so that = ,\ E [c,oo),—«\ E (—oo,—c]; and
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when we speak of complex spectral parameter, we mean A + iö, where 6 E R and A is

as above.

First, we establish the existence of the Dirac Lippmann-Schwinger solutions for (1.1),

i. e. , the solutions with representations, for w E R,

¤(=„w) = ¤¤(=„ w) + fil W+(=¤)@"(’°')V(¢)¤(¢„w)d¢ +

1* wT(w)e··<=—·>v(¤>„(¤, w) de,

’v(z,w)= v0(z, su) + ffm W-(w)e"("‘lV(t)v(t„ w)Jt +

ff wZ‘(w)e··<==-*1v(¤)„(¢, w) 4:,

where

1 1¤o(=„ w) = ¢""„ ¤¤(=„ w)

_1 II 1
W+(w) and W-(w) =

E;
.

1 - W -1 -é£Y-E nu

We begin with the solutions g(:, A), z(z,A),A complex, established in Chapter HI.

Let A E [c,oo) be as above. Then the pairs y(z,A),y(z,A) and z(z,A),z(z:,A) form a

fundamental system of solutions of (1.1). Denote by X+, X-, respectively, the vectors

1 , 1 _

Keep in mind the asymptotic behaviors
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y~X+, ü~X.. as1:—> +00,
(A.2)

z~X.., Z~X+ as:-+-00,

where we have suppressed the (2.:, Ä) dependence. Then we write

2 = W + bv.

2 = ev + din

where a = a(„\),b = b(«\),c = c(,\) and d = d(«\). Simple Wronslzinn evaluations using

(,1.2) then reveal 1he1G and G4 - bc e-. 1.

This permite us to write

y = 012 - cz,
(A.3)

2 = aü+ by.

We then divide (A.3) through by a(„\) to obtain solutions of (1.1) cleüned by

ü(z, w) = T(J\)y(.·:, Ä) = E(z, A) + H;(1\)z(z, A),
(A 4)

ö(=„ —w) = T(«\)¤(=„ Ä) = *§·°(=„ A) + R,(ä)v(=„ Ä),
e

(which are cleilned for all complex numbers A) where T(„\) = 1/a(«\), R1(«\) = -·e(«\)/a(«\),

R,()1) = b()«)/a(«\). Then the solution

'(L w) =
ä(z,w), uv 2 0,

W S 0,

is seen, by suhstitution and use of (A.1), to setisfy the Dirac Lippmanm Schwinger equation

{or u(..··:,w). The eqnation for v(:,w) is similarly obtainecl by considering the solutions

y(:, ··-«\),;(-.i:?7‘Ö., ancl z(:, —A),;E:\_l. The nniqueness follows {rom the uuiqueness of

the Jost solutions, henee estalhlishing pm (s) of Theorem 1.
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From the representatiou (1.4) of Greeu’s function and the asymptotic behavior of the

solutions *I,«,(z, A) of (1.4), which may be obtained from (3.10), we easily obtain

Lemma (A.1): Let G(z,y;«\)denote the Green’s function for (1.2) Let Sa > 0,8aQ =,é

0 and de/ine H(z, y; a) = G(x,y; x/015 + ci). Then H(z, ·,a) E L1(ä) almost everywhere in 1:.

Let us recall the iutegral representation ( 1.5) of the resolvent, R;j(.z:) =

fG(1:,y; „\)f(y)dy. If we let Gn(1:,y; Ä) denote the free Green’s function, then the second

resolvent eqnation, R; — Ru; = R0;VR;, yields

G(=„¤; A) = Gs(=„v; Ä) + fGs(=„=;»\)Vl=)G(z„z1;«\)dz- (Aß)

The idea behind our proof is now to nelate the Dirac Lipprnaun- Schwinger solutions

u(1:,w) and v(z,w) of (1.1) to the (componentwise) Fourier transform of the Green’s

function, which exists by Lemma (A.1). Let us iutroduce the function

p(z,w, a) = ffm W(w)e'°("‘lV(t)[¤0(t, w),s,(t, ——w)]dt+
(A 6)

f:° WT(w)e"°(’“‘)V(t)[¤0(t, w), ¤0[t, —w)] dt.

