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HALF-BOUND STATES OF A ONE-DIMEN SIONAL DIRAC SYSTEM:
THEIR EFFECT ON THE TITCHMARSH-WEYL M(A}FUNCTION AND THE

SCATTERING MATRIX

by

Dominic Pharaoh Clemence

(ABSTRACT)

We study the effect of the so-called half-bound states on the Titchmarsh-Weyl M( )
function and the S-matrix for a one dimensional Dirac system. For short range potentials
with finite first (absolute) moments, we gve an M(X) characterization of half bound states
and, as a corollary, we deduce the behavior of the spectral function near the spectral gap
endpoints. Further, we establish continuity of the S-matrix in momentum space and prove
the Levinson theorem as a corollary to this analysis. We also obtain explicit asymptotics
of the Smatrix for power-law potentials.

Included is also an appendix establishing an eigenfunction expansion and the validity

of the Smatrix.
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CHAPTER I

INTRODUCTION

In this paper we consider the Dirac system

¥ =[C(A) + P(2)ly, (1.1)
0 Ade pz) wn(z)
with C(}A) = and P(z) = | , on the real line,
-A+e O =-u2(2) -p(z)

i. e. , for z € (—00,00), where A is a complex spectral parameter, ¢ is constant, p, v; and
v, are real valued functions of z. A solution of (1.1)is a 2 x 1 vector

n(s,A)

(2, A)

Wz )) = |

A familiar Dirac system is the problem in relativistic quantum mechanics described by
oz) = k]z,01(z) = v3(z) = v(z),say, on 0 < £ < oo,k constant. This of course is the
radial wave equation for a particle of mass c moving in a field of potential V(z) ({2}, [41], for
example). Note that to obtain the physicists’ rsual notation ([2] for example), one needs to
make the transformations A =+ —FE and ¢ — m. Other contexts in which (1.1) is physically
relevant may be found in [1], [37], [38], and [47] for example.

With the two potentials v, # v9, (1.1) has also found its place in the physics literature in
the context of the inverse scattering problem for Dirac particles ([6],[34]). Specifically, the
two potentials (actually, vy — v3and vy +v; ) result from the Gel'fand-Levitan reconstruction

procedure and appear in the so-called "canonical form” of the Dirac equation ([6]), to which

all other equations of Dirac type may be reduced by a unitary transformation.

Systemn (1.1) induces a self-adjoint operator H, whose spectrum has beem well studied



([12]-{16),{40}-[43]). Actually the spectrum of H is studied by regarding Has H = H. U
H_ where H, and H_ are, respectively, the self - adjoint operators induced by (1.1) on, say,
[0,00) and (—00,0]([15]). Nonetheless, the spectrum of H is real and, under our hypothesis,
continnously differentiable in the complement of {—¢,c]and discrete in (—e,c), where it
consists of eigenvalues of H.For the basic spectral theory of and eigenfunctions expansions
associated with (1.1), an excellent reference is [25] (see also [4]).

The endpoints, A = %e¢, of the spectral gap require special attention in studying the
spectrum of H. At these points, the Jost solutions (see Chapter III) can become lineary
dependent. When such behavior occurs, the point A = %¢ is said to be a half bound
state. These (half bound) states feature significantly in the study of the inverse problem
({28]). The purpose of the present paper is to study these states. In particular, we seek
to characterize them by, and study their effect on, some well known quantities of spectral
interest.

The organization of this dissertation is as follows. In this chapter, we introduce the
quantities we shall be working with, which are the Titchmarsh - Weyl M()) — coefficient,
the spectral function, the Dirac Lippmann-Schwinger solutions and the S - matrix, and
point out some of their properties. Then in Chapter II, we explain some notation and
give precise definition of our operator H, its resolvent set and the various components of its
spectrum. We then introduce our assumptions on the potential function V and state cur
main results. Chapter Il consists of results preliminary to the proof of our main results.
There we study the w — 0 limit , i. e. , A = £¢, of the so - called Jost solutions of (1.1).
We also define the Jost functions and study their asymptotics for small and large A. We

prove our main results in Chapters IV and V. Included is also an Appendix devoted to



eignfunction expansions and the S - matrix.

1. The M()\)-coeflicient.

Associated with (1.1) is the so-called Titchmarsh-Weyl M()) — coefficient, which is a

matrix-valued function of A. Its importance is realized in the construction of solutions of

vV =[CA)+ P(2)ly + If (1.2)

which are of square integerable, as well as in the investigation of the spectra of operators
associated with (1.1). Although the study of the M(A) — coefficient was first introduced
by Titchmarsh ([41]) for a particular case of (1.1) on 0 < z < oo, it has only been
recently that Hinton and Shaw ({10]-{14]) have developed a theory of M()){functions for
Hamiltonian systems — of which (1.1) is a special case. By comparison, there exists an
expansive m — coefficient theory for the Schrodinger equation (see {7}, [25], [4]). Hinton
and Shaw’s theory is applicable in the limit-circle case as well, although we describe their
presentation of the M () theory only for the limit-point case.

We begin with a fundamental solution Y (z,A)of (1.1) determined by the initial value

. | &(z,A) (2, )
Y(0,A) = I for all A. Partition Y{(z,\)as Y(z,1) = . Then the
02(z, A) ¢2(z,))

Titchmarsh-Weyl m - coefficients, m (A)and m_(}),at £ = +00 and z = —o0, respectively,



are defined to be

m4(A) = ~limg s poo v=33, SA# 0

and (1.3)
m_(A) = ~lim,._q % I # 0.
The existence of these limits is established in [10]. Let us mention here that m ()) is just
a systems version of Weyl’s m—~function for the Schrodinger equation on 0 < z < 2c. Also,
a matrix version of m,())for ordinary n'®order differential equations has been given by
Naimark [30].

The following properties about mi(A)are well known ({10], [14]). It is also instructive
to compare these properties with those of the m — coefficient for the Schrodinger equation
([4D. Let m,(A)and m_(A)be defined by (1.3). Let ¥,(z,A) = &z, A) +
my(A)(z, ) and ¥_(z,)) =80(z,A) + m_(A)Hz,A).Let A € {A]SA #0}. Then

1) m+(A)are analytic, (Sm4(A)XSA) > 0,(Sm_(AXSA) < 0,m+(R) = mz(A),

2)m,(A)~m_()) # 0,and in fact S(m (1)~ m_(A))SA > 0, and

3) ¥.(z,)\) € L3(0,00)and ¥_(z,)) € L¥(—0c,0).

We also make the following observations about m4(A):

4) It is possible that one or both of m, and m_ extend continuously onto parts
of the real axis.

5) ¥,(z,A)and ¥_(z,A)are the unique, up to constant maltiples, L*(0,00)and
L3(—00,0), respectively, solutions of (1.1). Namely, m () picks out a basis of

L3(0, oo ) solutions to (1.1), and similarly for m_(X).



The Green’s function for (1.2) is defined as

G(z,; ) =

F_(z, A m-(A) = my(A)1EL(L D), z <,

where S # 0. For f € L?(—00,00), define the operator G(-, A, -) by

G(z A f) = /_ : G(z, t; \f(£)dt.

The following properties of the operator G(-, A, -) are established in [14] (ef [4],

Ch. 9).

F4(z, N)(m_(N) = mae(A)TEL(L D), 7>,

(1.4)

(1.5)

6) For f € L(—00,0), S\ # 0, equation (1.2) is uniquely solved by g(z, A) = G{(z,); f).

7) ¥(z,2) = (2,4, f) € L(~00, 00 );in particular ||yli< gy /1] -

The Green’s function G(z,¢; A\) may be written in a different way as

Y(z, ’\)MIY.(th)y T >,

G(z, 4 ) =
Y(zo’\)MQY.(t)X)) z <4,
where
(m. =m,)t (m_ =my)'m_
AM[ =
my(m_—my)t mo(m_—my)tm
and
My = (m. —m,)~! (m_—my)"'my

m_.(m_-m,)! m_(m.-m,)'m,

and we have suppressed the A - dependence.

The Titchmarsh-Weyl M()) — coefficient for (1.1) is then defined as

M) = S0 + Ma(D)).

(1.6)



The following observations are in order.

8) (6) above establishes (1.5) as the resolvent operator for problem (1.2) for I # 0.

9) By the uniqueness and square integrability of the solution given by (1.5) above, we
see that M(\)picks out a basis of L3(~oc, oo )solutions to (1.2).

Next, we state the connection between the M(A) — coefficient and the spectrum of the
operator H. We mention here that the relationship M()) bears to the spectrum of H is the
same as that borne by m,(A)to the operator induced by (1.1) on 0 < z < o0 (compare {12]
and [13]).

Let (H), P(H) C(H)and PC(H)denote respectively the resolvent set, point
spectrsm, contintous spectrum,and poiné—continuous spectrum of H.The followingclas-
sification holds:

10) The point Ao € p(H)iff M(A)is analytic at Ag. Then the resolvent operator at such
points is given by (1.5).

11) The point Ay € P(H) iff M(A)has a simple pole at Ay.

12) The point Ag € C(H) iff M(X)is not analytic at Ay and lim,_ o v M(Ag +iv) = 0.

13) The point Ao € PC(H) iff lim,_.ovM(Ag + iv) = S # O0and M(A) - i(A = Xg)"1S
is not analytic at Aq.

Moreover, the spectrum of H is the support of a (matrix valued) measure dr(}),
where 7(A) is a real matrix valued step function, nondecreasing and right continuous, with
jump discontinuities at the eigenvalues of H. 7(A)is called the spectral function for H and

is related to the M(A)function by the Titchmarsh-Kodaira formula ([13])

A
()= 7(A3) = %3%/‘\ S M +ie)d), n
1



at points of continuity Ay, A30f 7(1), A\; < Ag.

2. The Scattering Matrix.
The properties of quantum-mechanical systems are most conveniently described by the
scattering operator, or S - matrix, S, which is defined in the following manner ([33], [36]).

Define the wave operators
Oy =Q.(H Ho) =0~ \ iigxw exp (itH ) exp(—itHy),

where the s — lim denotes the strong limit. If £}, exist, the S - matrix is defined by § =
(24)°9_ (here = denotes the adjoint). The goal is then to find an expression for $in
a representation where Hyis diagonal. To this end, one solves a boundary value problem
for functions that are not square integrable — the Lippmann - Schwinger solutions — and
expresses the S - matrix in terms of these solutions ([33],{36)).

We have included an appendix, where we derive the Hgp-spectral representation of
S starting {rom the definition § = (f2,)°0_.

Below we briefly describe the S - matrix in terms of the Dirac Lippmann-Schwinger
solutions. Our exposition here follows closely that of ([32]) for the Schrodinger equation.

We begin by replacing (1.1) by the following matrix equation:



¥(z,w) = Yo(z,w)+ [Z diW(w)e =DV ($)¥(¢, w)+

(1.8)
j:” dtWT(w)e"'("“)V(t)\E(t, w),
( 111 -tw2
e e
where ¥ = [¥(1), $(3)), ¥y(z,v) = ,
\ ﬁ;e"’ ﬁ-’%e""
Ate )
w=+VAT = |A> e, W(uw) = -} r i ,and V(z) = ~ n=) pe)
1 nz) o(z)

We shall call (1.8) the Dirac Lippmann-Schwinger equation. The existence of its unique
solution is established in the Appendix (see also [19] and [36)).
With the definition (II §1) of the operator Q@ = {Ql,Qg]T anticipated, we define the

{ollowing quantities:

Ti = 14 } [, di(Qu(E(8) + 2EQu(¥M(1)))e=>",
Ry = =} 20 a(Qu(¥(8) — 352 Qa(F M (8) )™,
and (1.9)
T, =1 - § [%5, d(Qr(¥((2) — 22£Qa( ¥ (1)),
Rr = } JZ0 d(Qu(¥)(t) + 35°Qa(#3)(8)))e"".
The quantities T, T;, Ry, R, are seen to be the transmission and reflection coefficients for
incidence from the left and right, respectively, from the following asymptotic behavior of

the components of ¥ :



1
Tie™™* + o(1) as z — +00,
xl%
1 , 1 ! , :
Pl Rie7'"™* + (1) as z — —o0.
|\ 33 ~3te
(
1
Tre™'™* + 1) as T — —00,
~3+e
1 , 1
e~V 4 | R, e'®* + (1) asz — +co.
1) (.
L b T3 +€
Let
;-1 R,
R‘ T' - 1
Then we see that we can write
- -}
A=t °/ (L, 0V (D)%t w), (1.12)
2w J_ oo

where * denotes complex conjugate transpose. Using (1.10)~(1.11) to evalnate the Wron-
skian determinant, W[¥("), ¥(3)], we find that

2iw 2iw

K e vl v

4,



whence we conclude T; = T, = T. The scattering matrix Sis defined by

T R, |
S=I+A= , where /is theidentity matrix. (1.13)

