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Abstract

With the rapid and ubiquitous deployment of mobile communications in recent years, co-
channel interference has become a critical problem because of its impact on system capac-
ity and quality of service. The conventional approach to minimizing interference is
through better cell planning and design. Digital Signal Processing (DSP) based interfer-
ence rejection techniques provide an alternative approach to minimize interference and

improve system capacity.

Single channel adaptive interference rejection techniques have long been used for enhanc-
ing digitally modulated signals. However these techniques are not well suited for analog
mobile phone system (AMPS) and narrowband AMPS (NAMPS) signals because of the
large spectral overlap of the signals of interest with interfering signals and because of the

lack of a well defined signal structure that can be used to separate the signals.

Our research has created novel interference rejection techniques based on time-dependent
filtering which exploit spectral correlation characteristics exhibited by AMPS and
NAMPS signals. A mathematical analysis of the cyclostationary features of AMPS and
NAMPS signals is presented to help explain and analyze these techniques. Their perfor-
mance is investigated using both simulated and digitized data. The impact of these new
techniques on AMPS system capacity is also studied. The adaptive algorithms and struc-
tures are refined to be robust in various channel environments and to be computationally

efficient.
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Chapter 1. Introduction to the Research

Chapter 1. Introduction to the Research

1.1 Problem Statement

Cellular phone services and personal communication services have grown rapidly in
recent years. With limited spectrum available for transmitting mobile phone signals,
increasing system capacity has become a primary objective for many mobile phone com-
panies. Interference, in fact, is the key problem limiting system capacity. Different mod-
ulation techniques have been developed to obtain more system capacity. For the current
advanced mobile phone system (AMPS), which uses frequency division multiple access
(FDMA), all users share different frequency slots. The radio frequencies (RF) for one
region are reused in a non-adjacent region to avoid interference. For time division multi-
ple access (TDMA) systems, all users occupy different time slots within a frame. For code
division multiple access (CDMA) systems, each user is assigned a different spreading
code which can be transmitted in the same band. Although the new technologies like
CDMA and TDMA promise more capacity than AMPS, the cost to implement these new
technologies is currently very high. These technologies may never fully supersede AMPS
because of the need for backward capability and AMPS is the only standard deployed
nation-wide. Unfortunately, AMPS is only 1/3 to 1/20 as spectrally efficient as these new

modulation formats and will continue to be a hindrance in improving system capacity for

the cellular service providers.

Cell splitting is the typical solution to obtain increased system capacity from AMPS in a
region. However, creating a new cell is a costly proposition, requiring surveying the area,
acquiring property, constructing cellular facilities, and reconfiguring the cellular network
to handle the new cell. This approach is expensive since each new cell site can cost from
$500,000 to $1,000,000. An alternative to the new transmission technologies and to cell
splitting is to use interference rejection techniques to increase the system capacity. We

expect this approach to provide a more economical solution for improving AMPS system
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capacity and signal quality.

The goal of this research is to develop practical robust interference rejection techniques
for AMPS and to show the impact on system capacity. Adaptive antenna arrays can effec-
tively reduce channel interference, but this is still an expensive solution and difficult to
implement. Single channel interference rejection techniques are much less costly. How-
ever, until recently these techniques have not been very effective, primarily because of
lack of signal structure which can be used to discriminate the interference. In this
research, one of the common features for many digital and analog communication signals,
cyclostationarity or equivalently spectral correlation, has been successfully applied to dis-
criminate signals. New interference rejection techniques have been developed that exploit
the cyclostationary features of AMPS signals. The new interference rejection techniques
could, through upgrading the current base station or mobile station receiver, offer the
needed extra capacity without creating an expensive new cell and can work without modi-
fying the AMPS standard. These techniques increase system capacity and provide a sig-
nificant improvement in voice quality. This capability could provide a unique marketing

feature for a cellular phone manufacturer in an extremely competitive business.

Military applications for interference rejection are also numerous. The most obvious
applications are in mitigating the effects of intentional jamming and providing improved
reconnaissance capability. The military has always been interested in single channel tech-
niques for interference rejection because they are generally cheaper, less complex, smaller

in size, and more suited to rugged military applications than multi-channel techniques.

1.2 Significant Contributions of this Research

The cyclostationary characteristics of an AMPS signal are first analyzed in this research.
Theoretical analysis and measurement of the cyclic features of the AMPS signal are inves-
tigated and these features provide the key in creating the interference rejection algorithms.

The cyclostationarity of the AMPS signal is exploited by using a linear frequency-shifted
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(FRESH) filter, a class of time-dependent filters. By exploiting the cyclic features, the
base station receiver can reject co-channel interference caused by frequency reuse. The
new techniques developed in this research are flexible and robust and are also easy to
implement in real systems. They do not need prior information, such as a training signal.
The techniques increase the carrier to interference ratio (CIR) dramatically, and thereby
improve the system capacity. Our results show that by using these novel interference
rejection techniques, the seven-cell reuse pattern of the current AMPS system can be
replaced by the three-cell reuse pattern, effectively doubling system capacity and reducing

the probability of dropped calls.

In particular, the following specific significant original contributions have been made.

« The spectral correlation characteristics of AMPS signals are analyzed for different
channels impairments. The characteristics of NAMPS signals are also derived. The
analysis has broad applications in the fields of interference rejection, signal detection,
signal classification, adaptive array processing and geolocation.

« The theoretical performance of the optimal time-dependent filter is derived for various
channel impairments, including: co-channel interference, fading and noise. This anal-
ysis has been experimentally verified through extensive simulations.

« Five new adaptive filtering algorithms have been developed for AMPS and for
NAMPS co-channel interference rejection. Four new blind adaptation techniques have
been created for adapting the time-dependent filters. These techniques are robust to
mobile channel impairments and some are computationally attractive for implementa-
tion at a mobile unit.

« The impact of interference on cellular system performance has been analyzed by com-
puting the probability of co-channel interference for fading channels and for fading
channels with lognormal shadowing. From this analysis, the probability of cell cover-
age above a particular CIR is determined for both a mobile station and a base station.

« The impact of the new interference rejection algorithms on cell coverage is computed.
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It is shown that capacity is approximately doubled by using the interference rejection

techniques to reduce the frequency reuse factor.

1.3 Overview of the Research

Below is a summary of the chapters composing this dissertation.

Chapter 2: Literature Review of AMPS Interference Rejection Techniques
Different single channel interference cancellation techniques are surveyed that are appli-
cable to AMPS. The basic ideas behind these techniques are documented, noting their

respective advantages and disadvantages.

Chapter 3: Second Qrder clostationari
Cyclostationarity is a characteristic of most digital and analog modulated signals. An
overview of the theory of cyclostationarity is presented. Along the same lines, the spectral

correlation characteristic inherent to cyclostationary signals is reviewed and documented

in this dissertation.

Chapter 4: Cyclostationarity o PS Signal

This chapter establishes the mathematical framework for analyzing the time-dependent
interference rejection techniques. A general FM signal does not exhibit cyclostationarity.
However an AMPS signal with a supervisory audio tone (SAT) exhibits cyclostationarity.
This cyclostationary feature of AMPS with a SAT is derived and is verified by measure-
ments. Effects of practical channels on this feature, such as noise, co-channel interference

and fading, are theoretically computed and verified by simulations.

Chapter 5: Optimal and Adaptive Time-dependent Filters
A cyclostationary signal that exhibits spectral correlation characteristics can be used by a

time-varying filter whose periodicities correspond to the cyclic frequencies of the desired
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signal. Time-dependent optimal filters are designed to take advantage of the cyclostation-
ary properties. The theoretical performance of this optimal filter in different radio chan-
nels is presented in this dissertation. Performance analysis and improvement
measurements include the improvement of CIRs, demodulated voice waveforms and SAT

mean squared error (MSE) of the AMPS signals.

Radio channels change dynamically and thus a practical filter for interference rejection
must be adaptive. To make the time-dependent adaptive filter (TDAF) effective in less
than ideal environments, various adaptive algorithms are developed. These TDAFs are

robust in realistic channels and have low computational complexity.

Chapter 6: Time-dependent Adaptive Filtering Techniques for NAMPS Co-channel Inter-

ference Rejection

In this chapter, it is shown theoretically that the AMPS and the NAMPS signals have sim-
ilar spectral redundancy characteristics. The TDAFs developed for AMPS signals are
modified and applied to NAMPS signals. Simulations show that the interference rejection
performance gains for NAMPS are comparable to those obtained with AMPS.

Chapter 7: Statistical Analysis hannel Interference and Capacity Improvement Pro-
vided When Using Interference Rejection Techni

Statistical properties of both adjacent channel and co-channel interference are discussed in
this chapter. Given the improvement in signal quality provided by interference rejection
techniques, it is possible to determine their impact on system capacity. The reduction in
co-channel and adjacent channel interference is shown to produce a significant increase in

system capacity considering both the base station and mobile station perspectives.
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Chapter 2. Literature Review of AMPS Interference Rejection Tech-
niques

In the past decade, considerable work on interference rejection for digitally modulated sig-
nals has been done. This interference rejection research can be divided into two catego-
ries, spread spectrum techniques and non-spread spectrum techniques [LR94]. However,
little research has been focused on interference rejection for analog modulated signals.
The reasons behind this lack of research are: a) analog communication systems are being
phased out because of system capacity needs and limitations of service that can be sup-
ported; b) interference rejection is more difficult for analog modulated signals because of
their lack of structure. This makes co-channel interference mitigation a more difficult
problem for AMPS signals, especially using single channel interference suppression tech-
niques. Previous interference rejection techniques that are applicable to AMPS signals

can be classified as follows.

1) Cross-Coupled Phase Locked Loop (CCPLL)

Cassara and Schachter [CSS80] designed the cross-coupled PLL for single channel inter-
ference rejection in 1980. In Fig. 2.1, the novel detector consists of two phase-locked loop
demodulators inter-connected in such a manner as to permit one PLL to lock onto and
track the strongest received signal, while the other loop tracks and demodulates the weaker
signal. The demodulator has two separate outputs, namely the outputs of each PLL, and
thus possesses the capability of demodulating both signals even though they are co-chan-
nel signals. The demodulator is conceived using parameter estimation theory based upon
maximum a posteriori (MAP) estimation techniques [SCS77]. Such optimization proce-
dures led to a receiver structure which estimates (in the MAP sense) the phase of a FM sig-
nal when corrupted by a co-channel FM interferer plus additive white Gaussian noise.
This technique was also studied by Martin [Mar84]. Other improvements using adaptive
processing to help the PLL track both the stronger and the weaker signals were also devel-
oped based on this model [BCD84].
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2) Extended Kalman Filtering

Due to the nonlinearity in the measurement equation in a PLL, an extended Kalman filter
is used [Bra92]. The resulting system is composed of two interconnected second order
PLLs, each of them tracking one of the two FM signals. The derived estimator was differ-
ent compared to the previous CCPLL in the area in which maximum a posteriori estima-
tion techniques and adaptive filter theory were combined to derive the CCPLL. The new
system has variable loop gains, a different amplitude estimator structure, and an intercon-
nection between the internal states of the PLLs. The Kalman filter is capable of produc-
ing accurate phase estimates in situations where CCPLL behavior is chaotic [Bra92].

However, this is traded off by greater computational costs than the CCPLL.

3).Adaptive Linear Enhancer (ALE)

David [DSE83] developed an adaptive structure which enables the detection and enhance-
ment of narrow-band signals which are corrupted by broad band noise. A parallel config-
uration of second-order IIR adaptive filters is utilized, thus allowing detection of multiple

signals [Dav84]. The IIR structure has an inherent advantage over the all-zero FIR filter

N - demodulated
4 _stronger signa low pass output #1
+ filter |
tracks PLL#1
90° phase Stronger
shifter | signal
received Veor
signal
—
VCO#1
90° phase
shifter PLL#2
v - demodulated
+ low pass output #2
filter

weaker signal

Fig. 2.1 Block diagram of cross-coupled PLL receiver
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received signal
x(k)

=

e’(k)

4 +
(k) e(k)
— ™ H(z) >

enhanced output

Fig. 2.2 ALE structure

due to the fact that linear enhancement is an application which requires a high Q resonant

filter. The transfer function of a single IIR filter shown in Fig. 2.2 is

(1-r)a—-z")

1—(1+ r2)az—l +r277

H(z) =

2.1
where r determines the pole radius and a specifies a normalized angular frequency accord-
ing to the relationship ©® = cos™\(a). This transfer function has zero phase shift and a peak
gain of unity at frequency ®. The pole radius determines the bandwidth of the filter.
However, there are two major difficulties related to the utilization of IIR adaptive algo-
rithms: stability maintenance during the adaptive process and convergence characteristics

on a non-quadratic and potentially multi-modal performance surface.

4) [IR Adaptive Filter Bank
Martin [MP93] examined the performance of the IIR adaptive filter bank. This con-
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strained adaptive IIR filter consists of a cascade of biquadratic notch sections and is used
to track multiple sinusoids. The structure can be used to isolate individual sinusoids. The
transient response is approximately independent of the number of sinusoids and their
power levels. The IIR structure is very computationally efficient for the enhancement of
sinusoids, especially when the sinusoidal frequency is much less than the sampling fre-
quency. It is especially useful for the detection and isolation of multiple sinusoids. It can
also be used to analyze the spectrum of short data streams with high resolution. An adap-
tive IIR filter can also be designed to track the various FM signals. The idea is that a nar-
rowband adaptive IIR filter has the resolution to separate closely spaced narrowband
signals, observed over a short time interval. The adaptive IIR filter can be configured in an
adaptive linear-enhancer mode, and is constructed from cascading adaptive second order
notch filters. The advantage of this arrangement is that multiple interfering signals can be
canceled by multiple IIR filters and stability is easily assured by constraining the pole
radius to be less than unity for each second order filter. The algorithm is simple and
requires few computations. Convergence is obtained using a simple LMS algorithm typi-

cally within 200 or 300 data points.

These three algorithms have limitations when the frequency of the desired signal and the

interfering signal are very close, which is the case usually observed for co-channel AMPS

signals.

5) Geometric Subtraction

Bar Ness [Bar88] suggested a method for interference suppression and signal separation
of angle modulated signals. The method is designed particularly for co-channel interfer-
ence suppression. The main idea is to use amplitude variations of the composite signal
(the strong plus weak signals) to estimate the parasitic phase distortion introduced by the
interference. Consider the received signal as a summation of two signals:

Sl =4 lsind)l(t)
(2.2a)
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and
Sy =A,s5in®(1),

(2.2b)
where 4; and 4, are the constant amplitudes of the interference and the desired signal,
respectively. The angle modulation functions are given by

D ()=0+¢;(2)
(2.3a)
D, ()=t +y(0).

(2.3b)

where ¢;(¢#) and ¢,(¢) are the phase information of S} and S,. The composite signal is

given by

1
S() = Az[l +(j—;)z+2(%)cosd)(t):|2sin[®2(t)+(pp(t)] ,

2.4
where  @(t) = ©,(1)—D,(t) = (0; —w,)t+@,(t)—@,(t) . The parasitic phase
¢,(?) is computed by

j—;sin(b(t)

@,(t) = atan

1
+ —
1 2cosdJ(z‘)

2.5)

10



Chapter 2. Literature Review of AMPS Interference Rejection Techniques

Fig. 2.3 Parasitic phase estimator
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Fig. 2.4 Basic block diagram of geometric subtraction
interference suppression method
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The parasitic phase ¢,(#) can be eliminated if ®(¢) is properly estimated from the ampli-

tude detector. This estimate can be utilized to cancel out the distortion at the composite
signal and obtain the desired (strong) signal’s angle information. The weak signal is then
obtained by suitable subtraction from the composite signal after limiting, thus resulting in
the separation of the two signals. The geometric relationship of the two signals and the
block diagram of the geometric subtraction method are shown in Fig. 2.3 and Fig. 2.4,
respectively. An adaptive method can also be applied to improve the estimates and results

in a better cancellation of interference [Bar89].

This is a straight forward technique which uses the angle relationship of two FM signals.
In our early stage of the research, this method was implemented. Results show that noise
tends to make the estimation of the amplitude less precise, yielding in an inaccurate esti-
mate for the parasitic phase. The phase estimate may be dominated by the noise, not by
the FM signal. The amplitudes of signal of interest (SOI) and signal not of interest (SNOI)
can be estimated effectively for a very low noise level by observing the minimum and
maximum values. The noise problem limits its practicality for real channels. For a high

level noise and a fading environment, more sophisticated estimation procedures are

needed.

6) Adaptive Notch Filter

Rich and Cassara refined and extended the adaptive tracking notch filter which was first
proposed by Baghdady [RBC94]. This notch filter is useful for suppressing co-channel
FM and CW signals and allows a simple, practical realization of very high Q adaptive
notch filters using either analog or digital technology. The block diagram of this filter is
depicted in Fig. 2.5. When the instantaneous frequency of the stronger interfering FM car-
rier signal is known precisely, it can be eliminated. Placing an additional adaptive notch

filter in front of the stronger interfering signal improves the estimate of this signal.

12
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frequency controlled
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of the stronger signal
LPF —

Fig. 2.5 An open-loop (Baghdady) interference suppressor using an adaptive notch filter

7) Robust Limiter-Discriminator Demodulation

The response of a conventional FM discriminator in the presence of noise and co-channel
interference was investigated by Mizuno and Shimbo [MS94]. Stojanovic and Dukic
[SDS81] improved the performance of a conventional FM limiter-discriminator for co-
channel interference. The principle behind this demodulator is simple. An ideal FM sig-
nal has a constant envelope, while the envelope of a desired FM signal corrupted by inter-
ference varies randomly with time. Consider the demodulator in Fig. 2.6, some
information about the interference phase can be obtained by detecting the square of this
envelope. This signal and the signal from the output of the conventional limiter-discrimi-
nator are jointly processed and optimized to minimize the baseband interference noise. |

This optimization process involves matching the two weighting networks H;(jw) and

Hj(jo) based on knowledge of the statistics of the desired and interfering signals.

8) Neural Network
Howitt, Reed, and Hsia [HRVH93] surveyed recent developments in applying neural nets

for equalization and interference rejection. The ability of neural networks to reject inter-

13
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ference can be viewed from different perspectives:

« The neural network creates non-linear decision boundaries between signal states.

» The neural network provides a means of implementing non-linear filters for mitigating
non-Gaussian interference.

« The neural network identifies and corrects specific error patterns.

limiter

discriminator ‘
output
input 1/2 H(jo)
_>
> 33321’3;5 low-pass | 12 Hy(j)
detector filter

Fig. 2.6 Block diagram of the Stojanovic and Dukic FM demodulator
with interference immunity

Generally, back-propagation and radial basis functions are the two methods which are
implemented. Radial basis function neural nets provide an effective means of interpolat-
ing the desired signal phase from observations of the corrupted phase. Radial basis func-

tions are natural for this application since the phase trajectory tends to be circular.

The application of backpropagation to FM interference rejection is currently being investi-
gated and so far the results are promising [Kha96]. Remarkable interference rejection has
been obtained for digital modulated signals, like QAM signals [XB92]. Chen and
Mulgrew [CM92] show results of applying the adaptive radial basis function neural net to
interference rejection and equalization. The algorithm converges remarkably fast com-
pared even to traditional equalization algorithms. Merits of the neural network over con-

ventional linear filtering and equalization include better rejection of non-Gaussian noise

14
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and interference, and more robust and better compensation of non-linear distortion. On
the negative side, with present neural net equalizaiton techniques, there is no guarantee of

reaching an optimal solution and the convergence rate can be very slow.

9) Constant Modulus Algorithm (CMA)

Interference and channel distortion will alter the envelope of a constant modulus (enve-
lope) signal. The CMA works by adapting a filter to restore the constant envelope, thereby
rejecting the interference and suppressing channel distortion [TA83]. The interference
rejection capability is also addressed in literature [Fer851] [KUL92]. The adaptive algo-
rithm distinguishes between target signal and interference on the basis of signal amplitude
and envelope shape, given that the envelope of the target signal is approximately known or
measurable. A major problem with the CMA is that interference can “capture” the adap-
tive algorithm resulting in interference enhancement. A spectrum whitening algorithm to
initialize the filter weights prior to switching to the CMA is described by Gooch and Dael-
lenbach [GD89] for preventing interference capture. The method requires no knowledge

of the received interference scenario and it allows notching of one or more interferers.

Previous tests for AMPS signals using this algorithm show that a simple CMA can not
effectively extract the desired signal by only recovering the constant envelope. Too much
spectral overlap between the interference and the desired signal prevents the time-invariant
filter from recovering the desired signal. However, our research shows that a CMA algo-

rithm can be applied with time-dependent filtering to successfully reject the interference.
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Chapter 3. Second Order Cyclostationarity

3.1 Introduction

A signal is a cyclostationary signal of order » if and only if the time fluctuation in n spec-
tral bands with center frequencies that sum to certain discrete nonzero values are statisti-
cally dependent in the sense that their joint nth-order moment (the infinite time average of
their product in which each factor is shifted in frequency to have a center frequency of
zero) is nonzero [Gar94]. In contrast, for many stationary signals, only those bands whose
center frequencies sum to zero can exhibit statistical dependency [Gar94]. Cyclostation-
ary waveforms are persistent random waveforms with statistical parameters that vary peri-
odically with time. This topic has been studied since the late 1950s. The term
“cyclostationarity” was introduced first by Bennett in 1958 [Bro87] to describe random
processes possessing periodic time-variant mean and autocorrelation functions. Recently,
there has been extensive research on this topic and this is reflected in the increase in the
number of published papers from one per year in 1955 to about twenty five presently
[Gar94]. A growing number of research groups, journal editors and program directors at
funding agencies have shown real interest in the last five years. Many important contribu-
tions to the theory of cyclostationarity have been made by Gardner’s research lab in Uni-
versity of California, Davis and also by many other isolated developments in the last
twenty years. This work has emphasized cyclostationary modeling of common communi-
cation signals, series representations of cyclostationary random processes, and solutions to
the minimum mean-square error linear filtering problem. The concept of cyclostationarity
is applicable not only to communications, but also to other fields like climatic variability
and econometrics [Bor87]. Cyclostationary properties provide extra information about a

signal that can be applied to numerous applications.

Most man-made signals exhibit time periodicity. A time average approach gives rise to a

spectral correlation interpretation of cyclostationary characteristics of signals. Erratic
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behavior can be removed to reveal underlying nonrandom properties of the time series by
forming an appropriate time average of a random quantity of interest. This approach
enables generation of spectral lines from the signal by putting it through a non-linear
transformation (quadratic transformation). It also explains the fundamental link between
the spectral line generation property and the statistical property of spectral correlation.
Some signals that can be appropriately modeled as cyclostationary come from the
response of a linear or nonlinear system with some periodically varying parameters to a

stationary random excitation. Specific examples include:

- stationary random modulation of the amplitudes, phase or frequency of a sinusoidal

wave,

¢ stationary random modulation of the amplitude, width, or positions of pulses in a pulse
train,

« periodically varying Doppler shift in a stationary random wave, and

+ periodic sampling, multiplexing or coding of stationary random data.

By exploiting the inherent spectral redundancy associated with spectral correlation, vari-
ous signal processing tasks can be performed, such as: signal detection, weak signal
extraction, synchronization and timing recovery, crosstalk interference and noise cancella-
tion, periodically time-variant system identification, and spread spectrum signal despread-
ing. In this chapter we review some of the fundamental mathematical principles used to
analyze cyclostationary signals. These mathematical principles are used to design and

analyze the proposed interference rejection techniques based on time-dependent filtering.