Let g(z, to; cz) denote the (componentwise) Fourier transform of H(z, y; cx), with u g 0,

viz.

g(z,w;a) = 7%], e‘°"‘H(z, t;a)dt, w ,2 0. (A.?)

Now let

h(:, w; a) —= cl |)g(::, ro; cz) = [uq(z, w), s0(2:, -1::)] + h(1l(z, w; a).

(A-8)

Then we have
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Lemma (A.2): For w E R+, Ela 2 Oand $3*6::2 96 0,hl1l(x,w;c1; satisjies the equation

h(1)(x, w; a) = p(x, w; oz) + fg H0(x, t; a)V(t)hm(t, w; cx) dt, (A.9)

where p(x,w,¤) is deßned in (A.6). Moreover, h(x,w;a) is uniformly oontinuous in all

its arguments for Sa 2 0, and in particular, h(z, w; |w |) = [¤(x,u1), a(.1:, -112)].

Proof; From the kernel equation (A.5), H(x, y;o1) obeys

H(=„v;¤) = Ho(==„u;¤)+ /Ho(=„¢;¤)V(¢)H<¢„ 11;¤)d¢-

H we take the Fourier transforms with respect to y (all integrals involved are absolutely

convergent), we ohtain then

g(x, w;¤) = go(x, w; a) + fH°(z, t; a)V(t)g(t, wgoz) dt. (A.10)

However, g¤(x, w;a) = -
lx/dä [a0(z, w), ug(x, -1:1)], and hence (A.9)

foüows from (A.10), (A.8) and (A.6). Via standard arguments, one sees that h(x,w;a)

ls nniformly continuons in all its arguments. The last statement follows from (A.9) using

(A,.6) and (A8).!

An immediate corollary to Lemma (A.2) is

Corollary (A.3): Letf E C§°. Then

!(w;¤) = $1; j’i(b(=„w;¤))°f(=)r(w)d~=

and

1$<·»>= L(¤(=„¤¤))°f(=)r(=¤)d-‘¤
exist. Fhrthennore, Ö(w;a) has an extension to or E R with x/al +2:5 E [c, oo) and the

extended Ö is zmiformly continuous in w, oz. In particular, Ö(w; lw |) = ff(w).
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Let ns note that we have obtained ff M ff(w) = (f_¥(w),f#(—w))T, for w g 0. We

shall use this decomposition again in proving Theorem 2. ln what follows we shall, unless

otherwise spedüed, assnme that w E R and simply write ff(w). The existence of fjhfw)

for j E C§° follows similarly by replacing A by -A (A g c) in the above argument, i. e. ,

by considering the interval (-—oo,—c] and hence the Dirac Lippmann·Schwinger equation

for u.

Lemma (A.4) (Parseval equality): Let f E C§° and let [a,b] C le, oo). Then

s: # ,s d jl # s d _lf- (vll w + agsb lit (wll w

Prggf: The Pameval equdity for ordinary Fourier transforms irnplies

_/H(¢„¤;¤)H(¢„v;¤)d¢ = /a(=„w;¤)ä(u„w;¤)dw

a. e. in z,y and Sa > 0,8a' ¢ 0. From (A.8) and writing ß = x/ai + ci = u + ie, this

becomes

(ß — F)fH(¢„ =;¤)H(¢„u;¤)d¢ = f w; ¤)- (A-11)

Multiplying both sides of (A.l1) by (f(z))°f(y) and integrating with respect to z and y,

the left side gives

(ß — F) < Rsfßgf >= (ß — F) < RsR;·f„f >=< (Rs — R;·)!.! >„ (M2)

where we have the ürst resolvent formula, having noted the absolute convergence of the

integrals considered and freely interchamged the order of integrations. Multiplying the right

side of (A.11) by the same factor yields
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2ie e e__a________ Ö . 2 •

where once again §(w; ~) is valid for all Ä E R. Using the fact that a, h are not eigenvalues

and a well known property of the function k(:) == f: (gg'}-;-1;; dr one obtains from Stone’s

formnla ([35])