R T|

Now since W[Q(‘), ¥(2)] # 0, then we may express the solution ¥(z, ~w)of(1.8) as a matrix-

01
maultiple of ¥(z, w).Let us write ¥(z, —w) = ¥(z,w)M(w),and let B = . Then

10
Wronskian evaluations reveal that M(w) = BS(—w).Noting that for w € R, ¥(z,-w) =

¥(z,w), we arrive at, by (1.12) and (1.13)
¥(z,w) = ¥(z, w)BS(w). (1.14)

Equation (1.14) and the relations (1.10)(1.11) result in the fact that S is unitary,i. e.,
5S° = 5°S = I. In terms of the elements of §, we may, for future reference, express the

unitary condition as (cf [32])

|Ri*=|R, P=1-|TP, (1.15)

RR, _RRr T
[BRP R P TP

(1.16)

3. Eigenfunction Expansions.

Our "formal scattering theory” exposition would not be complete without establishing

an eigenfunction expansion. We proceed much as done in [23] and [36]. Consider first the

10



unperturbed Hamiltonian Hy.Let w € Rand define A = +v/w3 + 2. Then the (generalized)

eigenfunctions
1
'G(Zv w) = e'®?,
1w
Ate
(1.17)
1 :
00(2": w) =1 e.'za
Ate
3 )
satisfy

Hose(z,w) = Ang(z, w),

Hovo(z,w) = —Avg(z, w),
i. e. ugis & (generalized) eigenfunction for positive A, whereas vpis a (generaliged) eigen-
function for negative . The eigenfunctions (1.17) also satisfy the (formal) orthogonality

relations

-
< %o(z, w'), so(z, w) >= 20 BE2-F) =< 44(z, '), v0(z, w) >,

(1.18)
< 8o(z,w'), vo(z, w) >=< vo(z, w'), 86(z, 0) >=0.
Now, for any f € (L3(R)) define f = (f,,f. )T by
fo(w) = 7‘; Li.m. Jgdz(so(z, w))* f(z)r(w), (1.19)

f-(w)= 7;_; Li.m. [y dz(ve(z, w))*f(z)r(w),

where r(w) = /3¢,
Then for any Borel set B C (—~oc, —¢] U [¢, 00), the spectral projection Py(B)for Bis

given by

(P(B)fX2)= o= Li.m. [ /B dw sofz, 0)f(w)r() + /E, dwnz, w)f*_(w)r(w)} ,

11



where By = {w € R | £A(w) € B}.In particular, we have the eigenfunction expaasion
f(z) = 732;;.1. im. L dw [wo(z, 0)f 4 (10) + vo(z, w)f-(W)r(w). (1.20)

The mapping f ~ fis "easily” shown to define a unitary transformation of ( L3(R))?onto
itself, i. e. ,
faz MA@ + 150 = [ dolfw) + 17 )P (1.21)

and Ran’ = (L*(R))®. Moreover, one finds that if f € D(H;), then

1 0
(Hof) (w) = AAf(w), where A = | - (1.22)

0 =1

Similar results for the operator H = Hg+ V,V subject to Assumption (2.1) are true (see

Appendix). In this case the (generalized) eigenfunctions are given by

s(z,w) = uo(z,w)+ [1 AW, (0)e* ==V (t)u(t)+
(1.23)

X Wi(w)e -V ()u(t, w),

o(z,w) = vo(z,w)+ [Z AW_(w)e'"(-DV ()u(t)+
(1.24)

IS WT(w)e~™E==0V(t)o(t, v),

where #(2, w)and vg{z, w)are the same as above and

a\it -1 [ ) 1
1 1 A+
Wiw)=3| " Wo(w)=3|
l - 12 _1 _}ic_
+¢ 1] 4

The eigenfunctions s and v satisfy:

Hu(z,w) = Au(z, ),

Ho(z,w) = = v(z, w).

12



The eigenfunction u(z,w)given by (1.23) is just the solution ¥(U(z,w)of (1.8) if w >
0, while it is the solution ¥(3)(z, w)of (1.8)if w < 0.If we write ¥(D(z, w) = ¥(D(z,A), A =
+Vuw? 4 7, then we see that v(z,w) = ¥(U(z,-A)for w > 0,and likewise v(z,w) =
¥(3)(z, =2),for w < 0.In particular, for w € R, %(z, w)defines, by way of (1.12), the S -
matrix for A > ¢,whereas v(z, w)defines the S - matrix for A < —¢;that is to say, with
A= +Vw? + &3, w € R, we have

T2 [ arfaat, w),solt, o)V o)t w), a2, ~),

A(A) =

and similarly for A(—)).Using the relations (1.10) and (1.11), adapted to u(z,w)and

v(z,w),(1.15),(1.16) and the relation
—_— . 4
W(z(z, w), y(s, w)] lﬁ;f: (A - ,\,)/t dz [(y(z,w)*2(z, w)), (1.25)

where Hy = Ayy,Hz = ),3,it is only a matter of computation to verify the following

orthogonality relations (which have to be interpreted in the sense of distributions);

< o(z,u0'),8(z,w) >= ﬂ—‘:é(w -uw')=< v(z,v'),0{z,w) >, (1.26)
< u(z,w'),9(z,w) >=< v(z,u ), %(z,w) >= 0.
Next for any f € (L3(R))? define 1# = (#F, 1% )T by:
1H ()= Az Lim. fyda(s(z, %)) f(2)r(w), (27

*(w) = Fz Li.m. fp do(o(z, 0))* f(2)r(w).
With B, B; as before, we have (see Appendix)

1 .
(PBUNE) = = lim.{ [ doste,)ff@rio) + [ dos(s,w)ffo)(w)]
where r(w) = \/“—2'55. Hence we obtain the eigenfunction expansion (cf. [44], Thm 17.C.2)
(P(H)f) )= Li.m. /, dw r(w)[u(z, w)ff(w) + u(z, w)jf(w)], (1.28)

13



where Hg. denotes the absclutely continuous subspace of H.

14



Chapter 11

NOTATION AND STATEMENT OF RESULTS

1. Notation and Definitions.

The equation we consider is the Dirac system
y' =[{C(\) + P(z)ly

for z € (=00, 00), where C(A) and P(z)are the matrices

0  A+4c z) wn(z)
Cc(x) = , P(z) = ;
-A+e O ~v3(z) -p(z)

) is a complex spectral parameter and cis a constant. We shall also write V(z) = -J P(z),

where
0 -1 1 O
J=| . Also let R =
1 0 0 -1 |
For A € S = {A] 9 > 0}, we set w = ()% — c?)#, taking w to be the principal branch of

y_on S\(—o00,~¢), and define it so as to be continuous on (—o0, —c).

We will denote by E(z, A)the fundamental matrix for the free problem, i. e. ,

coswz %—‘ sin wz

E(z,)) =

—ﬁ; &in wz cosuwz

I y(z, ) = [n(z, A), wa(=, A)JT is & solution of (1.1), we define an operator Q by
Qy(2, 1)) = [Q1(y(2, 1)), Qa(u(z, T = P(2)(z, M),

When no confusion is possible, we shall write @(2)or Q for Q(y(z, A))and Q%z)or Q° for

@Q((z, ¢)). For any quantity gconsidered, the symbols ¢*, gT and Fwill denote, respectively,

15



the complex conjugate transpose,the transpose and the complex conjugate of g. We shall
denote by y(z, A) and 2(z,A) the Jost solutions of (1.1) which, for A > 0, decay exponen-
tially as £ — +coand as z — —o00, respectively. Also, we write W[y, z]for the Wronskian
determinant of yand z.

If Mis a matrix, we use the notation SM to mean the quantity %.-(M - M*). Also,
il M = (m,;),then by the modulus | - jof M we shall mean the sum of the moduli of
m,,. Often, we will also write K for unspecified (not necessarily equal) positive constants.

Let us now proceed to cast our problem in operator-theoretic language. Let (L3(R))?
denote the Hilbert space of all (2 x 1) square integrable vector functions f = [f;, fg}T , that

is to say f with ||f]|®< oo, where the inner product < -, - > and norm are given by

< f,9>= [ atzMz and [IflF=< £, >
We shall write L3(R)or simply L?for (L*(R))?. The Dirac operator induced by (1.1) is
defined on L3(R))by
H(y)=Jy + (Re + V)y: D(H) — (LX(®))?
and
D(H) = {y € LX(R) | y is locally absolutely continuous on R, H(y) € L} (R))).

Then (1.1) is equivalent to Hy = Ay. We also denote the unperturbed Hamiltonian by
Hp,i.e. , Ho=H-V.

The following definitions are standard: If for some complex number A, (H — A)~! :
L3(R) — L?(R)exists and is bounded, we call Ry(H) = (H — AI)~! the resolvent operator

corresponding to A. The set p(H)of all such points is called the resolvent set of H. The

16



spectrum o( H)of H is the set of all complex numbers not contained in o H). The set of
isolated points of o(H )is the point spectrum of H, denoted by P(H). The set of all limit
points of the spectrum of H is called the essential spectrum of H, denoted by E(H). The
subset PC(H) C E(H)\((E(H)n P(H))of embedded eigenvalues, those A for which (1.1)
has a nontrivial solution y € D(H ),is called the point continuous spectrum. The set C(H) =
E(H)\PC(H)is the continuous spectrumof H.

Central to our study is the notion of a half-bound state, which we shall often abbreviate
HBS. These states, under our hypotheses, can occur only at A = +¢, and are defined to be

those Agsuch that Ao ¢ P(H)but the Jost solutions (Chapter III) are linearly dependent.

2. Assumptions and Main Results.

In this section we introduce our assumptions on the potential V and present explicit
statements of our main results. Our first theorem, and the corollary, deals with the

Titchmarsh-Weyl M (1) — coefficient.

Assumption (2.1): We asssme that the potential V ia (componentwiase) real valued,

Lebesgne meassrable and satisfies the integrability condition
/°° V() (14 | ]dz < oo.
-00

Under this assumption, (1.1)isin the limit point case at both z = —co and £ = +00, and

hence H is self-adjoint on D(H)([17),{25],{44]). Moreover, the spectrum of H consists of

a finite point spectrum P{H) C (—e,c)and a continuously differentiable continuons spec-
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tram C(H) = R\(-¢,c)([11]),[14], {15],{25]). The assumption also allows us to prove the
existence and unitarity of the scattering matrix, hence the existence of the wave operators

associated with H (see Appendix).

Theorem (2.2):Suppose V satisfies Assumption (£.1). Let M()\) denote the
Titchmarsh-Weyl matriz m - coefficient for (1.1). Then the point A = A is a half-
bound state if and only if there ezists a nonzero matriz S()g) such that
y_%u%M(Ao +iv) = S(\o), where Ay = £e.
The nonzero, complez — valued matrices S(c) = (s,)) and S(~¢) = (s,;) are given by
m = a§Bd(2cin]) 7.
13 = s = —3(ad B8 + al B8 X 2ein?)~ ¥,
an = alpl(2eir])E,
s = a®, B (~2in2)) E,
i =5 = -5t 8% + azlﬂtlx-2d‘731)¢%u
op = aly Bl (~2eir?y)
where 11 = 3 (a + ;:-) and 71 = —5= (ﬁ + ;}) , with a = ims_, _ y1(2,¢) and

B = lim;_, (2, —¢), and the other constants are defined in the proof of Lemma (3.9).

Corollary (2.3): Let r(A)denote the spectral function for H.Let A, S(Xg),v1 and «v_,be

as sin Theorem (£2.2). Then

Hnin;o d‘;(;‘) =0 if Ay isnota HBS
and
) dr() 1 = . .
Jim (A~ Ao)? ;(,\ ) - e;(z,\o)-%sp\o) if Ao is a HBS,.
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where |A]] Ao sndicates X = Ao with |A]>]Ao| (A € R),and S(Aq) =
—v2%o (33232) S, 7(e) = 1, 7(—¢) = 7-1.
Remarks:

1) Theorem (2.2) is a further refinement to the four part classification of the spectrum
of H given by (10)—(13) of Chapter 1. In particular, if Agis a HBS, then we retain the
characterization ((12) of [1]) of Agas an element of C(H )and obtain further asymptotic
behavior about M(X)at .

2) Hinton, Klaus and Shaw ([17]) recenily obtaired an analogous asymptotic condi-
tion for equation (1.1) on 0 < z < oc. Their result is that our conclusion holds if M(A)is
replaced by m, (1)), with an appropriate scalar S, an analogy which is not completely unex-

pected considering the similarity of the four part resolvent-spectrum classification of H and

7, (12

Our next result addresses the behavior of the scattering matrix (or S-matrix), particu-
larly as A — cand as A — —¢,and the corollary relates this behavior to the bound states
of H.