Linear periodically time-variant system representation or associated optimal filtering
issues are discussed by Gardner [Gar93]. The theory and method of cyclic Wiener filter-
ing are generalized from stationary signal filtering by Gardner [Gar93]. The cyclic filters
are polyperiodic time-variant linear filters which incorporate frequency-shifting opera-

tions as well as the usual frequency-dependent amplitude-weighting and phase-shifting
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operations. These frequency-shift filters can separate signals that overlap in frequency as
well as in time. Gardner and Reed’s research shows that the minimum mean-square-error
(MSE) performance of these filters is a function of number of frequency shifts used. It is
evaluated for several digital modulated signals with different interference scenarios
[Gar93] [RH90]. The spectral redundancy inherent in excess bandwidth can be used
effectively to improve system performance. Recent work by Gardner has led to novel
FRESH filtering structures that can be blindly adapted using least square (LS), recursive
least square (RLS) and least mean square (LMS) algorithms [Gar91]. This involves a
prior knowledge of only the modulation types and the values of carrier frequencies or baud
rates, without the use of decision, direction, modulus restoral, or demodulation/remodula-
tion methods, all of which exhibit threshold effects. The spectral self-coherence restoral
(SCORE) method has been analyzed by Agee and Shell [ASW90]. A property exhibited
by most communication signals is that they are correlated with frequency-shifted and pos-
sibly conjugated versions of themselves for certain discrete values of frequency shifts.
Agee and Shell refer to this property as spectral self-coherence or spectral conjugated self-
coherence. It is commonly induced by periodic mixing, or multiplexing operations at the
transmitter. Different variations of SCORE algorithms including the basic SCORE algo-

rithm, least square SCORE, cross-SCORE and auto-SCORE have been developed by
Agee and Shell [SA88].

3.2 Second Order Cyclostationarity (Wide Sense Cyclostationarity)

The second order theory of a discrete-time stochastic process x(¢) deals with the probabil-

ity space autocorrelation function

tfo- o) feleog)]
(3.1)

where E denotes the expectation in a time average sense as explained in Eq. (3.4) and * the

conjugate operation.
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For a polycyclostationary (PCS) process x(), the autocorrelation function is polyperiodic
in ¢ for each t. This means the signal exhibits multiple cyclic frequencies. The associated

Fourier series expansion for this function is [Gar94]

Rx(t—%,t+%) = S R4,
{a}

(3.2)
where {a} includes all values of a in the principal domain (-1/2, 1/2]. and Rz(‘t) is the

Fourier coefficient of the additive sine-wave component with frequency a contained in the

delay-product signal R (7). R:(t) can be expressed as

R?(t) = El:x(t— %)x.(t + %)e—jznat]

(3.3)
or for a limit cyclic autocorrelation function [Che89]
T
1 2 j
Ri(x) = lim = x(t— E)x (t + I) ~met gy
¥ T > o T 'l;. 2 2

]

(3.49)

RS(T) is the definition of analog second order cyclic autocorrelation function, and is

related to the polyperiodic correlation function R,(t) as

Ri(7) = E[Rx(t-—,-;-, t+%)e’j2m'] )

(3.5)

However, for discrete-time signals, delays equal to half the time shift T are not allowed.

19



Chapter 3. Second Order Cyclostationarity

Nevertheless, since [Gar94] shows that

E[x(t)x(t_t)e—jz"“’] = Ri‘l(‘(v')e—‘j‘":aT ’

(3.6)
the second order cyclic autocorrelation for discrete-time signals can be defined as follows
in order to maintain the strongest analogy between the continuous- and discrete-time rep-

resentations,

Ri(r) = E[x(D)x (1-1)e "™,

3.7)
or for a limit cyclic autocorrelation function [Che89]
ol j2ranT,
~a . -/ niy
= |/ * +
R, (kT,) Ni':ooz Mol =Z—Nx(nT0)x (nTy+kTy)e ,
(3.8)
where 7, is the Fourier coefficient period, and £ is an integer number.
The conventional autocorrelation function of x(¢) is
~ ) *
R,(7) = E[x(t)x (t—7)] .
3.9

Comparing Eq. (3.9) to Eq. (3.7), it is clear that the cyclic autocorrelation at a=0 is the

conventional autocorrelation. Similarly, the cyclic cross-correlation for x(¢) and y(t) are
defined as

Ry, (x) = Elx(t)y (t—v)e*™™] .

(3.10)
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The cyclic feature of a signal can also be developed in frequency domain in parallel with
the time domain. A power spectrum density of x(¢) is the Fourier transform of its autocor-
relation function. Similarly, the cyclic spectrum density of x(¢) is the Fourier transform of

its cyclic autocorrelation function,

+00
sin = | R (0)e 7™ 4f |
3.1
For discrete time signal, the integral can be replaced by a summation,
+00 i T
Y= Y R
k=—0
(3.12)

For x(¢) real, R:(r) has even symmetry in T and Sf: (f) has even symmetry in /. When

a=0, we know that the conventional autocorrelation function has the property

R(0)2R (1) .
(3.13)

This property can be generalized, for o #0, to R_(0) > Rg(t) .

Alternatively, we may characterize second-order periodicity in terms of spectral correla-

tion. Consider the time-variant finite-time complex spectrum of x(¢) [Che89],

oI
X6 ) = [ xwe”

(3.14)
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which is a measure of local frequency content of x(?) in the interval [¢-7/2, t+7/2] with
spectral resolution width 1/7. The complex spectrum X7, f) is then shifted in frequency

from f'to f+a/2 and f~a/2, and the temporal correlation of the two shifted complex spectra
is given by [Che89]

tAl

CS%(t, f) = j TXT( ——)XT ( f+%jds

t
2

(3.15)
Then substituting Eq. (3.14) into Eq. (3.15) and letting Az — oo to remove all randomness,

the spectral cross correlation becomes [Che89]

T
2
lim CS?T(I, f)At = J‘ R (T)[l _T} ,/21tf1:d1_
At > © T
)
(3.16)
Finally letting T — oo to obtain unlimited spectral resolution results in [Che89]
lim lim CS*(t, S3N.
o A <78 Nae = S (f)
(3.17)

Observe from Eq. (3.17) that the cyclic spectrum defined by Eq. (3.11) can be obtained by
first measuring the correlation of two spectral components at frequencies f+a/2 and f~o/2
and then idealizing the correlation by letting At >« and T — . Consequently the

cyclic spectrum is called the spectral correlation function.

For an example, let a(¢) be a real random low pass signal with the PSD S,(f) shown in Fig.
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3.1(a), which contains no spectral lines. If a(f) is used to modulate the amplitude of a sine

wave, an AM signal can be formed as

x(t) = a(t)cos(2n fyt) ,
(3.18)
whose PSD S, (/) is given by
SLN) = 38+ )+ 35U~ 1)

(3.19)
as shown in Fig. 3.1(b).

Although the PSD is centered about f = */-f,, there is no spectral line at */-f,. The reason
for this is that, as shown in Fig. 3.1(b), there is no spectral line in S,(f) at /=0. This means

that the DC component is zero, since the strength of any spectral line at /=0 is the DC
power of the signal a(¢).

If this AM signal is passed through a quadratic transform, taking its square, we obtain

¥(1) = #(0) = 3[a° (1) + a () cos(anfon)] .

(3.20)

Since az(t) 1s nonnegative, its DC value must be positive. Consequently, the PSD of xz(t)

is
'Sy 4 Saz 4° 4 0 4542 0

(3.21)
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(a)
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2, % o7

Fig. 3.1 (a) Power spectral density (PSD) of a lowpass signal. (b) PSD of an AM signal
(c) PSD of a squared lowpass signal. (d) PSD of a squared AM signal.
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It contains a spectral lines at f=0, as shown in Fig. 3.1(d) as well as at f = */-f5. Thus by

passing x(¢) through a quadratic transformation we have converted the hidden periodicity

resulting from the sine-wave factor cos(2ntff) in Eq. (3.20) into a first-order periodicity

with associated spectral lines.

If a(¢) is a real random stationary signal with zero mean, then

Ela(t)] = 0

(3.22)

and

Ela(t)a*(t—1)]=#0
(3.23)
E[a(t)a*(t—1)e 7™ %0, forall a#0.

(3.24)

Eq. (3.22) guarantees that

E[a(t)e?*™™ =0, forall a#0 .

(3.25)

Consider the AM signal x(¢), because a(¢) contains no finite-strength additive sine-wave
components, therefore x(¢f) contains no finite-strength additive sine-wave components.
This means that its power spectral density contains no spectral lines. However, the qua-

dratic form y(¢) does contains finite-strength additive sine-wave components with frequen-

cies a="/-2f;. These two frequencies are the only non-zero cyclic frequencies. The

spectrum consists of only the two cyclic frequencies a="/-2f,. and the degenerate cyclic

frequency a=0 [Gar94].

According to the definition of Rg(r) in Eq. (3.3), the cyclic autocorrelation of x(7) is

25



Chapter 3. Second Order Cyclostationarity

1
ZRa(r) for o = +/-2f;
a —
Ri(v) = %Ra(t)cos(anOt) fora = 0
0 otherwise

(3.26)
The spectral correlation density function (SCD) for x(¢) can be computed from Eq. (3.11),

which is the Fourier transform of R?(r) ,
1
ZSa(f) for a = +/- 2f)

S+ S~ fora =0
0 otherwise

(3.27)
The magnitude of this SCD is depicted in Fig. 3.2 as the height of a surface above the
bifrequency plane with coordinates fand a.. For purposes of illustration, a(f) is assumed to
have an arbitrary low pass PSD for this graph. Observe that although the argument f of the
SCD is continuous, as it is always for a random signal, the argument a is discrete, since it
represents the harmonic frequencies of periodicities underlying the random time-series.
The SCD can be measured by simply passing the signal of interest through two narraw-
band bandpass filters with center frequencies at a+/2 and a-f72, and then measure the
average power of the correlation between the outputs of the filters. By incorporating
many filters whose center frequencies are separated by the bandwidth of the filters, we can
partition any spectral band of interest into a set of contiguous narrow disjoint bands. Gen-
erally, we simply pass both of the frequency translates «(¢) and v(¢) of x(¢) through a set of
bandpass filters, centered at £, and then measure the temporal correlation of the filtered sig-

nal to obtain
S5 = lim LE[G0 @ ) (WG @vi)']
B—>0

(3.28)
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where ® denotes convolution.

Fig. 3.2 Magnitude of the spectral correlation density
function for an AM signal

The process is shown in Fig. 3.3. This yields the spectral correlation density between u(¢)
and v(¢) at frequency f, which is identical to the spectral density of correlation of x(¢) at fre-
quencies f+o/2 and f~o/2. Different measurement techniques for the SCD are developed
which are more computationally efficient [Gar86] [RBL91] [BL93].

From the preceding definitions and analysis, cyclostationary signals have a very important
property of spectral correlation, which can be utilized to build an optimal linear periodic

time-varying filter.

Consider this time-variant filter with impulse response 4(f). The Fourier expansion of A(?)
is
+00

ety = Y g,

n=-—w0

(3.29)
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e—jﬂ:at
u(t)
BPF .
0
t Yy
XL» E[e]r >
v(?) *
——— BPF |
eimxt

Fig. 3.3 One channel-pair of a spectral correlation analyzer
(or a cyclic spectrum analyzer) for measuring the spectral
correlation density (or cyclic spectral density).

and so its Fourier transform is [Che89]

+o0 400

—f a .
H(t, f) = Ih(t’ e "znﬁd’r - Z G,,(f‘*‘in)eﬂna"t ,
(3.30)
where
g,(1) = I h(t, T)e-jzua"tdt ’
(3.31)
the corresponding Fourier transform of g,(t) is
+o
Gn(t7f) = J‘g,,(t)e'jz"ftdt .
(3.32)
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The output y(¢) is the linear convolution of input vector x(¢) and the filter impulse response,

+00
y(t) = Ih(t,u)x(u)du ,
(3.33)
then the following cyclic autocorrelation of y(¢) is obtained
Rj(t) = h(1,7) ® R3 (1) ® h(t,—1) .
(3.34)

' By substituting Eq. (3.29) into Eq. (3.34), the cyclic spectrum of y(¢) can be found [Gar94]

SH=¥ 3 G +2)G(r- L)t (B ),

n=—om=—o

(3.35)
where 3, and v, are subsets of the cyclic frequencies for the filter #(f). This equation
reveals that the spectral correlation at the output is completely specified by the spectral
correlation at the input and the system function G(¢, f) of the linear periodic time-variant

transformation. Most cyclic frequencies are related to bit rate, symbol rate, baud rate and

carrier frequency, etc. (or multiples of these).

3.3 Applications of Cyclostationarity

There are many applications where spectral redundancy associated with the spectral corre-
lation in cyclostationary signals can be exploited. These include:

» detecting the presence of signals buried in the noise and/or severely masked by inter-

ference,

 recognizing such corrupted signals according to modulation type,
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« estimation of parameters such as time-difference-of arrival at two reception platforms
and direction of arrival at a reception array on a signal platform,

+ blind-adaptive spatial filtering of signals impinging on a reception array,

« reduction of signal corruption due to co-channel interference and/or channel fading for
signal-receiver systems,

« linear periodically time-variant prediction, and

« identification of linear and non-linear systems from input and output measurements.

These application areas benefit from the spectral correlation formulas for AMPS derived

in this research work. They are briefly described in the following section.

1) Detection and Classification

It is shown in [Gar87] that modulated signal can have similar spectra but different cyclic
spectra. This property can be used for signal classification. Furthermore, signals that

overlapped in frequency may not overlap in the cyclic frequency plane and this can be

used for detecting co-channel signals.

2) Parameter Estimation

Once the signals have been detected and classified, their carrier frequencies and phases
and the keying rate and phase of the signal can be estimated [GS93]. Furthermore, the
SCD measurement is also useful, either directly or indirectly, for estimation of synchroni-

zation parameters required for the operation of synchronized receivers [Gar94].

3) Iime-difference-of -arrival Estimation
Consider a received signal consisting of waveform x(¢) for one platform and multiple sig-

nals w(¢) with different gains and time delays from other platforms,

r(t) = x(¢) + w(t) + n(2)
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L
= x(t)+ Z a;s(t—t)+n(t) ,

I=1
(3.36)
where ¢; is the time delay and L is the number of multipath components. It can be shown
that [Gar94]
(g
Swx(f) = 8(Nlase
(3.37)
provided that s/(¢) is the only signal with cyclic frequency a. A weighted least-squares fit
with respect to o; can then be used to estimate the time-delay for the desired signal

[GC92].

4) Spatial Filtering

Continuing in the same vein, consider receiving the signals in noise with an antenna array.
We can use the signal selectivity properties of cyclostationary signals to blindly adapt a
linear combiner to perform spatial filtering. Specifically, by directing the linear combiner
to enhance or restore spectral redundancy in its output for a particular cyclic frequency a,
the combiner will adapt to null other signals if enough elements are available. No training

sequence is required for this adaptation [Gar94].

S) Direction Finding

The results of spatial filtering can be used to obtain high resolution of direction of arrival.
This is achieved by detecting the desired signal with a spatial filter and then adjusting the
antenna weights to locate the source of the signal [SG93].

6) System Identification

The cyclostationary property of signals passing through a linear time-invariant system can

be utilized in several ways to identify the system whose input signals are corrupted by
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noise and interfering signals [Gar94].

7) Signal Extraction

Spectrally redundant signals that are corrupted by interfering signals can be more effec-
tively extracted in some applications through the use of periodic or multiple-periodic lin-
ear time-varying filters, instead of the more common time-invariant filter. The frequency
shifted spectrum is strongly correlated with the unshifted one and the time-dependent filter
exploits this spectral redundancy to extract the desired signal. Generally, a time-invariant
filter can only attenuate both the desired signal and the interference in the corrupted por-
tion of the band, while a time-variant filter can replace the corrupted components of the
signal of interest with spectral components from other parts of the band that are highly
correlated with the desired components. For instance, if the main spectrum of the desired
signal is corrupted by narrowband interference, the signal can be reconstructed by using
the uncorrupted redundant frequency components. This is a very powerful technique for
narrowband interference rejection for spread spectrum signals. Even if the full spectrum
of desired signal is corrupted by interference, the desired signal can still be enhanced as
long as the signal has a cyclic frequency that is distinct from that of the interfering signal.
This property is exploited by the algorithm developed in this research.
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Chapter 4. Cyclostationarity of AMPS Signals

4.1 AMPS Background

Early mobile radio systems pursued the objective of obtaining as large a coverage area as
possible by using a single high powered transmitter with a tall antenna tower. In the early
stages of development of mobile communications, the issue of coverage area was of prime
concern. But as mobile radio became popular, demand increased and this led to new chal-
lenging problems like spectral congestion and interference limitations on user capacity.
As the number of users increased, allocated frequency bands were often exhausted and
new means were sought to accommodate the growing number of users. The cellular con-
cept is a system level idea which calls for replacing a single high power base station with
many low power base stations, each providing coverage only to a small portion of the ser-
vice area. Each cellular base station is allocated a group of radio channels to be used
within a small geographic area called a cell. Base stations in adjacent cells are assigned
channel groups which contain completely different channels than those of the neighboring
cells. A cluster is formed from a group of cells that cover the whole allocated frequency
spectrum. The frequency band assignments for a particular cluster can be replicated for an
adjacent cluster. A cell is typically represented by a hexagonal shaped area. A group of
cells covering the whole radio band is called a cluster. The hexagonal cell shape map, as
shown in Fig. 4.1, is a conceptual and a simplistic model of the coverage region for each
base station. The actual radio coverage for a cell is also known as the “footprint”, and is
determined from field measurements or propagation models. A cell must be designed to
serve the weakest mobiles within the footprint, and these are typically located at the edge
of the cell. For the current AMPS system [You79], the assigned frequency band is 824-
849MHz for reverse channel and 869-894MHz for forward channel. Each cell has 57
channels with 30kHz separation and seven cells with 399 channels compose a cluster.

These channels include both the voice links and the control links.
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Fig. 4.1 illustrates some of the fundamental problems associated with frequency reuse
technique. The frequency spectrum allocated in cluster C is reused in the adjacent cluster
RC. Because the center frequencies for the two cells C1 and RC1 are the same, co-chan-
nel interference can occur. The distance between the cell and its co-channel cell depends
on the local geography. For an acceptable voice signal in the AMPS system, the carrier to
interference ratio must be kept above 18dB and this is obtained using a seven cell reuse
pattern. Co-channel interference may become be critical when the mobile unit is far away
from its home base station, or the interfering signal is very strong. Co-channel interfer-

ence cancellation is difficult since the spectra of the SOI and the SNOI are overlapped to a

high degree.

One of the methods to circumvent the problem of co-channel interference is to use a fixed
tone in the modulated voice signal. This supervisory auto tone (SAT) is used by a base
station to identify the desired signal from an interfering one. For the current AMPS sys-

tem, three frequencies are allocated for SAT signaling: 5970Hz, 6000Hz, and 6030Hz.

Fig. 4.1 Seven cell reuse concept

The cell site sends a SAT and receives a returned SAT from the mobile. If the SATs are

the same, the cell site will complete the loop. Otherwise, the cell site interprets the incom-
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ing RF power as being corrupted by interference for both the forward and the reverse
channels. Each cluster has seven cells and each cluster is assigned one of these SAT fre-
quencies. Thus the three-SAT scheme provides supervisory reliability by reducing the

probability of misinterpreting interference as the desired signal.

4.2 Cyclostationarity of AMPS Signal

The cyclostationary behavior of a signal, as discussed in Chapter 3, is characterized by a

periodic spectrum.

The SAT is a simple tone that is transmitted with the voice signals. The maximum FM

deviation produced by the SAT is 2kHz, thus it is easily removed by the demodulator
[You79].

The signal model of an AMPS signal containing a SAT can be expressed as

j[mc”21!Bf..IV(t)d(t)+k8in(2nfmt)}

—@®

x(t) = Real{e g
(4.1)
or as
j{mct + Zan,,J‘ v(t)d:]
x(t) = Realje - o/ s feat)} |
\
42)
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Parameters for the signal model are as follows:

* o, carrier frequency.

e B voice v(¢) modulation index which is 3 for AMPS.

L maximum voice frequency which is 4kHz (the amplitude of voice is normal-

1zed).
o k: modulation index for the SAT which is 1/3.

* fsarr  frequency of the SAT which is either 5970Hz, or 6000Hz, or 6030Hz.

This signal model can be used to determine the cyclic spectrum of the AMPS signal and

the nature of this spectrum provides insight into the design of the time-dependent filter.

An AMPS signal without the SAT can be represented as

-

j{mnt + 21:[3f,,,I v(t)dt}

s(t) = e

(ksin(2nS .., _ .
The term &’ "™/} can be expanded using Bessel functions:

’

+00
j{ ksin(2 . in2n fea
FERCTLO) o 5y

n=-w
where J,(k) are Bessel functions of order n and can be expressed as

+n

n
-

Note that 7 is an integer and

(4.3)

4.4

(4.5)
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J_ (k) n is even
{—J_,,(k) nisodd.

According to the definition in [Gar94], the cyclic autocorrelation is expressed as

T
2
. T T\ —j2nat
R% (1) = lim x(t——jx*[t+—je dt .
@ =fim g
2
(4.6)
Substitute (4.2) and (4.4) into the definition of R:x(’c) in Eq. (4.6) [HR94],
+0 4o ('l"'m)r
sat 2
R}.(1) = R (%) Z Z J (k) , (k)e 8((n—m)f ,—a)
n=-aoom=-©
4.7
and the cyclic spectrum, which is the Fourier transform of R L(T) is
+
Self) = [ R0
+
S YT RS, (F+ 2552 a1 =) f = ),
n=-com=-—0
(4.8)

where R <(1) is the autocorrelation of s(f) in Eq. (4.3), and Sg(f) is the spectrum of the

voice portion of the AMPS FM signal (SAT excluded). Only certain combinations of n
and m that satisfy a=(n-m)f,,, will contribute to the summation in Eq. (4.7) and Eq. (4.8).
The conventional spectrum consists of replicated versions of the original FM voice signal

spectrum (excluding the SAT) scaled with different weights determined by products of
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Bessel coefficients and is shown in Fig. 4.2. The spectrum correlation density function of

this AMPS signal is shown in Fig. 4.3.

The generation of the AMPS FM signal incorporating the SAT is depicted in Fig. 4.4. The
block begins with an A/D converter which samples the voice signal at 8192 Hz. The sam-
pled signal is compressed at 2:1 ratio by a syllabic compressor. For every 2dB change in
the input level, this 2:1 compressor changes the output level a nominal 1dB. The compres-
sor serves two purposes: to confine the energy in the channel bandwidth and to generate a
quieting effect during a speech pulse. The pre-emphasis must have a nominal +6dB per
octave response between 300Hz and 3000Hz. The propagation channel is reflected by the
inclusion of external factors such as AWGN, multipath, fading, and co-channel interfer-
ence. For the demodulator, the expanding and de-empbhasis are used to recover the origi-
nal voice signal. Co-channel interference is generated the same way but has a different

carrier frequency, fading, multipath delay and gain, and noise power.
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Mag. of the spectrum dB
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Fig. 4.3 Contour of spectrum correlation density function Sf )]
for AMPS signal with a SAT
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Speech Pre-
> A/D — - Compressor—p» emphasis
AWGN Multipath Delay
Simulated M
AMPS Signal | Channel |la—— modulator

Channel T T )
Interference Fading

Fig. 4.4 AMPS signal generator

4.3 Cyclic Feature for AMPS Signals in Different Channels

The mobile environment distorts the signal in several ways and this distortion is dynamic.