A1
li

‘
R R d< !,P1,,,•1f >—— E-; {gl < !,( s — gr)! > :4- (A-14)

Therefore, combining(A.14),(A.13) and (A.11) we obtain

hßlxja:4By

the boundedness of §(w; and a short argument using dominated convergence, we

can interchange the p and so integrations and take the 6—limit inside the w integral. It

is a standard fact that for g contüinnous,

V 1 44: 6 )_ 004), ¤<:4<b,

1 0, 51 ¢ [a,b].

Hence (A.15) now becomes

||P1s,»1ll’= f,<p1<„dw l Öfwslwll l'- (A-16)

However, §(w; lu: |) = ]#(w), and so the lemma follows, taking into account the comments

following Corollary (A.3). I

We have so far proved (a) of Theorem 1. Part (b) has been proven only for f E C§°(R).

However, standard approximation argnments establish (b) for arbitrary f since C§°(R) is

dense in L'(R). Part(c) is self evident from the definition of #, once # is shown to he

suüective. The Parseval eqnality follow from Lemma (A.4) by standard approximation
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(and the generalized equality follows by polarization) once we establish the snriectivity

of #.

Now, we have that

l|Ff•,nfll°= f.Si$il|.Ü(w)|“ + l!,Ü(w)|°ldw„ f E C8°· (A17)

Let q 6 C§°. Since (A.17) holds, it follows by polarization that

< ¤,1h•,nf >= f.SrgL9#(w)]'!#(w)r(w)dw =

w), ¤(=, w)l!*(w)r(w),

so that

(%.,nf)(=) = y§;f,S,,$• dwl•(==,w)„ v(··=,w)]!*<w)r(w)- (A18)

Hence if # is snrjective, part (c) of Theorem l follows from (A18).

We now aim to show that the operator S is eqnivalent to mnltiplication by the S-—matdx

in the spectral representation of H0. ln this direction, Lemma (A.7) proves to be the main

link between the two quantities. In particular, this lemma provides the first link between

the Dirac Lippmann·Schwinger solutions of Theorem 1 and the wave operators, hence the

operator S of Theorem 2.

Before proving Lemma (A.7), we need a well·known preliminary result on Abelian limits,

whose proof we only include for completeness.

Lemma (A.5): Let f(:) be a bounded measnrable function such that lim,_,_„„ fé j(•)ds =

C. TLICD liH1•w]?C°“f(|)dI

=RrgajzLet j(z) be as prescribed. Deüne g(:) = f; f(s)ds and h(e) = ff e‘“"j(a)d1.

We have that g(z) is continnous, g(0) = 0 and lim,..,„ g(z:) = C, whence g is bounded.

Mw, a'(=) = f(==) ¤- ¢, -
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Therefore,

M6) =
f$’° ¤"'f(•)d¤

= lim,.„,„ f; e”"g'(s)ds

= lim,.,,„ U; ee“"g(s) ds + e°"'g(2:)].

Thua,

h(6) = f;° ee°“g(s) ds, (A.19)

and ao

h(6) - C =
fw

6e'“[g(s) - C]ds.
0

Thua given 6 > 0, choose R auch that |g(z:)—C|< 6, for all z > R, to obtain ¤h(€)·Cm$

eR(C+ I|g|I„) + 6, and the lemma iollowal

Corollary (A.6): Let M = {f 6 H„|j# has compact support in some set {naja <@/\|<

Iff E M and g 6 C§°, then

< f,(0* - I)g >= lim,lgf;°°i < f,e'E‘Ve"'H°‘g > e*" dt. (A.20)

Eroofz From the definition of Gi we have that

Gig = llmtlg f;°°
d|€¢i“€‘H‘€_‘E°'g.