Theorem (2.4): Suppose that Assumption(2.1) holds. Let S(-) be the scattering mairiz

in the position representation. Then S()) is continuous for X € R\(=c¢,c¢). In particular,
the bdehavior of S()) at ¢ ss the followomg. Lety and y~ denote y(z,c} and y(z,-c),
repectively. Lety = Wi(z,¢),2(2, ¢)),v- = W[i(z, —¢),2(z,~¢)] andlet a and B be as

sn Theorem (2.2). Then

19



if A= ¢ s not a HBS,

T(A) =5 +ow)aad—e,

lim,_. Bi(A) = 1; lim,_. R,(A) = -1,
andif A = cis a HBS,

1 2a
a’+1

lim S() =
A—e

if A = —cis not a HBS,
T(A) = ;’%-ﬁ'a(w)au\ - —c,

imy,_ Ry(A) =1, lime. . R,(A) = -1,
andif A = —c isa HBS,

: 1 22 p-1
“l-l;ﬂ_le S(/\) = ,53 +1

1-82 28
Corollary (2.5) (Levinson’s Theorem): Let T()) denote the tranamission coef ficient for
the system (1.1) and write T(A) =|T(A)| ezp®(A), A € R. Let N be the number of eigen—~

values of the operator H. Then N is finite and the following formaula holds :

4

Nz sf both of A\ = xc¢ are HBS's,

B(—c)— @(c) = 4 (N + %)1 sf exactly one of % cis an HBS,

‘ (N + )x  if nesther one of A = £c ss a HBS.

Remarks:

1) Theorem (2.4) is the analog of results recently established by Klaus ([22]) and Newton

([31]) for the Schrddinger operator.
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2) Corollary (2.5) is not a new result. It is the analog of the theorem of Levinson ([24])
which, for the Schrodinger operator, relates, {for each partial wave, the scattering phase shifts
at zero energy to the number of bound states. The first such result for the Dirac operator
was obtained by Barthélémy ([2]) for the physical problem. More recently, versions of the
theorem were given for charged Dirac particles moving in a background monopole field
([91,26),{27),[29),[45)) ander various hypotheses, all of which are more restrictive than ours.
Ma and Ni ([27]) seems to be the only correct paper which takes half - bound states into
account, and also points out an error in [2]. Hinton, Klaus and Shaw ([17]) also recently

proved a version of the theorem for (1.1) on 0 < z < oo, under hypotheses similar to ours.
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Chapter III

PRELIMINARY RESULTS

1. The Jost solutions and existence of their limits.

Asaspecial case of section 3 and 4 of [2], one obtains the Jost solutions, y(z, ), z(z, A), for

(1.1), which are defined by their asymptotic behavior

1 .
3 - .z : - ) =0T
’hm y(z,A) = | ‘ e, 'ht_n z(z,A) = e~'%,

I+e

i

These solutions are analytic for I\ > Gand continuous for I > O(see below for A = %e),

and are constructed by iterating the Volterra equations

Wz, A) = ' v /m E(z — £, \)P()y(s, A) d¢ (3.1)
x"%‘u 2
and
1 . z
a(z,\) = eI 4 f E(z — t, \)P()z(t, ) &, (3.2
The -

where E(z,\)is defined in II §1.

We observe that although Barthélémy ([2]) makes the assumption that

[ v@ias =i < o,

it is not used in establishing the existence and analyticity of the Jost solutions. Assumption
(2.1) suffices to establish their analyticity properties.

Having the Jost solutions at our disposal for A > 0, A # e, the next natural step is

to ask, what happens at A = +c? We study this question in the next series of lemmas.
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We begin by considering solutions of the equation

Hy=Iley, (3.3)

i. e. the solutions of (2.1) at A = ¢. We have

Lemma (3.1) (cf. [31] Lemma (2.1)): Under Assumption (2.1), (5.3) has unique solutions

y(z), z2(z), which satisfy the boundary conditions

1
JQim y(z) = K
0
(3.4)
_ 1
lim x(z) =
0

Let v = Wy, z],the Wronskian determinant of y(z)and 2(z). The solutions y(z)and z(z)

have the following behavior

( =2vez + o(z)
y(:)-"-‘ 3 & = =00,
\ =7 +0o(1)
( 2vez + o(z)
z(z) = , 3 = 00.
\ 7+ (1)

Proof: Under assumption (2.1), the Volterra integral equations

1

wz) = - f’" E(z — 1, )P()y(t) d, (3.5)
0 E
1 2

()=] |+ f E(z = t,e)P(£)2(t) dt, (3.6)
0 [~ <]

can be solved by iteration. That gives uniqueness and continuity of yand z.
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Let us consider the solution 2(z). The arguments for y(z) follow, mutatis mutandss, in

the same vein. Equation (3.6) yields
) <1+2 [ a1+ el t) [P0
so if £ < 0, then
) <142 [ ditt + 2 ¢ |PO100)]
So Gronwall’s Lemma and Assumption (2.1) imply that for z < 0,
j2(2)] € K, K e R*.
Using (3.7), we find that for z > 0,
I/:o E(z - t,c)P(t)z(t)dt' < 2/0 dt(1 + 2¢ |z = t}) | P(t)]]2(¢)]

<2 dt(l+2citl)]P(t) z(¢)|+2/ dt(1 + 2ez) | P(1)]|2(1)]

< K+ K(1+42z2)< K(1+2cz),
where we have used K for undetermined positive constants. Hence
|2(2)|< 1 + K(1 4 2¢2) + 2/: dt(1 + 2cz) | P() 1] 2(8))]
< K(1+22)+ A1+ 22) [ dt ]P0} 10)]
so that

12(t)}
142t

111(2)I <K+ 2/ dt(1 + 2et) | P(2)]

Appealing once again to Gronwall’s Lemma, we find that

—I—i(z—)'<K forz > 0.
14 2cz — =

(3.7)

(3.8)
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Therefore, we have, combining (3.8) and (3.7)

K, z <0,
1z(2)| < (3.9)

K +2ez), z220.

Now, we see that we may write
y=Wal= [ Q)= [ aQuus),

and therefore
@)= [ dQuan)=1- [ at Q)

Taking account of (3.9) thus implies that
33(z)y=v+0o(1),a8 z = 0.

From (3.3), we have that z'l(z) = 2cz3(z)+ @1(2(2)). And so, from the behavior of z5(z) and
(3.9), we conclude that zy(z) = 2¢yz + o(z), a8 z — 0. Also, since Q3(z) € L}(~o00, o0 ), we
see that

z(z) = o(1), Gs £ = —00.

Using (3.9), we also find that, for z < 0,

z / ;a Qg(z(t))’ < / “ dt(|t]1Qa(z(t)]) < o,

so that

z/: dt Q1(2(t)) = 0, as z —» —o0.

This fact and the representation

@) =1+2s [ atQuat)+ [ ; d8(Q@a((t)) — 2e1Qa((1)))



therefore yield

21(z)=14+01),z - —oc0.

This completes the proof of the lemma. m

A parallel sitnation obtains at A = —c. There, we consider solutions of

Hy=-cly. (3.3)

We denote the solutions by y~(z)and z~(z). These satisfy the Volterra equations

(o) .
v (z) = - / E(z —t,—e)P(ty~(1)dt,
\ 1)
(o) .
27 (z)= + / E(z ~t,—e)P(t)z(t)dt.
1 -0
\ * /

We put Wiy, z"} = v_ = [5,dtQ:(y~ (D)) dt = [ dtQ1(2(1)).

In much the same way as iz Lemma (3.1), we are able to prove

Lemma (8.2): Under assumption (1.2), (3.3)' has unique continuous solutions y~(z)

and z~(z) which satisfy the boundary conditions

Jim y7(z) = ,

lim 39(&') =

The solutions y~ and z~ have the following behaviors

-7- + 1)
y (z)= ) as x — —o00,

—2ey.z 4+ z)
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- 1
z7{(z) = 7- el , as x — 0.

2¢v-z + oz)
On account of (3.1) and (3.2), we see that the only possible half-bound states can occur

at A = xc.And, by Lemma (3.1), A = cis a half-bound if and only if ¥ = 0,and similary

for A = —e¢.

Let us now turn to the continuity of the Jost solutions at A = £¢. In particular, Lemma
(3.5) tells us how y(z,A) approaches y(z) = y(z,c¢) as X — ¢, with similar behavior for

2(z,1) and corresponding statement as A — —c. First we have
Lemma (3.3): Let a(z) = 1 — [(sinz)/z]e** and y(z) be the solution in Lemma (3.1).
Let

h(z,A) = /m dta(w(t — 2))E(z — t,e)P()y(t).

Ki(w), z 20,

K [v(w) + i) (14 12), 2 <0,
where (w) is bounded, independent of ¢ and (w) = A1) as A — c.

Az, A)] <

Proof: One observes that |a(z)| < K[]z|/(1+ |2|)}. Then, using the bounds established
in Lemma (3.1) it is easy to show that for z > 0,

wi

Iz, DI < K [~ dy [PO] (357) (40 = vw),

which is easily shown to approach zero, as w — 0, by dominated convergence.
For z < 0, the inequalities

| ¥ 2uw |z}?
Ji a(t)dt’ SKT5ooT

20 2
/ a(t)dt’ 51{12""”

- 2w |z|’

and !/: a(t)th < w),
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where 5(t) = a(w(t — z))E(z — t,A)Q,(2), are easily proven. This completes the proof
of the lemma. ®

Similar arguments (see [31]) also establish the following resuit.

Lemma (8.4): Let h(z,)) be the function defined in Lemma (3.3) and let

g(z,A) = Kz, )) - [ E(z - t, N)e™ (=2 P(t)g(z, t) dt.

Then thss Volterra egquation has a unique solution g(z, ) which satisfies the same inequal-
sties given for h(z,A) sn Lemma (3.3).

The next result tells us how y(z, 3)(2(z,A)) approaches y(z)(2(z)) as A = ¢

Lemma (3.5): Suppose Assumption (2.1) holds and let y(z, ), 2(z, ) and y(z), z(z) be

the solutions established above.

Then
e Kz, ) = y(z) + a1z, A)
and
e™*2(z,)) = 2(2) + ga(2, )),
where
Ki(z) z2>0,
(2, M < ¢
‘ K[u(w)-igi;ﬁ;](l-:), z <0,
and )
Ki(z) £<0,
[92(2, M)| < ¢
\ K{u(w)%-ff—gﬁ;](l +2), £>0,

where v(w) is as in Lemma(3.3).

28



Proof: For y(z,A), we multiply (3.1) by e™'** and subtract (3.5) from the result. This
shows that g(z, A) = y(z, A)e™ """ — y(z) satisfies the Volterra equation of Lemma (3.4).

The argument for z(z,\) follows similarly. ®

2. The Jost functions and their asymptoties.

For A € S = {A|9A > 0,) # £c}, the variation of parameters formula gives for (2.1)

oz, 2) = E(z, )0, A) + /o * E(z - t, \)P(8)y(t)dt. (3.10)

Lete >0 andset S, ={A| A€ S,|A—c|>¢|A+e|>€}. Writing 2(z, 1) = & y(z, \)

resuits in the equation

#(z,)) = E(2,2)z(0,1) + '[o ’ e E(z — ¢, \)P(t)z(1) dt.

Then an application of the Gronwall inequality leads to
j#(z,A)|< K, where K = K(¢,1/(0, 1)),

and hence

I z,A)|< K™, r=%w, € 5,0< z< . (3.11)

Lemma (38.8): Let Sw > 0 and define

AN = (ZITer_c) 1) #0,X) + /o ” g (;( - c),z) Qutdt  (312)
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and

B,(\) = (ﬁ -1) 4(0,A) ~ /;e-w' («—A'”m,—l)) Qu)d.  (3.13)

Then
I'QJH-Q
: oz - 2w
’ll.xlgge (2, 2) = A,(Q) 1
2
and

{5

-1
2

im e~***fy(z,A) = By())

Bt =0

In particular, Ay(\) and By()) are analytic on S > 0, are bounded on S, and each has
a continuous extension fo (—00,—¢c) U (¢, 00).
Proof: The integral representation of A,(1) and By()) yield the analyticity (cf. [17]).
The bound (3.11) (and straightforward computation) yields the (z — co) limit and shows
that A,(A) has acontinuous extension to (—o0, —¢)U(¢, c0). Boundedness of A,()) is clear
from the relationship between y(z,A) and A,(A). Corresponding statements for B,(1) are
established similarly, with the inequality |3z, \)|< Ke™ "™, 7 = Qu,A € §,,
—00 < £ <0 replacing (3.1).®

The integral representation of Ay(A) shows that it is real valued on (—¢,c). We therefore
obtain an analytic continuation by defining A,(3) on 83X < 0 by 4,(}) = m Similady
we obtain an analytic continuation, into A < 0, for By(XA).
Lemma (3.7): Let A €(—00,—¢)U(¢,00). Then

A+e)
.

y(z,2) = Re { e7"" A (X) | +0(1), asz = +00

1
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and

{A+e) |
o

¥(z,)) = Re{ e™®*B,()) 4+ o(1), as 2 = —c0.