These distortions include:

AWGN,

interference,

multipath, and

fading.

The effects of these sources of distortion on the spectral correlation characteristics are

described below.

A) AWGN Channel

If a zero-mean white Gaussion noise n(f) is added to the SOI, the received signal is
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r(t) = x(¢) +n(t)

= s(t)ej{ksin(anmt)} " n(t)
(4.9)
The cyclic autocorrelation for () can be computed according to Eq. (4.6)
R:'xr(r) = R:X(T) + E[n(t— %)n*(t + %)e—ﬂnat] ,
(4.10)

since the noise is a stationary random process, the second part will be zero for a #0 ifa

very large number of samples are used to perform the averaging, i. €.,

Ry(1) = Ry () .

(4.11)
In general, the cyclic spectrum of the received AMPS signal can be expressed as

+0  +o0 (n "”")t

—.znf.mt
RE(D) = Ry(1) 3 Y (k) (ke ! 2 8((n=m)f,,—a) +ood(a),

n=-wom=w

(4.12)
where 0',2, 1s the power density of the noise. It can be seen from Eq. (4.12) that the conven-

tional autocorrelation function ( @ = 0) of the received signal consists of both the desired

signal and the additive noise, while the cyclic autocorrelation function (a#0) only
depends on the desired signal. The Rfr( 1) is measured for an AMPS signal embedded in
noise using 10* data points. The measured R'.(t) is plotted in Fig. 4.5 as a function of
carrier to noise ratio CNR and t. It can be seen that the magnitude of R:;.(‘L') does not

vary too much for different CNRs. For infinite data, it is an constant.
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B) Co-channel Interference Corrupted Channel

A co-channel interfering signal (SAT excluded) can be expressed as

J{@cct +2nB S, I vc(!)dt}

c(t) = ae ,
(4.13)
where a is the amplitude of the interfering signal c(¢) and w,, is the carrier of the cochan-
nel interference. Let f,,,. represent the SAT frequency of the signal not of interest (SNOI)

which is constrained to be different than that of the signal of interest (SOI). The combined
signal is

J{ksin(2mf ,0)} JLksin(2nf arct) }
+ e

r(t) = s(t)e c(e)
(4.14)
Substituting Eq. (4.14) into the definition of the cyclic autocorrelation function in Eq.

(4.6) results in

i = i2n((n— — —jzn("+m)fsat£
) = E{S(“g)“("“ij 3 Y Sk, (ke T 2}
n=-om=-x©

T N w - SR =) f e T2 M i3
e Rl e

n=—-om=—w0

+00 +00

T T jzn(nf.ml - mfsalc_a)t
+E[s(t—§jc*(t+§) > Y Tk, ke

n=—oom=—w0

—jzn(nfsal + mf.mrc)%}
e

+0  +o ; I
: T SRS s+ M) f =t T = )3
+ E[c(t— i)s* (t + 5) Z Z J (k) (k)e e .

n=-—-oom=—wo0

(4.15)

It is assumed that the two voice signals () and v(¢) are uncorrelated random processes.
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Based on this assumption, the first expectation in Eq. (4.15) can be simplified as

+o+e —jzn(n +m)fsat%

Ry (DD T (k)] (ke ,

(4.15.1)
which is equal to Rgx(‘c) , the desired signal cyclic autocorrelation function. The third

and fourth expectations in Eq. (4.15) are neglected because v(¢) and v.(f) are not corre-

lated. In short, the cyclic autocorrelation of the co-channel interference corrupted

received signal is the summation of the cyclic autocorrelation function of both the SOI and

the SNOI. The parameter o which produces non zero Rg'r(T) , determines the filter peri-

odicities of the optimal filter. If a is chosen to be the cyclic frequency corresponding to
the desired signal and the SOI and the SNOI have different cyclic frequencies, then the
contribution of the cyclic autocorrelation of the co-channel interference is zero and the

cyclic autocorrelation of the received signal only depends on the desired signal. The

cyclic autocorrelation function is measured for a desired AMPS signal (SOI) using 10*

data points and its magnitude is shown in Fig. 4.6. The cyclic frequency is chosen to cor-

respond to the SOI. It can be seen from Fig. 4.6 that the magnitude of Rfr(r) is still very

high even for a low CIR.

43



Chapter 4. Cyclostationarity of AMPS Signals

0a=6000Hz

Fig. 4.5 Magnitude of the cyclic autocorrelation coefficients for AMPS signal with noise

. a=6000Hz

Fig. 4.6 Magnitude of the cyclic autocorrelation coefficients for SOI and SNOI (o=kfsyp)
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C) Fading and Multipath Channel

In mobile radio, fading and Doppler shifts arise as a result of motion of the receiver
through a spatially-varying field. Multipath propagation arises from the fact that the trans-
mitted signal is scattered by different sources, resulting in these reflected components
combining with different amplitudes and time delays at the receiver. The effect of multi-
path propagation is to produce a received signal with an amplitude that changes substan-
tially with location and time. If either the transmitter or receiver is in motion, each of the
components of the received signal experiences a Doppler shift, the frequency shift being
related the spatial angle o, between the direction of arrival of that component and the
direction of vehicle motion. For a vehicle moving at a constant speed v, the Doppler shift
f,, of the nth plane-wave component is

v
f, = zcosa,.

A
(4.16)
It can be seen that the waves approaching the vehicle in the front experience a positive
Doppler frequency shift (maximum value f,,=v/A) while those from behind experience a
negative frequency shift. If we assume that the fraction of the incident power contained
within a spatial angle between o and -a for an omnidirectional antenna is uniformly dis-

tributed in the angular range (-x, ), the RF Doppler spectrum becomes [PG89]

1
Sg(f) = %[1_( -fcﬂ 2

(4.17)

where £, is the RF carrier frequency. If there is a dominant component in the incoming
signal, then this has a substantial influence on the signal spectrum. Such a component

arriving at an angle o gives rise to a spectral line at f,+f,,cosay in the RF spectrum, and

two additional peaks at f,,(1 £ cosay) in the baseband spectrum.
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Different multipath components combine to produce a resultant interference pattern con-
sisting of a series of constructive and destructive interference sources. For time intervals
dominated by constructive interference, the signal level is enhanced whereas in time inter-
vals dominated by destructive interference, the signal strength is greatly diminished. As a
mobile unit travels, the received signal varies accordingly. The received signal is said to
undergo fading as it encounters a period of destructive interference. The fading envelop
directly affects receiver performance. It is useful to consider the average rate at which the
envelope crosses a given level and how long it remains below that level. The Rayleigh
fading envelope only occasionally experiences very deep fades, for example, 30dB fades
occur for only 0.1% of the time [Par89]. However, for cases of radio propagation through
the 1onosphere, the random nature of the channel can modify the cyclostationary proper-
ties of the received signal. If the time response of the channel impulse is A(z,t), then the

frequency response H(t,f) can be expressed as

H(t, f) = [ A, e Vg
(4.18)
When a cyclostationary signal x(¢) passes through a fading channel with impulse response

of h(t,t), the output signal x/t) can be expressed as:

©

xp(t) = J..h(t, )x(t—u)du ,

—0

(4.19)

where the baseband impulse response of a multipath channel can be expressed as [Rap96]:

N-1 .
hb(t, _r) = Z a,(t, t)e(JZfoTi(t) + ¢i(t, t))S(T _ Tl(t)) .
i=0

(4.20)
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In Eq. (4.20), a,(¢, ) and t,(¢) are the real amplitudes and excess delays of ith multipath

component at time ¢, and N is the total number of multipath components for the channel.
The multipath effects cause the transmitted signal undergo different fading channels, and
the cyclic feature of the transmitted signal will be modified accordingly. These modifica-

tions are discussed in the following sections.

1) Flat Fading Channel
In a mobile radio environment, the statistical time varying feature of the received signal

envelope for flat fading is usually described by the Rayleigh distribution given in Eq.
421).

(4.21)
Each individual multipath component can also be described by the Rayleigh distribution.
To explain and model the statistical nature of the mobile channel, different multipath mod-
els have been developed. Among all these models, Clarke’s model which is based on the
scattering theory is widely used [Rap96]. The flat fading and two-ray Rayleigh fading

channel are simulated using this model in our research.

Since the bandwidth of an AMPS signal is 30kHz, which is usually narrower than the
radio channel bandwidth of several hundred kilohertz, flat fading is the principle fading
distortion. In other words, the spectrum of the AMPS signal is preserved in a fading chan-
nel, but the signal power varies with time. This results in large amplitude fluctuations at
the receiver due to the phase shifts of the many unresolved multipath components. Some-
times, flat fading is also called amplitude varying fading. The small scale fading can be
described by [Rap96]:
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hy(1, 1) = a(t)e*Ds(v),

(4.22)
where a(?) is Rayleigh distributed and ¢(¢) is uniformly distributed over (-rt, n]. Thus, the
received signal in Eq. (4.19) for the flat fading channel (free space) can be simplified as:

x (1) = a()x(1)d* .

(4.23)
The procedure of generating a flat fading signal is shown in Fig. 4.7 [Rap96]. Two inde-
pendent Gaussian random noise signals are filtered separately by a Doppler filter with
magnitude equal to the Doppler spectrum in Eq. (4.17). The filtered signals are mixed
with the carriers before they form a complex random signal, which has a Rayleigh-distrib-
uted envelope and a normally-distributed phase. An envelope detector is used to obtain

the fading amplitude.

cos2nf t
Baseband Baseband
Gaussian ——m= Doppler
Noise Source Filter
) : a(t)ejd’(‘)
independent noise sources
Baseband Baseband
Gaussian — Dopp]er .
Noise Source Filter
sin2nft

Fig. 4.7 Flat fading generation using baseband Doppler filter

The cyclic autocorrelation of the flat faded signal x{f) can be computed using Eq. (4.6)
and Eq.(4.23)
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R® (t) = lim

L o™ +I.) ~J2mat 't
X% im xf(t 2)xf (t 2e d

ol > IN

. Jjd (-2 —jb, t+5
= E[a(r—%‘]a*(t+%)x(t—gjx*(t+§)e_jzmte ( 2]e ( Zj} .

(4.24)
If the transmitted signal and the Rayleigh distributed random signal are independent, the

above equation can be simplified to:

XxXr 2

0 = ool Ay

(4.25)
assuming that the signal is a cyclo-ergodic process. To compute the autocorrelation of the
electric field signal, we first need correlations and moments of the in-phase and quadrature

components of the signal. Define

a(*? = T (1) + T (1)
o33 - -l 3] - o0
e[ -rfe ] - -] - o

where [Jak74]

(4.26)

Sfe=Sm
gx) = [ S(Neos@r(f-fI0df,
Se=Sm
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Se=Im
hw) = [ S(Nsin@n(f-f)v)df,
fe=In

(4.27)
and S{f) is the input spectrum defined in Eq. (4.17) (electric field) for

fe=Im<S<fct[fm

It can be shown that () = 0 for all three field components which is a consequence of the

symmetry of the spectra about f.. Also for the electric field, we have [Jak74]

2
) 3E,
g(t) = byJy(2nf,7), with by = T

(4.28)

where J) is the zero order first kind Bessel function. Defining the autocorrelation of the

electric field signal as I'(t), it is not difficult to show that

e

2

H2 2 _ 3E0
o/o(2mf,,T), where Hy = —=

I'(t)

‘ (4.29)
The Bessel function of the first kind J; can be expanded using a infinite sequence summa-

tion as described below

2m

Jox) = 3 ()"

< 22mm!2 :
(4.30)

For a small value of x, Eq. (4.29) can be approximated as
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T(t)~ Hy(1=(nf,1)%)

o
DN ~

e ~,where 1, = 1 .
Tf m

(4.31)
Eq. (4.29) and its approximation in Eq. (4.31) are plotted as a function of ¢ in Fig. 4.8 and
are represented by the solid line and the dash line, respectively. To validate Eq. (4.29),
12000 samples of simulated data using the fading generator described in Fig. 4.7 are used
to numerically compute I'(t) and the results are plotted in Fig. 4.8 by the dash-dot line.
From Fig. 4.8, it can be seen that the result using the simulated data is very close to the
theoretical results. For small delay samples, such as 1< 300 samples, the approximation in

Eq. (4.31) fits both the theoretical and the simulated results well. In fact, large delays will

not be considered in the filter design since the cyclic autocorrelation of szx (t) diminishes

dramatically after a delay of 300 samples.

Substituting Eq. (4.31) into Eq. (4.25), the cyclic autocorrelation function of a flat faded
signal is

|~
(X1 BN

R; ()= |H|*e "R (0),

(4.32)
where 1 is the decorrelation time and is proportional to the fading rate. A large value of
1t corresponds to slow fading conditions or long fading durations. The power spectral
density of the fading signal can be obtained by simply applying the Fourier transform to
Eq. (4.29) and is given by

i
SAS) =~ |Hy|* Ve -
(4.33)
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where the approximation is from the Bessel function expansion in Eq. (4.30). The cyclic

spectrum of the signal undergoing flat fading then can be calculated as follows:
St () = [ SISy,

and its approximated value can be found by applying Eq. (4.33), which is

2
v

82, (1) =[Hof NRso [ e S5 )y,

(4.34)
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Fig. 4.8 Comparison of I'(t) using different measuring methods
Note that Eq. (4.32) and Eq. (4.34) hold only with the assumption that the incoming power
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is uniformly distributed in angle. Also, the statistical characteristics of a faded signal are
different than that of the envelope of a faded signal. Properties of the Rayleigh distributed
envelope have been studied in many papers [Jak74][PG89]. These properties include
mean, autocorrelation, autocovariance and power spectral density of the envelope. Here
we compare the autocorrelation and the power spectral density of the envelope to that of

the complex signal. The autocorrelation is given by [Jak74]

r 3y 1720
env(t)"‘ 8 ( Z 0( ﬂfmf)),
(4.35)
and the power spectral density function is
=1 (LY
Spe(f) 81:me( 1 (2fmj ],
(4.36)

where K(.) is the complete elliptical integral of the first kind and is defined in the follow-

ing equation [Rap96]:
L
p 1
K(k) = [———=——==4d¢, fork’<1 .
on1—K*sin6
4.37)
To evaluate it, we expand the integral in the form
1
2.2, 2 K’ 2 3k 4
(1-k"sin“p) = l+—2-sin ¢+—4—sin o+......
(4.38)

This series can be shown to be uniformly convergent for all , and may, therefore be inte-

grated term by term which results in K(k) as [Gre85]:
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K(k) = g[u@k Gi) k +Gigj L ]

The fourth and higher power terms can be eliminated since £°<<1. Then this formula can

K(k) ~ -[1 + @kz]

(4.39)

be approximated as

(4.40)
In this way, the baseband spectral density function in Eq. (4.36) can be simplified to:

L
)= pite V-

(4.41)
The theoretical autocorrelation function of the envelope in Eq. (4.35) is computed as a
function of t and is plotted in Fig. 4.9. To verify it, 12000 points of simulated Rayleigh
fading envelope data are used to compute the autocorrelation and the result is represented
by the dash-dot line in Fig. 4.9. The simulated results and the analytical results are very
close. By comparing Fig. 4.8 and Fig. 4.9, it is not difficult to observe that the autocorre-
lation function of the faded complex signal declines faster than that of the envelope of the
signal. For small delays, such as 1<50 samples, these two are very similar. However,
when the delay increases, there is a significant difference between the two autocorrelation
functions. Theoretically, the mean of the complex signals is zero due to the uniformly dis-

tributed phase of the arriving signal components, while the mean of the envelope of the
signal is related to the electric field power (E[r] = gbo ). Also, it can be seen from Eq.

(4.29) and Eq. (4.35) that the autocorrelation of the complex signal is a function of
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Jo(2nf,,7), while it is a function of J02(21rfmr) for the signal envelope.
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Fig. 4.9 Comparison of the envelop autocorrelation using
theoretical results and simulated data

2) Frequency Selective Fading

For large scattering environments, the time varying channel impulse response of the fad-
ing channel is expressed in Eq.(4.20). When the multipath delays are significant com-
pared to the reciprocal of the bandwidth for AMPS signals and the channel coherence
bandwidth is smaller than the signal bandwidth, the signal undergoes frequency selective

fading. The output signal y(¢) is simply a convolution between x(¢) and A(z, t):

(1) = j h(t, ©)x(t—1)dx.
(4.42)

Using the definition of the cyclic autocorrelation in Eq. (4.6), the cyclic autocorrelation of

the frequency selective faded signal y(¢) is:
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TR
Jh(t+ ) t+——u)dujh*(t—%,v)x*[t——i—v)d “jz"“'].

(4.43)

If we assume that the transmitted signal x(¢) and the channel are independent, then

jZTtCL(u v)

R%(7) = ij[ (r+- u)h*( v)]R:x(r—(u—v))e 2 dudv .

(4.44)
For a wide sense stationary channel, the autocorrelation of the channel impulse depends

only on the time difference. Define the delay cross power Q(¢, t) as [BK94]

o(t,7) = E[h(ﬁ%, u)h*(t——%, vj]

(4.45)
Eq. (4.44) can be simplified as:
j2na(u »)
a a 2
Ry(0) = [[Q(r, u=v)8(u =R, (1—(u—V))e dudv

= JQ(‘L’ u— v)Rxx(r) e gy,

= I'(t, @)R} (1),
(4.46)

where Q(t,7) is called the delay-cross power density [BK94], and I'(t, f;) is the correlation
function of the channel transfer function H(z, f) valid for worst-case scintillation at HF,
VHF, and UHF. For the strong scatter approximation, I'(t, f;) is given by [BK94]
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U(t, fo) = E[H(+, [+ f)H*(2, f)]

2
—T

1

To

fd fa'
1+ 28 1+ %8

T T,

= |H0|2exp

(4.47)
The coherence bandwidth f, is related to the rms of all the multipath delays o of the fad-

ing channel. If the coherence bandwidth is defined as the bandwidth over which the fre-

quency correlation function is above 0.9, the coherence bandwidth is approximately
[Rap96]:

1

Jo* 55s,
(4.48)
Fourier transformation gives the spectral correlation relationship
SN = [ P(v, a)Se(f —v)av
-0
(4.49)
where
P(v,a) = I T'(u, a)e—jzuv“du .
(4.50)

Clearly, the received signal still exhibits the cyclic feature which is related to the input sig-
nal x(¢). The spectral correlation function of the received signal is a spectrally blurred ver-
sion of that of the transmitted signal and furthermore the spectral blurring function
depends on the cycle frequency. Specifically, for I'(¢, f;) given in Eq. (4.47), Eq. (4.50)

becomes
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_ (7‘:"-'0")2

1+ /2

So

(4.51)
The area of this function is concentrated in the region |v| < 1/t and || < f. Therefore the
spectral blurring width is on the order of the reciprocal channel decorrelation time and the
spectral correlation function is attenuated for cycle frequencies greater than the channel
coherence bandwidth. It can be seen that if the multipath delay time is zero, or the coher-
ence bandwidth f; is infinite, Eq. (4.46) and Eq. (4.49) degenerate to the Eq. (4.32) and Eq.
(4.34), which is the flat fading case.

Most of the fading experienced by AMPS signals is flat since the bandwidth of the signals
(30kHz) is usually less than the channel coherence bandwidth (typically as 100kHz). The
phase distortion of the received signal which is the summation of different multipath com-
ponents can not be compensated for by using a conventional equalizer. This results in
large amplitude fluctuation of the received signal. The amplitude is well known to be Ray-
leigh distributed. For flat fading, the channel coherence bandwidth is infinite. Since the
cyclic frequencies in which the AMPS signal exhibits spectral correlation are within the
- channel coherence bandwidth, the cyclic feature of the AMPS signal is preserved. Analyt-
ical results show that the cyclic autocorrelation function of the received signal is the same
as that of the signal that does not undergbes fading channel except it is multiplied by a
scaling factor. For flat fading case, this scaling factor only depends on the fading rate.
Fig. 4.10 depicts the autocorrelation of complex faded signals for a flat fading channel as a
function of time delay t for different fading rates, or Doppler frequencies. A large fading
rate, or large Doppler spread results in greater attenuation than a smaller fading rate. It
can be seen from Fig. 4.10 that for a short time delay within 10 samples, the scaling factor
(x,a)/|Hyl? does not change much for different Doppler spreads. However, significant dif-

ferences can be observed when the delay is large. If the velocity of the mobile is close to
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zero, the scaling factor is unity for all delays, i. €., no fading is introduced. =~ On the other
hand, the scaling factor ['(z,a)/|H|* decreases dramatically for high Doppler spreads when
the delay is large. The cyclic autocorrelation coefficient is reduced to 50% for Doppler
frequency of 95Hz when the delay is greater than 160 samples. This trend can also be
observed in Fig. 4.12 which plots the Fourier transform of I'(r,a)/|H,)? as a function of fre-

quency and the Doppler spread.

A simulated flat faded AMPS signal is used to measure the cyclic autocorrelation function
and the result is shown in Fig. 4.14 as a function of time delay. It closely matches the the-
oretical cyclic feature in that the impact of fading for a short time delay is less then that for
a long time delay. The cyclic frequency chosen here is 6000Hz and the Doppler frequency
is 80Hz. For frequency selective fading, if the channel coherence bandwidth is less than
the primary cyclic frequencies, the cyclic feature will be distorted severely since the sig-
nals are no longer correlated due to the channel effects. I'(r,o)/|Hyl? is also computed and
plotted in Fig. 4.11 for a two-ray Rayleigh fading model with o, = Sus. The channel coher-
ence bandwidth is only 4kHz and within the cyclic frequencies of the desired signal!. It
can be seen that the cyclic feature is reduced to 50% even though the fading rate is very
low. This is also reflected in Fig. 4.13 which shows the frequency response of the channel
correlation for the frequency selective case. It is interesting to notice that the effect due to
different Doppler frequencies on the scaling factor for the frequency selective fading is
less than that for the flat fading case. It can be seen from Fig. 4.10 and Fig. 4.11 that
[(z,0)/|Hyf* drops 50% from a Doppler spread of 5Hz to 95Hz (at delay of 160 samples) for
flat fading, while I'(x,a)|H,/> only drops 20% for frequency selective channel. This is
because the multipath delay plays an important role in I'(x,a)/|Hyl? for the frequency selec-
tive fading. It is also interesting to notice that a long optimal filter length does not give

better performance for the fading channel because the cyclic feature is diminished for

1. This coherence bandwidth may not be realistic for AMPS, but it does illustrate in general terms
the impact of frequency selective on the cyclic feature of a modulated signal.
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large lags. This provides insight in selecting the optimal filter length for fading channels.

The limitation of using additional filter weights is validated in the next chapter.