(A.21)

However, it is easy to ahow that

I, J, elmveblüqlg >,

so that (A.21) implies that

< 1,m* — mg >= hm f
6 < ,¢,6‘”‘v6··”¤‘g > 46.

I-•¥¤¤ 0
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The corollary now Iollows from the Lemma I

Lemma (A.7): ((H+)°j)^(w) = f#(w).

Proof: Snppose j,g satiniy the hypothesis of Corollary (A.6). By Theorem 1 (c) and (d),

we have

< f, €•HIVe·dHaIg > 2 fa(

6 °

wJ)°

Therefore

fleiülve-=•HoIg > ed 2

(¤(=„w)° 1
jh; f„”°° J! fg Jw fg J: r(w)(f#(w))°e‘**“ Ve”'H°'g(;)g"

(v1=„wW 2
= 7};ß“°° dtfdwfds (f«f(w)e"“(s(::, w))°V(z)e"H°‘g(z)+ (A-22)

fl‘°(w)¢""(¤(==„ w))°V(=)¢"”°‘e(¢)) @“r(w)
; 7}; gw dtfdwfdz (ff(w)(¤(z:,w))°V(1:)[e°“"(H°"+")g](z)+

1f<wx¤<=, w))·v<=M6-·‘<“~+^+··>¤1<=)>·<w)
The integrand is bounded independent of I,z,6, and ao we may interchange the order of

integration. The I dntegration gives then

2 __ Ä

ff° W+(¤ö)@’°""")¤(•)J•]

and

gw 46(e—··<H¤+*+*·>g)(:) = -6[(H„ + A +66)-%:)
(A.24)

= -6 ffw W-(63)6•‘<=—·>:(:)a6 + gw wi"(6¥6)6—*‘<=—·>„(6)66§ ,
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where ab = Jil - {ep - 3 and Ö = Jil +
ieläié

67. lnserting (A.23) and (A.24) into

(A.22) yields

dtert < fp €•HtV€-asblqtg >=

jäfdw fd: ffm ds [f?(w)(¤(2,w))°’V(2)W+(2ü)e"(‘“')g(s)+

fi‘(w)(v(==„w))°V(=)W—(¤Y?)¤‘°"“"u(•)f r(w)-

éz-f

dwfAgain,the integranda on the right hand side are bounded independent of 6. So we can

interchange the 2 and a integration. lnserting the result in (A.20) and taking the limit

inside the integral results in

< f„0*a)- < f„a >= ——§;fdw dv [fÜ(w){¤(v„ w)- ¤6(v„ w)]°

+f?(w)[v(v„¤¤) — v¤(v„ w)l°f r<•)r(=¤)-

One more appeal to the generalized Parseval eqnaiity completes the proof of the lemma for

j E M,g E C?. Since C§° is dense in LWR), and M is dense in H,,_,_ , the lemma is

proven for arbitrary f.|

As a corollary to Lemma (A.7), we obtain partif) of Theorem 1 by the simple calcnlation

(*“#+f)* = [(¤*)°¥¥*fl^ = f-

Another corollary is the surjectivity of #, which we reason as followaz
((l""‘)°0"’

= II =>

(f”t‘*)° is snrjective. Therefore, {(0+)°j|f E LWd:)} = LWd1:). But A is anqective, so

that {[(I]+)°f]^ If E L2(t)} = LWw). And hence # in surjective by Lemma (A.7).
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We are now in a position to complete the proof of Theorem 2. Let S denote the

Schwartz space of functions in L'(32). Let j, g E S be such that f(w), @(112) have support

respectively in {w fa, <ß)l|< b,},i = 1,2. Then

< MS — I) g > =< MW -— ß**)°¤*g >=< MV — ¥7+)f, mg >=

1imq·.,„ ff} < e'H'(£V)e“'H°'j, 11+;; > dt =

1im,w(—i)fg
e‘l‘l

< e'H'Ve—iH0tf,ß*g > dt,

and so

< f•($ ·· mv >= ü¤¤«1o("Üfg
d*¢'“‘M

fg

dwwherewe have used Lemma (A.5) and the generaiized Parseval equality. By part (I) of