1
Proof: Using (3.11), we can write

w(z,A) = E(z, \)1(0, A) + /o” E(z - 1,A)Q(y(#)) dt + o(1) (z — o)

and the first equality is established.
The second equality is proven similarly using the corresponding bound for y(z, A)
asz — —oc. W
We observe that Lemma (3.2) shows that A,()) (respectively, By())) determines the
asymptotic phase of (2, 1) as £ — +00 (respectively,z —» —00). In particular, let $4(1) =

arg Ay(1) and #5(A) = arg By(A), then we have
13(z,2) =|A5(1) | cos(wz — #4(})) +o(1) as z — +oo,

and

4a(2, ) =| By(A) | cos(wz — #4(A)) +o(1)as z — —o0,

with similar asymptotic equalities holding for y1(z,A) also.
Featured in the definition of the M(A )-coefficient were two solutions &=,1) and

&z, A).

Recall that these are defined by the initial conditions

1 0
6(0,) = , #(0,1) = |
0 1
These solutions, which are defined and continuous for all z € (—c0,00) and amalytic for all

complex numbers
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A will play a key role in our development.

A proof of part (i) of the next lemma can be found in [17] ([17], Lemma (2.1)). The

proof presented here is very similar.

Lemma (3.8): Let A€ S and let v = (v1 +95)/2. Then as A — oo, we have
() As(A) = —i exp (~i /o" o() dt)
(i) A44(3) = exp(=i [ w(e)dt)
(i) Bo(A) = —i exp (=i /_0 oty

(i9) Bg()) — -exp(—i/q v(t) dt)

Proof: We only prove (iii) here. The other conclusions are established similarly. Consider,

first A € R. First we establish that as | A|—» oo, we have

cos(wz + fy v(t)dt) + o(1) |
0(z,\) = |
—sin(wz + fy v(t)dt) + o(1)
Set
1 1
1) xEe W
T == 9.
2 1 1
X¥ce T iw
Then '
w 0 w v A+ecy
. — g ==
3= B REiAS vt TRl
0 -iw
where
(0 P -1 1 1 1
Py = My = and M; =
\p O -1 1 -1 -1

(3.14)

(3.15)
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Now we have that for | A| sufficiently large, say |A|> Ao,

w ‘ 4c 1 A+¢ 4c
1] s e - s
Therefore, we see that for |A|> Ag the z-equation reads
w 0 ]
2= + Py + 2M1_2M2+0(1) 01M1+O(l) vaMs 3 2.
) 2 2 A A
0 =—iw
Next define n(z) = iwz + i f; v(t)dt and set
e™) 0
¥(z)= | 2(z). (3.16)
0 eu(:)

Straightforward computation shows that

& (03— 01)e™ P W3 + pe~ P ¥3 + 0 (1) va(¥1 + e 83)+
0 (}) m(e ¥, — ¥,),
(I) (3.17)
¥, = —i(ra—ov1)e P +pe ™8 - 0 (}) v2(¥; + ™ Ey)+

o (}) 01(F; — $1e®).

1
Noting that z(0) = RTITJ , and letting
.
iz ¥ - i=1,2

2(A+¢)’

we then obtain from (3.17) the following :

: : —~an
3 = -'- -— -, . .i — ,‘e______ -, _
¥, 2/:@: n)e ¥, 2/:(02 91)2(A+c) +/;pe ¥,

/ Pz(: in 3 + 0(%)/: vo(¥; +e"28,) = 0 (%) ['2 (_12(3 f:)



+0 (%) ‘/: v1(e” ¥y ~ 1)~ O (%) joz n (“Z?IJ) ,
'I'z(z)-—--/ (v2 = v1)e® ¥ + /(02 2(A+c)+./ e’ ¥y - _/ Pg(,\+c)
-0(3) [ e@ar o (3) [ (HFm) ¢
o3 [ttt of2) [ (255).

These expressions result in

|9(z)]

IA

K f§ IPONED)] 8t + gig |5 (02 = m)e™ + &™)
W “’p(ez' +e 2')‘ + (0] ( ) m lfo (02 + 01)(e2' + e"")I (32)

-+

+ OB apg (o1 + 93)].
The 4 and 5'* terms on the right hand side of (3.18) are clearly o(}) as |A|— 0. We

want to show that the same is true for the 2*¢ and 3'¢ terms on the right hand side of
(3.18).

Consider the term [§° p(t)e™(" dt. Let ¢ >0 and choose R = R(e) so that

J® 19(t)] dt < e. Then
sup /‘p(t)eif;'(')d' dt|

£>01J0

< /: |p(t)] dt+i/onp(t)e'f;'(')"dts

and hence, by the Riemann-Lebesgue Lemma, we get

f pt)e®®) d:l)

sa
'_‘°° (z)g
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The argument for the other terms is similar.

Thus
-~ i £ -
E@ <o+ & [ 1IP0I &

and Gronwall’s Lemma once again yields ]\i(s)j < a(}). Therefore, we obtain

#(2) = gy +o(d) o)

¥i(z) = ‘falrd- + O(})
Taking into account (3.15) and (3.16), the asymptotics (3.19) establish (3.14).

From (3.13), we have
B = s+ [ e (T Que) + Qa(0(e) dt
For |A]> Ao, (3.14) now implies that
By(A) = -i 4+ /0 e "'[i(pcos s — vy sin u) — (vg cos p — psin u)] d¢ + o(1) (3.20)

where 4 = p(t) = w(t) + [; v(a)ds.
However
S ™ p(t)Xicos pu(t) + sin u(8))dt = i [0 e p(t)e M) dt
= if° e""'p(t)e""‘e"ﬁ; WM gt 0,
as | A]— oo, by the Riemann- Lebesgue Lemma. Another application of the Riemann-

Lebesgue Lemma produces, as |A]— co

/io e~*™(v3 cos u(t) + vy sin u(¢)) dt = ~i [1 — exp (—-t’ /: v(t)dt)] .

and the proof of (iii) is complete (by(3.20)) for A € R. Since Bg(\) is bounded for A € S,
and has a limit as |A|— oo on e, an application of the Phragmén-Lindeloff theorem ([8],

p.237) completes the proof of (iii). ®
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The next Lemma links the asymptotic behavior of the functions Ag(A), A4(A), Be( ),
B4(A) as A — xc, with behavior of the solutions 6(z,\) and ¢(z,1) at A = e. The
proof given here is modelled after the methods of reference [17].

Lemma (3.8): Suppose Assumption (2.1) holds. Then there are constants of, af, 8¢, 88, % ;,
at0,8%0.8% € R andal,af pl,8t,a’,at;, 80,8 € iR such that the following

asymptotic relations hold: as A — ¢

ag + o(1) if 91(z,¢) is snbosnded as z — oc,

AdA) = |
alw + o w) if 01(z,c) is bounded as £ — oo,
ag + o(1) if 61(z,¢) is snbounded as z — o0,

Ay(}) = |
afw + X w) if 64(2,¢) 3a bounded as z — o0,
B + o(1) if 61(z,¢) is snbounded as z — —oo,

By(N) = |
plw + o w) if O (z,c) is bounded as £ — —o0,
ﬁ: + o(1) if 81(z,c) ts snbownded as z — —o0,

By(A) = *
Bfw+o(w) if 61(2,¢) is bounded as z — —o0,

and as A = —¢

i\ +e¢) J af,l + (1) if 82(z, —c) is unbounded as z — o0,
22400 =

a yv + o(w) if 0(z, —c) is bowunded as £ — oo,

A+ C)A‘(/\) _ af; +o(1) if 02(z,—c) is snbounded as z — oo,

oz:ow + o(w) if &(2, —c)is bosnded as z — oo,

A+ p nya Bli+0(1)  if B(z,~c)is wnbosnded as z — —oo,

Blow + o(w) if 02(z,—¢) ia bownded as £ = —o0,
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i\ + c)B‘(’\) _ ﬂfl +0(1) if 0:(3, —¢) is unbounded as z — —oc,

w
ﬂfow + o(w) if 02(z,—c)is bounded as z — —oco.

Moreover, the following pairs are nonvanishing

(ab, a8),(ad, al), (83, 83),(B8, BY), (af, a?), (88, BY),

and
(G‘.p afl): (a:o: a‘.[): (ﬁ.‘;n; pfl)v (ﬁ:l: ﬂ:o): (Cltl, a:o)» (ﬁ:p ﬁfo)

Proof: We only include a proof for Ay, as A — ¢ here, noting that the other cases are

similar. First, the following statements are easy to prove ([17]);

61(z,c) is bounded as z = 00 <= af = [{° Q2(6(t,¢))dt = 0,

$1(z,¢) is bosnded as z — 00 <= af =1+ [ Qa(d(t,¢))dt =0,

(2, ¢) is bounded as z — —co <= A3 = [0 Q2(6(t,¢))dt = O,

$1(z,c) is bosnded as £ — —00 +=> B = ~1+ [0 Qa(t,¢))dt =0 (3.21)
03(z,—¢) is bounded asz = 00 ¢=> o, = =2¢i(1 + [§° Q1(6(¢, —¢))dt) = 0,

$3(z, —c) is bownded as z — o0 <> afl = —2i [y Qu(é{t,—¢))dt =0,

82z, —¢) is bownded as 3 — —c0 &> %, = ~2¢i (1= [°_ Qu(8(t,~c))dt) =0,

$3(z, —c) is bounded as 2 — —co <= 8%, = 2%i [°_ Qu(4(t,~¢))dt = 0.

We note that if 6;(z,¢) = O(1), then 83(2,¢) = o(1), £ — oo and otherwise 61(z,¢) =
O(z) and 63(z,¢) = O(1), z = oo with the same comments holding for ¢(<,c). Also,
if 03(z,—¢) = O(1), them 61(z,—-¢) = o1), z — *oo and otherwise 93(z,—c) = O(z)
and 6y(z,—¢) = O(1), £ = xoo with the same holding also for ¢{z, —¢). Thus relations
(3.21) define constants which characterize boundedness of solations &(z, 1) and #(z,A)

at A = *c as z — $oo. Also, since the solutions 6(z,+e) and ¢(z.+c) cannot be
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simultaneously bounded as z — *o0o, the last statement of the Lemma {ollows once the
remaining constants are established. Consider A4()) for the moment. If ag’ # 0, then we
can write
Ad N —af = [° e [(Qa(8(t, 1)) ~ Qa1 €)) ~ iw( X + c) 7 Qu(é(t, V)] dt
+ Jo (€™ = 1)Qx(#(t,c))dt.

Using arguments such as used in the proof of Lemma (4.1), below, we can show that

(3.22)

the integrals in (3.22) are o(1) as A = ¢c. H ag =0, then we write
Ag(A) = 3L 57 dt[(Qu(&t, ¢)) - 2ctQa( (¢, ¢))] =
I5° dt ' [Qa(é(t, 1)) = Qal(t, cN] + [5° deer= [(Dlgfeld - 2L (329)

I (e =1 = swt)Qy(#(8,c))dt + [5° dt(1 — ™) E Qu(¥(3, ).
Arguments as those in Lemma (4.1) again show that the right side of (3.23) is ow) as

A=ec
Letting
of = o [T (QuKE ) - 261Qutott, Nt

the Lemma is established for A4()). The other constants are defined to be

B = =g 20(Q1(8) - 2c1Qa(®))(1, 0) dt,
af = (14 [$2(Q1(0) — 2¢tQ1(6))(t,c) dt),
Bl = (1 = J2(Qu(8) - 2ctQa()Xt, ) dt),
aty = 1+ [2(Qa(8) - 24Qu($))(t, ) dt,
Bo=1-[2.(Qa(8) ~ 2tQu($)X1, c) dt,
aty = [(Qa($) - 2:4Qu(B))t, c) dt,

and

0
Blo=- [ (Qx(®-200Q:®)Xt, ). m
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Chapter IV

THE TITCHMARSH-WEYL M())- COEFFICIENT

AND SPECTRAL MATRIX

In this section we prove Theorem (2.2) and Corollary (2.3). Assumption (2.1) holds

throughout this section.