From the above discussion, it can be seen that the cyclostationarity of the transmitted sig-
nal is preserved after passing through different realistic channels, although it is diminished
because of fading. Nevertheless, the spectral correlation property still provides a means to
separate the desired signal and the interference even in the presence of fading as shown in

Chapter 5.
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Chapter 5. Optimal and Adaptive Time-Dependent Filtering

5.1 Introduction

As the study of adaptive filters has matured over the past 30 years, they have been shown
to be useful in a wide variety of applications. Linear time invariant adaptive filters! with a
finite duration impulse response have been used in such diverse fields as communications,
controls, radar, sonar, etc. In this chapter, a time-dependent adaptive filter is introduced
for processing cyclostationary signals. A time-dependent adaptive filter (TDAF) can
enhance the desired signal by taking advantage of spectrally redundant information con-
tained in the received signal. This filter can be implemented either in the time domain or
in the frequency domain. A frequency shifted (FRESH) filter is a specific type of TDAF

that involves jointly filtering frequency shifted versions of the signal.

The time-sequenced adaptive filter (TSAF) is a TDAF ideally suited for operating on a
signal with periodic statistics [RQHS88]. In Fig. 5.1, the TSAF utilizes a bank of M con-
ventional LMS adaptive filters whose weights are denoted by the column vector H(m) for
m=0,1,2,... M-1. Each adaptive filter is periodically updated and a filter output is chosen
synchronously with the periodicity of the signal statistics. The filter output at time & is

given by the inner product of the input vector and the Hj with the largest multiple of M in

[£],

y(k) = X{Hy(k—[k], ;M) .

(5.1)
The TSAF can be interpreted as an adaptive filter that converts the nonstationary signal

into a set of jointly stationary processes using the time-series representation (TSR) for

1. Here we refer to time-invariant adaptive filter as an adaptive filter that changes in time to track a
dynamic signal, but does not have a periodic impulse response.
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adaptation and filtering [Fer85b]. In the literature, the TSAF is often referred to as the
TSR TDAF. A frequency domain equivalent to the TSAF (FD TSAF) has been developed
by Ferrara [Fer85b]. It can be easily derived by modeling the m-th filter’s sampler in Fig.
5.1 as mathematically equivalent to multiplication of the filtered outputs by the discrete
Fourier series representation of a periodic pulse train with a period of M samples. Using
the Fourier series representation (FSR), it is shown in [RQH88] that an equivalent struc-
ture is the FRESH filter, shown in Fig. 5.2. The FRESH filter is more flexible because the

filter periodicity o, can be explicitly specified. However, the FRESH filter requires more

computations. For the TSAF the periodicities are all harmonics of the switching rate.

Frequency domain adaptive filters are of interest because they have been shown in certain
instances to converge faster and require fewer computations than the transversal LMS
adaptive filter [RQHS88]. A circular frequency domain adaptive filter can be generalized to
process cyclostationary and nearly cyclostationary signals by exploiting the spectral corre-
lation property as shown in Fig. 5.3. The circular FSR TDAF can be viewed as a multi-
channel adaptive filter which estimates a frequency bin Y;(f;) by using weighted bins
Wi m(DX{f-,,) separated by cycle frequencies a,, corresponding to the SOI or the

SNOI. The cycle frequencies are constrained to lie within the possible FFT bins.

H,(k)
: ‘ l Output

Input
Hy(k

ol
A

— Hy(k)
[ AR

e(k)

Fig. 5.1 The TSR TDAF
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5.2 Optimal Time-Dependent Filtering

It is shown in Chapter 4 that the spectrum of an AMPS signal consists of the FM modu-
lated voice (SAT excluded) replicated at the carrier and at the carrier plus and minus mul-
tiples of the SAT frequency. A TDAF can combine the replicated versions of the SOI FM
voice signal (excluding the SAT) to enhance the SOI.  Alternatively, the time-dependent
optimal filter, periodic at multiples of the SNOI SAT frequency, estimates and cancels the
replicated versions of the SNOI modulated voice, thus improving the quality of the SOI
signal at the filter output.

Given this conceptual view of the optimal filter, the theory of the optimal filter is now pre-
sented. The impulse response A(t,u) of an optimal time-dependent filter can be repre-

sented by

j2ra,u

h(t,u) = Y g, (t—u)e ,

(5.2)

where g,,,(¢) is the Fourier component for all time ¢ and o, represents the filter periodici-

ties. The output, which is an estimate of the desired signal d(¢), is given by

d(t) = Z I g"“(t—u)x(u)ejzm'"udu

=D ga() ® x, (1) ,

(5.3)

where x,(¢) =x(£)e/*™m' are frequency-shifted versions of the input signal.
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Fig. 5.3 The circular FSR TDAF
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The optimal Wiener solution for this filter is given by [Gar94]

—Qpy jﬂ:(Bn+ a‘m)u)

(u)e ;

B, \ jnBu B.
Ry (w)e ™ = 3 g, (w)® (R,
m

(5.4)

where RS;(u) is the cyclic cross-correlation between the training signal d(¢) and the

observed signal x(f). The frequency domain equivalent representation is

Sh(/-%) = Zounss (- P 2a),

(5.5)

where 3, ranges over all the possible values of a.,,.

Define the mean square error (MSE) as the expectation (in a time-average sense) of the dif-

ference between the desired signal spectrum S,(f) and the estimated signal spectrum S,(f),

+00

MSE = j 1S, —=S,(N|df .

(5.6)
The MSE can be calculated using the results contained in [RH90]
+o0 B B *
MSE = [ |5,0)-YG,(N)S d;(f— -2-) df .
—0 n
(5.7)

To estimate the analytical performance of the TDAF (no a=0Hz term) for AMPS signals,
we consider that only two filter periodicities of +/- 6kHz are used for the TDAF shown in

Fig. 5.3. The +/- 12kHz frequency shifted versions are usually distorted and attenuated by
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the roll-off effect of the bandpass filters at transmitters and receivers and provide only
marginal performance gain. To provide an intuitive understanding of the performance of

the TDAF, we evaluate Eq. (5.5) using two periodicities o and o;(+/- 6kHz),

$3:(/-2) = Gy -ap + G- 22

(/-2 = Gy (/-2 G, NS

(5.9)
Solving the two linear equations, we have
ao o, gl +°‘1
de(f 2)Sxx(f 0’0) de(f 2) ( - )
Gy(f) = - RRy— e
Secl =)o f o) =S~ (7 -2 sy (-2
(5.10a)
and
a1\ 0 a . Qg +°‘1
G/() = A ) " GV L Yo |
Seel =)= tg) =S~ —°‘°2°“)SZ;‘“°(f—°‘°;'°”)
(5.10b)
If ay = —a, then the solution can be simplified to:
Si( Sl + o) =S (f+ s r-ao)
Gy = ——21 T
Sl = aQ)Sf + 0) = S NS ()
(5.11a)

and
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—2a,

S+ )t - o) =S S~ F )5+ )
S (f +ag)SS(f—ag)~ S (S F

G(f) =

(5.11b)

From the SCD values shown in Fig. 4.3, Si:°(f tag) is 30dB down from

a
$° (f + ap)and 20dB down from SZ;;( f+ -29) for ay=6kHz. Thus the solution of Eq.

(5.11) can be approximated as:

Go(f) =

Self — )
(5.12a)
and
—ag a
salr+3)
G(Nx 5 .
Sxx(f+ 0‘0)
(5.12b)

From Eq. (5.12), the optimal solution of the time-dependent filter computes the ratio of the
cross cyclic spectral correlation density between the desired signal and the input signal
over the conventional spectral density of the input signal. Since the cyclic frequencies of
the desired signal and the interference are different, the cyclic spectral correlation density
between the reference signal d(f) and the interfering signal i(7) is zero if the periodicities of
the filter are chosen to correspond to the desired signal. In other words, when a corrupted
signal x(¢) passes through a filter with frequency response given by Eq. (5.12), the desired

signal will be enhanced and the interference will be attenuated.

Using the optimal filter solution, the cyclic spectrum density of the estimated signal y(z)
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1S

£« T T a7+ gJon{r- Gt (- E)
n=0m=0

(5.13)
The conventional spectrum density is given in the following equation by simply setting
a=0 in Eq. (5.13),

L-1L-1

5,0 = 3 T NGNSy -2,

n=0m=90

(5.13a)
By substituting Eq. (5.13a) into Eq. (5.6), the MSE for this TDAF then can be formed as

MSE = [|S,(/)=S,(N)|df

®© L-1L-1

- [l S S e, {r- e

== s .

o n=0m=0

(5.14)

Another alternative to measure the performance of the TDAF is to calculate the output

CIR and compare it to the input CIR. Since the TDAF is a linear system, the output CIR

can be calculated by filtering the desired signal s(¢) and the interference separately using

the converged filter response. From Egq. (5.9) and Eq. (5.14), the analytical CIR for the
TDAF given in Fig. 5.2 is given by

(Gonsis(7-2) + aunsze(r+2) Jar

f— 8l — 8

~IQ

(Gunsis(r-2) + qunsie(r+ %)

(5.15)

71



Chapter 5. Optimal and Adaptive Time-Dependent Filtering

For the case of extracting and equalizing a distorted signal in co-channel interference and
noise, the filter response, the MSE and the output CIR can be simplified to a form which
provides a more intuitive interpretation of the filter performance. The received signal con-

tains the desired signal s(¢), with the interference i(¢) and channel noise n,(%),

x(t) = h(£)®s(t) +i(t) +n(t) >

(5.16)
and the cyclic spectrum of x(¢) is [Gar94]
S50 = H{er e f+ 2 (1~ 2)8. (0 +SHN + N,
(5.17)

If the noise n,(¢), the signal s(¢), and i(¢) are statistically independent, the cross cyclic spec-

trum of the desired signal and the input signal is

SalN = B(r-2)s. (.

(5.18)
Substitute Eq. (5.17) and (5.18) into Eq. (5.12), the filter response of the TDAF is
H(f-ap)s,”(1-3)
G ~ '
o) H(f—ao)H*(f— 0-())~S's_,-(f—oﬁo) +8,(f—ay) + N, (f— o) ’
(5.192)
and
B (f+a9)s, (£ +3)
G =~ .
A TR @), (f + ) + 5;(f +ag) + N (f + )
(5.19b)
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By substituting Eq.(5.17) into the Eq. (5.14), MSE can be evaluated using Eq. (5.6),

0 L-1L-1
MSE= [ 1,003 3 GG, NH(+5 f~BH [ =1,)8,,

—0 n=0m=0

-B, +Ym(f_[3n +ij
2

L-1L-1 ~B_+v
-B + B + B +
— Z Z Gn(f)Gm‘(f) Sii n Ym(f n zym)_‘_Nxx " m(f— n Ym)}

> df .
n=0m=0

(5.20)

The cyclic frequencies of the interference are different than those of the desired signal and

the noise is assumed to be stationary with spectral density of 1-21 Thus only when

—B,+7v,, = 0 are the correlation terms for the noise and the interference present in Eq.

(5.20).

Usually the signal-not-of-interest includes background noise, channel interference, fading
and multipath, etc. The performance of the TDAF under these conditions is analyzed in

the following section based on the above example.

1) Noise-only Channel

In this case, the input signal is simply a sum of the desired signal s(¢) and noise »n(?)

x(t) = s()y+n(2),

(5.21)
and the desired signal d(¢) = s(¢). It can be seen that the only correlation between x(¢) and
d(?) is due to s(¢). Thus the cyclic spectrum of x(¢) is

S3() = Se(nH+1

(5.22)
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and the cross cyclic spectrum is

S5(f) = Se().

(5.23)
Assuming s(f) and n(¢) are statistically independent. The filter response from Eq. (5.19) is
approximately
Sssao( - %))
G o(f )= m
Sm(f—a0)+5
(5.24a)
and
a
5 (/%)
G(H~= n
Sss(f + 0.0) + 5
(5.24b)

The filter response obtained from Eq. (5.24) is a generalized Wiener solution for an opti-
mal time-dependent filter. For a time-invariant optimal filter, the filter response is the ratio
of the spectrum of the desired signal to the spectrum of the noise corrupted signal. The
degenerate filter response provided in Eq. (5.24) when a=0Hz is the time-invariant case.
For a time-varying optimal filter, the numerator of the filter response is the cyclic spectrum
of the desired signal, since a frequency shifted version of the received signal is applied as

the input of the FIR filter. Also, a frequency shift occurs in the denominator of Eq. (5.24).

The MSE in Eq. (5.20) for this case is simplified as

® L-1L-1

MSE = [ [S00-3 3 GG (s (72 Do

—0 n=0m=0

(5.25)
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Referring to Eq.(5.15), the CNR of the TDAF processed AMPS signal can be computed

from the following equation

(NS 1-20) + Gunsie(r+ %) Jar

20
I

(GonSialr- 2 +unsae(r+ %) Jar |

g — 8l§ — 8

(5.26)

2) Co-channel Interference Channel
Rejecting co-channel interference is the main goal of this research. For this case, the

received signal is simply a summation of the desired signal s(f) and the co-channel inter-

ference i(¢)

x(t) = s(t) +i(e) .
(5.27)

Assume that the desired signal is d(¢#) = s(¢f). The only correlation between x(¢) and d(f) is

due to s(#). The cyclic spectrum of x(¢) can be computed in the following equation:

S = Sg(N) + S5
(5.28)
and the cross cyclic spectrum is
Six(f) = S (f).
(5.29)

Assuming s(f) and i(¢) are statistically independent. The filter response degenerates to:
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a o)
Sss o( _7)

G = 5 T * 5,0 —g)
(5.30)
and
s (13
G ()= .
! S, (f+ay)+S,;(f+ay)
(5.30b)

From Eq. (5.30), it can be seen that the filter weights only depend on the ratio of the cyclic
spectrum of the desired signal to the spectrum of the input signal. When a=0Hz, Eq.
(5.30) degenerates to the filter response for a time-invariant optimal filter. For other o val-
ues, which are the time-varying portions of the filter, the numerator is the cyclic spectrum
of the desired signal instead of the conventional spectrum of the desired signal. Assume
that the cyclic frequency for the SOI is 6kHz (ay=6kHz) and for the SNOI it is 6030Hz,
and the carrier frequencies are equal. The filter responses in Eq. (5.30a) and Eq. (5.30b)
for different interference powers are numerically calculated and plotted as a function of
input CIR in Fig. 5.4a and 5.4b. It can be seen from Fig. 5.4a that there are two strong
impulses in the filter response for Gy(f), at f= 0Hz and /= 6000Hz. These features are
explained by Eq. (5.30). Since the cyclic spectrum of the desired signal at o has maxi-
mum values at f=+/- oy/2, and the shifting of the cyclic spectrum by a,y/2 results in maxi-
mum values at = 0Hz and f'= o scaled by the reciprocal of the shifted version of the
conventional spectrum of the input signal by a,. This is similar to Gy(f) which has maxi-

mum values at f= 0Hz and /= -a,.
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Fig. 5.4a Filter response Go(f) of optimal time-dependent filter
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input CIR dB

Fig. 5.4b Filter response G,(f) of optimal time-dependent filter
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The MSE in Eq. (5.20) for this case can be simplified as
MSE =

© L-1L-1 - -
f ST Y G"(nG’”‘(f)(Sss B"”’"(f Bn';ym).;.sii Bn“"Ym(f Bn*z'YmD\df.

~a0 n=0m=0

(5.31)

Because the periodicities of the filter are chosen to be the cyclic frequencies of the desired
signal, the spectral correlation density for the interference will be zero except when
B,=Ym- If L covers all the possible cyclic frequencies for the desired signal, the theoretical
MSE for the TDAF can be simplified to

© L1
MSE = [| 3 G (NGNS, (f8,)+N,(f)|df .

—o\n =90
(5.32)
Note that the MSE is a function of a distortion term for the filtered SOI N,(f) and the fil-

tered interference. The optimal solution trades distortion for noise and interference rejec-

tion to produce a minimal MSE.

The output CIR is evaluated numerically using Eq. (5.15). To simplify the numerical com-

putation involved in Eq. (5.15) and (5.30), we make the following assumptions:

a) The spectral correlation of an AMPS signal at +/-2a (twice the SAT frequency) is small
enough to be neglected.

b) The interference has a different SAT frequency than the SOL.

c) Filter periodicities associated with the desired signal are used, excluding the time-
invariant term.

d) The desired signal and the interfering signal are statistically independent.

e) The noise in the channel is statistically independent from the AMPS signals.

Fig. 5.5 shows the output CIR as a function of the input CIR using 10* data points. The
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Fig. 5.5 Output CIR of the TDAF and TIAF processed signal
for interference-only and noisy channels

received signal is formed by adding the SOI and the SNOI together. Both of them are
complex baseband AMPS FM signals with SAT frequencies of 6000Hz and 6030Hz,
respectively. In Fig. 5.5, it can be seen that the output CIR increases almost linearly with
input CIR when noise is absent. When noise is present the overall gain provided by the
TDAF is reduced and is no longer linear in the region for high input CIR. When the input
CIR is high, the noise is a significant factor affecting the performance. For example, the
analytical CIR of the output is 26dB for a noise free channel when the input CIR is 5dB,
and it is 25dB for a noisy channel (CNR=15dB) for the same input CIR. On the other
hand, the analytical output CIR is 43dB for a noise-free channel when the input CIR is
20dB, while the CIR is 25dB for a noisy channel for the same input CIR. AWGN can be
reduced by the TDAF but can not be totally removed. To compare the performance of a
TDAF and a time-invariant filter (TIAF), the analytical output CIR of an AMPS signal
after a TIAF is also evaluated using the same design equations, i.e., ®=0Hz only. The

results are plotted in Fig. 5.5. It can be seen that the improvement provided by the TIAF is
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10-15dB less than that provided by the TDAF. The results prove that a TDAF is superior
to a TIAF for interference rejection for a signal that exhibits statistical periodicity.

3) Fading Channel

The effects of different types of fading on the cyclic features have been analyzed in Chap-
ter 4. Thus, the performance of the TDAF when the signal undergoes fading can also be
computed. Let

L-1

Ein(f) = Z Gn(f)Gn*(f)Sﬁ(f"Bn) + g .

n=0
(5.33)
Substitute Eq. (4.34) and (5.33) into Eq. (5.20), the MSE for a flat fading channel is

~

\4

© L-1L-1 © /1
-B,+v B+
u5E = [ 15,0 X X G0l oo [ 75, R~ iy

—0 n=0m=90 —00

(5.34)

The MSE for a frequency selective fading channel is obtained by substituting Eq. (4.42)
into Eq. (5.20)

MSE =
(ntov)2
L-1L-1 © 1+jj_t,"_+1_ﬂ
. fo “Bn+7m Bn""(m d d
I Isd(j)—z Z G (NGt N[Hy| ./inoj Tc S (S R-v)dv-E,0nidS
n=0m=0 |1t/ T

(5.35)
The output CIR of the TDAF processed signal for the flat fading channel is
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2
©|L-1L-1 7 8 4y
_[ Z Z G, (NG, *(f)|H0| -»/1—tt I ms S (f— n2 m—-vjdvdf
C_—mn—Om 0 —©
1 ©|L—1L-1 ,

S S GUNG NS =P I 4
J- 2

—wn=0m=0

(5.36)
and for frequency selective fading is
(mtyv)
@© |L-1L-1 ® |+jﬂ
[|Z B oo o in]|—gmme 8 e
C—_oon=0m=0 ol 1+) 7
1 Y kel =Bt Yy, B, tY
[1Y Y 606,008, " "(r-252)ds
—oln=0m=0
(5.37)

Fig. 5.6 shows the output CIR assuming flat fading and various different Doppler frequen-
cies. The output CIR for a non-fading channel is also plotted in the same figure for com-
parison. It can be seen from Fig. 5.7 that a 1-3dB degradation results from lower Doppler
frequencies such as 30Hz, while 3-5dB degradation results from high Doppler frequencies
such as 60Hz. Although the channel here is flat, the amplitude fluctuations result in
smearing the cyclic autocorrelation function shown in Eq. (4.33). Consequently, the out-
put CIR of the TDAF is affected by Doppler shift. For frequency selective fading, the deg-
radation of the output CIR is caused by both the motion of the vehicle and multipath. A
two-ray Rayleigh fading model can be used to demonstrate this point. Multipath is usually

characterized by the rms of the multipath delay o., which is directly related to the channel
coherence bandwidth f;, directly. Fig. 5.7 shows the output CIR for different o, when the

Doppler frequency is 30Hz. For comparison, the CIR of the flat fading case is also plotted
in the same figure. From Fig. 5.7, it can be seen that degradation caused by the multipath
delay (o, = 2.5ps) is not significant if the channel coherence bandwidth £ is larger than
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the cyclic frequencies of the desired signal. However, when the delay increases, the chan-

nel coherence bandwidth decreases. When f; is smaller than o, the degradation is signifi-
cant. For example, given a Doppler frequency of 30Hz and o, = 10us, the output CIR

drops 5dB compared to the flat fading case. This example is repeated for a high Doppler
frequency of 60Hz and the results are shown in Fig. 5.8. The performance of the filter

declines in a similar way for different o, as the low Doppler frequency case shown in Fig.

5.7. Clearly, the performance degradation is more severe than in the lower Doppler case

since the motion of the vehicle results in a higher Doppler shift.

45 T — T

35L
@
°
a2
S sof
5
&
=
®) .
251~ - .. . SRS .
o: no fading
: *: f,=30Hz
0 AT i + fp=60Hz |
15 i ; . .
0 5 10 15 20 25

Input CIR dB

Fig. 5.6 Output CIR of the TDAF processed signal of flat fading case
for different Doppler frequencies
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Fig. 5.7 Output CIR of the TDAF assuming frequency-selective
fading and various channel delay spread, Doppler frequency is 30Hz
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Fig. 5.8 Output CIR of the TDAF assuming frequency-selective
fading and various channel delay spread, Doppler frequency is 60Hz
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5.3 Configuring the Adaptive Time-Dependent Filtering for Enhancing AMPS Sig-
nals

As described in Section 5.1, a TDAF can be implemented either in the time domain or fre-
quency domain. In this chapter, a time domain implementation of the TDAF, the FRESH

filter, is used for AMPS co-channel interference rejection.

A reference signal is needed to train an adaptive filter. This reference signal can be corre-
lated with either the desired signal or the interference depending on whether the filter
enhances the SOI at the filter output or at the error output. For the AMPS signal, no direct
training sequence is available. However, an optimal TDAF under ideal conditions, i.e.,
with a training sequence (clear SOI), can provide a theoretical upper bound on TDAF per-
formance. The TDAF can be realized in the manner shown by Fig. 5.2. The input signal
x(k) is first frequency shifted by the cycle frequencies corresponding to the desired signal.
M FIR filters are used to jointly filter the shifted versions of x(k) to produce the output
y(k). The difference between the reference signal and the estimated signal y(k) forms the
error e(k) which is used to update the weights of the FIR filters.

Although using an ideal training sequence is not practical for real situations, the SAT
information can be used to train the filter. A blind adaptive implementation of the TDAF
shown in Fig. 5.9 can exploit the spectral correlation due to the SAT to extract the signal of

interest. A delayed version of the input serves as the training signal for the TDAF as long

as the filter periodicities are constrained to not have the time-invariant term, i.e., o, # 0.

The filter uses frequency shifted versions to estimate the incoming signal. Signals which
exhibit spectral correlation for the chosen frequency shifts are passed by the filter, hence
this filter can be viewed as a spectral correlation predictor (SCP). The filter periodicities
o, are multiples of the cycle frequency of either the SOI or SNOI. If the periodicities cor-
respond to multiples of the SOI SAT frequency, then the output y(k) of the filter is an esti-
mate of the SOI and the error e(k) contains an estimate of the SNOI. The recursive least

84



Chapter 5. Optimal and Adaptive Time-Dependent Filtering

square (RLS) algorithm is used to adapt the filter. The update algorithm for the filter
structure is provided by the procedure in Table 5.1.