Theorem 1, we have (fl"'g)#(w) = §(w), and, by part (c),

(ezüsye-iHssf)#(w)=

Ä-;f! dze'
‘

V(:)e”‘ °‘](z)r(w).
(¤(=„w))°

By choice of f, we have

(e°'H°‘j)(z) = fsf! {e‘ü"j+(w')s0(z, w) + e""‘f„(w')v0(z, w)f r(w')dw. (A.27)

Hence (A.25) becomes, using (A.26) and (A.27), suppresaing the E-lilhih ,

< f,(S — I)g >= ggf, dt f!

dw{¢"""Äf+(w')¤o(=„w°)+ cm}-(w”)vo(=„w'i g Mw)
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_, , @‘^‘(•(=„ w))° 2

= (al fs dtlt dw fndwfa w d·‘*‘l www
¤“""(v(=„w))°

lw"^"f+<w'>·¤<=-¤¤°>+=""f-(w'l=w<=·w”)] d<·d>*(w>*(<d')

= (alfädt fa dwfadsfaqm

<·<=„w>>·v<=i·„<¤„w'>«·<*·*'>'i+<w’>+
6

(¤(==„ w))°V(=)¤¤(=„ w')~·='(“+"')‘f+(w' )+
I A I

‘
*(¤(w„ w))°V(=)¤o(w„

w')¢‘(“"’“ )‘f-(w ) _
I A

) g(w).
(¤(=„ w))'V(=)v¤(w„ =¤”)¢°‘(*"^ )'f-(rd')

By our choice of f and the hypothesis on V, the integrand above is absolutely inte-

grable. Looking at the t-integration and bearing in mind that both A and
A,

are positive,

we see that the terms involving e*‘(A*8') will vanish as we let 6 —» 0. Thus what remains is

< j,(S— I)g >= (alfa
dw,

fadwfadzfadt

(wo, w>>·v<=>¤„<w„ w’>¢·<^·*'>‘··l*li+<w’> _ ,
I _ a(w)r(w)r(w )

w'which,upon performing the biutegration, becomes

< j,($—I)g >= L;-§)fadw' fadw fade
l

( (¤(=„w))°V(=)¤ (ww').? (dv') , (A·28)
0 *+

l

Noting once again that the integral is absolutely convergent, we take the 6·limit inside the
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integral to obtain, from (A.28),

< j,($ — I)g >= —-sf, auf fm dw

w 6 .2) 6<w>«(«6>«(w’>.
(ww. w>>·v<»>¤6<=. w').f-tw') '

*‘
"

’ *‘

Splitting the w- and wi- integration in the fashion

fg dw fg dw”(·) =

ffm dw ffm 61w’(~) + ffm swf? du/(·)+ jf dw ffm 466%-) + fg= dw ff aw-),

arrangjng the integrals in the order dw dz
dw,

and performing the
wi

integral yields

< ms — mg >= <-¤>J;” dw

In((¤6(==„w))'V(=)•(=„ w)f+(w)ä+(w)+

(¤6(=„ w))'V(=)¤(=„ w)f-(w)ö-(w)+

(¤¤(=„ w))°V(=)•(=„ —w)f+(-w)a+(w) + (vo(=„ w))°V(=)w(=„ —w)f-(—w)ä-(w)) (A-29)
+<¤>;.;” dw
fg(¤¤(=„w))°V(=)v(=„ —w)f+(—w)ä+(w)

+(¤o(w„ w))°V(=)¤(=„ w)f+(w)ä+(w) + (vo(=„ w))°V(=)v(=„ w)i-(w)ä- (w)) r°(w)

where we have used the fact that

(¤(=„ w))°V(=)•¤(w„ w) = (•o(¤„ w))°V(=)w(=„ w),

and similanly for other terms.

Recalling that 5 = I + A, where A was deäned in (1.12) as

A(„\) = ä[¤0(t, w), s0(t, —w)]°V(t)[a(t, w), a(t, -w)], Ä > 0, w > 0,
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