Recall the definition (1.6) of M(}),

MO =(mo—myr| L AT
Im_+my)  mom,
where m. = my(A)denote the Titchmarsh-Weyl m(A)—coefficients at +o00.
From the definitions (1.13) of m1+(A)and Lemma (3.6), if we write M()) = (m,;), then
we see that my3(A) = [Ag(A)Bg(A)]F~HA), m3z(A) = [Ae(A)Be( A FY(N),
and my2(2) = mn()) = %[A.(A)B,(/\)+A¢(/\)B¢(;\)}F*1(,\), where we have defined F(A\) =
Ag(A)Be(A) — A(A)By(A).
The asymptotics of Lemma (3.9) give the following behavior (as A — ¢)for the namer-
ators, N(-), of my1(A), maz(2)and my3(A), respectively,
N(my) = afgd+o1)
N(ma) = affd+o1) (¢1)
and  N(mu) = —(a$Bl+ald)+o()
Taking into account the last statement of Lemma (3.9), then Theorem (2.2) will follow

once we prove the fellowing
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Lemma (4.1): Let v be as sn Lemma (3.1). Then there erists a nonzero constant v, such

that the following behavior obtains as A — ¢ :

74+ 1) if A =cis not a HBS,
F()) =
Nmw +ow) sf A=cisacHBS,

Assume the result of Lemma (4.1), and let X = ¢ 4 iv. Then, since w = (26)* + O(v)as
v — 0,if v # 0, the relations (4.1) imply that v§mi,(c +iv) = Qas v — 0,4, = 1,2. I
4 = 0,then again (4.1) implies that, as v — O,v%m.,(c +iv) = 8, + o(1), where a1 =
agﬁg'y{‘, sy = agﬁg‘yfl,wd 3172 =89 = ~%(a:ﬁ5+agﬁg)7f1,and we write § = (,;). This
completes the proof of Theorem (2.2) for A = ¢, taking account of Lemma(3.9).

For A = —e¢, we similarly find a constant 4_; such that

7- + 1) if A = ¢ is not a HBS,
F(A) = {
¥-.1v + K w) if A =¢ is a HBS,

as A — —c. The matrix 5(—c) = (s;)is given by a1 = aflﬁfﬂj, s23 = a®,8%,7 1 and
sy =8 = -%(af.lﬁfl +a?, 88 noL

Theorem (2.2) fallows since A = ¢ are the only possible HBS's.

Corollary (2.3) also easily follows from the relations (4.1), with a similar argument
for A = —c First, for A > ¢,we can ([15]) pass to the limit under the integral sign and
differentiate the Titchmarsh-Kodaira formula (1.7). This differentiation yields %‘—‘l =
—L1SM(X). The corollary then follows from direct calculation using SM(A) = L(M(X) -

M*(})), and similary for A = —e.
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In order to establish Lemma(4.1), we will need to have some bounds on certain sclution

differences. These are given in the form of the {ollowing

Lemma (4.2)(cf [20],Lemma (2.2)): Let 2 > Oand let y(z, A)be the solution of (2.1)
defined by the initial condition (0, A) = (a,b)F,a,b arbitrary constants independent of A.
Suppose further that yo(z) = y(z,¢) is bounded as £ = oc. Then the following bound holds:

[w] =

2
———) , K = eonstant.
1+ w2

ly(z,A) - o(2)} < K(

We only establish this bound for z > Ohere, but we note that a similar bound can be
obtained in similar fashion for z < 0.Namely one assumes that yo(z) = y(2, c)is bounded

as ¢ — —ooand obtains the bound

2
e )= 0o < K (7).

Let us also observe that the same bounds also hold for |y(z, A) = iz, —=¢)|, if y(z, —c)is
bounded, all with different K's.

Proof: By variation of parameters, we have

béﬁs sinws + acoswz z
Wz, )) = + [ B - L 0Qu) (4.2)

bcos wz ~ aﬁ—c sin wz

2chz +a | 2
w(z) = | + /o E(z - t,)Q(n(t) &, (4.3)
b

From (4.3), we have

you(z) = 2e2 (b + Jy Qa(vo(t))dt) + a + [5(Qulze(1)) ~ Qalwo(?))) dt,

v03(2) = b+ 5 Qa(yo(2))dt.
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Therefore, standard asymptotic theory (see [5]) tells us that yo(z)is bounded as £ — ooif
and only if A =0, where
Azb+ [ Qua@)at
Let us consider y(z, A) - yo(z). Recall that |y(z, A) — yo(2) |=|p1(z, X)) = ynr(2)| +
ly2(z, A) = yoa(z)| and note that
1Qi - Q<P Hy-wl Q)1 <|Pli=12
(4.2) and (4.3) therefore give us
l(z,2) = yo(2) |=]b22< sin wz + acos wz ~ 2bez — a + f cosw(z — 1)@y
+2¢ S dnw(z - 1)Qa2 — [§(Q) - 2(z - )QY)| + |beos wz — axT; sinwz
=b + f5(cosw(z - 1)Q3 — 5% sin w(z — )Q1) — J5 QF
= p(coswz — 1) + (cos wz — 1) [ Q3 + cos wz [y (cos wt — 1)QF
+(sinwz - 1) f§ sin wtQ} + fy sin wiQ? + fJ cosw(z — ¢XQy - QY)

+2¢cz (“—35 lii—:i - 1) (54 J5 Q3 + A2t sin wz f(cos wt — 1)Q3

~3(coswz — 1) [y sin wtQ§ — A< 7 (sin wt — 322} QF o
+32€ [ ain (2 - 1(Q2 - Q)| + B(cos wz - 1) — a5 sinwz
+(cos wz — 1) f§ Q3 + coe wz [J(coswt — 1)Q + (sinwz — 1) [ sin wtQ
+ [y sinwtQ} + f§ cosw(z — tX(Q2 — QF) — g sinwz f5 QF + [y sin wtQ}
-y tinwz f(coswt ~ 1)Q) + Y% (coswz — 1) f§ sin wtQ}
% J3 sinw(z - tX(Q1 - QD) |
Since A = 0,b+ f; Q3 = - [3° @3, and so we obtain
|2ez (Ake S22 1) (b4 f7 Q)| s

S ié%ﬁfﬂu,:_ialljj;wlgq I< K(l+cx)2’
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where we have nsed the fact that z < tand

| < K( "'z )2,2 € R (4.6)

Next, asing the estimates that for some K € R,

jsinz]| < K(l_lzflzl),ll-coszls K(T-}-EIL—IY'

the monotonicity of K ('H;lﬂ) ,the boundedness of yo(z),{4.5) and (4.6), we obtain from

(4.4),

3
0z - sn()l < K (k) + K () [ v ol - wol.

An application of the Gronwall Lemma and the monotonricity of 1—;‘#3 therefore reveal that

] 2
1Kz, A) - yolz)| < K( wz| ) . m

Proof of Lemma (4.1):  Let g{z)and 3(z)be the solutions in Lemma (3.1) ard let

1 0
6(z), ¢(z) be solutions to (3.3) such that 6(0) = | | ,¢(0) = . Straightforward
0 1
computations yield, using (4.3),
W(z) = a36(z) + af¥(=),
(4.7)
1(z) = B39(2) + B4 z).

Therefore, vy = Wy, 2] = agﬂg - a(‘,ﬁ: . However, Lemma (3.9) yields F()) = (agﬂg -

as,@o‘)-k o(1),and therefore F(A) = y+40o(1)if v # 0. Next, we exploit (4.7) to discover that

niz) - 2ci(ao‘ﬁf - agﬂf), z — —00,

zi(z) = 2i(flal - Alal), z = oo.
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Now if 4 = 0, then there exists a # Osuch that y(z) = az(z).
Since y1(z) — 1as £ — oo,then we have 1 = a - ki(agﬂf - asﬁg)and since z3(z) — 1,as
z - —o0,1l = %-2d(a3ﬂf —adB!). Therefore,if v, = i,—(a-ir- %), then the last statement of
the Lemma is proved. Next, we establish that v, = -2%(04- g-)indeed. From the asymptotics

given in Lemma (3.9), one can only conclude that
F(A)=94+0(1),A = ¢,where o(1) = y1w + (other &(1) terms).

Let ¢(z,)) be a solution of (1.1) satis{ying

d’(o» ’\) = yl(o)’ ¢’3(01 ‘\) = W(O) s

so that

#(z,A) = 1n(0)6(z, A) + y2(0)e(z, A). (4.8)
Next, simple calculations show that

n(0)F(A) =
By(3) {~350(0) + 3(0) + 1n(0) (40(A) + {1 ) + 120X 44(1) - 1)} (4.9)
~ 440 {£2:11(0) + 13(0) - 11(0) (Bo(X) + #2:) + 1a(0X—By(}) - 1)}

Using (4.8) and (3.12)-(3.13), we may rewrite (4.9) as

Nn(O)FQ) =
= By(N) {201(0) + 13(0) + [5° &= (Qa(¥) — £2Qu(¥)) (1, ) dt} (4.10)
=44 {$251(0) + 12(0) — [0 ™" (Qa((¥) + $2:Qu(¥)) (1, 1) dt}.

Using again the notation Q% = Q,(¥(z,¢))and Q, = Q.(¢(z, 1)), we have

/;w e'*(Q; - A‘:cgl)dt = /:D (Qg - 1‘%‘32) (' — 1) dt

44



Qh)Jer™ dt.

+ [ (8- 15=@t) a+ [T1@a-

By Lemma (4.2) and the Dominated Convergence Theorem, we have that
*® 0 iw Oy it
[ 7K@ - @)~ 15-(01 - QU™ dt = ow), a8 A~ c. (4.11)
0 +c
Since ¢ is bounded (7 = 0)as z — oo, f5° @Jdt < 00, and by (4.3) we conclude that
F (@8- 158) dt = —dm(o)+ Aw) = —sa(@ 4 oAw).  (12)
0 +ec

With a = 1(0) = y1(0)in equation (4.3), we also find that

jo°° (Qg ‘j;’ )( - 1)dt = 2 (n(0) = 1) + ofw). (4.13)

Similar considerations reveal that as A — ¢,

Lo

where we have put a = lim._, o 3n(2).

20) d= 0+ O ) o), (419)

From Lemma (3.9), we have Ay(A) = af + o(1) and By(2) = 3¢ + o(1),a8 A — ¢, and
from (4.7) we have that ,Bg = 21(0) = p(0)/a and ag = $h(0). Therefore from (4.11) -

(4.14), we see that (4.10) reveals that

1

F(A):Q(a-i-%)w-i-o(w),as,\—»c, a
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Chapter V
THE SCATTERING MATRIX AND LEVINSON'S THEOREM

Since we concern ourselves only with the continnous spectrum of H, our domain for
A in this chapter is (=00, —=¢c] U [¢, 00). To do this effectively, we let w € ® and define A
in terms of w, i.e., we get A = +Vwl F 3. We emphasize that v is our basic spectral
parameter by writing w for the spectral argument throughout this section, for example,
where we wrote y(z,\) previously we now write y(z, w).

In section 1 of this chapter, we prove Theorem (2.4). Levinsoa’s Theorem is derived
in Section 2. In Section 3, we study the specific problem of power law potentials. We are
interested in deriving the leading correction behavior of the S-matrix, the leading order

being predicted by Theorem (2.4). The results are the content of Theorem (5.1).

1. Continuity of the S-matrix.

Recall that we have the existence of the solutions of (1.1) which are defined by
¥(z,0) = yo(z, w) = [7° E(z - t, w)P(t)y(¢) dt, (8.1)a

#(z,w) = a(z,w)+ [7  E(z - t,w)P()y(t)dt. (5.1)b
Let w > 0 and let

1 1 .
X+ = ! ez'z, X_ = e tws
v ~iw
I+e X¥e

Now, the Jost solutions y*(z, w), z2(z, w) are solutions with asymptotic behaviors
+
y (z w) ~ X+’
’ (5.2)
y (z,w)~ X_, asz — +00
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and

at(z,w)~ X_,
(5.3)

2 (z,w)~ X,, a8z — —00.