A receiver composed of a two-stage TDAF, shown in Fig. 5.10 provides better perfor-
mance than the single stage TDAF. The filter at the first stage is periodic at multiples of
the SOI SAT frequency and is used to estimate the SOI. The output is fed to the second
filter, whose periodicities correspond to the SNOI SAT frequency, and is used to estimate
and remove the SNOIL. The two-stage processing provides both signal enhancement and
interference suppression. Our simulation experience has shown that two-stage processing

tends to be more robust to fading than singe-stage processing [HR95], and this is demon-

strated in the following section.

+ e-jzﬂa.M_lk X(k) /

X W(M-1)
e'jzml M—Zk
Input x WMD) l?gr(r)x;t;g[
IN(k) .
. oy P — (k)
X wyl)
eJ2magk /
X ‘ W0)
an#0 Estimated
" SOI/SNOI
m=0,12,. M-1 -
e(k)
Delay N/2 Reference signal

Fig. 5.9 Block diagram of the spectral correlation predictor (SCP)
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Table 5.1 Circular RLS Algorithm [Hay91]

Py = 81, 8 is a very small positive number (NM, NM)

(N is the filter length and M is the number of periodicities)
W, =0, initial weights (NM,1)

A = positive forgetting factor <=1

T = sampling period

o, = cyclic periodicity

fork=1,2,3, ...

IN,=kth input vector [x(k) x(k-1) ... x(k-N+1)]T
x(m)=IN,&?™*mkT subvector for each a,,

Xi=[x(M-1) x,(M-2) ... x,(0)]T, frequency shifted input vector (NM,1)
P,=X;1'P,_;, intermediate result

sRy=1+P X,

Ci=P;/s(k), gain vector

y(k)=W,_x,, output

e(k)=x(k-N/2)-3(k), error

Wi=W,;.+Ce*(k), weight update

P=1/(Py_1-CiPy), inverse correlation matrix update

H: hermitian transpose

*: conjugate
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Received RF signal baseband signal
Hilbert p| Frequency > L TDAF1
transform down Shift Decimation a=fsor
Reconstructed Voice band Quadrature TDAF2
voice signal filter | ¥ | demodulator[ | a=fsnor

Fig. 5.10 Block diagram of a receiver using two-stage TDAF

5.4 Simulation Study

Here results are presented to show the potential of the TDAF for rejecting AMPS interfer-

ence.

5.4.1 Assumptions

The simulation study is based on the following assumptions:

Rayleigh fading is applied that assumes an 800MHz carrier and mobile unit velocities
of Smph and 65mph.

Two ray propagation channels are applied to both the SOI and SNOI. Different chan-
nel parameters are used for SOI and SNOI.

The SOl is a digitized signal with carrier frequency of 30kHz, sample rate of 120kHz
and SAT frequency of 6kHz. The interference is another digitized signal with same
carrier frequency and sample rate, but having a SAT frequency of 6030Hz. Both the
SOI and the SNOI are frequency down converted to complex baseband signals.

The filter periodicities are chosen to be the periodicities of the SOL.

A commonly used quadrature demodulation structure shown in Fig. 5.11 performs the

FM demodulation. The receiver performance depends on the type of demodulator as
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well as the TDAF. This quadrature demodulator works well for relatively high levels
of carrier-to-interference ratios (CIRs), but fails to produce a satisfactory output when
the CIR drops below 9dB. This is especially true when the FM signal is corrupted by
Gaussian noise. This demodulator provides the baseline performance for evaluating

the new techniques.

— DelayT | Comjugate Carrier

(e) remove

FM signal

Voice . Phase
<¢—| Expandor |-€— De-Cmphasnsu—‘ Decimation <& ()

Fig. 5.11 Block diagram for AMPS quadrature demodulator

5.4.2 Experimental Procedure
Most of the simulation results presented are obtained using digitized AMPS signals.
However, results based on simulated data are also presented to validate our analytic model

and to show how non-ideal implementations degrade the performance.

Two digitized data files representing the SOI and SNOI are used here. The modulated sig-
nals are baseband signals which are sampled at 60kHz. The received signal is generated
by adding the SOI to the SNOI with an appropriate level of noise and flat fading. The
noise level for the digitized data itself is about 17dB.

Different cases using various carrier separations and fading characteristics are examined.

A bandpass filter with passband from 300Hz to 3000Hz is used after the demodulator to

extract the voice signal. We assume in our calculations that the digitized signals are noise
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free and the corresponding demodulated voice signal is noise free. In other words, the dis-
tortion introduced by the quadrature demodulator is assumed to be negligible at this point.
The output CIRs are calculated to measure the performance improvement provided by the
SCP. The output CIRs can be measured by passing the SOI and the SNOI through the SCP
separately after the filter has converged because of the linearity of the SCP. However,
these measurements are not stable if the channel varies rapidly. One solution to overcome

the fluctuations of the measurements is to measure the CIR each time the weights are

updated.

Perhaps the best way to evaluate the SCP is by assessing the quality of the demodulated
voice signals. The method that was used by the previous section for calculating CIRs is no
longer suitable here since the quadrature demodulator is a non-linear process. Instead, the
MSE can be used to calculate the processing gains. It is not a perfect indicator of voice
perceptibility, but it does provide a general indication. MSE usually is calculated by two
methods [GBGMS80]. The first method computes MSE by averaging instantaneous MSE
for 20-30msec time slots. The second method smooths the MSE by averaging the differ-
ence in FFT bin magnitudes over the band 300Hz to 3000Hz. In our simulations, the MSE

for the voice signal is calculated via the former method.

Another good method for determining the performance gain is to measure the MSE of the
SAT after the SCP. To measure the MSE of the SAT of the received or the processed
AMPS signals, a very narrow bandpass filter centered at the desired SAT frequency, such
as 6000Hz with bandwidth of 30Hz, is used before the voice bandpass filter to extract the
SAT signals.

5.4.3 Results

The results using digitized data are presented in Table 5.2. Table 5.2 shows the output CIR
provided by the TDAF for various input CIRs and carrier separations. Also shown is the
MSE of the demodulated voice signal provided at the output of the demodulator. The MSE
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of the SAT is also available in this table.

Fig. 5.12 shows the output CIRs for different carrier separations as a function of input CIR
assuming no fading and a CNR of 25dB. It can be seen that the performance improvement
increases slightly when the carrier separation of the two signals increases. For example,
the output CIR is about 31dB for carrier separation of 400Hz at an input CIR of 15dB,
while it is about 28dB for a carrier separation of OHz. This can be explained by the fact
that the degree of overlap is reduced when the carrier frequencies of the two signals are
separated further. Nevertheless, the difference is only 1-3dB. All the three curves show
the similar the performance trend of the SCP, i.e., the output CIRs are almost linear func-
tions of the input CIRs. This observation is consistent with the theoretical results which

are shown in Fig. 5.5.

The corresponding MSEs of the demodulated voice signal and SAT are plotted in Fig. 5.13
and Fig. 5.14 for different carrier separations. The MSEs of the demodulated voice signal
and SAT for the input signals are also plotted in the same figures for comparison. Gener-
ally for the voice signals, 20-25dB of MSE represents intelligible quality, 25-40dB of MSE
provides adequate quality and 40-50dB of MSE gives superior quality. From Fig. 5.13, it
can be seen that there is 15dB improvement for the voice signals provided by the SCP.
The improvement is almost a linear function of input CIR. Fig. 5.13 also shows that the
MSEs for different carrier separations do not differ much, although a larger carrier separa-
tion provides slightly better performance. The SAT MSE improvements are shown in Fig.
5.14. The MSEs do not vary linearly with the input CIR. There is an average 10-15dB
improvement provided by the SCP for the SAT MSE. This improvement is more signifi-
cant for lower input CIRs than the higher CIRs.
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To verify the fading effects for the SCP as described in section 5.2, the output CIRs and
the MSEs for the demodulated voice signals and the SAT are measured for different Dop-
pler frequencies. Fig. 5.15 shows the output CIRs for Doppler frequencies of 30Hz and
60Hz, and for the non-fading case as well. Clearly, the performance is degraded by sev-
eral dB when the velocity of the mobile increases. Since the amplitude fluctuates faster
for the higher Doppler shift case, the tracking ability of the adaptive filter is affected. The
simulation results are very close to the theoretical evaluation for the fading case shown in
Fig. 5.6. Also, the MSEs of the demodulated voice signals and the SAT, plotted in Fig.
5.16 and Fig. 5.17, show a similar degradation caused by Doppler shifts. Notice that the
degradation in the voice signals is worse than that in the FM signals. Based on our simu-
lation experiences, a higher Doppler shift causes more phase discontinuities in the pro-
cessed signal which results in more spikes in demodulated voice signal when the

quadrature demodulator is used.

Table 5.2 and Figures 5.12 to 5.17 show that the CIR, voice signal MSE and the SAT MSE
are generally improved when the carrier separation increases and fading is reduced. The
lower the CIR, the more pronounced the improvement. For example, there is a 15dB CIR
improvement for the case where the carrier separation is 200Hz and the input CIR is 0dB.
However, there is only a 4dB improvement when the input CIR is 15dB. Also, the more

the signals’ carriers are separated, the more pronounced the improvement provided by the
SCP.

Typically, there is 3-8dB degradation between the cases of lower Doppler frequency and
higher Doppler frequency.

The observations are general trends, but not absolute rules. For instance, if two FM sig-
nals are very close in frequency, the demodulated voice signal tends to have significant
distortion in the sub-audio band and in the super-audio band. This distortion can be fil-

tered without affecting audio quality. However, if the distortion is in the audio band, it
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cannot be removed by the bandpass filter and this produces more noticeable distortion.

Uncorrupted, corrupted and reconstructed voice signals are shown in Figures 5.20 and
5.21. In each case, the top subplot is the original voice signal, and the second one is the
demodulated voice signal of the corrupted FM signal. The demodulated TDAF filtered
signal is plotted at the bottom of these figures. The plots clearly show the effectiveness of
the TDAF. The TDAF processed signals are much better than the corrupted signals.

The results for the simulated signals are very similar to those of the digitized signal. How-

ever, there is typically a 3-5dB degradation for the digitized data. Fig. 5.19 compares the

results of the simulated and the digitized data for a carrier separation of 200Hz and with
low Doppler frequency (Smph). The sources of this degradation could be:

» Practical filter roll-offs at the transmitter and the receiver cause a reduction in the sec-
ond sidelobe energy of the digitized AMPS signals. This information is available and
useful for enhancing the simulated signals.

» Imperfect sample rate conversion causes additional distortion of the real data.

» The SAT frequency of the digitized signal is slightly off its ideal frequency. This is the

most likely source of degradation.

To confirm the performance of the blind TDAF and also to provide an theoretical bound
on performance, output CIRs of the AMPS FM signals are measured for the filter trained
using a known training sequence. The theoretical performance for the blind adaptive filter
is numerically computed and shown in Fig. 5.19 as a function of input CIR along with the
experimental results. The top curve is the theoretical CIR computed from Eq. (5.15). The
second curve is the CIR for the TDAF with an ideal training sequence. The third curve
shows the CIR of the blind TDAF, the SCP. It can be seen from the figure that the experi-
mental results with the training sequence are very close to the theoretical values based on
the assumption that the CIRs are measured after the filter converges. Note that the perfor-

mance of the SCP is several dB lower than that of the TDAF with a training sequence.
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Refinements of the blind adaptive algorithm could improve the performance of the SCP.
The theoretical and experimental results discussed above do not include a time-invariant
term in the filter. From our simulation experience, the theoretical performance of the opti-
mal filter can be improved by including the time independent branch with the TDAF. This
suggests that a modified filter algorithm containing the time-invariant term should be

sought to obtain substantially higher output CIR levels.
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5.4.4 Convergence and Computational Complexity

All the results discussed in the previous section are based on one assumption that they are
measured after the filter has converged. The filter convergence rate and computational
complexity are also very important in an adaptive filter design. The most convenient
method to measure convergence is a short-term average MSE as a function of time. There
are different ways to compute the short-term average MSE (local MSE) using a sliding
window. For example, a low pass filter with a very small cutoff frequency of 300Hz can
be applied to obtain the short-term averaged MSE. The lowpass filtered MSEs are plotted
in Fig. 5.22 as a function of time for different input CIRs. The carrier separation here is
OHz and no fading is introduced. Fig. 5.22 shows that the adaptive filter converges after
0.3 seconds for different CIRs ranging from 0dB to 18dB. Fig. 5.23 shows the results for
a Doppler frequency of 30Hz. Because of the amplitude fluctuation, the MSE is not as
smooth as the non-fading case. However, the average MSE still converges after 0.3 sec-
onds. When the Doppler frequency increases to 60Hz, the MSE converges slower than the
previous cases. This is depicted in Fig. 5.24 for different input CIRs. It can be seen that
the filter does not converge until after about 0.5 seconds. A higher Doppler frequency,
which results in frequent amplitude fluctuations, reduces the filter convergence rate. To

circumvent this problem, some refined algorithms can be applied and are discussed in the

next section.

Besides the convergence rate, the computational complexity is also an important consider-
ation, especially when the algorithms are implemented in real time systems. Generally,
we use the number of arithmetic operations required to perform one iteration of the algo-
rithm as a measure of computation complexity. Arithmetic operations include multiplica-
tions, divisions, and additions/subtractions. Table 5.3 presents the comparison of the
computational complexities of the least mean square (LMS) and recursive least mean
squares (RLS) algorithms [Hay91]. In each case, it is assumed that the input data are real-
valued and that the order of the estimator equals N, i.e., there are (N+1) coefficients to be

estimated.
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Table 5.3 Comparison of computational complexities of LMS and RLS algorithms

Number of operations per iteration
Algorithm Multiplications Divisions Addition/subtraction
LMS 2N+1 0 2N
RLS 2N*+TN+5 N?+4N+3 2N*+6N+4

o T T R T T T T

carrier separation = 0Hz
| o =+/- 6kHz

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
t sec

Fig. 5.22 Filtered MSEs of the TDAF processed signals for different input CIRs.
Carrier separation is 0Hz and CNR is 25dB

102



0.8

carrier separation = 0Hz

Chapter 5. Optimal and Adaptive Time-Dependent Filtering

t sec

Fig. 5.23 Filtered MSEs of the TDAF processed signals for different input CIRs,
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Fig. 5.24 Filtered MSEs of the TDAF processed signals for different input CIRs,
Jf4=60Hz. Carrier separation is 0Hz and CNR is 25dB
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From Table 5.3, it can be seen that the LMS algorithm is much less computationally
demanding than the RLS algorithm. On the other hand, the LMS algorithm is less attrac-
tive than the RLS algorithm due to its slow convergence, relative sensitivity to the eigen-
value spread and higher steady-state mean squared error [Hay91]. If we assume that the
sampling rate is 60kHz, the FIR filter length is 20 and two frequency-shifted versions are
used (V=20 and M=2), the total operations needed for the TDAF using the LMS algorithm

are 107 per second. An AD21020 DSP processor with a 30nsec instruction cycle only
needs 0.3 second to process one second of data. The filter operations are highly parallel.
Vector multiplication could be implemented with an application specific integrated circuit
(ASIC) and would probably be power efficient enough to be implemented at the mobile

unit.

In general, a floating point division takes at least eight times as long as a floating point

multiplication. Thus, the total operations needed using the RLS algorithm are about 10°
per second. In other words, the AD21020 needs 30 seconds to process a one second of
data. Clearly, the cost to implement the RLS algorithm is tremendously high. To make a
TDAF feasible for a base station, and especially for a mobile station, a modified LMS
algorithm with comparable performance to the RLS algorithm needs to be developed.
Refinements of the LMS algorithms and structures are discussed in the following section

to achieve this performance gain.

5.5 Refinements of TDAF Algorithms and Structures
Improvements can be made to the SCP so that it is more robust for harsh channels, has bet-

ter overall performance and is less computationally complex. These improvements are

described below.

5.5.1 Refinements of the Algorithms
Two adaptive algorithms, LMS and RLS algorithms, are applied to the FRESH filter struc-
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ture in this research. Both algorithms use the received corrupted signal as a reference sig-
nal to update the weights of the adaptive filter. The LMS algorithm takes a longer time to
converge and has less immunity to noise and fading than the RLS algorithm. However, the
computational complexity is more intensive for the RLS algorithm than the LMS. Based
on our experiments, even the RLS algorithm is sensitive to high levels of noise and fast
fading. If the instantaneous power of the desired signal is low, then the algorithms have
difficulty in tracking the desired signal, resulting in spikes in the demodulated voice sig-

nal.

To overcome the weakness of the TDAF, several algorithms are proposed below. Each has

computational complexity similar to the LMS algorithm described previously.

Griffith's Aleorithm

For most adaptive algorithms, the desired signal d(k) must be available. However, no ref-
erence signal is provided in the AMPS case. The SCP we discussed in the previous sec-
tions uses the received signal itself as the reference signal. Although the filter exploits the
spectral correlation characteristics of the signal, the absence of a good reference for the
blind implementation implies that the minimum mean squared error will be greater than
for the training sequence directed least mean square algorithm (LMS) algorithm. Griffith
[TJL87] developed an algorithm which can be used in applications in which d(k) is not
available, but the correlation function between d(k) and the data vector X(k) is available.
The a priori knowledge of the correlation function of an AMPS signal can be pre-com-
puted or measured. The basic idea behind the approach is to substitute the expected aver-
age value of d(k).X(k) for the vector itself in the adaptive algorithm and thus avoid the need
for d(k). Several tests have demonstrated the potential of this approach for fast fading sig-
nals. Results show that this new approach helps the filter to converge even if the input sig-
nal varies dramatically for a short time period. However, these results presented here do

not assume strong multipath.
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Here we describe a TDAF based on the Griffith’s algorithm. The LMS can be used to
update the weights for the FIR filters. In this LMS algorithm, assume that /7, is the cur-

rent weight vector, W, is the new weights, and p is the adaptation size, the relationship

of these parameters are expressed in the following formula:

Weoi = W+ pe*(b)X,

Wit u(r*(k)—y*(k)X,

W+ ur*(k) X, —py*(k)X,

Wi+ uP —uy*(k)X;, .
(5.38)
Here X} is the input of the FIR filters containing the frequency shifted received signals.

From Eq. (5.38), it can be seen that an instantaneous reference signal (k) can be substi-

tuted by a cross-correlation vector P, between the reference signal and the input signal to

update the weights as shown below,

L
i 2
= ——1 > r(DX*(I+k)
=L
2
(5.39)
For this blind algorithm, a delayed version of the received signal is used as the reference
signal. This reference signal contains the faded desired signal and interference; thus, the
convergence speed is reduced and output quality of the filter is diminished. Ideally, only
the desired signal component in the received signal and the frequency shifted data in the
FIR filters for filter periodicities equal to the cyclic periodicities of the SOI (excluding the

time-invariant term) are correlated. Therefore, Eq. (5.39) can be written as
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L
2
¢ = T 2 s(OSHUHR)
L
=3

(5.40)
if we assume that no multipath is presented. Here S(k) is the frequency-shifted version of
the desired signal s(k). Since this algorithm circumvents using a noisy training signal, it is
less susceptible to fading and noise, thus improving the convergence rate. The Griffith’s
like LMS algorithm is described in Table 5.4.

Table 5.4 Griffith’s like LMS algorithm for the TDAF

IN, = [IN(k-1) IN(k-2) ... IN(k-N+1)] input vector TDAF

X, = IN?mo4T frequency shifted versions of the input
y(k) = WX, estimate of the desired signal
Wiv) = Wi +uPy -w* k)X, update weights

where:

H: hermitian transpose

*: complex conjugate operation

Py pre-estimated correlation vector of the desired signal and its shifted versions
u: LMS adaptive size

o cyclic frequencies corresponding to the desired signal

N: FIR filter taps
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"MA Constrained TDAF
The fact that an FM signal has constant envelope has motivated the development of a con-
stant modulus algorithm (CMA) TDAF. A CMA constrained TDAF works to restore a

constant envelope in a FM signal and unlike the SCP, allows for a time-invariant term.

Several interference rejection techniques using the hybrid CMA and time-dependent filter-
ing have been developed in the past years [MRH89][MRHA91]. Basically, there are two
types of algorithm in this category [MRHA91]: one is the CMA applied to a full time-
dependent filter structure (CMA/TDAF) and the other one is the hybrid CMA and the
TDAF, which uses the CMA to adapt the time-invariant portion and the TDAF to adapt the
time varying portions of the filter structure. The first algorithm is shown in Fig. 5.25. The
filter consists of a number of time-dependent branches which are frequency-shifted ver-
sions of the input signal /N, and a time-independent branch of IN,. The adaptive algo-
rithm used is different than the RLS or the LMS algorithms that we used in our previous
simulations. In general, there are four types of CMA algorithms with different cost func-
tions. The cost function depends on variables p and g as described below [MRHA91]

(L4? =y 1
(5.41)

where < - > denotes time averaging over M samples. A4 represents the modulus of the sig-

nal. Given an arbitrary amplitude of 4, the error formed for the four p-¢ algorithms are
expressed as follows [MRHA91]:

~

p=qg=1:1-1 e, = |%,’jsgn(A—l);kl)

2-1 e = 2=y
2) .
1-2 e = |;;i’-lcsgn(A——lykl)
k
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2-2 e, = dysm(4 =y,

(5.42)
The CMA/TDAF works to restore the envelope of the signal. When interference which
also has a constant envelope is added with to the desired signal, this algorithm could cap-
ture the interference, thus enhance the interference instead of the SOI. The second type of
CMA algorithm as shown in Fig. 5. 26 is a hybrid of the CMA and the Griffith’s like algo-
rithm and tends to be less susceptible to the capture problem. For this structure the time-
dependent paths are adapted using the SCP while the time-invariant path is adapted by the

CMA algorithm. They both share the same output );k. In this way, two properties of the

desired signal are exploited simultaneously. The algorithm is summarized below

CMA portion:

Wicmares1 = Wicmay T 1ed Ny
Griffith portion:

W(Grifﬁth)k+ 1= W(Gnﬂirh)k + P, —py*(k)X,

(5.43)
and the estimated signal is

Vi = Yemayk T Y(Griffithyk
(5.44)
To insure that the CMA and the Griffith’s like algorithms will not conflict in determining
the processing gain, it is necessary to know the true magnitude of the desired signal for
the CMA algorithm. This can be done by computing the cyclic autocorrelation of the sig-

nal in a recursive way [MRHAO91]. In our simulations, we assume perfect magnitude esti-

mates and the absence of multipath.

5.5.2 Refinements of the Structures
Although the performance of a SCP using the RLS algorithm is good, the computation

complexity is impractical for real time implementation in a handset with today’s micro-
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processors. A simple adaptive filter structure with low computational complexity is
needed. In this section, we will show that the combination of the CMA and a TDAF with
the Griffith’s algorithm, shown in Fig. 5.26, provides these requirements. This combina-

tion also dramatically increases the convergence rate of the adaptive filter.