In particular, y¥(z,w) and z%(z,w) are defined by (5,1)a and (5.1)b, respectively. From

(1.10), (1.11), (5.2), (5.3) and the comments about s(2,w) in Chapter I §3, we obtain that
+ 1 + 1
vy (z,0) = -,I-;l(z,w) and z7(z,w) = i;u(z,—w). (5.4)

For w < 0 the same argument carries over with v(z, w), o(z, ~w) replacing u(z,w), s(z, —w),

respectively, and all that follows holds true as well. Next, let us write

z+(3’ w)=ay~(z,w) + b”+(za w)

(5.5)
z7(z,w) = ey~ (2, w) + dy* (2, w).
It is a matter of computation, using (5.2), (3.3), (5.5), to get
a= Wt yt),
b= -2 Wst,y7),
e (5.6)

c= 3 Ws~, %),
= "Aﬁt;’ le_ ' II-L
so that ab—cd = 1 since W[zt,27) = W[y~ ,y*] = }%.However for real w, we see that
y- = yt,and 3= = 3+.So since here we do assume real w,then we simply write y, 3 for
yt,z%,respectively. In particular, (5.6) reads
a= %E Wz, y),
b= -2 Wiz 7,
B (5.6)
e=3EWI(z,1),

d= -3 W5
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Now we write, using (5.5) and the fact that ad -~ bec = 1,

¥(z,w) = a%(z, ) — ez(z, w),

(5.7)
2(z,w) = oz, w) + by(z,w).
Then we have the following asymptotics holding:
yz,w)~aX, —cX_ a8 — —o0,
(5.8)
Wz, w)~aX_+bX,; a8 - +oc,
by equations (5.2). However, (5.3), (5.4) and the relations (1.10), (1.11), reveal that
R
y(z,w) ~ -—X+ +—=X_ asz = 400,
}’f (5.9)
H(z,w)~ TX_, +-17'X+ as z = ~00.
Comparison of (5.8) and (5.9) yields therefore
=1 o i
a—T,b—T,&ndc-» T (5.10)
We turn once again to the functions
Ay(w) = ( TeFnE )9(0 w) + f5° dte® (, T+ ,1)) Q(y(t, ), (5.11)
By(w) = (i, =1) 90, w) — [0 dt e (%, ~1)) QUtt, w)).
We see from (5.11) that for w € R, we have
A,(0) = Ay(~w), By(v) = =By(~uw). (5.12)

Besides the solutions defined by (5.1), in particular y(z,w)and z(z,w)in this case, (1.1)

also has a pair of solutions 8(z, w), ¢(z,w) defined for all w by

[6(0, w), $(0, w)] = |
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By evaluating Wronskian determinants, one discovers that
Wz, w) = As0(z,w) + Aed(z,w),
(5.13)
2(z, w) = By(z,w) + Beg(z,w).

Combining (5.6), (5.10), (5.12), (5.13) and the fact that W68, ¢] = 1, we arrive at

1 A+e
T= % (AeBy — Ay B,),

T

% - i;;(a,zj_ B, (5.14)
A

T = 5 Behe - Tidy)

On account of Lemma (3.6), (5.14) shows that the S-matrixis continuocus on R ~ {0},

i. e. for A € (=00, =¢c) U (¢, 0).

We now turn towards the behavior of the S-matrix at the spectral gap endpaints £c. Re-

call the following asymptotics proven in Chapter III: Let 7 denote either 6(z,c)or &(z,¢).

ag +0o(1) if ris unbounded as z — oo,
Ar(w) = (5.18)a
ajw + o(1) if ris bounded as z — —o0,
and
B + (1) if ris unbounded as z — oo,
B, (w) = (5.16)a

Biw + o(1) if 7is bounded as z — —o0,

for some constants af, 57,1 =0,1.

The correspording situation at A = —¢ is
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a’yut + o(w~1) if r unbounded as z — oo,
An(w) = (5.15)b
al +o1) if r bounded as z — oo,
and
ﬂ:ow‘l +o(w™!) if 7 unbounded as £ — —co,
BTy + (1) if 7 bounded as z — —oo.

Below, we consider the limit A — ¢, the case A — —cbeing similar. Recalling that A = ¢
is a half bound state provided v = Wi{y(z,¢), 2(z,¢c)] = 0, we note that, by (5.13), v =
agﬂg - agﬁ: . Since we may assume, without loss of generality (else choose another origin)
that both 8(z, ¢) and ¢(z,c) are nnbounded as z — +00,(5.15)a, (5.16)a and (5.14) complete
the proof of Theorem (2.4) for v #£ 0.

Next, assume that v = Oand let y(z,¢) = az(z,¢). By straightforward computation one
finds that a = 2¢i(al 8¢ — agﬁr), and, in particular, a = lim,, o 31(=, ).

The asymptotic limit

AyByg— AgBy = ! (a + }1) w+olw) as X —e, (5.17)

2¢s
was established in Lemma (4.1). Similar considerations reveal that

ByAq¢ - BeAy = & (a= %) v+ o(w), (5.18)

EA.—EA¢=%;(a-%)w+a(w),as/\—>c.

Reference to (5.17), (5.18) and (5.14) completes the proof of Theorem (2.4). B



2. Levinson’s Theorem.

We recall that the cigenvalues of H are precisely the poles of the transmission coefficient
T(w),as can be seen from equations (5,7). Hence our proof of Corollary (2.5) consists of
studying T(w).In Lemma (3.8) the following asmptotics were derived, as |A|— oo :

A0y -,

By(A) = —e ' w",

Ag(A) = —ie= Do ",

Bux) » —ie ™,
where v = %(vl + v3). Hence AgBy — ByAy ~ Zie"f:o *, and 30, by (5.14), we conclude
that

T(w) ~ e *, Al 0.

Thus, since T(w)has a limit as | A |~ oo, we can define arg T(w)so as to be continuous
for arbitrarily large radii, i. e. , as | A |= oo. The following asymptotics table follows from

Theorem (2.4), and its analogue for A = —¢ obtainable from (5.15)b, (5.16)b:

H has:  T(w) (a8 w—0) |
HBS at A=¢ C + o(1)
HBS at A= —c¢c | C + o(1) (5.19)
no HBS at A=¢ wC + ofw)
no HBS at ,\=-c‘ uC + o(w)

where we have used C for all constants # 0.In particular, A = %¢ cannot be cluster points
of eigenvalues, i. e. , we have finitely many eigenvalues in —¢ < X < ¢. Consider now the

following contour, symmetric with respect to the real axis. The upper half consists of
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semicircles about %cof radius €,a semicircle about A = Oof radius Rand the line seg-
ments [- R, —c — €] and [c + ¢, R]. We assign a counterclockwise orientation to the contour,
C.For e small enough, we see that all the poles of T(A)in (—¢, ¢) are enclosed in C. Therefore
we can apply the argument principle. Further, by symmetry, the variation of arg T()) over
the upper half-plane is the same as that over the lower half-plane.

Now let I'; denote the variation of arg T(w) around the semicircles about +e. From

(5.19), we obtain the {ollowing chart:

H has [T, |- |

HBS at A =¢ 0! —

HBS at A = -¢ — 0 | (5.20)

noHBSat )l =¢ | =2 | — |

nc HBS at A= —=¢c | — | -7 |

Letting N denote the number of eigenvalaes, we have:

2xN = Variation of arg T{(w) over C = var® over C

L +2{8(00) — &(c)] + 2[#(—00) — #(00)] + [#(—e) = B(—00)] +T_
= Ti +T_ 4+ 2{8(-¢) - &()),
where we write #(+o0)for ‘\lilinwi(,\). Therefore, taking into account (5.20), Corollary (2.5)

is fully demonstrated. ®

3. Asymptotics for Power-law Potentials.

In this section, we compute the leading order correction behavior for some specific

potentials. In particular, we prove
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Theorem (5.1): Let V(z) be such that

P2) ~ pr273, u(a) ~ 57271, 2 = o0,

2-¢

Hz)~p-272, v(s) ~ 5727275, 2 = 400,

where 0 < €,¢,8; <1,i=1,2. Then the asymptotics of S(w} are as follows:

(a) If v # Oand €3 < §3,then

. +
T(w) = !% + %%_bqu-(z + A wl+e),
Ro(w) = =1 = bev3 0? + o w?),
Ry(w) = 1+ vF b w + o(w?),

where b, = 21+'ce"%"(:(a +1))"II'(1 — s),and if €3 = 83 then

T(w) = 2 + L(vf + 05 e w't? + o(w!+2),
Ry(w) = -1 = (207 b, + vi”(b,, + E:))w" + o w?),
Ri(w) =1+ (205 be, 4 v3(bey + b, )0 + o w®?).

(b) If v = 0and ¢3 < §,then, with a as in the proof of Theorem (2.4},

T(w) = =32- + 203 b,w? + o w?),
T+ 1 +1)7°3
Ro(w) = S5h + (12T a )y 4 o),

—al 4
Ri(w) = 52 + (Slrbew® + o(wes),

with simslar formulae holding for €3 = §zand for €3 > é;.
Proof: Our proof uses the method used to prove the corresponding theorem for the
Schrodinger equation on the line (Theorem (3.1), [21}). Our integrals are those for

Ay, Ae, By and By, and so we deal only with the solutions &z, w)and ¢(z, w).



We give details here only for A4, pointing out the relevant information for the other

functions without proof. Recall,

Agw) =1+ [7em@r- {-Quat

We rewrite this as
Agfw) = [1+[°Q% + [P~ -1)Q3+

e (@-D+ g B e™ o+ pig o e(@-oh (32D

al + L(w) + I(w) + I(w) + Ii(w)

where a: is the same as in (5.15)a and I;(w),i = 1, -, 4are the remaining integrals, in

the order they appear. Consider [i(w). Withount loss of generality, we assume that both

#(z,c)and ¢(z,c)are unbounded as z — +o00,s80 that

( 2ez \ { 2z \
6(z,c) ~ ad, #z,e)~ | ag as z — 00,
1 1
' < )
2cz 2ez
8(z,¢) ~ 3, Hz,e)~ | { 8¢ as £~ —o.
L t)

Thus we have that as z — 0,-Q3} = v2¢1 + pdz ~ a$(2cv;z“"" +p 2 =
a2~® 4 o(z~®), where @ = 2¢calv],a =1 + ¢;. Then
hwy=a [ (1=t = [T - )@Y +at™).
° )

Let § > Oand choose R = R(§)so0 that [{—Qg(t)f’ +1]< é forall £t > R. Letting s = wit

we see that



Also,

R
ifo (1 - &) (Q3(t) + at~*) dt|= O(w)

and

|/:(1 - TYQIE) + at=?) dt|< w16 /: [1— e s=%ds = o{w® 1),

so that

hi(w) = aw®? /:n(l —e")s"%ds + (0w ), A= e (5.23)

It is clear that we have

Ij(w)=0O(w)as A = c. (5.24)
Next, from the equation for ¢(z, w)and ¢z, c)we have, writing ¢° for ¢(z, ¢),

b1 - ¢ =2z {32222 1) (14 7 QF) + Au(w),
$2— ¢S = (coswz — 1) (1 + fy Q%) + As(w),

(5.25)

where A1(w)and Az(w)denote the remaining terms of ¢ — 4§ and ¢3 — ¢, respectively (see
(4.4)). Looking at the term 22€sin wz [§°(cos wt—1)QJ of A;(w), we observe the following.
Let 7y = ¢, 73 = min{2n,1},and let ¢ € (n, 7). Let I(w) = 2Z¢sin wz [{°(cos wt —

<C i-’-— we deduce that

1)Q3. By estimates such as |sin wz |< Ct~l— ECT]

l1+eox

£~
| I(0)|< Cu’zt+*/? f #13Q8 < Cw’ s /3, (5.26)
)
since $##/2Q9 € L}(0, 00).In turn, the contribution of I(w)to, say I3(w),is then such that
(= -]
’/ dt e"‘vgl(w)l < Cuw’, 5.27)
()

with a similar contribution to Iy(w).
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The next result will allow us to estimate the terms involving (Q; — Q%)in the decompo-
sition (5.25), and hence their contribution to [p{(w)and Iy(w).
Lemma (5.2) (cf. [22], Lemma (2.1)(i)): Letz > 0 and let y(z, w) be the solution of (2.1)
satisfying y(0, w) = (a, ﬁ)T, a, B arbitrary constants. Then, if v # 0, y(z, w) - yo(2z) |<
¢z |2z
Notice that there is an zin the bound of Lemma (5.2) which would be absent if we assumed
v = 0(see Lemma (4.2)).

Proof: In the decomposition (4.4), v ¥ Oimplies that the term

J(z) = 2ez ()‘:" sin vz —1) (ﬂ+/:03)

2cz

has instead of the bound C (ﬁ‘—-)z,

+wz

2
=)< 02 | ] (5.28)

Therefore, we obtain

2 ‘ %
(e 0) - su(e)ls Cx [T o[22 ] [Py gt ) - o) b, (529)

whence Gronwall’s Lemma completes the proof of Lemma (5.2). 8

Now consider the term J(w) = f§ cos(z — tX Gy - Q%) of A;(w). With casin (5.26) and
(5.27), we estimate this term by Lemma (5.2) and the fact that {Q, — Q%|<

(pl + 1) ly(z,9) — yo(2)], to be

[} con e - 1@ - aa’)] < ufse (5.30)

and, in turn, we find its contribution to f3(w)to be
00 ,
l/ dte"‘ogJ(w)l < Cu’. (5.31)
° |
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As all the integrals in A;(w)and Ajz(w)can be estimated in the same way as were
I(w)and J(w) we therefore deduce that the contributions of A;(w)and Az(w)to the inte-

grals [;(w)and I(w)are o(w?). Therefore, returning to (5.21) we have, by (5.25),

L(w) = =[5 dte’™ [va(¢r — ¢§) + p(¢3 = ¢5))

= - [ dte™ {vz (%ﬁ «'%5-" - 1) 2a:ct + p(cos wt — l)ag} +o(w) (5.32)

2afcotw [7° due™ (1 -2+ c)%:—}) 8172 4 (w), A =g,
where the last equality is obtained in the same manner as was (5.23). Similardy, we find

that

Iw) = O(w'*t) as A = c. (5.33)
Combining (5.23), (5.32), (5.24) and (5.33) hence results in, as A — c(noting that O(wlte) =
o(w?))
Ayg(w) = ag(l + 97 b w?) + o W), (5.34)a
where b,, is defined in the statement of the theorem. Similar considerations for Ay, By and
Bglead to

As(w) = ag(l + v;'b.,w") + o(w?),
By(w) = B3(1 + v b5 0'?) + o w?), (5.34)b
Be(w) = BI(1 + v5 bsy ") + o w??).

Taking into account the equations (5.14), the relations (5.34) complete the demonstration

of Theorem (5.1Xa).

Remarks: Note the similarity to the corresponding asymptotics for the Schrodinger equa-

tion ([22]). It is interesting to note that the leading correction behavior for the Dirac case
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is completely determined by v3at A = ¢. The leading behavior is completely determined by

v1at A = —¢,i. e. , if we consider A = —v/u? + c3.

For 4 = 0, we use the identity (with ¢(z, w)given by (4.8)),

yi(AsBy — AgBe) = —By(w) [~ 3Z11(0) + 12(0) + [5° &' (Qa(¥) - 12 Qu(¥)) (1) ]
— Ag(w) [3211(0) + 1a(0) - [® e (Qa(¥) + $=Qu(¥)) (D)t
to conclude that (5.34)a,b produce the correct result, as ir (5.17). The corresponding

relations used to evaluate R, and R; are, respectively,

1 (OXAgBys — A4By)

= =By [{2n(0) + 1a(0) + e (@) + S Qu(w))]  (5:39)
23 [0 4 12(0) - [g0 e (Q2(9) + ()]
and
y1(0XA4By — A¢By)
= ~Fy [5320(0) + 1a(0) + [ ™ (Qa(¥) - fE=u(v))]  (536)
~Ag [~ 3201(0) + 3:(0) = [0 €™ (Qa(¥) - $E ()]

The resulting asymptotics are, as w — (A = ¢)

AyBy—-ABy = = [z’:-.}; + o7 b5, 0% + avf b, + o(w")] ,
ABy- ABy = -i= {h&ﬁ + o7 b whw® + av) b, w? + o(we )]
(5.37)
and
Tw) = Fr+ Erenrn ba®” + qarrros e’ + ou®),

Theorem (5.1)b) now follows by simply inserting equations (5.37) into (5.14).8
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APPENDIX

In this section, we prove two theorems which link the Dirac Lippmann - Schwinger
solutions, and hence the S-matrix, to the scattering operator. Theorem 1 is an expansion
theorem by means of the Dirac Lippmann- Schwinger solutions. Theorem 2 establishes the
S-matrix as a w-space kernel in the spectral representation of Hy, and hence the equivalence
of the Soperator and the Smatrix in that representation. These resnits are well known
for the Schrddinger equation ([19}, [36], [39]). But there seems to be no such results in the
literature for Dirac systems, and hence the inclusion of this appendix.
Theorem 1: Suppose assumption (2.1) holds. Let H be the operator induced by (1.1) and

let Hy= H - V. Let w € Rand write A = +V/uw? + ¢2. Then

(a) There ezist unique solutions F(V(-, 1) = ¥(-, N)and #3)(- A) = $(-, =))of the Dirac
Lippmann - Schuwinger equation (1.8). We denote these solutions by u(-, w)and v(-, w)

respectively.
(%) If 1 € L¥(R), then

1¥(w) 1| fdz(a(z,w))*f(z)r(w)
f#(w) = = 727 lim ,
1#(w) [ d=(o(z, 0))* f(z)r(w)

where r(w) = “—;ﬁﬁ,e.zi:ts.

(¢) If 1 € D(H),then

(Hf(w) = AMf#(w), where A =
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(d) Ran#* = L*(R) and for any Borel set B C (~00,¢] U ¢, 00)and f € L}(R),

[ 1t dus [ 172@) do =IPBYI?,  (Parseval equality)
B+ B.=

where By = {w € R|* w) € B}.

Also, if g € L3(R),then

< f,g>= L(f#(w))’g#(w)dw . (generalized Parseval equality)

() (P(B)f)X2) = Jilim |fp, dws(w,w)fF(w)r(w) + [5_ dwn(z, w)f*(w)r(w))-

(f) For any f € L*(R)we have
(@ ¥ (w) = f(w),

where f was defined in (1.19).

Theorem 2: Let O and S be the wave operators and scattering operaior, respectively,

defined in Chapter 1 §(p.7). Let the S-matriz as defined by (1.13) be written in the form

s(A o T(£X) R,(%))

S(w) = , where S(£A) = |}
0 S(=xA) Ri(£X) T(£X)

Let f g € S the Schwartz class of L®be such that f and § have compact support in

{wjM(w) € R\(—c,¢)}. Then

<H(S-D}>= /o Z N (5(w) = D) do,

where f()) = (f+(w)f+(-w)f_(w)f.(-w))T (ssmislarly for g{w)) and X denotes the iden-
tsity operator.
Let us begin by specifying that our basic spectral variable is taken to be w. In particular,

we consider w € ® and define A = Vw3 + ¢, so that = A € f[e,0), =X € (—00,—c¢]; and
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when we speak of complex spectral parameter, we mean A + i§, where § € R and ) is
as above.
First, we establish the existence of the Dirac Lippmann-Schwinger solutions for (1.1),

i. e. , the solutions with representations, for w € R,

s(z,w) = svo(z,w) + [Oo Wi(w)e* -V (t)u(t, w)dt +

P WI(w)eeE-0V (t)u(t, w) dt,

f: +(w)e ()u( w) (AI)
v(z,w) = volz,w) + ffwW_(w)e"("')V(t)v(i,w)df+

I W (w)e™ =V (t)(t, w) dt,

where

1

%o(z,w) = €%, vo(z, v) = e,

] A
Tre 3
éiﬁ -1 X 1
Wow)=s]| ™ and W_(w) = - | **

2 " ) e
LI =2 -1 -5

We begin with the solutions (s, ), 2(z,A),A complex, established in Chapter III.
Let A € {¢,00) be as above. Then the pairs y(z,A),y(z,A) and z(z,1),2(z,A) form a

fundamental system of solutions of (1.1). Denote by X, X_, respectively, the vectors

1 , 1 .
iws -iws

Ave -

]

Keep in mind the asymptotic behaviors
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y~X;, I~X_ asz > +o0,
(A.2)
z2~X_, Z~ X, asz = —00,

where we have suppressed the (z,A) dependence. Then we write

2= aj+by,

Z=cy+dy,

where a = a(A),b = H(A),e = ¢()) and d = d()). Simple Wronskian evaluations using
(A.2) then reveal that a = %;%‘W[z, y),db= s%}.ﬁW{z,ﬁ],c = i},i_ﬁW[?, y) and ad = be = 1.

This permits us to write

=gZ —e2,
(A.3)
z=ay+ by.
We then divide (A.3) through by a(1) to obtain solutions of (1.1) defined by
8(z,w) = T(AMi(z,A) = Zz,A) + R(A)z(2,A), )
(A4

i(z,~w) = T(A)z(z,A) = §(z,A) + R, (A)y(z,}),
(which are defined for all complex numbers A) where T(A) = 1/a(A), Ri(A) = —¢(A)fa(A),

R,(A) = & A)/a()). Then the solution

| #(z,w), w>0,
s(z,w) =
(z,-w), v<0,

is seen, by substitution and use of (A.1), to satisfy the Dirac Lippmann-Schwinger equation

for u(z,w). The equation for v(z,w) is similarly obtained by considering the solutions

y(z, =), y(z,-A), and z(z,-A),z(z,<A). The uniqueness {ollows from the uniqueness of

the Jost solutions, hence establishing part (a) of Theorem 1.
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From the representation (1.4) of Green’s function and the asymptotic behavior of the
solutions ¥.(z,A) of (1.4), which may be obtained from (3.10), we easily obtain
Lemma (A.1): Let G(z,y; \)denote the Green's function for (1.2) Let Sa > 0,3a? #
0 and define H(z,y; a) = G(z,y; Vai ¥ 3). Then H(z, ,a) € LY(R) almost everywhere in z.
Let us recall the integral representation (1.5) of the resolvent, Ry f(z) =
JG(z,y; A)f(y)dy. If we let Go(z,y; A) denote the free Green's function, then the second

resolvent equation, By — Rox = RgaV Ry, yields
G(z,y; 1) = Go(z, 5, A) + [ Go(z, z; A)V(2)G(z, y; A) dz. (A.S)

The idea behind our proof is now to relate the Dirac Lippmann- Schwinger solations
3(z,w) and v(z,w) of (1.1) to the (componentwise) Fourier transform of the Green’s

function, which exists by Lemma (A.1). Let us introduce the function

oz, w,a) =[5 W(w)eZ-0V ($)[ue(t, w), 8,(t, ~w)] dt+
(A.6)

2 WT(w)e~ o=V (t)[wo(t, w), no[t, —w)] dt.
Let g(z, w; @) denote the (componentwise) Fourier transform of H(z,y; a), with w >0,

viz.
gz, w;a) = 7;7]! e 't H(z, t;a)dt, w > 0. (A.7)
Now let

hiz,w;a) = \/2_‘1’-“/\] - I\/aj +c3 Deg(z, w; a) = [8o( 2, w), 80(z, -w)] + aM)(z, w; a).

(A.8)

Then we have
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Lemma (A.2): Forw € R, Sa > 0and Sa? # 0, K (z,w; a; satisfies the equation
h)(z,w;a) = p(z,w;a) + Jg Ho(z,t; @)V ()AL, w; a) dt, (A.9)
where p(z,w,a) s defined in (A.6). Moreover, h(z,w;a) is uniformly continuous in all

its arguments for Sa > 0, and in particular, h(z, w;|w]) = [#(z, ), 8(z, ~w)).

Proof: From the kernel equation (A.5), H{z,y;a) obeys
Bz, 5i0) = Bo(z,5:0) + [ Holz, )V (DB yia)dt

If we take the Fourier transforms with respect to y (all integrals involved are absolutely

convergent), we obtain then
gz, w; a) = go(z, w; @) + [ Ho(z,t; )V (t)g(t, w; ) dt. (A.10)

However, go(z,w;a) = 7;-7 (lAl - lm@)-l [wo(z, w), so(z, ~w)], and hence (A.9)
follows from (A.10), (A.8) and (A.6). Via standard arguments, one sees that A(z,w; a)
is uniformly continuous in all its arguments. The last statement follows from (A.S) using
(A6)and (A8).m

An immediate corollary to Lemma (A.2) is

Corollary (A.3): Let f € C§°. Then
#(w;a) = 5= [ (W2, wia)) Ho)(w)ds
’ 2% » y Wy

and

12(0) = = [ (u(z,0))"f(£)r(w) dz
N

ezist. Furthermore, ®(w;a) has an extension to @ € R with vVad + &3 € [e,0) and the

extended ® is uniformly continuous in w,a. In particular, ¥(w;|wl) = ff(w).



Let us note that we have obtained ff as ff(w) = (ff(w),f#(—w))r, forw > 0. We
shall use this decomposition again in proving Theorem 2. In what follows we shall, unless
otherwise specified, assume that w € ® and simply write ff (w). The existence of ff (w)
for f € C® {follows similarly by replacing A by —A (A > ¢} in the above argument, i. e.
by considering the interval (—oo0,~c] and hence the Dirac Lippmann-Schwinger equation

for v.

Lemma (A.4) (Pamseval equality): Let f € C3° and let [a,8] C [e,0). Then

MRaaflt= [ 1@ o+ [ (@) .