Different cases using various carrier separations and fading characteristics are evaluated.
The CNR is 25dB and the Doppler frequencies are 30Hz and 60Hz. From the simulation
results, it is noted that most of the performance gain is due to the time-dependent portion.
The CMA works to restore the constant envelope of the desired signal, but has less direct
impact on the distorted phase. It can be seen from Fig. 5.27 that there is an average of 3-
5dB improvement provided by the hybrid structure compared to the SCP except when the
input CIR is 0dB. For a 0dB CIR, the CMA branch could capture the interference, result-
ing in worse performance than the SCP. To evaluate the contribution from the CMA
branch and the time-varying branch, different branch outputs of the hybrid filter are
demodulated and are plotted in Fig. 5.28. The CNR here is 25dB, the fading rate is 60Hz
and the carrier separation is OHz. The top subplot shows the demodulated voice signal of
the uncorrupted AMPS signal for comparison. The second subplot shows the demodu-
lated voice signal of the combined output y;. The third subplot shows the voice signal of
the CMA processed signal y(cpry. and the bottom subplot is for the voice signal of the
Griffith’s algorithm processed signal y(G gy It can be seen that the performance contri-
bution from the time-varying portion of the filter is much more significant than that from
the time-invariant portion. However, combining the CMA and Griffith’s algorithms does
provide extra gains by restoring the constant envelope of the desired FM signal. The

results for different channels are described below.
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Fig. 5.27 Output CIRs of the SCP and the hybrid CMA and Griffith’s algorithm,
CNR=25dB

The most significant advantage of this structure is its improved convergence rate. From
the MSE of the processed signals shown in Fig. 5.29, the filter converges after 0.025sec,
which is only 1/6 the SCP convergence rate shown in Fig. 5.22. This improvement can
also be seen from Fig. 5.30, which depicts the amplitude convergence rate for the hybrid
CMA and Griffith’s algorithm. The amplitude of the signal processed by the hybrid CMA
and Griffith’s algorithm converges to the desired level much quicker than that of the signal
processed by the time-varying branch.

The performance of the hybrid CMA and Griffith’s algorithm for a 30Hz Doppler shift is
also measured. The output CIR and the MSE for the demodulated voice signals are plotted
in Fig. 5.31 and Fig. 5.32, respectively. The results show the same pattern as the former

non-fading case. Comparison of the demodulated voice waveforms is also plotted in Fig.
5.33.
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The improvement in convergence is most noticeable for high Doppler frequencies. For a
Doppler frequency of 60Hz, Fig. 5.34 and Fig. 5.35 show the output CIR and the MSE for
the demodulated voice signals. Fig. 5.36 shows the comparison of the demodulated voice
signals by the hybrid CMA and SCP using Griffith’s algorithm. In the figure, the top left
subplot is the original voice signal, and the top right subplot is the demodulated voice sig-
nal with CIR of 3dB. Both the desired signal and the interfering signal suffer severe fad-
ing with Doppler frequency of 60Hz. In the bottom left subplot of the figure, the
demodulated voice signal from the SCP (using the general LMS algorithm) is presented.
The bottom right subplot of the figure shows the demodulated voice signal for the hybrid
CMA and Griffith’s algorithm. Because of the severe fading, the instantaneous CIR can be
very low even though the average CIR is 3dB. This low instantaneous CI/R makes it diffi-
cult for the SCP to track the desired signal. It can be seen that the voice signal contains
some spikes using the SCP although most of the desired signal is recovered. However,
these spikes can be removed and the convergence rate is increased by incorporating the
Griffith’s algorithm with the CMA.

In this chapter, the theoretical performance of the time dependent filter in different radio
channels is analyzed. The performance is also verified by extensive simulations. The
adaptive algorithms and structures are refined to have less computational complexity and
faster convergence. Results show that there is a significant improvement in the received
signal quality. The new techniques can be incorporated with the current AMPS receiver
for co-channel interference rejection at a low cost. These techniques also provide poten-

tial for increasing system capacity, which is discussed in Chapter 7.
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Fig. 5.34 Output CIRs of the SCP and the hybrid CMA and Griffith’s algorithm,
f;=60Hz, CNR=25dB
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Fig. 5.35 MSE of the demodulated voice signals after the SCP
and the hybrid CMA and Griffith’s algorithm, f,=60Hz, CNR=25dB
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Chapter 6. Time-dependent Adaptive Filtering Techniques for NAMPS
Co-channel Interference Rejection

6.1 Introduction

To improve the channel capacity of the current AMPS system, the Narrowband AMPS
(NAMPS) system, which is a modified version of the AMPS system, was developed by
Motorola several years ago. Instead of using 30kHz bandwidth, NAMPS uses a 10kHz
channel bandwidth for the FM signal. This results in three NAMPS channels in place of a
single AMPS channel. Another significant difference is that NAMPS uses a digital SAT
(DSAT) instead of the analog tone used in AMPS. The DSAT is a set of seven distinct 24-
bit Manchester coded sequences which are lowpass filtered and repeatedly transmitted at
200 bits per second, forming the control signal in the sub-audio band. This scheme pro-
vides supervisory control for the NAMPS system while ensuring the frequency compo-
nents of the control signal are below the audio frequency band, and can be easily removed
by the demodulator. In the AMPS system, one SAT frequency, either 5970Hz, 6000Hz or
6030 Hz, is allocated to a seven-cell cluster. For the NAMPS system, the DSAT allocation
is different. Instead of one SAT per cluster, the NAMPS system assigns one DSAT per

cell.

Like the AMPS signal, the NAMPS signal exhibits spectral correlation. Thus, a TDAF
can be applied to reject co-channel interference. In this chapter, a brief mathematical anal-
ysis of the cyclostationary features of the NAMPS signal is provided. A time domain opti-
mal time-dependent adaptive filter (TDAF) is derived that makes use of these features.
Performance of the TDAF is examined using simulated NAMPS signals with realistic
channel conditions. Results indicate a significant improvement in carrier-to-interference
and noise ratio (CINR) can be achieved by applying the TDAF. Section 6.2 describes the
spectral correlation characteristics of the NAMPS signal that results from the digital
supervisory audio tone (DSAT). The optimal TDAF with a training sequence can exploit

the spectral correlation to suppress co-channel interference and enhance the desired signal.
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The filter structure is given in section 6.3. Simulation results are shown in section 6.4.

Future work is discussed in section 6.5.

6.2 Cyclostationarity of NAMPS Signal

A NAMPS signal containing a DSAT can be expressed as

jlanfoa+ 21:Bf,,,j v(e)dt + anf,,jDSA T(t)dt
s(t) = e - -
(6.1)
where
» f.: carrier frequency
» B: voice modulation index which is 1.25 here, Bf,,=5000Hz
* k: DSAT modulation index which is 3.5 here, kf;=700Hz
* v(t): voice signal
s DSAT(t): periodic 24 bits DSAT with a 200Hz bit rate.

For notational simplicity, define

t
j[Zn St +28B S J' v(t)d:J

s() =e ,

(6.2)
then the NAMPS signal with a DSAT can be written as

jl2mkf, J' DSA T(t)dt]
s(6)= s,(t)e

(6.3)
The DSAT signal, which is a digital sequence with a 200Hz bit rate and a 200/24 code
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repeating rate, can be represented by a Fourier series expansion. Substituting the series
expansion into Eq. (6.2), s(¢) becomes

I3

j2n:kf,,I a,+ Z(a,,cosm,,t + b,,sinm,,t)Jdt

n=1

s(t) = s, (e - ,
(6.4)
where
r
2
ay = 3 | DSAT(0)dt = 0,
I
2
(6.5a)
r
1 2
a, = 7 j DSAT r(t)cosw,,tdt
I
2
(6.5b)
r
2
b, = 7 | DSAT(t)sinw,zds
T
=
(6.5¢)

The period T of the Fourier series is the same as the DSAT code period, which is 24/
200sec, and w,=nwy=2rnn(200/24). Eq. (6.4) can be simplified to

j21|:kf,,£’1 cos®,t —j21tkf,,(%" sinw,¢
n

s() = s,(O]]e " e
66)
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a j2nk fd%cosu),,t —j2nkfd%'-sinm,,t
Let c= 2nkf dco—n , the terms e " and e " can be expanded using
n
Bessel functions as
j27tkf,,i"-cosa) t +o0
0, " _ Jjpo,t
e = Z J p(c)e ,
p=—
(6.7a)
and
j2nkf, I sinw,t +
— d, - n ;
g=-
(6.7b)
where
+n
_ 1 jesinw,t —jnw,t
Jule) = 5= [e e d(o,l) .
]
(6.8)
Note that p and g are integer numbers and
J_, (¢) p.q even
Jp)q(c) = { ;’q dd
s —p,q(c) p’q o
(6.9)

Finally, the NAMPS FM signal s(?) can be interpreted as

s(t) Sv(t)HZZJp(C)Jq(_C)ej(p+q)n0.)0r
npq

sv(t)HZZJ p(c)J q(—c)ejL%t, L is an integer number .
n p q

(6.10)
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From Eq. (6.10), it can be seen that the spectrum of the modulated voice signal is repli-
cated at multiples of the cyclic frequencies ®,. In other words, a NAMPS signal exhibits

cyclostationarity with a fundamental periodicity of .

6.3 Filter Implementation

A time-dependent adaptive filter can be very effective in estimating and enhancing a
cyclostationary signal. A time-dependent adaptive filter combines the replicated versions

of the desired signal and enhances each replicated image using other replicated images.

The impulse response 4(t,u) and the output y(¢) of an optimal time-dependent filter have
been discussed in Chapter 5. The optimal Wiener solution of this filter and the MSE are

also given in Chapter 5. The filter periodicities range over all the possible values of nf

within the bandwidth of the signal, where f;=200/24 and » is an integer number.

For a NAMPS signal, a large number of cyclic frequencies can be exploited within the sig-
nal band. The time-domain FSR TDAF structure is not an efficient and realistic imple-
mentation for this application since it requires a huge number of parallel filters. For
example, if the sample rate is 25kHz for a NAMPS FM signal, the FSR TDAF needs 3000
parallel filters to exploit all the cycle frequencies. The time-sequenced adaptive filter
(TSAF) is a TDAF ideally suited for processing signals having a large number of statisti-
cal harmonics [ROHS88]. As shown in Fig. 6.1, the TSAF utilizes a bank of M conven-
tional adaptive filters whose weights are denoted by the column vector Hy(m) for
m=0,1,2,... M-1. Each adaptive filter is periodically updated and a filter output is chosen
in synchronous with the periodicity of the signal statistics. For the NAMPS signal, the

periodicity of the filter bank is 200/24Hz. The filter output at time £ is given by the inner
product of the input vector and the Hj,
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T
y(k) = X H (k—[k])M) .
(6.11)
where [k],/ is the largest multiple of M in k. The TSAF can be interpreted as an adaptive

filter that converts the nonstationary signal into a set of jointly stationary processes using
the time-series representation (TSR) for adaptation and filtering [Fer852]. In the litera-
ture, TSAF is often referred as a TSR TDAF.

— H,(k)
 A— Output

Input 1 N (k)
x(k) __»F_H H2(k) b

N N .
4 ’ Training
Signal

e(k)

Fig. 6.1 The TSAF (or TSR TDAF)

6.4 Simulation Results

Here we examine the optimal TDAF, i.e., a TDAF adapted based on the MSE criterion out-
lined in Chapter S and using a training sequence. This case provides a performance bound
for the TDAF. As an example, two NAMPS signals are generated individually using dif-
ferent voice files and DSATs. The carrier frequency separation for these two FM signals is
100Hz, which is a typical oscillator accuracy for 900MHz. Independent fading with a
20Hz Doppler frequency is applied to both the desired signal and the co-channel interfer-
ence signal along with additive white Gaussian noise. The signal generator is shown in
Fig. 6.2. The same quadrature demodulator used for the AMPS simulations is used to

recover the voice signal.
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channel )
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Fig. 6.2 NAMPS signal generator

The averaged CINR is defined as

CINR = power of desired FM signal
power of (FM interference + noise)

(6.12)
and it 1s measured over 10ms segments. The CINR as a function of segment number is
plotted in Fig. 6.3 for a five seconds of data. From the top plot in Fig. 6.3, it can be seen
that the averaged CINR is 12dB. The variation of the CINR is caused by the fading and
noise fluctuations. The cumulative density function (CDF) for the received FM signal ver-
sus segmented CINR is plotted at the bottom at Fig. 6.3. The CINR after the optimal TDAF
is plotted in Fig. 6.4 using the same methods. From the plot, it can be seen that the aver-
age CINR value is improved and now is above 18dB. Note, 45% of the segmented CINR
measurements are below 10dB for the corrupted FM signal, while less than 15% are below
10dB for the TDAF filtered signal.

A significant drawback of the quadrature demodulator is its sensitivity to fading. Fig. 6.3
and Fig. 6.4 show the segmented CINR and its corresponding CDF for corrupted NAMPS
signals and TDAF filtered signals for CIR=12dB. The demodulated voice signal shown in
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Fig. 6.5 contains spikes due to the impact of fading on the quadrature demodulator. The
spikes in the demodulated signal greatly deteriorate the voice quality. The corresponding
segmented SINR and CDF are plotted on the same page. The demodulated voice wave-
form, segmented SINR, and corresponding CDF for the TDAF filtered signals are shown
in Fig. 6.6. Based on experience, a -20dB SINR can cause a noticeable pop in the voice
signal. From the CDF curve in Fig. 6.5, 15% of the segmented SINRs are below -20dB for
the corrupted signal, however, only 2% of the segmented SINRs are below -20dB for the
TDAF processed signal shown in Fig. 6.6. The demodulated voice signal shown in the
graph on the top of Fig. 6.6 is much smoother than that shown in Fig. 6.5, which is consis-
tent with the CDF results. For convenience in Fig. 6.7, a comparison of the CDF with and
without the TDAF is made for both the FM and demodulated voice signals. In addition to
the 12dB input CIR test condition, simulations were performed using an 18dB input CIR
without a TDAF at the receiver. The resulting CDF is shown in Fig. 6.7. From this figure,
the CDF corresponding to the TDAF processed signal (with input CIR of 12dB) is much
better than the CDF's corresponding to the unprocessed signals (with input CIR of 12dB
and 18dB). However, for the segmented SINR, corresponding to the demodulated voice
signals, the performance improvement is less. The CDF for the TDAF demodulated voice
signal with input CIR of 12dB is similar to the CDF for the unprocessed signal with input
CIR of 18dB. In other words, a processed voice signal with an input CIR of 12dB sounds

similar to a non-processed voice signal with CIR of 18dB. This is verified by our subjec-

tive evaluation of the audio signals.

Figures 6.8 through 6.12 depict the results for a test case similar to the previous one. For
this test case, the input CIR=15dB instead of 12dB in the previous test. Results for this
case show the demodulated voice signal using a TDAF has been improved to provide
equivalent quality of a demodulated voice signal having CIR=20dB. A better demodula-
tor, like the model based receiver, could be used to replace the quadrature receiver to
obtain even better voice quality. Overall, the improvement provided by the TDAF is sig-
nificant.
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6.5 Summary and Future Work

The theoretical cyclostationarity properties of the NAMPS signal are analyzed. The anal-
ysis shows that spectral redundancy is introduced because of the DSAT. A time-dependent
adaptive filter which takes advantage of the spectral correlation can be implemented for
co-channel interference rejection. A TDAF that uses a training sequence has been simu-
lated to obtain a performance bound for the algorithm. The performance of the TDAF has
been evaluated using different fading conditions and different interference levels. The
results show a substantial improvement in both the CINR level and the voice quality by
using a TDAF.

The next step is to investigate blind adaptive techniques for training the TDAF. Different
types of constraints could be used based on the knowledge of the cyclic spectra for
NAMPS signals with different DSATs. These constraints may be applicable for creating a
blind TDAF. CMA, linear constrained CMA, Griffith's like algorithm, or etc., are possible
approaches for creating blind algorithms for NAMPS.
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Segmented CINR for received signal (10ms per segment)
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Fig. 6.3 CINR and CDF of segmented CINR for the corrupted NAMPS FM signal,
CIR=12dB
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Segmented CINR for filtered signal (10ms per segment)
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Fig. 6.4 CINR and CDF of segmented CINR for the TDAF filtered NAMPS FM signal,

CIR=12dB
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Segmented CINR for filtered signal (10ms per segment)
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Chapter 7. Statistical Analysis of Channel Interference and Capacity
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Radio-frequency (RF) interference is one of the most important performance consider-
ations in the design, operation, and maintenance of mobile communication systems. To
satisfy the demand for more spectrum arising from the dramatic growth of these commu-
nication systems, it is necessary to minimize channel interference. Frequency reuse tech-
niques are the usual solution. It is impossible, however, to provide an interference-free

system.

There are two major interference problems in mobile radio systems: adjacent-channel
interference and co-channel interference. Other types of interference are possible includ-
ing intermodulation and intersymbol interference. Intermodulation interference is gener-
ated in a nonlinear circuit when the product of two or more signals results in another
signal having a center frequency close to the desired signal. The interaction between the
signals due to the power amplifier and the first frequency converter of the receiver typi-
cally produces this kind of interference. Intersymbol interference is intrinsic to digital
networks and is a direct consequence of the limited bandwidth of the transmission
medium. The transmitted symbols tend to spread in time and consequently overlap, which
results in intersymbol interference. The main focus of this research is on co-channel inter-
ference and to a lesser extent, on adjacent channel interference. The following two sec-
tions will discuss each of these types of interference, especially co-channel interference.
The average CIR coverage for both the base station and the mobile station is studied in
Section 7.3. The effect of power control on the average CIR coverage is also evaluated in
Section 7.4 along with the impact of new DSP techniques on average CIR coverage. Most

important, the impact on system capacity using these DSP techniques is presented in Sec-
tion 7.5.
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7.1 Adjacent Channel Interference

Adjacent channel interference causes problems in mobile radio systems since channel
spacing is minimized to obtain maximum spectral efficiency. Radio propagation charac-
teristics and practical receiver limitations, such as frequency instability, filtering and ran-
dom signal fluctuations, cause out of band energy thereby impacting adjacent channel

interference.

There are two types of adjacent channel interference: intracell and intercell interference.

Both types are described below.

Intracell Adjacent thnnel Interference

A mobile unit which transmits from a short distance to the base station may interfere
strongly with the signal of another mobile unit which transmits on an adjacent frequency
channel from a long distance to the same base station. Fading can also cause a similar
problem. This is known as intracell adjacent channel interference. Avoiding the use of
adjacent channels within the same cell and applying power con‘rol to each user are possi-

ble solutions to this problem.

Intercell Adjacent Channel Interference

Consider two mobile units near a cell border, each transmitting to its own home base sta-
tion on adjacent frequency channels. Due to the fact that signais experience uncorrelated
fading, the received interfering signal may be larger than the desired signal at the base sta-
tion. The base stations will receive the desired signal and a certain level of interference
from the out-of-cell mobile. This is known as intercell adjacent channel interference or

adjacent-channel near use.

Some statistical properties, such as the probability of occurrence, of both types of adjacent

channel interference are investigated in this section. These prop :rties are a function of the
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propagation parameters and traffic distribution of the system. The study begins with the

definition of the following parameters, assuming channel i is the channel of interest.

+ p;: probability of occurrence of only one adjacent channel interferer, i.e., either i+1
channel or i-1 channel is active.

+ p;: probability of occurrences of two adjacent channel interfering sources, i. e., both
the i+1 and the i-1 channels are active.

- v: proportion of mobiles with adequate ability to communicate with more than one
base station, i.e., probability that a mobile can communicate through channels of two
or more cells.

« 3 proportion of mobiles with adequate ability to communicate with more than two

base stations, i.e., probability that a mobile can communicate through channels of

three or more cells.

u': probability of a mobile receiving a signal level below a given value.

Parameters p; and p, are dependent on both the channel assignment algorithm and the traf-

fic load of the system. On the other hand, v, § and u' depend on the mean signal strength.
In a hexagonal cell array, as shown in Fig. 7.1a, & is the probability that a mobile is in the
vicinity of the border of three mutually adjacent cells (the joint corner of three adjacent
cells). Therefore, 8/6 is the probability that this mobile is at one out of the six possible
“corners”. The difference y—8 gives the probability that a mobile is at the vicinity of a bor-
der between two adjacent cells as shown m Fig. 7.1b. Hence, (y—3)/6 gives the probability

that this mobile is at one out of the six possible joint borders.

Adjacent channel interference may occur at the mobile or at the base station. For the
mobile case, the mobile using channel i may suffer interference from channel i+1 and (or)
channel i-1 when the mobile is near the border of the two base stations. It can be shown
that the probability of adjacent-channel interference at the mobile unit, p;, for the forward

link, is [Yac93]
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Fig. 7.1a Adjacent channel interference for a mobile at a joint corner

Fig. 7.1b Adjacent channel interference for a mobile at a joint border
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- Y+9
Pu= 3 la

(7.1)

where [, gives the incidence of adjacency, i. €., the proportion of occurrence of adjacent
channel interference,
1, =22k
2

(7.2)
For the base station case, the base station using the ith channel may receive the desired
signal and adjacent channel interference from another mobile which is near the border in
an adjacent cell. The probability pp of intercell adjacent-channel interference at the base

station for the reverse link is [Yac93]

+9d ,
ps = IWl,.

(7.3)
In fact, y and & are not independent probabilities. It has been shown that 3 is a function of

y and the relationship between them can be reasonably approximated by [Yac93]

5 = {1.2572, 0<y<08
Y, 08<y<l1.

(7.4)
The probabilities of y and & are closely related with geographical location, and are also

related with the probability of traffic density.

Assume p(n) is the probability of n active adjacent channels (n=0,1,2). The state of the

channels, in use or not in use, can be represented by the Bernouli distribution,

p(o) = p°(1-p)' "% @ =01 |,

(7.5)
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where p is the probability of the channel being active, ®=1 indicates that the channel is in
use, and ®=0 indicates the channel is not in use. If all the cells have an equal capacity

(i.e., the same number of channels per cell CN) and the traffic has an even distribution

(i.e., the same blocking probability B in each cell), then p=B1 /CN and [Yac93]

2—-n

p(n) = (ijB%V[I—BE%J

(7.6)
Thus, p; and p, (n=1 and n=2) can be computed as follows,
R L
p, = 2BCN[1 _BCN] ’

7.7)

2

CN

p, =B

(7.8)

Figures 7.2 and 7.3 contain plots of p; and p, as a function of the blocking rate B for vari-

ous values of CN, i.e., the number of channels per cell.

To suppress the intercell adjacent channel interference, the traditional method at the
receiver (and the transmitter) is to bandpass filter each channel. This scheme does limit
the adjacent channel interference to some extent. However, if the carrier frequencies drifts
slowly and the power level fluctuates randomly, an adaptive solution is needed. Different
types of adaptive filters, such as IIR, FIR, and a decision feedback filter, can be imple-
mented by using different adaptive algorithms to address this problem.
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probability of one adjacent interferer
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blocking rate B

Fig. 7.2 Probability of one adjacent interferer

probability of two adjacent channel interfers

0 001 002 003 004 005 006 007 0.08 0.09 0.1
blocking rate B

R

Fig. 7.3 Probability of two adjacent interferers
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7.2 Co-channel Interference

Co-channel interference is the bottleneck for system capacity in the current mobile phone
systems. Frequency reuse is typically applied to accommodate more users in the same
area. For example, for the current analog AMPS system, 416 channels, including the con-
trol and voice channels, are allocated for the forward link operated in the frequency band
of 869-890MHz. These 416 channels are assigned to 7 cells, yielding 57 voice channels
for one cell. All of these RF channels can be simultaneously reused in the same region as
long as the cell which reuses the same frequencies is far enough away to avoid co-channel
interference. To reduce co-channel interference, we need to separate the co-channel cells
by a minimum distance that will provide sufficient isolation. If the size of each cell in a
cellular system is roughly the same, co-channel interference is independent of the trans-
mitted power and becomes a function of the radius of the cell (R), and the distance to the
center of the nearest co-channel cell (D). By increasing the ratio of D/R, the spatial sepa-

ration between co-channel cells relative to the coverage distance of a cell is increased
[Rap96].