<-ag

Proof: The Pamseval equality for ordinary Fourier transforms implies
[ECzaEE R = [ oz, w0, @) do

a.e.inz,y and Sa > 0,3a? #0. From (A.8) and writing 8 = Va® + ¢? = i + ie, this
becomes
(B-B)JHQ z;)H(t,y;a)dt = | ﬁ%—;—;h(z, w; a)h(z, w; a). (A.11)

Maultiplying both sides of (A.11) by (f(2))*f(y) and integrating with respect to z and y,

the left side gives
(B~B)< Raf,Rgf >=(B—B)< RgRgf,f >=<(Rp— R)f, 1 >, (A.12)

where we have the first resolvent {formula, having noted the absolnte convergence of the
integrals considered and freely interchanged the order of integrations. Multiplying the right

side of (A.11) by the same {actor yields
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2t¢ . . =12

LY [&(w; VB, (A.13)
where once again $(w;-) is valid for all A € R. Using the fact that a,b are not eigenvalues
and a well known property of the function k(z) = f: (—3)37-—7 dr one obtains from Stone's

T-T)é+c

formula ([35})

1 1)
< f,Fay)f >= mljﬁl < £,(Rp - Rg)f > dp. (A.14)

Therefore, combining (A.14), (A.13) and (A.11) we obtain
=it [ o s oY
”P{a,b]f" "‘l‘lﬁ}r . dp dw(/\—p)2+€8 iqw:\/ﬁ)l . (A.15)

By the boundedness of &(w;/B) and a short argument using dominated convergence, we
can interchange the 4 and w integrations and take the ¢ —limit inside the w integral. If

is a standard fact that for g contQOinuous,

. 1 78 € g(“)v a< p<b,
hm,w-;/

Hence (A.15) now becomes

Ilﬁ%b]“’: fa(ﬂ(b do | w;lw]®. (A.16)

However, ®(w; jw|) = f¥(w), and so the lemma fallows, taking into account the comments
following Corollary (A.3). 8

We have so far proved (a) of Theorem 1. Part (b) has been proven only for f € CF(R).
However, standard approximation arguments establish (b) for arbitrary f since CP(R) is
dense in L3(R). Part(c) is self evident from the definition of #, once # is shown to be

surjective. The Parseval equality will follow from Lemma (A.4) by standard approximation
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(and the generalized equality follows by pclarization) once we establish the suxjectivity

of #.

Now, we have that
N Reiit IP= feaall ()P + 1 1F (w)Pdw, f € CP. (A17)
Let g € C§°. Since (A.17) holds, it follows by polarization that

< g, Bei)f >= [ecrilg? (o))" 1# (w)r(v) dw =
7157 f! dz[g(z)]. fcs,\sﬂ dw[s(z, w)’ ‘D(I, w)}j#(w)r(w),
so that

(PepfX2) = 73,; Jecacs dulu(z, w), v(z, w)}f#(w)r(w). (A.18)

Hence if # is surjective, part (¢) of Theorem 1 follows from (A 18).

We now aim to show that the operator S is equivalent to multiplication by the S-matnx
in the spectral representation of Hy. In this direction, Lemma (A.7) proves to be the main
link between the two quantities. In particular, this lemma provides the first link between
the Dirac Lippmann-Schwinger solutions of Theorem 1 and the wave operators, hence the
operator S of Theorem 2.

Before proving Lemma (A.7), we need a well-known preliminary result on Abelian limits,

whose proof we only include for completeness.

Lemma (A.8): Let f(z) be a bounded measurable function such that lim,._, o fg f(s)ds =
C. Thenlimyyq [5° e~ f(s)ds = C.

Proof: Let f(z) be as prescribed. Define g(z) = [ f(s)ds and h(e) = [ e~ f(s)ds.
We have that g(z) is continuous, g(0) = 0 and lim,.. g(z) = C, whence g is bounded.
Aleo, g'(z) = f(z) ace,.
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Therefore,

Me) = [ e 1 (s)ds

= lim;oo g €79 (8)ds

= lime oo [fy c€™“'g(s) ds + e="g(z))].
Thus,

h(e) = [5° e g(s) ds, (A.19)
and so
he)—-C = F ce ' [Ks) - Clda.
Thus given § > 0, choose R such that {g(z)—-C|< 4, for all z > R, toobtain |h(e)—-C|<

eR(C+ |lgllco) + 8, and the lemma follows. @

Corollary (A.8): Let M = {f € He|f* has compact support in some set {wla <|A|<

b}}. Iff €M and g€ Cg°, then
< 1,0 =Dg>=limgo 771 < f,eTVerHolg > et . (A.20)
Proof: From the definition of ¥ we have that
0% g = lim g [§® dseet?etHie1Horg, (A.21)
However, it is easy to show that
% < f,é8te Bty 5= ¢ f, BV et Botg 5,

so that (A.21) implies that

< £,(6F =My >= lim f i< feHtye g S 4t
-3 Jg



The corollary now follows from the Lemma. ®
Lemma (A.7): (@) /) (w) = f#(w).
Proof: Suppose f,g satisfy the hypothesis of Corollary (A.6). By Theorem 1 (c) and (d),

we have

< f, elﬂlye—dﬂo!y > = fl dw(f#(w))‘e““"(Ve"H‘"g)#(w)

L (u(z,w))* |
= 73—,f: dw(f#(w))rer4 fdz Veillotg(z)r(w)).
(v(z,w))*
Therefore
o Tdt< £, ety e=tHotg 5 ot =
L [t fydu fyder(wxrEoyrets | Ty mtgen
(v(z,w))*

= A=y ¥dtfdu[dz ( 1¥(w)e ¥ (x(z, )V (z)e Fotg(z )+ (A.22)

F(w)e-M(o(z, w))‘V(z)e-"Ho'g(s)) e%r(w)

= A= fy™dtfdu [ds (ff(w)(s(z, ))*V (2 e HHo- A+ g )4

Fw)v(z,0))*V () Hot A1 gl z))r(w).
The integrand is bounded independent of ¢,z,¢, and so we may interchange the order of

integration. The ¢ -integration gives then

Jo © di(e~ M Ho-dHi gy gy = —§[(Ho ~ A + i€)~1g)(z) (A23)

= i [[2 o Wi(@)e"® = g(s) ds + [ W (t5)e™* ") g(s) d]

and

j;-ce d‘(e—lt(ﬂo+'\+i‘)gxz) = —II(HO + /\ + ie)‘lg](z)
(A.24)

= =i [J2 W_(5)e®¥~g(s)ds + [ W (e 9 ~g(s)ds],
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where © = /(A —tef — ¢ and & = /(X + t€)? — c°. Inserting (A.23) and (A.24) into

(A.22) yields

Jo P dte < f,etH Ve Hoig 5=

7-5'; fdw fdz f:m d‘ [ff(w)(u(z, w)).V(Z)W+(iE)gi‘(’°')y(a)+

ff(w)(v(z,W))‘V(Z)W»(tﬁ)e“""’a(c)] (1)~

i J o [ do [ [FECoXata w)PV (W (@)oo~ g(o)+

TE@X ez, o) V(W (B)e~He-25(0)] ().
Again, the integrands on the right hand side are bounded independent of €. So we can

interchange the z and s integration. Inserting the result in (A.20) and taking the limit

inside the integral results in

<f,8tg)-< f,g>= -67127fdw ds [ff(w)[u(a, w)— ug(s, w)]*

+7E(@le(s,0) = wala, 0} ] A0)r(w).
One more appeal to the generalized Parseval equality completes the proof of the lemma for
f€M,g€CP. Since C° is dense in L?(R), and M is dense in Hy . , the lemma is

proven for arbitrary f.®
As a corollary to Lemma (A.7), we obtain part(f) of Theorem 1 by the sample calculation
@ nF=[aryratn =41
Another corollary is the surjectivity of #, which we reason as follows: (*)*Q* =1 =

(Q*)* is surjective. Therefore, {(R*)*f|f € L*(dz)} = L*(dz). But A is sugjective, o

that {[(0+)*f1" |1 € L} (z)} = L3(w). And hence # is surjective by Lemma (A.7).
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We are now in a position to complete the proof of Theorem 2. Let S denote the

Schwartz space of functions in L3(R). Let f,g € S be such that f(w), §(w) have support

respectively in {w}a; <]A|< b}, =1,2. Then

<f(S-X)g>=<f,(2 ~Z)Yg>=< (2" - 0%)f, 2g>=

Lmy o [Tp < BV )e Hot f Qg > dt =
limgjo —5) [ eltl < e H'Ve—iHotf, Nt g > dt,

and so

< 1,(5 =T >= limejo(=i) fg dte~H fy duw [ (Ve 1) ()] (@ )*(w), (A25)

where we have used Lemma (A.5) and the generalized Parseval equality. By part ({) of

Theorem 1, we have (2*g)*(w) = g(w), and, by part (¢),

(e‘H'Ve“H°‘f)#(w) = e‘\A‘(Ve“H°‘f)#(u)
N KX .
mfgdze' V(z)e *20 f(2)r(w).
(v(z,0))°

By choice of f, we have

(e"m"j)(z) = 73L:fl {C-u"j.f,(w' Yolz, w) + e““fl(w' Yooz, w)} r(w')dw.

Hence (A.25) becomes, using (A.26) and (A .27), suppressing the elimit ,

< 1,(5 =g >= G [ dt [y dw [y dz [3 d' r(w)r(w’)
{ efitl gAAL *(z,w)) V(z)
(v(z, w))*

\

le=4F (0 )uo(z, ') + e f_ (w0 Ino(z, w’} o)

(A.26)

(A.27)

75



At )
= ) fpdt fpdw [gds fgu' qem s V(z)
e~ (o(z, w))*

{e-d,\'tﬁ(w’)‘o(z’w').*.;”‘"f_(w')vo(s,w')] | §w)r(w)r(w')

= (2] [ Rdt fy dv [y do [y dw r(w)r(v')
o=l ((z, )"V (2)s0(z, 0 )P NF, (' )+

(v(z, w))*V (2)no(z, w YO+ f, (w' )+
(a2, )V (2)u(e, )M (w) ||
’ | ¢ g(w).

(o(z, 0))*V (2 )o(z, 0 Y~ -V ¥f_(w')

By our choice of f and the hypothesis on V, the integrand above is absolutely inte-
grable. Looking at the t-integration and bearing in mind that both A and X' are positive,

we see that the terms involving e**+2) will vanish as we let ¢ — 0. Thus what remains is

<5 (S-Mg>= G [, dv' [ydu fydz [ydt
(8(z, )V (2)mo(z, w )eA-3 =M f (') ,
, Hwyr(w)r(u')
(v(z, 0))*V(z)vo(z, v e A=A W-cltif_ (')

which, upon performing the ¢-integration, becomes

< 1,(S-Mg>= G fydv [ydv fydz

[ (a(e, 0))V (Yo, & )Fu (') | (4.28)
(5 oDV (molz, 0 ){+(w ‘ (“‘*‘?‘_'3_3 )a+€z§(w)r(u)r(w' )-
(o(z, ))*V(z)vo(z,w ) f-(w')

Noting once again that the integral is absolutely convergent, we take the ¢-limit inside the
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integral to obtain, {from (A.28),

< 1,(S-Ig>= i fgdv fpduw [gdr

(8(z, )"V (2)vo(z, 0 )f4(w') s ( (o' )(w+v)
(v(z,w))*V (z)oo(z, ') f_(w0') VeIV Yl

)é(tB)f(W)f(w')-

Splitting the w— and w' — integration in the fashion
Jpdw fgdv'() =
Podwf® du'()+ [0 duw [P du'( )+ [Pdw [P dw'()+ [ dw [ duw'("),
arranging the integrals in the order dwdz dw' and performing the w' integral yields

< £,(§~Mg>=(=i) [ dv fy dz\/XE r3(w)

((s0(z, )V (2)n(z, 0)f1 ()34 (w)+

(vo(z, w))*V (2)v(z, w)f_(w)§-(w)+

(vo(z, 0))*V (2)8(z, —0)f 1 (~0)gs (w) + (vo(2, ©))*V (2 )o(z, —w)f_(~w)j-(w)) (A.29)

+(i) Jo° du fy dzy/ 25 ((vo(2, )V (2)8(z, —0) fs(~w0)gs (w) +

(vo(z, w))*'V(2)v(z, —w)f(—w)js(w)

+(uo(w, W)V (2)8(z, 0) ] (w)§s () + (20(z, )V (2)0(z, w)f-()§-(w)) r¥(w)

where we have used the fact that

(8(z, w))*V(z)wo(z, w) = (wo(z, ))*V(2)u(z, w),
and similardy for other terms.
Recalling that $ =X + A, where A was defined in (1.12) as

A+e

2iw

AQ) = /; dt[so(t, w), wo(t, —w)]°V (1)[s(t, w), 8(t, =w)], A >0,w > O,
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and similarly for A(—)), (A.29) then becomes for w € R, A = +Vw? + ¢, r(w) = \/35“3-(,

<1,(5 = Dg >= [ dw (TN ()34(0) + Ti(=X)f_(w)g_(w)+

R(A)f4(~w)gs(w) + Ri(=2)f-(=w)j_(w) + To(A) f1(~w)gy (~w)—
T(=Nf-(=0)j-(=w) = BN f1(0)i-(-w) = R(-N)f-(w)j_(-w))

where T,/'(i/\) = T,;(£A) = 1, with the coefficients T, ,(+1) and R,/,(;EA) given by
(1.9).

This concludes the demonstration of Theorem 2, and hence establishes equivalence of
the S— matrix and the operator S in the spectral representation of Ho.®

QED
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