Since an actual cell region is difficult to describe mathematically, a hexagon is often used
to represent the cell. Given the fact that a hexagon has exactly six equidistant neighbors
and that the lines joining the centers of the a given cell and each of its neighbors are sepa-
rated by multiples of 60 degrees, there are only certain feasible cluster sizes and cell lay-
outs which are possible to connect all the cells without gaps. The frequency reuse number
N has to satisfy the equation [Rap96]

N =i+ij+ )
(7.9)
where i and j are non-negative integers. Clearly, N can be 3, 4, 7, 12, 19, etc. for different
combination of / and j. The nearest co-channel neighbors of a particular cell can be found

by moving i cells along any chain of hexagons and then turning 60 degrees counter-clock-

wise and moving j cells. The co-channel reuse ratio Q is defined as [Rap96]
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_D_
0=7%=.3N.

(7.10)
A smaller value of Q provides a larger capacity since the reuse factor N is small, but the
signal quality is diminished. A larger value of Q improves the signal quality, due to the
lower level of co-channel interference, but the system capacity becomes limited. A trade

off must be made between these two objectives in actual cellular design.

Based on the propagation measurement in a mobile channel, the average received signal
strength at any point decays as a power law of the distance of separation between a trans-

mitter and receiver. The average received power P, at a distance d from the transmitting

antenna is approximated by [Rap96]
—p(aY”
p = Po(doj ,
(7.11)

where Py is the power received at a close-in reference point in the far field region of the
transmitting antenna at a distance of d;) from itself, and » is the path loss exponent. The

carrier to interference ratio for a receiver for a forward channel can be expressed as

—n

C R

M M

>, > D,
m=1

’

(7.12)

where C is the desired signal’s power from the base station and ,,, is the interference from
the mth interfering co-channel cell base station. D,, is the center distance between the mth

interfering cell and the desired cell. The actual CIR is a random variable, affected by ran-
dom phenomena such as the location of a mobile and cell site, Rayleigh fading, lognormal

shadowing, and antenna characteristics, etc. Assuming that the cell system is composed of
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idealized hexagon cells and all the interfering cells are equidistant from the base station

receiver, Eq. (7.12) can be written as

_ (f3N)"
a

~iQ

(7.13)
Eq. (7.13) is optimistic since the assumptions used to derive it are rarely true. For the cur-
rent analog system (AMPS), the total number of voice channels is 399. Each cell is
assigned 57 channels for a seven-cell reuse pattern and 133 channels for a three-cell reuse
pattern, and 99 channels for a four-cell reuse pattern. The required carrier to interference
ratio determines the cell reuse factor. For the worst case when the mobile is at the cell

boundary, the carrier to interference ratio is approximated as [Lee86][Rap96],

o R
I - — —n - o
(D—R) "+(D—§) "+2(D+§) +(D+R)"+D™"
(7.14)
Substituting Q=D/R into the above equation, we have
c_ !
I @+1)"+(@-1)", (0+05)+2(0-05)", 1
2 n . 2 n n
(Q°-1) (@ -0.25) g
(7.15)

For a seven-cell reuse pattern, 0=4.583, and thus the worst case C/I is evaluated to be
17.9681dB, which compares well with the exact value of 17.8483dB [Jac94]. Fig. 7.4
describes the CIR as a function of the pathloss exponent n for different frequency reuse
patterns. The higher the n, the larger the average CIR will be. Obviously, the average CIR
for a seven-cell reuse pattern is higher than for a three-cell reuse pattern since the distance

between the desired cell and the co-channel cell is greater for the seven-cell reuse pattern.
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Fig. 7.4 Carrier to interference ratio for different frequency reuse patterns
with equal interfering distances

The results shown above are based on the assumption that either the base station or the
mobile unit receives all the first layer co-channel interfering sources at the same time. For
practical systems, however, co-channel interference occurs with some probability related

to the carrier to interference ratio and the traffic parameters.

A mobile radio in a given cell receives the desired signal power ¢ from its base station, but

it also receives interfering sources having powers i;, j=1,2,3,... n. (n, is the number of

active co-channel cells). For a hexagonal representation and omni-antenna, the maximum

value of n, is 6 if only the first tier interfering signals are considered. Co-channel interfer-

ence will occur whenever the desired signal’s power does not simultaneously exceed the

minimum required signal level cj, and exceeds the total interfering signals by some pro-
tection ratio ». When the co-channel interference exceeds the protection ratio, interference

has a significant effect on the desired signal. Given 7, interferers, the conditional outage
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probability p(Cl|n,) due to co-channel interference (CI) which is defined as the probability

of failing to achieve adequate reception of desired signal is [Yac93]

c

p(CIin,) = 1= [ p(s)| pli)dids ,
Co 0

(7.16)
where p(s) is the probability density function (pdf) for the desired signal’s power, and p(i)

is the pdf of the total interfering signal’s power. Clearly, the integral of p(s) from ¢ to
gives the probability of the desired signal exceeding the required level ¢ and simulta-

neously the integral of p(i) from 0 to c/r gives the probability that all of the interferers are
below the threshold ¢/r.

Generally, p(i) is difficult to find due to the random statistics of the received signals. An
alternative method is to consider each interfering signal i; independently as in the follow-

ing equation,

c (E_,-lj (g—il —...-i,,c_,)

p(CIiny) = 1= [p)[pG)) [ pGi).. [ pl,)di,..dids.
Co 0 0 0

(7.17)
The total probability of co-channel interference can then be obtained by

p(CI) = Y p(CI|n)p(n,),

<

(7.18)
where p(n,) is the probability density function of the number of active interfering signals.

To evaluate the conditional probability of p(Cln.), the radio environment must be consid-
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ered. Rayleigh and lognormal fading are usually assumed. The transmission strength
between the base station and the mobile station is generally modeled by a rapidly chang-
ing Rayleigh distributed envelope gain R(f) applied to a slowly varying mean signal
strength L(f). For a constant envelope modulated signal, the received signal can be

expressed as

x(t) = R(L(e T,

(7.19)
where ®(¢) is the phase of the desired signal including the carrier and R(t)eid"(’) is a com-
plex Gaussian random variable. The probability of occurrence of co-channel interference

for a fading only channel and both a fading and a lognormal shadowing channel are dis-

cussed in the following sections.

7.2.1 Fading Only Environment

The probability density function of CNR for a received signal x in a Rayleigh environment

for a fixed noise power is given by [Yac93]

m‘k

e ’

=il —

p(x) =

(7.20)
where x is the local signal-to noise ratio, 1 e., E=E02/NG, with £, the average amplitude of
the radio wave and NG the mean power of Gaussian noise. The pdf for the desired signal

p(s) and the interference p(i;) will be the same as expressed in Eq. (7.20).

For multiple interferers in a Rayleigh fading environment, the probability of occurrence of
co-channel interference can be computed using Eq. (7.20) by following an analytical
method using a recursive process given by Sowerby and Williamson to approximate Eq.

(7.17) [Yac93]. Define the signal to the kth interference ratio as, Ag=c /i;. For an ‘inter-
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ference-only” environment, where the minimum signal requirement is ignored, i.e., ¢y=0,

and the desired signal is always present, it is shown that the outage probability p(Cljn.) is

approximated by[Yac93]
" Ag_
r . -
p(CIln)= Y] I X with A, = 1.
j=lk=1] 4+ —
r
(7.21)
If the power levels of the interfering signals are equal, then [Yac93]
A Y
7
p(Cl|n,) = 1— A
1+2
P
(7.22)

To complete the evaluation of p(CI), the probability of the number of active interfering

signals, p(n_), must be determined. Again, it is described by the Bernouli distribution as

given in Eq. (7.5). Assuming hexagonal representation and considering only the first

tier of the co-channel interference, the probability p(n.) can be expressed as

p(n,) = @p"“(l ',

(7.23)
where p is equal to B/CY, B is the blocking rate and CN is the total number of channels

per cell. The probability p(n.) is shown in Fig. 7.5 as a function of p.

The total probability of p(CI) in Eq. (7.18) can be evaluated as

152



Chapter 7. Statistical Analysis of Channel Interference and Capacity
Improvement When Using Interference Rejection Techniques

(7.24)
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Fig. 7.5 Probability of n, active interfering signals as a function of
single channel blocking probability p

The three-dimensional plot in Fig. 7.6 shows the total probability in Eq. (7.24) as a func-
tion of both the CIR and the blocking rate. The protection ratio r is 8dB. A lower CIR
causes a higher probability of occurrence of interference. From Fig. 7.6, it can be seen
that the total probability of co-channel interference varies slightly for different blocking
rates even though the probability of n, active channels p(n.) is different for different

blocking rates.
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Fig. 7.6 Total probability of co-channel interference (Rayleigh only environment)
of a seven-cell frequency reuse pattern as a function of blocking rate and CIR.
Note there is little dependency on blocking rate

7.2.2 Fading and Lognormal Shadowing Environment

Here we estimate the probability of co-channel interference when the signal experiences
both fading fluctuation and lognormal shadowing. The pdf of the received signal envelope

can be derived and is given by[Mua82]

A T
1

T 4 s _4x 5

(0]
p(s) = /— M S e S, (s>0),
80_2_.[010&,/10

(7.25)

where §; is the local mean in decibels, S_d is the area mean in decibels and © is the stan-

dard deviation in decibels (typically between 5dB to 12dB in urban locations). Eq. (7.25)
also can be used to describe the pdf of each interfering signal. The difficulty in evaluating
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Eq. (7.16) is the complexity of the joint pdf of all the interfering signals. However, it has
been shown that the summation of such distributions can be approximated by a normal

distribution [Mua82] for c=0dB and a lognormal distribution for c=6dB and 12dB.

Therefore, the pdfof i = Zin is approximately another lognormal distribution assuming

nC
the signal envelope of all the interferers are independent and identically distributed, and it
is given by [Mua82]

(20log i — I.)*

p(i) = —20—e 20, , for6>0,

(In10)/2io,
(7.26)
where o; and /; are, respectively, the variance and the mean value of the corresponding

normal distribution i, both in decibels. These values are given by [Mua82]

o’ +(20/1n10)’In(4/ )

2 _ (20 \? (20/1n10)*
% (mloj Inf e

+n,—1|-Inn_;,

2 2 2
_ 10, (4}, 20 o? +(20/1n10)*In(4/1) — &
i = Li—gpple ( )+m61“”c+ 30,/ 110 )

(7.27)
where I—d is the area mean of the interference. Thus, the conditional probability of co-

channel interference in this case can be evaluated by substituting Eq. (7.25) and Eq. (7.26)
into Eq. (7.16) while assuming c,=0. This produces

® E 7_’1‘;:‘% (sd2—~;>'_.,)2 (2010%,,1'_1,.)2
= X o g; .
p(CI|n,) = 21n10 J’dsjj Sd/w e e dsdi .
o of

o

(7.28)
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The total probability of co-channel interference, p(CI), can be evaluated by substituting
Eq. (7.23) and Eq. (7.28) into Eq. (7.18). The resulting expression is numerically evalu-

ated and is plotted in Fig. 7.7 as a function of the average desired signal’s power to the
average interfering signal’s power A, i.e., S_d-l—d. Again, the protection ratio r is 8dB. To

compare the overall system performance, the probability of the co-channel interference for
the Rayleigh only environment is also plotted in the same figure. It can be seen that for
lower A, such as A<10dB, the two probabilities do not differ much. However, the total
probability of co-channel interference for a Rayleigh and lognormal shadowing environ-
ment is significantly higher than that for a Rayleigh only environment when A increases.
For an example, the probability of co-channel interference is 80% for the former case
when A=20dB, while it is only 55% for the latter case. This can be explained by the fact
that the signal power attenuates logarithmically as the transmitter-receiver (T-R) separa-

tion increases in addition to the Rayleigh fluctuations.

In a mature system where the number of channels per cell is relatively large, the impact of
the blocking rate is not significant. For the AMPS system, 57 channels are allocated for
one cell. This results in high probability of active channels for n,=6 as shown in Fig. 7.5.
Consequently, the total probability of co-channel interference is very close to the condi-
tional probability when n_=6, which apparently is not a function of the traffic load. It has
been observed that for the Rayleigh and lognormal shadowing channel a similar result

holds, i.e., the probability of co-channel interference is not greatly influenced by blocking
rate.
7.3 Percentage of CIR Coverage at a Receiver

It is also useful to determine the percentage of useful CIR coverage at a receiver for both
the mobile station and the base station. First of all, the percentage of useful CIR coverage

where the carrier to interference ratio is above a certain level for a particular mobile loca-
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tion is studied. The propagation model in Eq. (7.11) does not take into account the fact
that the surrounding environmental clutter may lead to a deviation in the measured signal
from the basic line-of-sight model given by Eq. (7.11). Measurements have shown that at
any value of d, the received power P(d) at a particular location is distributed log-normally

(normal in dB) about the mean distance value d, i.e.,
d
P(d) = Py—10nlog,, T +Xs
0

(7.29)

where X is a zero-mean log-normally distributed random variable with standard deviation
o (in dB) [Rap96], and P, and d, are as defined in Eq. (7.11). This deviation reflects the

different level of clutter on the propagation path within the same T-R separation. More
generally, the logarithmic carrier to interference ratio for the case in Eq. (7.12) combined

with Eq. (7.29) can be expressed as

10" &
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....................................................................................
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o: Rayleigh and lognormal shadowing environment
*: Rayleigh environment only
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Fig. 7.7 Comparison of the total probability of co-channel interference as a function of
CIR for the Rayleigh only environment and Rayleigh lognormal shadowing
environment assuming a seven-cell frequency reuse pattern

157



Chapter 7. Statistical Analysis of Channel Interference and Capacity
Improvement When Using Interference Rejection Techniques

,
IOlogm% = K+P,— 10nloglo(£)j + Scs_(Po‘ 10nlog10(%)) + Ic’)

1

”
= K- IOnlogm(TS) +S5.— 15,

(7.30)

where K=-10log (", which is a constant related to the number of interfering sources,
and / are the distance between the mobile unit to the desired base station and to the inter-
fering base station, respectively, and S;_and /;; are random variables which are log-nor-
mally distributed with standard deviation of og and o;. For Eq. (7.30), the same path loss

exponent n is assumed for the desired signal and the interference, and all the interfering
sources have the same power. Let CIR = 10/og,,C/I, where C is the local mean of the car-
rier to noise ratio for the desired signal and / is the local mean of the carrier to noise ratio
for the interfering signal. Since both C and I are zero-mean log-normally distributed, the

distribution of the CIR will also be log-normal, with mean p and standard deviation &

given by

M=petp, =0

[2, 2
c = ,ogto;.

(7.31a)
The mean CIR in Eq. (7.30) is
rS rs
P(-l-j = E[K- 1onlog,o(7j + scs—lc,]
= K—10nlog, | =
= R—10nlogyo| 7|+ Hst 1y
rS
(7.31b)

Thus the percentage of CIR coverage for a particular mobile location can be calculated
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from the cumulative density function as [Rap96]

r
CIR, —P(TS)

p(CIR>CIRy) = Q -

.
CIR,— (K— 10nlog10(7‘))

= Q - s
(7.32)
where the O-function is defined as
1T ot
2
O(x) = —|e “dx.
J2n£
(7.33)

The outage probability is p,,~=1-p(CIR>CIR;). For the worst case when the desired

mobile station is located furthest from the base station and the interfering mobile at the co-

channel cell is located at the closest possible location to the same base station, Eq. (7.32)

simplifies to

: -1
p(CIR > CIRy) = Q(CIRO"(K—IO"IOgm(M— 1) )]

c

(7.34)
by using Eq. (7.10). Eq. (7.34) is evaluated for different cell reuse patterns with K=0dB,
i.e., a single co-channel interference source is considered. The results are plotted in Fig.
7.8. From the figure, it can be seen that the percentage of CIR coverage decreases signifi-
cantly with a lower frequency reuse pattern. The worst case CIR coverage is 60% for a

seven cell reuse pattern for a 18dB threshold, while it is only 20% for the three cell reuse
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pattern. In the following sections, the percentage of average CIR coverage over a cell is

discussed for both the mobile and base station.

percentage of CIR coverage
©o © ©o © o o
N ©w > 4] [ N

©
=

1 Il |
0 5 10 15 20 25 30
CIRy dB

0 1 I

Fig. 7.8 Worst case p(CIR>CIR) for different frequency reuse patterns,
n=3.6 and c=8dB, assuming single interference source

7.3.1 Percentage of Average CIR Coverage at a Mobile Station

Fig. 7.9 illustrates how co-channel interference is introduced into a mobile station. When

the mobile moves in its service cell By, it receives the signal from the desired base station
By, but it also receives an interfering signal from its co-channel cell B;. Assuming the
location of the mobile is at (r,, 0) and the distance between the mobile and B, is /, the con-

ditional probability of CIR coverage given r, and / based on Eq. (7.32) is given as
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,
CIR,— (K——lOnlogl 0 -lfj

p(CIR> CIRy|r, ) = Q -

(7.35)

Fig. 7.9 Illustration of the co-channel interference for a mobile station

From Fig. 7.9, r¢/I can be expressed as a function of the location of the mobile (r,, 8) and

is given by

rs_ rs
l

JDZ + rs2 —2DrcosO

(7.36)

Assuming uniform usage in a cell, the pdfs of r; and 0 are independent with each other and
are given by [Lib95]
1
ppdf(e) = ﬁ’ (0 < e < 21'5),

2r,
;2-, (0<rss ).

ppdf(rs)
(1.37)
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Thus, by combining Eq. (7.35) and Eq. (7.37), the joint pdf p(CIR>CIR, r,, 9) is not diffi-

cult to compute as

P(CIR>CIRy, r,8) = p(CIR> CIRg|r, 0)p, (7, 0)

= p(CIR > CIR|r,, 0)P s (8D ps(rs) .
(7.38)
The average CIR coverage over the desired cell (base station B,) for the mobile station,
p(CIR > CIRO)MS, is

2n R

p(CIR > CIRy), ¢ = j j p(CIR> CIRy, r,, 8)dr d6
00

2r R
= sz [P(CIR > CIRy|r, O)r dr,do
00

r
CIRy,— (K—lOnlog = J
10
1 2 R JDz + rs2 —2Drcos®
= —_2.[ J'Q r.dr.do,

(o]

(7.39a)
and using Eq. (7.10), it becomes
p(CIR > CIRy), ¢
-
2 CIRO—[K-~10nlog10 2 ]
P J3NR* + 72— 2./ANRr cos0
= __2I J‘Q S rsdrsdﬁ .
TR™% 0

(7.39b)

Eq. (7.39b) is numerically computed for different cell reuse patterns, N=7 and N=3 with
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K=0dB, and the resulting graphs are shown as a function of the threshold CIR in Fig. 7.10

and Fig. 7.11, respectively. The pathloss exponent 7 is 3.6 and log-normal shadowing
power deviation o is 8dB. These values correspond to a suburban area. Figures 7.10 and

7.11 also include the worst case CIR coverage, where it is assumed ;=R and /=D-R. From
Fig. 7.10, the average CIR coverage for CIRy=18dB is 91% and for the worst case the cov-
erage is only 60% for the same CIR( value. By comparing Fig. 7.10 and Fig. 7.11, it can

be seen that the seven cell reuse pattern provides a mobile station higher CIR coverage

then the three cell reuse pattern. As an example, when CIR,=18dB, the average CIR cov-

erage drops from 91% for the seven cell reuse pattern to 72% for the three cell reuse pat-
tern. It is also noted that the CIR coverage for a three cell reuse pattern decreases faster

for increasing CIR then for the seven cell reuse pattern case.

7.3.2 Percentage of Average CIR Coverage at a Base Station

The co-channel interference introduced at a base station is defined differently than for the

mobile station. As shown in Fig. 7.12, base station B; not only receives signals from its
desired mobile M, but also from M, which is in a co-channel cell B;. The distance from
By to M, is rg and from B, to M, is I. The conditional pdf of CIR which exceeds a certain
level CIR, given rg and / is the same as in Eq. (7.35). However, the location of the interfer-

ing signal (r;, 0;) is statistically independent from the location of the desired mobile.
Unlike the interference for a mobile station, where the interfering signal strength depends

on the location of the desired mobile, the interfering signal strength is independent of M;’s

position. The joint pdf of r; and / therefore is

Ppaf(rs D) = Ppar(r)pparl) -
(7.40)
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Fig. 7.10 CIR coverage comparison between a mobile station located at the worst location
(rs=R, and /=D-R) and the average value over the whole cell, N=7
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Fig. 7.11 CIR coverage comparison between a mobile station located at the worst location
(rs=R, and /=D-R) and the average value over the whole cell, N=3
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Fig. 7.12 Illustration of co-channel interference for a base station

The pdf of r, is given in Eq. (7.37). To compute ppd/(l)’ the conditional pdf given r; must

be solved first. Their relationship is given in the following equation

def(l) = _[def(l, r;)dr;

r;

= [ PpaU1r )P par(r)dr;.

r

As shown in Fig. 7.12, the geometric relationship of /, r; and 0; is

2

I* = D*+r{ —2Dr,cos; .

The conditional pdf of / given r; is related to p(8,) in the following equation

I1ry = Pear(®)
def( |r;) 51(9,)

d9; | lo,= ey

(7.41)

(7.42)

(7.43)
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Differentiating Eq. (7.42), we have

dl _ r;Dsinb;
ae, I
(7.44)
Also from Eq. (7.42),
2
o D2+r,-2—12
sm i= = - Trl .
(7.45)

Substituting Eq. (7.37), Eq. (7.44) and Eq. (7.45) into Eq. (7.43), the conditional pdf of /
given r; is

1 l

pd(l|r-)=— )
P 2n 2 2 2\2
Dri 1=\ —=2br, —

(7.46)

From Fig. 7.12, it can be seen that the value of r; is limited to a specific range for a given /.

The value of r; varies from r,,;, to R, where r,,;, = |[D—1].

Ppdf]) can be solved by substituting Eq. (7.37) and Eq. (7.46) into Eq. (7.41), which pro-

duces

! —dr,

2
+Dr, |1 Drtr-F
"W\ T 2Dr,

1
Ppa(h) = J.E
T
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R
=—1—ZI ! ar; .

(7.47)
Eq. (7.47) is numerically evaluated and is plotted in Fig. 7.13 as a function of / for a seven
cell reuse pattern. To validate the result, 2*10* simulated data points of 6, and r; with uni-
form distribution and linear distribution, respectively, are used to represent / in Eq. (7.42).
The histogram of the simulated values of / is also plotted on the same graph. As can be
seen there is a good agreement between the analytical curve and the simulation results.
Fig. 7.14 shows the case for three cell reuse pattern. Obviously, the range of the distance
between the interfering mobile station and the desired base station / is from D-R to D+R
which indicates the worst and the best locations of the interfering mobile station M, with
respect to the desired base station B;. For both cases of N=7 and N=3, it can be seen that

the probability density function of / has the maximum value at /=D.

Now, the percentage of average CIR coverage over the cell for basestation B,

P(CIR> CIRy)ys, is

R D+R
P(CIR > CIRg) s = j J‘ p(CIR> CIRy, r,, l)dr dl
0 D-R
§
R D+R, CIRO—K+ 10nlog o || &
= [ j - [ ! dr, \dr dl .
0 D- RnR "' min D2+r-2—lz 2
+ | —_—

(7.48)
Eq. (7.48) is numerically computed for different cell reuse patterns N=7 and N=3 with
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K=0dB. The results are depicted as functions of input CIR, in Fig. 7.15 and Fig. 7.16,
respectively. The worst case CIR coverage where =R and /=D-R is also computed and

plotted in the corresponding figures. From Fig. 7.15, the average CIR coverage for
CIR,=18dB is 89%, while for the worst case, it is only 60% for the same CIR value.

Comparing Fig. 7.15 and Fig. 7.16, it can be seen that the seven cell reuse pattern provides
a base station higher CIR coverage than the three cell reuse pattern. For example, when

CIR,=18dB, the average CIR coverage drops from 89% for the seven cell reuse pattern to

70% for the three cell reuse pattern. It is also noticed that the CIR coverage for three cell

reuse pattern decreases faster when CIR increases than in the case of the seven cell reuse

pattern. This result is the same as for the mobile station case in section 7.2.1.

To compare the percentage of CIR coverage for a base station and for a mobile station,
both cases are plotted in Fig. 7.17 for N=7 and N=3. It is observed from the figure that the
CIR coverage for a base station is slightly lower than that for a mobile station. The com-
parison is based on the assumption that both the base station and the mobile station receive
single co-channel interference in addition to the desired signal. The average signal
strength of the interfering signal only depends on the location of the desired mobile for a
mobile station case, while the signal strength of the interfering signal is independent to the
desired mobile location for the base station case. For the base station case, the interfering
mobile has random locations when compared to the desired mobile, thus it introduces
more interference on average. Consequently, the percentage of average CIR coverage for

a base station is generally slightly lower than that for a mobile station.
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Fig. 7.15 CIR coverage comparison between a base station located at the worst location
(rs=R, and /=D-R) and the average value over the whole cell, N=7
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Fig. 7.16 CIR coverage comparison between a base station located at the worst location
(rs=R, and /=D-R) and the average value over the whole cell, N=3
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Fig. 7.17 Average CIR coverage comparison at a base station and at a mobile station
for different frequency reuse patterns

7.4 Effect of Power Control on the Average CIR Coverage

All the calculations related to the average CIR coverage in the previous section are based
on the assumption of constant transmit power. In real cellular systems, the power levels of
the mobile unit and the base station are under constant control by the serving base stations.
Power control ensures the smallest transmit power for both the forward link and the
reverse link to maintain a good quality. Open-loop and close-loop power control tech-
niques are especially important for CDMA systems to keep each subscriber at a nominal
power since they share the same radio channel simultaneously. Power control not only
prolongs the battery life of the subscriber, it also dramatically decreases the interference
from other users. For the AMPS system, the power control is simple. All mobile station
transmitters must be capable of reducing or increasing power on command from a base

station specifying a power level numbered from 0 to 10 [EIA90]. The nominal effective
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radiated power (ERP) for a mobile station is from -2dBW to -34dBW in an increments of
-4dBW for each of the power levels (the first three power levels have the same nominal
ERP) [IS5490]. To simplify the calculation, a log-linear model for the power control is
assumed varying from -34dBW to -2dBW, when the distance  is varied from d, (normal-

ized reference distance) to the cell boundary which is normalized to 1.

7.4.1 Effect of Power Control on the Average CIR Coverage at a Mobile Station

Fig. 7.18 illustrates how the co-channel interference is introduced into a mobile station
when the serving base stations have power control. When the mobile moves in its service

cell By, it receives the signal from the desired base station B, but it also receives an inter-
fering signal from its co-channel cell B,. Unlike the case in Section 7.3.1 where the trans-
mitted power levels from base stations B} and B, are constants, the power levels here from

base stations B and B, are functions of the mobile locations (r, ;).

Blr

"D |

I
|
I
I
|
- —-

Fig. 7.18 Illustration of the co-channel interference for a mobile station
with power control

Assume that the locations of the mobile M| and M, are (r,, 0,) and (r; 0;), respectively,
and the distance between the mobile M and B, is /, the received signal power C and the

interference power I are (in dB)
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C=PWg(r)- 10"103102' +8;,

(7.49a)
and

I= PWBz(r,.)——IOnlogw;-il;+Xcl :

(7.490)

where PWpg(r) is the power level transmitted by a serving base station as a function of the

distance r to its intended mobile. The received CIR in dB then can be expressed in the fol-

lowing equation

IOlogw(T: K+ PWB,(rs) - IOnloglo(doj + S (PWBz(r‘.)— IOnloglo(diO) + IG,)

’ b

K+PWB (r))—PWg (r)-lOnIoglo( )+S -1,

(7.50)
where K is a constant indicating the number of equal power interfering sources. Following
the same development of Eq. (7.35), the conditional probability of CIR coverage for a

power controlled base station given r,, ; and / is

.
CIR ~—(1<+ W PW , (r)—10nl -’j
p(CIR> CIRy|ry, ry ) = Q| Z_0 PWp, (r)-PWg (r;)-10nlog, 7 ||

(o]

(7.51)
Since / is a function of »; and 0, and the pdfs of ry, r;, 6, and 0; are independent of each

other, the coverage probability can be written as

p(CIR > CIRo, rl, rz, 91, 92) = p(CIR > CIRolrl, r2, 91, ez)ppdf(rl, rz, el, 62)
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= P(CIR> CIRy|ry, 7, 01, 03)P g {r )P pasr(r)P 4 (01)P s (65) -

(7.52)
By substituting Eq. (7.36) and Eq. (7.37) into Eq. (7.52), the average CIR coverage over

the cell with power-controlled base stations is

2rn R 2n R

Ppe(CIR>CIR)) o = [ [ [ [P(CIR>CIRy, ry 7, 8, 0,)dr d0dr,d8,
00O00O0

2n

)
0

2n

]

TR

R
[P(CIR> CIRy|r 7, 6,,8))r rdr d6dr.ds,
0

r 3\
CIRy~| K+ PWpy (r)~PWp (r)~10nlog, s

2nRR

=]

R 900 G

A[D +r —2Dr cose

r sridrsdrl.d()s.

(7.53)
We assume that the power control is log-linear with a minimum value of -34dBW and a

maximum value of -2dBW and that r is normalized from dj to 1. The power control

model is created by assuming that the transmitted power for the mobile station at distance

dy is -34dBW and that the transmitted power at the cell boundary r=1 is -2dBW. The

transmitted power increases proportionally to log;o ». Thus, PWpg(r) can be expressed as

32

PW(r) = —2——2% _
5 log 10d

—log ,r dBW,

(7.54)

where dj) is a normalized far-field reference distance. For example, a cell radius of 2km
and far-field reference point of 200 meters leads to a normalized dj of 0.1, which we will

use in the following analysis[Rap96][Lee93]. Referring to Eq. (7.10) and Eq. (7.54), Eq.
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(7.53) can be represented by the frequency reuse pattern number and the mobiles locations

as
ppc(CIR > CIRO)MS =
CIR, | K — 2 (log gr,—log 1or,)-10nlog .

o~ | K= =7 (logor;—l0g0r;)-
) 2xRR loglodo g 10 A/3NR2+r§—2A/3NrsCOSGS
2. [fo c
™ 900

rsridrsdr‘.d()s.

(7.55)
Eq. (7.55) is numerically computed for different cell reuse patterns N=3 and N=7 with
K=0dB. The results are shown as a function of the threshold CIR in Fig. 7.19. The path
loss exponent 7 is 3.6 and log-normal shadowing power deviation ¢ is 8dB which corre-
spond to a suburban area. The CIR coverage for a mobile station without the power con-
trolled base stations for both N=3 and N=7 are also plotted in the same figure. From Fig.
7.19, it can be seen that the average CIR coverage for a threshold CIRy=18dB is increased

from 88% to 92% for a seven cell reuse pattern by using the power control in base stations.
The improvement of the average CIR coverage for a three cell reuse pattern is very close to
that of a seven cell reuse case. The average CIR coverage after applying the power control
for both cases follows a the similar pattern as before when CIR, increases. Although the
average CIR coverage is increased by applying power control at base stations for AMPS
system, the improvement is not very significant. From our simulations, we note that the

slope of the linear power control function does not affect the average CIR coverage dra-

matically.
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Fig. 7.19 Comparison of the CIR coverage for a mobile station
with and without power-controlled base stations, N=3, 7

7.4.2 Effect of Power Control on the Average CIR Coverage at a Base Station

The effect of power control on the average CIR coverage at a base station is similar to that

at a mobile station. As shown in Fig. 7.12, base station B, not only receives signals from
its desired mobile M, it also receives signals from M, which is in a co-channel cell B,.
The difference from the case described in Section 7.3.2 is that the power levels from M;
and M, are no longer constant. The power levels of all the mobiles can be increased or

decreased depending on the command codes from their serving base stations. The further
a mobile is from its serving base station, the greater its power needs to be to combat shad-
owing and fading. Again, the power control used in a mobile station can be represented as

the same a linear function used in the base station CIR coverage evaluation.
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The received signal power and interference power are the same as in Eq. (7.49). The con-
ditional probability of CIR coverage given 7, r; and / is also the same as in Eq. (7.51).

Substituting Eq. (7.37) and Eq. (7.47) into Eq. (7.51), the probability of the CIR coverage

over a cell for a base station is

D+
Ppe(CIR>CIRg),c = |
D-R

R R
j p(CIR> CIRy, r,, 1, Ddr dr dl

P

S =

32 Ts
C[RO - [K—log lOdO(IOg 1075 — lOg lori)—IOnlog lo-l—]

(o}

AL

l

2
2
D2+ri __12 rirsdridrsdl.

D |1- 2Dri

(7.56)
Eq. (7.56) is numerically computed for different cell reuse patterns with K=0dB, and the
results are shown as a function of the threshold CIR in Fig. 7.20. The path loss exponent
n is 3.6 and log-normal shadowing power deviation o is 8dB which correspond to a subur-
ban area. The CIR coverage for a base station without the power-controlled mobile sta-
tions for both N=3 and N=7 are also plotted in the same figure. From Fig. 7.20, it can be
seen that the average CIR coverage for a threshold CIR;=18dB is increased from 90% to
94% for a seven cell reuse pattern by using the power control at the base stations. The
improvement of the average CIR coverage for a three cell reuse pattern is very close to that
for a seven cell reuse case. From the figure, it is obvious that the power control provides
better improvement for a higher threshold than a lower one. For an example, the average

CIR coverage is increased by 10% for CIRy=27dB after applying power control at the
mobiles, while it is only increased by 4% for CIR;=18dB. Comparing Fig. 7.19 and Fig.
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7.20, it is noted that the power control provides slightly greater improvement for a base
station than for a mobile station. Although the average CIR coverage is increased by
applying power control at mobile stations for the AMPS system, the improvement is still
not very significant. These results suggest that power control is not as critical for an
AMPS system as for a CDMA system. However, power control is necessary to maintain

adequate transmitting power and longer battery life for a TDMA/AMPS dual mode phone
[EIA90].

Power control helps to insure adequate power levels at a base station and a mobile station
to combat the effects of fading and shadowing. The power level of the desired signal is
decreased when the mobile is near its serving base station, and the power level is increased
when the mobile is near the cell edge. For the IS-54 dual mode standard, the minimum
power level is -34dBw and the maximum power level is -2dBw. When the radiated power
is increased at a mobile station to provide good signal strength to its serving base station, it
may introduce greater interference to the mobile in the co-channel cell. Thus, power con-
trol in this situation could have a negative effect and cell dragging is an example of this sit-
uation [Rap96]. The overall positive and negative effects of power control are reflected in
Figures 7.19 and 7.20. To obtain large CIR improvement for the AMPS system, other

approaches can be used, and they are discussed in the following section.
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Fig. 7.20 Comparison of the CIR coverage for a base station
with and without power controlled mobile stations, N=3, 7

7.5 System Capacity Improvement

System capacity has become the largest obstacle to the growth of the cellular industry.
Different techniques are used to expand the capacity of cellular systems. They include
cell splitting, sectoring, and coverage zone approaches. Cell splitting is the process of
subdividing a congested cell into smaller cells, where each subdivided cell has a new base
station and reduced transmit power. Generally, there are two kinds of splitting techniques:
permanent splitting and dynamic splitting. Permanent splitting is easy to realize as long as
the transition from large cells to small cells takes place for low traffic areas. Frequency
reassignment should follow the rule based on the frequency-reuse distance ratio with the
power adjusted [Lee93]. On the other hand, the dynamic splitting technique determines
the orientation of the new set of seven cells, split dynamically according to the traffic

demand. Idle small cell sites may be activated in order to increase the cell’s traffic capac-
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ity. Nevertheless, cell splitting can affect the neighboring cells and cause an imbalance in
the distribution of power and frequency-reuse distance. Furthermore, it is a costly opera-

tion.

The sectoring approach replaces a single omni-directional antenna at the base station with
several directional antennas, with each antenna radiating within a specified sector. By
using this arrangement of antennas, a given cell will interfere only with a fraction of the
co-channel cells. The factor by which the co-channel interference is reduced depends on
the amount of sectoring used. The penalty paid for improved C/I, or in other words, for
increased capacity, is an increase in the number of antennas at each base station and a

decrease in trunking efficiency due to the channel sectoring at the base station [Rap96].

In the coverage zone approach, the concept of the microcell zone is introduced to avoid the
increased number of hand-offs required in sectoring [Rap96]. In this model, a cell is
divided into three or more zones, and each of these zones is connected to a single base sta-
tion and shares the same radio equipment. As a mobile moves within the cell, it is served
by the strongest signal. Any channel can be assigned to any zone by the base station. In
addition, the mobile will remain on the same channel when it travels from one zone to
another within the cell. The base station simply switches the channel to a different

antenna or zone site. This technique is particularly useful along highways or along urban

traffic corridors.

Besides these system layout improvements for increasing system capacity, new digital sig-
nal processing techniques, like the TDAF can be applied at the receiver. This technique
provides an inexpensive and effective method of suppressing the co-channel interference

and accommodating more users in the same region.

As mentioned earlier, the commonly employed frequency reuse patterns are three-cell,

four-cell and seven-cell reuse. Among these patterns, the three-cell reuse pattern enjoys
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the advantages of having the highest number of channels. However, from Fig. 7.4, for a
path loss exponent of =4, the mean CIR for three-cell reuse is around 12dB, which is not
sufficient to provide acceptable toll quality. For the same n, the mean CIR level for a
seven-cell reuse pattern is approximately 18dB. Thus, from the CIR point of view, a

seven-cell reuse pattern is superior to the three-cell reuse pattern.

The TDAF can improve the CIR of the three-cell reuse system. From the theoretical
results in Chapter 5, Section 5.2, the CIR improvement ranges from 14 to 30dB for an
input CIR of 11dB depending on the carrier separation of the SOI and the SNOI, the type
of fading, and the level of the noise. This performance is indicative of the theoretical per-
formance of the blind TDAF (SCP). To compare the probability of CIR coverage before
and after applying the time-dependent filter, the analytical probability p(CIR>CIR ) in
Eq. (7.39) is plotted as a function of CIR, for seven-cell reuse pattern in Fig. 7.21 and for
three-cell reuse pattern in Fig. 7.22. Doppler frequencies of 30Hz and 60Hz are assumed
for the flat fading channels. Assuming the CIR gains provided by the time-dependent filter
shown in Chapter 5, Section 5.2, the probabilities of average CIR coverage for N=7 and
N=3 are also plotted in Fig. 7.21 and Fig. 7.22, respectively. The figures show that the
probability of the average CIR coverage is greatly increased by utilizing the time-depen-
dent filter. The receiver which incorporates the time-dependent filter can provide 97%
CIR coverage for CIR below 15dB. For example, the probability of average CIR coverage

is 70% before applying the time-dependgnt filter and is increased to 98% after applying
the time-dependent filter.

Since there is a slight degradation for the filter performance caused by high Doppler fre-
quencies, the CIR coverage is also affected, especially for a high threshold CIRy,. It can be

seen from Fig. 7.21 that the probability of the average CIR coverage is almost the same
when CIR; is below 18dB for both f,,=30Hz and 60Hz, while there is a 15% difference

when CIR) is 30dB. The same pattern holds for the three cell reuse case. It is also noted

that the probability of the average CIR coverage for the three cell reuse pattern drops faster
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than that for the seven cell reuse pattern.

To compare the probability of the average CIR coverage at a base station before and after
applying the time-dependent filter, the analytical probability of the average CIR coverage
P(CIR>CIRj)gg based on Eq. (7.48) is plotted in Fig. 7.23 and Fig. 7.24 for N=3 and N=7,
respectively. The probability of the average CIR coverage with a time-dependent filter,
again assuming CIR improvements provided in Chapter 5, Section 5.2, is also plotted in
the corresponding figures for different two-ray frequency selective fading channels. From
these two figures, it can be seen that the larger the multipath delay, the lower the probabil-
ity of the average CIR coverage, especially for a high threshold CIR,. However, the

improvement is still significant compared to the conventional receiver, even when a lower

frequency reuse pattern is assumed.

In short, by implementing a TDAF at the receiver, the channel reuse number can be
reduced without significantly affecting the received voice quality. As a result, the system
capacity can be increased significantly. The complexity of the implementation is compa-
rable to that of an equalizer. The cost of the implementation is much lower than the sys-
tem re-configuration methods. The improvement in co-channel interference reduction
provided by the time-dependent filter is more significant than that provided by the power
control technique. The time-dependent filtering technique allows a lower frequency reuse

factor, a lower probability of co-channel interference, and a higher probability of average

CIR coverage.
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and the receiver incorporating a time-dependent filter. Flat fading
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and the receiver incorporating a time-dependent filter. Frequency
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In this chapter, a number of future research directions are proposed based on extending the

theory and simulation results presented in this dissertation.

8.1 Performance of a TDAF with Multiple Co-channel Interfering Sources

In this dissertation, we have shown that the TDAF produces a significant improvement of
CIR for an AMPS signal corrupted by a single co-channel interfering source. In a practi-
cal AMPS system, multiple co-channel interfering signals could come from different co-
channel cell sites. The performance of the TDAF when two co-channel interfering signals

are present needs to be examined.

8.2 Analysis of the Sensitivity to the SAT Frequency Bias

Another useful area of future work is to measure the sensitivity of the TDAF to the SAT
frequency bias. In this dissertation, the filter periodicities are assumed to be exactly the
same as the cyclic frequencies of the desired signal. Although the ideal SAT frequency of
the desired signal is known, the actual SAT frequency in the AMPS signal may drift from
the true value. The filter performance will be affected by the error in the received signals’s
SAT frequency. The maximum SAT frequency drift the filter can tolerate is an interesting
and important topic.

8.3 Co-channel Interference Mitigation Using Spectral Correlation Detection Tech-
niques and Switched Diversity

In smart antenna applications, detecting the existence of co-channel interference is impor-
tant since a signal from the antenna which has the best signal quality is chosen for demod-
ulation (switched diversity). For the AMPS system, this is achieved by detecting the SAT

power of the incoming signal. In some cases, this measure is not very good because of the
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rapidly varying channel. DSP detection techniques using spectral correlations provide a
more robust means to detect interference in dynamic channels than a simple SAT power
measurement. Thus, it may possible to develop a more robust switched diversity tech-

nique for interference rejection.

8.4 Adjacent Channel Interference Rejection Using DSP Techniques

Although co-channel interference in the AMPS system is one of the key factors affecting
received signal quality, adjacent channel interference also plays an important role in sig-
nal quality. In practical systems, a steep roll-off bandpass filter is often used both at the
transmitter and the receiver to filter the out-of-band interference and noise. However,
leakage across channels often occurs since the channel is dynamic and interference levels
can be high. Better adjacent channel interference rejection using a TDAF can allow more

flexible channel assignments, potentially increasing system capacity and voice quality.

8.5 DSP Hardware for Real Time Implementation of the TDAF

For a real time filter implementation, complexity is a very critical issue. This necessitates
designing computationally efficient techniques with low memory requirements for real
time implementation of the TDAF. A proto-type real time TDAF would provide a means

of testing the algorithms in real cellular systems and would significantly enhance our

research efforts.

8.6 Extended Analysis of System Capacity to Sectorized Antennas
The capacity gains computed so far assume omni-directional antennas. In capacity-lim-

ited areas, sectorized antennas are being deployed. Thus, it would be beneficial to analyt-

ically determine capacity gains a TDAF can provide to these systems.
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Chapter 9. Conclusions and Summary

This dissertation presents new techniques for achieving AMPS co-channel interference
mitigation and achieving their impact on system capacity. Also included is a literature
review of single channel interference cancellation techniques applicable to AMPS signals.
The principles behind these techniques are described along with their advantages and dis-

advantages.

To describe the new techniques invented in this research, background material on second
order cyclostationarity of communication signals is presented. A mathematical analysis of
the cyclostationary, or equivalently the spectral correlation characteristics, produced by
the supervisory audio tone (SAT) in an AMPS signal is derived and verified by numerical
methods. The impact of different channel conditions, such as AWGN, co-channel interfer-
ence, fading and multipath, on the spectral correlation characteristics of AMPS is also
analyzed and numerically verified. These results show that although the spectral correla-
tion may be diminished in these environments, it still provides a means for significant

interference rejection.

A time-dependent filter is ideally suited for exploiting the cyclostationary properties. An
AMPS receiver incorporating this new filter can reject co-channel interference and
enhance the desired signal. The theory of this type of optimal filter is presented. Its per-
formance is analyzed and measured under different channel conditions, such as the

AWGN, co-channel interference, fading and multipath.

A blind spectral correlation predictor (SCP) is realized by using an adaptive FRESH filter
structure to implement the time-dependent optimal filter. This blind algorithm uses the
received signal as the training sequence to adapt the filter. Performance of this blind adap-
tive filter using simulated and digitized data is measured. Results show that there is a sig-

nificant improvement in the carrier to interference-and-noise ratio of the filtered signal.
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Both the adaptive algorithms and the structures are refined to obtain better performance

and lower computational complexity.

These interference rejection techniques are also applied to the NAMPS signal since a
NAMPS signal has signal structure similar to the AMPS signal. The TDAF is imple-
mented using time sequence switching structure for the NAMPS signal instead of the
FRESH structure used for the AMPS signal. Initial results show that these techniques are

promising.

To determine the impact of the techniques on system capacity, the statistical relationship
between interference and capacity is studied in this dissertation. This study includes the
impact of both adjacent channel interference and co-channel interference on system
capacity. Probability of the average CIR coverage is derived and numerically evaluated
for both the base station and the mobile station using different cell reuse patterns. The
probability of the average CIR coverage for time-dependent filtered signals and non-fil-
tered signals is compared. Results show that by applying a time-dependent filter, the out-
age probability is significantly reduced for both the mobile station and the base station.
These results imply that by using time-dependent processing, the system capacity could be

increased by using a lower frequency reuse scheme than the current seven cell reuse

scheme.

The research that has been presented in this dissertation provides new directions for reduc-
ing co-channel interference of AMPS signals and for increasing system capacity. These
techniques can be used with a single antenna, or with smart antennas to improve the qual-

ity of received signals.
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